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Abstract

Topological states of matter have attracted great attention during the last decades. These
states are insulating in the bulk, but conducting at the edges. In addition, the conductivity
is quantized and protected by a topological invariant. The quantum spin Hall effect (QSHE)
is one of the hallmarks of topological states of matter. Besides its importance in fundamental
science, it has potential technological applications, but a large bulk gap must be realized for
these applications, to protect the topological edge states. Since one of the main ingredients to
obtain the QSHE in Kane and Mele’s work is related to the spin-orbit coupling, heavy elements
with a strong spin-orbit coupling provide an ideal platform to obtain a robust QSHE phase.
In fact, it has been shown theoretically and experimentally that ultrathin free-standing layers
of Bi, called Bismuthene, present topological phases at room temperature. Recently, an exper-
imental group demonstrated that Bi deposited on top of the semiconductor InSb forms atomic
thin fractal structures. An interesting question is whether these Sierpisnki-like structures can
host topological phases. We simulate this system using a muffin-tin method, and show that
for some values of spin-orbit coupling indeed there are corner and edge modes that could have
a topological origin. Moreover, our results describe the local density of states obtained experi-
mentally. This work contributes to the more general question of whether topological states of
matter may exist at non-integer dimensions.
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Introduction

In the last two centuries, we have developed novel theoretical frameworks to describe phases of
matter. The conventional perspective of band theory, which was adequate to classify metals,
insulators, and semiconductors required further refinements to include more exotic materials
such as superconductors and quantum Hall fluids. More concretely, the need of topological
concepts to describe the Kosterlitz-Thouless transition [11] triggered the development of a set of
new ideas to explain what we know nowadays as topological insulators. Topological insulators
are materials that are insulating in the bulk, but conduct current along the boundaries. These
metallic edge states are very robust because they are protected by symmetries.

The first observation of a topological insulator was the integer quantum Hall effect (IQHE)
[22]. Right after its discovery, a topological invariant was identified, the so-called Chern number
(Z) [33]. The classification of the IQHE in terms of a topological invariant set the foundations
of this new class of materials and remained the only known invariant until the work of Kane
and Mele [44, 55]. In their work, they developed a toy model for graphene in which the intrinsic
spin-orbit coupling between the next-nearest neighbours was opening a topological gap. For
this time-reversal topological insulator, they introduced a new Z2 topological invariant that
labels a trivial phase and a non-trivial one. In this model, instead of having chiral charge
currents along the edge as in the integer quantum Hall phase, there are helical spin currents
because spin up and down counter-propagate. This new state of matter, the quantum spin Hall
phase, seemed very promising for future technological applications but it had some drawbacks.
The operating temperature was cryogenic because, the gap in graphene was too small. Hence,
a way to achieve a room temperature quantum spin Hall phase is to enlarge the topological
gap by using heavier atoms, such as Bismuth from group V. Recent studies show that ultrathin
free standing honeycomb layers of Bi atoms are indeed topological and host the quantum spin
Hall phase at room temperature [66].

After the discovery by Kane and Mele, it became clear that a generic classification of
topological insulators in terms of symmetries could be achieved. Indeed, depending on which of
the three discrete symmetries are present (time-reversal, particle-hole or chiral), the topological
insulator will reside in one of the ten symmetry classes. Then, depending on their integer
dimension, there will be a topological invariant associated to them. This classification is
known as the ten-fold way or the Altland-Zirnbauer symmetry classes [77]. This classification
scheme (the ten-fold way) holds for non-interacting fermions, but it has recently been extended
and generalized to include crystalline symmetries, non-Hermitian Hamiltonians, interacting
systems or driven nonequilibrium systems. However, all these tables are constructed for integer
dimensions, and not much is known about what would happen in between, for fractional
dimensional systems, such as fractals. Recently, an experimental group has been able to
synthesize Sierpiński-like islands made of Bi atoms on top of InSb [88]. Moreover, measurements
of the local density of states suggest some topological features. Our aim here is to theoretically
reproduce their measurements by performing muffin-tin calculations, and verify what happens
when a two-dimensional free electron gas with intrinsic spin-orbit coupling is confined into a
Sierpiński triangle. Will there be topological features at non-integer dimension or is the fractal
structure is going to destroy them all? This is the main question to be answered in this thesis.
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The text is divided in eight chapters, conclusions and appendices. In chapter 11, we provide
a broad historical review of condensed matter, from the band classification to topological
insulators, recalling a few of the most important contributions. Chapter 22 introduces the three
discrete symmetries and presents the ten-fold classification. We continue with chapter 33 by
introducing some basic concepts of fractals, in particular the Sierpiński triangle. In chapter 44,
we derive the second-order contributions in (v/c)2 of the Dirac equation, showing the emergence
of the intrinsic spin-orbit coupling term. Then, in chapter 55 we give some overview of recent
works related to topology and fractals. In chapter 66, we explain the method used and in chapter
77, we show some of the main results of our simulations. In chapter 88, we compare our results
with the experimental measurements from the group of Jinfeng Jia [88]. These last two chapters
consist of original work. Finally, we present our conclusions and outlook. A few appendices
contain further details of calculations and measurements.



Chapter 1

Quantum states of matter

1.1 Band classification of matter
Condensed matter is a field in physics which attempts to describe how the constituents of
matter rearrange among themselves, from a microscopic and macroscopic point of view, fo-
cusing mainly in solids and liquid states [99–1111]. Depending on different parameters, such as
temperature, the electromagnetic field, impurities or disorder, among many others, matter
will organize itself in different phases. The last century has been a fruitful period, in which
new quantum states of matter, such as superconductors and topological insulator, have been
theoretically understood [1212]. This would not have been possible without the advance of tech-
nology. The development of the Scanning Tunneling Microscope (STM) enabled researchers
to obtain images of materials with atomic resolution, and also led to the creation of artificial
lattices [1313–1515]. The Angle-Resolved Photoemission Spectroscopy (ARPES) technique allowed
to measure and characterize the electronic structure, and enabled researchers to understand
which interactions were the most important [1616–1919]. Nowadays it would be difficult to think
about modern devices that do not use the quantum technologies [2020].

Through the 20th century, physicists developed the roots of this field, solid state physics:
from the Lorentz-Drude model in 1900, describing a classical free electron gas, to the quantum
theory of electrons in solids, from 1928 to 1933 [2121]. Two areas where these developments had
impact are band theory and magnetism. The former allows one to understand the electronic
transport in solids, distinguishing metals from semimetals, semiconductors, and insulators.
With the latter, it was possible to explain paramagnetism, diamagnetism, ferromagnetism,
and compute magnetic properties of metals, such as the susceptibility.

The discovery of superconductivity by Onnes in 1911 had to wait for nearly fifty years for
a theoretical description. Landau succeeded to create a phenomenological theory that could
classify different phases of matter. The foundation of this method is that one can expand the
thermodynamic potential around the critical point as a power series in the order parameter,
thus obtaining an effective field theory. Even though such expansion would be divergent be-
cause it contains singularities in higher-order coefficients, Landau argued that predictions can
be made examining only the lower-order coefficients [2222, 2323]. Furthermore, in 1933 Ehrenfest
introduced a scheme to classify phase transitions on the basis of jumps in derivatives of the
free energy.

Many systems can be described using this systematic approach, where matter experiences a
phase transition from a high-temperature symmetric phase characterized by a vanishing order
parameter, to a low-temperature symmetry-broken state with a nonzero order parameter. For
example, a ferromagnet has a net magnetization pointing to a preferred direction, breaking
the rotation symmetry O(3) associated to spins, while antiferromagnets do not have an overall
magnetization. Solids break translation symmetry, as atoms form a crystalline structure and
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therefore are localized at lattice sites. However, in 1980 von Klitzing et al. [22] experimentally
discovered the quantum Hall state, a state of matter that could not be described with Lan-
dau’s approach due to the absence of a local order parameter. The quantum Hall state does
not break any symmetry, but showed novel physics, such as quantization of the Hall conduc-
tance and the appearance of a number of conducting edge modes [22]. These properties are
deeply linked to topological features of the quantum state, as they are insensitive to smooth
deformations of the parameters. A change is only possible if the system undergoes a quantum
phase transition. This led to a new classification framework based on a topological order, an
idea initially proposed by Thouless et al. in 1982 [33] and later refined by Wen in 1995 [2424]. Be-
fore discussing the concept of topological phases more in depth, it is interesting to understand
the corresponding mathematical description, as this will allow us to see its relevance in physics.

Topology is a branch in mathematics, which studies properties of geometric objects that
are invariant under smooth deformations [2525]. An illustrative example is the sphere, which
can be smoothly deformed into any surface that does not contain any hole. Then, we can
say that a disk, a bowl or a sphere are topologically equivalent. In contrast, a doughnut
would be topologically distinct to the above, as it contains a hole. These statements are
encompassed within the Gauss-Bonnet theorem, which asserts that the integral of the Gaussian
curvature K of a compact Riemannian manifold defines an integer topological invariant, the
Euler characteristic,

χ =
1

2π

∫
S

KdA. (1.1)

This measure is related to the notion of genus g, the number of holes of the object, by χ = 2−2g.

So, how would all this be related to physics? Notice that we have repeated a key concept,
smooth deformations. In mathematics, these are homeomorphisms and homotopies, but in
physics the terminology is adiabatic evolution. The underlying physics of a system is obtained
from the Hamiltonian: if one can adiabatically connect one Hamiltonian to another without
closing the bulk gap, then they correspond to the same topological class [2626, 2727]. Later, we
will define topological invariant quantities to characterize these classes, but before addressing
this problem, we will recall how materials are classified within the framework of band theory
of solids.

When a solid is crystalline, the atoms are arranged in a periodic potential and we can ex-
ploit translation symmetry to label states with crystal momentum k inside the first Brillouin
zone, the reciprocal of the Wigner-Seitz primitive cell. Then, Bloch’s theorem states that the
energy eigenstates take the form |ψk〉 = eik·r |u(k)〉, where |u(k)〉 is the periodic eigenstate
of the Bloch Hamiltonian, and the band structure is collectively determine by its eigenvalues
En(k) and eigenvectors |un(k)〉 [2828].

Atoms are bound to lattice sites and their electrical, optical, and chemical properties are
defined from their electronic configuration. There can be many electrons, which will form a
many-body ground state described by a Slater determinant of single-particle states, obeying
the Pauli exclusion principle and minimizing their energy. Nevertheless, a huge simplification
is to assume that only the outer electrons, which are weakly bound to the atom, will deter-
mine their properties. There are two types of bands, the valence band, fully-filled, and the
partially filled (or empty) conduction band. It is useful to define this also in terms of the Fermi
energy, the chemical potential at zero temperature, as electrons of the valence band lie below
the Fermi energy, and those from the conduction band lie above. This energy also defines the
Fermi surface, a constant energy surface in momentum space.

The feature that enables us to distinguish among different materials is the band gap. It
appears due to interactions of electrons with the ionic potential, enlarging the difference be-
tween the conduction and valence band, and giving rise to a forbidden region in the energy
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spectrum.

Now we are in a position to understand the classification of materials using band theory:

• Insulators are characterized by a large band gap at the Fermi energy between the highest
fully filled valence band and the lowest conduction band. Electrons then need a large
energy to be excited towards the conduction band, hence their poor conductivity.

• Semiconductors are very similar to insulators, but they differ in that the forbidden
band is much smaller, usually less than 2 eV. Electrons can be easily excited by thermal
fluctuations. If this jump also involves a change in the momentum, the semiconductor
is said to have an indirect gap and if not, a direct gap. To modify the conductivity,
we can dope the material by introducing impurities, which can either accept, p-type, or
donate, n-type, electrons and as a result, move the valence band up or the conduction
band down, respectively. Doped semiconductors are called extrinsic and the pure ones
are called intrinsic.

• Semimetals contain the Fermi energy inside a band, but the density of states is very
poor around it. Nevertheless, at zero temperature they can conduct, contrarily to the
first two types of materials above.

• Metals are also gapless, and consequently, electrons have many allowed states to popu-
late at a minor energy cost, thus exhibiting a high conductivity.

The phenomenon of superconductivity is an especial case of a conducting material and cannot
be explained by the use of band theory. The effect was first observed by Kamerlingh Onnes
back in 1911, when he was at Leiden University. He managed to produce liquid Helium for
the first time, and this motivated him to study different materials at low temperatures. He
observed that the resistance of mercury dropped to zero for temperatures below a critical value.
He was awarded with the Nobel Prize in 1913 for this discovery.

A few decades later, Ginzburg and Landau where able to explain the phenomenon macro-
scopically, but it took nearly fifty years until Bardeen, Cooper and Schireffer formulated a
microscopic description of superconductivity, the so-called BCS theory, which gave them the
Nobel Prize in 1972 [2929, 3030].

• Superconductivity is a phase of matter in which electrons, mediated by phonon inter-
actions, form pairs below a critical temperature. These so-called Cooper pairs condense
in the lowest energy state, and a gap opens in the material. This gap is of the order of
thermal energy corresponding to pair formation. The collective behaviour is insensitive
to scattering effects, and therefore do not show any resistance. The main difference from
a perfect conductor is that in superconductors the magnetic field cannot penetrate the
material, a phenomenon known as the Meissner-Ochsenfeld effect.

1.2 Topological states
After having defined the main types of conductors, we can now introduce a new type of ma-
terials that emerged at the end of last century and became a prominent field of research in
modern condensed-matter physics.

• Topological insulators are phases of matter which exhibit gapless boundary modes that
are topologically protected by symmetries. In other words, the material is an ordinary
insulator in the bulk, but has a metallic boundary that is very robust and exhibits
quantized conductivity.
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The robustness of these extended boundary modes is related to the adiabatic evolution of the
Hamiltonian, as mentioned earlier. As long as the generic symmetries of the Hamiltonian are
preserved and the bulk gap is not closed, the number of edge states corresponds to a topological
invariant. This is why these are also called symmetry-protected phases. Topological invariants
are used to characterize different phases, and after many individual contributions, the areas of
topological band theory and topological field theory were developed taking these concepts into
account [3131–3535].

One striking result of these materials is the bulk-boundary correspondence, which states
that the emergence of the edge currents is deeply related to the bulk topology of the system.
By studying the material under periodic boundary conditions, one can know how it will behave
at the boundary when it has a finite size.

After this general introduction, it is now time to make all these concepts more concrete
and comprehend the interplay between symmetries and topological invariants, thus providing
a formal classification of the different topological insulators. This will be the aim of the next
chapter, but before doing so, we will briefly review in the next section the first discovered
topological insulator.

1.3 Integer Quantum Hall Effect
This section is devoted to the Integer Quantum Hall Effect (QHE), which was historically the
first discovered topological insulator. In 1879, Edwin Hall observed the classical Hall effect,
which can be understood within the Drude model. Its features are a consequence of the Lorentz
force acting on charged particles, while moving in a perpendicular magnetic field. Electrons
will drift perpendicular to the electric field. Thus, a charge will be accommodated at the sides
of the sample, generating a spontaneous electric voltage difference. The ratio between this
transverse voltage and the current is known as the Hall resistance, which scales linearly with
the magnetic field.

However, in 1980 von Klitzing et al. did a similar experiment using a 2D inversion layer or
MOSFETs, at temperatures around 1 K and with a high magnetic field (of the order of 10 T)
[22]. The result was completely different of what was expected. Instead of a linear dependence,
when they measured the transverse (Hall) conductance σxy, they observed a stepwise depen-
dence on the applied magnetic field, as depicted in figure 1.11.1. Furthermore, when σxy exhibited
a plateau, the longitudinal conductivity σxx was zero. Only for some magnetic fields when the
Hall conductance was changing, σxx was non-zero. Hence, dissipationless currents flow along
the sample while σxy is in a plateau. What was even more striking, is that each plateau was
quantized in terms of integer values of the fundamental unit of conductance e2/h, and that
the accuracy of the quantization is one part in 109. Moreover, the lower the temperatures
and the more disordered was the sample, the more accurate was the measurement. Thus, the
Integer QHE provided one of the best measurements of the fine structure constant α = e2/~c
(in CGS units), and for this discovery he was awarded the Nobel Prize. To understand this
phenomenon, many theoretical efforts were needed. Topology and disorder have been key on
understanding this effect, and have opened a new field in condensed matter, known as Topo-
logical Insulators.

After describing the effect in general terms, we now follow a reasoning to better understand
its features. First, we refer the reader who is not acquainted with the behaviour of electrons
moving in a perpendicular magnetic field to appendix AA. The energy spectrum of this system
is similar to the one of harmonic oscillators, with a gap between Landau levels (LLs) given
by the cyclotron frequency energy ~ωB . In the quantum mechanical picture, the current in a
2D system in the presence of a longitudinal eclectic field E and a perpendicular magnetic field
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Figure 1.1: Integer QHE. Transverse resistivity as a function of the magnetic
field. Peaks correspond to the longitudinal resistivity. This picture has been
reproduced from Ref. [3636].

B = (0, 0, B) = ∇×A is given by

I = − e

m

ν−1∑
n=0

∑
k

〈ψnk| − i~∇+ eA |ψnk〉 , (1.2)

where m is the electron mass and ν ∈ Z is the filling factor, which express how many Landau
levels are completely filled. The current in the x-direction vanishes, as it is just the expectation
value of the momentum of a harmonic oscillation, whereas in the y-direction we obtain

Iy = − e

m

ν−1∑
n=0

∑
k

[〈~k〉 − 〈eBx〉] = eν
∑
k

E

B
=
eNE
B

ν =
eEA

φ0
ν, (1.3)

where A is the area of the sample N is the number of states, and φ0 = h/e. Here, we used
that the expectation value of a harmonic oscillator is x0 = −~k + mE

eB2 , which cancels the first
term of the Iy. The quantized Hall resistance, and Hall conductivity then read

ρxy =
V

Iy
=
φ0

e

1

ν
, σxy =

1

ρxy
= ν

e2

h
. (1.4)

The above argument shows that whenever ν Landau levels are completely filled, the Hall
conductivity is quantized in ν integer units of e2/h. However, to understand why the plateaus
form, we need to introduce disorder. Hence, let us introduce impurities to the system, and
model them as a random potential V (x). We can treat this potential perturbatively, as long as
V � ~ωB . The disorder will have two effects. Firstly, the Landau levels will become broader
(without overlapping), as each delta distribution will be replaced by a Lorentzian, lifting the
degeneracy and conserving the total number of electrons in the band. Secondly, if the fluc-
tuation of the potential is not appreciable in the magnetic length scale lm, |∇V | � ~ωB/lm,
quantum states will become localized [3737], as they will be trapped close to the extrema, with
a cyclotron orbit along equipotential lines. Hence, disorder will open a mobility edge, corre-
sponding to states that are centered at the band. The states located at the opposite edges
of the sample are the only ones that will be extended, thus carrying the current. They have
opposite chiriality, as one can see by computing the drift velocity vy, which has opposite signs.
Hence, an electron would need to cross the whole material to scatter with another electron,
which is energetically unfavourable. Having no scattering processes is consistent with a zero
longitudinal resistivity, and this is why these states are so robust to impurities. Away from the
mobility edge, the states will become localized, and therefore they will not contribute to the
Hall conductivity.
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Figure 1.2: (a) Potential landscape in a two-dimensional sample with orbits
of electrons. (b) Variation of the potential along a constant y coordinate. (c)
Density of states for the Landau levels when disorder is introduced.

With the effect of disorder, we can now explain why the plateaus are formed. First, let us
fix the density of electrons ne in the system. If we decrease the magnetic field, the available
states at each band will decrease (recall equation (A.10A.10)). Hence, electrons will begin to popu-
late the next Landau level. However, as long as we do not cross the mobility edge of the given
Landau level, the conductivity will remain constant, as all these states will remain localized.
Thus, the resistivity will be in a plateau. When the mobility edge is crossed, extended states
will begin to be populated and hence, the conductivity will increase. Therefore, as long as the
Fermi energy is in the mobility gap, the conductivity will remain in a plateau.

Although disorder seems to perfectly explain why we see these steps, the statement used
for showing the quantization of the Hall conductance breaks down when we consider systems
which are not translationally invariant. Even more important, it cannot predict the quanti-
zation of the Hall conductance in rational numbers that happens in the Fractional QHE [3838].
Moreover, why is the quantization so accurate? In 1982, Thouless, Kohmoto, Nightingale, and
den Nijs (TKNN) found out that there is a much deeper reasoning for all that, and they where
able to identify σxy with a topological invariant [3939].

1.3.1 The Adiabatic Theorem
To obtain this relationship let us consider a physical system described by a general Hamiltonian
H(λ) subjected to a set of parameters λ = (λ1, λ2, ...), which could be an electric field, a
magnetic field, a flux, etc., evolving smoothly in time, i.e. λi = λi(t). Let {|n(λ)〉}N0 be a
complete orthonormal set,

〈n|m〉 = δnm,

N∑
n=1

|n〉 〈n| = I,

of instantaneous eigenstates of the time-dependent Schrödinger equation with a discrete energy
spectrum and no degeneracies. Hence,

Ĥ(λ) |n(λ)〉 = En(λ) |n(λ)〉 , (1.5)
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and E1 < E2 < ... < EN . Then, under the assumption that the variation is slow, if we prepare
an initial pure state, the adiabatic theorem states that after the time evolution, the final state
will remain in the same instantaneous eigenstate, up to a phase,

|Ψ(0)〉 = |n(λ(0))〉 ,
|Ψ(λ(t))〉 = eiαn(t) |n(λ(t))〉 .

We can see this by solving the differential equation that one obtains from the Schrödinger
equation,

Ĥ(t) |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 . (1.6)

From now on, we will drop the explicit dependence of the Hamiltonian, states, and energy
with the parameters λ, and will write only the time. However, keep in mind that the time
always enters through the parameters λ = λ(t) and thus, any time derivative can be regarded
as ∂t = λ̇∇λ.

Suppose that after varying the parameters, the final state at time t is in a linear combination
of the instantaneous eigenstates

|Ψ(t)〉 =
∑
n

cn(t) |n(t)〉 .

This state must fulfill the Schrödinger equation (1.61.6), which leads to the following equality∑
n

En(t)cn(t) |n(t)〉 = i~
∑
n

[
ċn(t) |n(t)〉+ cn(t) |ṅ(t)〉

]
.

By multiplying with 〈m(t)| from the left

Emcm(t) = i~
[
ċm(t) +

∑
n

〈m(t)| cn(t) |ṅ(t)〉
]

= i~
[
ċm(t) + cm(t) 〈m(t)|ṁ(t)〉

]
+ i~

∑
n 6=m

cn(t) 〈m(t)|ṅ(t)〉 ,

and if we rearrange it, we obtain a first order linear differential equation:

ċm(t) +
i

~

[
Em(t)− i~ 〈m(t)|ṁ(t)〉

]
cm = −

∑
n 6=m

cn(t) 〈m(t)|ṅ(t)〉 . (1.7)

The assumption of the adiabatic theorem considers that the transition amplitude between
states along the smooth evolution of the parameters λ through time is highly suppressed and
thus, the term at the r.h.s. vanishes. Integrating the homogeneous equation gives

cm(t) = cm(0) exp

{
−i
~

∫ t

0

[
Em(t′)− i~ 〈m(t′)|ṁ(t′)〉

]
dt′
}
,

and hence, as long as the above approximation holds, the final state will be given by

|Ψ(t)〉 =
∑
n

cn(0)eiθn(t)eiγn(t) |n(t)〉 , (1.8)

which is the claim of the adiabatic theorem.

1.3.2 The Berry Phase
The first function defined

θn(t) = −1

~

∫ t

0

En(t′) dt′
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is the usual dynamical factor of the energy correspondent to the eigenstate. The second one is
of great importance, as encodes the geometry of the manifold where the parameters fluctuate.
It is also known as Berry phase due to its discovery in 1984 [4040],

γn(t) =

∫ t

0

i 〈n(t′)| ∇λ |n(t′)〉 λ̇ dt′ =

∫
C
i 〈n(λ)| ∇λ |n(λ)〉 dλ. (1.9)

In analogy to electromagnetism, we can define a gauge dependent vector potential called Berry
connection,

An(λ) = i 〈n(λ)| ∇λ |n(λ)〉 . (1.10)

If we rewrite Eq.(1.91.9) in terms of this vector field and the path through the parameter space
is closed, we can use Stokes’ theorem to reexpress the Berry phase as the flux of a “magnetic
field” through a surface enclosed by the path C

γ(C) =

∮
C
An · dλ =

∫
S(C)

(∇×An) · dS. (1.11)

In addition, an anti-symmetric field strength called Berry curvature can also be defined. It is
is gauge invariant, and is known as curvature of the connection,

Fnij = ∂λiAj − ∂λjAi. (1.12)

Writing all this together, one obtains that the Berry phase is given by

γ(C) =

∫
S(C)
Fnij

1

2
εijk dSk =

∫
S(C)
Fnij dSij . (1.13)

1.3.3 Kubo Formula and the TKNN invariant
If a system is in an instantaneous eigenstate |n〉, then the perturbed state after time t, to first
order in the time derivative, will be

|ψn〉 = eiθn(t)

[
|n〉+ i~

∑
m 6=n

〈m|ṅ〉
Em − En

|m〉
]
. (1.14)

The value 〈m(t)|ṅ(t)〉 can be rewritten in terms of the ˙̂
H by noticing that if we differentiate

the eigenvalue equation (1.51.5) and multiply it from the left by 〈m|, we get

〈m| ˙̂
H |n〉+ 〈m|H |ṅ〉 = 〈m| Ėn |n〉+ 〈m|En |ṅ〉 ,

hence 〈m|ṅ〉 =
〈m| ˙̂

H |n〉
En − Em

.

Let assume that the state (1.81.8) is in a uniform magnetic field B, and it can interact with a
slowly varying electric field. In the Weyl gauge A0 = 0, the time dependent parametrization
enters through δA = Et. Our interest is to compute the conductivity, which is the response
function of the current to the gauge potential, i.e. the response of the system under the
influence of the applied electric field. From the standard path integral approach, we know that
the currents are defined as functional derivatives,

Jµ =
δH

δAµ
, hence Ḣ = JjEj ,

as time enters into H through the space components of the vector potential. Since the trans-
verse conductivity tensor can be obtained by the average value of the current,

〈Jk〉xy = σxyεklEl, (1.15)
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we can compute the expectation value of the current operator Jk in the state (1.81.8) to obtain
the above relation with the conductivity. These lead to the expression known as Kubo formula

σxy =
〈Jx〉xy
Ey

= −i~LxLy
∑
m6=n

〈n| Jx |m〉 〈m| Jy |n〉 − 〈n| Jy |m〉 〈m| Jx |n〉
(Em − En)2

, (1.16)

where we introduced the sample dimension area LxLy.

To connect this to a topological invariant, we must discretize the sample. The spectrum
then will form bands, and the wavefunctions of the electrons will be in Bloch form, with a
lattice momentum k, that lives in a torus T 2. The current density element is given by

dJi = evidρ = e
1

~
∂H(k)

∂ki

d2k

(2π)2
. (1.17)

where the density element of states is dρ = d2k/(2π)2, and v = ∇kH(k) is the group velocity.
Thus, if we substitute this into the Kubo formula (1.161.16) and integrate over the whole Brillouin
zone, it follows that

σxy =
ie2

~

∫
d2k

(2π)2

∫
d2k′

(2π)2

∑
En<EF<Em

〈n| ∂kyH(k) |m〉 〈m| ∂kxH(k) |n〉 − 〈n| ∂kxH(k) |m〉 〈m| ∂kyH(k) |n〉
(Em − En)2

.

(1.18)
Now, the eigenstates |n(k)〉 (|m(k′)〉) are the single particle non-interacting states of the nth
(mth) Landau level below (above) the Fermi energy, which completely fill the first Brillouin
zone. Hence, it sums pairs of states from below and above the Fermi energy. Rewriting the
numerator as

〈n| ∂kyH(k) |m〉 = 〈n| ∂ky
(
H(k) |m〉

)
− 〈n|H(k)∂ky |m〉 = −

(
Em(k′)− En(k)

) 〈
∂kyn

∣∣m〉 ,
and using the completeness relation∫

d2k′

(2π)2

∑
En<EF<Em

〈
∂kyn

∣∣m〉 〈m|∂kxn〉 =

∫
d2k

(2π)2

∑
n

〈
∂kyn

∣∣ (I− |n〉 〈n|) |∂kxn〉 ,
the transverse conductivity is reexpressed as

σxy =
ie2

~

∫
d2k

(2π)2

∑
n

(〈
∂kyn

∣∣∂kxn〉− 〈∂kxn∣∣∂kyn〉
)
. (1.19)

At this point, we can identify the Berry connection An(k) = i 〈n| ∂∂k |n〉 and the Berry curva-
ture Fij(k) =

∂An
j

∂ki
− ∂An

i

∂kj
, which allow us to rewrite the Hall conductivity in terms of the first

Chern number.

σxy =
e2

~
∑
n

∫
d2k

(2π)2
Fxy =

e2

h

∑
n

Cn =
e2

h
C. (1.20)

This is the conductivity of a band insulator, and is purely topological. As long as the Fermi
energy lies in the gap, the Hall conductivity is going to be quantized by an integer, which is
a sum of the first Chern numbers Cn, one for each n filled band. This can explain as well its
robustness, as the Chern number cannot change if the gap is not closed. The nature of the
Integer QHE is thus topological.
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The role of gauge invariance can be used to see how each Landau level contributes to the
edge current. The argument depends on the geometry, but the physics should not depend
on it. The set-up is the same as before, but now electrons moves in the annulus, also called
Corbino ring, and there is also a flux φ through the hole. Following the Laughlin argument,
when the flux changes adiabatically exactly by one quantum flux ∆φ = φ0, the states increase
their angular momentum by ~ and are mapped onto themselves, moving outwards rm → rm+1

with m the quantum number for the angular momentum. As the number of electrons stays
invariant through the process, if ν Landau levels are filled, each must exactly contribute with
one electron to the Hall conductivity.

Now that we understood the origin of conductivity quantization in the integer QHE, we will
delve into symmetries to look for a more general underlying principle behind the topological
features.



Chapter 2

Symmetries

Symmetry has always been a powerful tool to characterize a system. Already in classical
mechanics we encounter that a system invariant over time translations conserves energy, and
invariance over spatial translations is associated with momentum conservation. Emmy Noether
cast all this together, proving an important theorem in classical field theory [4141]. Noether’s
theorem states that a symmetry will have an associated conserved current, thus connecting
symmetries with conservation laws. In other areas of physics, symmetry is also important. As
mentioned before, Bloch theorem enables us to classify materials in terms of the band struc-
ture; the phenomenological Ginzburg-Landau theory, classifies the different phases of matter
in terms of a symmetric or a symmetry-broken state.

To classify topological matter, however, we need to drive our attention to discrete symme-
tries that appear in condensed matter, mainly the ones that have an anti-unitary nature [4242].
At the end of the chapter, we will see that one can establish a systematic classification scheme,
the so-called tenfold way, which predicts when matter will be in a topological or trivial phase,
depending on the presence or absence of symmetries. This classification is an an extension
of the threefold way of Wigner-Dyson’s random matrix ensemble classification [4343–4545]. The
first ones who realized this were Altland and Zirnbauer; hence the classification is referred to
as the Altland-Zirnbauer (AZ) symmetry classes [77, 4646]. The chapter is based in some recent
works [4747–5050] that provide a more pedagogical account for the AZ classification. For a different
approach based on K-theory, we refer the reader to the work of Kitaev [5151].

To begin with, let us recall what we understand by a symmetry in quantum mechanics.
Wigner theorem states that any invertible operator U , which preserves the transition amplitude
between any two single-particle states,

|〈α|β〉|2 =
∣∣〈αU†∣∣Uβ〉∣∣2 = |〈α′|β′〉|2,

is a symmetry. U will be either unitary or anti-unitary, which is also referred as linear or
anti-linear [5252]. Thus, we have

U(iI)U−1 = iI, linear,

U(iI)U−1 = −iI, anti-linear.

Within the second quantization formalism, the Hamiltonian of a non-interacting system of
fermions is given by

Ĥ =
∑
ij

ˆ
ψ†iHijψ̂j , (2.1)

with ˆ
ψ†i and ψ̂j the second-quantized creation and annihilation operators, respectively, which

satisfy the anticommutation relation {ψj , ψ†i } = δij , and Hij the single-particle Hamiltonian.

17
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To simplify the notation, we can imagine the system discretized in a lattice, and the index i
can be considered as an array involving different degrees of freedom, e.g., spin, orbital, lattice
position, sublattice, etc. Then, we say that the operator Û is a symmetry if the second-
quantized Hamiltonian commutes with it,

[Û , Ĥ] = 0.

2.1 Time-Reversal Symmetry
This discrete symmetry reverses the flow of time, T : t→ t. Therefore, it must commute with
any spatial symmetry, and invert operators that are proportional to odd time derivative

T x̂T−1 = x̂, T p̂T−1 = −p̂ (2.2)

Notice that as the canonical commutation relation for x̂ and p̂ must hold,

T [x̂i, p̂j ]T
−1 = Ti~δijT−1 = −[x̂i, p̂j ] = −i~δij ⇒ TiT−1 = −i. (2.3)

Time-Reversal (TR) symmetry needs to change i → −i. In second quantization, the TR
operator acts on the creation and annihilation operators as

T̂ ψ̂iT̂ −1 =
∑
j

(U†T )ijψ̂j , T̂ ψ̂†iT̂ −1 =
∑
j

ψ̂†j (UT )ji, (2.4)

with UT a unitary matrix. Constraining the second-quantized Hamiltonian Ĥ to be symmetric,
we get for the single-particle Hamiltonian

UTH
∗U−1

T = +H. (2.5)

Defining the anti-linear complex conjugation operator K as

KAK−1 = A∗, (2.6)

we can write the first-quantized TR operator as T = UTK. Applying twice the operator,
T 2 = UTKUTK = UT (UTT )−1 = φ, we obtain a diagonal matrix of phases that gives a con-
straint for the unitary matrix UT = φUTφ, as UT = φUTT , and U

T
T = UTφ. This can only be

fulfilled if φ = ±1.

For spinless particles in the position representation, the degrees of freedom are just the po-
sition and momentum operators. They transform as equation (2.22.2), but we can see that as
the non-vanishing components of the momentum are purely imaginary, then UT p̂UT = p̂ (as ).
Thus, the matrix phases must be the identity with φ = 1.

When particles have spin S, the TR operator will flip the sign since it is an angular mo-
mentum. Thus, TST−1 = −S. A change of sign can be implemented by a unitary UT rotation
of π around, i.g., the y-axis. Then, we write TR as

T = e−iπSyK. (2.7)

If we now square this operator, we implement a rotation of 2π,

T 2 = e−iπSyKe−iπSyK = e−iπSyeiπS
∗
y = e−i2πSy . (2.8)

Hence, for half-integer spin particles gives a factor of −1, but for integer spin, it gives the iden-
tity. This has a deep consequence for TR-invariant systems, the so called Kramer’s theorem,
which states that every energy mode of a TR invariant system with an odd number of spin-half
particles is at least doubly degenerated [5353].
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We can prove this by first observing that if the single-particle state |ψ〉 is an eigenstate
with eigenenergy ε, it must exist a TR partner with the same energy: HT |ψ〉 = TH |ψ〉 =
Tε |ψ〉 = |ψ〉, as [H,T ] = 0. What we have left is to show that they are orthogonal. Thus,

〈ψ|Tψ〉 =
∑
m,n

ψ∗m(UT )mnKψn =
∑
m,n

ψ∗m(UT )mnψ
∗
n

=
∑
m,n

ψ∗n(UT )mnψ
∗
m =

∑
m,n

ψ∗n(−1)(UT )nmKψm = −〈ψ|Tψ〉 = 0.
(2.9)

As we see, it is crucial to have T 2 = −1, as this implies that the unitary matrix is antisym-
metric, U = −UT , and gives the required minus sign. Otherwise, we would not have any
degeneracy. This statement only works for a state |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉 with N odd, as
T 2 = (−1)N I⊗N acts in the Hilbert space of each particle. This implies that the scattering
process between Kramer’s pairs of states with an odd number of particles is forbidden, while
for an even number it does not vanish.

Before ending this section, we can consider how the TR operator behaves in fermionic
systems that have translation symmetry. We know from Bloch theorem that in this case, the
momentum k it is going to be a good quantum number for indexing states. Thus, in Fourier
space the Hamiltonian is given by

H =
∑
k

c†kασh
σσ′

αβ (k)ckβσ′ , (2.10)

with c†kασ and ckβσ′ the creation and annihilation operators of an electron with momentum k,
with α, β orbital indices and σ, σ′ spin indices. To obtain how it transforms, one first needs to
determine how TR acts on creation and annihilation operators. Using again the Pauli matrix
to represent the spin rotation over the y-axis implemented by the TR operator and writing the
Fourier transformation, we get

Tc†kασT
−1 = c†−kασ′i(σ

y)Tσ′σ and TckασT
−1 = iσyσσ′c

†
−kασ′ . (2.11)

When TR is a symmetry of the Hamiltonian H, the Bloch Hamiltonian will transform as

THT−1 = T
∑
k

c†kασh
σσ′

αβ (k)ckβσ′T
−1 =

∑
k

c†−kασ′′i(σ
y)Tσ′′σTh

σσ′

αβ (k)T−1iσyσ′σ′′′c
†
−kβσ′′′′

=
∑
k

c†kασ′′i(σ
y)Tσ′′σ(hσσ

′

αβ (−k))∗iσyσ′σ′′′c
†
kβσ′′′′ =

∑
k

c†kασ′′h
σ′′σ′′′′

αβ (k)c†kβσ′′′′ = H.

We used that the Bloch Hamiltonian, hσσ
′

αβ (k), is a number, which implies complex conjugation
under TR. The momentum has also been relabelled, and the matrix product has been defined
as the transformed Bloch Hamiltonian. Dropping out the indices, this would reads as

Th(k)T−1 = h(−k). (2.12)

A similar argument of what we used to show Kramer’s degeneracy can be done here. However,
in momentum space Kramer’s pairs are split in states with momentum k and −k. A state |αk〉
with energy εk has a TR partner T |αk〉 that is proper of the TR Bloch Hamiltonian h(−k),
with energy ε−k = εk. Hence, we will only have Kramer’s degeneracy at TR-invariant points,
where k = −k.
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2.2 Particle-Hole Symmetry

In second quantization, a particle-hole (PH) transformation Ĉ is a unitary operator that ex-
changes the fermionic creation and annihilation operators. Hence, a Fock space with p fermions
and q holes is mapped to a Fock space with q fermions and p holes,

Ĉ : Fp,q → Fq,p. (2.13)

It is also referred to as charge conjugation, as one can see that for particle conserving systems
it flips the charge, which is the difference between fermions and holes. Its action onto the
second-quantized creation and annihilation operators can be written as

Ĉψ̂iĈ−1 =
∑
j

(U∗†C )ijψ̂
†
j , Ĉψ̂†iĈ−1 =

∑
j

ψ̂j(U
∗
C)ji, ĈiĈ−1 = +i. (2.14)

Again, if PH transformation is a symmetry of the second-quantized Hamiltonian Ĥ, they must
commute, which implies that the first-quantized Hamiltonian satisfies

UCH
∗U†C = −H. (2.15)

If C anticommutes with the single-particle Hamiltonian, its square C2 will commute. As before,
by Schur’s lemma it will be a multiple of the identity matrix, i.e. C2 = eiφI, and consequently
C2 = ±1.
Observe that by using the complex conjugation operator K defined at equation (2.62.6), we can
write the PH transformation acting on the single-particle Hilbert space as an anti-unitary
operator C = UCK. Then, for every system that has a PH symmetry, if it has an eigenstate
|α〉 with eigenvalue ε, it will have a PH-symmetric partner C |α〉 with energy −ε, as can be
easily verified using equation (2.152.15),

HC |α〉 = HUC(|α〉)∗ = −UC(H |α〉)∗ = −UCKε |α〉 = −εC |α〉 .

2.3 Chiral Symmetry
The last important discrete symmetry that we need to discus to classify topological insulators
is the chiral symmetry. It can be defined as a combination between TR and PH symmetries,

Ŝ = T̂ · Ĉ. (2.16)

Using equations (2.42.4) and (2.142.14), we can see how the fermionic operators transform under this
symmetry

Ŝψ̂iŜ−1 =
∑
j

(U∗†S )ijψ̂
†
j , Ŝψ̂†iŜ−1 =

∑
j

ψ̂j(U
∗
S)ji, ŜiŜ−1 = −i, (2.17)

with US = UTU
∗
C . Observe that the first-quantized chiral symmetry S = US is unitary. Now,

to be a symmetry of the second-quantized Hamiltonian, we know that they must commute,
which implies that the first-quantized Hamiltonian transforms as

USHU
†
S = −H. (2.18)

The same reasoning applies for the square of the chiral symmetry. However, as US = UTU
∗
C ,

we can pick an appropriate basis such that the arbitrary phases from TR and PH cancel out.
Thus, S2 = I. The anticommutation relation {H,US} = 0 leads to a symmetric spectrum,
since for any eigenvalue equation H |α〉 = ε |α〉, we will also have another one which is related
by chiral symmetry as HUS |α〉 = −USH |α〉 = −εUS |α〉.

Chiral symmetry is also referred to as a sublattice symmetry. To understand why, we can
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use as an example a lattice where there are sublattices A and B. The first-quantized Hamilto-
nian would be given by a hopping with the same sublattice on the diagonal (a on-site potential),
and off-diagonal terms encoding the hopping between sublattices. Similarly as before, one can
see that the possible eigenvalues of the matrix US are ±1. Thus, if there is a chiral symmetry,
the following equations must hold

HUS =

(
HAA HAB

H†AB HBB

)(
1 0
0 −1

)
=

(
HAA −HAB

H†AB −HBB

)
=

(
−HAA −HAB

H†AB HBB

)
= −USH.

Therefore, the only possibility left is that when US is in diagonal form, the single-particle
Hamiltonian H must be in block-off-diagonal form

H =

(
0 HAB

H†AB 0

)
.

2.4 Tenfold way
At the beginning of the chapter, we anticipated that topological insulators can be classified
in terms of three discrete symmetries. In first quantization, the only anti-unitary symmetries
that exist are time reversal T and particle-hole C symmetries. However, we also said that we
needed to consider their product, which is the unitary chiral symmetry S. Then, one could
ask: Why are these anti-unitary symmetries so important in classifying the topological phases
of matter? Why are we only considering one unitary symmetry, which is also related to their
product? In this section, we will motivate and discuss these answers, presenting the tenfold
way, which is a complete classification scheme for non-interacting fermions.

If one is interested in classifying all non-interacting topological insulators, one can address
this by studying how the single-particle first-quantized Hamiltonian H is constrained under
symmetry transformations. Recall that symmetries will commute with the second quantized
Hamiltonian Ĥ, and preserve the probability under time evolution U(t) = e−itH/~ operator.
There are only two options for constraining the Hamiltonian, since a linear representation of a
quantum mechanical symmetry is either unitary or anti-unitary. It turns out that if one classi-
fies topological phases which are protected by unitary symmetries, the result is not universal,
but rather relies on the nature of the unitary symmetries that constrain the Hamiltonian.
Therefore, the anti-unitary symmetries are responsible for protecting the topological phases.

To study the set of all possible forms of Hamiltonians, first one removes the unitary sym-
metries. If G0 is a group of symmetries, where its elements g ∈ G0 have a linear representation
of unitary matrices Ug that are a symmetry of the first-quantized Hamiltonian, then we can
always choose a basis in which the representation of the first-quantized Hamiltonian is reduced
to a block-diagonal form Hλ. Each block is related to an irreducible representation λ of G0,
that decomposes the vector space of single-particle states as a direct sum V =

⊕
λ Vλ. The

form of all possible blocks Hλ is independent of the symmetry group G0. Therefore, they must
be related to the other possibility, which are the anti-unitary symmetries [4949, 5454]. However,
we mentioned that it is also necessary to include chiral symmetry, even though it is unitary in
first quantization. This happens because the unitary symmetries that reduce the single-particle
Hamiltonian to a block-diagonal form commute with H. Therefore, chiral symmetry S = US ,
which anticommutes, is not included.

The set of all possible blocks of Hλ are given by the presence or absence of these three discrete
symmetries. As we saw in the previous sections, the square of TR and PH operators can be
±1. Adding the option to not be invariant under these symmetries, there is 3 possibilities for
each, which gives 3 × 3 = 9 different ways of transforming the Hamiltonian Hλ under these
symmetries. For 8 out of these 9 possibilities, the presence or absence of chiral symmetry is
already fixed. It is when TR and PH are not present that we can still have (or not) a chiral
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Cartan T C S Time evolution operator
U(t) = eitH

Anderson Localization
NLσM Manifold G/H

A (unitary) 0 0 0 U(N) U(2n)/U(n)×U(n)
AI (orthogonal) +1 0 0 U(N)/O(N) Sp(4n)/Sp(2n)×Sp(2n)
AII (symplectic) −1 0 0 U(2N)/Sp(2N) SO(2n)/SO(n)×SO(n)
AIII (ch. unitary) 0 0 1 U(N +M)/U(N)×U(M) U(n)
BDI (ch. orth.) +1 +1 1 SO(N +M)/SO(N)×SO(M) U(2n)/Sp(2n)
CII (ch. sympl.) −1 −1 1 Sp(2N + 2M)/Sp(2N)×Sp(2M) U(n)/O(n)
D 0 +1 0 O(N) O(2n)/U(n)
C 0 −1 0 Sp(2N) Sp(2n)/U(n)
DIII −1 +1 1 O(2N)/U(N) O(n)
CI +1 −1 1 Sp(2N)/U(N) Sp(2n)

Table 2.1: Tenfold classification of symmetry classes. The first column are the
Cartan’s label. The T column corresponds to TR symmetry, when commutes
with the first quantized Hamiltonian appears a +1 or a −1 depending on the
value of T 2. If it is 0, the symmetry is not present, hence anticommutes with H.
Same applies for PH symmetry C. For Chiral symmetry S, 1 when anticommutes
with H, 0 when does not anticommute (when is present or not, respectively).
The last column represents the symmetric spaces where the NLσM field theory,
describing the boundary, lives. Note that are the same elements of the column
before, but permuted. This table has been reproduced from [4949].

symmetry. Thus, 9− 1 + 2 = 10 which are the 10 different symmetry classes in which a first-
quantized Hamiltonian H can be.

Table 2.12.1 shows the 10 different symmetry classes corresponding to topological phases. The
first column is the label that the mathematician Élie Cartan assigned to the different symmet-
ric spaces [5555, 5656]. He obtained the same result by studying the different generalizations of
spheres with constant curvature. The next three columns correspond to the symmetries that
we have discussed. Zero means that the symmetry is not present, ±1 gives the value to which
the TR and PH operator squares, and for chiral, 1 indicates that the symmetry is present. On
the fifth column, the coset spaces where the time evolution operator lives are represented. All
these spaces can be obtained recursively by fixing the constraints of the symmetries when they
are present. The simplest case is class A, which does not have any symmetry. Consequently,
the Hamiltonian does not have a limitation, and it will be a general N ×N Hermitian matrix.
When TR is present and T 2 = +1, the Hamiltonian in a certain basis will be given by a real
symmetric matrix Hs. As any Hermitian matrix H can be decomposed in a symmetric and
antisymmetric part, Hs = H − Ha. Then, the time evolution operator correspondent to Hs

will live in the coset space U(N)/O(N), as the exponentiation of the Hermitian and asym-
metric Hamiltonian lives in U(N) and O(N), respectively. This means that eitH ∈ U(N) and
eitHa ∈ O(N). Following a similar reasoning, one can continue imposing the limitations to the
Hamiltonian due to the symmetries and obtain the rest of the symmetric spaces

A characteristic feature of topological phases is to present a topological invariant. Hence, if
the listed symmetric spaces are in a non-trivial phase, there must have one topological invariant
assigned to them. As a matter of fact, this is the case, and the corresponding invariants are
shown in table 2.22.2.

To understand how the topological invariants appear, we look back to the last column of
table 2.12.1. The classification of the ten symmetry classes is in one-to-one correspondence with a
problem of Anderson localization [4848], which is a phenomenon that occurs when translational
symmetry is broken [3737]. A way to achieve this is by placing impurities in the material, as they
will disturb the potential landscape. When this type of disorder is strong enough, the spatially
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Cartan\d 0 1 2 3 4 5 6 7 8
Complex case:
A Z 0 Z 0 Z 0 Z 0 Z · · ·
AIII 0 Z 0 Z 0 Z 0 Z 0 · · ·
Real case:
AI Z 0 0 0 2Z 0 Z2 Z2 Z · · ·
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 · · ·
D Z2 Z2 Z 0 0 0 2Z 0 Z2 · · ·
DIII 0 Z2 Z2 Z 0 0 0 2Z 0 · · ·
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z · · ·
CII 0 2Z 0 Z2 Z2 Z 0 0 0 · · ·
C 0 0 2Z 0 Z2 Z2 Z 0 0 · · ·
CI 0 0 0 2Z 0 Z2 Z2 Z 0 · · ·

Table 2.2: Classification of topological phases of matter as a function of the
symmetries present. Depending on the dimensionality they will have a different
topological invariant. When the system is in a trivial phase is represented by
a 0. If there is a topological phase labeled by an integer, appears a Z, and if
is labeled by even integers a 2Z. The Z2 indicates the existence of trivial and
non-trivial phase. See that there is a period of 8, meaning that the d, and the
d−8 dimensional symmetry classes have the same topological classification. This
is known as Bott periodicity.This table has been reproduced from [4949].

extended states tend to become exponentially localized near the impurities [3737, 5757]. This is
what is known as an Anderson insulator, which does not transport neither current nor heat.
However, the gapless boundary modes in topological phases are due to the topology of the
bulk, and therefore they must be insensitive to the disorder. Then, we can achieve the classifi-
cation of topological phases in d dimensions by studying the evasion of Anderson localization
of a d̄ = d− 1 dimensional boundary, which can be accomplished by a non-linear sigma model
(NLσM) field theory [4848]. This type of model is used to describe a Heisenberg ferromagnet,
where at each point of the space we design a spin vector, pointing to the surface of a sphere.
In our case, there is a field which points to the generalized sphere, hence Φ(r) ∈ G/H. Then,
if the action of the NLσM describing the d̄ dimensional boundary contains a term that has a
purely topological origin, then it will evade the Anderson localization [4848].

The scope of this section was to provide a method and some arguments to support table
2.22.2. Therefore, we will just state the answer to the possible terms, which rely on the Homotopy
Group πd̄(G/H), of the d̄ dimensional target space G/H. The reader who would like to know
more is referred to Ref. [4848, 4949].

The action of the NLσM will evade the Anderson localization problem when it allows:

• a Z2 topological term ⇐⇒ πd̄(G/H) = Z2

• a Wess - Zumino - Witten term ⇐⇒ πd̄+1(G/H) = Z.

In this chapter, we have seen how the three discrete symmetries, namely time reversal,
particle hole, and chiral symmetry are defined. Depending on whether they are present or
not, they will constrain the time evolution operator to live in one of the ten symmetric spaces
summarized in table 2.12.1. Moreover, depending on the dimensionality, a trivial (0) or a topo-
logical phase (Z, Z2 or 2Z) may exist, if and only if the target space of the NLσM evades
Anderson localization at the boundary. However, this classification in terms of the dimension-
ality shown at table 2.22.2 corresponds to integer dimensions. Then, a natural question arises
when we think about systems that have a non-integer dimension, such as fractals. Will these
topological phases still be present, or they will not survive? Can a similar classifications be
derived for fractional dimensions? In this thesis, we will investigate at what happens when we
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confine electrons in a Sierpinski triangle. Then, we will include the spin-orbit coupling, which
may drive matter into topological phases, and verify whether if characteristic features, such as
corner or edge modes, appear in this fractal geometry.



Chapter 3

Fractals

We have seen at the end of last chapter that the topological nature of systems is deeply re-
lated to their dimension. There have been different kinds of extension of the classification
of topological insulators. One of these focusses on different symmetries, in addition to time-
reversal, particle-hole, or chiral symmetry such as lattice symmetries. Other efforts considered
non-Hermitian Hamiltonians or driven (Floquet) systems. A natural question is whether a
classification of topological insulators can be extended to non-integer dimension. Some re-
cent studies have focused on the topological properties of fractal lattices. S. Fischer et al.
[5858] mapped the Haldane’s Chern insulator and Hofstadter problem to a fractal lattice. They
showed that although in two dimensions the boundary modes are topological, the edge states of
the fractal realizations had no universal properties, and their stability depends on the model.
Nevertheless, calculations of the Hall conductivity in a Sierpiński carpet by M. Fremling et al.
[5959] showed that the edge states contributed in a quantized way to the transverse conductiv-
ity. Moreover, in presence of disorder the phenomena remained robust. In this chapter, we
will present some fractal geometries and define their main properties such as their non-integer
dimension.

The word Fractal comes from fractus, which means fractured, and originates from Latin.
The term was coined by Mandelbrot in 1975, although the first examples where already studied
at the end of the XIX century. Fractals are self-similar structures with a non-integer dimension
[6060] that appear in many fields, ranging from biology [6161, 6262] (heartbeat, lungs, brain, and cir-
culatory system) to economics [6363] (stock market). The occurrence of fractals in such different
areas can be attributed to their intricate geometry. For example, trees look like our lungs,
both follow a branching pattern. Due to this pattern, they can realize a much larger area in a
smaller volume, being able to store more O2 or CO2. Since fractal geometries are abundant in
nature, it is important to understand how electronic quantum systems behave when they are
constrained in such geometries. The vast majority of studies in quantum systems focuses on
integer dimensions, and not much is known for fractional dimensions. Yet, dimensionality is
well known to strongly impact material properties.

An example of a mathematical fractal is shown Fig. 3.13.1, which corresponds to the Sier-
piński triangle. It is built by starting with a filled triangle and cutting an inverted triangle in
its center (see white region in Fig. 3.13.1). We depict its building block, an equilateral triangle
labeled by G=0, and the fist three generations. The first-order generation, G=1, is built by
combining three copies of such a triangle. Proceeding iteratively, we can construct any gener-
ation by using the previous one.

It is interesting to notice that if one keeps repeating this procedure ad infinitum, the area
is going to be zero and the perimeter infinite. This seems to be paradoxical, but it has an easy
explanation. If the area and the perimeter of the equilateral triangle G = 0 are respectively
given by A0 and P0, for the first generation G = 1 they are going to be given by A1 = 3

4A0 and
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Figure 3.1: Building block (G = 0) and Sierpiński triangles for the first three
generations.

P1 = 3
2A0, as we have removed the central triangle, which is a quarter of the original triangle.

For the perimeter, as the inner sides of the new small triangles are 1/2 of the original one, they
add 3/2 more. Hence, if one keeps repeating this scaling procedure, one obtains the limits:

A∞ = lim
G→∞

(
3

4

)G
= 0, P∞ = lim

G→∞

(
3

2

)G
=∞.

This is only valid in theory, because in reality they will be always finite. The Hausdorff-
Besicovitch dimension is the generalized metric concept of a topological space, which can have
non-integer values. It is defined by

dH = − lim
ε→0+

lnN

ln ε
(3.1)

where N is the number of elements forming the finite cover and ε is the diameter of the sets
forming the cover [6060]. For the Sierpiński triangle, N is the number of triangles that we have
in a given generation and ε is the length of the side of a triangle. Therefore, we have after G
generations NG = 3G and LG = (1/2)G and thus,

dH = lim
G→∞

ln 3

ln 2
≈ 1.58.

Another typical example of a fractal is the Koch snowflake, which has as well an equilateral
triangle as a starting point. To construct the next generation one removes the inner third of
each side and one draws an equilateral triangle where the side was removed. In Fig. 3.23.2, we
have illustrated the first few iterations.

Figure 3.2: Building block and first three iterations.

The unit of self-similarity is also known as Koch curve, see Fig. 3.33.3. The iterative procedure
is established by replacing each straight segment by the Koch curve.

As each side is replaced for a Koch curve, after G generations the number of sides is given
by NG = 3 · (4/3)G and each side will have length LG = (1/3)G. The perimeter is then given
by PG = NG cotLG = 3(3/4)G. The area can be obtained by using a recurrence equation and
solving in terms of the initial area A0, to find

AG = AG−1 +
1

4
NGL

2
GA0,

which gives A∞ = 8/5A0. As before we can define the Hausdorff dimension, which is given by
dH = − lim lnNG

lnLG
≈ 1.26.
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Figure 3.3: (a) building block and right (b) Koch curve.

(a) (b)



Chapter 4

Effect of Spin-Orbit Coupling

In this chapter, we will show how to derive, the spin orbit coupling (SOC) Hamiltonian from
a microscopic description. We will follow the lecture notes from the course Atomic Physics
and Radiation [6464]. The intrinsic spin-orbit coupling comes from the fine structure of the
Hamiltonian, which includes relativistic effects up to second order in v/c. We begin with
the time independent Dirac equation and perform the minimal coupling substitution, thus
obtaining the motion of an electron and a positron in an electromagnetic field described by the
vector potential A and escalar potential ϕ,

HD → HD − eϕ, −i~∇ → −i~∇+
e

c
A.

In the bi-spinor representation, this reads

HDψ =

(
mec

2 − eϕ cσ ·
(
−i~∇+ e

cA
)

cσ ·
(
−i~∇+ e

cA
)

−mec
2 − eϕ

)(
ψe(r)
ψp(r)

)
= W

(
ψe(r)
ψp(r)

)
, (4.1)

with W =
√
c2p2 +m2

ec
4 the relativistic energy and ψe(r)(ψp(r)) the electron (positron)

wavefunction. To study the non-relativistic limit, we first need to identify the non-relativistic
energy with E = W −mec

2. The two coupled equations from (4.14.1) are

Eψe(r) = −eϕψe(r) + cσ ·Πψp(r), (4.2)

Eψp(r) = cσ ·Πψe(r)−
(
2mec

2 + eϕ
)
ψp(r), (4.3)

and Π = −i~∇+ e
cA is the cinematic momentum. Using these equations, we can rewrite the

solutions and expand them as a power series

ψp =
cσ ·Π

E + 2mec2 + eϕ
ψe ≈

σ ·Π
2mec

(
1− E + eϕ

2mec2
+ · · ·

)
ψe. (4.4)

If we consider at the first-order contribution, we find

ψp ≈
σ ·Π
2mec

ψe, (4.5)

and therefore, we can rewrite Eq. (4.24.2) as

Eψe(r) ≈ −eϕψe(r) +
(σ ·Π)

2

2me
ψe.

Using the following two relations,

(a · σ) (b · σ) = a · b+ i(a× b) · σ,
(−i~∇)×A = −i~ (∇×A)−A× (−i~∇),
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we can rewrite

(σ ·Π)
2

= Π2 + iσ · (Π×Π) =
(
−i~∇+

e

c
A
)2

+ i
e

c
σ
(

(−i~∇)×A+A× (−i~∇)
)

=
(
−i~∇+

e

c
A
)2

+
e~
c
σ · (∇×A) .

We can see that the first order correction is the Pauli Hamiltonian, which shows how the Dirac
equation describes particles with spin 1

2 and the giromagnetic ratio of the electron is gs = 2
(corrections to this appear in quantum electrodynamics, which are a few orders smaller). Thus,

HP =
1

2me

(
−i~∇+

e

c
A
)2

− eϕ+
e~

2mec
σ · (∇×A) . (4.6)

However, this first-order correction does not change the energy levels for fields that allow
bounded states. Therefore, to include relativistic effects we need to go to second order in v/c.
From equation (4.34.3), we can substitute the first-order approximation (4.54.5)

ψp =
σ ·Π
2mec

ψe −
E + eϕ

2mec2
ψp =

σ ·Π
2mec

ψe −
E + eϕ

2mec2
σ ·Π
2mec

ψe.

If we then substitute this last expression to the eigenvalue equation (4.24.2), we obtain

(HP +H′)ψe = Eψe (4.7)

with
H′ = − 1

4m2
ec

2
(σ ·Π)(E + eϕ)(σ ·Π) (4.8)

denoting the second order contribution. Using that

[σ ·Π, E + eϕ] = [σ · (−i~∇), E + eϕ] = e(σ · (−i~∇))ϕ− eϕ(σ · (−i~∇)) = −ie~(σ · ∇ϕ),

we can rewrite

H′ = − 1

4m2
ec

2
(σ ·Π)

{
(σ ·Π)(E + eϕ)− [σ ·Π, E + eϕ]

}
= − 1

4m2
ec

2
(σ ·Π)2(E + eϕ)− ie~

4m2
ec

2
(σ ·Π)(σ · ∇ϕ)

= − 1

4m2
ec

2

[(
p+

e

c
A
)2

− e~
c
σ · (∇×A)

]
(E + eϕ)− ie~

4m2
ec

2

[
σ ·
(
−i~∇+

e

c
A
)]

(σ · ∇ϕ).

If we expand this last expression, drop out terms of higher order than O((vc )2), and use the
relation from the Pauli equation

E + eϕ =
p2

2me
+O

(v
c

)
,

we obtain

H′ ≈ − p4

8m3
ec

2
+

e~
4m2

ec
2
σ · (−i~∇× (∇ϕ))− ie~

4m2
ec

2
(−i~∇) · (∇ϕ).

Since
−i~∇× (∇ϕ) = −i~[∇× (∇ϕ)]− (∇ϕ)× (−i~∇) = −(∇ϕ)× (−i~∇),

we finally obtain

H′ ≈ − p4

8m3
ec

2
− e~

4m2
ec

2
σ · (∇ϕ)× (−i~∇)− ie~

4m2
ec

2
(−i~∇) · (∇ϕ). (4.9)
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Looking at equation (4.94.9), we can see that the last term is non Hermitian and therefore, the
norm of the state will not be conserved, leading to a decrease of the probability. This happens
because the wave-function ψe does not represent correctly the non-relativistic limit of the Dirac
equation at order (v/c)2. By using (4.54.5), the norm at order (v/c)2 is given by

ψ†ψ = ψ∗eψe + ψ∗pψp ≈ ψ∗e
(

1 +
p2

4m2
ec

2

)
ψe ≈

[(
1 +

p2

8m2
ec

2

)
ψe

]∗(
1 +

p2

8m2
ec

2

)
ψe,

and therefore the wave-function with constant norm is given by

ψ(nr) =

(
1 +

p2

8m2
ec

2

)
ψe. (4.10)

To obtain the Hermitian Hamiltonian that has ψ(nr) as an eigenstate, we multiply equation
(4.74.7) by 1 + p2

8m2
ec

2 ,(
1 +

p2

8m2
ec

2

)
Eψe =

(
1 +

p2

8m2
ec

2

)
(HP +H′)ψe

Eψ(nr) = (HP +H′)ψ(nr) +

[
1 +

p2

8m2
ec

2
,HP +H′

]
ψe.

The commutator can be approximated as[
1 +

p2

8m2
ec

2
,HP +H′

]
=

1

8m2
ec

2
[(−i~∇)2,HP +H′] ≈ 1

8m2
ec

2
[(−i~∇)2,−eϕ]

= − e

8m2
ec

2
(−i~∇ · [−i~∇, ϕ] + [−i~∇, ϕ] · −i~∇)

= − e

8m2
ec

2

{
− i~(−i~∇) · (∇ϕ)− i~(∇ϕ) · (−i~∇)

=
e~2

8m2
ec

2

{
∇ · (∇ϕ) + (∇ϕ) · (∇)

}
.

The final eigenvalue equation for an electron moving in an electromagnetic field with corrections
up to (v/c)2 is given by

Eψ(nr) = HFψ(nr) = (HP +Hm +HSO +HDarwin)ψ(nr). (4.11)

The Hamiltonian HF is known as the fine-structure Hamiltonian, and as we can see, it has
four different contributions,

HP =
1

2me

(
−i~∇+

e

c
A
)2

− eϕ+
e~

2mec
σ · (∇×A) , (4.12)

Hm = − p4

8m3
ec

2
, (4.13)

HSO = − e~
4m2

ec
2
σ · ((∇ϕ)× p), (4.14)

HDarwin =
e~2

8m2
ec

2
(∇2ϕ). (4.15)

The first one is the Pauli Hamiltonian HP , which emerges from the first-order relativistic
corrections describing the kinetic energy and interaction energy of an electron with the elec-
tromagnetic field, as we have shown.
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Hm represents the corrections to the mass of the particle due to relativistic effects up to
(v/c)2, as we can see in the expansion of the kinetic energy,√

p2c2 + (mec2)2 = mec
2 +

p2

2me
− p4

8m3
ec

2
+ · · ·

HSO is the intrinsic spin-orbit coupling, which originates from the electromagnetic inter-
action between the orbital and spin degrees of freedom of a particle. Electrons moving with
velocity v, which are bounded to the atomic nucleus due to the electric field E = −∇ϕ, will
feel a magnetic field B′ = 1

cv × E = − 1
c (∇ϕ) × v in its rest reference frame. This field is

going to couple with the spin magnetic moment of the electron µs, giving rise to an interaction
energy between both given by

−Ms ·B′ = −gsµBS ·
1

c
(∇ϕ)× v = − e~

2m2
ec

2
σ(∇ϕ)× p. (4.16)

This last expression, however, has a factor of 1/2 missing known as Thomas factor. To obtain
the correct form, one needs to take into account that when the reference frame of the electron
accelerates with respect to the lab, the spin of the electron experiments a precession inde-
pendent of the presence of a magnetic field. This precession occurs because: two consecutive
Lorentz boost are equivalent to one boost and a rotation [6565].

The last term, HDarwin, is a consequence of an interference between the positive and
negative components of the wave packet, causing violent oscillations to the electron (Zitterbe-
wegung). It is also called a contact term, since the Poisson equation ∇2ϕ = 4πρ needs to be
verified, and therefore, it is only non-zero for s orbitals [6666].

4.1 Intrinsic Spin-Orbit Coupling and Topological Phases
We have seen how the coupling between the spin and angular momentum of an electron emerges
naturally when relativistic effects, up to second order in v/c, are taken into account. The im-
portance of this interaction is that it is believed to play a crucial role in driving matter to
topological phases. In 2005, Kane and Mele introduced the spin-orbit coupling in the tight-
binding description of graphene [44, 55]. This led them to the quantum spin Hall (QSH) phase.
In this new state, a topological gap is opened at the bulk, while a pair of counterpropagating
modes move along the edge. These boundary modes are helical: the spin is locked with the
motion of the particles, such that the helicity h = σ · p is preserved. Hence, spin-up electrons
move in one direction and spin-down ones move in the opposite direction. The pair is related
by time-reversal symmetry, (a so-called Kramer’s pair) and as long as the bulk gap is not
closed, or time-reversal symmetry is broken by some strong interaction or a magnetic field,
they will be insensitive to scattering effects. Therefore, they are protected by symmetries and
the material is a time-reversal topological insulator. The band structure of the QSH phase is
classified by a Z2 topological invariant, which is 1 when the boundary modes are present at
the topological phase, or 0 if they are not present at the insulating phase (trivial).

This new state of matter is very interesting because it could have novel applications in
spintronic devices, which could serve, for example, for filtering the spin. However, the main
problem is that graphene is made of carbon atoms, which has a very small spin-orbit coupling,
and consequently the topological gap opened is also very small. In fact, for graphene the gap is
of the order of 10−3 meV, and to suppress all thermal excitations from the bulk, we would need
to go to temperatures around 0.01K [6767]. Experimentally, the QSH phase was first observed in
HgTe/CdTe quantum wells at mK temperatures [6868, 6969], and after in InAs/GaSb heterostruc-
tures [7070]. As a consequence, no real world device can be developed and take profit of this
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material properties due to this low operation temperature. To overcome this issue, the research
has been focused on enhancing the topological gap, looking for new material candidates that
could host a QSH effect, but now at room temperature. Since the gap is proportional to the
spin-orbit coupling strength, the first option would be to find materials that have a stronger
spin-orbit coupling.

4.2 Spin-Orbit Coupling Strenght
As an approximation, we can investigate the spin-orbit coupling for hydrogen-like atoms. If an
electron moves in a Coulomb electrostatic potential, the potential energy is given by

V (r) = −eϕ(r) = − 1

4πε0

Ze2

r
,

with Ze the charge of the nucleus and e the electron charge. In this section we will recover
the factor of 1/4πε0 with ε0 the vacuum electric permittivity. Before taking the mean value of
the spin-orbit coupling Hamiltonian, we can rewrite equation (4.144.14) in terms of the spin and
angular momentum operators,

HSO = − e

2m2
ec

2
S ·
(
r

r

dϕ

dr
×p
)

=
1

2m2
ec

2

1

r

dV

dr
S ·(r×p) =

1

2m2
ec

2

Ze2

r3
L·S = ξ(r)L·S. (4.17)

To compute now 〈HSO〉, we need to fix a basis. We can choose between two different complete
sets of compatible observables that define their own different basis. Either {H, L2, S2, Lz , Sz}
or {H, L2, S2, J2 , Jz}, with their respective basis {|n, `,mL,mS〉} or {|n, `, j,m〉}, where
J = L+S is the total angular momentum. However, it is better to work with the second basis
because L ·S = 1

2 (J2−L2−S2) , and thus HSO is already diagonal. The proper functions of
this basis are spherical harmonics and are given by

ψ(r, σ)jn`m =
1

r
Pn`j(r)Ω

`
jm(r̂, σ) := 〈r, σ|n, `, j,m〉 , (4.18)

with Pn`j(r) satisfying the radial part of the Schrödinger equation and the spherical spinors
Ω`jm, the angular contribution. If we now take the mean value of equation (4.174.17), we can
observe that the energy displacement is proportional to Z4,

〈HSO〉 = 〈n, `, j,m|HSO |n, `, j,m〉 =

∫ ∞
0

Pn`j(r)ξ(r)Pn`j(r) dr

∫ [
Ω

(`)
jm(r̂, σ)

]†
L · SΩ

(`)
jm(r̂, σ) dΩ

=
~
2
〈ξ(r)〉

[
j(j + 1)− l(l + 1)− 3/4

]
=

~
2

1

2m2
ec

2

Ze2

4πε0
〈r−3〉

[
j(j + 1)− l(l + 1)− 3/4

]
,

for ` 6= 0 and zero otherwise. By using that

〈r−3〉 =
Z3

a3
0n

3`(`+ 1/2)(`+ 1)
,

we can rewrite 〈HSO〉 as

〈HSO〉 =
~
2

1

2m2
ec

2

Ze2

4πε0

Z3

a3
0n

3

[
j(j + 1)− l(l + 1)− 3/4

`(`+ 1/2)(`+ 1)

]
= −En

Z2α2

2n

[
j(j + 1)− l(l + 1)− 3/4

`(`+ 1/2)(`+ 1)

]
.

(4.19)
We used that the energy levels are given by En = − e2

4πε0a0
Z2

2n2 , the Bohr radius a0 = 4πε0~2

e2me
,

and the fine structure constant is α = e2

4πε0~c . If the spin-orbit coupling grows with the atomic
number as Z4, it is going to be much larger in heavier atoms, leading to an enhanced topolog-
ical gap [66, 7171–7373].



Chapter 5

Experimental motivation

5.1 Bismuthene on a SiC substrate
In the past few years, researchers in condensed matter have driven their attention to the syn-
thesis of two-dimensional lattices with hexagonal symmetry using elements of the group IV
and V. The idea behind it is to simulate graphene physics, but with a larger topological gap.
If this attempt is successful, these materials will not be constrained to operate at cryogenic
temperatures. Hence, new spintronic devices, with dissipationless currents, will be developed
for technological applications.

A promising result was a recent publication by Reis et al. [66]. In their work, they combined
theory and experiment to demonstrate new realizations of a QSH phase at high temperature.
The method consists in synthesizing a reconstructed monolayer of Bismuth atoms on top of
SiC(0001). As we have seen, the atomic spin-orbit coupling in heavy-atom systems is much
larger than in lighter ones. Thus, the Bi atoms with Z = 83 are an excellent candidate to
exhibit robust topological effects. Indeed, Reis et al. have shown that the substrate where
Bi is grown stabilizes its topological nature, thus confirming the theoretical prediction that a
hexagonal lattice of ultrathin free-standing Bi atoms, called bismuthene, hosts a Z2 topological
phase [7373–7575].

To describe the low-energy bands near the Fermi level, they developed a multi-orbital tight-
binding Hamiltonian because the outer shell of the atom is 6s26p3. The pz orbitals point out of
plane and are pushed to higher energy, as they hybridize with the substrate, forming π bonds.
Due to this hybridization with the substrate, inversion symmetry is broken, allowing for a
Rashba term that splits valence bands of opposite spins. Therefore, the remaining orbitals
hybridize and form sp2 orbitals, giving rise to σ bonds yielding the same honeycomb geometry
as graphene. This σ sector, mainly px and py orbitals, is the main contribution at low energies
and will be responsible for the increase of the topological gap, as they allow for a huge onsite
SOC due to the coupling of the spin with the Lz component.

By performing perturbation theory and truncating to leading order, the effective Hamilto-
nian of the σ sector reads

Hσσ
eff = Hσσ

0 + λSOCH
σσ
SOC + λRH

σσ
R , (5.1)

where Hσσ
0 , Hσσ

SOC , and Hσσ
R are the Hamiltonians corresponding to the hopping, intrinsic

spin-orbit coupling, and Rashba effect, respectively (with λSOC and λR denoting their respec-
tive strength). The experimental evidence of a QSH phase with its characteristic non-trivial
topological invariant Z2 = 1 is strongly supported by their theoretical calculations, using this
"downfolding" procedure and orbital filtering [66, 7171], as well as density functional theory [7676,
7777]. Furthermore, this QSH system is very different from the Kane and Mele model [44, 55].
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It owns its nature to the large on site SOC, in contrast to the next-nearest neighbours SOC
in graphene. By performing STM measurements, they observed a large bulk gap of E ∼ 0.8
eV and conducting edge channels. For this reason, tight-binding calculations for heavy atoms
with a multi-orbital basis, which allow for this type of SOC, is believed to be a key feature for
predicting new QSH phases with large topological gaps.

5.2 Fractals in electronic quantum simulators
The way how we look at materials was revolutionized in 1981 by Binnig and Rohrer, when
they invented the STM at IBM [1313–1515]. This was the first time that researchers could look
at materials with atomic precision, obtaining topographic images with ultra-high resolution.
Moreover, they could measure the density of electrons at all points of the sample, and their
discovery additionally enabled them to rearrange atoms, one by one. Only five years later,
they were awarded with the Noble Prize in Physics.

The ability to rearrange atoms can be used to experimentally realize fractal structures.
In a recent work Kempkes et al. studied the consequence of confining electrons in a two-
dimensional Sierpinski triangle [7878]. To obtain this geometry, they inserted CO molecules in
a Cu(111) substrate. Afterwards, they used of the STM to manipulate the CO’s, to force the
electrons into a fractal shape. Figure 5.15.1 shows that the lack of COs forms a Sierpinski fractal,
while the COs form what is called the anti-lattice.

Figure 5.1: Images obtained with an STM. (a) Triangular lattice formed by the
CO molecules bonded at the substrate. (b) After removing the CO’s, the G(3)
Sierpinski triangle is formed. The remaining CO form the anti-lattice, while the
extracted ones form the tight-binding lattice. Scale bar: 4 nm. Figure adapted
from Ref. [7878].

To study how electrons behave in this fractal configuration, they used two different theoret-
ical methods. The first method is called the muffin-tin approximation. In this approximation,
the CO molecules act as potential barriers that repel the electrons on the substrate. The po-
tential barriers are modeled with a circular step (disk) potential, resembling an upside-down
muffin-tin. The configuration of the potential is illustrated in Fig. 5.25.2. The second method
is the tight-binding model. Now, electrons are confined in each atomic site. They can hop
to nearest neighbours (NN) and also to next-nearest neighbours (NNN). Observe that there is
a big difference between the two methods. The latter can only have electrons at the atomic
sites and the former hosts them in the whole region. Therefore, one is discrete and the other
is continuum.

By solving these models, Kempkes et al. were able to compute the local density of states
(LDOS). This is a measure that identifies where it is more probable to find electrons at a given
energy, or in other words, how large is the amplitude of the electron’s wavefunction. Figure
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Figure 5.2: (a) Muffin tin model: the anti-lattice, patterned by the CO
molecules, is represented by the black dots. These are the regions where electrons
encounter a repulsive potential. In all the other sites, they are free to move. (b)
The tight-binding model: here, electrons are located at these discrete points.
They can hop to their nearest neighbour and next-nearest neighbour with am-
plitude t and t′, respectively. The color code indicates the number of nearest
neighbours that the site has: red (R) one, green (G) two, and blue (B) three.
The distance between black dots is 1.1 nm. Figure reproduced from Ref. [7878].

.

5.35.3 shows the LDOS measured with the STM and evaluated using the tight-binding approach.
Although they are not fully identical, they share the main features and we can say that theory
agrees with experiment. There are a few interesting voltage values. For E = −0.325 eV, the
three different lattice sites (RBG) have a similar LDOS. At E = −0.2 eV, the B and G sites
present a peak, while the red is in a minimum. Around E = −0.1 eV, the B sites present a
minimum, while the R and G sites show a maximum. Finally, at E = 0.1 eV, R and G are
minimum, while B is at a maximum.

Figure 5.3: (a) Experimental spectra obtained using an STM. (b) Theoretically
calculated tight-binding spectra. This image was reproduced from Ref. [7878].

To further discuss these values of energy, we refer the reader to Fig. 5.45.4, where a com-
parison between the LDOS computed at each site for the two models and the experimental
results is shown. The small yellow triangle of the last column corresponds to the G(1) region.
Each circle follows the same color code as Fig. 5.25.2, and their areas are proportional to the
LDOS. The first row, which corresponds to E = −0.325 eV, displays a similar LDOS for all
sites. This is translated in to a fully connected Sierpinski triangle. Thus, electrons will have
a strong bonding between sites and the conductivity through the path (RBGBR) is excellent.
The second row at E = −0.2 eV is very interesting because one can observe the self-similarity
of the Sierpinski triangle in the LDOS. The fully connected LDOS at E = −0.325 eV for G(3)
is subdivided into nine self-similar G(1) parts at E = −0.2 eV, since the R sites connecting
them have a low LDOS, hence a poor conductivity. The third row, at E = −0.1 eV, clearly
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shows how a minimum in the LDOS for the blue sites affects the conductivity along (RBGBR)
pathways. The NN interaction will drop consistently and electrons will need to propagate with
the NNN hoping. The last row, which corresponds to E = 0.1 eV, is similar to the previous one,
and the conductivity of electrons will also be suppressed. However, now the LDOS is maximum
at the complementary (blue) sites. In general, one can conclude that the experiment and both
theoretical results show significant correspondence. Nevertheless, the LDOS of the muffin-tin
model is closer to the reality.

Figure 5.4: Each column presents the LDOS for the G(3) Sierpinski triangle.
From left to right we can find the experiment, the tight-binding, and the muffin-
tin calculations. Each row corresponds to the same potential, labeled in the top
left corner. The yellow triangle represents the G(1) region with the colored circles
distinguishing different sites. A larger LDOS is represented by a higher bright-
ness. However, the colored circles have a bigger diameter in order to enhance the
differences. This image was reproduced from Ref. [7878].

Finally, they computed the LDOS for different generations, and observed that they exhibit
the same pattern. This was an indication of the self similarity of the geometry. To verify
whether the wavefunctions shared the scaling properties of the Sierpinski triangle, they com-
puted the fractal dimension of the muffin-tin LDOS. The results indicated that the dimension
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was indeed fractional, very close to the theoretical value 1.58 of the Sierpinski triangle. Then
one can say that the wavefunctions of electrons confined in a fractal geometry also behave in
a fractal manner, i.e. they are self similar and have a fractal dimension.

5.3 Quantum transport in fractal networks
Another interesting work in fractals is the one done by Xu et al., where they studied the
quantum dynamics of photons in different Hausdorff dimensions [7979]. To unveil the transport,
they built photonic lattices in Corning Eagle XG glass using femtosecond-laser direct-writing
techniques. A sketch of the sample is depicted in Fig. 5.55.5.

Figure 5.5: Sketch of the Sierpinski photonic sample. Arrow indicates the
direction of time evolution. Figure reproduced from Ref. [7979].

When a horizontally polarized photon is introduced at the corner of the fractal, the dy-
namics can be described by continuous-time quantum walks [8080]. By building samples with
different lengths they observed the evolution pattern of photons at different times, since the
longitudinal propagation length Z is proportional to time. Then, to characterize quantitatively
the diffusion scaling of photons over the fractal networks, they computed the mean square dis-
placement (MSD) and the Pólya number [8181].

The propagation of light in a waveguide j is given by the Helmholtz equation in the paraxial
approximation. It reads

i
∂jψ

∂Z
=
∑
l

Hjlψl, (5.2)

where Hjl indicates the coupling between waveguides j and l. Notice that then the propagation
of light in the waveguide is analogous to a Schrödinger equation where Z plays the role of time
and H of the Hamiltonian. To describe this system theoretically and simulate the experimental
results, they assumed a tight-binding model with an onsite βi propagation constant, and a NN
coupling strength Cij . Hence, the Hamiltonian reads

H =

N∑
i=1

βia
†
iai +

∑
<ij>

Cija
†
iaj , (5.3)

with a†i and ai the creation and annihilation operators, respectively, at site i. If the initial
state at the corner is given by |ψ(0)〉 = |1〉, after time t the state is |ψ(t)〉 =

∑N
j=1 aj(t) |j〉 =

e−iHt |ψ(0)〉. Therefore, the probability distribution at time t can be expressed as

pj(t) = |aj(t)|2 = |〈j|U(t) |1〉|2 = |Uj1(t)|2. (5.4)

Based on this distribution, the MSD defined as 〈r2(t)〉 =
∑N
j r

2
jpj(t) is straightforwardly com-

puted. The other measure, the Pólya number, gives the probability that the initial state ever
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returns to the starting point, defined as P = 1−
∏∞
i [1− p0(ti)].

Figure 5.65.6 shows the comparison between the experimental and simulation results. Fig.
5.65.6(a) is a sketch of the cross section of the photonic lattice, showing the top vertex as the
input position. The behaviour of the MSD is compared in the log-log plots of Fig. 5.65.6(b). Both

Figure 5.6: (a) Sketch of the cross section of a fractal photonic sample. (b)
and (c) show the comparison between the experimental (red) and the simulation
(blue), for the MSD and Pólya number, respectively. (d) Depict the transport
patterns at different propagation lengths for the experimental observations on
the left, and simulations on the right. Figure reproduced from Ref. [7979].

show an excellent agreement along the entire sample. In contrast to infinite regular lattices
that have a quadratic growth in the scaling behaviour [8282, 8383], in fractal samples the slope is
continuously changing. From 0 < Z < 2.675 mm, the quantum transport follows the normal
regime. After the first void, the fractal geometry starts to exhibit its effects and the scaling
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behaviour of the MSD is governed by the fractal dimension df ,

〈r2(t)〉 ∼ tdf . (5.5)

The MSD keeps increasing, and when the photons reach the end of the sample, at Z = 9.275
mm, it saturats.

The evolution of the Pólya number is depict at Fig. 5.65.6(c), for the experimental and
simulation realizations. In the regular case, there is rapid growth and a saturation plateau.
However, in the fractal case there is a similar behaviour at the start, but at a propagation
length Z = 3.875 mm, which marks the onset of the fractal regime, there is a plateau. This
anomalous transport behaviour of photons, typical of fractals, shows that when they reach
some empty space, the probability starts to saturate, forming a plateau. However, they even-
tually find paths surrounding the voids and continue to propagate, what is reflected in the
following growth in the Pólya number. When they have explored the entire sample, the Pólya
number saturates, as expected.

5.4 Fractal photonic topological insulators
Recently, Biesenthal et al. have published an article were they show an experimental evidence
that photonic lattices of helical waveguides, following a Sierpinski gasket geometry, host topo-
logical chiral edge states [8484]. The work is supported by a theoretical tight-binding description,
which corroborates their observations.

The system can be described by a coupled set of tight-binding equations

i
∂

∂z
Ψn =

∑
<m>

cei
~A(z)·~rmnΨm, (5.6)

where z is the optical axis, Ψn the electric field amplitude, c the strength of the hopping
between NN which have a ~rmn distance, and < m > denotes summation over NN. The gauge
vector potential ~A(z) = kRΩ(sin Ωz,− cos Ωz) is induced from the driven periodicity, with
k the wavenumber of the light, R the radius, and Ω the longitudinal frequency of the helix.
By introducing this helix modulation of the waveguides, the system becomes topological [8484].
The comparison between the eigenvalues corresponding to the trivial and topological fourth-
generation Sierpinski triangle is depicted in Fig. 5.75.7. In the driven case, with ~A(z) 6= 0,
the mid-gaps become topological, hosting topological edge states. Colors are indicative of the
topological nature, as they represent the real-space Chern number C(rs). Notice that for the
static case, Fig. 5.75.7 (B), C(rs) is zero everywhere, in contrast to the driven case, Fig. 5.75.7
(F), where there are multiple regions with C(rs) 6= 0. Specifically, the topological edge states
with C(rs) = +1 circulate counterclockwise along the outer boundary and for the ones with
C(rs) = −1, circulate in the opposite direction, along the inner edges.

Moreover, using laser-direct-written photonic waveguide lattices, they could observe the
topological edge transport. In Fig. 5.85.8, the dynamics of these topological edge states is shown.
The top row shows the position of the injected Gaussian broad beam and the lower shows the
intensity output measured. The counterclockwise topological edge state propagating along the
outer perimeter is shown in (A) to (F) by varying the starting position. Similarly, (G) to (J)
exhibit the topologically protected edge state propagating clockwise along the inner boundary.
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Figure 5.7: (A) Sierpinski lattice with static waveguides. (B) Eigenvalues
corresponding to the static case, with C(rs) = 0 everywhere. (E) Sierpinski
lattice with helical waveguides. (F) Eigenvalues corresponding to the driven
case, with C(rs) 6= 0 in many regions. Figure reproduced from Ref. [8484].

Figure 5.8: (A)-(F) depict the topological transport along the outer edge, by
varying the initial position. (G)-(J) shows the inner edge state. Figure repro-
duced from Ref. [8484].
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5.5 Sierpiński Structure in Bi Thin Films on InSb Surfaces
In 2021, Chen et al. [88] have synthesized for the first time a material composed of a single
element that has a lattice structure made of Sierpinski triangle islands. Previously, it was re-
ported the fabrication of Sierpiński triangles supra-molecule on top of metal surfaces such as Ag
[8585], Au [8686] and Cu [7878]. The precious fractal structures formed were made of CO compounds,
organic, metal organic, etc. [8787]. The group of Jinfeng Jia [88] obtained this pattern forma-
tion by epitaxially growing monoatomic layers of Bi on top of the semiconductor InSb(111)B
surface around 400 K. After cooling the system down, they performed STM measurements at
liquid helium temperatures around 4 K, using a tungsten tip. The results are depicted in Fig.
5.95.9. Figures 5.95.9 (a) and (b) show the fractal structure of the lattice, with different Sierpiński
triangles islands, and layers of Bi atoms. Figure 5.95.9 (c) shows a sketch of the different layers
of the material, with the different colors and numbers indicated in (a) and (b). On top of the
substrate, there is a wetting layer composed of Bi, Sb, and In atoms, which is denoted by level
0. On top of this, there is a 1-ML of Bi atoms forming the Sierpiński triangle-like level S1.
Next, there is level 2 labeling a 2-ML of Bi atoms, and on top there is the S3 level, which is
also a 1-ML of Bi atoms. Level 4 is expected to be a 4-ML of Bi atoms, and B corresponds to
the highest level. The measurements shown in Figs. 5.95.9 (d), (e), and (f), correspond to the
different color lines, which target different height profiles.

The interest in these structures is due to their fractal arrangement, combined with the large
SOC exhibited by the Bi atoms. As we have discussed at the beginning of this chapter, the
theoretical and experimental work by Reis et al. shows the appearance of topological states in
Bismuthene like samples [66]. Therefore, the structures synthesised here are in principle prone
to the detection of topological effects in a fractal.

Figure 5.9: (a) and (b) STM images, where ST-like structure can be visualized.
(c) Sketch of the levels appearing in the two previous samples. (d)-(f) Three
different height profiles corresponding to the red, blue, and pink color lines. This
figure has been reproduced from Ref. [88].

Figure 5.105.10 shows the measurement of the LDOS of a piece of the sample that is depicted
at the lower right corner. A high population of electrons is labeled by the color pink, and the
lighter is the blue, the less LDOS there is. The first row with LDOS taken at different bias
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voltages shows that with increasing energy, the tunneling current is predominantly outside the
Sierpiński triangle. The most interesting are the ones at the lowest row, from E = 700 mV to
E = 600 mV. We highlight these three because there is a sharp pink edge along the boundaries
of the Sierpiński triangles. Although they concluded in Ref. [88] that there were not topological
phases, these highlighted measurements of Fig. 5.105.10 suggest that for this range of energy, there
could be a topological state. Thus, this needs further investigation, which will be the aim of
the next chapters.

Figure 5.10: STM measurements for different bias voltage of the fractal sample
depicted at the right bottom. Pink and light blue correspond to high and low
LDOS, respectively. The image is a courtesy of the group of Jinfeng Jia.



Chapter 6

Muffin-tin method

Physics problems usually require a lot of simplifications because they tend to be very complex,
as they involve many degrees of freedom. The behaviour of the electrons in a fractal lattice
is not an exception. Nevertheless, the muffin-tin method is a simple approach that allows us
to simulate artificial lattices, obtaining electronic properties such as the local density of states
[7878, 8888].

The method is very similar to a particle in a box, as it consists of solving the one-electron
time-independent Schrödinger equation, but with a specific potential landscape that confines
the electrons. To reproduce the behaviour of the surface states, we approximate them as free
particles, neglecting interactions that they could have among themselves and with the electrons
of the bulk. They form a two dimensional free electron gas, which can move in the contin-
uum set of points of the substrate. We want to restrict their motion to a certain geometry,
since we are interested to know how they behave in that configuration. In our case, this is
the Sierpiński triangle. A way to achieve this experimentally, is to put adatoms on top of the
substrate, which can either attract or repeal the electronic cloud. Gomes et al. developed this
method using CO molecules on top of Cu(111) [8989]. When the adatoms surround the area of
interest, their effective repulsive potential will scatter back the wave functions of the electrons,
confining them as desired.

To better understand this procedure, let us look at the geometry in case, the Sierpiński
triangle. The lattice is constructed considering that atoms are located at each vertex and
center of the equilateral triangles that form the fractal, as shown in Figure 6.16.1.

Figure 6.1: Building block of the Sierpiński triangle labeled by G = 0, followed
by the first two generations. Purple dots correspond to the lattice structure.

Now, to enforce the electrons to move on the green area, a proper choice would be to place
the adatoms on the adjacent sites of the white region, forming what we call the anti-lattice.
The effective repulsive potential of an adatom is modeled as a square potential with radial
symmetry,

V (r) =

{
v if r < R,
0 otherwise. (6.1)
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Figure 6.2: Building block of the Sierpiński triangle labeled by G = 0, followed
by the first two generations. Purple dots correspond to the lattice structure and
the anti-lattice is denoted by the red dots. The zone where the effective potential
of the adatoms is nonzero is represented by a blue disk.

Kempkes et al. simulated an experimentally realized this fractal [7878], as we have already
discussed in section 5.25.2. Following their work, we first solved the eigenvalue problem of the
two dimensional free electron gas with the patterned potential for any generation G,

HSψ =

(
− ~2

2m∗e
∇2 + V

)
ψ = Eψ. (6.2)

Since going to higher generations does not change much the LDOS due to the self similarity,
and only increases the computation time, as the lattice grid needs to be increased, we will
restrict to the lower generations. To diagonalize the Hamiltonian of the one-electron time-
independent Schrödinger equation, we need to discretize our space. If we define a square box
of n points in each direction, linear operators are mapped to (n2, n2) square matrices, and
wavefunctions to n2 vectors. In one dimension (setting a constant increment ∆x between all
points), the first-and second-order derivatives at site xi are approximately given by

ψ′(xi) =
ψ(xi+1)− ψ(xi−1)

2∆x
, ψ′′(xi) =

ψ(xi+1)− 2ψ(xi) + ψ(xi−1)

∆2x
(6.3)

for n = 2, ..., n− 1 and therefore, we can rewrite it in matrix notation as

Dx =
1

2∆x



0 1 0 · · · 0

−1 0 1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 −1 0


, Dx2 =

1

∆2x



−2 1 0 · · · 0

1 −2 1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 1 −2


. (6.4)

The derivatives at the end points need to be treated differently. Thus, we approximate them
as

ψ′(x1) =
ψ(x2)− ψ(x1)

∆x
, ψ′(xn) =

ψ(xn)− ψ(xn−1)

∆x
,

ψ′′(x1) =
ψ(x3)− 2ψ(x2) + ψ(x1)

∆2x
, ψ′′(xn) =

ψ(xn)− 2ψ(xn−1) + ψ(xn−2)

∆2x
.

(6.5)

If we go to two dimensions, each point of the grid can be written as xij = i∆x + j∆y, with
i, j = 1, ..., n, and the Laplacian becomes ∇2 = ∂2

x+∂2
y = In⊗Dx2 +Dy2⊗ In, since our wave
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function is the vector

ψ =



ψ(x11)
ψ(x21)

...
ψ(xn1)
ψ(x12)

...
ψ(xnn)


.

Similarly, the potential V is mapped to a matrix where the entries ij are all zero, unless the
coordinate xij is inside the disk defined before at Eq. 6.16.1. When diagonalizing the Hamilto-
nian, we set a cutoff to the number of eigenvalues and eigenvectors that we want to obtain.
As we are interested in the low-energy spectrum, we solve only for the m smallest values. By
restricting this set and using sparse matrix, the computation time is highly reduced.

After obtaining the set of energies and waves functions, we compute the local density of
states. This gives a measure of how the electronic cloud of the substrate is distributed, enabling
us to compare it with images obtained with an STM. The LDOS is given by

LDOS(ε− ε′) =
∑
ε′

|ψε′(x)|δ(ε− ε′) ≈
∑
ε′

|ψε′(x)| b

(ε− ε′)2 + ( b2 )2
, (6.6)

where we replaced the delta function by a Lorentzian L(ε − ε′) with broadening b. This is
necessary because states with energy ε′ are broadened due to electron-electron and electron-
phonon scattering. Thus, the finite lifetime excitations also contribute to the tunneling current
measured by the STM [7878].

6.1 Comparison with literature
In order to check whether the program written for the simulation was correct, we first fo-
cused on reproducing the results published by S. Kempkes et al. [7878]. To do so, we solved
the Schrödinger Eq. (6.26.2) for the first generation of the Sierpinski triangle using the same
parameters. The shape of the potential used is the muffin-tin, defined at Eq. (6.16.1), with a
height of v = 0.9 eV, and the radius of scatterers equal to R = 0.3 nm. As this refers to a free
electron gas on top of Copper, we used an onset energy of us = 0.45 eV, a lattice parameter of
a0 = 1.1 nm, and an effective electron mass meff = 0.42.

In Fig. 6.36.3, we show the comparison of the LDOS of a free electron gas confined to the first
generation of the Sierpinski triangle. In Fig. 6.36.3 (a) we show the results from Ref. [7878] and in
Fig. 6.36.3 (b) our own results. Here, we will limit to discus the main differences, while arguing
which might be the reasons for them. The plots are going to be discussed in more depth later.

We noticed that the LDOS is very sensitive to how it is computed. Mathematica is a black
box, you do not know which subroutine they used for obtaining the eigenvalues and eigen-
vectors, and in our case we developed a code in Python. Because of that, there are a few
parameters such as the discretization of the box, the number of eigenvalues computed, or the
amount of free space surrounding the Sierpinski triangle that could be different. Therefore,
this could change slightly the results. In addition, we observed that the numerical error due
to the scatterers position could be a source to these differences. When the same simulation is
preformed, but with a rotation of some angle, the LDOS curve changes. Moreover, there is al-
ways a difficulty in choosing exactly the center of the site, the point in which we are interested.
Just a small shift by a grid point can lead to different results. However, the main features and
trends remain the same, and when you map the LDOS to the two dimensional sample, at the
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Figure 6.3: Comparison of the LDOS with Kinetic contribution for G=1. (a)
Results taken from Kempkes et al. [7878]. (b) Our own calculations.

same energy values, both results are indistinguishable.

In Fig. 6.46.4, we show the effect of the grid resolution and the number of waves used in the
simulation. Mainly, one can observe from top left to right bottom, that the range of energy is
linearly proportional to the number of waves. Furthermore, the grid resolution also changes a
bit the LDOS, but it is more redundant. Lastly, as the height of the LDOS is related to the
probability, when there are more states the peaks decrease.

There are only three different lines, although the first generation has nine sites. This is due
to the self-similarity of the fractal. Each site is assigned to a color that reflects its connectivity.
Red has one nearest-neighbour, green has two, and black has three. Due to this C3 rotational
symmetry of the lattice, all sites with the same number of neighbours show a similar LDOS,
with a minimal difference that comes from numerical precision. To avoid this difference, the
mean of all sites of same colour are computed. The key features can be seen by focusing on
the lowest range of energy. The LDOS starts populating first the black site. At E = −0.325
eV, all sites have a similar weight, in a bulk configuration. At E = −0.2 eV, the red and green
are more intense than the black. This intensifies with increasing energy and at E = −0.1 eV,
the red and green sites have a high peak, while the black has a dip. This is characteristic of
a non-bonding configuration. Electrons at this energy would need to hop through next NN
because the black sites have a minimum. After this, the LDOS of the sites that were in a peak
start decreasing, and the black sites increase, till reaching the peak at E = 0.1 eV.

In Fig. 6.66.6, we show the LDOS heatmap along the edge of the Sierpinski for the same
parameters used before, for all the energy range. High LDOS intensity is labeled with brighter
colors and low intensity with darker colors. The path taken is reflected on the x-axis as shown
in Fig. 6.56.5 by the x coordinate of the line connecting the center of the red site at the bottom
left corner, till the center of the top red site. Below zero, there is a horizontal yellow line around
E = −0.3 eV, which corresponds to the bulk phase, with all sites exhibiting a similar LDOS.
Then, around E = −0.1 eV, there are two darker holes, corresponding to the non-bonding
configuration. Although at higher energies there are horizontal yellow lines, signaling what
could be an edge state, when looking at the two dimensional map we observe that the LDOS
is high everywhere.
In this section, we will not analyze in detail what happens at higher energies, which correspond
to higher orbitals. Here, we concentrate on obtaining results using the same parameters as
in Ref. [7878], and showing that the LDOS is very similar, although the method used leads to
slightly modified curves. In the next section, we will map the LDOS to the two dimensional
lattice in more detail.
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Figure 6.4: LDOS computed for the red, green, and black sites of the G = 1
Sierpiński triangle, with only the kinetic energy contribution, for different values
of grid discretization and number of eigenvalues. A lattice parameter of a0 = 1.1
nm, a potential height of v = 0.9 eV, and scatterers with R = 0.3 nm are used.
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Figure 6.5: Simulation box. Scatterers placed at the anti-lattice are repre-
sented by a blue disk with a red center, which is the zone of non-zero muffin-tin
potential. Red, green, and black dots label the sites for the Sierpinski triangle,
with connectivity one, two, and three, respectively.

Figure 6.6: Kinetic heatmap of the LDOS along the left edge of the Sierpiński,
for different values of grid discretization and number of waves. Each horizontal
slice corresponds to a configuration and the x-axis labels the coordinate along
the edge. The color bar reflects the intensity of the LDOS.



Chapter 7

Theoretical results

This chapter contains the main results of this thesis, which are the effects of the spin-orbit
coupling when a two-dimensional free electron gas is confined in a Sierpinski triangle. For
a better comparison we first show the kinetic contribution alone, and then we include the
spin-orbit coupling. Afterwards, we will consider the third generation to acquire a better
understanding. Finally, we will replace the muffin-tin with a Gaussian potential and see which
new features emerge.

7.1 First generation Muffin-tin results

Figure 7.1: (a) Simulation box. Scatterers placed at the anti-lattice are repre-
sented by a blue disk with a red center, which is the zone of non-zero muffin-tin
potential. Red, green, and black dots label the sites for the Sierpinski triangle,
with connectivity one, two, and three, respectively. (b) LDOS for all different
sites. Dashed lines represent the energies used in Fig. 7.27.2.

In Fig. 7.17.1(a), the blue dots denote the region where the muffin-tin potential is non-zero,
while the red, green, and black dots label the sites of the Sierpinski triangle. The results
shown in Fig. 7.17.1(b) are very similar to the ones shown in the previous chapter. We have
changed the lattice parameter, the box dimensions, the resolution, and the wavefunctions. For
the remaining of this work, we will set the lattice parameter a0 = 1 nm, which only shifts
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the peaks by 0.1 eV. Observe that now, the maximum of the red and green sites are around
E = 0 eV and not E = −0.1 eV. The space between the outer scatterers and the boundary
of the square box is set to 2.5 · a0 nm, in the abscissa and ordinate axes. If we would not
have enough space, the boundary would had influenced the LDOS inside the Sierpinski. For
this simulation, the grid resolution is nx = ny = 80, and the number of waves is 500. The
rest of the parameters is kept the same,meff = 0.42, us = 0.45 eV, v = 0.9 eV, and R = 0.3 nm.

The vertical dashed lines in grey represent the first interesting values of energies, which are
mapped to the Cartesian plane in the next figure. Between these lines, the system is evolving
from one configuration to another, having a less defined LDOS map along the sample. We
have already mentioned the first three LDOS that can be clearly distinguished. A first peak
at E = −0.198 eV for the red and black sites, with less population at the green site. We can
already see the tendency of the wavefunctions to split into self similar parts, as it is happening
for the green site. At E = −0.017 eV, there is the mentioned non-bonding configuration, and
at E = 0.208 eV the black sites acquire a larger LDOS, while the red and green sites have the
LDOS more towards the boundary, with a node between the black and red sites.

Figure 7.2: Map of the LDOS to the two dimensional lattice. From top left to
right bottom, the figures correspond to the selected values of energy from figure
7.17.1. The maximum of the color bar has been set equal to the LDOS peak of the
red site.

To investigate the next three configurations, it is better to focus on figure 7.27.2 because
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when electrons go into higher orbitals, the center of the site is not as representative as when
we are looking at s orbitals (as we did before). When the height of the LDOS of the three
sites with different colors are around half of the intensity of the highest red peak, we observe
configurations with nodes at each site, with occupation around them. For a bias voltage of
E = 0.499 eV, there is a clear node surrounded by a high value of LDOS at each red site. The
green and black sites are forming together a circular node, surrounding the central scatterer.
However, one can already observe the beginning of the formation of a perfect honeycomb, which
is well formed at energies E = 0.770 eV. There are nodes centred at each lattice position, and
the LDOS is in between them. For the last selected value, at E = 1.001 eV, the LDOS is a
bit low, but we can see that a node is forming in between two NN’s, and the LDOS is at the
remaining space. The black sites have clearly three nodes around them, while the green have
two and the red has one. Configurations with a node at the sites are p-wave like, whereas the
ones with a node between the sites correspond to even higher orbitals.

Figure 7.3: Kinetic heatmap of the LDOS along the left edge of the Sierpiński,
following a straight line connecting the two red sites at the corners..

A way to detect an energy where it could be an edge state, is by plotting the LDOS along
an edge for a certain range of energy. This is what is done in Fig. 7.37.3. The path chosen
connects the red sites at the corners of the left edge. Around zero energy, we can see the lobes
corresponding to the non-bonding configuration. Although there seems to be yellow horizontal
lines above and below zero energy, there is no clear edge state, as at these energies there is
weight also inside the triangles.

After this first section, where we have studied the confinement of a free electron gas by a
muffin-tin potential patterning the anti-lattice, we move to one of the main questions of this
thesis. How is the effect of the SOC interaction in a fractal? Does it open topological gaps,
and drive matter to topological phases, hosting edge states or corner states? To answer these
questions, we follow the same procedure as before, but now we will include the SOC term given
by Eq. (4.144.14) into the Schrödinger equation. Hence, we need to solve the eigenvalue equation

Hψ =

(
− ~2

2m∗e
∇2 + λSO ·

~2

(2m∗ec)
2

(∇ϕ× p) · σ + V

)
ψ = Eψ. (7.1)

The parameter λSO has been introduced to represent the strength of the SOC. The value has
been set to λSO = 1 · 106, such that the kinetic and SOC terms have the same order of mag-
nitude. Hence, the SOC effect is going to be relevant enough, and we will be able to observe
which changes it might produce.
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Figure 7.4: (a) Simulation box. The scatterers placed at the antilattice are
represented by a blue disk with a red center, which is the zone of non-zero
muffin-tin potential. Red, green, and black dots label the sites for the Sierpinski
triangle with connectivity one, two and three, respectively. (b) LDOS for all
different sites. The dashed lines correspond to selected energies in Fig. 7.57.5 for
which the full LDOS will be shown.

In figure 7.47.4(a), we can see the anti-lattice of the first generation, and in Fig. 7.47.4(b)
the LDOS. As before, we have selected a few interesting values of energy (see dashed lines).
By looking at the shape of the lines, we can already see that some features have completely
changed. First, the original peaks have been shifted to lower energies. The black line now has
only one peak at low energy. In addition, the first configuration at E = −0.264 eV looks more
like a bulk phase, as all different sites have a similar LDOS weight. Then, we can see how the
SOC has turned off the non-bonding configuration: the green site became a bit more different
than the red site, while the black one continues to have the lowest LDOS. Thus, the SOC has
destroyed the non-bonding phase, producing an isolated corner state at E = −0.133 eV.

For the following values of energy, is better to look directly at the LDOS maps shown in
figure 7.57.5, since the LDOS is very low at each site. At E = 0.032 eV, a high (white) LDOS
intensity appears surrounding the scatterers of the outer perimeter. For this bias voltage, it
seems that the SOC is producing a high LDOS at the region were the gradient of the potential
is higher. In a real material, we can imagine that one has an approximate constant potential at
the bulk. When one approaches the edge of the sample, there is a huge change in the potential
because we need to connect with the vacuum. Hence, the boundary is where the gradient of
the potential is stronger, and therefore we can think that this phase, which has all the LDOS
surrounding the lattice, is an edge state, with no population at the lattice. For the next value
of energy, at E = 0.283 eV, the same feature appears, but now at the inner boundary: there
is an edge state along the inside perimeter. For E = 0.403 eV, the image is similar to the last
image obtained including only the kinetic term. However, now the nodes are located at each
red and green sites, while the triangular shape at the black site is much brighter. For the last
selected value, E = 0.629 eV, the LDOS is mainly occupying the space in between the red and
black sites.

For the LDOS at the edge, which is shown in figure 7.67.6, we will focus mainly on the lower-
energy behaviour. Around E = 0 eV, the three lobes have been converted into a straight line.
The brighter spots towards the ends of the line correspond to corner states. Upon increasing
energy, an LDOS gap is opened, since there is an edge state along the outer and inside perime-

(a) (b)



CHAPTER 7. THEORETICAL RESULTS 53

Figure 7.5: LDOS map of the first generation of the Sierpiński triangle at the
selected energy values. These solutions include the SOC term with a strength of
λSO = 1.0 · 106. The maximum of the color bar has been set equal to the highest
red peak at E = −0.133 eV.
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ters, while there is no LDOS weight at the lattice.

Figure 7.6: Heatmap of the LDOS along the left edge of the Sierpiński following
a straight line connecting two red sites at different vertices, including the SOC.

Figure 7.77.7 shows, for each type of (black, green, and red) site, the trend of the LDOS for
different values of the intrinsic SOC parameter λSO. All sites show a similar behaviour, but
the position and intensity of the peaks changes slightly. Generally, we see how the SOC is
opening a gap in the LDOS in between the two peaks at low and high energies. Although we
are not considering here those high energies corresponding to higher-order orbitals, it is worth
mentioning the general trend. In addition, in between these two peaks there is a another one,
which has a much lower LDOS. Observe that the energies at which these three peaks appear
follow a trend in decreasing order of connectivity: they appear at lower energies for the black
sites, which have higher connectivity, then for the green, and finally the red. These features
are intensified when we increase the value of the parameter λSO.

Figure 7.7: LDOS comparison for simulations with different value of λSO, at
each site.
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7.2 First generation Gaussian results
In this section, we consider again the same system, the first generation of a Sierpiński triangle,
but now we replace the shape of the muffin-tin potential by a Gaussian function. The reason to
do this is the abrupt change of the muffin-tin potential at the boundaries. It jumps from 0 to
v, exhibiting an infinite derivative at a distance R from the scatterer center. The smoothness
of the Gaussian potential gradient will be reflected in the LDOS, allowing for more resolution
in between the phases, therefore revealing new interesting states.

Figure 7.8: (a) Simulation box. The FWHM of the Gaussian potential is given
by the blue disk diameter encircling a red dot. Red, green, and black label the
sites for the Sierpinski triangle with connectivity one, two, and three, respectively.
(b) LDOS for all different sites. Dashed lines correspond to selected the energies
at which the LDOS maps will be shown in Fig. 7.97.9.

The results shown in figure 7.87.8 are structured as before. The Gaussian potential is rep-
resented by blue circles centered at red dots and electronic sites are shown in red, black and
green (left figure), (λSO = 0). The diameter of the blue circle has been used to set the Full
Width at Half Maximum (FWHW), hence defining the variance of the distribution. The LDOS
shows the characteristic features of the kinetic term that we commented at the beginning of
the chapter. To avoid repeating the same, we are going to directly discuss figure 7.97.9, where
one can see the LDOS for the six values of energy represented by dashed lines in figure 7.87.8.
However, before doing so, it is worth noticing that despite exhibiting the same trend, the peaks
are shifted and at higher energies they are less pronounced.

The main difference when one compares the Gaussian and muffin-tin results is that now,
the red peak that sets the color bar range is much higher for the Gaussian potential. This
is because the range of energy now is smaller, which happened in spite of keeping the grid
resolution, nx = nx = 80, and the number of waves= 500 constant. This shift in the color
is the reason why at low energies the configurations are much sharper and well defined. As a
consequence, at higher energies they appear less populated, and seem to not be as relevant.
The first three plots are very similar to the results obtained using the muffin-tin potential. For
the last three plots, we choose first E = 0.485 eV to show how the LDOS is decreasing. Then,
we consider the configuration at E = 0.650 eV, where there is a node at the red site, and a
ring of nodes surrounding the central scatterer. The last one, at E = 0.861 eV, was already
seen with the muffin-tin results: there is a high intensity surrounding all sites at which one

(a) (b)
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Figure 7.9: Map of the LDOS for the 1st Sierpiński structure. From top left
to right bottom, the figures correspond to the selected values of energy shown in
figure 7.87.8. The maximum of the color bar has been set equal to the LDOS of the
highest red peak.

observes the nodes.

The LDOS along the edge shown in figure 7.107.10 exhibits the same features as before, but
much sharper. Mainly, we see a straight line slightly below zero energy corresponding the
phase at E = −0.072 eV of Fig. 7.97.9, with less LDOS at the green site, and between E = 0
and E = 0.25 eV there are three ellipses with a high LDOS (light color) characteristic of the
non-bonding configuration.

We have seen that the Gaussian results are not much different from the muffin-tin when
we consider only the kinetic term. However, the differences are much more relevant when we
include the SOC with λSO finite, see Figs. 7.117.11 and 7.137.13. The selected phases to depict the
Gaussian potential LDOS maps are the same ones that we showed before in Fig. 7.27.2. We see
in Fig. 7.117.11 again the two main effects, namely the breaking of the non-bonding phase and the
appearance of the corner state, which is now much clearer because the difference of the LDOS
between the red and the other sites has increased. The scan maps of the LDOS at the selected
energy values are shown in figure 7.137.13. At E = −0.142 eV, there is a peak at the black and at
the green, and the lowest intensity is the red. As expected, we can see three small self-similar
triangles, with a bright region centered at the black site. At E = −0.076 eV, the LDOS is
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Figure 7.10: Heatmap of the LDOS along the left edge of the Sierpiński follow-
ing a straight line connecting two redsites for the Gaussian potential.

nearly equal at each site, since this is a bulk configuration. Afterwards, the LDOS spreads
towards the edge of the lattice. It looks like an edge state (now centered at the boundary sites)
that has a bit more occupation at the corner. This trend continues, the population at the green
site keeps decreasing, till the corner state is isolated at E = 0.049 eV. Then, at E = 0.210 eV
we find an edge state as before, along the outer perimeter. Lastly, at E = 0.275 eV, the LDOS
goes to a minimum at each site, and there is a high intensity surrounding the green node.
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Figure 7.11: (a) Simulation box. The FWHM of the Gaussian potential is
given by the blue disk diameter encircling the red dot. Red, green, and black
label the sites for the Sierpinski triangle with connectivity one, two, and three,
respectively. (b) LDOS for all different sites when including the SOC term. The
dashed lines correspond to selected energies.

Inspection of the LDOS along the edge, shown in figure 7.127.12, reveals similar features as
before, but now the straight line is more defined and the corner modes at the end are more pro-
nounced. After a gap around E ∼ 0.5 eV, there are yellow circles around E = 0.75 eV, which
are a similar state to what we found with the muffin-tin potential, figure 7.57.5, at E = 0.403 eV.

(a) (b)
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Figure 7.12: Heatmap of the LDOS for the Gaussian potential along the left
edge of the Sierpiński following a straight line connecting two red sites.

Figure 7.13: Map of the LDOS when including the SOC term. From top left
to right bottom, the figures correspond to the values of energy selected in figure
7.117.11. The maximum of the color bar has been set equal to the LDOS peak of the
red site.
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7.3 Third generation
Since the Gaussian potential is a more realistic description and shows more features when we
include the SOC term, from now on we will only show the results using this potential shape.
Next, we will depict the behaviour of higher generations, such as the third one (G=3). In figure
7.147.14, we show the anti-lattice corresponding to the third generation. Due to self similarity, we
have organized all sites by a similar color code as before. Black and blue sites have three NN,
green, brown, and salmon have two NN,and the only one that has one NN is the red left low
corner. (Similarly for the other three identical triangles, which are self similar upon rotation).
When we look at the LDOS plot, we see that all the colors mentioned above are grouped
together and follow the same trend as the first generation. The red sites exhibit the highest
peak at the non-bonding configuration, and at the same energy value, all the sites with two
NN also show a peak, with less intensity. The other sites follow the black curve.

Figure 7.14: (a) Simulation box. The FWHM of the Gaussian potential is given
by the blue disk diameter with a red center. Colors of similar code correspond
to sites with similar connectivity.(b) LDOS for all different sites when including
the SOC term. The dashed lines correspond to selected energies.

Looking at the LDOS mapped to the Cartesian plane shown in figure 7.157.15, we see that at
E = −0.094 eV, the highest intensity of the LDOS is along sites connecting the first generations,
and there is less occupation at the green sites. On the contrary, at E = −0.008 eV, the LDOS
has shifted to the full hexagon and sites that connect the first generation have less LDOS, except
from the red sites, which remain with high intensity. Then, the characteristic non-bonding
configuration appears again, with a bit more predominance at the red sites. Afterwards, the
trend continues as for the first generation. However, now there are nine copies building this
G = 3 Sierpinski triangle. Here, we set the color bar to 80% of the height of the red peak to
better visualize the features at higher-order.

(a) (b)
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Figure 7.15: Map of the LDOS for the 3rd generation Sierpiński structure.
From top left to right bottom, the figures correspond to the selected values of
energy from figure 7.147.14. The maximum of the color bar has been set equal to the
80% LDOS peak of the red site
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If we now include the SOC term for this third generation, the results are the same as for
the first generation, we only need to scale them accordingly. (see Figs. 7.177.17 and 7.177.17) However,
now we can see much better the edge states, since the boundary is larger. The first plot in
Fig. 7.177.17 at E = −0.164 eV shows nine self-similar copies of the G = 1. Each of them exhibit
3 small triangles, with the high intensity mainly localized at the black site. At E = −0.099
eV, all sites have nearly equal weight. Now, at E = −0.044 eV, we can see the main difference
with the lower generations. Instead of only an edge state along the outer larger triangle, there
are nine copies of edge states of the first generation. They are extended states, which fully
connect the outer and inner perimeters. At E = 0.041 eV, on the contrary, we do not find
nine copies of corner modes, one for each G = 1, but are only the corner modes associated to
the larger triangle. For E = 0.166 eV, as before, we see that a gap in the LDOS is opened
at all the lattice sites, as the LDOS is very low. The difference here is that in addition to
the extended edge state along the perimeter of the larger triangle, there are also edge states
following the inner perimeter of the second and third generation. Finally, the last plot for
E = 0.252 eV shows how the LDOS is going from the outer to the inner perimeter of the third
generation, surrounding the green sites. The next (not shown) image displays all the LDOS at
the inner-scatterers perimeter.

Figure 7.16: (a) Simulation box. The FWHM of the Gaussian potential is
given by the blue disk diameter. Colors of similar code correspond to sites with
similar connectivity. (b) LDOS for all different sites when including the SOC
term. The dashed lines correspond to selected energies.

(a) (b)
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Figure 7.17: Map of the LDOS for the 3rd generation Sierpiński. From top left
to right bottom, the figures correspond to the selected values of energy shown
in figure 7.167.16. The maximum of the color bar has been set equal to the 80% of
LDOS peak of the red site.

Figure 7.18: Heatmap of the LDOS for the Gaussian potential when including
the SOC term. The contour is taken along the left edge of the Sierpiński following
a straight line connecting the two red sites of the first generation.



Chapter 8

Comparison between theory and
experiments

After obtaining the main theoretical results shown in the previous chapter, we are in a better
position to understand the measurements depicted in Fig. 5.105.10. This chapter aims to compare
the experimental measurements done by the group of Jinfeng Jia with our quantum simula-
tions.
In Fig. 8.18.1, we show an STM image of a sample containing a second generation Sierpiński
triangle. However, the structure is not perfect. There is clearly a geometric disorder, but there
could be also chemical structural disorder, which would generate a potential difference in that
region, or defects, etc. Indeed, it can be observed in Fig. 8.38.3, that the LDOS does not have a
C3 rotational symmetry, as one would expect from a perfectly clean fractal. We have selected

Figure 8.1: Sample showing a second generation Sierpiński triangle composed
of Bi atoms.

the most relevant mappings of the LDOS for the comparison between theory and experiment.
To do so, we adopted the same color codes as in the experiments. Figure 8.28.2 shows two sets
of eight figures, where on top there are the experimental measurements, and below the corre-
sponding theoretical simulations. The first two experimental images for the lowest values of
the bias voltage, at E = −507 meV and E = −266 meV, show a good agreement with the
theoretical LDOS depicted below them. Both show a high intensity of the LDOS inside the
Sierpiński triangle, characterizing a bulk phase. Also, the boundary and the interior hole are
perfectly defined with turquoise blue, denoting a low density of states. The next experimental
image, at E = −104 meV, corresponds to three superposed first generation Sierpiński triangles
exhibiting corner modes. Although the theoretical and experimental images are not exactly
the same, the one that is closer to the experimental map is the image where we had an edge
state along the exterior and interior boundaries. It is possible that there is a missing pink
dot at the bottom right of the experimental map due to disorder. This would correspond
to five pink blobs along the Sierpiński triangle edges, in the theoretical image. Observe that
the corners of the previous generation have a sharper pink blob. The next experimental and
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theoretical images at E = 16.4 meV also agree, both have corner modes, but there seems to
be a missing corner mode, most probably due to disorder. Moving onto the next set of eight
figures, at E = 96.9 meV the experimental LDOS exhibits an edge state along the Sierpiński
triangle boundary, while the interior remains turquoise blue, corresponding to low LDOS. The
theoretical maps also shows an image where the boundary surrounding the Sierpiński triangle
is pink, which is an edge state. From the outer perimeter, the LDOS gradually goes to the
interior perimeter, as shown for E = 238 meV. For the corresponding theoretical image, the
pink region is mainly localized around the large inner hole. At E = 318 meV, the structure
observed in the experimental image, forms these pink bubbles, suggesting that they could be
related to the LDOS shown in the theoretical image presented below it. However, the experi-
ments might not have enough accuracy to resolve the low LDOS inside the Sierpiński triangle.
Finally, in the last picture for E = 459 meV, the Sierpiński triangle bulk is all in turquoise
blue and the LDOS is outside it. In the theoretical image, there is a high LDOS in the inner
hole, but not so much pink outside. This could be due to the fact that there are not scatterers
confining the electrons in between the boundaries of the box and the Sierpiński triangle, and
hence the wavefunctions decreases exponentially. However, we see the pink dot at the inner
center and a relatively pink contour around the structure.

Figure 8.2: Comparison of the experimental and theoretical maps for the most
relevant phases observed experimentally. Pink and turquoise blue represent high
and low LDOS intensity, respectively.
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We discussed in detail the agreement of our calculations with most prominent results ob-
served experimentally, but actually the comparison holds also for other energies, below and
above the ones shown in Fig.8.28.2. Now, we describe the general trends and the different phases
distinguished in the full range of energies investigated experimentally. Beginning at the bottom
of Fig.8.38.3, for the lowest value of the bias voltage (E = −507 meV), we see a sharp light-blue
line surrounding the external boundary and filling the inner hole. Hence, there is a very low
LDOS in these regions. Inside the Sierpiński triangle, there are some triangular pink shapes,
denoting the high LDOS at the bulk observed in the first generation Sierpiński triangle. As we
increase the voltage, the LDOS becomes more defined, and for E = −447 meV, we can even
identify the hole of the second generation Sierpiński triangle by a darker region in the center
of the three smaller triangles. It seems that this corresponds to a bulk phase, where the LDOS
is located inside the Sierpiński triangle region. For the next pictures, there is much disorder,
and it is not very clear what can be identified. Nevertheless, around E = −266 meV, corner
modes begin to form for three superposed first-generation Sierpiński triangles. This becomes
sharper while increasing the energy, see e.g. the LDOS at E = −104 meV, where the top and
the left G=1 Sierpiński triangles resemble a three leaf clover (also for the right bottom one,
but not as clear). The three-leaf clover could be related to a corner state of the fist generation.
Thus, the system is changing from the bulk phase to a corner state of the previous generation.
Increasing the bias voltage further, around E = 16.4 meV we observe that the corner states
that connect the first generation of Sierpiński triangles have disappeared, and now there are
only corner states for the top and left corners of the G=2 Sierpiński triangle (we suppose
that the last right-bottom corner is missing due to the disorder). From this corner state, the
LDOS begins to spread along the edge, as one can see around E = 96.9 meV. This could be
related to a topological edge state. The next values of voltage that seem to exhibit some clear
features are around E = 218 meV. Now, the LDOS is localized around the inner hole of the
Sierpiński triangle. The next images have too much disorder, and it is not very clear what one
can see. At most, it seems that the LDOS in pink is self differentiating in small self-similar
parts surrounding the Sierpiński triangle holes (see image at E = 318 meV). Finally, at the
highest values of bias voltage (from E = 439 meV), we find again that all the LDOS is outside
the Sierpiński triangle, in agreement with our findings.
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Figure 8.3: Measurements of the LDOS for different values of bias voltage for
the sample shown in Fig. 8.18.1. High intensity is labeled by pink and low intensity
by turquoise blue.



Conclusions

In this work, we have studied the effects of the intrinsic spin-orbit coupling in a Sierpiński
triangle by performing quantum simulations. We first started by considering a muffin-tin po-
tential and compared the results without SOC with the ones available in the literature. Our
findings were shown in chapters 66 and 77. However, to better compare with the experiments
performed in real materials, we considered also a Gaussian potential for the continuity barri-
ers. The smoothness of the Gaussian potential is better due to the derivatives of the potential
that appear in the spin-orbit coupling term. The Gaussian potential allowed for a more clear
transition between phases, enabling us to distinguish new features. The LDOS was also found
to be very sensitive due to the implemented method. In addition, enough free space needs to
be added around the scatterers to provide a more reliable solution. Hence, the shape and size
of the box containing the fractal is also relevant.

When the spin-orbit coupling term is of the order of the kinetic term, new phases such as
corner modes and edge states are generated. The sharp corner modes always appear in the
vertex of the larger triangle, while the edge modes appear at the outer and inner boundaries.
These simulations allow for a much better understanding of the LDOS measured by the group
of Jinfeng Jia [88], which were awaiting for some description. We have been able to draw a
qualitative comparison, which can describe very well the experimental findings. There is a
small difference for one phase, but it can be attributed to a merging of the lobes. Due to their
restricted experimental resolution, they are not able to differentiate all of the blobs. Moreover,
their samples have much disorder and the results shown do not contain any. Although we
did not show implementations of disorder here, we have some preliminary results where we
include a geometric disorder to better simulate their topographic images. These results show
that whenever different Sierpiński triangles touch each other, the LDOS of the whole sample
is shifted towards that point. This indicates that if there is a region that has an overall in-
crease of the potential in comparison with the other regions, the LDOS is going to be more
pronounced there. In addition, to seek for a better agreement between theory and experiments,
we also studied another type of confinement. Instead of defining an antilattice and a potential
centred there, as in the muffin-tin or in the Gaussian, we constructed a straight boundary with
a width that had a constant potential. The inner inverted equilateral triangles had a similar
straight constant potential everywhere. By implementing these configurations and by rotating
the fractal by ten degrees, we obtained the same two corner modes as observed experimentally,
with the right corner missing. In addition, the edge estates were also shifted, thus supporting
the argument of disorder.

In order to verify whether the corner and edge modes have a topological origin, calculations
with a Rashba spin-orbit coupling and a magnetic field have also been (done but not shown). As
expected, when the Rashba term is of the order of the kinetic and intrinsic spin-orbit coupling,
the corner and edge states do not appear. The system looks more like the one obtained when
only the kinetic contribution is present.

Finally, as an outlook, besides more in depth investigations of disorder configurations, it is
necessary to calculate topological invariants to the models considered here to better substan-
tiate the argument that the corner and edge modes might have a topological origin. Our work
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has answered many of the open questions, but many more remain to be investigated.



Appendix A

Landau Levels in the Continuum

The classical dynamics of an electrons in a static magnetic field is due to the Lorentz force
FL = −ev ×B acting on a charged particle. We can supose that the spin is polarized in the
direction of the magnetic field and therefore write the Lagrangian of a spinless electron with
charge e and mass m under a magnetic field B = ∇×A as

L =
1

2
mẋ2 − eẋ ·A (A.1)

and obtain the evolution of the trajectories using the Euler-Lagrange equations, or just use the
second Newton’s law. The quantum treatment begins by writing the hamiltonian in terms of
the canonical momentum p = ∂L

∂ẋ = mẋ− eA. This momentum p does not have any physical
interpretation as it is gauge dependent.

H = ẋ · p− L =
1

2m
(p + eA)2 (A.2)

As we have promoted our canonical variables x and p to operators, we need as well to substitute
the Poisson brackets by canonical commutation relations

[xi, pj ] = i~δij and [xi, xj ] = [pi, pj ] = 0 (A.3)

Similarly the commutator for the mechanical momentum π = mẋ = p + eA is

[πx, πy] = −ie~εxyzBz = −ieB (A.4)

restricting the motion in xy plane with a perpendicular magnetic field B = Bẑ for simplicity.
What we have left now is to define the usual creation a†, and annihilation a operators in terms
of the mechanical momentum operator, which will allow us to rewrite the Hamiltonian in a
quantized form

a =
1√

2e~B
(πx − iπy) and a† =

1√
2e~B

(πx + iπy) obeying [a, a†] = 1 (A.5)

Using {|n〉} as the eigenbasis that spans the Hilbert space with the ground state |0〉 obeying
a |0〉. Then, by acting with the creation operator we can generate the rest. With the new set
of operators the Hamiltonian reads

H =
1

2
π · π = ~ωB(a†a+

1

2
), (A.6)

with ωB = eB
m the cyclotron frequency. To obtain the energy spectrum we use the eigenvalue

equation H |n〉 = En |n〉 with energy En = 1
2~ωB(n+ 1

2 ). This are the so called Landau levels
(LL), quantized with integer n and a gap proportional to the cyclotron frequency. Each of
them do not have a single state assigned, they are wildly degenerated as the energy En is
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independent of k. This approach is useful as the spectrum can be obtained easily, but also
have several restrictions. Does not allow to write wavefunctions in the position space and
does not exploit all the symmetries of the Hamiltonian. To understand this we can see that
the motion of particles have two degrees of freedom, but we only associated one quantum
number. To completely describe the system one should find another operator that commutes
with the Hamiltonian and form a complete set of commuting observables. We can use the
gauge freedom ot the vector potential A → A +∇α, that leaves invariant the magnetic field
B = ∇×A +∇× (∇α) due to Schwart’s theorem, to explore those preserved symmetries.

In the Landau gauge, A = xBŷ, we have translation invariance in the y direction. This
will define the other quantum number. The Hamiltonian becomes

H =
1

2m
(p2
x + (py + eBx)2) (A.7)

We know that in the y direction the solution will be plane waves, therefore we only need to solve
for the x-dependent part. This is the harmonic oscillator equation with equilibrium position
x0 = −kl2m and magnetic length lm =

√
~
eB

Hk(px, x)fk(x) =
1

2m

[
p2
x +

mωB
2

(x− x0)2
]
fk(x) (A.8)

The solution, quantized with two quantum numbers n and k, can be written in terms of the
Hermite polynomials, Hn

fnk(x) =
1√

2nn!lmπ1/2
Hn
(
x− x0

lm

)
e−(x−x0)2/2l2m (A.9)

To determine the degeneracy one needs to fix the dimension of the sample A = LxLy which
will quantize the electron momentum k in units of 2π/Ly in the y-direction. For the x-direction
the momentum will lie in the range −Lx/l2m ≤ k ≤ 0. Summing all the available states in one
LL gives:

N =
Ly
2π

∫ 0

−Lx/l2m

dk =
A

2πl2m
=
BA

φ0
(A.10)

with φ0 = h/e the quantum flux. See that each LL has the same degeneracy of states.
If now the electrons are also under the influence of an Elecric field E in the x-direction, we
will need to add the corresponding electric potential to the Hamiltonian

H =
1

2m
(p2
x + (py + eBx)2) + eEx (A.11)

completing the square we can rewrite the Hamiltonian as before but now the equilibrium
position is shifted to x0 + mE

eB2 . Furthermore the energy levels now are tilled, as they depend
linearly on k and all LL are lifted by a kinetic constant term.

Enk = ~ωB
(
n+

1

2

)
+ k~

E

B
+

1

2
m

(
E

B

)2

(A.12)

With group velocity given by vy = 1
~
∂Enk

∂k = E
B and we see how the wavepackets localized at

x0 they move in the direction E ×B.



Appendix B

Comparison between theory and
experiments

Figure B.1

To conclude the comparison between our theoretical results and the experimental measure-
ments, it is presented in Fig. B.2B.2 the same selected images as above, but now with the high
contrast color bar. See, if by changing the color code, phases can be better compared. The
first theoretical image, at the lowest energy, exhibits the trend in a more fine way than in Fig.
8.28.2. The LDOS in pink appears discontinuously first at each building block of a Sierpiński
triangle (the equilateral triangle). It is completely localized at the black site surrounded by a
blue boundary. When compared with the the experimental image at E = −507 meV, there are
similar features as it also have disconnected pink regions, surrounding the Sierpiński triangle
holes. However, disorder does not allow us to confirm this for sure. At E = −266 meV, the
pink region now is not as similar as the theoretical bulk configuration below. Before at Fig.
8.28.2 there was a better agreement. The next one, at E = −104 meV either the experimental
and theoretical images have a more confined region for the pink lobes. However, the theo-
retical image looks more like an edge state, with high intensity at each triangle corner, and
the experimental shows only corner modes for each G=1 Sierpiński triangle. At E = 16.4
meV there is also a good agreement, either theoretical and experimental display corner modes.
The two following experimental images at E = 96.9 meV and E = 238 meV, exhibit the the
mentioned edge states at the outer and inner boundaries. With this new color code, the the-
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oretical edge states are more sharp. At E = 319 meV, the experimental image shows less
disorder than before at Fig. 8.28.2. The pink regions forming this bubbles surrounding the holes
of the Sierpiński triangle, are better defined. Looking at the theoretical image below, seems
as well that the regions where there is LDOS in pink is similar as the experimental. Finally,
at E = 459 meV, there is an empty Sierpiński triangle for both experimental and theoretical
images, although they differ with the intensity. Also in both the high LDOS in pink is inside
the central Sierpiński triangle hole.
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Figure B.2: Same experimental and theoretical comparison, but now using the
most relevant phases observed at Fig. B.3B.3. Pink and red represent high and low
LDOS intensity respectively.

Figure B.3B.3 shows again the same results, but now using the high contrast color map.
This helps for distinguishing the relevant phases mentioned before. At the lowest value, for
E = −507 meV, the pink bulk phase begins to form, but is not completely filled. However,
we can see a perfect red edge and the red hole at the interior of the Sierpiński triangle. The
bulk phase observed before at E = −266 meV, is not as clear for this color map. Nevertheless,
the trend seems to be the same. First LDOS spreads around the Sierpiński triangle bulk, then
begins to form the three leafs clove, which is shown to be more localized at the corners of
the G=1 Sierpiński triangles, around E = −104 meV. Then, the corner modes of the second
generation of the Sierpiński triangle gain predominance, through increasing the bias voltage ,
and at 16.4 meV, they are completely developed. Subsequently, the corner modes shift to an
edge state, which first is at the outer boundary (see e.g. E = 96.9 meV), and then at E = 238
meV, to the inner boundary. At E = 318 meV, now shows better the localization of the pink
circles, but there is still too much disorder. For the last values we can see again the same, from
E = 439 meV the LDOS is beginning to be localized at the exterior and the interior is filled
with red, labeling low LDOS.
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Figure B.3: Same measurements of the LDOS as Fig. 8.38.3, but now with a high
contrast color code. High intensity is labeled by color pink and low intensity by
red.
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