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Abstract 
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder distinguished by a spectrum 
of symptoms and severity levels, predominantly impacting social engagement and motor behavior. The 
study of ASD is significantly complicated by its exceptional heterogeneity, involving over 1000 genes and 
diverse developmental processes. However, the emergence of single-cell RNA sequencing (scRNA-seq) 
and the structure of Gene Regulatory Networks (GRNs) offer a promising pathway to navigate this 
heterogeneity. By combining various ASD-related transcripts under one regulatory mechanism, we can gain 
a more comprehensive understanding of the disorder. Capitalizing on these tools, this study aims to unite 
diverse ASD-related transcripts under a common regulatory framework, thereby offering a more holistic 
understanding of the disorder. Specifically, we sought to identify those cell type-specific GRNs in which 
ASD-related Transcription Factors (TFs) control a disproportionately greater number of unique target gene 
interactions compared to other cell types throughout neurodevelopment. We call this subset of unique ASD 
related TF-gene interactions the ‘ASD regulon’. The research identified an enrichment in ASD regulon 
activity in certain populations of cells within the mouse brain, including Layer 4 and 6 neurons, 
interneurons, projection neurons, Cajal-Retzius cells, and several glial cell types. We further sought to 
delineate the effect of time on the activity of ASD regulons by modeling ASD regulon activity as a function 
of time. The progression of neurodevelopment was found to have a significant effect on the increase in ASD 
regulon activity in the developing forebrain of mice from prenatal to neonatal period, while a decrease in 
ASD regulon activity was observed throughout adolescent-adult whole mouse brain development. The 
study also identified Ctcf, a highly conserved, ubiquitously expressed protein, as a key driver of ASD 
regulon activity in the enriched cell types. Ctcf was found to orchestrate the expression of ~150-300 genes 
across the enriched cell types and was solely culpable for the designation of a cell type as ASD regulon 
enriched. However, these results were not reproducible in humans, highlighting the translational difficulties 
in investigating ASD in a murine system. The study acknowledges limitations such as the potential 
overlooking of crucial players in ASD etiology due to the focus on TF driven enrichment in ASD activity. 
In conclusion, the study developed a GRN reconstruction pipeline that serves as a tool for the investigation 
of cell type-specific changes in GRNs across the dynamic gene expression landscape of brain development 
and further identified cell types and time periods which warrant further investigation. 



Plain language summary 

Autism Spectrum Disorder (ASD) is a disorder of the developing brain that affects social 
interaction, communication, and behavior. It's a complex condition that involves a multitude of 
genes - over a thousand, in fact. This genetic complexity makes ASD challenging to study and 
understand. In our research, we used advanced scientific techniques to delve deeper into the genetic 
underpinnings of ASD. One of these techniques is single-cell RNA sequencing. This method 
allows us to examine the activity of individual cells in the brain. Imagine being able to listen in on 
the 'conversations' that each cell is having. This is essentially what single-cell RNA sequencing 
allows us to do. It gives us a detailed look at what each cell is doing and how it's behaving, which 
can provide valuable insights into complex conditions like ASD. We also utilized Gene Regulatory 
Networks (GRNs). If you think of a cell as a factory, then GRNs are the blueprints that show how 
different parts of the factory interact and influence each other. In the context of ASD, GRNs can 
help us understand how different genes interact and contribute to the disorder under one master 
framework. Our objective was to pinpoint which types of brain cells have a high amount of 
important ASD genes in their networks. We discovered that certain cells, including specific types 
of neurons (nerve cells) and glial cells (supportive cells in the nervous system), exhibited increased 
ASD-related activity. These cells are found in various regions of the brain, including the cortex, 
which is involved in many complex brain functions, including memory, attention, perceptual 
awareness, thought & language. We also found that the timing of brain development plays a 
significant role in ASD. During early brain development, ASD-related activity increased, but this 
activity decreased as the brain matured into adolescence and adulthood. Moreover, we identified 
a protein called Ctcf, which regulates gene activity, as a key player in ASD-related activity. Ctcf 
is like a conductor in an orchestra, guiding and coordinating the activity of various genes. In some 
individuals with ASD, Ctcf has a much more difficult time doing its job, leading to the symptoms 
of the disorder. However, when we attempted to apply these findings to humans, we encountered 
several challenges. The results from our mouse studies did not fully align with what we observed 
in humans. This highlights the difficulties in translating findings from animal models to human 
conditions and underscores the need for more human-based research, especially in the context of 
complicated disorders of the brain. Despite these hurdles, our research led to the development of 
a new tool for studying ASD - a GRN reconstruction pipeline. This tool allows us to examine how 
ASD related genes can influence different types of cells. It's like having a map that shows us how 
ASD changes the landscape of the brain at the cellular level. We believe this tool can be useful in 
advancing our understanding of ASD and could potentially be used to guide and analyze 
experiments in the lab. 
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Introduction 
Autism Spectrum Disorder 
Autism Spectrum Disorder (ASD) represents a multifaceted neurodevelopmental condition that 
manifests through a range of symptoms affecting social interaction, communication, and behavior 
[1]. It was first described in detail by two pioneering figures in the mid-20th century. Austrian 
psychiatrist Leo Kanner was the first to outline the syndrome in 1943, identifying a group of 
children with profound social and communicative impairments that distinguished them from their 
peers. In his paper, "Autistic Disturbances of Affective Contact", Kanner detailed the uniqueness 
of the disorder, differentiating it from known psychiatric or neurological conditions of that time 
[2]. Autism was first added to the third edition of the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-III) in 1980 as "Infantile Autism" and was classified under the category of 
"Pervasive Developmental Disorder" [3].   

Concurrently to Kanner, across the Atlantic in Austria, psychiatrist Hans Asperger described a 
similar but distinct condition. His observations, which were characterized by less severe symptoms 
and the absence of language delays, were later recognized as Asperger's Syndrome and included 
in the DSM-IV in 1994 [4]. In the latest version; DSM-5, published in 2013, the separate diagnoses 
of "Autistic Disorder," "Asperger’s Disorder," and other conditions previously categorized under 
"Pervasive Developmental Disorders" were consolidated into the single diagnosis of "Autism 
Spectrum Disorder". This change reflected the scientific consensus that these conditions represent 
points along a continuum of neurodevelopmental disorders, varying primarily in severity and 
manifestation of symptoms [3-5]. I will further stress this point with a small example; Rett 
Syndrome, once possibly categorized as an atypical form of autism due to symptom overlap, has 
since been recognized as a distinct condition following the identification of its unique genetic basis 
in 1999 (MECP2 dysfunction) [6]. Today, Rett Syndrome and autism are acknowledged as separate 
disorders, despite sharing some similar symptoms [7]. It is tempting if not reasonable to speculate 
that over the coming years, certain ‘sub-types’ of autism will also be described, marked by the 
identification of a specific mechanistic underpinning (or the interplay thereof) which 
deterministically explains a certain aspect(s) of ASD phenotype(s).  

The ASD diagnosis in DSM-5 is now made based on two main symptom domains: 1) persistent 
deficits in language acquisition and social interaction, and 2) restricted, repetitive patterns of 
behavior (ticks), interests, or activities [1]. ASD affects about 1% of the population worldwide, a 
rate which has increased in recent years, and one that is markedly higher in high-income countries 
[8-9]. Given the complex nature of ASD, it should come as no surprise that it often co-occurs with 
other neurological and cognitive disorders. ASD patients have a higher likelihood of presenting 
with Attention Deficit Hyperactivity Disorder (ADHD) (15%), epilepsy (13%), and intellectual 
disability (22%) [1]. Certain types of cancer have also been associated with ASD. Interestingly in 
the case of cancer, this increased risk is applicable to ASD Patients with co-occurring Intellectual 
Disability (ID) or birth defects [10]. Furthermore, ASD exhibits a male bias, with boys being 
diagnosed 4-5 times more often than girls [11]. Two major hypotheses have been proposed to 
explain this male predominance. 



The first explanation suggests that ASD diagnostic criteria, originally benchmarked on 
predominantly male populations, might result in an underdiagnosis in girls. This is especially 
relevant since ASD can present differently in boys and girls [12]. The repercussion is an 
underdiagnosis of ASD in girls, leading to numerous false negatives. The second hypothesis posits 
a 'female protective effect.' This concept suggests, for example, that girls have higher baseline gene 
expression levels in key ASD genes compared to boys, indicating a higher threshold until the 
mosaic of genetic effects related to ASD can achieve penetrance [13]. Both of these hypotheses 
highlight the intricate nuances and challenges associated with diagnosing and understanding ASD.  

Etiology of ASD 
The etiology of ASD remains an active area of research with multiple theories proposed. Current 
consensus leans towards ASD as a multistage disorder of prenatal development involving several 
developmental processes with both environmental and genetic components playing significant 
roles [14]. In terms of environmental factors, prenatal and perinatal complications have been linked 
to an elevated risk of ASD. For example, maternal infections during pregnancy may increase the 
risk of the child developing ASD, possibly due to inflammatory responses affecting fetal brain 
development [15]. Moreover, exposure to toxins has also been implicated in ASD. Though the 
mechanism of action is not yet fully understood, it's thought that these toxins could interfere with 
normal neurodevelopmental processes [16]. Furthermore, studies suggest that older parents, 
particularly fathers, have a higher likelihood of having offspring with ASD, potentially due to 
increased risk of newly acquired mutations in sperm as men age [17].  

The genetic landscape of ASD is characterized by a complex interplay of rare mutations with 
substantial effects and common variants with more subtle influences. The substantial heritability 
of ASD is widely acknowledged, as indicated by the high concordance rates observed in 
monozygotic twins and the increased occurrence of the disorder among siblings of affected 
individuals [18]. However, the genetic etiology of ASD remains largely unexplained, where only 
1-2% of patients have an explainable genetic cause [19].  

Significant progress has been made in identifying various genes that contribute to ASD 
pathogenesis. These genes affect a wide range of biological processes and developmental stages 
critical for normal neurodevelopment, such as neurogenesis, synaptogenesis and neural network 
formation [20]. Transcription factors (TFs), in particular, have a profound impact on the 
pathogenesis of ASD. A prime example of this is the Chd8 gene, which ranks among the most 
frequently mutated genes in ASD cases. This gene encodes for a protein that is part of the ATP-
dependent chromatin-remodeling factors, a group integral to genetic regulation. In their research, 
Wang et al. demonstrated that a heterozygous knockout of Chd8 in cerebral organoids resulted in 
defective neural progenitor proliferation and differentiation. Complementing this, Durak et al. 
revealed in another study that Chd8 knockdown during cortical development led to unusual 
neuronal morphology and behaviors in adult mice [21-22]. Furthermore, several genes have been 
identified for the role in aberrant synaptogenic processes in ASD. PTEN for example, which is 
responsible for approximately 10% of ASD cases accompanied by macrocephaly, has been 
implicated in heightened microglial activation and synaptic pruning, possibly through its 
interaction with the mammalian target of rapamycin (mTOR) kinase [23-24].  



Neurodevelopmental investigations into ASD have revealed significant alterations in brain 
morphology, particularly in cortical development. A notable longitudinal study by Zielinski et al. 
employed Magnetic Resonance Imaging (MRI) to compare cortical thickness in male ASD 
patients. The study proposed a dynamic model outlining the progression of cortical development 
in ASD patients, consisting of three main stages [25]: 

1. Early childhood, where cortical thickness in ASD children initially mirrors that of typically 
developing children, but rapidly increases by ages 3-4, indicating unusually fast cortical 
expansion. Other studies have shown that functional MRI (fMRI) images taken from high-
risk ASD patients at 6-months old correctly classified an ASD diagnosis at 2 years old in 
57 out of 59 infants [26]. 

2. A transition from cortical expansion to region-specific cortical thinning, leading to 
'pseudonormalization' of cortical thickness trajectories between 8 to 18 years of age. 

3. Beginning in early adulthood and extending into middle age, this stage is characterized by 
reduced cortical thinning in individuals with ASD.  

A growing tool-box 
Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) have 
emerged as transformative tools that allow for the exploration of the molecular underpinnings of 
ASD at an unprecedented level of detail. By enabling the measurement of gene expression at the 
level of individual cells/nuclei, single cell/nucleus RNA-seq has revolutionized our understanding 
of cellular heterogeneity and function. This technology allows us to identify distinct cell types and 
states based on their unique gene expression profiles, providing a more nuanced view of gene 
ecxpression compared to bulk RNA sequencing. Bulk RNA sequencing averages gene expression 
across a multitude of different cell types, potentially masking the unique gene expression profiles 
of individual cells and obscuring the presence of rare cell types [27]. Recent studies have leveraged 
single cell omics to investigate ASD at the molecular level. For instance, a study by Velmeshev et 
al. used snRNA-seq to identify specific cell types in the brain that are associated with ASD, 
revealing that upper-layer excitatory neurons and cortico-cortical projection neurons in the 
prefrontal cortex show significant differential gene expression in postmortem ASD tissue 
compared to controls [28].  

Research leveraging cell type-specific gene networks and scRNA-seq in the context of ASD is 
relatively sparse. However, a notable study by Pang et al. has made significant strides in this area. 
This study integrated neurodevelopmental disorder (NDD) genetics with scRNA-seq data to 
examine gene co-expression enrichment patterns of various NDD gene sets. The authors identified 
a critical convergence point in ASD and epilepsy during midfetal neural progenitor cell 
development in the cortex. Specifically, gestational week 10 was highlighted as a key period of 
convergence in ASD and epilepsy related co-expression enrichment patterns and implicated the 
both radial glia and intermediate progenitor cells [29]. 

Given the monumental number of genes and related studies implicated in ASD, maintaining a 
comprehensive record of all the genes involved can be a daunting task. In this regard, organizations 
like the Simons Foundation Autism Research Initiative (SFARI) are invaluable. SFARI keeps a 
comprehensive and evolving catalog of ASD-associated genes, curating more than 1,000 genes 



across three tiers of confidence [30]. Numerous studies have utilized this list in their ASD research, 
for instance, by overlaying the SFARI gene list over lists of upregulated/downregulated genes, 
which is exactly what was done in the Velmeshev et al. study described earlier [28].  

However, identifying upregulated and downregulated ASD genes and co-expressed clusters, while 
informative, misses an essential piece of the puzzle: the regulatory relationships among these 
genes. This information is crucial for pinpointing the genes that are the causal drivers of ASD. For 
instance, if ten genes are found to be downregulated, it may be that only one of these is actually 
malfunctioning, and the downregulation of the remaining nine can be attributed to the regulatory 
interactions of this causal gene. Thus, a more comprehensive architecture is needed to unravel the 
molecular dynamics of ASD at the regulatory level.   

Gene Regulatory Networks (GRNs) 
The utility of gene lists like the SFARI gene list are further highlighted when coupled with an 
architecture which enables us to view interactions between genes. This architecture can take the 
form of a GRN, which is a directed network graph where the nodes represent transcription factors 
or genes, and the edges represent regulatory interactions (activatory/inhibitory) [31]. These 
interactions dictate the level of gene expression within a cell, thereby influencing biological 
processes and cellular functions. A 'regulon' is a term used in this analysis within the context of 
GRNs to denote a group of genes that are regulated by the same transcription factor.  

The construction and investigation of GRNs has been the focus of numerous studies, and several 
methodologies have been developed for this purpose. For example, the DecoupleR method relies 
on the “finger-print” of a TF to infer its activity [32]. The authors behind this method reasoned that 
the expression of a TF is not informative on its own due to the often-low expression. Given how 
potent transcription factors are as catalysts, they are often present in relatively small numbers, 
leading to issues in power when analyzing these TFs and comparing their activity across cells. To 
tackle this, DecoupleR utilizes a Multivariate Linear Model (MLM) that works in conjunction with 
DoRothEA to infer TF activities [32]. DoRothEA provides a curated database of known 
interactions between transcription factors and their target genes, which serves as the foundation 
for the analysis [33]. Although the DecoupleR method does not explicitly generate a GRN, it can 
be leveraged in that capacity.  

Other tools for GRN reconstruction include PySCENIC, ARACNe, CLR, and GENIE3. 
PySCENIC uses an ensemble of methods to identify regulons, relying on binding sites and a de 
novo approach to GRN reconstruction [34]. ARACNe (Algorithm for the Reconstruction of 
Accurate Cellular Networks) uses mutual information to infer regulatory relationships [35], while 
CLR (Context Likelihood of Relatedness) builds upon this by also considering the context of these 
relationships [36]. GENIE3 (GEne Network Inference with Ensemble of trees) uses a machine 
learning approach, specifically an ensemble of decision trees, to predict regulatory interactions 
[37]. The most recent contribution to this rapidly growing field comes from the developers of the 
DoRothEA network, who developed CollecTRI. The most notable advantage of this yet 
unpublished method is the expanded library size and possibility to split TFs into sub-units or 
complexes [38].  



Objective 
The objectives of the present study are twofold: 

1- Our first aim is to reconstruct cell type-specific GRNs from publicly available and high-
quality sc/snRNA-seq data of the developing brain. The reconstruction of these GRNs will 
provide a comprehensive map of TF-gene interactions within specific cell types. 
 

2- Upon the successful construction of these networks, we intend to leverage them against the 
SFARI gene list to answer the following key questions: 
 
 

a. Are there specific cell types whose GRNs contain a significantly higher number of 
genes that are uniquely targeted by ASD TFs? 
 
Reasoning: In the context of gene regulation, a mutation in a TF can have a 
profound impact on the genes it regulates. If these ASD-related TFs are mutated, it 
could lead to the improper regulation of their target genes, potentially disrupting 
normal cellular functions and contributing to the development of ASD. This 
inference is strengthened in the case where the target gene is exclusively targeted 
by ASD TFs. We refer to these cell types as 'ASD regulon enriched'. Where an ASD 
regulon denotes the set of an ASD TF and target genes exclusive to ASD TFs. 
 

b. Can we model ASD regulon activity as a function of the total network activity & 
time?  
 
Reasoning: Understanding the temporal dynamics of ASD-regulon activity could 
provide valuable insights into the developmental trajectory of ASD, potentially 
identifying key periods of vulnerability during brain development. 

 

 

 

 

 

 

 

 

 



Methods 
Data 
Several datasets were leveraged in the current analysis; Table 1 provides an overview. These 
include high resolution developing and adolescent mouse brain atlases [39-40]. As well as data on 
the developing neo-cortex of the mouse [41] and human cortical development from 2nd trimester 
until adulthood [42].  

Table 1. Mouse and Human Brain Development Data Sets Analyzed in the Study. 

Table 1. Summary of the 4 datasets analyzed in this study encompassing both mouse and human 
brain development. The table presents information on the species, brain regions analyzed, number 
of cells captured, the variety of cell types identified, and the corresponding time periods or 
developmental stages covered by each respective dataset. 

DoRothEA network & DecoupleR’s MLM  
DoRothEA is a comprehensive resource that provides a curated database of TF - target gene 
interactions. Each row in the DoRothEA network represents an interaction, with the 'source' 
column indicating the TF and the 'target' column indicating the target gene. Each interaction is 
associated with a confidence level, ranging from A (highest confidence) to E (lowest confidence), 
and a 'weight' that indicates whether the interaction is activatory (positive weight) or inhibitory 
(negative weight). It is worth noting that the magnitude of the weight has no clear relation to 
binding affinity, and is instead used to numerically represent the confidence (A = 1, B = 0.5, C = 
0.33) of the interaction. The interactions in DoRothEA are curated from a variety of sources, 
including literature mining, ChIP-seq peak overlap, and motif enrichment analysis, providing a 
robust and comprehensive overview of TF-target gene interactions. In total, the DoRothEA 
network catalogues 1399 TFs and 27,979 target genes across 5 confidence levels. 

DecoupleR is a programming library containing an ensemble of computational tools, one such tool 
is the MLM, which leverages the DoRothEA network to infer TF activities. For each cell in a given 
dataset, DecoupleR sets up a MLM where the response variable is the observed gene expression 
level of the target gene, and the predictor variable is the associated TF weight, as provided by 
DoRothEA. The MLM is then fitted to the gene expression data for each cell, with the goal of 
finding the coefficient that minimizes the sum of the squared residuals across the system of linear 
equations describing the expression of the target genes. We consider this coefficient the activity of 
that TF for that specific cell. 

Data Species Region Cells Cell 
types 

Time period 

La Manno et al. 2021 Mouse Whole brain- 
with possibility 
to subset. 

~350,000 748 E7-E18 

Di Bella et al. 2021 Mouse Neo-cortex ~80,000 24 E10-P4 
Zeisel et al. 2018 Mouse Whole brain ~160,000 265 P16-P60 
Velmeshev et al. 2022 Human Cortex ~350,000 28 2nsd trimester - Adult 



Let’s consider a single cell. For this cell, we have expression data for 100 target genes of the 
transcription factor P53. Let's denote these gene expression levels as G1, G2, ..., G100. Let’s 
assume that the binding weight of P53 for all of these genes is the same, and is given as +0.5. 

In the MLM used by DecoupleR, the expression level of each target gene is modeled as a linear 
function of the activity of the transcription factor P53. This can be represented as follows: 

G1 = 0.5 * Activity_P53 + e1 

G2 = 0.5 * Activity_P53 + e2 

... 

G100 = 0.5 * Activity_P53 + e100 

Here, Activity_P53 represents the inferred activity of P53, and e1, e2, ..., e100 are the error terms 
for each gene. These error terms represent the difference between the observed gene expression 
levels and the levels predicted by the model. The goal of the MLM is to find the value of 
Activity_P53 that minimizes the sum of the squared error terms (i.e. (e1)2 +(e2)2 …. + (e100)2). 
This operation is performed for each TF (one TF at a time) and for each cell (one cell at a time). 
DecoupleR outputs these TF activities in a standard anndata object format (CellsxTFs) where the 
rows represent cells, the columns represent TFs with an identified foot-print in the original 
CellxGene matrix and the entries contain the model coefficients, which represent the TF activities.  

Cell type specific GRN Pipeline overview 
Our bioinformatics pipeline aims to construct cell type-specific networks using a sc/snRNA-seq 
CellxGene matrix as input. The pipeline proceeds through a series of well-defined steps. 

Initially, we load the data and filter out cells with percent mitochondrial gene counts greater than 
20%. Mitochondria, ribosomal, and blood genes are subsequently removed due to their potential 
to introduce noise and interfere with downstream analysis. We further filter out cells labeled 
'Undefined' or 'Low quality'. 

At this early juncture, we can introduce a 'for loop' for individual analysis across age categories or 
bypass the loop to analyze cells/cell-types across all time periods together. Irrespective of the 
approach, the pipeline filters cell types with less than 5 cells, cells that express insufficient genes 
(min_genes = 200) and genes detected in only a few cells (min_cells = 5). Following this, we 
normalize the data with the 'normalize_total' function from the Scanpy package and log-transform 
it using the 'log1p' function. 

To initialize the MLM, we use the 'get_dorothea ' function from the DecoupleR package to load 
the DoRothEA network, specifying either 'Mouse' or 'Human' as the organism depending on the 
dataset. We limit the retrieval to the top 3 confidence interaction levels ('A', 'B', 'C') to reduce false 
negatives, although we acknowledge the potential for missed interactions. We then calculate the 
TF activity for each cell using the 'run_mlm' function. 

Subsequently, the pipeline extracts inferred TF activities from the MLM output to form a CellxTFs 
anndata object. Quality control on the activity matrix removes TFs absent in the original data, TFs 



present in fewer than 20 cells, and cells expressing no TFs. Using the 'summarize_acts' function, 
the average TF activities are calculated across cell types. This function provides a parameter, 
min_std, which enables the specification of a minimum standard deviation of TF activity across 
cells. We set min_std to 0 to retain all active TFs and perform our own TF filtering. 

The next step involves performing cutoffs for TF activity, TF expression, and gene expression. We 
calculate the 25th percentile of non-zero values in the relevant matrices to achieve this. We 
designate a TF as 'active' in a cell-type if it surpasses both expression and activity cutoffs. 
Similarly, we introduce a gene expression cutoff, where genes that do not meet the 25th percentile 
of expression in their cell-type are excluded from the target gene pool for the network 
reconstruction. 

Using the list of active TFs and genes for each cell type, we customize the DoRothEA network per 
cell type. TF/gene combinations that meet the cutoff criteria become part of the cell type-specific 
network. We only include activatory interactions in our network, this is due to the fact that 
inhibitory relationships are less straight-forward to infer, as the ‘magnitude’ of TF activity will 
ultimately depend on how high the expression of the gene(s) is/are. We note that positive 
interactions represent the vast majority of interactions in the DoRothEA network. 

Finally, the pipeline applies additional filtering to the constructed networks, excluding TFs with 
fewer than 5 interactions in a specific cell type. This ensures that the retained interactions mirror 
the output of the MLM, which only considers TFs targeting at least 5 genes. The pipeline outputs 
these cell type-specific networks as CSV files, ready for further downstream analysis and 
visualization.  

Note: Due to the large temporal gap in sampling human cortical development (2nd trimester- 
Adult), the large number of cells in this dataset, and relatively low cell-type resolution across this 
long developmental period. The human cortical dataset was only analyzed one time point at a time. 

Network metrics 
In order to assess ASD related regulatory activity; a set of metrics pertaining to the activity of ASD 
genes/TFs in each cell type specific network was formulated to aid downstream analysis. These 
include 3 main metrics: 

1- GRN activity: 

This metric reflects the overall activity of the GRN within each cell type. It is determined by 
quantifying the number of edges in the network (or rows present in the network data frame). The 
purpose of this metric is to capture the comprehensive activity of the GRN. 

2- ASD regulon activity 

This metric is calculated by summing the edges where: A TF present in the SFARI gene list (i.e., 
ASD TF) is targeting a gene, which is not targeted by a non-ASD TF. This metric was devised to 
determine if ASD TFs are more active in certain cell-types. The implication with maintaining edges 
only targeted by ASD TFs is to more confidently infer an effect on these target genes in the case 
of a dysfunction in an ASD TF, since these genes are not targeted by non-ASD TFs.  



 

3- ASD activity:  

This metric is calculated by summing the interactions where either the ‘source’ or ‘target’ is present 
is in the SFARI gene list and represents a comprehensive view of the ASD related TF-gene 
interactions.  

As well as some supplementary metrics which will be described as well: 

ASD genes: This metric is calculated by summing the interactions where the ‘target’ is an ASD 
gene. This metric comprehensively represents the involvement of ASD genes in each cell type 
specific GRN.  

Free-floating ASD genes: This metric is calculated by summing the interactions where an ASD 
gene is connected to a non-ASD TF. It was developed as a measure to help determine if certain 
cell types expressed a higher number of ASD genes bound to non-ASD TFs. This is an example of 
a measure which can be used to investigate non-ASD TFs in the context of ASD.  

Statistical testing 
Mann-Whitney U test 
All statistical testing for differences between two groups were performed using the Mann-Whitney 
U test. The Mann-Whitney U test, also known as the Wilcoxon rank-sum test, is a non-parametric 
statistical test that is used to compare two independent samples to determine whether there is a 
significant difference between their distributions. In our case, we also utilize this test for its ability 
to handle parametric as well as non-parametric data, such that we perform the same test on our 
multiple datasets.  

The test first ranks all the observations from both groups together, from smallest to largest. Then, 
for each group, the ranks of the observations are summed. The test statistic, U, is calculated based 
on these rank sums. The U statistic represents the number of times a value from the first group is 
less than a value from the second group. Moreover, the null hypothesis states that the distributions 
of both groups are equal, meaning that there is a 50% chance that an observation from one group 
is less than an observation from the other group. If the U statistic is significantly different from 
what would be expected under the null hypothesis, then the null hypothesis is rejected, indicating 
a significant difference between the two groups (p<0.05). 

Median Absolute Deviation (MAD) test 
In order to identify and excise outlying cell types in GRN activity, we employed the non-parametric 
MAD test. The MAD test is a robust measure of statistical dispersion. It operates by calculating 
the median of absolute differences from the data's median. A threshold of 3 MAD units was used 
in this study, such that any cell type with a MAD score of more than 3 was considered an outlier 
and subsequently removed from the analysis. This procedure was important to ensure that we 
accounted for cell types with over/under sampled GRN activity which, if not addressed, could 
potentially skew our downstream analyses' results. For instances where each time point was 
evaluated individually, we did not employ outlier detection methods. This was primarily due to the 



inherent variability in network sizes across different developmental stages, making outlier 
detection less straightforward in these cases. 
Shapiro-wilk test 
Normality of the data was assessed in all cases utilizing the Shapiro-wilk test for normality. The 
null hypothesis of the test is that the data presented is drawn from a normal distribution. If p-value 
< 0.05 the null hypothesis is rejected, suggesting that the data does not follow a normal distribution. 

Gene set enrichment analysis (GSEA) 
EnrichR is a widely used tool for GSEA and is accessible through the GSEAPY python library 
[43-45]. GSEA identifies whether predefined sets of genes show statistically significant 
differences between two biological states. In the context of EnrichR, these predefined sets of genes 
are contained within various libraries, the one used for the purposes of this study is the Elsevier 
Pathway Collection. In the case of this collection, the gene sets represent various biological protein 
pathways curated from the scientific literature. When a list of genes (for example, differentially 
expressed genes from an experiment) is input into EnrichR, an enrichment test is performed against 
the various gene sets in the chosen library. This is done by calculating a p-value for each gene set, 
which represents whether the given overlap between the input genes and the gene set can be 
explained by chance alone. The resulting p-values are then adjusted for multiple testing using the 
Benjamini-Hochberg (BH) correction to control for the False Discovery Rate (FDR) given the 
large number of tests performed. In all cases GSEA was conducted on a regulon-by-regulon basis 
where a gene set is defined as an ASD TF and that TFs exclusive target genes, while the BH 
correction was applied to the p-values of each tested regulon separately. 

Ordinary least squares regression (OLS) 
In this study, we employed Ordinary Least Squares (OLS) regression to estimate and control for 
the effects of GRN activity and time on ASD regulon activity. An advantage of the regression 
analysis is that it further isolates the component of our predictor variable which cannot be 
explained by GRN activity or time. 

The implementation of OLS in this study was done using the Python library statsmodels. The 
dependent variable was ASD regulon activity, and the independent variables were the GRN activity 
and time. The data was structured in long format, with each row representing a unique combination 
of cell type and time point. It should be noted that for each dataset, the ‘time’ variable was recoded 
for use in the regression analysis, for example ‘E10’: ‘1’, ‘E11’: ‘2’, ‘E12’: ‘3’ … etc. 

The model was further specified with the formula 'ASD regulon activity ~ GRN activity + time'. 
Lastly, the model was then fitted to each dataset using robust covariance estimation (cov 
type='HC3'). This estimator was used to provide robust standard errors in the presence of 
heteroscedasticity, which refers to the situation where the variability of the error term in a 
regression model is not constant across all levels of the independent variables. This is included to 
aid in the robustness of the regression analysis across different data sets.  



Figure 1. Distributional analysis of the forebrain section of the developing mouse brain (E9-E18) and 
subsequent GSEA of selected cell-types. a) A histogram depicting the distribution of GRN activity 
across 469 identified cell types. b) Histogram of ASD activity across cell types. c) Histogram depicting 
the distribution of ASD regulon activity. A cutoff point of 200 (red line) separates group 1 (high ASD 
regulon activity) and group 2 (low ASD regulon activity). d) GSEA analysis of ASD regulons on a 
representative sample of group 1 cell-types. The y-axis represents the number of regulons which 
returned a significant enrichment for the biological process described on the x-axis.  

Results  
Distributional analysis.  
Developing mouse forebrain atlas 
Analysis of the forebrain section of the La Manno developing mouse brain atlas began with 
examining the distributions of GRN activities (Fig. 1(a)), ASD activities (Fig. 1(b)), and ASD 
regulon activities (Fig. 1(c)) across the 469 identified cell types in the dataset. 

 

 

 

 

 

These distributions were found to be non-normal. A qualitative analysis identifies a relatively 
homogenous distribution in GRN activity, which is notably perturbed by the formation of a longer 
tail when examining ASD activity. The distribution of ASD regulon activity results in the formation 
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of a second-peak, with 69/469 cell types exhibiting a markedly higher ASD regulon activity after 
a period of distributional quiescence.  

The cell types contributing to the formation of the second peak were categorized into group 1 and 
compared with the rest, which we classified as group 2. Mann-Whitney U tests were performed to 
analyze differences in ASD regulon and GRN activity between these groups. The results 
demonstrated a significant difference (p-value = 3.2e-40) in ASD regulon activity with group 1 
having larger activity levels than group 2. However, no significant difference was detected in terms 
of GRN activity between the two groups (p-value = 0.06865). Additionally, there was no 
significant difference in the distribution of free-floating ASD genes between these two groups. 
Further analysis revealed that group 1 had larger quantities of unique ASD TFs, ASD genes, and 
ASD activity compared to group 2. Enriched cell types were mainly glutamatergic and GABAergic 
in nature. We also identified 3 Cajal-Retzius clusters and a single instance of Oligodendrocyte 
Precursor Cells (OPCs). GSEA was conducted on each ASD regulon on a representative sample 
of the enriched cell types ('Neur521’: Cortical/hippocampal glutamatergic, ‘Neur677’: Cajal-
Retzius, ‘Neur698': Hypothalamus, 'Neur706': Midbrain glutamatergic, ‘Neur718': Forebrain 
glutamatergic, 'Neur748': Forebrain GABAergic, 'Neur794': Diencephalon glutamatergic, and 
‘OPC5’: OPCs). The results were extensive, with hits for several biological processes involving 
cell signaling, proliferation, cancer and various neurological conditions. The 5 most frequently 
returned hits across all queried regulons include: Local Estrogen Production in Endometriosis, 
Toll-like Receptors in Sterile Inflammation, TGFBR -> ATF/GADD/MAX/TP53 Signaling, 
Proteins Involved in Autistic Disorder and EGFR/ERBB3 -> MEF/MYOD/NFATC/MYOG 
Signaling. A set of selected biological processes relevant to the current study and their prevalence 
across the enriched cell types are presented in Figure 1(c). Ctcf was identified as targeting ~200 
genes when it was present in the network, whereas most ASD TFs had less than 10 interactions 
with target genes in the cell type specific networks (see supplementary materials 1 for details). 

Developing mouse neocortex 
Subsequent examination shifted focus to the developing mouse neo-cortex (Fig. 2). Shapiro-wilk 
test on the distribution of GRN activity followed a normal distribution (p-value=0.0536) (Fig. 
2(a)). However, the distribution of ASD activity and ASD regulon activity failed the normality test 
(Fig. 2(b-c)). As opposed to a longer tail, plotting ASD activity in this dataset separates the data 
into shallow peaks. Furthermore, we observed that 12 out of 22 cell types contribute to the 
formation of a clearly distinct second peak in the distribution of ASD regulon activity. These cell 
types, listed in the GSEA (Fig. 2(d)) span both early and late stages of prenatal cortical 
development, including Neural Progenitors (NP), Cajal-Retzius cells, deep layer cortical 
projection neurons, and a single instance of oligodendrocytes. Using the same group designation 
as in the forebrain section, we performed Mann-Whitney U tests on these two groups. Once again, 
group 1 (cell types beyond the red line forming the second peak) exhibited a significantly larger 
ASD regulon activity compared to group 2, as evidenced by a p-value of 8.57e-05. Similar to the 
forebrain section, no significant difference was found in GRN activity (p-value = 0.575) between 
the two groups.  



Figure 2. Distributional analysis of the developing mouse neo-cortex (E10-P4) and subsequent GSEA 
of enriched cell-types. a) A histogram depicting the distribution of GRN activity across 22 identified 
cell types. b) Histogram of ASD activity across cell types. c) Histogram depicting the distribution of 
ASD regulon activity. A cutoff point of 200 (red line) separates group 1 (high ASD regulon activity) 
and group 2 (low ASD regulon activity). d) GSEA analysis of ASD regulons on a representative sample 
of group 1 cell-types. The y-axis represents the number of regulons which returned a significant 
enrichment for the biological process described on the x-axis. 

Fig 3. 

  

 

 

  

 

Additionally, the distribution of free-floating ASD genes and the number of ASD genes did not 
show significant variation between the groups. Further exploration revealed that group 1 had 
significantly higher unique ASD TFs and ASD activity than group 2. GSEA was conducted on 
ASD regulons of all 12 enriched cell types (Cajal-Retzius cells, Interneurons, Layer (L) 4 and 6b 
neurons, Neural Progenitors (NP), oligodendrocytes and several projection neurons clusters 
including: Cortico-Thalamic Pojection Neurons (CThPN), Deep-Layer Cortical Projection 
Neurons (DL CPN), Striato-Cortical Projection Neurons and lastly Upper-Layer Projection 
Neurons (UL CPN). The most frequently returned biological processes include: Proteins Involved 
in Autistic Disorder, Proteins Involved in Epilepsy, Myostatin-IGF1 Crosstalk in Skeletal Muscles, 
WNT Canonical Signaling Activation in Cancer, and WNT Canonical Signaling. Ctcf was again 
identified as a driver of enrichment in ASD regulon activity (supplementary materials 2). 

Fig. 2 



Figure 3. Distributional analysis of the developing mouse whole brain (E7-E18) and subsequent GSEA 
of selected cell-types. a) A histogram depicting the distribution of GRN activity across 661 identified 
cell types. b) Histogram of ASD activity across cell types. c) Histogram depicting the distribution of 
ASD regulon activity. A cutoff point of 200 (red line) separates group 1 (high ASD regulon activity) 
and group 2 (low ASD regulon activity). d) GSEA analysis of ASD regulons on a representative sample 
of group 1 cell-types. The y-axis represents the number of regulons which returned a significant 
enrichment for the biological process described on the x-axis.  

 

Developing mouse whole brain atlas 
A holistic examination of the La Manno developing mouse brain which combines data for the 
developing forebrain, midbrain and hindbrain regions demonstrated non-normal distributions of 
GRN activity, ASD activity, and ASD regulon activity across 661 cell types, shown in Figure 3. 

 

 

 

 

It was observed that 95 out of 661 cell types were responsible for the formation of a second peak 
in the distribution of ASD regulon activity which qualitatively resembles the distribution of the 
forebrain section described earlier. Most notably by the presence of a relatively narrow distribution 
containing hundreds of cell types, a period of distributional quiescence and finally a shallower and 
wider second peak.  The analysis of the whole brain revealed an enrichment of non-forebrain-
specific cell types, including those from both midbrain and hindbrain regions. Similar to previous 
analyses, cell types forming a second peak (ASD regulon activity >200) were classified into group 
1 and compared against the remaining cell types, denoted as group 2. Mann-Whitney U tests 
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highlighted a significant difference in ASD Regulon activity between the two groups (p-value = 
5.98e-55), with group 1 exhibiting greater activity than group 2. However, as seen in the forebrain 
and neo-cortex analyses, no significant difference was observed in GRN activity between the two 
groups (p-value = 0.867). In terms of the distribution of free-floating ASD genes, no significant 
difference was found between the groups (p-value = 0.098). Additional analyses showed that group 
1 had significantly larger quantities of unique ASD TFs, ASD genes, and ASD activity compared 
to Group 2.  

Due to the large number of identified cell types, similar to the forebrain section of the developing 
mouse brain atlas; a representative sample of cell-types was chosen for GSEA, these include: 
'Neur523': Cortical/hippocampal glutamatergic, 'Neur649': Hypothalamus glutamatergic, 
'Neur677': Hypothalamus, ‘Neur759’: Hindbrain glutamatergic, ‘Neur721’: Forebrain 
glutamatergic, ‘OPC5’: OPCs, ‘RglF2’: Radial glia and ‘Neur730”; Mixed region and 
neurotransmitter. The most frequently returned significantly enriched biological processes of the 
ASD regulons in group 1 include ERK5/MAPK7 Signaling, TGFBR -> ATF/GADD/MAX/TP53 
Signaling, EGFR/ERBB3 -> MEF/MYOD/NFATC/MYOG Signaling, IGF1 Role in Muscle 
Hypertrophy, IGF1R -> MEF/MYOD/MYOG Signaling. Lastly, the presence of Ctcf alone, similar 
to the previous results, was sufficient to drive ASD regulon enrichment in this data (supplementary 
materials 3). 

Adolescent mouse brain atlas 
Investigation into the Zeisel adolescent mouse brain mimicked the non-normal distributions of 
GRN activity, ASD activity, and ASD regulon activity observed in previous analyses. Here, a 
pronounced second peak in the distribution of ASD regulon activity was identified, represented by 
160 out of the 257 cell types. Similar to the whole brain analysis, the adolescent mouse brain also 
demonstrated an enrichment of non-forebrain-specific cell types, encompassing both midbrain and 
hindbrain regions, the results of which are shown on the following page (Fig. 4). 

The cell types forming the second peak (group 1) were examined and compared with the remaining 
cell types (group 2). As expected from the previous analyses, Mann-Whitney U tests revealed a 
significant difference in ASD regulon activity (p-value = 3.86e-41), with group 1 again 
demonstrating larger activity levels. No significant difference in GRN activity (p-value = 0.269) 
was detected between the groups. Similarly, the distribution of free-floating ASD genes did not 
vary significantly (p-value = 0.509). Further comparative analysis revealed that group 1 had larger 
quantities of unique ASD TFs, ASD genes, and ASD activity than group 2. Consistent with all 
previous analyses, Ctcf was identified as the main driver of this enrichment (supplementary 
materials 4). 

 



GSEA was performed on a representative sample of group 1 cell types including committed, 
precursor and newly formed oligodendrocytes ('COP2', 'OPC’, ‘NFOL2’), hindbrain and midbrain 
inhibitory neurons ('HBINH9', ‘MEINH5’), excitatory neurons of the spinal cord and amygdala 
('SCGLU2', 'TEGLU22'), midbrain projection neurons (‘MEGLU14’) and cortex/hippocampus 
interneurons (‘TEINH10’).  Finally, the five most frequently enriched biological processes 
elucidated through the GSEA include Androgen Receptor/Akt Signaling, Alzheimer's Disease, 
beta-Catenin/Androgen Receptor Signaling in Prostate cancer, Clear Cell Ovarian Carcinoma, 
WNT Canonical Signaling Activation in Cancer. 

Fig. 4 

Figure 4. Distributional analysis of the developing adolescent mouse whole brain (P19-P60) and 
subsequent GSEA of selected cell-types. a) A histogram depicting the distribution of GRN activity 
across 257 identified cell types. b) Histogram of ASD activity across cell types. c) Histogram depicting 
the distribution of ASD regulon activity. A cutoff point of 200 (red line) indicates the cutoff point 
between group 1 (high ASD regulon activity) and group 2 (low ASD regulon activity). d) GSEA analysis 
of ASD regulons on a representative sample of group 1 cell-types. The y-axis represents the number of 
regulons which returned a significant enrichment for the biological process described on the x-axis.  

 

 

 

 

 

 



Human cortical development 
The Velmeshev et al. dataset, composed of human cortical development samples, required a unique 
analytical approach due to the considerable temporal gap in sampling the human cortex and the 
relative lack of cell type resolution (28 cell types) given the number of cells (n = 349,312). 
Accordingly, this dataset was analyzed one time point at a time, revealing a relatively consistent 
distribution of GRN activity across all time periods, with the exception of the 1-2 years stage, 
which demonstrated a leftward skew (Fig. 5). 

Normality tests were conducted for GRN activity across cell types at each time point. These 
revealed a normal distribution during the 2nd trimester (p-value = 0.125), 3rd trimester (p-value = 
0.222), 0-1 years (p-value = 0.322), 1-2 years (p-value = 0.268), 2-4 years (p-value = 0.371), 10-
20 years (p-value = 0.251). and the adult stage (p-value = 0.904). However, the distribution was 
not normal during the 4-10 years period (p-value = 0.032). The divergence from normality during 
this period suggests the presence of outliers which should be further assessed. In contrast, 
normality tests for ASD regulon at each time point revealed non-normal distributions in all cases 
except the 2nd trimester (p-value = 0.298) and 0-1 years (p-value = 0.103) periods. Plotting ASD 
activity and ASD regulon activity resulted in a rightward skew in the distribution with no 

Fig. 5 

Figure 5. Grouped histogram of cell type specific GRN activity of the developing human cortex (2nd 
trimester – Adult) across 28 cell types. Each color represents the cell type specific distribution of GRN 
activity in a specific developmental time point. GRN activity is calculated by counting the total number 
of edges in each cell type specific network.  



discernable cutoff, seen in Fig. 6(a). In contrast, our analyses of mouse data further demonstrate a 
bi modal distribution when considered one time-point at a time (Fig. 6. b-d).  

 

 

 

Fig. 6 

Figure 6. Grouped histogram of cell type-specific ASD regulon activity across: a) Human cortical 
development (2nd trimester – Adult), b) Mouse neo-cortex development (E10-P4), c) Mouse cortical 
development (E9-E18), d) Mouse adolescent mouse brain development (P19-P60). Each color 
represents the cell type specific distribution of ASD regulon activity in a specific developmental time 
point.  
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Regression analysis.  
Developing mouse forebrain atlas 
An OLS regression analysis was conducted on the cell type-specific GRN data from the forebrain 
section of La Manno et al. developing mouse brain atlas. The ASD regulon activity was modeled 
as a function of GRN activity and time, the results of which are illustrated in Figure 7. 

The model had an Adjusted R-squared value of 0.105, indicating that about 10.5% of the variance 
in ASD regulon activity could be explained by the GRN activity and time. The F-statistic for the 
model was 53.64, with a probability value (Prob F-statistic) of 1.51e-23, significantly less than 
0.05, indicating the model's overall significance, i.e., it performed better than a model with random 
variables. A total of 2557 observations were analyzed in this model. The regression coefficient for 
GRN activity was 0.0107, with a corresponding p-value of 0.00, indicating a significant effect of 
GRN activity on ASD regulon activity. Similarly, the coefficient for time was 1.6507, with a p-
value of 0.00, signifying that the effect of time on ASD regulon activity was positive and 

Figure 7. Regression analysis of ASD regulon activity as a function of GRN activity and time in the 
developing mouse forebrain (E9-E18). (a) Average ASD regulon activity (blue) and model-predicted 
activity (orange) over mouse brain development stages. (b) Histogram showing distribution of residuals 
from the OLS regression. (c) Marker plot contrasting actual and model-predicted ASD regulon activity 
for each cell type at various time points. (d) QQ plot of residuals, with red line denoting a theoretical 
normal distribution. The model was implemented using statsmodels with HC3 covariance. 
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significant. Regarding the residuals, they were found not to be normally distributed and exhibited 
a bias towards very positive values. This implies that the ASD Regulon activity was generally 
under-predicted in these cell-type/time-point observations.  

Developing mouse neocortex 
The OLS regression analysis on the developing neo cortex returned an adjusted R-squared value 
of 0.216, indicating that approximately 21.6% of the variability in ASD Regulon activity was 
accounted for by the GRN activity and time. The fit and residuals are presented below in Figure 8. 
The F-statistic was 23.13, and the Prob F-statistic was significant at 2.56e-9 (<0.05). The analysis 
incorporated a total of 133 observations. The regression coefficient for GRN activity was 0.02, 
with an associated p-value of 0.837 (>0.05), making the effect of GRN activity on ASD Regulon 
activity inconclusive based on this model. In contrast, the time coefficient was substantial at 
21.3679, with a p-value of 0.00, demonstrating a statistically significant effect of time on ASD 
regulon activity. Lastly, the residuals were found to be non-normally distributed.  

Figure 8. Regression analysis of ASD regulon activity as a function of GRN activity and time in the 
developing mouse neo cortex (E10-P4). (a) Average ASD regulon activity (blue) and model-predicted 
activity (orange) over mouse brain development stages. (b) Histogram showing distribution of residuals 
from the OLS regression. (c) Marker plot contrasting actual and model-predicted ASD regulon activity 
for each cell type at various time points. (d) QQ plot of residuals, with red line denoting a theoretical 
normal distribution. The model was implemented using statsmodels with HC3 covariance. 

 



Adolescent mouse brain atlas 
The OLS regression analysis was extended to the Zeisel et al. adolescent mouse brain. For this 
dataset, the model returned an Adjusted R-squared value of 0.170, suggesting that about 17% of 
the variability in ASD Regulon activity is explained by the GRN activity and time. The F-statistic 
was calculated as 102.8, with an associated Prob F-statistic of 6.61e-41 (<0.05), confirming its 
significance. 

With a total of 900 observations, the GRN activity coefficient was 0.0400, with a p-value of 0.0, 
thus indicating a significant effect of GRN activity on ASD Regulon activity. The time coefficient 
was -4.4074, again with a p-value of 0.0, implying a significant negative relationship between time 
and ASD Regulon activity. The resulting residuals from this analysis were not normally distributed. 

Fig. 9 

Figure 9. Regression analysis of ASD regulon activity as a function of GRN activity and time across 
adolescent mouse brain development (P19-P60). (a) Average ASD regulon activity (blue) and model-
predicted activity (orange) over mouse brain development stages. (b) Histogram showing distribution 
of residuals from the OLS regression. (c) Marker plot contrasting actual and model-predicted ASD 
regulon activity for each cell type at various time points. (d) QQ plot of residuals, with red line denoting 
a theoretical normal distribution. The model was implemented using statsmodels with HC3 covariance. 
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Human cortical development. 
Lastly, the analysis was applied to the Velmeshev et al. human cortical development dataset. The 
Adjusted R-squared of the model for this dataset was calculated as 0.077, indicating that about 
7.7% of the variance in ASD Regulon activity is explained by GRN activity and time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The F-statistic was calculated as 3.483, with the Prob F-statistic of 0.0327 (<0.05), signifying the 
statistical significance of the model in this context. A total of 197 observations were included in 
the analysis. The GRN activity coefficient was computed as 0.0147, with a p-value of 0.013, 
indicating a significant influence of GRN activity on ASD regulon activity. However, the time 
coefficient was -0.5336, with a p-value of 0.901, which is inconclusive in its effect on the 
dependent variable. In line with the previous models, the residuals of this analysis were not 
normally distributed, suggesting potential deviations from the model's assumptions. 

Figure 10. Regression analysis of ASD regulon activity as a function of GRN activity and time across 
the developing human cortex (2nd trimester – Adult). (a) Average ASD regulon activity (blue) and model-
predicted activity (orange) over mouse brain development stages. (b) Histogram showing distribution 
of residuals from the OLS regression. (c) Marker plot contrasting actual and model-predicted ASD 
regulon activity for each cell type at various time points. (d) QQ plot of residuals, with red line denoting 
a theoretical normal distribution. The model was implemented using statsmodels with HC3 covariance. 

 

 



Discussion 
Distributional analysis 
The identification of ASD regulon-enriched cell types throughout the course of mouse brain 
development is consistent with existing literature that postulates ASD as a neurodevelopmental 
disorder that progresses through multiple stages. However, the discovery of such enriched cell 
types in both the adolescent and adult mouse brains challenges the notion that these effects are 
confined solely to the developmental stages. This finding corresponds well with studies that have 
reported ongoing brain abnormalities in ASD patients extending into adulthood. Additionally, the 
observed enrichment in certain cell types, both globally across the brain and specific to certain 
regions, support the concept of ASD as a multi-process disorder involving the whole brain, with 
region specific effects as well [20]. This enrichment in ASD regulon activity was found 
independent of differences in GRN activity, indicating that this increased ASD regulon activity is 
not due to differences in the total size of the network.  

Ctcf, identified as a key driver of ASD regulon activity in this study, is a highly conserved, 
ubiquitously expressed protein, which uses its 11 zinc fingers to interact with DNA across ~20,000 
binding sites in the human genome, for activation and/or inhibition [46]. In our analysis, Ctcf was 
found to target a substantial range of 180-300 genes across the enriched cell types for activation. 
As a benchmark, the threshold for ASD regulon activity (red line; indicated by the emergence of a 
second peak) was 200 across the mouse brain data, implying that the interactions involving Ctcf 
alone are capable of escalating the identified cell types to this second peak. Several studies have 
reported genetic variants of Ctcf in individuals diagnosed with ASD, identifying de novo loss-of-
function variants and numerous de novo missense variants in the gene [47]. The implications of 
Ctcf as a driver of ASD regulon activity will be further expounded upon in the subsequent sections 
of this discussion. 

The gene set enrichment analysis reveals several significantly enriched protein pathways involved 
across different developmental stages and areas of the mouse brain. Key findings include 
enrichment for "Proteins Involved in Autistic Disorder”, emphasizing the role of altered protein 
networks in ASD and "Proteins Involved in Epilepsy" suggesting shared molecular underpinnings 
between these disorders. Furthermore, the presence of pathways such as "WNT Canonical 
Signaling" hints at the crucial role of neurodevelopmental pathways in the etiology of ASD, as 
dysregulation of these pathways could potentially affect neuronal proliferation and migration. 
Altogether, these enrichments indicate a diverse set of potentially dysregulated pathways and 
protein networks in ASD, encompassing mechanisms of neurodevelopment, cellular signaling, and 
disease-related proteins.  

Our findings for the human cortical development data, on the other hand, were largely 
inconclusive. Despite the variation in cutoff stringency by observing every time-point 
independently, we did not observe a secondary peak in the distribution of ASD regulon activity. 
This is in stark contrast to the mouse brain results, which demonstrated a brain-wide enrichment 
spanning both the developing and adolescent mouse brain. Across 3 different mouse brain datasets 
of variable developmental time frames, the cutoff point of ASD regulon activity = 200 delineated 
the cell types with a significantly higher ASD regulon activity. This highlights a lack of the 



translational abilities of the model to tackle human data, which will be expounded upon when 
discussing limitations. Lastly, in regards to the main culprit of ASD regulon enrichment in our 
results; Ctcf was present in almost every identified cell type specific network. It was suspected 
that the over-arching effect of Ctcf presented noise in the results. However, removing Ctcf from 
the human data did not affect the distributional analysis. On the other hand, removing Ctcf from 
the mouse brain analysis also removes the observed second peaks. 

Regression analysis 
Our regression analysis revealed that time plays a significant role in the activity of ASD regulons 
in the developing mouse forebrain. For each unit of time progression, we observed an increase in 
ASD regulon activity, meaning that a greater number of genes are being targeted for activation. 
This increase is further substantiated by similar findings in the developing neocortex data, where 
a comparable brain region was sampled across a similar time frame. Such a time-dependent 
increase in ASD regulon activity was notably absent in the adolescent mouse brain atlas. Instead, 
we observed a significant negative effect with respect to time on ASD regulon activity during 
adolescence. It's important to note that in all datasets (except neo-cortex), an increase in GRN 
activity resulted in an increase in ASD regulon activity. This effect is potentially attributable to the 
sampling of more ASD genes as the GRN increases in size, rather than indicating a direct 
relationship between GRN activity and ASD regulon activity. In the case of the expansive human 
cortical development data spanning second trimester - adult, we noted a negative coefficient with 
respect to time. However, it was not statistically significant, making any conclusions based on this 
observation uncertain. Indeed, a visual inspection of ASD regulon activity over time demonstrates 
the homogeneity of the activity scores across development (Fig. 10 (a)).  

In terms of understanding the neurodevelopmental processes, an increased ASD regulon activity 
over time suggests that the progression of neurodevelopment could be coupled with heightened 
ASD-related gene regulation. This could imply a potential vulnerability window during which 
dysregulated gene expression might contribute to the emergence of ASD-related phenotypes. It 
also provides a clue about the dynamic nature of ASD at the molecular level, with its impact 
potentially varying across different developmental stages. 

The OLS results suggest that a more complex model may be required to accurately capture the 
underlying behavior in ASD regulon activity. This assertion is primarily based on two specific 
observations made during the analysis. First, the residuals of our models exhibited deviations from 
normality across all datasets. This deviation undermines a core assumption of linear regression 
models. Particularly, the residuals in the developing mouse forebrain were highly skewed, 
suggesting that the model consistently underestimated the ASD regulon activities of these cell 
types. 

Second, the visual inspection of the model fit highlights the model's inability to accurately capture 
the dynamic and complex patterns of ASD regulon activity. More specifically, the predicted 
activity tended to be more linear and did not mirror the recurrent peaks and troughs observed in 
the actual ASD regulon activity. This discrepancy is most noticeable in the developing neocortex 
data. Here, the model's predicted ASD activity closely resembled a straight line, which starkly 
contrasted with the several peaks present in the actual ASD regulon activity. 



Such consistent inconsistencies indicate that the current linear model may not be sufficient to 
encapsulate the nuanced behavior of ASD regulon activity over developmental time. These 
observations underscore the need for a more sophisticated modeling approach that can better 
represent the dynamic changes and complex patterns inherent in ASD regulon activity during brain 
development. 

In light of the literature 
Our results have shown an interesting overlap with findings from previous studies implicating cell 
types in ASD. To expand on a study mentioned in the introduction, which utilized single nucleus 
RNA sequencing on post-mortem cortical samples (prefrontal cortex/cingulate cortex) from ASD 
patients and control. The authors reported dysregulated gene expression in L2/3 neurons, L4 
neurons, interneurons, and microglia [28]. This aligns well with our analysis of the mouse 
neocortex, where we observed a significant enrichment in ASD regulon activity in L4 neurons and 
interneurons. However, some discrepancies exist. While the authors of the aforementioned study 
concluded an effect on upper layer cortical neurons, our analysis identified layer 6 cortical cells as 
an enriched cell type as well, which is a lower-level layer. This disparity suggests a broader scope 
of potential neuronal involvement in ASD and emphasizes the need to understand the specific roles 
of different neuronal layers in ASD pathology. The Gene Ontology (GO) analysis of differentially 
expressed genes (DEGs) in the study also identified enrichment for cell surface receptor signaling, 
cellular growth/motility, and GABA signaling. These findings somewhat align with our gene set 
enrichment analysis (GSEA) results, which highlighted the involvement of several pathways, such 
as local estrogen production, Toll-like receptor signaling, and TGF-beta signaling. Both analyses 
point towards altered cellular signaling and growth dynamics as potential key players in ASD 
etiology. 

In a study more directly comparable to our mouse brain analysis, which involved a perturb-seq 
analysis targeting 35 ASD-related genes in developing mouse embryos, the authors noted that the 
perturbation of nine ASD genes (Adnp, Ank2, Ash1l, Chd8, Gatad2b, Pogz, Scn2a1, Stard9, and 
Upf3b) significantly affected layer 4 and 5 projection neurons [48]. Interestingly, none of these 
genes were identified as ASD TFs in our analysis, meaning they did not contribute to the 
classification of ASD enrichment in our data. Despite this, we found several clusters of 
interneurons, projection neurons, and layer 4 neurons within our enriched cohort. The fact that 
independent analyses led to the identification of the same cell types further supports a role for a 
dysfunction of these cell types in ASD. 

The authors also emphasized the role of glial dysfunction in ASD, implicating oligodendrocyte 
progenitors instead of microglia as in the previous study. This expands our understanding of the 
role of non-neuronal cells in ASD and aligns with our previous findings indicating the contribution 
of non-neuronal cells, such as OPCs, microglia and oligodendrocytes. Collectively, these 
comparisons demonstrate the complex and multifaceted nature of ASD, encompassing a diverse 
range of cell types and molecular mechanisms. 

Even though Ctcf has been acknowledged as a high-confidence ASD gene, this alone does not 
explain or substantiate its dominant role in driving ASD regulon activity. Its lack of brain-specific 
expression further muddies conclusions regarding the etiology of ASD arising from Ctcf 



mutations. Yet, the TF has been causally linked to a rare neurodevelopmental disorder, namely ' 
Ctcf -related neurodevelopmental disorder,' with less than 1 in 1,000,000 prevalence and currently 
107 reported cases in the literature [49-50]. These patients often present with a spectrum of 
symptoms ranging from mild developmental delay to severe intellectual disability, and some have 
been diagnosed with ASD. Notably, analysis of the blood transcriptome of these patients revealed 
2161 downregulated genes [49]. 

In terms of genetic susceptibility, a GWAS meta-analysis has pointed towards Ctcf as a gene 
enriched for heritable SNPs [51]. While a 2017 study investigating hotspot missense mutations in 
neurodevelopmental disorders noted a clustering of these mutations between the 4th and 7th zinc 
finger of the protein [52]. Lastly, Ctcf has been shown to interact with the ASD related Chd8 
chromatin modifier [53], although this interaction was not captured in our networks.  

These collective findings hint at the potential for even minor dysfunction in Ctcf to profoundly 
affect a large number of genes and contribute to the development of ASD-related phenotypes such 
as intellectual disability and motor behavior dysfunction. However, it's important to underscore 
that although Ctcf dominated the activity of the enriched networks in this study, it did not serve as 
a hub to unite the various ASD-related TFs under a common regulatory framework. 

The present study builds upon previous research conducted in the Basak lab, where Bram Schouten 
carried out a comprehensive investigation aimed at determining if autism-related genes were 
integrated within GRNs of cortical lineage cells. An aspect of his work investigated the 'ASD-TF 
regulon,' which filters for interactions involving ASD-related TFs, drawing close, but not exact 
parallels to our 'ASD regulon' concept. 

A notable point of convergence between our studies is the recognition of Tcf4 as a ‘hub’ of 
connectivity within Cajal-Retzius cells. In Shouten's study, Tcf4 was identified as a hub for the 
high number of interactions (8) in the network. In contrast, our work expands upon this, 
demonstrating that Tcf4 targets 18 genes and is, in turn, targeted by four ASD TFs (Zeb2, Tcf12, 
Atf2, Pou2f2) in E12.0 mouse forebrain Cajal-Retzius cells. Shouten's analysis also distinguished 
cell types enriched for both activatory and inhibitory interactions, noting particular enrichment of 
inhibitory interactions in ectodermal, blood, and radial glia cells. Intriguingly, our analysis did not 
identify a similar enrichment in these cell types. This discrepancy suggests that our results might 
shift under different analytical conditions, such as when considering inhibitory interactions, 
underlining the nuanced and context-dependent nature of GRNs in the study of ASD. Adding to 
these observations, a notable divergence in our analysis revolves around the transcription factor 
Ctcf. Despite Ctcf not returning a significant result in Shouten's ASD-TF regulon analysis, he 
identified it as a TF enriched for ASD gene targets using the Fisher's exact test. This finding 
highlights Ctcf as a potential convergence point for diverse ASD-related genetic influences, 
underscoring its potential significance in the multifaceted genetic landscape of ASD. 

While ASD is primarily categorized as a neurodevelopmental disorder, our understanding of its 
pathogenesis spans across neurodevelopment and continues well into adulthood. This perspective 
is reinforced by regional brain changes that extend beyond the early developmental period, as was 
described in the introduction. An example of the influence of time on ASD activity was reported 



in the authors of the study who produced the human cortical data under investigation. This study, 
which gauged ASD activity by assessing the differential expression of ASD-related genes, 
observed two prominent peaks in ASD activity, namely in 2nd trimester and adult.  

In line with these findings, our analysis of the adolescent mouse brain data identified several cell 
types that were significantly enriched in ASD regulon activity in the adolescent-adult mouse brain. 
The detection of ASD activity at such late stages implies that the mechanisms leading to ASD do 
not simply halt post-development, but may continue to evolve. This leads to the idea that context 
of these cell types within their developmental timeline could hold significant importance for 
understanding their role in ASD. The question arises, does the presence of ASD-enriched cell types 
in later developmental stages suggest a prolonged period of susceptibility to ASD-related 
dysfunctions, or do they reflect a late onset of mechanistic processes contributing to the disorder? 
These observations challenge the traditional notion of ASD as a purely developmental disorder 
and suggest a broader temporal window for both the progression and possible treatment of ASD.  

Limitations 
The limitations of this study are multifaceted and stem from a variety of sources including the 
nature of the data and resources employed, the assumptions baked into the analytical pipeline, and 
the narrow scope of our investigation. Beginning with the data, the variation in brain regions, time-
frames, and gender of mice across datasets restricts the robustness of our results. To bolster the 
validity of our findings, comparable data that samples the same brain regions over the same time-
frames and accounts for gender variability in ASD needs to be utilized. Additionally, the 
discrepancies in cluster resolution and functional annotation between different datasets impede the 
drawing of solid conclusions when comparing them. A high cluster resolution can provide a high 
degree of separation between cells, but this results in many enriched cell types which then need to 
be unified under one umbrella. While a low cluster resolution can fail to delineate the heterogenous 
population of cell types and states. This issue is particularly relevant in the case of the human 
cortical development dataset. In this dataset, cell type annotations were not present. Instead, the 
authors sub sampled the original data, and clustered each sub sample. In this analysis, we combine 
the annotation from the different sub-samples into the whole data. This is relevant since the 
clustering results are likely to change if conducted on the whole data from the start, which is likely 
affecting our results. 

Regarding resources, our reliance on the DoRothEA network presents several limitations. 
Primarily developed with cancer research in mind, the DoRothEA network may not adequately 
reflect the regulatory landscape of brain development. This especially affects our interpretation of 
Ctcf as a driver of enrichment. Since the strong signal we observe in Ctcf might be an artifact of 
the TFs high involvement in cancer. Furthermore, while the curations for the mouse DoRothEA 
network are arguably more reliable due to the preponderance of knockout studies in mice, this 
network likely oversimplifies the regulatory relationships between TFs and genes, especially in 
humans. Our exclusive focus on activatory interactions further limits the representativeness of our 
networks.  

Turning to the pipeline, our analysis makes several simplifying assumptions that might limit the 
accuracy of our results. One key assumption is that gene expression levels directly correlate with 



the magnitude of regulatory interactions, an assumption inherent in the MLM model employed. In 
reality, genes can exhibit critical cellular functions even at relatively low expression levels. 
Moreover, our pipeline does not utilize a weight to measure the interaction between TFs and ASD 
genes, possibly hindering the identification of major drivers of regulatory activity beyond the 
binary (edge/no edge) designation. The significant enrichment of hundreds of biological processes 
returned by the GSEA, many related to cell growth/proliferation and cancer, also presents 
challenges in discerning which processes are truly relevant to ASD and which are artifacts of the 
developmental nature of the data and the cancer related DoRothEA network. 

Lastly, the narrow perspective of our study warrants acknowledgment. We have focused primarily 
on TF driven enrichment in ASD activity and have not delved extensively into investigating ASD 
genes, the ASD-related motifs that can interconnect them, or interactions with non-coding regions. 
As a result, our analysis could overlook crucial players in ASD etiology. Future research should 
broaden its scope to incorporate different avenues of investigation, fully recognizing the 
complexity of ASD as a multifactorial disorder with likely involvement from several different 
mechanism of gene regulation. 

Future direction 
Looking forward, there are several avenues to explore that could enhance our understanding of 
ASD in the context of GRNs. One promising prospect involves the utilization of the CollecTRI 
database in place of DoRothEA. Although currently unpublished, CollecTRI offers a more 
extensive catalogue of interactions and provides the capacity to partition TFs into complexes. 
Comparing the results of our analysis with those obtained via CollecTRI or other GRN 
reconstruction methods could further validate our findings. 

Adjustments to our analytical approach could also yield improvements. For instance, instead of 
employing a cell type-specific gene expression/activity cutoff, we could consider all identified 
interactions and discard those common to all cell types. This approach could provide a more 
nuanced understanding of 'cell type specific' networks and potentially illuminate less obvious 
interactions. Moreover, incorporating weights and inhibitory interactions could offer a more 
comprehensive view of the GRNs. To better model ASD regulon activity, we recommend 
employing splines or non-linear regression which may be more adept at capturing the complex 
relationships that likely exist within ASD regulon activity. This approach could provide a more 
nuanced understanding of how ASD develops and progresses over time. 

Finally, the potential utility of the GRN pipeline extends beyond this study. The GRN architecture 
could serve as a valuable resource for both experimentalists and data researchers. Experimentalists 
can browse through specific cell-type networks to investigate their gene of interest in a topological 
framework, while informatically inclined researchers can integrate these networks with 
network/molecular dynamics simulations to probe deeper into the complex dynamics of ASD. 
Based on the observation that perturbation studies were employed to benchmark both DoRothEA 
and its successor, CollecTRI; the pipeline likely possesses significant potential for application in 
cell type-specific perturbation analyses. This may prove particularly beneficial for the host 
institute, where several organoid studies are currently being conducted.  



Code Availability 
The code to generate cell type specific GRNs, as well as perform the subsequent distributional 
and regression analyses is publicly available under The GNU General Public License. Interested 
parties can access and download the code from the following GitHub repository: 
https://github.com/AbdoolAK/GRN_reconstruction  



Supplementary Materials 
In the attached 'Supplementary Materials' folder accompanying this document, details regarding 
the ASD regulon activity, ASD TFs, and the count of genes targeted by Ctcf are provided for 
each cell type. These details have been compiled in table format for each of the four datasets 
studied in the ‘whole data’ analysis:  

1. Developing mouse forebrain. 
2. Developing mouse neo-cortex. 
3. Developing mouse whole brain. 
4. Adolescent mouse brain.  
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