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1 INTRODUCTION 

Invasive alien plant species (IAPS) have become a significant concern due to their detrimental effects on 

ecosystems, biodiversity, and ecological processes (Langmaier & Lapin, 2020; Paz-Kagan et al., 2019; Guido et 

al., 2017). Among the various IAPS, Japanese knotweed (Fallopia japonica) stands out as one of the most 

problematic species globally (DAISIE, 2008; ISSG/IUCN, 2009). Originally from East Asia, Japanese knotweed 

was introduced to different regions for ornamental purposes, erosion control, and as a forage crop (Conolly, 

1977). 

Once it escapes from cultivation, Japanese knotweed establishes itself in diverse habitats, including coastal 

areas, riparian zones, urban environments, and wetlands (Conolly, 1977; Pyšek & Prach, 1993; Rouifed et al., 

2011). Its rapid and aggressive growth, coupled with its ability to outcompete native species, leads to negative 

impacts on soil characteristics, ecosystem functioning, and infrastructure (Aguilera et al., 2010; Collingham 
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et al., 2000; DAISIE, 2008; Smith et al., 2007). The resilient rhizome system of Japanese knotweed and its 

resistance to eradication efforts make its control challenging (Shaw & Seiger, 2002). 

Standing biomass may collect and provide a fire risk as a result of the slow rate of decomposition of leaves 

and stalks (Seiger & Merchant, 1997). In central Europe, the spread of F. japonica is primarily vegetative. It 

occurs due to people's movement of contaminated soil or the dispersal of rhizomes or cane pieces via 

waterways, highways, and railroads (Conolly, 1977; Pyek et al., 2003; Smith et al., 2007). Aside from being 

encouraged by increased CO2 and N deposition rates, the spread of F. japonica is progressively accelerating 

across Europe (Bradford et al., 2007, DAISIE, 2008). Once established, F. japonica is exceptionally challenging 

to get rid of. The process may require multiple treatments, and removal efforts may have a negative effect 

on the soil or plants(Shaw& Seiger,2002). 

Control techniques created for the avoidance of new invaders, detecting early-stage invasions, rapid 

response, and managing established or spreading IAPS can mitigate these effects (IUCN 2000). Early detection 

can help save money on the significant financial resources needed to eradicate, contain, and control 

established IAPS. The technique requires the most precise data on the spatial distribution and degrees of IAPS 

infestation to succeed. 

Datasets of the IAPS's geographic distribution were previously primarily gathered through field surveys, in-

situ inventories gathered by GNSS (Global Navigation Satellite Systems), or through the analysis of aerial 

photographs (Jombo et al., 2021; Royimani et al., 2019; Hartling et al., 2019; Lawrence et al., 2006; Müllerová 

et al., 2005). However, these techniques require much labor and are frequently unsuitable from a technical 

and cost standpoint, mainly when dealing with significant or inaccessible areas. Their dependence on the 

observer may also be somewhat subjective (Royimani et al., 2019; Lawrence et al., 2006). Despite limitations 

linked to the availability and resolution of pictures (Robinson et al., 2016), remote sensing may be a more 

advantageous alternative for monitoring and managing IAPS (Dash et al., 2019; Niphadkar & Nagendra, 2016). 

Current research proves that Japanese knotweed classification results vary(Hick, 2021 & Martin et al.,2018) 

Few of the main crucial components to success that we emphasize and compare between previous studies 

are: Data type, Method, spatial resolution, and Number of bands.  



 

3 
 

Our study uses two different RS imagery sets/Data types: aerial and satellite images. Aerial images have a 

much higher spatial resolution concerning satellite data And have been successfully proven to detect 

Japanese knotweed (Dorigo et al., 2012). The author's research classified Japanese knotweed with 98.1% 

accuracy. They used NIR, Bi-temporal band ratio, and NDVI to detect Japanese knotweed in Slovenia. Satellite 

data, however, can have a higher spectral band distinction. Another highly successful example of detecting 

Japanese knotweed is the (Hick,2021) study. In this paper, the author used multidimensional data to detect 

Invasive alien species in Cardiff. Through the analysis of hyperspectral VHR data containing 186 bands, the 

author managed to get very high results across all alien invasive species and distinguish that Japanese 

knotweed is very separable around the VNIR region. In addition, CHM was derived from photogrammetry, 

and a threshold of 5m was applied to JK species. Another new example of satellite data being highly effective 

in detecting JK is a study conducted by (Nininahazawe et al., 2023), Where they used Worldview-3 and SPOT-

7 satellites in the urban agglomeration of the Quebec City area. These two VHR data sources have 8 and 4 

spectral bands.   The authors performed mono-date and multi-date classification on this species, namely 

Japanese knotweed (Fallopia japonica), giant hogweed (Heracleum mantegazzianum), and phragmites 

(Phragmites australis). Using SVM, RF, and XGBoost, they confirmed the potential of remote sensing in the 

accurate mapping of Japanese knotweed, reaching the highest user accuracy of 90% using Worldview-3.  

In order to get over the primary limitations of field inventory-based methodologies, automatic categorization 

techniques have been developed recently (Royimani et al., 2019; Lu & Weng, 2007; Lass et al., 2005). Mainly, 

nonparametric methods (such as machine learning techniques) and object-based image analysis (OBIA) have 

been employed extensively (Royimani et al., 2019; Asner et al., 2008; Lass et al., 2005). The OBIA that (Hick, 

2021) used with Spatial angle mapper SAM was also performed by (Jones et al., 2011),  where they used VHSR 

aerial imagery and NDVI to detect Japanese knotweed in Wales.   

Nonparametric machine learning approaches can mix numerous data sources, frequently defined by 

different statistical distributions, because they do not require a normal distribution of training samples 

(Benediktsson & Sveinsson, 1997). In heterogeneous settings (such as urban regions), where it may be 

challenging to locate enough samples for particular classes, these approaches are also appropriate for small 
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samples (Masse, 2013). Until now most widely used algorithm for Japanese knotweed classification is RF, 

together with SVM, SAM, and XGBoost. A random forest approach was undertaken in IAS classification by 

(Martin et al., 2018). Two different locations in Spain were examined using Pleiades satellite and UAV 

imagery. The CHM and  BTBRS proved that knotweed could be satisfactorily mapped, reaching 33% accuracy 

for Pleiades and 48% accuracy for UAVs. However, choosing the most appropriate method will depend on the 

scenery. In order to determine whether heterogeneity across many dates of photos could result in 

disproportionately harsh accuracy assessment and, consequently, poorly advised conclusions, they 

additionally rationalized errors of omission by imposing simple "buffer" borders around knotweed forecasts. 

One more case of detecting Japanese knotweed using a Random forest classifier in riparian areas was done 

by(Michez et al., 2016). They used UAS imagery in Wallonia to identify three different invasive alien species. 

However, this study concluded that more than the results are needed for operational work. Table 1 below 

reviews existing studies based on their study areas, data type, method, spatial resolution, number of bands 

and classification accuracy. 

 
Author Study Site Data type Method Spatial 

resolution 
Number of 

Bands 
Classification 
Accuracy % 

(Jones, Daniel, 
et al) 2011 

Wales Aerial 
imagery 

OBIA, 
NDVI 

40cm 4 bands 
(RGBIR) 

(n.a) 

(Dorigo, 
Wouter, et al. 

)2012 

Ljubljana Orthophotos RF 
BTBR 
NDVI 

50cm 4 bands 
(RGBNIR) 

98.1% 

(Michez, 
Adrien, et al 

.)2016 

Wallonia The 
Gatewing 
X100 UAS 

RF VHR(n.a.) 3 bands 
(RGB) 

69%* 

(François-
Marie, et al 

)2018 

Anse, 
Sierres 

Pleiades, 
UAV 

RF, 
CHM, 

MBTBRS, 
buffer 

50cm, 
8cm 

4 
Bands(RGBI) 

33%, 
48% 

(Denise 
Hick)2021 

Cardiff HySpex 
VNIR + SWIR 

Phase One 
iXA 180 

Hyperspectral, 
OBIA 
SAM 
NDVI 
CHM 

VHR(n.a) 
 

186 99.53% 

(Nininahazwe, 
Fiston, et 
al.)2023 

Quebec City WorldView-
3 

SPOT-7 

SVM, 
RF 

XGBoost 

VHR(n.a.) 8 bands, 
4 bands 

88% 
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Table 1 Overview of existing research on the topic of Japanese knotweed clasification 
 
Effective management depends on timely and accurate information about the geographic spread of Japanese 

knotweed. Invasive species like Japanese knotweed can be mapped and identified using remote sensing 

techniques (Dash et al., 2019; Niphadkar & Nagendra, 2016). Japanese knotweed has the potential to be 

reliably classified using machine learning techniques, notably object-based image analysis (OBIA), in 

conjunction with high-resolution multispectral imaging (Dorigo et al., 2012; Martin et al., 2018). PBIA, 

however, received less attention during remote sensing classification(Jimoh et al., 2021). This study aims to 

quantify the disparity in accuracy between these two image analysis techniques. Hyperspectral data 

performed the most influential research with this task, suggesting a improved with accuracy. The NDVI 

metric is applied in a few cases, with varying success of improvement (Dorigo et al., 2012 & Hick, 2021). There 

is also an inconsistent decision about machine learning algorithms that perform best for JK classification 

(Nininahazwe et al., 2023). The CHM was implemented to detect invasive alien species before, but not using 

LiDAR, just photogrammetry. Due to the time constraints of the study, the decision on data type was limited 

to free source. This resulted in obtaining Superview Neo and Pleiades imagery, along with Airborne and LiDAR 

data. This allows using of VHSR satellites while also comparing the User accuracy of Pleiades with previous 

research. Another potential gap in current research is the evaluation of mowed knotweed, which has not 

been conducted yet. To make these results transferable to future research, the study area is two different 

environments, riparian and urban. This paper aims to suggest and work with (the European Commission 

2019) directive UE through invasive species mapping and improving the state of the art. This information can 

then be utilized to develop efficient strategies for controlling and eradicating this invasive species. This gives 

rise to a significant objective: Can remote sensing methods accurately monitor Japanese knotweed in urban 

and riparian areas? 

Overall, this research seeks also to address the following minor objectives: 

• Compare the performance of remote sensing methods, including pixel-based and object-based 

analyses, for monitoring Japanese knotweed. 
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• Analyze the results of the Support Vector Machines (SVM) and Random Trees (RT) models results on 

a given task. 

• Investigate the potential benefits of incorporating the Canopy-Height Model and NDVI to improve 

classification accuracy. 

• Assess the feasibility of identifying mowed Japanese knotweed using remote sensing techniques. 

 

By achieving these objectives, we aim to contribute to the body of knowledge on remote sensing applications 

for Japanese knotweed monitoring, providing valuable insights for environmental agencies and waterboards 

involved in managing this invasive species. 

The study used ArcGIS Pro to lay a framework that other WSP researchers or staff members can build upon 

and continue. Geographic information system (GIS) software, ArcGIS Pro, is widespread and offers solid 

spatial analysis, data management, and visualization tools. Its popularity and extensive acceptance in the 

workplace, which guarantees interoperability and facilitates communication with other WSP employees, led 

to its selection as the study's main piece of software. The software's comprehensive capabilities allowed for 

quick data processing, categorization, and spatial analysis, which made it possible to investigate and assess 

several remote sensing approaches for Japanese knotweed monitoring. 

 

2 DATA COLLECTION AND STUDY SITES 

As explained in Section 1, the main goal of this study is to classify Japanese knotweed into two distinct 

areas. Niuewegein represents the urban area, and the mouth of the river Geul represents the riparian area. 
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 Different open-source data were extracted for each of these regions, namely satellite data, airborne 

photographs, and LiDAR scans. These were the best free, readily available maps of the ROI at this moment. 

High-resolution optical data for the research regions were gathered from NSO using satellite imagery from 

the Pléiades Neo, SuperView NEO-1, and SuperView 1 satellites.  

 

Data Type  Spatial resolution / Band count  

Superview NEO-1  30cm / RGB + Infrared  

Airborne 10cm / RGB 

Superview - 1 50cm / RGB 

Pleidaes neo 30cm/RGB 

LiDAR (N.a) 

Table 2 Overview of used Data type and its respective spatial resolution/Band count 

 

Two photos were obtained for the Geul region (2,3) from the SuperView NEO-1 satellite, a constellation of 

very high-resolution optical satellites. These pictures, taken on May 27 and March 2, 2023, provide valuable 
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information. The first Image served as ground truth data, enabling the validation of classification results. The 

second Image was beneficial for evaluating the efficacy of the classification algorithm for mowed knotweed 

during the inactive winter season.  

The SuperView NEO satellite instruments measure in a panchromatic band (resolution 0.3 meters) and in 4 

different multispectral bands (resolution 1.2 meters): 

• PAN: 450 - 890 nm (Panchromatic) 

• B1: 450 - 520 nm (Blue) 

• B2: 520 - 590 nm (Green) 

• B3: 630 - 690 nm (Red) 

• B4: 770 - 890 nm (NIR) 

The Pléiades Neo satellite also provided a photo of the urban region. These high-resolution views of the 

research region from the pictures taken on April 6, 2023, made identifying and analyzing Japanese knotweed 

and other land cover elements easier. The French Pléiades NEO constellation consists of two identical 

satellites: Péiades NEO 3 and 4. The satellites have an instrument on board that measures in the panchromatic 

band (resolution 30 centimeters) and multispectral (resolution 1.2 meters) in 6 different bands: 

• P: 450 - 800 nm (Panchromatic) 

• B1: 400 - 450 nm (Deep Blue) 

• B2: 450 - 520 nm (Blue) 

• B3: 530 - 590 nm (Green) 

• B4: 620 - 690 nm (Red) 

• B5: 700 - 750 nm (Red Edge) 

• B6: 770 - 880 nm (NIR) 
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SuperView-1 satellite pictures were used to depict the riparian area. These 0.5-meter-resolution photos, 

taken over four years(24), provide temporal information about changes in the land cover and the growth 

patterns of Japanese knotweed. Even though this dataset lacked validation data, it was critical in assessing 

the spatial distribution of Japanese knotweed. 

 

The publisher of the Superview-NEO, Pleiades-NEO, and Superview-1 images in the Netherlands, Netherlands 

Space Office (NSO), provides context on the preprocessing that is performed and the same for the satellite 

images (NSO). The raw satellite photos were initially calibrated radiometrically. The next step included 

Sensor correction and, finally, orthorectified. 

  

The riparian region of Geul has access to recent Light Detection and Ranging (LiDAR) scans, and the 

organization Rijkswaterstaat performed an additional scan of the area for their monitoring of the Maas River 

(Rijkswaterstaat, 2022). The metadata of the company scan reveals that the provided LiDAR measurement has 

a resolution of 16.6 points per square meter. These scans offered precise elevation and topography data that 

could be used as additional features to potentially improve the classification algorithm's accuracy by 

extracting CHM from the point cloud. The study's goal using LiDAR data was to increase the ability to 

distinguish between tall trees and Japanese knotweed, ultimately improving the effectiveness of the 

classification process overall. (Hick, 2021) 

 

Airborne photos were gathered (4,5) for the riparian and urban areas of interest to enhance the study 

further. These photos were taken in 2022 and featured stereoscopic photos with a resolution of 10 cm and 

high-quality images taken during the season without leaves. The 10-centimeter ground pixel resolution 

ortho-photomosaics created from these photos enabled an inspection of the study areas where Japanese 

knotweed had been removed or cut. These photographs were used as training data to test the algorithm's 
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performance in identifying Japanese knotweed when mowed; (Beeldmateriaal, 2022) where the data was 

collected, gathers imagery twice a year, and they did not provide a specific preprocessing level of these 

products.  

 

2.1 VALIDATION DATA 

Two field visits were taken to collect real-world data as part of the validation process to inspect the 

classification model's performance and accuracy. Only two areas of interest were covered once during the 

data collection due to the study's 10-week time limit. However, observing the study sites more regularly 

throughout the data collection process and making field trips per year would prove helpful (van Iersel et al., 

2018), especially now with higher resolution open data available for better research.(Nininahazwe et al., 2023) 

Riparian area 
 

The first location of interest was the mouth of the River Geul by Bunde in the Province of Limburg, located 

at 5.7151063E and 50.9080349N. This vegetation area variation in the classification analysis context 

represents riparian environment characteristics. On June 1, 2023, fieldwork was conducted, yielding the 

collection of 12 Japanese knotweed reference plots, which were afterward divided into additional samples 

based on the plant's shape. Some reference plots had more than just one Japanese knotweed present, but 

due to varying shapes of the IAS, they were collected as one sample and later split where different plants 

started overlapping. 
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Reference plot 1 Geul area 

 



 

12 
 

 

Urban area 
 

The second point of importance is located in Neuiwegein, in the province of Utrecht, at 5.1101794E 

52.0522948N. Twenty samples of Japanese knotweed were collected due to this fieldwork, which was done 

on June 13, 2023. They were later used as ground truth data to train an image from April 6, 2023. The threat 

to environmental diversity is worsened by alien invasive species in cities where there already are other 

invasive species (Štajerová et al., 2018) 
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Reference plot 2 Nieuwegein area 

 

 



 

14 
 

Mowed Japanese knotweed 
 

Even though only a few studied objects were collected after mowing, they were valuable as validation data. 

In the images, we can see mowed Japanese Knotweed; this data was used to confirm the removal process of 

IAS. By comparing the Image a few days before fieldwork that contains live knotweed and an image after 

the fieldwork, it is safe to assume that this knotweed is mowed from time to time, assuring us that we can 

identify it back in time. Which is later proved at (24) temporal analysis. 
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Reference Plot 3 Nieuwegein area Mowed knotweed 
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3 METHODOLOGY 

 

The vegetation classification in this study was done using a complex process combining supervised machine 

learning models that apply pixel- and object-based techniques. This strategy enables comparing and 

evaluating each method's outcomes while considering their benefits and drawbacks. 

 

Overall, this research methodology uses a combination of satellite imagery, airborne imagery, two distinct 

image analysis approaches, ground truth data, and different machine learning classification algorithms to 

shed light on the existence and growth patterns of Japanese knotweed in urban and riparian settings. In 

addition, the study utilizes the available validation data and combines additional information from LiDAR 

scans together with NDVI indices (Schenk et al., 2002) 

The study aims to contribute to the comprehension and management of Japanese knotweed and other 

vegetation types within the study regions by assessing the classification results and considering the 

disadvantages and benefits of each approach and how they can be merged together for future analysis (Hick, 

2021) 

3.1 PIXEL VS OBJECT BASED APPROACH 

The object-based approach is used in remote sensing and image analysis to extract information from imagery 

based on objects or regions rather than individual pixels. It involves grouping pixels together to form 

meaningful objects or segments, which are then analyzed and classified based on their characteristics (Liu et 
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al., 2010). In this respect, a group of pixels would serve as a training example for a classification algorithm, 

and the taught classification algorithm would then output a class prediction for pixels on a group basis. A 

simple example would be to divide an image into n segments of equal size and then assign a class (e.g., 

includes object/does not contain object) to each segment (Jones et al., 2011). Even though object-based 

classification is frequently employed in related research projects, it is crucial to recognize its shortcomings. 

The time-consuming and computationally demanding process of segmenting the training image into 

homogeneous objects is one of the major obstacles (Liu et al., 2010). Furthermore, the object-based 

classification may need to be more accurate since it is less likely to accurately capture the spectrum 

fluctuations inside particular objects (Liu et al., 2010) 

 

Segmenting the items in the photos was another crucial step before performing object-based analysis. The 

ArcGIS Pro object-based analytic tools were used to do this segmentation operation as an example(6). 

Segmentation was used to create meaningful objects by combining pixels with comparable traits or 

attributes. This made it possible to separate certain features or items of interest, like vegetation patches or 

different land cover types, so that they could be easier examined and classified. The size and shape of the 

final segments were determined by several algorithms and parameters, including scale and shape variables, 

during the segmentation process (Jones et al., 2011). The study also takes into account the pixel-based 

technique in order to overcome these issues. The classification of pixels is done for each pixel, ignoring the 

values of pixels inside the locality and just using the spectral data available for that specific pixel. In this 

sense, each pixel would stand in for a training example for a classification algorithm, which would take the 

shape of an n-dimensional vector, where n was the number of spectral bands in the image data. As a result, 

each individual pixel in a picture would receive a class prediction from the taught classification algorithm. 

The accuracy of pixel-based classification may be slightly lower than that of object-based classification 

(Neupane et al., 2021). However, it performs more quickly, which is vital in the ArcGIS Pro environment. The 

study seeks to thoroughly evaluate the classification outcomes, considering both accuracy and efficiency, by 

comparing the findings of the two methodologies. 
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3.2 SAMPLES CLASS ASSIGNMENT  

Two satellite photos of an urban and a riparian area are chosen as the primary training datasets. An important 

step to use them for classification is creating training samples due to the supervised process. Once the 

training samples are developed, the algorithm can learn on predefined classes and classify the rest of the 

Image. The usual approach is to set the train/test split values fixed. Arcigis Pro uses a predetermined split of 

70/30, meaning that 70% of the provided samples are used for training, and the rest 30% are left out for 

testing.  

For the class assignment, an approach was to implement the same amount of training samples per class. This 

assures that there is no class misbalance, and it is a known method when training models. Some classes, 

however, were much more sparse, with more pixels taken into the approach, then only half of the initial 

training samples were created for that class. Some of these more sparse classes are water, grass, buildings, 

and roads. The number of samples assigned to each classified Image varied. Training live knotweed classifier 

was conducted using 30 samples from the Nieuwegein area(1) and 17 from the Geul area(2). Mowed knotweed 

classification was performed using 22 training samples for each area(4,5). These plants can be visible better 

in this image (9). Combining Japanese knotweed samples with other classes resulted in a full training dataset. 

These datasets are then used to train two classification models using pixel- and object-based techniques. 

3.3 CANOPY HEIGHT MODEL (CHM) 

In addition, the study implements LiDAR scans starting from 2022 into the classification process, which is 

only accessible in riparian areas. Lidar (Light Detection and Ranging) is a remote sensing technology that 

measures distances and captures detailed information about the Earth's surface using laser pulses(Naeseet et 

al ., 2002). It provides precise and high-resolution data by emitting laser beams and measuring the time it 

takes for the laser to return after hitting an object. CHM has become a valuable tool in various fields, including 

forestry, geology, urban planning, and environmental monitoring (Hick, 2021). 
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In the context of this study, lidar data was utilized to extract height information, which serves as an 

additional input for the classification process. Height extraction from lidar data enables to capture of the 

vertical dimension of the study area, which can provide valuable insights into the structure and composition 

of the landscape. However, to rely on these data, a Canopy Height Model must first be created. Original data 

was stored in LAS format, which, when applied to ArcGIS, resulted in a point cloud(point cloud). With these 

specifics. Then two layers were extracted, the first point of return and the ground point of return. They 

respectively give information about the Digital elevation model and digital surface model. Using both layers 

in the raster calculator made it possible to subtract DEM from DSM, resulting in Canopy Height Model(11). 

This is how vegetation height is measured primarily in research (Naeseet et al ., 2002). The CHM was evaluated 

for the whole study area of Geul to distinguish how vegetation height varies. By incorporating height as a 

feature in the classification algorithm, the accuracy and reliability of the land cover classification can 

potentially be improved. 

 

 

3.4 MACHINE LEARNING CLASSIFICATION ALGORITHMS 

The study mainly concentrated on Support Vector Machine (SVM) and Random Trees (RT) classifiers. These 

classification algorithms employed are well-known machine learning algorithms utilized in remote sensing 

for applications of various problems, including vegetation classification. (Nininahzwe et al., 2023)  

The supervised learning algorithm Support Vector Machine (SVM) can be used to solve problems involving 

binary and multiclass classification. (Yue et al., 2003) SVM aims to find the best hyperplane to divide many 

classes in a high-dimensional feature space. In order to determine the appropriate decision boundary that 

maximizes the margin between classes, it maps the input data into a higher-dimensional space. SVM can 

handle enormous feature sets and complicated, nonlinear classification problems. In this case, the dimension 

amount depends on the imagery used and if additional data was provided as input. Satellite images used four 
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spectral bands, whereas airborne images used three bands. This translates into 4 and 3, respectively, used 

dimensions for SVM, additional input, NDVI, and CHM increased dimensions value by 1. Thus the complexity 

of the dimensions varied from 3 to 5 depending on the specific case. 

An ensemble learning technique called Random Trees (RT) mixes different decision trees to produce 

predictions. A distinct random subset of the training data and a random subset of characteristics are used to 

construct each tree in the forest. The Random Trees classification method is a supervised machine-learning 

classifier based on constructing many decision trees, choosing random subsets of variables for each tree, and 

using the most frequent tree output as the overall classification. High precision, scalability, and the capacity 

to manage datasets with many dimensions are characteristics of RT (Gislason et al., 2004) 

3.5 PERFORMANCE ASSESSMENT METRICS 

First, to start analyzing classification results in ArcGIS Pro, there must be accuracy assessment points. These 

are randomly created sample points for post-classification accuracy evaluation. For each classification 

process, 500 points were created and split equally for each class. This approach is called random balanced 

sampling and ensures a more fair and unbiased evaluation of the results for all classes by not discriminating 

against Japanese knotweed. Due to its small spatial resolution, more than proportional random sampling is 

needed. In images (12) and (13) we can see respectively for riparian and urban a process of creating training 

samples. The mowed knotweed distribution for training samples was performed this way(7,8). (Wu et al., 

2014) The chosen amount of points could be better, as the classification evaluation is more accurate with a 

higher amount of points, reducing the division's randomness. The next step is to compare the post-classified 

Image with the pre-classified one and assign each accuracy assessment point a ground truth value. The 

process resulted in an attribute table with 500 points for each classification, contrasting the classified values 

with ground truth values. Overall 8000 points were evaluated by eye and assigned ground truth values to each 

class. This process allowed us to develop and examine performance assessment metrics by creating a 

confusion matrix. The accuracy of the user and producer for each class is calculated using this tool, along 
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with the overall kappa index of agreement. These accuracy percentages are 0 to 1, with one denoting perfect 

accuracy. An illustration of a confusion matrix is as follows: 

 

   

  Actual Values 

  Positive (1) Negative (0) 

 

Predicted Values 

Positive (1) True Positive False Positive 

Negative (0) True Negative False Negative 

 

User Accuracy or precision and Producer accuracy or recall are commonly used metrics to assess the 

effectiveness and reliability of such models. These metrics provide insights into the model's ability to classify 

instances (Nininahzwe et al .,2023).  

The user's accuracy reveals false positives or instances where pixels are wrongly assigned to a known class 

when they need to be. For instance, a pixel might be categorized as impervious in the classified Image yet be 

classified as a forest in the reference. According to the reference data, the impervious class has extra pixels 

that it should not have. Mistakes of commission, precision, or type 1 error are further terms for user accuracy. 

Formula for User accuracy is as follows: 

Precision = (True Positive) / (True Positive + False Positive) 

 The table's rows are read for the information needed to calculate this error rate. The Total row displays the 

total number of points that should have been classified as belonging to a particular class based on the 

reference data. 

 

 

A false negative produced by the producer occurs when pixels belonging to a known class are labeled as 

something else. As an illustration, consider a pixel labeled as a forest but actually impenetrable. According to 

the reference data, the impervious class, in this instance, has missing pixels. Errors of omission, recall, or 
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type 2 errors are other names for producer accuracy. The information needed to calculate this error rate is 

retrieved from the table's columns.  

 

Formula for Producer accuracy is as follows: 

Recall = (True Positive) / (True Positive + False Positive)  

The Total column displays the total number of points that the categorized map classified as belonging to a 

particular class. 

Knotweeds comprise a relatively small fraction of our study region; therefore, interpreting results from other 

classes could be inaccurate. This is because overall accuracy and kappa may not accurately reflect the 

performance of the classifier for the minority class because they are influenced by the dataset's dominant 

classes. Class-specific measurements are the primary focus (Martin et al., 2018). Because of this, evaluation 

criteria like kappa or total accuracy were excluded. 

3.6 NDVI  

In the context of this study, NDVI was employed as a critical component for vegetation classification. Similar 

to previous research (Hick, 2021), NDVI was utilized to extract valuable information about vegetation types 

in the study area. By calculating NDVI, researchers can derive additional insights about differences in 

vegetation health, density, and distribution, which can significantly aid in accurate and efficient 

classification. NDVI values range means how healthy the plant is, with -1 to 0 being a dead or inanimate 

object, 0 to 0.33 being a diseased plant, 0.33 to 0.66 means moderately healthy plant and 0.66 to 1 is a very 

healthy plant. 

 

The formula for computing NDVI is: 

NDVI = (NIR - Red) / (NIR + Red) 

Where: 
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NIR (Near Infrared) is the spectral reflectance of the near-infrared band. 

Red is the spectral reflectance of the red band. 

This formula utilizes the difference and sum of reflectance values from the near-infrared and red bands to 

create an index that highlights vegetation. 

For the sake of Arcgis pro and analysis, the values were moved from -1/1 to 0/2 and multiplied by 1000 to 

make it as close as possible to reflecting floating points by integers. 

By incorporating NDVI into the classification process (Jones et al., 2011), one can enhance the accuracy of 

land cover mapping and distinguish between different vegetation classes more effectively. 

Even though it seems futile to distinguish Japanese knotweed using pure NDVI values for now, current 

research has shown a minimal increase in classification accuracy when NDVI is included in the machine 

learning process. This project additionally aimed at comparing NDVI values through temporal analysis as an 

invitation for the complete study,  In order to distinguish Japanese knotweed and values for its regrowth 

phase. The additional information provided by NDVI (Hick, 2021) can potentially help in understanding 

vegetation's spatial distribution and health. 

3.7 TEMPORAL ANALYSIS 

 

 

As mentioned in Section 1, classifying mowed Japanese knotweed requires up to certain assumptions. In 

addition to the recent ground truth data, both sites of interest had a series of images collected, ranging back 

to 2019. The first aim of this approach was to compare if the supposed mowed knotweed is valid by comparing 

the airborne images with previous data. The result of this assumption is shown here to allow for later analysis 

of the mowed knotweed by having reference data. As it is clear, comparing an image from x with x  allows us 

to determine that the mowed plant is Japanese knotweed and can be classified. The second use of temporal 

analysis was in evaluating NDVI values, twice during the spring season(2,25) and once in winter(3). A visual 
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assessment was also undertaken to see how the IAS of interest spatial distribution changed throughout the 

last few years(24). Despite the lack of ground truth data for this temporal period, the results can still be quite 

insightful when viewed under the abovementioned restrictions. These photos are divided into four seasons. 

3.8 PREPROCESSING 

As mentioned in Section 1, The satellite pictures used in this work underwent several critical processes 

throughout the preprocessing phase to guarantee the highest data quality and enable the analysis. In 

addition, extra preprocessing was applied to increase the data quality. 

First, to focus the analysis on the particular study location, all photos were clipped to include the area of 

interest(1). This reduced computational needs by defining the intended extent using a polygon. The photos 

were then improved by going from an 8-bit to a 64-bit bit depth. This improvement was made to handle the 

detailed spectral data in the photos and facilitate a more accurate and in-depth analysis. The ability to 

distinguish between minute fluctuations in pixel brightness and spectral features would be improved by 

expanding the bit depth of the images. 

When evaluating CHM derived from LiDAR, extracting return signals for the point cloud is the first step. First 

point and ground point returns were then subtracted from each other, resulting in the canopy height model. 

The formula was applied to obtain NDVI values, Both of these operations were performed in a raster 

calculator.  

The preparation stage ensured the satellite photos were prepared for further analysis via object-based 

segmenting(6), boosting their bit depth, and cropping the images to the area of interest. These procedures 

improved the data quality, made it easier to extract pertinent objects, and laid the groundwork for a precise 

and thorough object-based analysis in this vegetation classification. 
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4 RESULTS 

Results This study aimed to compare the performance of various categorization techniques for finding 

mowed Japanese knotweed in Utrecht and the mouth of the De Geul rivers. Airborne photos, satellite images, 

lidar data, and auxiliary datasets, including the Normalized Difference Vegetation Index (NDVI), were all used 

in the investigation.  

Classification of Japanese knotweed: Overall accuracy assessment is portrayed in 3 tables . The first shows 

the classification results using the user accuracy metric[1]. The second table has the classification results per 

producer accuracy metric[2]. The final table[3] summarizes the performance per image analysis approach 

and machine learning classification algorithm for both metrics. 

 

 

 

User Accuracy Assessment of Geul and Nieuwegein Area, for Mowed and Live Japanese Knotweed 
using SVM and Random Trees Models Through Object-Based and Pixel-Based Approaches 
Geul area Object-

Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Pixel-Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Average 
User 
Accuracy 

Live 
Knotweed 

29.5% 35% 24% 20.5% 24% 17% 25% 

Mowed 
Knotweed 

21% 26% 16% 15% 15% 15% 18% 

Nieuwegein 
area 

Object-
Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Pixel-Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Average 
User 
Accuracy 

Live 
Knotweed 

48% 49% 47% 39.5% 46% 33% 44% 

Mowed 
Knotweed 

24.5% 26% 23% 14.5% 14% 15% 19.5% 

Average User 
Accuracy 

30.75% 34% 27.5% 22.375% 24.75% 20% 26.25% 
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for both 
locations 

 

 

 

 

This paper's highest Average User accuracy or precision value is equal to 26.25%. Live knotweed has a higher 

classification percentage compared to mowed knotweed. Its average accuracy is 34.5%, whereas it is 18.75% 

for mowed knotweed. In the context of Japanese knotweed classification, the Object-based image analysis 

proved to be more accurate, reaching an average of 30.75%, compared to the Pixel-based image analysis, 

which averaged 22.375% overall. Regarding the machine learning classification algorithm, the SVM is proven 

to perform better with this task. This model's average accuracy is 29.38%, and the RT performance is 23.75%. 

The urban area of Nieuwegein was easier to identify in terms of Japanese knotweed; its average accuracy for 

both life and mowed knotweed is 31.75%, whereas the riparian area of Geul averaged 21.5% user accuracy. 

 

 

 

Producer Accuracy Assessment of Geul and Nieuwegein Area, for Mowed and Live Japanese 
Knotweed using SVM and Random Trees Models Through Object-Based and Pixel-Based Approaches 
Geul area Object-

Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Pixel-Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Average 
Producer 
Accuracy 

Live 
Knotweed 

98% 96% 100% 94.5% 89% 100% 96.25% 

Mowed 
Knotweed 

100% 100% 100% 91.5% 83% 100% 95.75% 

Nieuwegein 
area 

Object-
Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Pixel-Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Average 
Producer 
Accuracy 

Live 
Knotweed 

90% 92% 88% 81% 85% 77% 85.5% 
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Mowed 
Knotweed 

88.5% 100% 77% 87% 74% 100% 87.75% 

Average 
Producer 
Accuracy 
for both 
locations 

94.125% 97% 91.25% 88.5% 82.75% 94.25% 91.31% 

 

 

The highest Average Producer accuracy or recall value that this paper achieved is equal to 91.31%. Live 

knotweed has a higher classification percentage compared to mowed knotweed. Its average recall is 90.875%, 

whereas it is 91.75% for mowed knotweed. In the context of Japanese knotweed classification, the Object-

based image analysis proved to be more accurate, reaching an average of 94.125%, compared to the Pixel-

based image analysis, which averaged 88.5% overall. Regarding the machine learning classification algorithm, 

the SVM is proven to perform better with this task. This model's average accuracy is 89.875%, and the RT 

performance is 92.75%. The urban area of Nieuwegein was easier to identify in terms of Japanese knotweed; 

its average accuracy for both live and mowed knotweed is 86.625%, whereas the riparian area of Geul 

averaged 96% producer accuracy. 

User and Producer Accuracy Assessment of Geul and Nieuwegein Area, for Mowed and Live Japanese 
Knotweed using SVM and Random Trees Models Through Object-Based and Pixel-Based Approaches 
Geul area Object-

Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Pixel-Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Average 
difference 
in  
Accuracy 
per model 

User 
accuracy 

25.25% 30.5% 20% 17.75% 19.5% 16% 7% 

Producer 
accuracy 

99% 98% 100% 93% 86% 100% -8% 

Nieuwegein 
area 

Object-
Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Pixel-Based 
Approach 
Average 

SVM 
Model 

RT 
Model 

Average 
difference 
in  
Accuracy 
per model 

User 
accuracy 

36.25% 37.5% 35% 27% 30% 24% 3.75% 
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Producer 
Accurcy 
 

89.25% 96% 82.5% 84% 79.5% 88.5 2.25% 

When comparing final values per model, it is pretty clear how different their performance is. SVM has an 

average higher accuracy over all instances.  It is interesting to see how Pixel-based image analysis performs 

better with type 2 error. These small differences can however be attributed to randomness.  

 

Lidar Data Incorporation: Lidar data was incorporated into the classification system to improve the 

separation of Japanese knotweed and other land cover classes. However, the findings demonstrated that the 

impact of lidar data on accuracy did not improve the classification. As shown in this Image, the performance 

of both machine learning algorithms did not improve.[19,20] There are minor pixel placement changes; 

however, these were mostly about other classes. In this example, amount of trees is reduced, and shrubs are 

less spread out; this is more accurate for these classes when looking at ground truth data. Japanese knotweed 

pixel placement has not changed. Implying no direct improvement of classification in this case. Only Pixel-

based image analysis allowed for additional input of these types in ArcGIS Pro; thus, OBIA was not performed.  

 

 

Incorporation of NDVI: Including NDVI as additional input for satellite images from the region of interest 

aimed to leverage spectral information and vegetation density metrics for improved classification accuracy. 

Calculating NDVI per class was done by tabulating an area and adding additional statistical measures. When 

added as an extra dimension to the classification process, the performance of the models did not improve, as 

shown in [19.21]. The NDVI values for Japanese knotweed ranged from similar to grass and shrubs; trees had 

higher values. Comparing values for different vegetation seasons showed that when alive, the NDVI mean 

value is around 1327; for the winter season, when knotweed was mowed, the mean is around 879.  
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When looking at the minimal and maximal values for both spring seasons, one can see that they are barely 

different. Comparing Japanese knotweed to other classes, that is, shrubs, trees, grass, and other vegetation, 

shows that most classes have similar results. (16,17,18)Trees and shrubs were most representative of 

knotweed, as they got comparable values across all the computed statistics. However, the mean for the 

mowed Japanese knotweed is quite different from other classes, showing how the values range when dealing 

with no vegetation season. 

 

Temporal analysis 

 

When comparing images from 2022.05.15(25), 2023.03.02(3), and 2023.05.27(2), the Japanese knotweed has 

been present in the area already since 2022.05.15. This allows us to classify mowed knotweed from 2022 using 

aerial imagery and extract NDVI values per season. Earlier data from 2019, as shown in (24) still has the IAS 
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present. Japanese knotweed is only partially visible in these pictures, showing how quickly it can spread 

there. 

 

 

 

5 DISCUSSION  

The findings of this study showed that different remote sensors / data types and processing techniques had 

varying degrees of accuracy in classifying and identifying alive Japanese knotweed, Average of 26.25% User 

accuracy or precision and 91.30% of Producer accuracy or recall. Results varied per study site, but we are 

primarily interested in user accuracy as its accurate map representation. There is a clearly better 

performance in urban areas, 31.75%, both for live 44% and mowed knotweed 19.5%. This can be accumulated 

to less diverse vegetation; also, it is possibly different due to a higher amount of training samples compared 

to riparian areas or to examine the Image in IRG bands. The study site of Geul averaged 21.5% user accuracy, 

precisely 25% for life and 18% for mowed knotweed. More dynamic riparian areas proved to be a more 

challenging task for the analysis. However, it provided valuable information through CHM usage. This input 

proved insignificant in the classification task for Japanese knotweed but improved the accuracy for other 

classes(19,20). This makes sense as the LiDAR scan is from the year 2022 and primarily includes detailed point 

clouds for trees and shrubs compared to Japanese knotweed as seen in (10). It's clear that the knotweed is 

barely represented by the scan; only the edges of the plant by water are registered. This shows how crucial 

proper temporal data incorporation is; if the scan was performed during the season when Japanese knotweed 

was fully present, one could apply a threshold to specifically look for Japanese knotweed class besides shrubs 

as (Hick, 2021) did. However, a different CHM model could be derived not from LiDAR(Jones et al., 2011). 

Values for CHM help identify other classes, with a mean of 482 shrubs, trees 1366, and another veg 108; they 

need a better representation of Japanese knotweed to be helpful as a benchmark in future research. NDVI 
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values incorporation also did not improve the classification as shown in (19, 21); This is more of a surprising 

result looking at previous research (Hick, 2021 & Dorigo et al., 2012) that used NDVI effectively. The reasoning 

for that is not exactly sure; it can be due to lower spectral resolution than other studies (Hick, 2021 & Dorigo 

et al., 2012) or not applying thresholds to and values. The NDVI values per season varied considerably; the 

spring period was similar in both years, while the winter season, when knotweed was mowed, had a mean of 

879, while the max value reached 1187. This indicates that the NDVI values are different per sample and allows 

us to assume that it can be possible to distinguish Japanese knotweed using NDVI during the regrowth 

process. Suppose its max values range from 1686 to 1187 during different year seasons. In that case, they 

could be potentially classified using purely NDVI values if the surrounding environment is not growing as 

fast. this observation was allowed by the temporal analysis with Superview – 1. One could examine the 

temporal resolution of the Japanese knotweed regrowth process more thoroughly and try to answer if it is 

possible to accurately identify JK using both mowed and live data samples. More research should be 

undertaken on NDVI reflectance of Japanese knotweed; more specifically, it's advised to use different 

software with more adjustable parameters. When using Python, for example, sci-kit learn, it is possible to 

preprocess the NDVI layer more accurately than ArcGIS Pro. This allows for more adjustments in the usage 

of NDVI. 

Classifying specific invasive species based on height, color, and spatial variation is a complex task; looking at 

previous studies, previous research had mixed results in performance. A lot can be accounted for sensor and 

data quality. Compared to peers, this study has average results, being lower in most cases. (Martin et al., 2018) 

Looking at satellite results, Pleidas obtained a higher result of 49% being in a similar environment. This is 

promising, looking at time constraints related to this study. Superview NEO's results are worse than its 

previous satellite; this can be attributed to different reasons. For example, Pleiades was evaluated in urban 

areas with less homogenous environments and higher distribution of buildings and roads with high precision 

making it easier to classify JK. Although airborne imaging offers high-resolution photos and extensive 

information (Michez et al., 2016), the accuracy was moderate for detecting mowed knotweed 18.75% . This 

shows that additional development is required to improve the precision of airborne imagery-based 
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classification algorithms. When looking at previous research findings, the Airborne and UAV are comparably 

higher than our results (Dorigo et al., 2012). This can be mainly attributed to slightly different tasks; 

classifying mowed knotweed is significantly more complicated as it mainly stems, and Japanese Knotweed 

has hollow stems. 

Previous research used different machine learning models and image analysis processes; Here, they were 

both tested to evaluate the performance of SVM, RT models, and OBIA together with PBIA approaches. 

Previous research mainly used RF (Michez et al., 2016), but even then, the SVM performed better in every 

case, outperforming RT by 5.25% on average in our case. The SVM method outperformed other algorithm 

(22,26) in handling complicated datasets and generating optimal decision boundaries. It is important to 

remember that the RT model still produced acceptable outcomes and can represent a good option, depending 

on the classification objectives and dataset features. However, this is very case-specific, and once a study is 

conducted where one model outperforms different by a lot, there is no dominating difference between these 

two.  

Additionally, one can explore neural networks (Nininahzew et al., 2023) and other classifiers that average 

high results. As expected, the OBIA proved to be more reliable for identifying Japanese knotweed(22,19), 

having an average user accuracy of 30.75% compared to PBIA's 22.375%. This shows how vital spatial analysis 

is in the vegetation classification process. OBIA should be a preferred approach; its higher accuracy was 

shown in a previous study (Liu et al., 2010). One could compare the results of both approaches on a larger 

scale, where computation processing matters more, and look at how much time can be optimized using PBIA 

in the performance price. In addition, an increase in the accuracy sample size would be beneficial; this will 

ensure that there can be a more robust distribution of accuracy assessment points. Thus leading to more 

unbiased results. 

New management strategies, such as introducing biological agents like fleas[42] or pigs, appear promising. 

However, these strategies take a long time to prove they are effective, and looking at the Temporal analysis, 

it is clear that Japanese knotweed grows rapidly. It still needs to be improved how monitoring of IAS, but one 

should control the region to notice when new plants are growing. Further enhancing classification accuracy 
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might be the exploration of metrics like the Leaf Area Index (LAI) by collecting temporally or angularly spread 

data. Reducing temporal inconsistencies and improving the classification findings' accuracy can be achieved 

by collecting validation data in the same month as the data sources.  Analysis of previous temporal images 

from SuperView-1 allowed us to identify and use Japanese knotweed to classify mowed knotweed. The 

classification is robust with this assurance, as one always needs validation data in this process.  However, in 

both the Utrecht and the mouth of De Geul regions, satellite imaging proved to be a more reliable method for 

spotting Japanese knotweed compared to airborne imagery. When faced with increasing erosion and flooding 

threats, the Japanese knotweed needs to be monitored better, and more innovative approaches should soar 

to deal with this species. (Colleran et al., 2020). It's suggested to look more into the Japanese knotweed erosion 

rate (Aguilera et al., 2010; Collingham et al., 2000; DAISIE, 2008; Smith et al., 2007). As this claim makes both 

WFD and UE directives (European Commission., 2019) focused on identifying Japanese knotweed in riparian 

areas.  

 

Future research should concentrate on gathering ground truth data at various time points and creating 

sophisticated temporal analytic approaches to capture the rapid pattern of the Japanese knotweed growth 

process to alleviate this shortcoming. Even when improperly mowed, the plant of interest is easily 

identifiable due to its natural size and stem features. This brings up another problem with the poorly handled 

procedure; if this invasive species is not adequately managed, it will simply spread through the water. This 

situation proves even more, how crucial it is to monitor this plant (Rouleau et al., 2023)  

 

6 CONCLUSION 

This study aimed to assess if remote sensing can be used to accurately classify Japanese knotweed in urban 

and riparian areas,  an invasive alien species that is of interest to UE (European Commission, 2019)  directive. 

Research proved that while it is possible to classify JK with moderate user accuracy of 49% in urban areas and 
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35% in riparian areas (23,22), it is not a practical approach to rely on field operations yet. Technological 

advancement allows more advanced data types, like hyperspectral data, can be used.  

 

This research analysis implies that combining pixels into objects and considering spatial relationships 

improves classification accuracy(22,19). An object-based analysis is beneficial when dealing with complicated 

plant patterns and mixed land cover types since it can more accurately reflect the variety within objects.  

The different machine learning performances compared to show how the Support Vector machine model 

does better against Japanese knotweed classification than the Random Trees model(22,26). Proving to be a 

more reliable approach when dealing with multidimensional data; however, more tests and parameter 

adjustments should be made before saying this confidently. 

 

Overall, the research's findings offer insightful, helpful information for creating precise algorithms for 

Japanese knotweed detection. The outcomes show the potential of airborne and satellite data for classifying 

vegetation while also hinting at certain benefits of object-based analysis over pixel-based methods. Even 

though adding lidar data and NDVI did not improve Japanese knotweed classification accuracy, the prediction 

accuracy was higher for other classes, and more research may look into alternative techniques and data 

sources to increase performance on plant of interest. 

 

 

Classification of mowed Japanese knotweed proved to be a hard task, reaching the highest accuracy of 18% in 

riparian and 19.5% in urban areas (22,23). As a new approach, it made sense to be unsuccessful. However, it 

can be used as a future research direction. Due to Japanese knotweed's rapid growth and damaging impacts 

on soil erosion make it a severe environmental threat. Close observation is suggested in riparian regions, 

especially where knotweed has more opportunities to spread; this could allow a more effective map of the 

regrowth process of the invasive alien species. Where waterboards want to decrease soil erosion to control 
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the effects of this invasive species. Japanese knotweed can grow beneath concrete tiles in urban 

environments, further complicating eradication efforts. 

 

 The methods utilized in this study need to be improved before they can be relied upon entirely, even though 

they can be used to advance research further and emphasize the monitoring of invasive alien species. The 

chosen cutoff for accuracy evaluation metrics will vary depending on the task. However, with more frequent 

temporal analysis in the future, it may be possible to digitize the process to a certain extent and lessen the 

amount of fieldwork required. 

Even though this study had some drawbacks, such as time, software, and fieldwork restrictions, the outcomes 

were encouraging. The classification algorithm created in this study must be further improved as it has yet 

to attain the operational dependence level. 

It is advised to gather more validation data from urban and riparian locations to improve future studies. This 

will offer chances to evaluate the algorithm's performance in various environmental scenarios, increase 

accuracy, and test it on previously uncovered data.  

We can lessen Japanese knotweed's negative environmental consequences, protect plant diversity, and 

guarantee the long-term sustainability of ecosystems by tackling its expansion and putting robust mapping 

and measures in place. 

 

6.1 FUTURE WORK 

Future Research: Several directions might be taken to improve the precision and efficacy of Japanese 

knotweed monitoring and classification using remote sensing techniques. The following ideas can direct 

additional study and advancements in this area: 

1. Obtain hyperspectral data with high spatial resolution. Hyperspectral data were considered to be used in 

this investigation. However, categorizing tiny flora like Japanese knotweed was difficult, with a resolution of 
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30 meters per pixel. More accurate identification and classification of invasive species will be possible by 

acquiring hyperspectral data with higher spatial resolution.  

3. Investigate alternative software and automation: Although Python was utilized in this study, other 

software tools, such as ArcGIS Pro, can offer more flexibility and automation options. The categorization 

process can be improved even more, and model parameters can be optimized by creating customized scripts 

or employing deep learning techniques. 

4. Obtain airborne photos of Japanese knotweed that are currently growing: Using airborne photography that 

is primarily targeted at Japanese knotweed that is currently growing can offer more accurate and current 

information on the growth patterns and geographic distribution of the invasive species. Airborne imaging 

enables more significant differentiation between plant classifications and can capture finer details. 

5. Develop a shadow classifier to reduce the misclassification of the model in shade areas. 

Long-term Recommendations 

Take into account the following ideas for long-term improvements in Japanese knotweed monitoring and 

management: 

1. Consider extra environmental factors: Japanese knotweed's phenological characteristics, 

precipitation, temperature, and other environmental elements can all be considered to understand 

how the plant behaves and grows. Methods like complete introspection. These parameters can be 

measured and examined using chemometric techniques, and Fourier transform infrared 

spectroscopy. 

2. Increase the accessibility of ground truth data: Accurate classification algorithms depend on 

collecting more ground truth data. Monitoring the same areas for an extended time while collecting 

validation data all year will improve classification accuracy and offer valuable insights into temporal 

changes. 

  



 

37 
 

6.2 LIMITATIONS: 

Despite the insightful conclusions drawn from this study, some shortcomings should be acknowledged: 

 

1. Use of ArcGIS Pro: The analysis is constrained in several ways by using ArcGIS Pro, especially in terms of 

computational power, machine learning settings, and processing speed. Future projects should look into and 

use external software solutions that provide more flexibility and sophisticated functionality. 

2. Time limitations: This project's two-month time frame limited the quantity of validation data that could 

be gathered and the scope of the coding and analysis that could be done. Similar analyses over a longer time 

frame would allow for a more thorough assessment and improve the temporal study of Japanese knotweed 

dynamics 

3. Varying conditions in satellite photos: Some satellite images utilized in the study had varying lighting, 

impacting classification performance. The accuracy and consistency of classification results would be 

improved by addressing these temporal image differences utilizing cutting-edge image processing 

techniques. 

4. Lidar data limitations: When deriving a new CHM, it is advisable to include it during Japanese knotweed 

vegetation season. 
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24. Naësset, E., & Økland, T. (2002). Estimating Tree Height and Tree Crown Properties Using Airborne 

Scanning Laser in a Boreal Nature Reserve. Remote Sensing of Environment, 79(1), 105-115. 

25. Neupane, B., Horanont, T., & Aryal, J. (2021). Deep learning-based semantic segmentation of urban 

features in satellite images: A review and meta-analysis. Remote Sensing, 13(4), 808. 

26. Nininahazwe, F., Théau, J., Marc Antoine, G., & Varin, M. (2023). Mapping Invasive Alien Plant Species 

with Very High Spatial Resolution and Multi-Date Satellite Imagery Using Object-Based and Machine 

Learning Techniques: A Comparative Study. GIScience & Remote Sensing, 60(1), 2190-203. 

27. Niphadkar, M., & Nagendra, H. (2016). Remote Sensing of Invasive Plants: Incorporating Functional 

Traits into the Picture. International Journal of Remote Sensing, 37(13), 3074-3085. 

28. Pyšek, P., & Prach, K. (1993). Plant Invasions and the Role of Riparian Habitats: A Comparison of Four 

Species Alien to Central Europe. Journal of Biogeography, 413-420. 

29. Rijkswaterstaat. (2022, June 5). Dataregister Rijkswaterstaat. 

30. Rouleau, G., Bouchard, M., Matte, R., & Lavoie, C. (2023). Effectiveness and cost of a rapid response 

campaign against Japanese knotweed (Reynoutria japonica) along a Canadian river. Invasive Plant 

Science and Management, 1-6. 

31. Rouifed, S., Puijalon, S., Viricel, M. R., & Piola, F. (2011). Achene Buoyancy and Germinability of the 

Terrestrial Invasive Fallopia × Bohemica in Aquatic Environment: A New Vector of Dispersion? 

Ecoscience, 18(1), 79-84. 



 

41 
 

32. Royimani, L., Mutanga, O., Odindi, J., Dube, T., & Matongera, T. N. (2019). Advancements in Satellite 

Remote Sensing for Mapping and Monitoring of Alien Invasive Plant Species (AIPs). Physics and 

Chemistry of the Earth, Parts A/B/C, 112, 237-245. 

33. Schenk, T., & Csathó, B. (2002). Fusion of LIDAR Data and Aerial Imagery for a More Complete Surface 

Description. International Archives of Photogrammetry Remote Sensing and Spatial Information 

Sciences, 34(3/A), 310-317. 

34. Seiger, L. A., & Merchant, H. C. (1997). Mechanical Control of Japanese Knotweed (Fallopia Japonica 

[Houtt.] Ronse Decraene): Effects of Cutting Regime on Rhizomatous Reserves. Natural Areas Journal, 

17(4), 341-345. 

35. Shaw, R. H., & Seiger, L. A. (2002). Japanese Knotweed. Japanese Knotweed, 159-166. 

36. Smith, J. M. D., Ward, J. P., Child, L. E., & Owen, M. R. (2007). A Simulation Model of Rhizome Networks 

for Fallopia Japonica (Japanese Knotweed) in the United Kingdom. 

37. Štajerová, K., Šmilauer, P., Brůna, J., & Pyšek, P. (2017). Distribution of invasive plants in urban 

environment is strongly spatially structured. Landscape Ecology, 32, 681-692. 

38. Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2004, September). Random forest classification 

of multisource remote sensing and geographic data. In IGARSS 2004. 2004 IEEE International 

Geoscience and Remote Sensing Symposium (Vol. 2, pp. 1049-1052). IEEE. 

39. van Iersel, W., Straatsma, M., Addink, E., & Middelkoop, H. (2018). Monitoring Height and Greenness 

of Non-Woody Floodplain Vegetation with UAV Time Series. ISPRS Journal of Photogrammetry and 

Remote Sensing, 141, 112-123. 

40. Yue, S., Li, P., & Hao, P. (2003). SVM classification: Its contents and challenges. Applied Mathematics-

A Journal of Chinese Universities, 18, 332-342. 

41. Watson, G., & Watson, G. (2001). Knotweed and Bamboo in the United States: The problem and 

challenges. Weed Science, 49(6), 623-626. 



 

42 
 

42. Wu, M., Yang, L., Yu, B., Wang, Y., Zhao, X., Niu, Z., & Wang, C. (2014). Mapping crops acreages based 

on remote sensing and sampling investigation by multivariate probability proportional to 

size. Transactions of the Chinese Society of Agricultural Engineering, 30(2), 146-152. 

43. Oplossing nabij: bladvlo lijkt effectief in bestrijding Japanse duizendknoop (nos.nl) 

 

8 APPENDIX 
(1) PleiadesNEO urban area 2023.06.04 

 

 

 

 

 

 

 

 

 

 

 

(2) Superview - NEO riparian area 2023.05.27 

https://nos.nl/artikel/2406718-oplossing-nabij-bladvlo-lijkt-effectief-in-bestrijding-japanse-duizendknoop
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(3) Superview – NEO riparian area 2023.03.02 

 

(4) Airborne image riparian area 2022 

 

(5) Airborne image urban area 2022 
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(6) Segmented image of 2023.05.27 

 

 

 

(7) Airborne images of mowed knotweed assignment in riparian area 

Classes include respectively mowed Japanese knotweed, Water, Trees,  Darker ground, Grass. 
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(8) Airborne images of mowed knotweed assignment in urban area. 

Classes include respectively mowed Japanese knotweed, Non-Japanese knotweed vegetation, 

Impervious surfaces,  Bare ground, Water. 

 

 

(9) Japanese knotweed visible in the images for urban and riparian area. 
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(10) Point cloud LiDAR 2022 
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(11) Canopy Height Model (CHM) 

 

(12) Satellite imagery Light blue classes indicate Japanese knotweed assignment  

Classes include respectively Japanese knotweed, Water, Other vegetation, Grass, Shrubs, Sand, Trees. 
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(13) Satellite imagery black classes indicate Japanese knotweed assignment  

Classes include respectively Japanese knotweed, Water, Trees,  Shrubs, Grass, Buildings, Cars,  Roads. 
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(14) NDVI values representation of urban area 

 

(15) NDVI values representation of riparian area 

 

(16) NDVI values from ground truth data day 2023/05/27 

Classes include respectively Japanese knotweed, water, other vegetation, grass, shrubs, sand and trees. 

 

 

(17)  Values from mowed period 2023/03/02 
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(18) Values from 2023/05/15 comparing a yearly difference 

 

(19) Pixel-based approach with SVM  

 

(20)  Canopy Height Model with SVM 
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(21) NDVI with Pixel-based image analysis and  SVM 

 

(22)  Object-based image analysis with SVM 

 

(23)  Object-based image analysis with SVM in urban area 
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(24) Temporal analysis(TA) 
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(25)   2022.05.15  
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(26)  Object-based image analysis with RT 
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