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Abstract 
 

 

 
Synthetic data generation is an essential technique in data analysis and machine learning, playing a crucial 
role in complementing existing data sets and addressing the various challenges associated with their 
analysis. Synthetic data have significant utility where original data sets are limited, inaccessible, or 
insufficiently diverse. By incorporating synthetic data, it becomes feasible to augment the dataset size, 
thereby facilitating the effective implementation of diverse analysis and machine learning algorithms. 
However, generating synthetic data does not come without challenges and risks. Among the most 
significant challenges are class imbalances in the datasets, where certain classes are under-represented, 
which can affect the results and correct interpretation of the analysis. In addition, data confidentiality must 
be maintained, especially for datasets containing sensitive information. 
This research addresses these challenges by focusing on evaluating a synthetic data generation method 
based on Bootstrap resampling. Inspired by Bootstrap, this paper proposes the “Fusionstrap” framework. 
This framework integrates the stratified Bootstrap method with sample post-processing techniques to 
address class imbalances in datasets, enhance the diversity and accuracy of synthetic data, and 
concurrently uphold the levels of usefulness and confidentiality. The effectiveness of this approach is 
assessed through an experimental case study, where synthetic data is generated, and the performance of 
our proposed framework is analyzed in comparison to the basic CTGAN and Synthpop methods using three 
datasets. The training data was collected and preprocessed using appropriate tools and techniques. Our 
evaluation metrics capture improvements in synthetic data quality and provide detailed insight into the 
strengths and weaknesses of the evaluated methods. We conclude that the application of the 
“Fusionstrap” framework aspires to generate accurate, balanced and representative synthetic data. 
Furthermore, it could be used as an aid to data generation to improve accuracy in the case of an unbalanced 
data set. 
 
Keywords: 
Synthetic Data, Preprocessed Techniques, Stratified Bootstrap, Class Imbalances, Post-processing 
Techniques, Utility, Privacy 
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Chapter 1  
Introduction  
 
In today's age of technology, we collect a huge amount of data that can support decision-making in a variety 
of fields. This use of data may affect society directly or indirectly. For example, in healthcare, data collected 
from clinical trials and medical record systems can be used to identify relevant trends and patterns in the 
evolution of diseases and to support medical decisions [1]. At the same time, census data can provide a 
wide range of demographic, social, economic and cultural information about the population. These data 
are of major importance for public policy formulation, strategic planning, private sector decision-making 
and understanding social change [2]. 
In many situations, however, the data collected may present certain challenges, such as class imbalances 
[3]. This means that some classes of data occur more frequently than others, which can lead to inadequate 
learning of analytical models.  
Classification problems, such as class imbalance, can have a significant impact on decisions made based on 
medical data in the following aspects [4]: 

• Misdiagnosis: Class imbalance can lead to underrepresentation of certain rare or unusual medical 
conditions in the dataset. This can lead to incorrect or delayed diagnosis of these conditions, which 
can adversely affect the treatment and prognosis of affected patients. 

• Inadequate treatment: If certain groups of patients with specific conditions are underrepresented 
in medical data, the effectiveness of certain treatments may be underestimated or overestimated. 
This can lead to the administration of inappropriate treatments for patients with specific medical 
needs. 

• Risk assessment and prognosis: Class imbalance can affect the risk assessment and prognosis of 
patients. Underrepresented groups may have underestimated or neglected risks or prognoses, 
which may lead to inadequate management of their health status. 

• Personalization of healthcare: To personalize treatment and healthcare, it is essential to fully 
understand the individual needs of patients. Class imbalance can affect this understanding and 
prevent identification of the specific needs of some patient groups. 

• Medical research: Class imbalance can influence the results of clinical trials and epidemiological 
analyses, leading to inappropriate generalization of results and their application to the entire 
population. 

Also, class imbalance can affect decisions made on the basis of census data in several ways [5]: 

• Bias in Public Policy: If certain groups or population categories are underrepresented in census 
data, policy decisions may not take into account the needs and interests of these groups, leading 
to inappropriate and unfair policies. 

• Inaccuracy in estimates: Class imbalance can lead to an incorrect representation of population 
distribution, which can affect demographic and economic estimates and projections, making them 
less accurate. 

• Underestimation of social needs: If certain population categories, such as minorities or 
marginalized groups, are underrepresented in census data, their specific problems and needs may 
be underestimated or neglected in the decision-making process. 

• Limiting social analysis: Class imbalance can affect social analysis and research, making it less 
representative and less relevant to understanding the complexity of society. 

 
To address these issues, it is essential to adopt appropriate methods for handling class imbalance in 
datasets. Researchers and practitioners have developed various methods and techniques to address this 
asymmetry, which may include rebalancing the dataset through oversampling or undersampling, model-
based techniques, and generating synthetic data [3]. Generating synthetic data is a promising approach in 
managing class imbalance as it can help provide a balanced and more representative data set. By 
generating synthetic examples that faithfully capture the features of the initial data, this methodology can 
enhance the efficacy of machine learning models, ensuring improved generalization across diverse domains 
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such as medicine, finance, marketing, and beyond. For example, in medical classification problems, 
synthetic data can be created to ensure a balance between rare and common classes [6]. 
Once the context of the research is defined, this chapter continues with the problem and motivation in Sec. 
1.1. This is followed by the main research questions addressed in Sec. 1.2 together with the contributions 
of this thesis in Sec. 1.3. Finally, Sec. 1.4 concludes with an outline of how this research is organized. 
 

1.1 Problem and motivation 
 
In today's context, data has become an essential element in decision-making and the development of 
artificial intelligence algorithms. Medical data and the census are two extremely important fields where 
managing class imbalance in data sets can significantly influence decisions and outcomes. In the field of 
health, data collected from clinical trials and medical record systems can be used to identify relevant trends 
and patterns in disease progression and support medical decisions. Take, for example, a medical 
classification problem in which it is desired to identify a patient's risk of developing a serious condition such 
as diabetes. In such a scenario, class imbalance can affect how the classification algorithm builds its models 
and lead to an unfair representation of different patient groups. Underrepresented classes, such as patients 
at low risk of diabetes, may be inadvertently overlooked, leading to underestimation of the true risk. On 
the other hand, the classifier may be over-represented for major classes, which may lead to incorrect and 
unfair results for patients in minor groups. In the context of the census, the data collected are essential to 
understand the demographic composition of a country or region and to make decisions about public policy, 
resource allocation and infrastructure development. Take, for example, a recent census in a country where 
it is desired to classify the population into various socio-economic groups such as education level, 
occupation and income. In such a scenario, class imbalance may affect the accuracy and representativeness 
of census results. Minority groups, such as those with low incomes or low levels of education, may be 
underrepresented in census data, leading to an incomplete understanding of the situation of these 
vulnerable populations. On the other hand, major groups, such as those with high incomes or high levels 
of education, may be over-represented, which can lead to a distorted picture of the true distribution of the 
population. 
One possible approach to solving this problem is to equalize the imbalance in the underlying data set by 
generating enough examples for the underrepresented classes. Generating synthetic data is a solution for 
solving class imbalances in data sets, but the practice faces certain challenges: it is difficult to reproduce 
complex characteristics of real data; there is the possibility of losing some functions or characteristics 
necessary for the replication process; the flexible nature of synthetic data makes it biased in behavior, etc. 
One barrier to using synthetic data for real-world analysis is uncertainty about its usefulness and 
confidentiality. For synthetic data to be beneficial, it must yield valid results in statistical analyses. 
Surprisingly, there has been a relative lack of research into measuring the usefulness of synthetic data. 
Also, synthetic data cannot be guaranteed to ensure the confidentiality of all records from the original data 
[9]. 
The literature analyzes different algorithms and tools with which synthetic data can be generated. For 
example, Monte Carlo simulation can be useful when real data are available to be simulated and the 
distribution parameters are known [10]. An alternative for producing synthetic data involves employing 
deep learning models, such as generative adversarial networks (GANs). This becomes especially valuable 
when a significant volume of data is required, and the underlying distributions are not adequately known. 
Other examples would be decision trees, reverse engineering techniques, and iterative proportional fitting. 
Most synthetic data generators [11] require a lot of user specification or knowledge of the underlying data 
distribution to be synthesized. Furthermore, these approaches [11] do not guarantee that the resulting 
data sets provide the desired data distribution and correlations between attributes. According to the 
theory, when specific conditions are met, such as having a large sample size, the sampling distribution 
tends to approximate a normal distribution, with the standard deviation of the distribution equating to the 
standard error. However, if the sample size is insufficient or when the assumption of a normal sampling 
distribution is not valid, determining the standard error of the estimate becomes challenging. 
Consequently, drawing meaningful conclusions from the data becomes more complex in such situations. 
Bootstrapping emerges as a valuable solution to tackle the aforementioned challenges, particularly in 
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scenarios where the sampled population is intricate or unknown, or when obtaining the desired 
distribution of sampling statistics proves challenging. In cases where the population is identified, repeated 
sampling becomes a viable approach to characterize the desired sampling distribution, subject to Monte 
Carlo error. Each generated data set possesses a distinct set of sample statistics, encompassing measures 
such as mean, median, and standard deviation. In bootstrapping procedures, the distribution of these 
sample statistics across the simulated samples is employed as the sampling distribution. The mentioned 
distribution is applicable for computing precise confidence intervals and conducting pertinent hypothesis 
tests within the realm of bootstrapping. Bootstrap intervals and p-values can be regarded as real-world 
approximations. Although other statistical techniques used to determine confidence intervals require 
knowledge of the mean or standard deviation for the selected population, bootstrapping requires nothing 
more than the sample [12]. However, generating synthetic data by the Bootstrap method may have some 
problems, such as lack of diversity and precision. In this regard, post-processing techniques such as filtering 
or removing outliers are needed to improve the quality of the synthetic data. In addition, combining 
multiple Bootstrap datasets can lead to greater diversity and greater accuracy of synthetic data. 
In the context of this thesis project, we explore two sets of techniques for generating synthetic data for 
comparison purposes. The first approach involves the utilization of deep learning methods, such as CTGAN 
(Conditional Tabular GAN), which is a variant of Generative Adversarial Networks (GANs) specifically 
designed for tabular data [7]. GANs are machine learning algorithms that consist of two competing neural 
networks: the generator and the discriminator. The generator is tasked with acquiring the skill of 
generating synthetic data, while the discriminator is focused on developing the ability to differentiate 
between real and synthetic data. Throughout the training process, these two networks engage in a zero-
sum game. The generator endeavors to produce synthetic data with heightened realism to deceive the 
discriminator, while the discriminator strives to enhance its proficiency in distinguishing between real and 
synthetic data. The advantage of CTGAN is that it improves the ability of GANs to generate tabular data 
while maintaining the structure and complex features of the original datasets. By training on real data and 
then generating synthetic data based on it, CTGAN can create new examples that preserve the original 
distribution and data patterns. 
The second approach - Synthpop is a statistics-based method and relies on refolding techniques [8]. 
Essentially, Synthpop generates synthetic data by replicating the distributions and structure of the original 
dataset. This method is useful for datasets with complex and dependent variables. Synthpop is based on 
an iterative refitting process, where the distributions of the variables are adapted and adjusted according 
to the original data. Thus, the created synthetic datasets retain more complex correlations and 
dependencies from the original data, making them more realistic and representative. 
To tackle these challenges, we chose to adopt a hybrid approach called "Fusionstrap", which combines 
Stratified Bootstrap [32] with the Gaussian Copula Synthesizer [45]. This choice is based on the advantages 
offered by Stratified Bootstrap in addressing class imbalance, along with the ability of the Gaussian Copula 
Synthesizer to capture complex correlations between variables. Comparisons with established methods 
such as CTGAN and Synthpop can highlight the merits and significance of "Fusionstrap" in class balancing 
and enhancing the efficacy of machine learning models. 
 
In short, the motivation of this research is given by the following considerations: 
 

• Stratified Bootstrap is a solution for solving class imbalances in datasets; 

• Most synthetic data generators require user specification and knowledge of the data distribution, while 
the Bootstrap only requires the sample data; 

•  Continuous variables exhibit highly skewed distributions that are difficult to model and reproduce 
authentically. Bootstrapping may encounter difficulties in situations where the underlying population 
is intricate or unfamiliar, or when obtaining the desired distribution of sampling statistics proves 
challenging; 

• Bootstrap can be effectively applied to any type of variable, whether numerical or categorical; 

• Bootstrap is widely recognized in statistical theory, but is quite underused in practice, although it fits 
well with the computer age. Although datasets created with bootstrap procedures are successfully 
used in many applications, the scientific community's understanding of the power of bootstrapping still 
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remains unknown. For this reason, the problem of choosing a reliable bootstrap procedure for the 
domain of synthetic data generation remains open.  

 
The primary objective of this study is to assess the effectiveness of the "Fusionstrap" approach in producing 
synthetic data. Additionally, the research aims to investigate strategies for enhancing the quality of this 
data through post-processing techniques, including filtering, outlier removal, and the amalgamation of 
synthetic datasets obtained through Stratified Bootstrap. Simultaneously, we will prioritize safeguarding 
the confidentiality of the initial dataset. A particularly important aspect is the evaluation of the data 
synthesized with "Fusionstrap" through a rigorous comparison with the CTGAN and Synthpop methods. 
 

 

1.2 Research Questions 
 
The primary objective of this thesis is to create and assess a tool proficient in generating synthetic data. 
 
Thus, the research will focus on the following: 
 
MRQ: Can “Fusionstrap” improve the quality of synthetic data over known methods such as CTGAN or 
SYNTHPOP? 
 
To address the central research question, specific sub-questions were formulated to delineate the 
knowledge to be acquired and the requisite research activities. 
 
RQ1: To what extent can „Fusionstrap” ensure the utility of the data generated? 

RQ1.1 How can the utility of synthetic data be measured? 
RQ1.2 What is the utility level of the “Fusionstrap” framework compared to other data synthesis 
methods (CT GAN and SHYNTPOP)? 
RQ1.3 To what extent does “Fusionstrap” resolve class imbalances compared to CTGAN and 
SYNTHPOP? 

RQ2: To what extent can “Fusionstrap” ensure the confidentiality of the original data? 
RQ2.1 How to quantify the disclosure risk of synthetic data? 
RQ2.2 How well does "Fusion strap" protect the confidentiality of the original data compared to 
other methods (CTGAN and SYNTHPOP)? 
 

1.3 Expected Contributions 
 
Concerning the anticipated contributions of this investigation to the domain of synthetic data generation, 
encompassing both practical and scientific perspectives, they comprise: 
Practical Contribution: 

• Development of the “Fusionstrap” method: This adaptive method uses the Stratified Bootstrap to 
resolve class imbalances in datasets, especially complex and dependent ones such as medical and 
census data. “Fusionstrap” integrates Boostrap sample post-processing techniques to improve the 
accuracy and variability of synthetic data; 

• Generating balanced synthetic data: Using the “Fusionstrap” method, balanced synthetic data sets 
can be generated that preserve the correct proportion between under-represented and over-
represented classes. This generated synthetic data holds value in enhancing the performance of 
machine learning models, particularly in scenarios where class imbalance adversely impacts 
accuracy and the relevance of decision-making; 

• Evaluation of the utility and confidentiality of synthetic data: In the thesis, a rigorous evaluation of 
the utility and confidentiality of the synthetic data generated by the “Fusionstrap” method was 
carried out, comparing them with those generated by the CTGAN and Synthpop methods. This 
evaluation offers a more profound comprehension of the quality of synthetic data and its possible 
applications in research and decision-making. 
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Scientific Contribution: 

• Solving the problem of class imbalance: The thesis proposes an efficient approach to balance the 
distribution of classes in data sets, so that machine learning models are fairer and more accurate 
in decisions. 

• Exploration and comparison of synthetic data generation methods: By carrying out a detailed 
experiment and comparing the performances of the “Fusionstrap” method with those of the 
CTGAN and Synthpop methods, the thesis makes a scientific contribution to the wider evaluation 
of various synthetic data generation techniques and the identification of advantages and their 
limitations. 

• Improving the quality of synthetic data: The study contributes to a deeper understanding of the 
quality of synthetic data generated by different methods. By identifying existing challenges and 
limitations, the thesis can pave the way for new research and development to improve the quality 
and use of synthetic data in diverse fields. 

• Potential applications in data-based research and decision-making: By validating the “Fusionstrap” 
method and demonstrating the utility and confidentiality of the generated synthetic data, the 
thesis contributes to the development of a practical and beneficial tool in data-based research and 
decision-making. 

In summary, since Bootstrap is a widely used method in data analysis and generating statistical estimates, 
understanding how an appropriate Bootstrap method can be used to generate synthetic data could make 
a significant contribution to the research field and improve how synthetic data is used and understood in 
data analysis. 
 

1.4 Outline of Thesis 
 
The rest of the report delves into the justification and implementation of the research. Chapter 2 elucidates 
the research methods, providing an in-depth explanation. Chapter 3 covers relevant preliminary work on 
the concepts and notions used and explains the Bootstrap resampling process. Chapter 4 presents the 
proposed “Fusionstrap” framework as a hybrid method for synthetic data generation. In Chapter 5, the 
experimental design is presented, and the data sets used for the experiments are described, and the results 
are presented in Chapter 6. Finally, Chapter 7 summarizes the conclusions of this thesis by reviewing the 
research questions, identifies the limitations of “Fusionstrap” and defines research avenues for future 
work. 
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Chapter 2  
Research approach 
 
Given that the purpose of the research is to conduct an experiment to test the hypothesis that 
“Fusionstrap” could generate synthetic data of better or at least comparable quality to known methods 
such as CTGAN or SYNTHPOP, this thesis will use a scientific approach in methodological research [13].  The 
research framework for this study is presented in Figure 1 and presents the steps that will be followed to 
achieve the research goal (sec.1.2). In section 2.1, the research questions are justified, and the research 
methods used to answer these questions are linked. Section 2.2 offers a detailed description of the 
research methods, while Section 2.3 concludes by examining potential threats to the validity of the 
research. 
 
Figure 1 
Research steps 
 

 
 
 
The first step, preliminary research, will consist of identifying the problem, formulating research questions, 
and establishing a hypothesis to be tested. The conceptualization phase (the next step of the research 
methodology) will be based on the theory of synthetic data generation and evaluation, as well as the theory 
of the Bootstrap method. In this second step, preliminary ideas will be explored and the tools, methods, 
and metrics that will be used to test the hypothesis will be described. The results of these first steps will 
provide answers to research questions RQ1.1 and RQ2.1. The third step, hypothesis testing, involves the 
description of the experimental framework, the collection and analysis of original data, the generation of 
synthetic data and their evaluation. The results will provide answers to research questions RQ1.2, RQ1.3 
and RQ2.2. Finally, the validation phase will lead to either accepting the hypothesis or rejecting it. Accepting 
the hypothesis involves repeating the experiment on various types of data to conclude whether the 
hypothesis can be generalized. If the hypothesis is rejected, it can be modified and retested until it is 
consistent with observed phenomena and test results. 
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2.1 Justification of research questions 
 
In this section, we will explore and justify each of the research questions we have formulated previously. 
Through analysis and argumentation, we will demonstrate the importance of these questions in our 
research and how they contribute to the achievement of the proposed objectives. 
 
RQ1: To what extent can „Fusionstrap” ensure the utility of the data generated? 

RQ1.1 How can the usefulness of synthetic data be measured? 
RQ1.2 What is the utility level of the “Fusionstrap” framework compared to other data synthesis 
methods (CT GAN and SHYNTPOP)? 
RQ1.3 To what extent does “Fusionstrap” resolve class imbalances compared to CTGAN and 
SYNTHPOP? 

 
The performance of the “Fusionstrap” method in generating synthetic data is an important concern for the 
development of effective solutions in handling class imbalance and improving the performance of machine 
learning models. To assess and verify the efficacy of this approach, it is crucial to examine the extent to 
which "Fusionstrap" can produce synthetic data of high quality while retaining the fundamental 
characteristics inherent in the original data. To evaluate the performance of the “Fusionstrap” method in 
generating synthetic data, we will perform an extended experiment on three different datasets. We will 
apply the “Fusionstrap” method for generating synthetic data on each dataset and evaluate the quality of 
the generated data. 
 
RQ1.1: Assessing the utility of synthetic data is pivotal for gauging their effectiveness as substitutes for real 
data in practical applications. As the employment of synthetic data has implications for the outcomes of 
machine learning models and decision-making processes, it becomes crucial to identify and employ suitable 
metrics for evaluating the utility of synthetic data generated by "Fusionstrap" and comparing them with 
those produced by the CTGAN and Synthpop methods. 
 
RQ1.2: To understand to what extent the “Fusionstrap” method stands out compared to other data 
synthesis techniques, such as CTGAN and Synthpop, it is necessary to perform a comprehensive and 
comparative evaluation of the performances of these methods. The comparison will focus on the level of 
usefulness of the synthetic data generated by each method, with the aim of highlighting the possible 
advantages brought by “Fusionstrap”.  
 
RQ1.3: Managing class imbalance in datasets is a crucial problem in the field of machine learning. To 
determine whether “Fusionstrap” manages to make significant improvements in solving this aspect over 
the CTGAN and Synthpop methods, we will analyze in detail to what extent each method manages to 
balance the distribution of classes in the generated data sets. This comparison will provide essential insight 
into the effectiveness of the proposed approach. 
 
RQ2: To what extent can “Fusionstrap” ensure the confidentiality of the original data? 

RQ2.1 How to quantify the disclosure risk of synthetic data? 
RQ2.2 How well does "Fusion strap" protect the confidentiality of the original data compared to 
other methods (CTGAN and SYNTHPOP)? 

 
To answer this research question, we will perform specific analyzes to evaluate the privacy level provided 
by the “Fusionstrap” method and the other synthetic data generation methods (CTGAN and Synthpop). We 
will apply methods and metrics to quantify the disclosure risk of the synthetic data generated by each 
method. 
 
RQ2.1: To quantify the risk of disclosure of synthetic data, we will use various measures and indicators that 
can be found in the specialized literature and evaluate to what extent the “Fusionstrap” method protects 
confidentiality. 
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RQ2.2: To evaluate how well “Fusionstrap” protects the privacy of the original data, we will perform a 
comparison with the other methods (CTGAN and Synthpop) based on the results obtained from the 
disclosure risk analysis. We will identify the possible advantages of the “Fusionstrap” method in ensuring 
confidentiality and evaluate whether it manages to provide a higher level of protection for the original 
data. To carry out these analyzes and comparisons, we will use an appropriate methodological framework 
and analyze the synthetic datasets generated by each method as well as the original data. This approach 
will allow us to objectively evaluate the ability of the “Fusionstrap” method to protect data privacy and 
provide a viable and more secure alternative in synthetic data generation. 
 
Table 1 provides a concise summary of the research questions alongside the corresponding methods 
employed to attain the answers. Each research question is associated with the relevant research method, 
and the anticipated results of the research questions are also delineated. 
 
Table 1 
Research questions and methods 

Sub-research Question Research method Outcome Chapter 

RQ1.1 How can the utility of synthetic data be 
measured? 

 

Literature 
review 

 
 

Definitions, 
evaluation method, 
evaluation metrics, 

evaluation tool 

3;4 

RQ1.2 What is the utility level of the 
“Fusionstrap” framework compared to other 
data synthesis methods (CTGAN and 
SHYNTPOP)?  

 
Experiment 

 
Comparative 

analysis of the 
results 

 

Comparative table of 
the evaluation results 

5;6 

RQ1.3 To what extent does “Fusionstrap” resolve 
class imbalances compared to CTGAN and 
SYNTHPOP? 

Experiment 
 

Comparative 
analysis of the 

results 
 

Comparative table of 
the evaluation results 

5;6 

RQ2.1 How to quantify the disclosure risk of 
synthetic data? 

 

Literature 
review 

 

Definitions, 
evaluation method, 
evaluation metrics, 

evaluation tool 

3;4 

RQ2.2 How well does "Fusionstrap" protect the 
confidentiality of the original data compared to 
other methods (CTGAN and SYNTHPOP)? 

 

Experiment 
 

Comparative 
analysis of the 

results 
 

Comparative table of 
the evaluation results 

5;6 
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2.2 Research methods 
 
As suggested by the standard approach to scientific research [13], this thesis follows four essential steps: 
preliminary research, conceptualization, hypothesis testing, and validation (Figure 1). In the first step, we 
aim to investigate the problem of class imbalances in datasets and focus on the solution of generating 
synthetic data to remedy this problem. The conceptualization stage involves gathering and synthesizing 
relevant knowledge from the literature, including techniques for generating synthetic data, methods for 
handling class imbalances [3], approaching the use of Bootstrap techniques [14] [15], and evaluating 
usability and privacy of the synthetic data [16]. Hypothesis testing consists of applying the “Fusionstrap” 
method to three distinct data sets: the US Census, diabetes prediction, and AIDS cases. In parallel, we will 
use the CTGAN and Synthpop methods to generate synthetic data from the same datasets. Evaluation of 
the quality of the synthetic data generated by each method will focus on utility and confidentiality. The 
usefulness of the synthetic data will be measured by analyzing appropriate metrics, in accordance with the 
specialized literature. In addition, we will assess the disclosure risk of synthetic data to quantify the level 
of privacy provided by each method. The final stage consists in the validation of the results, with the 
formulation of conclusions regarding the performance of the "Fusionstrap" method in the generation of 
synthetic data and in the management of class imbalances. For this purpose, we will compare the results 
obtained by the "Fusionstrap" method with those obtained by the CTGAN and Synthpop methods and 
evaluate whether "Fusionstrap" can provide a better and more realistic solution for synthetic data 
generation that combines data utility and privacy. 
 
In the first and second stages, a thorough literature research will be conducted to understand the context 
of synthetic data generation as a solution for solving class imbalances in data and to develop a solid 
theoretical foundation. Stages three and four will consist of the practical part of the research, where 
experiments will be carried out to evaluate the performance of the "Fusionstrap" method to generate 
synthetic data and to solve class imbalances. Throughout this process, special attention will be paid to 
ensuring the validity of the results by identifying and addressing potential threats to it. 
 

2.2.1 Literature review approach 
 
In order to gain a comprehensive perspective on the field of synthetic data generation and class imbalance 
resolution, we will conduct a multivocal literary review (MLR). This approach entails broadening the scope 
of the systematic literature review (SLR) by encompassing gray literature in the search, in addition to the 
inclusion of published scientific literature [17]. The implementation of MLR will enable us to discern the 
existing knowledge on the subject and pinpoint areas that necessitate further investigation in our study. 

 
To analyze the scientific literature, we will follow the following guidelines [18]: 

• Search strategy: Our search strategy will involve using high-quality academic resources to gather 
information relevant to our research. We will access prestigious scientific databases, such as IEEE 
Xplore, PubMed, Google Scholar, Mendeley and ResearchGate, to identify scientific articles, 
journals, and conference proceedings relevant to generating synthetic data, handling class 
imbalances, and evaluating data utility and data privacy. We will also use the digital libraries of 
prestigious universities such as Harvard University, MIT (Massachusetts Institute of Technology) 
and Utrecht University to access relevant doctoral theses and research papers. Through this 
approach, we ensure that we have access to the most recent and authoritative information in our 
research field. Key search terms will be derived from the research questions and the specific 
context of our topic. We will use keywords such as "synthetic data generation", "class imbalance 
management", "bootstrap", "data utility evaluation methods" and "synthetic data privacy". 
• Snowball method: We will also snowball forward and backward to identify additional relevant 
sources. This method involves identifying sources from the bibliography of relevant articles to 
obtain more detailed information and to discover other important works in our research field. 

The review of existing literature will establish a robust basis for comprehending the present state of 
research in the domain of synthesizing data and handling class imbalance. This comprehensive examination 
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will enable the identification of current methods and techniques, along with their associated challenges 
and limitations. Additionally, it will pinpoint specific areas where our proposed method can effectively 
tackle class imbalance issues, generating synthetic data of superior quality and utility for machine learning 
models. 

 

2.2.2 Experimental Research Methods 
 
The experimental stage tests the hypothesis that “Fusionstrap”, the method proposed in this thesis, can be 
successfully used to generate synthetic data. This endeavor aims to provide a new perspective on synthetic 
data generation and demonstrate the utility and effectiveness of this approach in addressing class 
imbalances and maintaining data privacy. 

 
To perform the experiment, we will follow the following steps: 

• Selection of data sets and research design: We will choose three distinct data sets to evaluate the 
effectiveness of the Fusionstrap method in various contexts. This selection will be done carefully to 
ensure their representativeness and relevance in the fields studied. We will use a pre-experimental 
step to investigate how Fusionstrap can successfully address class imbalances in these datasets. 

• Synthetic data generation and real data analysis: We will apply the “Fusionstrap” method on each data 
set to generate synthetic data. In parallel, we will perform analysis of real datasets to identify class 
imbalances and privacy vulnerabilities. This real data will serve as a benchmark for evaluating the 
usefulness and privacy of the synthetic data generated by "Fusionstrap". 

• Assessing the usefulness and privacy of synthetic data: We will utilize different approaches to assess 
the effectiveness of synthetic data, drawing comparisons with both authentic data and data produced 
by alternative methods such as CTGAN and SYNTHPOP. Additionally, we will quantify the confidentiality 
level of the synthetic data and identify potential risks linked to information disclosure. 

• Comparison of results: The results obtained by applying the "Fusionstrap" method will be compared 
with those obtained by using other synthetic data generation methods. We will analyze the 
performance of our method in resolving class imbalances and maintaining confidentiality to objectively 
evaluate the contribution of this research to the field of synthetic data generation. Also, to assess the 
usefulness of the synthetic data and to frame the experiment in a wider scientific context, we will 
compare the results obtained in the evaluation of two statistics from the AIDS data set with the results 
obtained by other researchers who have generated synthetic data using a method called "Avatar" on 
the same AIDS data set. This comparative analysis will enable a thorough evaluation of the 
"Fusionstrap" method, placing it in context alongside other established approaches to synthetic data 
generation. 

 
Overall, this experimental process will provide robust data and relevant results to answer our research 
questions and make a significant contribution to the field of synthetic data generation with a focus on 
managing class imbalances and ensuring data privacy. 
 
Summary: 
In this research, we will combine a literature review with an extensive experiment to gain a comprehensive 
insight into addressing the class imbalance problem through the “Fusionstrap” method and to validate its 
contribution to the field of synthetic data generation. 
The following chapter delves into the findings of the comprehensive review of scientific and related 
literature, which served as a crucial step in identifying and understanding the research problem at hand. 
This chapter aims to explore the existing body of knowledge and research in the field, providing valuable 
insights and context for the subsequent chapters. 
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2.3 Validity evaluation 
 
In any scientific research, it is imperative to assess and address potential threats to the validity of the 
results. These threats can affect the quality, relevance and credibility of research, jeopardizing its validity. 
Within this context, we have identified and categorized potential challenges to the validity of our research 
thesis. This section provides a comprehensive analysis of these threats, classified into three main 
categories: internal threats, external threats, and conclusion threats, each with specific subcategories and 
outlined strategies employed for their treatment and management, thereby ensuring the validity of our 
research. 
 
Internal validity: 

1. Data Quality: The underlying data may contain errors or inaccuracies that distort the results. Using 
incorrect data may lead to wrong conclusions. To mitigate this problem, data cleaning has been 
performed to minimize errors and uncertainties. Cleaned dataset verification and validation were 
prioritized, by adding a statistical comparison after replacing missing values. 

2. Choice of Metrics and Parameters: Subjectivity may arise in the choice of evaluation metrics and 
specific parameters for analysis. To mitigate this threat, we have selected objective metrics and 
documented decisions related to metrics to make them transparent. 

3. Methodological Limitations: Specific limitations of the method used may influence validity. To 
address this issue, we have been transparent about the method and approach used, presenting 
the limitations openly. 

4. Threat of Subjectivity: Subjective interpretation of results can be an internal threat. To address it, 
we used objective methods and techniques and ensured a rigorous discussion of results to avoid 
subjectivism. 

 
External validity: 

1. Size of the Data Set: The size of the data set used in the research may be insufficient to properly 
represent the entire population or to generalize the results to other data sets. Also, the relative 
size of the data set can influence the results. Using an insufficiently large or inappropriate data set 
can lead to inaccurate results or unrepresentative conclusions. To manage this threat, we selected 
three varied data sets, including adult census datasets, a diabetes prognostic dataset and an 
HIV/AIDS dataset, covering a wide range of sizes from 40,000 records to 2,000 records. This 
diversity of dataset sizes allowed us to evaluate and compare results across a diverse spectrum of 
contexts. Thus, we ensured that our research provides a comprehensive and generalizable picture 
of the issues addressed. 

2. Generalization of Results: There is the threat of generalization of results to other domains or 
contexts, which is an external threat. To mitigate this problem, care was taken to explicitly mention 
the specific context of the study and possible limitations in generalizability. 

3. Impact of Algorithms: The choice and configuration of algorithms can affect validity in an external 
context. To address this threat, transparency was ensured regarding the algorithms and 
parameters used, thus facilitating replication and validation of the study in other settings. 

 
Conclusion validity: 

1. Reproducibility of the Study: To ensure the validity of the conclusion, attention was paid to the 
reproducibility of the study. Full details of the methods and procedures used were documented to 
enable other researchers to replicate and validate the findings in different contexts.  

2. Consistency with Initial Objectives: The validity of the conclusion was assessed against the original 
objectives of the research. Any significant deviation of the results was explained and justified in 
relative to the direction and purpose of the study.  

3. Relevance in the General Context: To ensure the external validity of the conclusion, emphasis was 
placed on the relevance of the results in a wider context. The applicability and significance of the 
findings in similar or different contexts were considered. 
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4. Consistency with Existing Literature: The validity of the conclusion was strengthened by examining 
the coherence and consistency of the results with existing literature and research in the field. 

5. Adjustment for Limitations: Limitations of the study were acknowledged and addressed in the 
context of the conclusions. Necessary adjustments or clarifications were made to account for the 
possible influences of these limitations on the validity of the conclusions. 
 

These internal, external and conclusion threats were addressed by taking appropriate preventive measures 
and ensuring detailed documentation of the research process. Attention was also paid to the limitations of 
the study, thus helping to strengthen the validity of the results. 
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Chapter 3  
Theoretical Background 
 
This chapter aims to analyze and present the essential conceptual framework for understanding our 
research. In this context, we will carefully review the literature relevant to our research area, exploring 
previous studies and research that address similar topics and that can provide context and support for our 
scientific objectives. 
To identify the scientific pieces of information needed for the research, we mainly used Google Scholar, a 
search engine known for its ability to provide a diverse range of relevant articles. To minimize the potential 
limitations of relying on a single source, we also used other metadata services such as Mendeley. Mendeley 
brings into consideration readers' preferences, thereby providing a more comprehensive perspective on 
potential references for systematic literature reviews. 
In order to precisely direct the source selection process in accordance with the objectives and the specific 
research area of this thesis, we applied the following criteria: 

• We prioritized sources written in English, as this was essential to ensure the accessibility and 
quality of the research information.  

• To ensure that we have the most recent information in the field, we focused especially on sources 
published after 2005. However, an exception was made for older sources that had relevance to our 
research field.  

• We examined whether the sources provided information that directly answered one of our 
research questions. Each source was evaluated for its relevance to our proposed method, 
"Fusionstrap", and our research objectives. Sources that addressed or supported the key principles, 
techniques, or concepts underlying "Fusionstrap" were included. This was an essential step to build 
a solid theoretical basis for the development and evaluation of our method.  

• Sources that directly correlate with our experiments have also been selected. This included sources 
that used the same data sets or addressed similar issues of class imbalance and generated synthetic 
data so that we could compare and contextualize our results. 

 
In total, we analyzed 95 sources as part of our literary research. Of these, 20 sources focused on issues 
related to class imbalances, 5 sources addressed other methods of generating synthetic data, and 25 
sources covered Bootstrap concepts. We also scrutinized 28 sources that discussed data utility issues and 
17 sources that addressed data privacy issues. Of the 95 sources examined, 8 of them also included gray 
literature, which implies that we consulted various websites and platforms to gain a comprehensive 
perspective on the research topic. 
 
Figure 2 schematically shows the structure of this section. It will explore issues related to class imbalances 
in datasets (Section 3.1), detail the concept of Bootstrap and its role in data analysis (Section 3.2), and 
provide a synthetic overview of two established methods for generating synthesis data, such as CTGAN and 
Synthpop (Section 3.3). In addition, concepts of data utility will be investigated (Section 3.4) and the issue 
of privacy of synthetic data will be examined in detail (Section 3.5). Through these analyzes and 
presentations, we aim to build a solid theoretical foundation for the development of our research, 
highlighting the key principles and concepts needed to explore the field and address our scientific goals. 
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Figure 2  
Schematic theoretical background 
 

 
 
 

3.1. Class imbalances 
 
Class imbalances are a common problem encountered in datasets, where the distribution of classes is 
uneven, with some classes having significantly more examples than others. This discrepancy in the number 
of examples can significantly affect the performance of machine learning and data analysis models [19]. 
 

3.1.1 Causes and consequences of class imbalances 
 
The causes of class imbalances can be varied and depend on the scope. Some of the common causes 
include: 

• Rarity of events: In some domains rare events may be underrepresented in datasets. This can be 
the cause of significant class imbalances, as rare events are naturally less common. Maalouf Maher 
and Theodore B. Trafalis [20] emphasize the importance of sparse data in areas where such events 
can have a significant impact, such as fraud detection, medical diagnosis for rare diseases, or 
prediction of rare events such as major accidents. It also highlights the challenges of machine 
learning in the presence of sparse data, such as poor performance of models due to 
underrepresentation of minor classes, overlearning, and inaccurate classification results. In 
addition, it emphasizes the need to develop appropriate methods and approaches to obtain 
accurate and relevant results in the case of these unbalanced datasets and presents various 
approaches and techniques used to deal with sparse data, including subsampling, instance overlap, 
and generation of synthetic data. 
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• Biased Sampling: Data collection methods may be subject to choices that lead to incorrect 
representation of classes. Sampling bias occurs when the sampling of data is not representative of 
the entire population, which can distort the results of the analysis. For example, in medical studies, 
patients with severe symptoms may be more likely to be included in the data set, resulting in a 
majority class of patients with severe symptoms and a minority class of patients with milder 
symptoms. Sampling error and class imbalance have the potential to impact the performance of 
logistic regression models, resulting in imprecise estimates and inaccurate, uninterpretable results 
[21]. To address these issues and obtain accurate and robust estimates of logistic model 
parameters, weighted sampling methods and synthetic data generation techniques can be used 
[21]. 

• Labeling errors: In large and complex data sets, there is a possibility of labeling errors or confusions, 
which can affect the correct proportion of classes in the data set. These errors or confusions can 
occur for a number of reasons, such as human error in the labeling process, inaccurate automatic 
labeling, or ambiguities in the definition of classes. The impact of labeling errors can be significant 
and lead to distortion of the correct distribution of classes in the data set. This can negatively affect 
the performance of machine learning models leading to incorrect and unreliable results, as well as 
a lack of generalization in the classification and prediction of new data, as models can be trained 
to learn from errors based on wrong labels [22]. Therefore, identifying and solving labeling errors 
in the data preprocessing stage can have a significant impact on the quality and generalization of 
machine learning models in the face of new data. 
 

3.1.2 Approaches and methods for solving class imbalances 
 
Addressing and resolving class imbalances are crucial aspects in handling data sets characterized by 
unequal class distributions. There are multiple techniques and methods used to address this problem and 
ensure a fair and accurate classification or prediction. One of the most common approaches to resolving 
class imbalances is dataset rebalancing [25]. This involves adjusting the distribution of classes in the data 
set to achieve greater balance. There are four main methods of rebalancing: 
 
3.1.2.1. Oversampling 
 
Oversampling is a method used to deal with class imbalances by adding new instances of minor classes 
until the number of instances in each class becomes balanced. This approach has the advantage of keeping 
all the data in the minority class, but may increase the risk of overfitting and learning noise in the dataset. 
SMOTE (Synthetic Minority Over-sampling Technique) [23] is a popular oversampling technique that 
generates new synthetic examples for the minority class by interpolating between existing neighbors. The 
process involves randomly selecting an example from the minority class and identifying its k nearest 
neighbors. Then, two points are randomly chosen from this group and their weighted average is calculated. 
This weighted average represents a synthetic sample that is added to the data set. 
ADASYN (Adaptive Synthetic Sampling) [24] is a variant of the SMOTE method that adjusts the degree of 
oversampling according to the classification difficulty of each example in the minority class. Hence, ADASYN 
produces a greater number of synthetic examples for instances in the minority class that pose a more 
challenging classification task, while generating fewer examples for those that are easier to classify. 
Random Oversampling is a simple oversampling technique that consists of randomly copying samples from 
the minority class until balance between classes is reached. This method can be easily applied, but can lead 
to overfitting and increased variance in the data set [25]. 
These oversampling techniques can be used individually or in combination to obtain a balanced data set. 
 
3.1.2.2 Under-sampling 
  
Under-sampling is an approach to dealing with class imbalances by randomly or strategically removing 
examples from the majority class so as to obtain a data set with more balanced proportions between 
classes. Among the under-sampling methods are: 
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• Random Under-sampling: This technique entails randomly eliminating some instances from the 
majority class to address class imbalances. Nonetheless, a drawback of this approach is the potential 
loss of crucial information from the majority class, which can impact the model's performance [29]. 

• Tomek Links: This method involves identifying the pairs of examples from the majority and minority 
classes that are closest to each other. Then, examples from the majority class that pair with examples 
from the minority class are removed. This removes only those examples that are in the conflict zone 
between the two classes, which can lead to better separation of classes and improved model 
performance [30]. 

• Edited Nearest Neighbors (ENN): This technique entails examining the nearest neighbors for each 
sample within the dataset. Instances in the majority class that predominantly have neighbors from the 
majority class will be eliminated. In essence, ENN removes those instances from the majority class that 
are deemed to be in close proximity to the minority class. This process aids in balancing the class 
proportions and enhancing the performance of the model [31]. 
 

3.1.2.3 Methods based on cost-sensitive learning 
 
Methods based on cost-sensitive learning are approaches that focus on handling class imbalance by 
assigning different costs to major and minor class classification errors. These methods put more emphasis 
on correctly classifying minor classes, and their classification errors are penalized more than those of major 
classes. Their goal is to encourage machine learning models to pay more attention to smaller classes to 
achieve more balanced and accurate results. There are several techniques and algorithms that can be used 
to implement cost-sensitive learning. Some of these include: 

• Cost-sensitive decision trees: These are variants of decision trees that take into account the different 
costs for correctly and incorrectly classifying classes. Examples of such methods include Cost-Sensitive 
C4.5 and Cost-Sensitive Random Forests [26]. 

• Cost-sensitive support vector machines (SVM): In this case, the cost function is optimized to obtain a 
decision boundary that minimizes cost-sensitive classification errors. Some examples of such methods 
are Weighted SVM and SVM with asymmetric penalty [27]. 

• Cost-sensitive logistic regression: This is a variant of logistic regression that uses cost matrices to modify 
the cost function and treat the correct classification of minor classes more carefully [28]. 

 
3.1.2.4 Stratified Bootstrap 
 
The stratified bootstrap is a method used to solve class imbalances, being applied both as an oversampling 
method, by stratified resampling in each class to obtain a synthetic data set balanced in terms of class 
distribution, and as an under-sampling method, by strategic or random removal of examples from the 
majority class to achieve class balance [32], [33].  
Pertami J. Kunz and Abdelhak M. Zoubir explore the use of the stratified Bootstrap method in the context 
of training a tampered food detector [34]. In this paper, the authors focus on the detection and resolution 
of class imbalances in the dataset, so that the detector is able to accurately recognize adulterated foods 
and minimize the risk of classification errors. The dataset used in the paper shows class imbalances, where 
classes representing adulterated foods are underrepresented compared to classes representing 
unadulterated foods. To overcome these imbalances, the authors propose the use of the stratified 
Bootstrap method, which allows resampling based on data heterogeneity layers [34]. This approach 
ensures that the proportions between classes are balanced in bootstrap-generated datasets. The 
experimental findings demonstrate a notable enhancement in the performance of the adulterated food 
detector due to the implementation of the Stratified Bootstrap method. By using this method, a more 
accurate classification of adulterated foods was obtained, minimizing the risk of errors and false positives 
[34]. 
“Fusionstrap” generates synthetic data by approaching a hybrid algorithm based on Stratified Bootstrap 
and Gaussian Copula Synthesizer. Chapter 4 includes a detailed description of this method. 
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3.2. Bootstrap concept 
 
In this section, we will investigate in detail the fundamental concept of Bootstrap, an essential method in 
data analysis, how it is applied in research, and examine both its benefits and limitations. 
 

3.2.1 Definition and rationale for using Bootstrap in data analysis 
 
Bootstrap is a statistical resampling method used to estimate probability distributions and statistics of a 
data set. It was introduced by Efron in 1979 as a technique for obtaining robust estimates in data analysis 
[35]. The main idea behind Bootstrap is to estimate the sampling distribution by repeating sampling with 
replacement from the original data set, thereby obtaining multiple bootstrapped samples [36]. These 
bootstrapped samples are then used to compute the statistics of interest and to estimate the confidence 
interval of these statistics [37]. 
The Bootstrap method offers a straightforward and potent technique for estimating probability 
distributions and statistics, alleviating the necessity to make assumptions about the underlying data 
distribution [36]. Its utility becomes particularly apparent when the distribution of the data is either 
unknown or defies description through conventional statistical methods [38]. Through iterative sampling 
with replacement, Bootstrap effectively captures the inherent variability in the data, resulting in robust 
estimations of the outcomes [37]. 
 

3.2.2. Bootstrap's base method 
 
The basic Bootstrap method, originally proposed by Bradley Efron in 1979, is a statistical technique used to 
estimate the probability distribution of a sampling statistic [35]. It has been and is frequently used in data 
analysis and statistical inference [36]. The Bootstrap algorithm highlights two fundamental components: 
Resampling and Bootstrap statistical estimation (Figure 3). 
 
3.2.2.1 Resampling procedure 
 
The Bootstrap resampling procedure has the following key features: 

• Sampling with replacement: This method involves resampling a single original data set, whether it 
represents a population (Step 1 in Figure 3) or a representative sample from that population (Step 2 
in Figure 3) thus obtaining several bootstrap samples (Step 3 in Figure 3). When drawing elements 
from the original sample to form the re-sampling samples, each element is replaced in the original 
sample before drawing. The bootstrap method assigns an equal probability to the random selection of 
each data point from the original sample, ensuring their inclusion in the resampled datasets. As a result, 
some records will be sampled multiple times in bootstrap samples, while others will not be sampled at 
all. This property defines the "with replacement" expression of the process [39]. 

• Bootstrap sample size: The process generates resampled datasets matching the size of the original 
dataset, comprising diverse combinations of values. This occurs as each sample involves drawing with 
replacement from the original sample. Each simulated dataset possesses a distinct set of descriptive 
statistics, including mean, median, variance, and standard deviation [40], [41]. 

• Number of Bootstrap Samples: The number of bootstrap samples is a crucial component in the 
resampling process and is chosen to ensure an accurate estimate of the probability distribution. The 
theoretical minimum number of bootstrap samples can vary and is generally determined by the need 
to cover a representative range of the underlying distribution. Although Efron and Tibshirani [40] 
mention 25 samples as a possible value, in practice this theoretical minimum can be influenced by the 
size of the data set and the degree of variability in the data. The theoretical maximum number of 
bootstrap samples is a more flexible concept and may depend on available resources, computing time, 
and desired accuracy. Usually, in the literature [42], it is recommended to use several hundred or even 
thousands of samples to obtain results close to the ideal bootstrap. However, there is always a trade-
off between a theoretical maximum number and a practical one, since a larger number of samples 
implies an increased computational cost. 
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3.2.2.2 Estimation of distributions and statistics by Bootstrap 
 
The basic Bootstrap technique has become a popular method of statistical inference due to its ability to 
estimate probability distributions and allow confidence intervals to be obtained without the need for 
assumptions about the distribution of the data [42], [43]. 
Bootstrap statistical estimation is a nonparametric method of estimating the distribution of a statistic of 
interest using repeated resampling of samples from a data set. This procedure entails creating an extensive 
set of bootstrap samples through the random selection of data with replacement from the original dataset, 
followed by the computation of the desired statistics for each sample. Resampling in this manner proves 
valuable when the precise shape of the population distribution is uncertain and when the sample size is 
constrained. It is a robust and non-parametric technique that can be applied to estimate parameters and 
statistics in various research fields [40], [42]. Most commonly, these include the standard error and 
variance of a population parameter (e.g., a mean, median, correlation coefficient, or regression coefficient) 
[53]. 
Distribution estimation entails assessing data acquired through resampling to create approximations of the 
distribution. Utilizing the samples obtained through resampling, calculations for estimates of the statistic 
of interest (such as mean, median, standard deviation) can be performed (Step 4 in Figure 3) and 
confidence intervals for these estimates can be obtained [41], [42]. These statistics provide estimates of 
the distribution. To assess the variability of these estimates, a distribution of the respective statistics is 
constructed, providing insight into how these estimates may vary across different samples. It is essential 
to highlight that this procedure constitutes a core element of the Bootstrap method, grounded in the 
concept that estimates derived from the resulting samples frequently exhibit a Gaussian distribution [45]. 
Bootstrap essentially treats the sample as if it were the entire population. 
 
Figure 3 
The steps of the nonparametric bootstrapping process  

 
Note. From [44] 
 
For the correct application and interpretation of the Bootstrap method and, finally, for obtaining valid 
conclusions in the analysis of the results, we will further define the concepts of population, sample, 
parameters, statistics and statistical inference. 
 
Definition 1 (Population). In statistical terms, a population refers to the total number of statistical units 
(individuals, objects, events) that share at least one common characteristic and are the focus of interest 
for a statistical analysis [46]. The population can refer to a set of units that either currently exists or is a 
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conceptual group. For example, a sample population might include all students attending a school at the 
time of data collection. The data collection process involves gathering information from each of these 
students, depending on the research objectives (Figure 4). 
 
Definition 2 (Sample). The sample constitutes an ostensibly representative subset of a population chosen 
through a specified procedure [46]. For example, a sample may be a random subset of 20 students selected 
from the population for data collection (Figure 4). In statistical testing, a sample is employed when the size 
of the population is impractical for all members or observations to be included in the test. The outcomes 
derived from a representative sample participating in a study can be extrapolated to make generalizations 
about the entire population. 
 
Figure 4 
Sample from a population 

 
 
Definition 3 (Parameter vs. Statistics).  A parameter is a numerical representation characterizing an entire 
population, such as the population average. Conversely, a statistic is a numerical representation 
characterizing a sample, like the sample average [52]. Examples of common parameters of the population 
of interest and the corresponding sample statistics can be: 
 
Table 2 
Parameter vs. Statistics 

 

Quantity Parameter Statistics 

Mean μ x  ̄

Variance σ2 s2 

Standard deviation σ s 

Proportion p p^ 

 
One of the “statistics” of the sampler can also be called “an estimator”. As an illustration, the sample mean 
x  ̄serves as an approximation of the population average. An estimator (T) is a function of random variables, 
and therefore, it is itself a random variable, which provides a way to estimate T for the entire population. 
A star next to a statistic, such as T* (e.g., s* or x̄*), indicates that the statistic was calculated by re-sampling. 
 
Definition 4 (statistics). A statistic is a function of observable random variables, determined by a probability 
distribution without any unspecified parameters, as indicated in reference [47]. 
 
Definition 5 (statistical inference). Statistical inference is defined as the procedure for analyzing the result 
and making decisions about the parameters of a population resulting from random sampling. Statistical 
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inference aims to gauge the uncertainty or variability across different samples [47]. This process commonly 
leans on the sampling distribution and the standard error of the characteristic under consideration. 
 
Definition 6 (Variance and Bias): Variance is the measure of dispersion or difference between individual 
values and the mean of a data set, and low variance estimators are preferred because they have greater 
stability and provide more accurate estimates of population parameters. Concurrently, bias denotes the 
systematic disparity between the estimated mean value and the true value of the population parameter, 
potentially manifesting in certain estimates [56]. 
Bootstrap methods can help us estimate the variance and quantify the bias associated with a sample-based 
statistic [54]. By re-sampling with replacement from the original data set, Bootstrap creates replicas of the 
samples, which allows us to obtain an approximation of the distribution of the respective statistic and 
assess its variability [56]. This allows us to obtain an approximation of the distribution of the statistic and 
calculate the standard errors associated with our estimates [55]. We can also assess the variability of the 
results and construct confidence intervals to indicate the level of uncertainty of our estimates [51]. To form 
a confidence interval, it is necessary to measure the variability of the initial sample statistic. For instance, 
when determining a confidence interval for the population mean, it is crucial to estimate the expected 
variation of the sample mean across different samples. Bootstrap can provide an estimate of this variability 
by generating multiple samples and evaluating the dispersion of the statistic based on them [54]. 
 
For a data set with n values (x₁, x₂, ..., xₙ), the variant is calculated in several steps: 

1. The average (x̄) of the data set is calculated: x ̄= (x₁ + x₂ + ... + xₙ) / n 
2. Calculate the difference between each value and the mean: (x₁ - x̄), (x₂ - x̄), ..., (xₙ - x̄) 
3. Square each difference: (x₁ - x̄)², (x₂ - x̄)², ..., (xₙ - x̄)²  
4. The average of the squares of the differences is calculated: Var = [(x₁ - x)̄² + (x₂ - x)̄² + ... + (xₙ - x̄)²] 

/ n 
Variance is a metric that quantifies the spread or deviation of data points within a dataset in relation to its 
mean. The larger the variance, the more dispersed the individual values in the data set are and deviate 
significantly from the set mean. This dispersion indicates increased heterogeneity in the data, suggesting 
that it may cover a wide range of values. Conversely, with a smaller variance, individual values tend to be 
closer to the mean of the dataset. In this scenario, the data is perceived as more homogeneous, signifying 
that the majority or all of the values in the set cluster around the mean. A lower variance level may indicate 
a more uniform distribution in the data. 
 
Definition 7 (standard error). The standard error (SE) quantifies the spread or deviation of a statistical 
estimate from the mean value of that estimate [36]. It indicates the precision of a statistical sample and 
mirrors the variability among the estimates we would derive if we repeatedly sampled the population. In 
essence, it quantifies how much our estimate deviates from the true mean value of the characteristic or 
parameter we aim to estimate. 
Although conventional approaches are deemed sufficient for computing the standard error of a sample 
statistic, the bootstrapping method employs a replacement technique, generating multiple standard error 
values that collectively represent the mean SE [40]. As an illustration, when estimating the standard error 
of the mean using Bootstrap (Figure 5), the process involves computing the mean for each bootstrap 
sample, determining the mean of the initial sample, and subsequently calculating the variance of the means 
obtained in these steps to estimate the variance of the sample mean [40]. The standard error of the sample 
mean is then derived as the square root of the variance obtained in the preceding step. This methodology 
provides a means to gauge the accuracy of the sample mean as an approximation of the population mean. 
A smaller standard error indicates a more precise estimate of the population mean. 
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Figure 5 
Algorithm for estimated standard error of a statistic 

 
Note. From [40, p. 48] 
 
The bootstrap simulation error, which measures the disparity between the actual distribution and the 
estimated distribution, encompasses two distinct errors originating from separate sources: a bootstrap 
(statistical) error and a simulation (Monte Carlo) error, as expounded by Zoubir A. M. and Iskandler D. R. 
[54]. The authors contend that the first error is inevitable and is independent of the number of Bootstrap 
samples (B), but it may be contingent on the size (n) of the original sample. On the other hand, the second 
error can be mitigated by augmenting the number of bootstrap samples. Consequently, the objective is to 
select an appropriate value for B, ensuring that the simulation (Monte Carlo) error does not surpass the 
bootstrap error. Nonetheless, as the original data size (n) increases, the bootstrap error tends to decrease. 
Scientific studies have determined that the general guideline of selecting B = 40n, as suggested by Davison 
and Hinkley [36], is suitable in numerous contexts. Additionally, the jackknife-after-bootstrap method [55] 
offers a means to evaluate the impact of each error, such as bootstrap error versus Monte Carlo error. In 
real-world applications, the choice of B depends on the specific context and is left to the experimenter's 
judgment. 
 
Definition 8 (distribution function). The distribution function (F) describes how the units are distributed in 
a population/sample, i.e., it indicates the probability (frequency) with which a random variable takes a 
certain value [51]. Through an examination of the statistics derived from the Bootstrap samples, we 
estimate the probability distribution of the statistic of interest (Figure 6). This distribution captures the 
uncertainty inherent in estimating the statistic based on the original sample. 
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Figure 6 
Diagram of the bootstrap as it applies to one-sample problems 

 

 
 Note. From [40, p. 87] 
 
Typically, a random variable is denoted by capital letters, such as X, representing a potential value that has 
not been realized. The likelihood of attaining a specific value is conveyed through its probability 
distribution. Once a value is observed, a lowercase letter, like x, is employed to differentiate it from the 
yet-to-be-realized random variable X. The observed value is not subject to randomness but signifies an 
actualization of a random variable. Thus, a sample of data drawn from a distribution F will be denoted x1, 
x2, . . ., xn (Figure 7). Likewise, a bootstrap sample is denoted with the "star" notation: x*1, x*2, . . ., x*n. 
This notation closely resembles the convention for representing sample data, typically expressed as: x1, x2, 
. . ., xn (Figure 7). 
The sampling distribution represents a theoretical compilation of all potential estimates that would emerge 
if the population were subjected to repeated resampling (Figure 5). The underlying theory stipulates that, 
given certain conditions such as ample sample sizes, the sampling distribution will approximate normality, 
with the distribution's standard deviation equaling the standard error [48]. Nonetheless, situations arise 
where the sample size is insufficient, or the assumption of a normally distributed theoretical sampling 
distribution is untenable. This complexity hinders the determination of the standard error of the estimate 
and makes drawing meaningful conclusions from the data challenging. Bootstrap has emerged as a valuable 
tool in such scenarios, proving effective in identifying and visualizing the sampling distribution of a statistic 
(e.g., mean) or the parameters of a model (e.g., β1 or AIC in linear regression) [48]. With Bootstrap, the 
sampling distribution is constructed by repeatedly resampling observations N times, each resampled set 
comprising n observations with replacement, rather than relying on theoretical calculations. The sampling 
distribution can simply be observed, and no hypothesis needs to be formulated in advance. The benefit of 
employing multiple re-sampling lies in achieving a more accurate estimate of the sampling distribution. The 
bootstrap distribution, represented in Figure 6, encompasses the distribution of the selected statistic 
derived from each resampling iteration. Ideally, the bootstrap distribution should exhibit a normal 
appearance. If, however, the bootstrap distribution deviates from normality, it raises concerns about the 
reliability of the bootstrap results. The clarity of the distribution typically becomes more evident after 
numerous resampling instances. For instance, as illustrated in Figure 7, the distribution appears indistinct 
with 50 resamples, but becomes more consistently normal with 1000 resamples. 
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Figure 7 
Bootstrap distribution 
 

                                                      
                                             50 resamples                                                     1000 resamples 
 
 
Definition 9 (Confidence interval). Confidence interval estimation is an important component in statistical 
data analysis and plays a crucial role in the interpretation of results. This range of values is an interval that 
encompasses the true value of a statistic of interest with a certain level of confidence, indicating the 
probability of coverage [49]. Typically, the confidence interval is chosen to have a coverage probability of 
95% or 99%. The resulting confidence interval is presented along with the point estimate of the statistic of 
interest. This range provides a measure of the uncertainty associated with the estimate and helps to 
interpret the results in a more robust way. 
Bootstrapping can be used to obtain approximate confidence intervals for certain statistics of interest [50]. 
The bootstrap confidence interval is constructed using the percentiles of the bootstrap distribution to 
establish a range for the parameter of interest [51]. A common method for obtaining an approximately 
100(1-α) percent confidence interval through bootstrapping is the Reflection method, also known as the 
Percentile method [42]. This approach involves extracting the lower 100 percentile (α/2) and the upper 
100(1-α) percentile from the Bootstrap distribution βl^. For instance, to compute a 90% confidence 
interval, one needs to identify the 5th and 95th percentiles, encompassing 90% of the data in between. 
These two percentiles would be the endpoints of our confidence interval. 
In some situations, the sampling distribution resulting from the bootstrap method often does not appear 
to be normal. This is because in nonparametric bootstrapping only certain numbers can be chosen from 
the distribution - those from the original sample. This results in large gaps in the sampling distribution. If 
one were to create a confidence interval based on a normal distribution using this information, the 
assumption of normality would be violated, and the confidence interval would not be correct. Efron [44] 
performed an adjustment of the confidence intervals created by bootstrap methods by introducing bias-
corrected confidence intervals that accounted for the non-normality observed in the estimate of the 
bootstrap sampling distribution. He improved these intervals again in 1987 to create confidence intervals 
for BCa (also known as corrected and adjusted confidence intervals). These adjustments to the original 
method were successful and are still the main methods used today. 
 

3.2.3 Advantages and Disadvantages of the Bootstrap 
 
The Bootstrap method is a powerful and versatile technique used in statistical and inferential analysis. It 
offers numerous advantages as well as some disadvantages that must be considered in its application. 
The advantages of the Bootstrap method include: 
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• Non-parametric flexibility: The Bootstrap method is non-parametric, indicating that it does not 
necessitate specific assumptions about the precise shape of the data distribution. This provides 
flexibility in applying the method to various statistical contexts, being suitable for data with 
unknown or complex distributions. The absence of specific requirements about distribution 
parameters makes Bootstrap adaptable to various types of samples, providing a robust approach. 

• Standard Error Estimates and Confidence Intervals: The Bootstrap method enables the 
computation of standard errors and the construction of confidence intervals for diverse statistics 
derived from the samples. This capability provides essential information for assessing the precision 
of estimates, allowing researchers to quantify the uncertainty associated with the results obtained. 

• Robustness: Bootstrap is recognized for its robustness to outliers in the data. By repeatedly 
resampling the data, the Bootstrap method provides more stable and robust estimates than 
traditional methods, meaning that the results are not heavily influenced by the presence of unusual 
or extreme observations. 

Disadvantages of the Bootstrap method include: 

• Computational cost: For large or complex data, the resampling process can become 
computationally expensive, requiring significant resources to achieve accurate results. 

• Underestimation of variance: In some situations, Bootstrap can underestimate the variance of 
statistics, especially with highly skewed or long-tailed data. 

• Dependence on original data: Bootstrap results can be influenced by the original sample, which can 
lead to misinterpretations if the sample is not representative of the population of interest. 

• Limitations for small sample sizes: For very small samples, the Bootstrap method may provide 
inaccurate or unrepresentative estimates for statistics, limiting its usefulness in certain situations. 

In conclusion, the Bootstrap method is a valuable and efficient technique to estimate standard errors, 
construct confidence intervals, and perform statistical inference without requiring strict assumptions about 
the data distribution. However, we must consider both its advantages and disadvantages in choosing and 
interpreting the results. 
 

3.3 Methods of generating synthetic data 
 
Within the context of addressing class imbalances, a potentially effective strategy involves the creation of 
synthetic data. This approach aims to rectify the class distribution imbalance and enhance the efficacy of 
machine learning algorithms. Two advanced methods for generating this synthetic data are CTGAN 
(Conditional Tabular Generative Adversarial Network) and Synthpop. 

 
3.3.1 Conditional Tabular Generative Adversarial Network (CTGAN) 
 
CTGAN leverages the Generative Adversarial Network (GAN) concept, employing a deep neural network 
architecture comprising two primary components (Figure 8): the generator and the discriminator [57], [58]. 
The generator's objective is to produce synthetic data that closely mimics the patterns observed in the real 
dataset. It achieves this by utilizing a series of random noise vectors and attempting to grasp the probability 
distribution inherent in authentic data, thereby generating synthetic data that exhibits a high degree of 
resemblance to reality [58]. The discriminator serves as a binary classifier, tasked with discerning between 
authentic and synthetic data generated by the generator. Its primary objective is to become adept at 
accurately classifying data and distinguishing synthetic data from genuine instances [58]. During the 
training process of CTGAN (depicted in Figure 8), a confrontation unfolds between the generator and the 
discriminator. The generator's objective is to deceive the discriminator by generating synthetic data that 
closely resembles real data. At the same time, the discriminator tries to get better and better at identifying 
synthetic data [58]. An essential characteristic of CTGAN is its ability to be conditioned on specific features 
or classes within the dataset. This implies the capacity to designate particular classes of interest and 
generate synthetic data in accordance with these specified classes [58]. 
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Figure 8 
 
CTGAN architecture 

 
Note. Adapted from [58, p. 20533] 
 
The advantages of the CTGAN (Conditional Tabular Generative Adversarial Network) method include: 

• CTGAN can generate synthetic data that is highly realistic and resembles real data from the original 
dataset. This improves the quality and credibility of synthetic data. 

• CTGAN can be trained to generate synthetic data taking into account the distribution and 
relationships between variables in the original data set. Thus, it can be ensured that the synthetic 
data preserves the relevant features and correlations. 

CTGAN proves effective in addressing class imbalance by generating synthetic data for minority classes, 
thereby enhancing classifier performance. 
Disadvantages of the CTGAN method include: 

• CTGAN may require a relatively large dataset to operate efficiently and generate relevant and 
representative synthetic data. 

• The training procedure for the CTGAN model can be time-consuming and computationally 
demanding, particularly when dealing with large datasets. 

• As with any generative model, CTGAN can be susceptible to overfitting, which can lead to the 
generation of synthetic data with too much variety that does not adequately reflect the distribution 
of the real data. 

 

3.3.2 Synthpop 
 
Synthpop falls under the category of synthetic data generation methods based on Monte Carlo Markov 
Chain (MCMC) sampling. This method uses a sampling approach to generate synthetic data that respects 
the distribution and characteristics of the original dataset, and the generation process is driven by user-
defined rules and constraints [59], [60]. 
The synthetic data generation process with Synthpop is customizable and takes place in two main steps: 
data preparation and actual synthetic data generation [59], [60]. 
 
Data preparation: 

• In this step, the relevant variables from the original dataset are selected to be used to generate 
the synthetic data. 

• Variables can be numeric or categorical, and Synthpop can handle both types of variables 
efficiently. 

• Associations and correlations among variables are identified to ensure that the intricate structure 
of the original data is retained in the synthetic dataset. 
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Generating synthetic data: 

• Synthpop uses a Monte Carlo Markov Chain (MCMC) sampling approach to generate synthetic 
data. 

• The data generation process is driven by a series of user-defined rules and constraints that control 
the distribution of the synthetic data and preserve important features of the original dataset. 

• For every data point in the original dataset, a synthetic data sample is created using the 
distributions of the pertinent variables and the defined constraints. 

This tailored approach enables the generation of synthetic data that is realistic and relevant for further 
analysis. 
 
Advantages of the Synthpop method include generating synthetic data tailored specifically to the original 
dataset, capturing complex relationships between variables, and control over the distribution of the 
synthetic data. This method is useful in cases where data sets are complex and have important features for 
further analysis. 
Disadvantages of the Synthpop method include longer processing time for large data sets and potential 
overflow, which can affect the quality of the generated synthetic data. 
 

3.4 Evaluation of synthetic data utility 
 
The efficacy of synthetic data pertains to the proximity of synthetically generated data to the authentic 
data within a dataset. In the realm of synthetic data generation, the primary goal is to guarantee that the 
synthetic data retains the attributes and structure inherent in the original dataset. In other words, synthetic 
data must be representative and provide relevant information to support statistical analysis, model 
development, or other decision-making processes. 
Assessing the usefulness of synthetic data is essential to ensure that these data are sufficiently 
representative and accurate to be used in analysis or decision making. When assessing the efficacy of 
synthetic data, various crucial methods and metrics enable the measurement of the compatibility between 
the synthetic dataset and the actual data. Examples include the Hellinger evaluator and correlation 
evaluators. 
 

3.4.1 Hellinger Evaluator 
 
In evaluating the utility of synthetic data, a key aspect is comparing the distributions of the synthetic data 
with those of the real data. Because there can be many variables in a data set, it is difficult to visually 
compare the distributions for each of them. To solve this problem, we can use summary statistical 
measures such as the Hellinger distance. 
The Hellinger distance serves as a similarity metric employed for comparing two probability distributions. 
It revolves around the concept of computing a distance between the square roots of the probabilities within 
the two distributions, offering a quantification of the degree of similarity between them [61]. When 
considering two discrete probability distributions P = (p1, . . ., pk) and Q = (q1, . . ., qk), the Hellinger distance 
H(P, Q) is defined as: 

 
where: 

• H(p,q) represents the Hellinger distance between the distributions 

• pi and qi are the probabilities associated with the values i from the two distributions. 

• the sum is calculated for all possible values i from the two distributions 
 

The major advantage of this metric is that it is limited and easy to interpret. The Hellinger distance is a 
probabilistic metric that spans from 0 to 1. A value approaching 0 implies high similarity between the 
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synthetic data and the real data, whereas a value nearing 1 signifies substantial disparities between the 
two distributions [61]. Regarding the generation of synthetic data, the Hellinger distance can be employed 
to evaluate the alignment between the distribution of synthetic data and that of real data. This aids in 
gauging the utility of synthetic data in comparison to the original dataset. 
 

3.4.2 Correlation Evaluators 
 
In assessing the efficacy of synthetic data, it is crucial to employ robust and informative metrics that gauge 
the congruence between the distribution of synthetic data and that of the real data. In this regard, metrics 
such as Pearson's coefficient, correlation ratio, and Cramer's V index are meaningful tools to assess the 
degree of similarity between synthetic and authentic data. These metrics provide clear and quantifiable 
insight into the effectiveness of synthetic data generation and can support informed decision-making 
regarding its use in further analysis. 
 
3.4.2.1 Pearson Correlation Coefficient 
 
The Pearson coefficient gauges the strength and direction of the linear relationship between two 
continuous variables [62]. A continuous variable can take any numerical value in a given range or the entire 
range of real numbers. These variables may encompass an infinite range of potential values (e.g., a person's 
age, height, weight, or temperature). Put differently, the Pearson Coefficient delineates the extent of linear 
correlation between two quantitative variables, constituting a numerical-to-numerical evaluation. This 
coefficient ranges from -1 to 1. A value approaching 1 signifies a robust positive correlation, a value nearing 
-1 indicates a strong negative correlation, and a value near 0 suggests a weak or negligible correlation 
between variables (Table 3) [62]. A robust negative correlation signifies a tight and inversely proportional 
connection between two variables. Simply put, when one variable increases, the other consistently 
decreases. For example, if we consider the variable "outdoor temperature" and the variable "electricity 
consumption for heating", a strong negative correlation would mean that when the outdoor temperature 
increases, the electricity consumption for heating decreases significantly and vice versa. 
 
Table 3 
Interpretation of Pearson coefficient values [62] 
 

Pearson correlation coefficient (r) value Strength Direction 

Greater than .5 Strong Positive 

Between .3 and .5 Moderate Positive 

Between 0 and .3 Weak Positive 

0 None None 

Between 0 and –.3 Weak Negative 

Between –.3 and –.5 Moderate Negative 

Less than –.5 Strong Negative 

 
 
In the context of generating synthetic data, evaluating Pearson correlation coefficient values can help 
determine how well the linear relationships between variables from the original data sets are preserved in 
the synthetic data [63]. If the values are consistent and similar, this increases confidence in the usefulness 
of the synthetic data in further analyzes and models. 
To evaluate the preservation of relationships between variables in synthetic data using the Pearson 
correlation coefficient, a potential method involves calculating the Pearson coefficient for pairs of variables 
in both the original and synthetic datasets. Subsequently, a comparison of the Pearson correlation 
coefficient values for each variable pair between the original and synthetic data can be made. If the 
correlation coefficient values exhibit general similarity or proximity between the two datasets, it suggests 
that the linear relationships between the variables are maintained in the synthetic data. 
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Visual methods such as heat-maps can be used for this comparison [63]. If the heat map shows that the 
structure of the correlations is similar between the original and the synthetic data, this is a positive 
indication that the relationships between the variables are preserved. An alternative interpretation of the 
Pearson correlation coefficient (r) is as a gauge of how closely the observations align with a line of best fit 
[63]. Additionally, the Pearson correlation coefficient indicates whether the slope of the line of best fit is 
positive (Figure 9a) or negative (Figure 9b). In instances where the slope is negative, r takes a negative 
value, while in cases of a positive slope, r assumes a positive value. When r equals 1 or –1, all data points 
precisely lie on the line of best fit (Figure 9, a and b). Conversely, when r is 0, a line of best fit becomes 
ineffective in describing the relationship between the variables (Figure 10). 
 

                      
                         a                                                     b 
  Figure 9:  Line of best match                                                          Figure 10: No correlation between  variables  
3.4.2.2 Cramer's V Correlation 
 
Cramer's V is a measure of association or correlation used to assess the relationship between two nominal 
or dichotomous variables [64]. Nominal variables are variables that describe characteristics or attributes 
that can be grouped into discrete categories. These categories have no intrinsic order and are used to 
denote membership in a particular category or group. Examples of such variables are: Gender of a person 
(Male, Female, Other), Marital status (Married, Single, Divorced, Widowed), Favorite color (Red, Blue, 
Green, etc.). Dichotomous variables are a specific type of nominal variables that have exactly two possible 
categories or values. These can represent two-state attributes (e.g., a person's gender can be male or 
female), binary decisions or yes/no responses. 
Cramer's V is based on the chi-square coefficient and provides a way to quantify the strength of association 
between nominal variables by considering the size of the contingency table (the cross-tabulation of the 
frequencies between the two variables) [64]. 
 
To calculate the Cramer's V coefficient, follow these steps [64]: 

• The contingency table is calculated for the two nominal variables. 

• Calculate the chi-square for the contingency table. 

• The minimum number between the number of rows and the number of columns in the contingent 
table is determined. This number is denoted by "k". 

• The Cramer's V coefficient is calculated using the formula: 
 

V = sqrt (X^2 / (n * k)) 
 
Where: 
X is the calculated chi-square value. 
n is the total number of observations. 

 
Cramer’s V correlation ranges from 0 to 1. A value nearing 0 suggests minimal association between 
variables, while a value close to 1 indicates a highly robust pairing (Table 4). 
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Table 4 
Interpretation of Cramer's V coefficient values 

Cramer's V Strength 

.25 or higher Very strong relationship 

.15 to .25 Strong relationship 

.11 to .15 Moderate relationship 

.06 to .10 Weak relationship 

.01 to .05 None or negligible relationship 

 
 
Cramer's V Correlation proves valuable in the context of appraising the effectiveness of synthetic data, 
particularly in assessing whether relationships between nominal variables are maintained in the generated 
synthetic data. This coefficient can provide information about the extent to which the distribution and 
associations between categories remain consistent between real and synthetic data. Assessing the 
association between nominal variables is important as it contributes to understanding how the synthetic 
data manage to capture the essential characteristics of the original data. 
 

3.5 Evaluation of synthetic data privacy 
 
In the increasingly digitized era of data processing, ensuring privacy is a particularly important concern in 
data use, especially when dealing with sensitive and personal data. In the context of generating synthetic 
data, privacy assessment plays a crucial role in ensuring that the resulting synthetic data can faithfully 
reflect the information in the original data without inadvertently revealing the identity or individual 
characteristics of the subjects. In this section, we will explore the data holdout-based evaluation method 
and discuss the use of statistical and detection evaluators to quantify the level of privacy and security 
provided by synthetic data. 
 

3.5.1 Empirical evaluation based on synthetic data holdout 
 
Although the generation of synthetic data has advanced in recent years, adequately evaluating the quality 
of these data remains an important challenge. The holdout data evaluation method serves as a crucial 
technique in statistical analysis for assessing the performance of a model or algorithm on fresh, unseen 
data [65]. This methodology entails dividing the dataset into two distinct parts: a training set, employed 
for constructing the model, and a holdout set, utilized to appraise the model's performance on novel data. 
The process consists of [65]: 

• Data Split: The data set is split into a training set and a retention set with a common ratio such as 
80-20 or 70-30. The larger set is used for training and the smaller set for evaluation. 

• Model Training: The model or algorithm is trained on the training set to learn patterns from the 
data. 

• Performance Evaluation: The model's performance is assessed on the retention set by generating 
predictions and comparing them to the actual values. Common metrics such as accuracy, precision, 
recall, and F1 score are employed to gauge the model's effectiveness. 
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The holdout method represents a nonparametric strategy devoid of explicit models and assumptions. It 
empirically gauges the faithfulness of a synthetic dataset to a designated target dataset by quantifying total 
variation distances (TVD) [66]. 
 
Figure 12 
Constructing the privacy risk measure based on holdout  

 
Note. From [66, p. 7] 
 
For every synthetic record, we ascertain whether its nearest neighbor within the set of T training data is 
closer than the nearest neighbor within the holdout data H. The proportion of records exhibiting a closer 
proximity to training data than to holdout data becomes a metric for evaluating privacy risk. From the 
original dataset, two distinct sets are derived: a T training set, employed for synthetic generation, and an 
H holdout set, reserved without utilization by the generative model. The evaluation of privacy risk involves 
computing individual-level distances to the nearest record concerning the training data, as illustrated in 
Figure 12. Demonstrating that synthetic samples exhibit comparable proximity to both training and 
retained data provides robust evidence that the synthesizer has effectively learned to generalize patterns 
and operates independently of individual training records [66]. 
Total Variation Distance (TVD) is a key concept in probability theory and statistics, quantifying the 
dissimilarity between two probability distributions. It quantifies how far apart two distributions are from 
each other based on the differences in their probabilities assigned to various events or outcomes [67].  
In mathematical terms, when P = (p1, ..., px) and Q = (q1, ..., qx) represent two discrete probability 
distributions, the definition of the total variation distance for countable sets X is outlined as follows: 
 

 
 
Empirically, we should consider every possible event. Then, for each event, the probability assigned to both 
P and Q is calculated. For some events, the probability assigned to P will be higher, and for other events 
the probability assigned to Q will be higher. Then the entire list of events must be examined, and that event 
must be found for which the two probability assignments are the most different (it does not matter 
whether P or Q assigns the higher probability, it only matters that the difference between the assignments 
is maximal). The maximum gap between the assigned probabilities is referred to as the total variation 
distance. For instance, consider the scenario where a 6-sided die is rolled, and probability distribution P 
assigns a probability of 0 (zero) to the event "display the digit 1" while assigning a probability of 1/5 to the 
other five events. Further, suppose that Q assigns a probability of 1 to the event "display digit 1" and a 
probability of zero to all five other events. Each is a valid probability measure because each satisfies the 
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axioms. The "gap" between the assigned probabilities is 1 for the event "display digit 1" and 1/5 for the 
event "display digit 2" and 4/5 for the event "display digit 1 or 2", etc. Of the 6 possible events, it turns out 
that "display digit 1" has the largest offset, which is 1. This event is equal to the event "display digit 2, 3, 4, 
5, or 6" which also has an offset of 1. So, the total variation distance is 1 (one). 
In the context of evaluating synthetic data quality, Total Variation Distance is often used to compare the 
distributions of synthetic and original datasets. It helps assess how well the synthetic data captures the 
distributional characteristics of the original data. The process involves calculating the TVD between the 
distributions of individual variables in the two datasets [65]. A lower TVD value indicates a closer match 
between the distributions, suggesting that the synthetic data is more faithful to the original data. 
This method, together with other evaluators and metrics, contributes to the complete assessment of 
disclosure risk and the usefulness of synthetic data, providing crucial information for decision-making and 
the safe and effective use of this data. Next, we will describe the evaluators and metrics used in this 
research and show their contribution to the evaluation of the confidentiality of synthetic data. 
 

3.5.2 Statistical Evaluator 
 
Statistical metrics are designed to gauge the level of concordance between the statistical attributes of the 
synthetic data and those of the original dataset. This examination focuses on appraising how well the 
distribution, structure, and features of the synthetic data align with those of the authentic dataset. 
Significant disparities in statistical properties may indicate a restricted usefulness of the synthetic data. 
Simultaneously, excessive similarity could pose privacy risks and undermine diversity [68]. 
 
3.5.2.1 Kolmogorv-Smirnov Test 
 
Definition [68]: The Kolmogorov-Smirnov (KS) test is a non-parametric technique employed to determine 
if two samples originate from identical distributions. It evaluates the likeness of distributions by comparing 
their empirical distribution functions (ECDF). Given a set of N ordered data points Y1, Y2, ..., YN, the ECDF 
is defined by the formula: 
 

EN=n(i)/N 
 
Where: n(i) is the number of points less than Yi and Yi are ordered from the smallest to the highest value.  
 
Algorithm [69]: 

• The Kolmogorov-Smirnov test establishes two hypotheses: Null hypothesis (H0) - the data come 
from a specified distribution (both samples were drawn from populations with identical 
distributions) and alternative hypothesis (H1) - at least one value does not fit the specified 
distribution. 

• The KS test calculates the D statistic that represents the largest vertical difference between the 
two ECDFs. This statistic is subsequently compared to the critical values from the Kolmogorov 
distribution to assess whether a significant difference exists between the distributions. The 
Kolmogorov-Smirnov test statistic, denoted D, is defined as: 
 

D = max (F(Yi)−(i−1)/N, i/N−F(Yi)) 
1≤i≤N 

Where: F represents the cumulative theoretical distribution of the examined distribution, which 
must be continuous and thoroughly specified. 

 
Values and Interpretation [69]: The KS test highlights the maximum discrepancy between the cumulative 
distributions of the two samples and computes a P-value based on this difference and their respective 
sample sizes. As the test does not compare a specific parameter (such as mean or median), it does not 
provide a confidence interval. The interpretation of the P-value revolves around the question "What is the 
probability that the Komogorov-Smirnov D statistic's value is as large or larger than the observed one?". A 
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small P-value suggests that the two samples originate from populations with distinct distributions. 
Conversely, a larger P-value indicates potential similarity in the distributions. 
When assessing the confidentiality of synthetic data [70], the interpretation of test results is as follows: A 
low P-value indicates dissimilar distributions between the synthetic and original data, suggesting a 
potential privacy risk. If the P-value is large, this suggests that the distributions are similar, which could 
indicate better privacy protection. To interpret the P-value, a privacy threshold can be set. For example, 
we can decide that P-values less than 0.05 indicate significant privacy exposure, while P-values greater than 
0.05 indicate better privacy protection. It is important to note that the Kolmogorov-Smirnov test provides 
a measure of the difference between the distributions but does not provide detailed information about the 
nature or source of the difference. As such, it represents just one of the approaches available for evaluating 
the privacy of synthetic data and should be employed alongside other assessments and measures to ensure 
a comprehensive privacy evaluation. 
 
3.5.2.2 Chi-Squared Test 
 
Definition: The Chi-Square test is a statistical method that measures the degree of discrepancy between 
observed frequencies and expected frequencies in a contingency table consisting of two categorical 
variables [71]. 
 
Algorithm [72]: 

• The chi-square test is defined for two hypotheses: The null hypothesis (H0) posits that the data 
adhere to a predefined distribution, while the alternative hypothesis (H1) suggests that the data 
deviate from the specified distribution. 

• A contingency table is constructed that frames the categorical variables to be tested. 

• Determine the expected frequencies for each cell in the table, relying on the marginal distribution 
of the two variables. 

• The Chi-Square statistic is calculated using the formula: 
 

χ² = Σ ((observed frequency - expected frequency) ²/expected frequency), 
  
where the sum is done over all cells of the table. 

• The computed Chi-Square statistic is juxtaposed with a critical value obtained from the Chi-Square 
distribution, considering a specific degree of freedom and significance level. 

 
Values and Interpretation [73]: The values obtained from the Chi-Square test are compared with the 
critical values in the Chi-Square table corresponding to a certain predetermined level of significance. If the 
calculated Chi-Square test value surpasses the critical value, it enables us to reject the null hypothesis, 
indicating a substantial association between the two examined variables. Although, Chi-Square tests 
provide a measure of the relationship between variables, these values alone do not provide a complete 
understanding. For example, we cannot determine whether a Chi-Square value of 1.3 indicates a poor or 
strong fit. To correctly interpret the results of the Chi-Square test, it is necessary to compare the obtained 
statistics with the corresponding Chi-Square distribution. This allows us to decide whether the null 
hypothesis should be rejected or not. A crucial element in utilizing the test involves determining a particular 
level of significance, commonly denoted as α, which signifies the probability of erroneously rejecting the 
null hypothesis. For example, at a confidence level of 95% (or α = 0.05), there is a 5% risk of making an 
error and incorrectly rejecting the null hypothesis.  
In other words, if: 
• A p-value of ≤ 0.05 indicates substantial evidence against the null hypothesis, leading to the conclusion 
that the data deviate from a distribution with specific proportions. 
• Conversely, a p-value > 0.05 suggests insufficient evidence to reject the null hypothesis, meaning we 
cannot conclusively state that the data adhere to the distribution with specified proportions. However, it 
is important to note that this does not imply the distributions are identical; there might be differences, but 
the test lacks the power to detect them. 
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In the evaluation of the privacy implications of synthetic data, the Chi-Square Test can be employed to 
ascertain whether the distributions of categories in the synthetic data closely align with those in the original 
data. One can calculate the Chi-Square test for the corresponding categorical variables between the two 
data sets and compare the results to see if there are significant differences between the distributions [74]. 
 

3.5.3 Data Detection Evaluator 
 
Data detection is an effective method used to assess the privacy of synthetic data, involving advanced 
analysis techniques to identify and quantify the risk of exposure of sensitive information in the generated 
datasets. This approach is based on two key techniques: Logistic Regression and the Random Forest 
Classifier Algorithm, which are applied to examine and classify synthetic data according to the risk 
associated with the disclosure of confidential information [75]. 
 
3.5.3.1. Logistic regression 
 
Definition: Logistic Regression is a statistical method employed to model the association between a binary 
dependent variable and one or more independent variables. This technique is particularly useful when we 
want to understand and predict the probability of an event with two possible outcomes. As a result, the 
output is inherently categorical or discrete. It may manifest as "Yes" or "No," 0 or 1, "True" or "False," etc. 
However, instead of providing precise values like 0 and 1, it yields probabilistic values within the range of 
0 to 1 [76]. In logistic regression, the methodology deviates from fitting a linear regression line, as observed 
in linear regression, to fitting an "S"-shaped logistic function capable of predicting two potential outcomes 
(0 or 1). The curve derived from the logistic function represents the probability, specifically in our context, 
of whether the examined data is genuine or not. Logistic regression demonstrates versatility in classifying 
observations across diverse data types and adeptly identifies the most influential variables for classification 
purposes, as delineated in reference [77]. Figure 13 shows the logistic function. 
 
Figure 13 
Logistic function (sigmoid function)  

 
Note. From [78] 
 
Algorithm: The sigmoid function, highlighted in reference [79], serves as a mathematical tool for 
transforming predicted values into probabilities. It operates by mapping any real value to another within 
the range of 0 and 1. Notably, logistic regression necessitates that its values fall within the 0 to 1 range, 
forming a distinctive "S" shaped curve known as a sigmoid function. Within logistic regression, the notion 
of a threshold value is integral, defining the probability of either 0 or 1. Consequently, values surpassing 
the threshold lean towards 1, while those below the threshold gravitate towards 0. In Figure 13, the y-axis 
values range from 0 to 1, intersecting the axis at 0.5. 
The equation for logistic regression is [80]: 
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Where: 

• p represents the probability of the event taking place 
• x1, x2, …………., xn are the predictor (independent) variables. 
• b0, b1, b2, …, bn are the coefficients estimated by the logistic regression model. 

This equation represents the natural logarithm of the odds ratio of the event occurring (probability of 
success) to the event not occurring (probability of failure), and it is transformed linearly with the predictor 

variables. The logistic regression model estimates the coefficients (b) to best fit the observed data, which 
allows for the prediction and inference of the probability of the binary outcome based on the predictor 
variables. The coefficients offer insights into the direction and magnitude of the relationship between the 
predictors and the log-odds of the event [80]. 
Categorized by types, logistic regression can be delineated into three distinct forms [82]: 

✓ Binomial: Binomial logistic regression involves scenarios where there are only two possible types 
of dependent variables, such as 0 or 1, Pass or Fail, etc. 

✓ Multinomial: In multinomial logistic regression, there exist three or more possible unordered types 
for the dependent variable, such as "cat", "dog", or "sheep"; 

✓ Ordinal: Ordinal logistic regression encompasses situations where there are three or more possible 
ordered types of dependent variables, such as "Low," "Medium," or "High". 

When implementing logistic regression, it is essential to consider the following assumptions [82]: 
- Binary logistic regression necessitates binary target variables, focusing on predicting outcomes for 

the level of factor 1; 
- The model should avoid multicollinearity, ensuring independence among its variables; 
- Significance is crucial; thus, the model must include variables that significantly contribute to the 

predictive power; 
- Logistic regression requires a substantial sample size to yield reliable results. 

 
Values and Interpretation: The coefficient values reflect the direction and magnitude of the influence that 
each independent variable has on exposure risk. These values are presented in the form of log-odds and 
can be interpreted as follows: an increase in the coefficient by one unit corresponds to a proportional 
increase in the log-odds and, implicitly, the probability. It is essential to emphasize that logistic regression 
relies on the assumption of a linear relationship between the log-odds of the outcome and the predictor 
variables. This is why the equation incorporates the natural logarithm. The logit transformation is employed 
to ensure that the predicted probabilities fall within the bounds of 0 and 1, making it appropriate for 
modeling binary outcomes [81]. 
Logistic regression is a valuable method in assessing the privacy of synthetic data [80], providing detailed 
understanding of the risk of exposure and the factors that influence it. By using logistic regression, we can 
analyze how the predictor variables are associated with the probability of exposure within the synthetic 
data. This allows us to identify which of these variables have a significant influence on exposure risk and to 
quantify this influence. Interpreting logistic regression results involves evaluating the estimated 
coefficients (b) for each predictor variable. These coefficients reflect how changes in the predictor variables 
are associated with changes in the log-odds of exposure risk. A positive coefficient signifies a rise in log-
odds (and, consequently, an increase in exposure risk) as the predictor variable's value increases. 
Conversely, a negative coefficient implies a decline in log-odds and exposure risk as the value of the 
predictor variable increases. The p-values linked to the coefficients are employed to evaluate the statistical 
significance of the identified relationships. If the p-value falls below the selected significance level, typically 
0.05, it leads to the conclusion that there exists a significant relationship between the predictor variable 
and the exposure risk. Therefore, logistic regression allows us to examine in depth the impact of each 
variable on the privacy of synthetic data and make informed decisions regarding privacy protection 
measures. 
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3.5.3.2. Random Forest Classifier 
 
Definition: Random Forest Classifier is a powerful and versatile technique in synthetic data privacy 
assessment, bringing to the fore a complex understanding of exposure risk and major influences. This 
approach is based on the construction of an ensemble of decision trees, which operate together to make 
accurate predictions and to identify the importance of different variables on exposure risk [83]. By 
implementing the Random Forest Classifier, we can assess how predictor variables interact to influence 
exposure probability in synthetic data. This analysis allows us to uncover the complex combinations of 
factors that contribute to exposure risk and to quantify the contribution of each variable to that risk. 
Algorithm: A random forest constitutes a supervised machine learning algorithm constructed based on 
decision tree algorithms. The Random Forest Classifier algorithm assumes [84]: 

• Initialization: Starts with a training dataset containing labeled examples, where each example 
consists of a set of features (variables) and a class label. 

• Construction of Decision Trees: 
o A random subset of the training set, called the "bagging set", is chosen. 
o A decision tree is constructed on this subset using a construction algorithm such as the 

Classification and Regression Trees (CART) algorithm. A decision tree is a decision support 
method that creates a structure resembling a tree. The three elements of the decision tree, 
namely decision nodes, leaf nodes, and the root node, are depicted in Figure 14. A decision 
tree algorithm partitions a training dataset into branches, which then further subdivide into 
additional branches. This process continues until a leaf node is reached, and a leaf node cannot 
undergo further splitting. The final output generated by each specific decision tree is 
represented by its respective leaf node. 

 
Figure 14 
The three types of nodes in a decision tree  

 
    Note. From [86] 
 

o Each decision tree is built with a limit on the depth and/or the maximum number of features 
to avoid overfitting. 

• Generation of the Ensemble: 
o Step 2 is repeated several times to build a predetermined number of decision trees. 
o These decision trees form the Random Forest ensemble. 

• Predictions: 
o For each example from the test data set or from the synthetic data, the example is passed 

through each tree in the assembly. 
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o Each tree outputs a class prediction for the instance. 
o The ultimate prediction is established through a majority vote in the case of classification or by 

averaging in the case of regression, considering the predictions generated by all the trees in 
the ensemble. In this scenario, the outcome favored by the majority of decision trees serves 
as the ultimate result of the random forest system. For instance, if four trees predict the 
authenticity of the data and three trees predict otherwise, the final prediction will be that the 
data is authentic. 

• Rating and Importance of Features: 
o Evaluate ensemble performance by measuring accuracy, recall, precision, or other relevant 

metrics. 
o Feature importance is calculated by analyzing how much each feature contributes to improving 

the performance of the ensemble. 
 
Values and Interpretation [85]: 

• Accuracy, Precision, Recall: These are common evaluation metrics used to measure the 
performance of the Random Forest Classifier on both real and synthetic data. High accuracy 
indicates that the classifier is able to correctly predict class labels, while high precision and recall 
indicate that the classifier is effectively identifying positive cases (sensitive data) and minimizing 
false positives and false negatives. If the Random Forest Classifier exhibits similar performance 
(e.g., accuracy, precision, recall) on both real and synthetic data, it suggests that the synthetic data 
captures the underlying patterns of the original data without revealing additional sensitive 
information. 

• Scores of Feature Importance: Random Forest assigns importance scores to features, indicating 
their contribution to the classifier's accuracy. In the privacy assessment context, higher scores for 
certain features may indicate potential vulnerabilities where synthetic data could unintentionally 
disclose sensitive information. 

• Out-of-Bag (OOB) Error Rate: Random Forest leverages OOB samples (data not utilized during 
training) to gauge the classifier's error rate. If the OOB error rate is noticeably higher for synthetic 
data in contrast to real data, it could indicate that the synthetic data is less secure and potentially 
reveals sensitive patterns. 

• Confusion matrix: Through an examination of the confusion matrix, one can discern the true 
positives, true negatives, false positives, and false negatives of the classifier, considering both real 
and synthetic data. Analyzing the confusion matrix can provide insights into the types of 
misclassifications made by the classifier on synthetic data. If certain classes are consistently 
misclassified or show different patterns compared to real data, it may suggest potential privacy 
risks. 

In the evaluation of the privacy aspects of synthetic data [87], the Random Forest Classifier can be 
employed through the following steps: 

• Model Training: A Random Forest Classifier is developed using the original (non-synthetic) data to 
construct the classification models for the real data. 

• Predictions on Synthetic Data: Use the trained model to make predictions on synthetic data. If the 
classification models correctly predict the class labels from the synthetic data, this can indicate a 
possible exposure of confidential information. 

• Analysis of Feature Importance: We examine the significance of features in the Random Forest 
model to identify those with a substantial impact on predictions in the synthetic data. Features of 
high importance may indicate potential exposure risks. 

 

3.5.4 Duplicate Evaluator 
 
The Duplicate Evaluator is a component of the synthetic data evaluation process, with the role of 
identifying and quantifying the degree of similarity or overlap between synthetic and real records from an 
original data set [88]. This evaluator looks for synthetic records that are identical or very close to real 
records, highlighting potential privacy risks or disclosure of sensitive information from the synthetic data. 
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3.5.4.1 Gower Evaluator  
 
One of the methods used to evaluate duplicates is the Gower Evaluator, which relies on Gower distances 
to quantify the similarity between records. The Gower Evaluator method uses Gower distances to calculate 
the similarity between the records in the original dataset and the synthetic ones. This technique considers 
the mixed nature of the data, including continuous and nominal variables. Gower distances consider 
absolute differences for continuous variables and similarity measures for nominal variables [89].  
 
Algorithm: Gower's methodology relies on a series of steps to determine a measure of similarity or distance 
between two records. In summary, these steps consist of [90]: 

• Normalization (if applicable): For continuous or ordinal variables, normalization to the interval [0, 
1] may be required to ensure that all variables have the same range of values. 

• Calculation of distances for continuous and ordinal variables: 
o For continuous and ordinal variables, the absolute difference or the squared difference 

(depending on preference) between the corresponding values of the records is calculated. 
o The calculated distances are standardized to the interval [0, 1] by dividing them by the range 

of possible values of the variable. 

• Evaluating distances for nominal variables involves assigning a distance of 0 when the values are 
identical and 1 when they differ. 

• Calculation of Gower distances: 
o For each pair of records, the distances for each variable are calculated using the methods 

above. 
o The weighted average of these distances is calculated to obtain the Gower distance between 

records. 
 
Usage of Gower distances: 

• Gower distances can be used to identify the most similar or most dissimilar records in the data set. 

• Having a way to calculate the distance between two individuals (Gower distance), we can use it to 
build privacy measures (DCR and NNDR). 

 
3.5.4.2 Distance to Closest Record (DCR) 
 
Definition and Algorithm [91]:  
Distance to Closest Record (DCR) is a measure used in evaluating synthetic data against real data. This 
metric centers on the proximity between each synthetic record and the nearest authentic record within 
the source dataset. The objective is to evaluate the extent to which the synthetic data replicates the original 
dataset and to gauge the potential risk of disclosing sensitive information. We can define the distance to 
the nearest record for a given individual, denoted by DCR(s) for individual "s" in the synthetic data set "S", 
as the minimum distance between "s" and each original individual "o" in the set of original data "O": 

DCR(s) = min d(s,o) for each o∈O 
This metric expresses how close the synthetic individual "s" is to the nearest original record "o" in terms of 
the specified distance, where "d" represents the distance function used (e.g., Gower distance). 
 
Values and Interpretation [89]: 
DCR values can vary from 0 to a certain maximum, depending on the scale of the distance metric used. 
DCR(s) = 0 indicates that the synthetic instances "s" is an identical copy (clone) of at least one real instances 
in the original data set "O". The higher the value of DCR(s), the more distant the synthetic instances "s" is 
from the original records, suggesting a lower similarity to the real data and, implicitly, a lower risk of privacy 
violation. 
Additionally, the 5𝑡ℎ percentile of this value (P5) is calculated for the DCR(s) values for all synthetic 
instances in the synthetic data set. This represents the DCR(s) value below which 5% of the synthetic 
instances lie. The choice of this percentile is important because we are interested in identifying the highest 
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privacy risks, and P5 provides a robust estimate for this. Essentially, the higher the P5, the less synthetic 
instances are close to the original records, indicating a lower privacy risk. This value can be used to make 
informed decisions about the use of synthetic data and to ensure that the risk of disclosure of sensitive 
information is kept under control. 
In addition to evaluating the DCR between the generated synthetic data set and the original data set, 
according to the previously described method, an additional approach is to calculate the DCR between the 
synthetic data set and a holdout data set [92]. This approach aims to ensure that synthetic individuals are 
not systematically closer to individuals in the original data set than to those in the holdout set. By 
calculating the DCR values for each synthetic instance against both the original set and the holdout set, we 
can determine the percentage of synthetic instances that are more similar to instances in the original set 
than those in the holdout set. The goal is to get a percentage as close to (or below) 50% as possible. This 
indicates that the synthetic data does not contain meaningful information that could allow an attacker to 
infer whether a particular person was present in the real data set [92]. Therefore, a robust assessment of 
the risk of privacy disclosure in the context of synthetic data is obtained. 
 
3.5.4.3 Nearest neighbor distance ratio (NNDR) 
 
Definition: Neighbor Distance Ratio (NNDR), or nearest neighbor distance ratio, is a measure that tells us 
how the points in a data set are arranged. It helps us to understand if the points are grouped together in a 
certain way or if they are evenly distributed in space [93]. 
 
Algorithm: To assess the confidentiality of synthetic data using the NNDR (Nearest Neighbor Distance 
Ratio), a potential algorithm involves the following steps [94]: 

➢ Calculation of NNDR for Real Data: 

• For each data point, determine the distance to the nearest neighbor and the second nearest 
neighbor using the robust Gower methodology. 

• Calculate the ratio between the distance to the nearest neighbor and the distance to the 
second nearest neighbor for each point. 

• Compute the average of these ratios (NNDR) using the formula: 
 

NNDR = (Σ (distance to nearest neighbor / distance to second nearest neighbor)) / total number of points 
 
Where: Σ represents the sum, and distances are as defined above. 
 

➢ Calculation of NNDR for Holdout: Repeat the same steps as described above for the holdout data 
set. Calculate the distance to the nearest neighbor and the distance to the second nearest 
neighbor, then determine the ratios and their average for the holdout data set. 

➢ Comparison of NNDR between Synthetic and Real: Utilize the same steps to calculate the NNDR for 
the synthetic data set. Compare the NNDR values obtained for the synthetic and real data sets to 
evaluate the level of confidentiality achieved by the synthetic data. 

 
Interpretation of Results: The interpretation is based on the average value resulting from the calculations 
of the NNDR reports for the entire synthetic data set [95]. Low values of NNDR (approaching 0) suggest 
that the majority of points in the synthetic dataset are concentrated or clustered near the points in the real 
dataset. This suggests better privacy because synthetic data mimics the distribution and structure of points 
in real data. Large values of NNDR (close to 1) suggests that the points in the synthetic data set are evenly 
distributed and do not show a tight cluster around the points in the real data. This may indicate an 
increased risk of sensitive data exposure, as synthetic data fails to reflect the natural clustering of real data 
(Figure 15). In essence, the interpretation of the NNDR average focuses on evaluating whether the 
synthetic data can reproduce the distribution and structure of the real data in terms of the neighborhood 
of the points. A low value of NNDR suggests that the synthetic data closely approximates its real neighbors, 
which enhances privacy, while a high value indicates a possible deficiency in privacy protection. 
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Figure 15 
Illustration of NNDR metric with its privacy risk implications  

  
   Note. From [95, p. 10] 
 
If the calculated NNDR values for the synthetic data are compared to the NNDR values for the real and 
holdout data [94], a small NNDR value for the synthetic data relative to the real and holdout indicates that 
the synthetic data is distributed similarly to the real data and does not expose sensitive information. If the 
NNDR value for the synthetic data is closer to the NNDR value for the holdout data than to the NNDR value 
for the real data, it indicates that the synthetic data preserves privacy better than the real data. In this way, 
the adapted algorithm will provide a more comprehensive assessment of the privacy of the synthetic data 
by comparing the NNDR between the synthetic, real, and withheld data and by analyzing how the synthetic 
data is distributed relative to both reference data sets. 
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Chapter 4  
The “Fusionstrap” Method 
 
In this thesis, we propose the “Fusionstrap” framework, an integrated data processing and synthesis 
system, developed as a response to the challenges of class imbalances in datasets. This framework 
addresses multiple essential aspects of data processing, including rigorous preprocessing, advanced 
synthetic data generation using layered Bootstrap to address class imbalances, and post-processing 
techniques such as outlier removal and applying Bootstrap rotation to obtain a unique set of synthetic data. 
Comprehensive evaluation of the utility and privacy of synthetic data, compared to other data synthesis 
methods, completes this framework. The diagram of the relevant components (Figure 16) provides a visual 
illustration of the architecture and functionality of the “Fusionstrap” system, showing how each stage 
contributes to improving data quality and ensuring confidentiality, in a context of effective class imbalance 
management [19]. 
 
Figure 16 
Method visualization 

 
 
The structure of the "Fusionstrap" method is divided into three distinct components. In the first phase, the 
preprocessing of the data sets is carried out, which includes the replacement of missing values, the 
evaluation of the cleaned set and the definition of the layers with the calculation of the percentages of 
class imbalances (Section 4.1). The processed data subsequently proceeds to the primary stage of the 
approach, involving the generation of 150 synthetic datasets (Section 4.2). Ultimately, the method 
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incorporates a post-processing step aimed at maintaining the coherence of the synthetic data and 
enhancing its variability (Section 4.3). 
 

4.1 Data Preprocessing 
 
The data preprocessing segment holds a pivotal role in upholding the quality and coherence of the data 
utilized by the "Fusionstrap" framework. In the initial phase of this procedure, the resolution of missing 
values in the dataset is undertaken to mitigate potential distortions or ambiguities that might impact the 
subsequent analysis and synthesis of the data. The cleaned data set is evaluated in the next step to 
determine to what extent the characteristics of the initial set have been affected by the cleaning. The 
preprocessing ends with the definition of the layers for each variable and the calculation of the percentages 
of class imbalances. 
 

4.1.1 Replacement of missing values 
 
Depending on the specifics of each variable, we opted for the following replacement techniques: 

• Missing numerical variables are replaced by the arithmetic mean of the known values (Mean 
Imputation) or by the median value of that variable (Median Imputation) [96]. The choice between 
using the mean and the median to replace missing values in numerical variables depends on the 
distribution of the data and possible outliers [96]. If the data are approximately symmetrical and 
there are no significant outliers, then the missing values are replaced by the mean. The mean uses 
all available values for the calculation and is more sensitive to small variations in values, which can 
better reflect the overall trend of the data set. On the other hand, if the data have a skewed 
distribution or there are significant outliers, the median is used to replace the missing values. The 
median represents the central value of the data set when the values are ordered ascending or 
descending and is more robust to extreme values. Using the median can avoid the influence of 
outliers and provide a more stable estimate of the central tendency of the data, reducing the risk 
of significant dispersion distortion. 
• For non-numeric variables such as categories or modalities, we opted to replace with the most 
frequent category or modality in that variable (Mode imputation) [96]. This helps maintain the 
structure of the categories and preserve the relative proportions between them. 
 

4.1.2 Clean data evaluation 
 
Furthermore, to assess whether statistics and relationships between variables have been preserved in the 
preprocessed data set, the “Fusionstrap” framework performs a comparative analysis between the 
preprocessed data and the original data. This analysis focuses on the following key aspects: 

• Checking the basic statistics of the cleaned data: the basic statistics of the variables (such as 
mean, median, standard deviation, minimum and maximum) are compared between the original 
and the preprocessed dataset. This comparison provides insight into how data cleaning affected 
the underlying statistics. Examining these differences can assess the impact of the cleanup and 
provide assurance that the changes are in line with expectations. If these statistics are preserved 
properly, it means that the preprocessing did not introduce significant distortions in the data 
distribution. Also, if differences occur that could significantly affect the analysis, the data cleaning 
process should be re-evaluated and alternative methods applied or we should investigate in more 
detail the source of differences [97]. 

• Checking the correlations analysis of the cleaned data set: The correlation matrix between the 
variables is calculated and the correlations before and after preprocessing are compared. To 
calculate the correlation matrix, “Fusionstrap” uses a combination of Pearson's correlation 
coefficient for numerical variables and Cramer's V correlation coefficient for nominal variables. The 
correlation matrix is made with Bias Correction. The preference for Cramer's V with Bias Correction 
is motivated by the fact that this method provides more accurate and robust results compared to 
the classic Cramer's V method. This is because Cramer's V with Bias Correction takes outliers into 
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account and provides a more accurate estimate of the correlation. By adjusting the expected values 
to account for the outliers, the Bias Correction method removes some of the influence on the 
correlation that can only be attributed to differences in the outliers. Therefore, in general, the 
results obtained with Cramer's V method with Bias Correction are considered better and more 
accurate compared to the classical method. This method is particularly useful when working with 
nominal or ordered variables and you want a more accurate estimate of the correlations between 
them [97]. 

Overall, evaluating the retention of statistics and relationships between variables in the preprocessed set 
involves a detailed and comparative analysis between the original and processed data. If it is observed that 
the changes made by the preprocessing are minimal and that the essential structures and relationships are 
preserved, then we can be confident in the quality of the data preprocessing. If, however, significant 
changes are found in the pre-processed data, it is crucial to identify and address these discrepancies. This 
involves identifying the variables that have undergone significant changes and determining whether these 
changes are consistent with expectations. It may also be necessary to adjust parameters or explore other 
preprocessing techniques to achieve more consistent results. 
 

4.1.3 Definition of layers 
 
The original data set is divided into several layers based on the existing classes. Layers are defined based 
on the classification variable (e.g., outcome variable or label). Each layer represents a distinct category of 
the classification variable, such as a majority class and a minority class. For each class, a probability 
distribution is constructed based on the frequency of each layer. 
The “Fusionstrap” framework performs layer definition and analysis through the following steps [25]: 

• Initial data cleaning and preparation: It starts with loading the initial data set. The categorical 
columns that will be used to generate synthetic data are identified. The identification of the 
categorical columns that will be used to generate the synthetic data is done by traversing the 
predefined list of column names from the initial set. These columns are then converted to columns 
of data type 'str', thus ensuring that all values are treated as strings in the subsequent synthetic 
data generation process. 

• Selection of categorical data for analysis: Only categorical variables in the data sets are selected to 
calculate the class distribution and class imbalance for them. To calculate the class distribution and 
class imbalance, “Fusionstrap” defines two functions: the first function receives a data frame and 
calculates the class distribution for each variable, and the second function receives the previously 
calculated class distribution and calculates the percentage of class imbalance for each variable. To 
calculate the percentage of class imbalance for each variable, the following formula is used:  

(max_count - min_count) / max_count * 100, 
Where: max_count represents the maximum number of instances in a class, and min_count 
represents the minimum number of instances in a class. This provides a clearer understanding of 
how classes are distributed within each variable. 

• Display of results: class distribution and percentage of class imbalance are shown for each variable. 
Interpreting class imbalance percentages gives us insight into the degree of inequity in the class 
distribution for each variable. Variables with high percentages of imbalance indicate significant 
inequity between classes. 

 
Defining layers is only an initial step towards assessing and improving data quality and addressing issues of 
class imbalance in the dataset. If we take the example of the Diabetes Prediction data set [104], we will 
have the classification variable "Diabetes" with two classes: "Positive" and "Negative". Based on this 
classification variable, the data set will be divided into two layers: the "Diabetes Positive" layer, which 
includes data associated with people diagnosed positively with diabetes and the "Diabetes Negative" layer, 
which includes data associated with people diagnosed negatively for diabetes. Depending on the 
probability distributions built on the basis of frequency for each of these two classes, we will be able to 
determine which of them is the majority and which is the minority. 
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By analyzing each layer in detail, we can better understand the characteristics associated with people who 
have been diagnosed positive for diabetes and ensure that the synthetic data generation algorithm 
considers the specificities of both classes in its process. This layered approach is useful when we want to 
focus on improving the representation of the minority class (for example, people with positive diabetes) to 
avoid the problems generated by class imbalances. 
 

4.2 Synthetic data generation 
 
“Fusionstrap” generates synthetic data by using a hybrid algorithm based on Stratified Bootstrap and 
Gaussian Copula Synthesizer. This approach combines the technique of Stratified Bootstrap that ensures 
adequate representation of each class with the power and flexibility of the Gaussian Copula Synthesizer 
[99] that preserves the consistency and reality of the generated data. The goal is to produce reliable 
synthetic data that not only reflects the original nature of the data set, but also mitigates inequities 
between classes for more robust and relevant analytical results. The hybrid algorithm "Stratified Bootstrap 
with Gaussian Copula Synthesizer" consists of generating the synthetic database with the Gaussian Copula 
Synthesizer, calculation of class proportions, generating Bootstrap stratified samples and blending 
synthetic data samples. 
 

4.2.1 Generating the synthetic database with the Gaussian Copula Synthesizer 
 

The algorithm of Gaussian Copula Synthesizer [99] assumes: 
o For each class in the original data, a Gaussian Copula Synthesizer model is built based on the 

metadata of the original data set. In this step, a technique called "Gaussian Copula Synthesizer" 
is used to model the relationships between the variables in the original data set. This is a 
synthesis algorithm based on Gaussian distributions and copulas, which are mathematical 
functions used to capture complex dependencies between variables. To illustrate, suppose we 
have two variables, "education" and "income," and we want to generate synthetic data based 
on the distributions and relationships between them (Figure 17). 

o The Gaussian Copula Synthesizer model is fitted to the data of the specified class. Fitting means 
that the algorithm learns the specific distributions and relationships of the data for this class 
so that it can generate synthetic data that preserves these characteristics. Example: For the 
class labeled "0" in the original data set, the model learns how the variables "education" and 
"income" are distributed for this class specifically (Figure 17). 

o A synthetic database is generated using the fitted model, with size based on the total number 
of Bootstrap samples: The Gaussian Copula Synthesizer model is applied to create synthetic 
data for the present class. The number of Bootstrap samples is used to decide how many 
synthetic data to generate for this class so that the correct proportions between classes are 
preserved. Example: If we have 100 Bootstrap samples and class "0" represents 30% of the 
original data, then approximately 30 Bootstrap samples will be generated for this class. These 
samples will preserve the previously learned distributions and relationships for the "education" 
and "income" variables.  
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Figure 17 
Copula process  

 
Note. From [99, p. 6] 
 
 

4.2.2 Calculation of class proportions  
 
After the data for each class has been generated using the Gaussian Copula Synthesizer, the proportions 
of each class in the synthetic database are calculated. This stage is crucial to guarantee the preservation of 
the initial class distribution in the synthetic data, ensuring an accurate reflection of the class imbalances 
present in the original dataset. 
Continuing the previous example with two classes and a total of 150 Bootstrap samples, in the set of initial 
data, we have the following class distribution: 

Class "0": 30% (about 45 samples out of a total of 150) 
Class "1": 70% (about 105 samples out of a total of 150) 

After generating the synthetic data for each class using the Gaussian Copula Synthesizer and obtaining the 
corresponding Bootstrap samples, suppose the results are as follows: 

For class "0", we generated about 50 Bootstrap samples (the value may vary due to the 
random generation process). 
For class "1", we generated about 100 Bootstrap samples (the value may vary due to the 
random generation process). 

The next step is to calculate the class proportions in the synthetic database: For class "0", the number of 
samples generated is 50. Percentage-wise, this represents about 33.33% of the total of 150 samples in the 
synthetic database. For class "1", the number of generated samples is 100. Percentage-wise, this represents 
approximately 66.67% of the total 150 samples in the synthetic database. Thus, the class proportions in 
the synthetic database would be around 33.33% for class "0" and 66.67% for class "1". These proportions 
reflect the original distribution of classes in the original data set and ensure that class imbalances are 
preserved in the generated synthetic data.  
 
4.2.3 Generating Bootstrap Samples 
 
For every Bootstrap sample, an empty data frame is generated specifically for that sample. This frame will 
be utilized to incorporate samples from each class individually. The number of samples for each class within 
the Bootstrap sample is then computed based on the pre-determined class proportions. In the example 
above, for class "0" we have approximately 33.33% of 150, i.e., 50 samples, and for class "1" we have 
approximately 66.67% of 150, i.e., 100 samples. Random resampling is performed from the synthetic 
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database to obtain the Bootstrap sample for each class. Continuing the example, for class "0", 50 samples 
will be randomly selected from the synthetic database for class "0", and for class "1", 100 samples will be 
randomly selected from the synthetic database. The Bootstrap samples for each class are concatenated to 
form the complete Bootstrap sample. In our example, all 50 samples from class "0" and 100 samples from 
class "1" are concatenated to form a single Bootstrap sample. This sample contains a combination of 
samples from both classes, keeping the original class proportions. Bootstrap sample generation occurs for 
each iteration of the process, i.e., each time a new set of synthetic data is desired to be generated. 
 

4.2.4 Blending synthetic data 
After generating each Bootstrap sample, the data from each sample is randomly shuffled to ensure 
variability and remove any order correlations. The algorithm generates a list of data frames representing 
the synthetic Bootstrap samples, maintaining the class distribution and initial features.  
 

4.3. Postprocessing 
 
The post-processing techniques adopted by the “Fusionstrap” method consist in the elimination of extreme 
values using both the z-score and the IQR (Interquartile Range) method, from the synthetic data sets 
generated by means of the hybrid fusion between Bootstrap methods and Gaussian Copula algorithm. 
These techniques were implemented to ensure the integrity and representativeness of the synthetic data, 
before applying additional transformations, such as Bootstrap Rotation, to improve the diversity and 
accuracy of the resulting datasets. 
 

4.3.1 Eliminating extreme values (outliers) from the synthetic data set 
 
Outliers are those values that are much different from the mean or the other values in the data set and can 
adversely affect subsequent analyzes and models. To identify and remove these values, the framework 
uses the z-score statistic and the Interquartile Range (IQR) method [100]. The algorithm of this process 
assumes [100]: 

o Going through each synthetic data set: For each data set in the synthetic_datasets list created in 
the previous steps, only the numeric columns are selected for analysis. 

o Identifying and removing outliers: The method constructs the feature matrix X (independent 
variables) and uses the Python function np.percentile to calculate the 25th and 75th percentiles 
(Q1 and Q3) for each column of the dataset's feature matrix. This is done by specifying the axis=0 
argument to the np.percentile function. When axis=0, the np.percentile function calculates the 
percentiles for each column separately, thus allowing the distribution of each variable to be 
evaluated. Thus, in the result, we have Q1 and Q3 for each column of X, which allows us to calculate 
the IQR for each variable. The threshold for identifying extreme values is set to 1.5, but can be 
adjusted according to the needs and specifics of the data set. IQR is then calculated as the 
difference between Q3 and Q1. To identify the extreme values in the data matrix: by applying the 
IQR threshold and the Q1 and Q3 values, it is determined which values are considered extreme by 
comparing them with the defined threshold. The formula used is:  
 

Outliers formula = (X < (Q1 - threshold * IQR)) | (X > (Q3 + threshold * IQR)) 
 
By using the comparison operators (< and >), it is checked whether each value in the dataset array 
is less than Q1 minus threshold * IQR or greater than Q3 plus threshold * IQR. 

o The result is an "outliers" matrix of the same form as the dataset, where values that exceed the 
thresholds are marked as "True". 

o Filtering and removing outliers: The “out-liers matrix” is used to filter the outliers in the data set. 
Finally, the dataset without extreme values (filtered dataset) is added to a 
“no_outlier_synthetic_datasets” list. 
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4.3.2 Combining via Bootstrap Rotation 
 
The bootstrap algorithm with rotation is a technique used in statistics for generating synthetic datasets 
with the aim of improving the diversity and robustness of estimates by rotating observations in datasets 
[101]. “Fusionstrap” uses an adaptation of Bootstrap Rotation to combine the 150 synthetic samples 
filtered in the previous step into a single dataset of the same size as the original dataset. The method 
involves combining observations from filtered data sets in a round-robin fashion so that each observation 
has an equal chance of being included in the sample. 
The “Fusionstrap” algorithm for combining by rotation the observations from the 150 samples involves the 
following steps (Figure 18): 

• A final sample is initialized as empty. 

• Each iteration consists of: 
o One observation is extracted from each sample and added to the final sample. 
o Circularly rotate the observations from each sample. This means that the observations that were 

extracted are put back in each sample of provenance in the last position. 

• The iterative process continues until the final sample reaches the size of the original data set. 
This approach can help create a more varied and balanced sample in terms of data distribution. 
 
Figure 18 
Combining with Bootstrap Rotation 

 
 

Note. The figure shows the process of the first iteration, the rotation of the observations in each sample 
and the first two extractions. The observations from each sample were marked with X1...., Xn.  
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Chapter 5  
Experiments 
 
This chapter aims to expose various experimental configurations applied in this research. All experiments 
will be run using the datasets presented in Section 5.1. Before detailing the experiments, we give a brief 
overview of the context of the data. Next, we will focus on the actual experiments. The fundamental 
purpose of the experimental setups is to evaluate whether the methods of the proposed framework can 
lead to an improvement in the quality of the generated synthetic data. In addition to this aspect, it is aimed 
to investigate the framework's ability to improve the fairness of the results by addressing the problem of 
unbalanced data in the dataset. In the synthetic data evaluation process, we will use the methods and 
metrics analyzed in detail in Chapter 3. This approach ensures a robust and comprehensive analysis of the 
data quality generated by the proposed framework. More details about the experimental results can be 
found in Appendix A. 
 

5.1 Datasets 
 
The rigors of our research were guided by a careful selection of datasets to use for experiments. We opted 
for three distinct datasets, each with significant characteristics relevant to our research objective. The 
choice of these data sets was influenced by the following considerations, which emphasize the importance 
and concordance with the criteria and objectives of the present research: 

• US Census: The choice of this data set was guided by its comprehensiveness and diversity, 
reflecting the different demographic, social and economic aspects of the population of the United 
States of America. Because of its size and complexity, this dataset allows us to assess how well our 
framework can address the diversity and complexity of information to generate relevant and 
realistic synthetic data. 

• Diabetes Prediction: The Diabetes Prediction dataset was selected due to its medical nature and 
the critical importance of accuracy in medical analyses. By applying our framework to this dataset, 
we aim to demonstrate its ability to generate synthetic data that preserves essential characteristics 
of the study population so that medical analyzes remain robust and valid. 

• AIDS: AIDS: We selected this data set given its complex and sensitive nature, as well as the 
stigmatizing connotations associated with HIV/AIDS. By applying our method to this data set, we 
aim to highlight our framework's ability to handle sensitive data while protecting individual privacy 
while providing relevant information for health-related analyses. Another reason for choosing this 
data set is to allow a direct comparison of the results obtained with the results of a pre-existing 
study on the same data collection, which used the AVATAR method [94]. This approach helps to 
validate and evaluate the relative performance of our method compared to other existing 
approaches. 
 

Another valuable aspect that we have considered in choosing the data sets is their varied size. The datasets 
range in size from large to small, reflecting the diversity of sizes that our framework might encounter in a 
wide range of research contexts. This approach allows us to examine the behavior and performance of the 
framework as a function of dataset size, thereby contributing to a deeper understanding of how the 
generated synthetic data can be influenced by the variability of input data sizes. Moreover, the selected 
datasets allow testing the effectiveness of our proposed framework in addressing class imbalance issues, 
providing the opportunity to assess to what extent the generated synthetic data can contribute to 
improving equity and performance in the context of datasets characterized by unequal class distributions. 
 

5.1.1 US Census 
 
These data were collected from the 1994 Census Bureau database with the coordinated efforts of Ronny 
Kohavi and Barry Becker [102]. The initial set contains a total of 48,842 rows of data. The data set 
extraction process followed carefully established criteria, ensuring a consistent and valid set of records. 
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These criteria included the following conditions: age of individuals to be greater than 16 years, adjusted 
gross income to exceed $100, assigned final weight (AFNLWGT) to be greater than 1, and number of 
hours worked per week to be greater than 0 [102]. The main objective of this dataset is to build models 
with the ability to predict if a person's annual income exceeds $50,000. 
The set consists of a target variable “income” and 14 predictor variables, which are a mixture of 
categorical, ordinal, and numeric data types representing various socio-economic and demographic 
characteristics of the individual. A description of the variables can be found in Appendix A. All these 
variables are used in predicting the target variable “income,” indicating whether an individual earns more 
than $50,000 annually. 
This data set is of moderate size and shows significant class imbalance, as the number of records 
associated with people earning more than $50,000 per year is lower than the number of records 
associated with people earning less than or at most $50,000 per year year. year. Thus, there are two class 
values ">50K" and "<=50K", the classes being unbalanced, with a trend towards the class label "<=50K". 
This can influence the performance evaluation of prediction models and is an ideal scenario for testing 
the framework's ability to address the class imbalance problem by generating synthetic data. Also, the set 
contains missing values marked with "?". The experiments in this research will be performed on a number 
of 32,561 recordings extracted from this set. 
 
Table 5 
US census Database 

Instances 32.561 

Attributes 14 

 
   

 

5.1.2 Diabetes Prediction 
 
This dataset contains 4000 records from the US National Institute of Diabetes and Digestive and Kidney 
Diseases database, the primary data source being electronic health records (EHR). EHRs are digital versions 
of patients' health records that contain information about their medical history, diagnosis, treatment and 
outcomes. EHR data is collected and stored through surveys, medical records, and laboratory tests by 
health care providers, such as hospitals and clinics, as part of their routine clinical practice. The objective 
is to predict, based on diagnostic measurements, whether a patient has diabetes [104]. 
 
Table 6 
Diabetes Prediction Database 

Instances 4.000 

Attributes 9 

 
 The set contains the target variable "diabetes" which, in the context of predicting diabetes, indicates 
whether the person has diabetes (1) or not (0) and 8 other predictor variables, which are a mixture of 
categorical and numerical data types. The nine variables of the data set are described in Appendix A. The 
data set used for the experiments has a small size and there is the possibility of presenting class imbalances. 
This will be analyzed through the experiments carried out in this research.  
 

5.1.3 AIDS 
 
This HIV infection dataset contains information on 2139 patients and comprises 26 variables. These 
individuals participated in a clinical trial documented in a 1996 publication in the New England Journal of 
Medicine. Conducted by Hammer and collaborators, the study comprised four distinct treatment cohorts. 
The primary aim of the investigation was to evaluate patient survival and to observe any potential 50% 
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reduction in CD4+ cell count [105]. The data set is small in size, contains only numerical variables (Appendix 
A) and has no missing values. 
 
 
Table 7 
AIDS Database 

Instances 2.139 

Attributes 26 

 
 

5.2 Experimental setup 
 

5.2.1 Preprocessing 
 
This first step of the experiment aims to ensure that the preprocessing function within “Fusionstrap” is 
working properly, that the data is clean, and that any subsequent changes in performance can be validly 
attributed to the developed method. 
 
5.2.1.1 Replacement of missing values 
 
To obtain assurance about the quality and validity of the data we will use later, we will use the "US Census" 
data set. This dataset was selected due to the presence of missing values in multiple variables, offering an 
opportunity to assess the efficacy of the preprocessing function in addressing such scenarios. 
The preprocessing process will involve replacing missing values with the methods specified in section 4.1 
of the method. In the "US Census" set, we identified a total of 4266 missing values distributed in different 
variables, as follows: 

Workclass: 1836 missing values 
Education.num: 2 missing values 
Occupation: 1843 missing values 
Capital Loss: 1 missing value 
Hours per Week: 1 missing value 
Native Country: 583 missing values 

 
To manage the missing values, the average of the existing values in the numerical variables 
(Education.num, Capital Loss, Hours per Week) was used, and, in the case of the categorical/non-numerical 
variables (Workclass, Occupation, Native Country), the missing values were replaced with the mode (the 
value that occurs most often). Using the mean helps maintain data consistency and avoid skewing the 
distribution, and mode choice helps preserve dominant features and minimize the impact on the data 
distribution. 
In the "AIDS" set, we identified a total of 797 missing values distributed in the numerical variable "cd496". 
 
5.2.1.2 Clean data evaluation 
 
The evaluation of this preprocessing process will consist of the following steps: 

• Basic Statistics Check: We will compare the basic statistics of the original data set with those of the 
cleaned data set. This will allow us to see if the distribution and values have remained within 
reasonable limits. 

• Correlation Analysis: We will examine the correlations between variables in the cleaned data set. 
This analysis will help us identify trends, significant relationships, or possible anomalies in the data. 

• The evaluation results will be presented in the form of comparative tables and graphical 
visualizations such as heat maps. These will provide a visual and easy-to-understand insight into 
the differences and correlations in the raw and processed data. 
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5.2.1.3 Definition of layers 
 
This part of the experiment aims to assess the distribution and imbalance of classes in datasets, providing 
a basis for further generation of synthetic data to correct imbalance and improve data quality. The method 
approached by the Fusion strap framework in this regard is the one described in Section 4.2. All three data 
sets (US Census, Diabetes Prediction and AIDS) will be subjected to the experiment, and the results (class 
distribution and imbalance percentage) will be presented in the form of tables and histograms for each 
variable. Variables with high percentages of imbalance indicate significant inequity between classes. 
 

5.2.2 Generating synthetic data: “Fusionstrap” vs other methods 
 
The central part of the experiment in this research focuses on an exhaustive comparison between the 
“Fusionstrap” framework and other synthetic data generation methods. The data synthesis techniques 
used for this comparison, namely CTGAN and SYNTHPOP, were detailed in Section 3.3 of the study. In this 
experiment, we aim to generate synthetic data both through the “Fusionstrap” framework and using the 
alternative methods mentioned above. This endeavor will be carried out across the full range of data sets 
used in this study, i.e., US Census, Diabetes Prediction and AIDS. The evaluation of the quality of the data 
generated by the three approaches (“Fusionstrap”, CTGAN and SYNTHPOP) will be carried out through a 
thorough comparison, based on the results obtained following the application of the evaluation methods 
and metrics described in detail in Sections 3.4 and 3.5 of the paper. This experiment is a focal point in 
analyzing the performance of the “Fusionstrap” method in the context of other synthetic data generation 
approaches. 
 

5.2.3 Postprocessing 
 
Postprocessing will involve removing outliers from the 150 samples generated with "Fusionstrap" and then 
applying the bootstrap rotation to the cleaned samples, resulting in a single synthetic dataset of the size of 
the original dataset. This phase aims to ensure that the synthetic data aligns with real-world patterns and 
distributions. The methods were detailed in Sections 4.3.1 and 4.3.2, and the results will be presented in 
the next chapter. 
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Chapter 6  
Results 
 
This chapter brings to the fore the results obtained from the experiments carried out as part of our 
research. The main objective of these experiments was to assess the effectiveness of the "Fusionstrap" 
framework in generating synthetic data and addressing class imbalance across three distinct datasets: US 
Census, Diabetes Prediction, and AIDS. Additionally, the merits and drawbacks of the proposed 
"Fusionstrap" framework will be deliberated. In this thesis, summaries of the results were presented. More 
details can be found in the Appendix. We will detail the results for each individual experiment, providing 
context and the appropriate interpretation of the data obtained. 
 

6.1 Evaluation of the Preprocessing Function 
 
In this experiment, we focused on evaluating the preprocessing function of the “Fusionstrap” framework. 
We chose the US Census data set, which contained missing values for several variables, to highlight how 
the “Fusionstrap” framework addresses this issue. To replace missing values from the US Census data set 
we used the methods described in section 4.1.  
 

6.1.1 Keeping basic statistics in the cleaned dataset 
 
We compared the baseline statistics of the original data set with those of the cleaned set to assess the 
validity of the preprocessed data. In the case of the original US Census set, 4262 values are missing for 
categorical variables (“workclass”, “occupation”, native.country”) and 4 values for numeric variables 
(“education.number”, “capital.loss”, “hours.per.week”). 
According to the data in Table 8, which shows the results regarding the differences between the statistics 
of the cleaned and the original set for the numerical variables, the following conclusions can be formulated: 

• The number of records without missing values from the data set (count) increased by 2 records for 
the variable "education.num", by 1 record for "capital.loss" and by 1 record for "hours.per.week". 
This confirms that all missing values from the original set have been substituted for these variables. 
Therefore, the cause of these differences is the input of new values in place of missing data. 

• The difference of -0.00267866 in the case of the "capital.loss" variable indicates a fairly small 
decrease of the average in the cleaned data set compared to the initial one. This difference can be 
attributed to the way missing values were replaced in this data set and can be considered a normal 
fluctuation in the context of the data used for this experiment. 

• In terms of standard deviation (std) very small differences such as -0.000079013 and -0.000189607 
can be considered as normal fluctuations in the data. Very small differences in the standard 
deviation of the variables between the original and the cleaned data set may be caused by the 
process of replacing missing values by the preprocessing method. Replacing missing values can 
introduce small variations in the data, depending on the values they are replaced with. In addition, 
the replacement process may affect the standard deviation of the data negligibly, especially in 
cases where missing values are rare and/or uniformly distributed. Also, there could be minor 
differences caused by calculation errors or mathematical approximations in preprocessing time. If 
the original and cleaned data are essentially very similar, then any difference in standard deviation 
could be the result of small rounding or data manipulation errors. In conclusion, although there 
are numerical differences, they are negligible and should not have a significant impact on the 
interpretation of the data. 

• The "min" statistics (the smallest value of each variable), the 25th percentile (the value below 
which 25% of the data is located), the 50th (the value below which 25% of the data is located) and 
the 75th percentile (the value below which 75% is located from the data), as well as "max" (the 
highest value of each variable) were not affected by preprocessing. 
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Table 8: Differences between the numerical statistics of the cleaned set and the original set 

 age fnlwgt education.num capital.gain capital.loss hours.per.week 

Count 
difference 

0 0 2 0 1 1 

mean original 38.5
8 

189778 10 1078 87.2197788
7 

40.44 

mean clean 38.5
8 

189778 10 1078 87.2171002
1 

40.44 

mean 
difference 

0 0 0 0 -0.00267866 0 

std original 13.6
4 

105549.98 2.572608256 7385.29 402.680877
6 

12.34709879 

Std clean 13.6
4 

105549.98 2.572529243 7385.29 402.674984
0 

12.34690918 

Std difference 0 0 -0.000079013 0 -0.0058936 -0.000189607 

min original 17 12285 1 0 0 1 

min clean 17 12285 1 0 0 1 

min difference 0 0 0 0 0 0 

25% original 28 117827 9 0 0 40 

25% clean 28 117827 9 0 0 40 

25% difference 0 0 0 0 0 0 

50% original 37 178356 10 0 0 40 

50% clean 37 178356 10 0 0 40 

50% difference 0 0 0 0 0 0 

75% original 48 237051 12 0 0 45 

75% clean 48 237051 12 0 0 45 

75% difference 0 0 0 0 0 0 

max original 90 1484705 16 0 0 99 

max clean 90 1484705 16 0 0 99 

max difference 0 0 0 0 0 0 

 
 
The analysis of the results in Table 9, which shows the differences between the statistics of the cleaned set 
and the original set for the categorical variables, highlights the following aspects: 

• "count": the results indicate differences in the number of instances between the cleaned set and the 
original set for the variables "workclass" (1836 values), "occupation" (1843 values) and 
"native.country" (583 values). These differences confirm the complete replacement of missing values 
from the original set. 

• a "False" result (eg. for the "top" variable) or a zero result means that the number of instances is the 
same in both sets for the analyzed variables. 

• "unique": there are no differences between the number of unique values between the original set and 
the cleaned set (the difference result is zero for all variables). 

• "frequency": after replacing the missing values with the mode, the frequencies of the most common 
work class (Private), the most common occupation (Prof-specialty) and the most common country of 
origin (USA) increased compared to the original set with 1836, 1843, respectively 583 courts. This is 
due to the replacement of missing values with fashion, which led to an increase in these frequencies. 

 
 
 
 
 
 



59 
 

Table 9: Differences between the categorical statistics of the cleaned set and the original set 

 
 
 
Overall, the “Fusionstrap” method demonstrated efficiency and consistency in handling missing values 
through the preprocessing method, while preserving the overall integrity of the data and minimizing 
significant influences on the distribution or underlying characteristics. These findings suggest that 
preprocessing using the “Fusionstrap” method can be an effective approach to prepare data for later stages 
of research. 
 

6.1.2 Keeping correlations in the clean dataset 
 
In our analysis process on the preservation of correlations in the cleaned data set compared to the original 
one, we adopted the method detailed in Section 4.1. We started by determining the correlations between 
the variables of the initial set. Utilizing a dedicated Python code, we conducted computations for the 
Pearson correlation coefficient for numerical variables and the Cramer’s V correlation coefficient for 
nominal/mixed variables. For nominal values, we created contingency tables between these variables and 
a reference variable, then calculated chi-square values and applied the formula for Cramer's V correlation 
coefficient. We repeated the calculations of the Pearson correlation coefficient for the numerical variables 
and of the Cramer’s V correlation coefficient for the nominal/mixed variables also in the case of the cleaned 
dataset. In the next step, we calculated the absolute difference between the values of the Pearson and 
Cramer s V coefficients corresponding to the cleaned data set and the values of the original set. Based on 
these differences we constructed a correlation matrix, highlighting the changes in the correlations of the 
variables. The correlation matrix was generated using bias correction. For a visual understanding, we 
created scatterplots and radar plots (Figures 19 and 20), illustrating the changes to the correlations 
following the data cleaning process. 
 
 
 
 
 
 
 
 
 
 
 
 

marital native

status country

count orig 30725 32561 32561 30718 32561 32561 32561 31978 32561

count clean 32561 32561 32561 32561 32561 32561 32561 32561 32561

count dif 1836 0 0 1843 0 0 0 583 0

unique orig 8 16 7 14 6 5 2 41 2

unique clean 8 16 7 14 6 5 2 41 2

unique dif 0 0 0 0 0 0 0 0 0

top orig Private HS-grad Married Prof-speciality Husband White Male US <=50k

top clean Private HS-grad Married Prof-speciality Husband White Male US <=50k

top dif FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

freq orig 22696 10501 14976 4140 13193 27816 21790 29170 24720

freq clean 24532 10501 14976 5983 13193 27816 21790 29753 24720

freq dif 1836 0 0 1843 0 0 0 583 0

sex incomeworkclass education occupation relationship race 
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Figure 19 
Correlation scatterplot diagram  

 
 
 
The scatterplot diagram indicates a uniform distribution of points around the diagonal line that starts 
increasing from the intersection of the axes, and the values of the coefficients (-0.05:0.15) are close to 0. 
This suggests that the changes between the correlations are minimal or insignificant and that there is a 
close correspondence between the cleaned data and the original data in terms of correlations. We can 
conclude, therefore, that the data cleaning process did not have a major impact on the structure of the 
correlations between the variables. 
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Figure 20 
Correlation radar diagram 

 
The radar diagram indicates a perfect overlap of the polygons formed around the center by connecting the 
points that mark the values for each correlation coefficient. This indicated, once again, that the changes 
introduced into the cleaned data set were minimal in terms of correlations and that the structure of the 
relationships between the variables remained almost unchanged. 
After careful analysis of the results of the data preprocessing experiment, we can conclude that the 
cleaning function implemented in “Fusionstrap” was able to maintain the integrity of the original data, both 
from the point of view of basic statistics and correlations. This effectiveness in preserving the essential 
features of the data gives us confidence in using the cleaned data set in further analyzes without 
significantly distorting the results or interpretations. 
 

6.2 Definition of layers 
 
The present experiment focuses on assessing the distribution and inequity of the classes in the datasets, 
with the goal of underpinning the subsequent generation of synthetic data to correct these imbalances and 
improve data integrity. To achieve this goal, the “Fusionstrap” framework adopts the method detailed in 
Section 4.2 of this study. The results of the experiment which include the percentage of imbalance are 
presented in the form of tables and histograms for each individual variable (Figure 21, Figure 22 and Figure 
23). 
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Figure 21 
Percentage of imbalances in the US census set 
 

 
 
 
 
 
Figure 22 
Percentage of imbalances in the Diabet Prediction set 
 

     
 
 
 
 
 
 
 
 

VARIABILE ORIGINAL    

 workclass 99.97  

education 99.51  

marital.status 99.85  

occupation 99.85  

relationship 92.56  

race 99.03  

sex 50.57  

native.country 100  

income 68.28  

VARIABILE ORIGINAL 

gender 99.96 

 hypertension 92.04 

heart_disease 95.75 

smoking_history 88.5 

diabets 91.45 

80

85

90

95

100

ORIGINAL
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Figure 23 
Percentage of imbalances in the AIDS set 
 

 
 

 

 
 
The results presented in visual and numerical forms (Figure 21, Figure 22 and Figure 23) constitute a 
valuable resource for understanding the gradient of inequality within each data set and will influence 
subsequent data manipulation decisions to obtain results more accurate and fairer. Variables with 
significant percentages of inequity indicate significant discrepancies between classes, thus suggesting that 
they require greater attention in the process of generating synthetic data. For example, the table in Figure 
21 shows the degree of class imbalance for each variable in the US census data set. Class imbalance refers 
to the significant difference between the frequency of different classes of a variable. Below is the 
interpretation of these percentages, highlighting the specific nature of the imbalance for each variable: 

• the percentage of 99.97% for "workclass" signals a pronounced disproportion in the distribution of 
occupational classes. This assumes that certain categories of work are much more prevalent than 
others; 

• the percentage of 99.51% for "education", similar to "workclass", indicates a significant imbalance 
in the distribution of education levels, some categories being much more frequent; 

• the percentage of 99.85% for "marital.status" highlights a significant disproportion in the 
distribution of marital statuses, suggesting a higher prevalence of some marital statuses compared 
to others; 

• the percentage of 99.85% for "occupation", similar to "workclass" and "education", indicates a 
notable imbalance in the distribution of occupations, where certain types of occupations 
predominate; 

• notable differences between the categories are also presented by the variables: "relationship" 
(92.56%) and "race" (99.03%); 

• the "sex" variable registers a percentage of 50.57% that approaches 50%, which indicates a 
relatively fair distribution between the sexes, with a more uniform approach to the classes (men 
and women). 

• for "native.country" ( 100%), all data belong to the same native state, signaling a lack of diversity 
in this dimension of the dataset. 

VARIABILE ORIGINAL 

hemo 90.81 

homo 48.73 

drugs 84.88 

karnof 99.29 

oprior 97.75 

z30 18.27 

zprior 0 

race 59.46 

gender 79.22 

str2 29.29 

strat 53.72 

symptom 79.08 

treat 66.89 

offtrt 43.07 

r 40.61 

cens 67.8 

arms 6.95 
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• the percentage of 68.28% for "income" indicates a relatively balanced distribution between income 
categories, with a slight inequality, indicating a possible prevalence of one income category. 

 
These percentages provide essential information about the distribution of classes in each variable, which 
is crucial for assessing class imbalance and identifying areas where intervention is needed to ensure a more 
equitable distribution in the data set. How these class imbalances will be handled will be assessed in the 
next experiment.  
In addition to generating synthetic data, this experiment also aims to investigate and compare the 
effectiveness of the “Fusionstrap” method in addressing class imbalances with other methods or 
techniques for managing these inequities. By applying different imbalance management strategies and 
comparing the results to the original data sets, we will be able to determine whether the “Fusionstrap” 
method makes significant improvements in correcting these discrepancies and obtaining more balanced 
data. 
 

6.3 Generating synthetic data: “Fusionstrap” vs other methods 
 
The central experiment of this research aims at an exhaustive evaluation of the “Fusionstrap” method 
compared to other synthetic data generation techniques. This experiment aims to compare the results 
obtained using “Fusionstrap” with those generated by alternative methods such as CTGAN and SYNTHPOP. 
Synthetic data quality assessment will be performed on the datasets chosen for this study: US Census, 
Diabetes Prediction, and AIDS. By applying the evaluation methods and metrics described in Sections 3.4 
and 3.5 of the paper, we will analyze the performance and effectiveness of each approach in generating 
synthetic data. For this experiment, we tested unbalanced data sets to see how the “Fusionstrap” method 
could handle class imbalance problems compared to other methods designed for this purpose. 
 

6.3.1 Evaluation of utility 
 
Applying the evaluation methods and metrics described in Section 3.4, we will analyze the performance 
and effectiveness of each approach to generate coherent and viable synthetic data (utility). The 
identification of the method that produces the best results will be achieved through the comparative 
analysis of the results. In addition to the aforementioned analyses, to comprehensively assess the 
usefulness of the synthetic data, we will perform an additional evaluation of two key statistics of interest 
from the AIDS dataset. These statistics are the survival curve and the hazard ratio. This supplementary 
evaluation step is designed to confirm the suitability and coherence of the synthetic data produced by the 
"Fusionstrap" method concerning the inherent characteristics of a sensitive dataset. 
 
6.3.1.1 Hellinger Evaluator 
 
Figure 24 shows the graphical representation of the Hellinger distance values (Appendix B) obtained by 
the three data synthesis approaches from the US Census data set.  
 
The Hellinger distance is utilized to gauge the resemblance between the probability distributions of 
synthetic and real data, ranging from 0 to 1 (Section 3.4). A value close to 0 indicates a strong fidelity of 
synthetic data in mimicking the actual distribution, signifying a significant utility in the synthesis process. 
Conversely, a value near 1 suggests notable disparities between the probability distributions of synthetic 
and real data, implying a reduced effectiveness of synthetic data in analytical or modeling scenarios. 
The comparative analysis of Hellinger distances (Figure 24) indicates the following key points regarding the 
performance of "Fusionstrap" compared to CTGAN and Synthpop: 

• "Fusionstrap" stands out by small distances for critical variables such as 
"age","workclass""education.num", "occupation", "race" and "sex". This indicates a significant 
similarity between the synthetic and real distributions for these essential features. 
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• “Fusionstrap” records larger distances for variables such as capital gain, capital loss, and hours-per-
week. This indicates a lower performance of "Fusionstrap" in ensuring the utility of synthetic data 
for these features. However, Fusionstrap obtains better values for these variables than CTGAN. 

• Despite some solid results, "Fusionstrap" is outperformed by Synthpop in terms of overall similarity 
between synthetic and real distributions. CTGAN ranks third, indicating a lower performance 
compared to the other two methods. 

 
 
Figure 24 
Hellinger distance for the US census synthetic set 
 

 
 
 
 
Analysis of Hellinger distances for the Diabetes Prediction data set (Appendix B) reveals significant 
differences in performance between "Fusionstrap", CTGAN and Synthpop (Figure 25). In evaluating this 
comparison, the following relevant aspects can be highlighted: 

• “Fusionstrap” shows significant efficiency in capturing the distributions for “gender”, 
“hypertension”, “smoking_history” and “HbA1c_level” variables, recording significantly smaller 
distances than the CTGAN method. 

• A point of vulnerability of "Fusionstrap" is illustrated by the significantly higher distances for the 
variables "heart_disease", "bmi", "blood_glucose_level" and "diabetes" compared to the 
"Synthpop" method, signaling a lower similarity in the distribution of these key features. 

• This analysis reveals that, despite notable performances of "Fusionstrap" for some variables, the 
method fails to outperform Synthpop, which remains predominant in ensuring similarity of 
synthetic distributions to real ones in the specific context of the Diabetes Prediction dataset. 
CTGAN ranks last, highlighting a lower relative effectiveness for this particular data set. 
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Figure 25 
Hellinger distance for the Diabetes Prediction synthetic set 
 

 
 
 
From Figure 26, representing the Hellinger distances for the SIDA set (Appendix B), the following essential 
aspects emerge:  

• "Fusionstrap" exhibits exceptional efficacy in preserving the similarity of distributions across 
various variables, showcasing minimal or even negligible distances, particularly in "gender," 
"zprior," and "arms." 

• For the "preanti" and "cd496" variables, "Fusionstrap" scores significantly higher distances than 
Synthpop and CTGAN, indicating relatively poor performance for these features.  

• This analysis indicates a performance of "Fusionstrap" comparable to that of Synthpop 
performance for most variables. However, certain variables are also identified where "Fusionstrap" 
outperforms Synthpop. "CTGAN" remains in last place in most cases, indicating a lower 
performance in generating synthetic data for this data set. 
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Figure 26 
Hellinger distance for the AIDS synthetic set 
 

 
 
 
The overall conclusion of the analysis reveals that "Fusionstrap" stands out for its efficiency in capturing 
the distributions for many key variables on the three selected datasets. However, weak points were also 
identified, especially compared to Synthpop, which continues to be the leader in terms of overall similarity 
between synthetic and real distributions. CTGAN ranks lower in the overall performance ranking. The 
selection among these approaches should consider the specific characteristics of the dataset, the variables 
of concern, and the analysis objectives. It is crucial to weigh both the advantages and disadvantages of 
each method, as there is no universally superior approach for all variables. 
 
6.3.1.2 Correlation Evaluator 
 
The methods and metrics used in this experiment to evaluate and compare the performances of the three 
approaches (“Fusionstrap”, CTGAN and SYNTHPOP) in terms of preserving the correlations between 
variables with respect to the original set were presented in detail in Section 3.4 of the paper. Depending 
on the dimensionality of each dataset, the outcomes were depicted using radar diagrams or scatterplot 
diagrams for optimal visual representation. Additionally, to comparatively assess the utility of synthetic 
data, the univariate distributions were examined for the three datasets across the three approaches 
("Fusionstrap," CTGAN, and SYNTHPOP) (Appendix C). Through this comparison of the univariate 
distributions between synthetic and original data, we can discern the degree to which synthetic data 
accurately mirrors the distribution patterns observed in the authentic dataset. 
 
➢ US census 
 
Figure 27 presents radar charts for the U.S. Census dataset, illustrating the differences between correlation 
coefficients of synthetic data generated with "Fusionstrap" (a), CTGAN (b), and SYNTHPOP (c) compared to 
the coefficients of the original data. The values underlying these charts are provided in Appendix B. The 
differences between synthetic-original correlation coefficients reflect how well the synthetic models 
manage to reproduce relationships between variables in the original dataset. In interpreting these 
differences, the following aspects can be observed: 
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• Value range (Appendix B): 
 
Minimum: "Fusionstrap": 0.005309023, CTGAN: 0.000537373, SYNTHPOP: 0.000037300 
Maximum: "Fusionstrap": 0.634494573, CTGAN: 0.960033808, SYNTHPOP: 0.039659307 
 

• Percentage of cases with minimum values (Appendix B): 
 
Fusionstrap: 7% 
CTGAN: 10% 
SYNTHPOP: 87% 
 

• Interpretation on variable groups (Appendix B): 
 
Compared to SYNTHPOP and CTGAN, “Fusionstrap” seems to fall within a medium-performance range. 
SYNTHPOP records the smallest differences in most variables, indicating a better ability to accurately 
reproduce relationships between variables. However, “Fusionstrap” has some significant advantages in 
certain scenarios, such as variable pairs “capital.loss+hours.per.week,” “education.num+hours.per.week,” 
“hours.per.week+race,” “marital.status+race,” “native.country+occupation,” and “sex+workclass,” where 
it records significantly smaller differences than CTGAN and performs comparably to SYNTHPOP. The 
significantly large differences for pairs “age+relationship,” “education+education.num,” and 
“relationship+sex” indicate a potential weakness in “Fusionstrap” in adequately reproducing these 
relationships. These examples illustrate an area where the model can be improved to achieve SYNTHPOP-
like performance. 
 

• General conclusion: 
 
SYNTHPOP stands out by recording the smallest differences in 87% of variables, indicating better 
performance in accurately reproducing relationships between variables. Fusionstrap falls within a medium 
range, with the smallest differences in 7% of variables. CTGAN, despite recording relatively larger 
differences, demonstrates better performance than Fusionstrap in 10% of variables.  
 
Differences in the performance of synthetic models can be caused by various factors: 
 

- CTGAN is known for generating continuous data and correctly preserving the marginal distributions 
of variables but may struggle with accurately reproducing complex correlations between variables. 
Hypothetical example: CTGAN might have difficulties preserving a complex correlation between 
"monthly salary" and "number of hours worked per week," resulting in a significant deviation from 
the original correlation. 

- SYNTHPOP employs regression-based methods and may perform better for variables with explicit 
regression relationships. Hypothetical example: SYNTHPOP may better reproduce the regression 
relationship between "age" and "work experience" in your data, as this relationship can be 
modeled through linear regression. 

- "Fusionstrap" combines features of different methods, attempting to capitalize on the advantages 
of each. Extreme example: Fusionstrap may achieve balanced performance in some cases but may 
struggle in situations where data contains complex and non-uniform relationships. Hypothetical 
example: Fusionstrap may achieve balanced performance in reproducing relationships between 
"education" and "income" in the case of uniform distributions but may struggle in situations where 
this relationship is complex and variable. 

SYNTHPOP might be preferred in situations emphasizing linear or regression relationships, while CTGAN 
could perform better in cases of complex marginal distributions. Fusionstrap could be a balanced option, 
but it is essential to evaluate it based on specific data and analysis objectives. In general, interpreting the 
utility of synthetic data should consider the specific nature of the data and analysis requirements, choosing 
the method that optimizes the reproduction of significant relationships. 
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Figure 27 
Radar diagram correlation synthetic-original for US census (a. “Fusionstrap”; b. CTGAN; c. SHYNTPOP.) 
 

 

a. 
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                                                                                           b. 
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c. 
 
 
 
 
 

➢ Diabets Prediction 
 
Radar charts for the Diabetes Prediction dataset (Figure 28) indicate better accuracy in preserving 
correlations from the original data for the SYNTHPOP method, followed by CTGAN, with "Fusionstrap" 
showing variations for several correlation pairs. The analysis for this dataset revealed the following 
observations: 
 

• Value Range (Appendix B): 
 
Minimum: "Fusionstrap": 0.001914897, CTGAN: 0.000963539, SYNTHPOP: 0.000760228 
Maximum: "Fusionstrap": 0.441716990, CTGAN: 0.250465857, SYNTHPOP: 0.090552499 
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• Percentage of Cases with Minimum Values (Appendix B): 
 
Fusionstrap: 11% 
CTGAN: 19% 
SYNTHPOP: 67% 
 

• Interpretation on Variable Groups (Appendix B): 
 
In most variable pairs, SYNTHPOP consistently records the smallest differences, indicating a superior ability 
to reproduce relationships in the Diabetes dataset. "Fusionstrap," falling within a medium-performance 
range, has significant advantages in certain scenarios, such as variable pairs "age+hypertension," 
"gender+smoking_history," "heart_disease+smoking_history," and "hypertension+smoking_history," 
where it records significantly smaller differences than CTGAN and performs comparably to SYNTHPOP. 
CTGAN, despite recording larger differences in some cases, may offer reasonable performance, suggesting 
adaptability to the characteristics of the Diabetes dataset. 
 

• General Conclusion: 
 
SYNTHPOP records the smallest differences in 67% of variables, highlighting better performance in 
accurately reproducing relationships between variables for the Diabetes dataset. Fusionstrap falls within a 
medium range, with the smallest differences in 11% of variables. CTGAN, despite recording a high number 
of variations, demonstrates better performance than Fusionstrap in 19% of variables. 
 
Factors influencing differences in model performance could include: 

- Variables related to diabetes may exhibit intricate relationships, and SYNTHPOP, with its 
regression-based approach, might be more efficient in capturing complex associations. 

- Fusionstrap's combination of methods allows adaptability to different types of relationships but 
may face challenges in scenarios with extremely non-linear or complex correlations. 

- CTGAN, known for preserving marginal distributions, might struggle with precisely reproducing 
specific correlations between variables related to diabetes. 

- SYNTHPOP's regression methods may excel in scenarios where explicit regression relationships play 
a crucial role, such as in diabetes-related predictors. 

- Variables related to diabetes, such as "HbA1c_level," "blood_glucose_level," and "diabetes" itself, 
may have higher importance in the SYNTHPOP model, contributing to its overall superior 
performance. 

Given the range of differences (0.0007:0.44), we can appreciate that the changes are insignificant for all 
three methods. 
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Figure 28 
Radar diagram correlation synthetic-original for Diabet Prediction (a. “Fusionstrap”; b. CTGAN; c. SHYNTPOP). 
 

a.  

                        
 
 
 

 b.  c.          
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➢ AIDS 
The scatterplots for the AIDS data set (Figure 29, Figure 30 and Figure 31) show a uniform distribution of 
points around the diagonal line of increasing direction, and most of the coefficient values are close to 0 
This suggests that the analyzed data pairs did not undergo significant changes in the correlations in the 
synthetic data compared to the original ones. From the Figure 31, it can be inferred that the SHYNTPOP 
method has the best accuracy in keeping the correlations from the original set (the points are closely 
aligned around the diagonal), followed by “Fusionstrap” and CTGAN. 
 
 
 
 
Figure 29 
Scatterplot diagram correlation synthetic-original for AIDS with “Fusionstrap” 
 

 
 

 
Figure 30 
Scatterplot diagram correlation synthetic-original for AIDS with CTGAN 
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Figure 31 
Scatterplot diagram correlation synthetic-original for AIDS with Synthpop 
 

 
 
In conclusion, detailed analysis of the correlations in the synthetic data indicates that “Fusionstrap” and 
SYNTHPOP show good preservation of correlations from the original data, while CTGAN shows some 
variation. This underlines the promising abilities of the two methods in preserving the complex structures 
of the original data. 
 
6.3.1.3 Factorial Analysis of Mixed Data (FAMD) 
 
In the evaluation of the AIDS dataset, Factor Analysis of Mixed Data (FAMD) will be used to illustrate and 
interpret the intrinsic complexity and relationships between the synthetic data generated by various 
methods. This approach aims at a deeper understanding of the underlying structures of these data. In the 
analysis process, we will use FAMD to project instances into a Euclidean space, thus avoiding dimensionality 
challenges by resizing the space and optimizing the computational process. 
The algorithm of the method [106] follows the steps: 

• Computation of matrices for categorical and continuous variables: For categorical variables, a 
correspondence matrix is constructed to highlight relationships between categories. In the case of 
continuous variables, the covariance or correlation matrix is calculated, depending on the nature 
of the data. 

• Matrix decomposition: By applying Correspondence Factor Analysis (AFC) to categorical variables 
and Factor Analysis (AF) to continuous ones, the latent factors that explain the variation in the data 
are identified. 

• Factor integration: The factors obtained from the AFC and AF analyzes are combined into a single 
FAMD analysis, with an appropriate weighting for each type of variable. 

• Interpretation of factors: Graphical visualization of factors and the contribution of each variable to 
them facilitates understanding of the relationships between variables and their influence on the 
underlying structures of the data. 
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Figure 32 presents comparative results of analyzes based on original data and the three approaches 
“Fusionstrap” (a), CTGAN (b) and SYNTHPOP (c).  
 

        

      
a.                                                                                                      b. 
               

 
             c. 

 
 
Note. a. FAMD projections of AIDS data generated using "Fusionstrap" within the original data space 
(original data represented by orange points, "Fusionstrap" data depicted by green points). b. FAMD 
projections of AIDS data generated with CTGAN within the original data space (original data denoted by 
orange points, CTGAN data represented by blue points). c. FAMD projections of AIDS data generated using 
SYNTHPOP within the original data space (original data marked by orange dots, SYNTHPOP data shown by 
purple dots). 
All three methodologies maintain the statistical significance of the original AIDS dataset, as evidenced by 
the superimposition of data points from the three methods onto the same space constructed from the 
original observations. This alignment indicates a utility level comparable to the original dataset. Upon 
scrutinizing the "Fusionstrap" method's performance concerning Factor Analysis of Mixed Data (FAMD) on 
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the AIDS dataset and juxtaposing it with Synthpop and CT-GAN methods, it becomes apparent that 
"Fusionstrap" excels in preserving the dataset's essential features. The FAMD projections for the data 
generated by "Fusionstrap" exhibits a complete overlap with the original set, encompassing outliers, 
emphasizing its superior utility in this particular experimental context. This noteworthy agreement 
underscores the capability of the "Fusionstrap" method to accurately replicate the essential features of the 
dataset in FAMD analysis, emphasizing its efficacy in preserving and faithfully reproducing the data 
distribution when compared to the Synthpop and CTGAN methods. 
    
6.3.1.4 Checking fidelity with “Avatar” statistics: Survival Curve and Hazard Ratio 
 
To assess the capacity to preserve the utility of the original AIDS dataset, we examined how the values of 
two predictive statistics, namely the "survival curve" and "hazard ratio," were sustained within the 
synthetic datasets. 
The survival curve (Survival Curve) represents the probability of survival to a certain point in time for a 
group of subjects or patients. This curve is made by calculating the proportion of subjects that survived to 
each specific time point (survival rate). Based on the survival rates, the survival curve is constructed. 
The Hazard Ratio serves as an indicator of the disparity in the occurrence of events between two groups, 
as observed in our case through a comparison between synthetic and original data. It gauges the rate at 
which events unfold in one group relative to the rate in the other group. To calculate the hazard ratio, we 
will determine the hazard rate for the original data set and for each synthetic data set obtained through 
the three approaches (the ratio between the number of events and the time at risk). Time at risk is the 
length of time that study subjects are at risk of experiencing the event (death). Then we will calculate the 
ratios between the hazard rates for the synthetic data and the hazard rate for the original data. If the 
hazard ratio is equal to 1, it means that there is no significant difference between the compared data sets 
in terms of the spread of events. If the hazard ratio is greater or less than 1, it indicates a significant 
difference in the spread of events between the groups. 
Figure 33 compares the four-treatment survival curves calculated on the synthetic data generated with 
"Fusionstrap" (a), CTGAN (b), SYNTHPOP (c) and the original SIDA data set. The survival curves for the four 
treatment arms exhibit a more pronounced overlap between the data generated by "Fusionstrap" and 
SYNTHPOP (dotted line) and the original data (solid line). 
 
Figure 33 
Comparative results: a. Survival curves – “Fusionstrap”; b. Survival curves – CTGAN; c. Survival curves – 
SYNTHPOP. 
 

         
a.                                                                                                   b. 
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                                                    c. 
 
Figure 34 and Figure 35 demonstrate that the main results of the study regarding the survival curve in time 
and the hazard ratio remained unchanged for all three approaches, with small changes in the case of the 
survival curve for CTGAN. 
 
Figure 34 
Comparative survival curves in time 
 

 
 
Figure 36 indicates the comparison between the three approaches for the P-value for the hazard ratio 
(Hazard Ratio). This statistical metric assesses the statistical significance of the difference between the 
hazard rates of two groups, as observed in our case between the synthetic and original datasets. In other 
words, p-values help us decide whether any observed differences are the result of random variation or 
represent significant differences. In the framework of our analysis and with a selected significance level of 
0.05, a p-value exceeding this threshold (e.g., 0.8 for "Fusionstrap") implies that the observed differences 
could potentially arise from random variation. Consequently, there is insufficient evidence to assert the 
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significance of these potential differences. Table 10 presents the computed values for hazard ratio and p-
value. 
 
 
Table 10 
Values for hazard ratio 

Figure 35 
Comparative Hazard Ratio                     

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 36 
Comparative p-values for Hazard Ratio 
 

 
 
When considering the assessment of predictive hazard ratio statistics and survival curve preservation in 
synthetic data, we broadened our perspective by examining analogous research on the AIDS dataset. This 
prior study utilized a synthesis method known as Avatar [94]. The main results of this study [94] show a 
similar effectiveness of "Fusionstrap" to that of avatar. For both approaches, the effectiveness of arm 1 in 
the survival curve, when comparing CD4 T-cell counts over time, surpassed that of arm 0. Specifically, for 
"Fusionstrap," the hazard ratio (HR) was 0.998804 compared to the original HR of 1.009496, and the p-
value was 0.786500 versus the original p-value of 0.079344. In contrast, for Avatar, the hazard ratio was 
0.40 compared to the original HR of 0.49, and the p-value was 1.47e-11 versus the original p-value of 
1.22e−08. These findings support the consistency and relevance of the “Fusionstrap” method in generating 

     Method Hazard 
Ratio 

p-value 

Original 1.009496 0.079344 

Fusionstrap 0.998804 0.786500 

CTGAN   0.999295 0.893157 

Synthpop 1.001635 0.753656 
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accurate and useful synthetic data, providing a solid foundation for its applicability in similar research 
areas. 
 
Summary: 
Within this section, we delved into an exploration and assessment of the effectiveness of synthetic data 
produced by the "Fusionstrap" framework in comparison to alternative methods such as CTGAN and 
SYNTHPOP. Our goal was to deeply understand the performance of these methods in the context of 
generating synthetic data, as well as how they were able to preserve the essential features and 
relationships from the original datasets. In evaluating the correlations, we found that “Fusionstrap” 
achieved results comparable to those of the CTGAN and SYNTHPOP methods. The points in the scatterplot 
and the polygons in the radar plot indicated that “Fusionstrap” was able to effectively maintain 
relationships between variables without introducing significant bias. In addition, we used Factor Analysis 
of Mixed Data (FAMD) to examine in more detail the complex structures of the synthetic data and how 
these were modeled by the three methods. Our results highlighted “Fusionstrap”'s ability to preserve the 
essence of the original data, contributing to a deeper understanding of the relationships between variables. 
In conclusion, the “Fusionstrap” framework has demonstrated robust performance in generating synthetic 
data, maintaining essential features and relationships from the original datasets. This suggests that 
“Fusionstrap” is a promising option for generating synthetic data in the context of research and data 
analysis. In our evaluation, the “Fusionstrap” framework achieved the best results compared to the other 
methods (CTGAN and SYNTHPOP) in terms of preserving essential features and relationships between 
variables in the AIDS (HIV infection) dataset. This implies that "Fusionstrap" effectively captured the 
distributions and relationships within this dataset without introducing notable bias, indicating superior 
performance compared to other methods, especially on smaller and more sensitive datasets. It's crucial to 
acknowledge that the efficacy of the "Fusionstrap" method can fluctuate based on the unique 
characteristics of each dataset and the specific demands of the analysis. 
 

6.3.2 Evaluation of privacy 
 
Safeguarding the privacy of personal and sensitive information is a pivotal challenge when utilizing and 
exchanging data. In an ever-evolving digital society where data is used for decision-making and research, 
protecting private information is crucial to maintaining trust and complying with ethical and legal norms. 
To address this issue, we conducted a comparative privacy assessment of synthetic data generated by 
“Fusionstrap”, CTGAN, and SYNTHPOP, on three distinct datasets: US Census, Diabetes Prediction, and HIV 
Infection (AIDS). Through the privacy benchmarking, we aimed to determine whether synthetic data 
generated by “Fusionstrap” can provide a viable and safer alternative for data use and sharing compared 
to traditional methods. For this evaluation, the method based on data holdout and the evaluators 
described in detail in Section 3.5 of this thesis were used. The holdout evaluation was done by dividing the 
synthetic data sets into holdout sets (20% of the number of records) and training sets (80% of the number 
of records). 
The results of the comparative evaluation on the three data sets are presented in Tables 11, Tables 12 and 
Tables 13, highlighting the aspects in which “Fusionstrap” proved to be more promising in terms of keeping 
integrity and confidentiality of information. 
 
6.3.2.1 Holdout method and evaluators 
 
Table 11 
US census data 

EVALUATORS “FUSIONSTRAP” CTGAN SYNTHPOP 

Statistical evaluators 

KS test 0.53 0.74 0.99 

CS test 0.53 0.97 1.00 

Identical match 

Ratio in holdout 0 0  0  
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Ratio in shyntetic 0 0 0 

DCR test 

Shyntetic&Real 8.69 5.83 3.13 

Holdout&Real 8.69 5.82 3.14 

NNDR test 

Shyntetic&Real 0.83 0.53 0.22 

Holdout&Real 0.20 0.20 0.20 

Data detection 

Logistic detection 0.005 0.04 1.00 

Random forest 0.004 0.04 0.94 

 
 
Table 11 provides a comparative assessment of the privacy risk associated with using synthetic data 
generated by “Fusionstrap”, CTGAN, and SYNTHPOP from the US Census set. The evaluations were 
conducted using several evaluation metrics, each providing a different perspective on the effectiveness of 
each method in protecting data privacy. The KS and CS tests evaluate the similarity between synthetic and 
real distributions. In the context of protecting privacy, the goal is to obtain synthetic data that has a 
distribution as close as possible to the real one, without revealing sensitive or personal information. a 
smaller value indicates less divergence between the distributions, suggesting that the synthetic data are 
less discernible from the real data. Therefore, the lower values for "FUSIONSTRAP" in these tests (KS= 0.53. 
CS= 0.53) suggest that this method provides synthetic data with a better similarity to real data while 
providing greater privacy protection than CTGAN and Synthpop. 
Zero values for Ratio in holdout and Ratio in synthetic suggest that there are no identical records between 
the real and synthetic datasets for either method. Lack of identical matching is often a positive aspect in 
generating synthetic data, as it shows that individual records from the original data set have not been 
recreated in detail. Therefore, the obtained results indicate a good practice in terms of privacy protection, 
since there is no identical data between the real and synthetic datasets. 
For DCR test and NNDR test, “Fusionstrap” shows higher values for the two comparisons (Synthetic&Real 
and Holdout&Real), signifying a better fit of the synthetic data to the real data compared to the other 
methods. Regarding the data detection tests (Logistic detection and Random forest), the results suggest 
that the synthetic data generated by “Fusionstrap” has the lowest risk of being detected as synthetic 
compared to that generated by CTGAN and SYNTHPOP. 
In conclusion, for this dataset, based on the analyzed results, “Fusionstrap” appears to provide better 
privacy protection compared to the other two methods, with better values in most of the privacy risk 
assessment tests. 
 
 
Table 12 
Diabetes Prediction data 

EVALUATORS “FUSIONSTRAP” CTGAN SYNTHPOP 

Statistical evaluators 

KS test 0.69 0.86 0.99 

CS test 0.23 0.82 1.00 

Identical match 

Ratio in holdout 0.02 0.02 0.02 

Ratio in shyntetic 0.00 0.00 0.01 

DCR test 

Shyntetic&Real 3.05 2.21 1.61 

Holdout&Real 3.16 2.19 1.61 

NNDR test 

Shyntetic&Real 0.43 0.80  0.36  
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Holdout&Real 0.33 0.12 0.33 

Data detection 

Logistic detection 0.20 0.45 1.00 

Random forest 0.20 0.46 0.99 

 
The comparative privacy risk analysis of the "Diabetes Prediction" dataset (Table 12) reveals significant 
differences between the three synthetic data generation methods: “Fusionstrap”, CTGAN and SYNTHPOP. 
Following statistical tests such as KS test and CS test, we notice that the values associated with 
“Fusionstrap” are lower compared to those of CTGAN and SYNTHPOP methods. This may suggest that the 
synthetic data generated by “Fusionstrap” more closely resembles the real data in terms of distributions. 
Looking at the goodness-of-fit tests, we see that all three methods show some level of differentiation 
between holdout and synthetic data. However, “Fusionstrap” seems to keep these differences to a smaller 
level, indicating a potentially more effective approach to protecting privacy. The results for DCR test and 
NNDR test show that “Fusionstrap” exhibits a better fit between synthetic and real data compared to 
CTGAN and SYNTHPOP. This indicates that the data produced by "Fusionstrap" possesses a superior 
capacity to mirror the authentic characteristics of the dataset. When considering data detection tests, 
"Fusionstrap" seems to hold notable advantages. Lower values for Logistic detection and Random Forest 
indicate a lower probability that synthetic data generated by “Fusionstrap” will be detected as artificial 
compared to the other two methods. 
In conclusion, the analysis on the "Diabetes Prediction" dataset reveals that “Fusionstrap” presents a more 
robust approach to privacy risk management compared to CTGAN and SYNTHPOP. 
 
Table 13 
AIDS data 

EVALUATORS “FUSIONSTRAP” CTGAN SYNTHPOP 

Statistical evaluators 

KS test 0.80 0.82 0.94 

CS test 0.58 0.92 0.99 

Identical match 

Ratio in holdout 0 0 0 

Ratio in shyntetic 0 0 0 

DCR test 

Shyntetic&Real 12.23 9.50 8.34 

Holdout&Real 12.26 9.42 8.37 

NNDR test 

Shyntetic&Real 0.67 0.54 0.47 

Holdout&Real 0.46 0.46 0.46 

Data detection 

Logistic detection 0.06 0.35 0.67 

Random forest 0.06 0.24 0.70 

 
 
Examining the risk of privacy compromise on the "AIDS" data set (Table 13), we notice that, also in the case 
of this data set, KS test and CS present lower values for “Fusionstrap” compared to CTGAN and SYNTHPOP. 
This suggests that the synthetic data created by “Fusionstrap” has a better match with the real data in 
terms of their distributions. The results from the DCR and NNDR tests show that “Fusionstrap” is closer to 
the authentic data compared to the other methods. This indicates that the data generated by “Fusionstrap” 
better captures the essential features of the original data set. In terms of data detection analysis, the lower 
values for Logistic detection and Random Forest suggest that the synthetic data obtained by “Fusionstrap” 
is less likely to be detected as artificial, in contrast to the data generated by CTGAN and SYNTHPOP. 
In conclusion, the privacy risk analysis on the "AIDS" dataset confirms that “Fusionstrap” stands out as 
more robust in protecting privacy compared to the other two methods. 
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6.3.2.2 Re-identification attack 
 
This experiment will perform a re-identification risk assessment on the synthetic datasets generated by the 
three methods: Bootstrap, CTGAN and SYNTHPOP. The purpose of the experiment is to determine how 
often a distance-based linking attack can lead to the correct re-identification of the individual in the 
synthetic data set. 
The comparative evaluation between the three methods will go through the following steps: 

• The original datasets and the three synthetic datasets (Bootstrap, CTGAN and SYNTHPOP) are 
defined as inputs. 

• The identification attributes, crucial for re-identification purposes, are explicitly determined. These 
variables encompass the individual's attributes in the dataset that are prone to be associated with 
their identity. 

• The target variable for re-identification is defined. This represents the attribute that is desired to 
be correctly re-identified in the synthetic dataset. 

• A dictionary is initialized to store the correct re-identification rate results for each method. 

• Iterate through each individual record in the original data set. For each individual, the distances 
between its attributes and the attributes of each individual in each synthetic dataset (Bootstrap, 
CTGAN and SYNTHPOP) are calculated. The synthetic individual with the smallest distance from the 
original individual is found. 

• The target variable of the synthetic individual is compared with that of the original individual. If 
these target variables are identical, then a correct re-identification has been achieved. 

• Determine the accurate re-identification rate for each method by dividing the number of correct 
re-identifications by the total number of attempts at re-identification. 

The results in Table 14 indicate the re-identification accuracy for 100 attempts in the case of each method 
(Bootstrap, CTGAN and SYNTHPOP). This accuracy refers to how often a correct re-identification of the 
individual from the original dataset occurred in the generated synthetic dataset. The target variables for 
re-identification were: "income" for US census, "diabetes" for Diabetes Prediction and "offtrt" (the variable 
that provides information on whether or not a patient came off antiretroviral treatment (ART) within a 
certain interval of time) for the AIDS set. 
 
Table 14 
Re-identification accuracy 

Re-identification 
accuracy 

“Fusionstrap” CTGAN SYNTHPOP 

US census 0.31 0.68 0.67 

Diabet Prediction 0.70 0.90 0.93 

AIDS 0.61 0.64 0.36 

 
The data presented in Table 14 regarding re-identification accuracy for each method (“Fusionstrap”, CTGAN 
and SYNTHPOP) on the three datasets indicate the level of risk associated with exposing sensitive data. Re-
identification accuracy refers to how often the individual from the original data set was correctly identified 
in the generated synthetic set. The higher the re-identification accuracy, the higher the risk of exposing 
sensitive data. Comparing the results for each dataset, we can see that for the US census dataset, 
“Fusionstrap” shows the lowest re-identification accuracy (0.31), followed by SYNTHPOP (0.67) and CTGAN 
(0.68). This indicates that, in this context, “Fusionstrap” can provide better protection against the risks of 
re-identification and exposure of sensitive data. Regarding the Diabetes Prediction dataset, CTGAN and 
SYNTHPOP record higher accuracies (0.90 and 0.93, respectively), indicating an increased risk of re-
identification and exposure of sensitive data for these two methods. “Fusionstrap” shows lower accuracy 
(0.70), suggesting less exposure of sensitive data compared to the other methods. For the AIDS dataset, 
the re-identification accuracy is lowest for SYNTHPOP (0.36), followed by “Fusionstrap” (0.61) and CTGAN 
(0.64). Thus, SYNTHPOP can provide better protection against the risk of re-identification and exposure of 
sensitive data in this context. 
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In conclusion, analyzing these results, we can see that “Fusionstrap”, in most cases, presents a lower re-
identification accuracy compared to the other methods, indicating a lower exposure of sensitive data. 

6.3.3 Analysis of class imbalances 
 
In this segment of the analysis, we focused on evaluating the percentages of class imbalances in the 
synthetic data sets obtained by means of the “Fusionstrap” method. The key objective of this step was to 
evaluate the proficiency of “Fusionstrap” in correcting class imbalances compared to the original datasets. 
We also evaluated how this methodology compares to the CTGAN and SYNTHPOP alternatives in 
addressing this aspect of synthetic data generation. 
The results obtained for each variable for the three data sets analyzed are presented in Figure 37, Figure 
38 and Figure 39. 
For the US census data set (Figure 37), we observe that “Fusionstrap” was able to significantly reduce class 
imbalances for most variables, while still maintaining an acceptable proportion of the class distribution. 
For example, variables such as "workclass", "education", "marital.status" and "occupation" saw notable 
improvements in handling inequities between the corresponding classes. This suggests that “Fusionstrap” 
had a positive impact on obtaining balanced synthetic data, better reflecting the original distribution. In 
comparison, the CTGAN and SYNTHPOP methods produced mixed results, sometimes maintaining the 
original class proportions but also generating significant inequities in certain variables. 
 
Figure 37 
Class imbalance percentages for US census 
 

 
 
 
 
 
In the case of the Diabetes Prediction set (Figure 38), “Fusionstrap” had a significant effect in reducing class 
imbalances for the variables: "gender", "hypertension" and "smoking_history". These results suggest that 
the “Fusionstrap” method helped balance the distribution of classes for these variables so that they better 
reflect the original structure of the data. While the CTGAN method achieved improvements in class 
balancing for some variables, SYNTHPOP showed mixed performance. It is crucial to highlight that, 
concerning the "diabetes" variable, "Fusionstrap" successfully mitigated the class imbalance, significantly 
reducing the percentage from 91.45% to only 0.6%. This exemplifies the efficacy of the method in 
addressing class inequities within the Diabetes dataset Prediction. 
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Figure 38 
Class imbalance percentages Diabetes Prediction 
 

 
 
 
In Figure 39, we notice that in the case of variables "homo", "z30", "zprior", "str2" and "offtrt", the 
“Fusionstrap” method managed to bring a significant balance between the classes compared to the original 
set, demonstrating its effectiveness in dealing with these class imbalances. Also, for the variables "hemo", 
"gender", "strat", "treat" and "r", “Fusionstrap” obtained significant improvements in balancing the class 
distribution. However, the method recorded a slight decrease in class balance for the "race" variable. 
Compared to the CTGAN and SYNTHPOP methods, “Fusionstrap” showed better performance in handling 
class inequities for most variables in the AIDS dataset. 
 
 
Figure 39 
Class imbalance percentages for AIDS 
 

 
 
By analyzing the percentages of class imbalances within each data set (US Census, Diabetes Prediction, and 
AIDS), we can conclude that “Fusionstrap” performed superiorly in treating and reducing class inequities 
compared to the other methods. This suggests that “Fusionstrap” manages to preserve a better distribution 
of classes, thus ensuring a more balanced representation of the data. “Fusionstrap” thus achieves one of 
the purposes for which it was created, namely, to resolve class imbalances in data sets by generating 
synthetic data. 
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Chapter 7 
Conclusion 
 
This chapter presents a summary of the “Fusionstrap” framework, highlighting its key aspects, strengths, 
limitations, and potential directions for further development. 
 

7.1 Summary 
 
This thesis addressed a number of key issues related to the generation and evaluation of synthetic data to 
improve its quality and utility in the context of class imbalances and data privacy protection. The primary 
objective of this study was to create and assess a framework named "Fusionstrap," drawing comparisons 
with conventional methods like CTGAN and SYNTHPOP. In the first part of the thesis, we explored the 
problem of class imbalances in datasets and analyzed their impact on machine learning algorithms. We 
have shown that class imbalances can lead to unfair decisions and that generating synthetic data can be a 
solution to correct this problem. Next, we presented the “Fusionstrap” framework, an integrated data 
processing and synthesis system developed in response to the challenges posed by class imbalance in 
datasets. This framework addresses several essential aspects of data processing, including rigorous 
preprocessing, advanced synthetic data generation using Bootstrap to handle class imbalances, and 
postprocessing techniques such as removing outliers and applying Bootstrap rotation to obtain a unique 
set of synthetic data. Comprehensive assessment of the utility and privacy of synthetic data, compared to 
other data synthesis methods, completes this framework. The diagram of relevant components (Figure 16) 
provides a visual illustration of the architecture and functionality of the “Fusionstrap” system, showing how 
each stage contributes to improving data quality and ensuring privacy, in a context of effective class 
imbalance management. To assess the efficacy of "Fusionstrap," a set of experiments was conducted using 
three datasets, and the outcomes were juxtaposed with those derived from CTGAN and SYNTHPOP. The 
examination covered not only the statistical faithfulness of the synthetic data but also its capability to 
rectify class imbalances. The use of "Fusionstrap" brings significant advantages in the field of synthetic data 
generation, notable for the following aspects: 

• Comprehensive Approach: "Fusionstrap" is not limited to synthetic data generation, but provides 
a complete solution for data management and synthesis. It starts with rigorous preprocessing, 
continues with the generation of synthetic data, and includes postprocessing techniques to ensure 
data quality and confidentiality. It also includes a full assessment of the utility and privacy of the 
synthetic data obtained. This assessment is essential to ensure that the synthetic data is relevant 
to the analysis tasks and complies with confidentiality requirements. 

• Handling Class Imbalances: One of “Fusionstrap”'s distinguishing features is its efficient handling 
of class imbalances. By using the Stratified Bootstrap technique, this framework generates 
synthetic data that balances the class distribution, thus making the datasets more suitable for 
training and evaluating machine learning models. 

• Flexibility and Customization: “Fusionstrap” allows customization of the parameters and methods 
used to generate synthetic data. This level of flexibility makes this framework suitable for various 
data types and application scenarios. 

• Reproducibility: “Fusionstrap” is designed to be reproducible. This means that by applying the 
same methodology and parameters within Fusionstrap, the results obtained will be constant and 
consistent. In other words, if the same initial data set and the same settings of "Fusionstrap" are 
used repeatedly, the synthetic data generated is expected to be similar or identical. This aspect 
provides confidence that the process of generating synthetic data is reliable and can be 
consistently replicated to obtain the same results in various iterations of the experiment or 
analysis. 

• Privacy Management: “Fusionstrap” integrates post-processing techniques, such as removing 
outliers and applying Bootstrap rotation, to protect the privacy of the original data. 
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• Benchmarking: “Fusionstrap” provides a solid basis for comparing the quality of synthetic data 
against other data synthesis methods, helping to identify the most suitable method for a given 
scenario. 

Overall, “Fusionstrap” is a comprehensive and efficient solution for handling class imbalances in data used 
in data analysis and machine learning. This framework adds value in improving data quality and ensuring 
confidentiality, thus facilitating decision-making and research processes in various fields. After analyzing 
the results of the experiments, the conclusions highlight that Fusionstrap can be successfully applied in 
areas such as health data analysis, epidemic forecasting, as well as in social and economic analysis, proving 
to be effective especially in the case of small data sets up to mediums (2.000-50.000 records). 
 
 

7.2 Answers to the research questions 
 
In this research, we addressed the central question of the study: “Can Fusionstrap improve the quality of 
synthetic data over known methods such as CTGAN or SYNTHPOP?”. Considering the challenges 
encountered in generating synthetic data, the research objectives consisted of evaluating the quality of the 
synthetic data, examining the effectiveness in handling class imbalances, and comparing the overall 
performance of Fusionstrap with CTGAN and SYNTHPOP. Next, we will detail the answers to these 
questions and highlight key takeaways from Fusionstrap's analysis. 
 
RQ1: To what extent can „Fusionstrap” ensure the utility of the data generated? 
 
RQ1.1: How can the utility of synthetic data be measured? 
Assessing the usefulness of synthetic data was an essential aspect in ensuring the fidelity and relevance of 
this artificially generated data. The importance of this process lies in the ability to validate the performance 
of synthetic data generation methods, ensuring that they accurately reproduce key features of the original 
data sets and are thus usable in various contexts, from scientific research to business decision making.  
The following selection criteria were considered:  

• To evaluate the similarity of the distributions between the synthetic and real data, we opted for 
the Hellinger evaluator based on previous studies that highlighted the effectiveness of the 
Hellinger distance in evaluating the similarity between probability distributions [61]. This 
recommends it as a relevant metric for measuring the usefulness of synthetic data. 

• Assessing correlations is crucial to ensure that relationships between variables are preserved in 
synthetic data. We chose to measure the correlation between variables using the Pearson 
Correlation Coefficient and Cramer's V Correlation given the specific advantages of these metrics 
in the context of generating synthetic data. The Pearson Correlation Coefficient is applicable to 
continuous variables and furnishes details about the direction and strength of the linear 
relationship between them [62]. At the same time, Cramer's V Correlation is effective for 
categorical variables, providing a measure of the strength of association between them [63]. Radar 
diagrams and scatter plot diagrams were chosen to represent the results of correlation evaluation 
as these visualization methods provide an intuitive and comprehensive perspective on how the 
relationships between variables are preserved in the synthetic data compared to the real ones [63]. 
Radar diagrams allow differences and similarities to be observed in a visual way, highlighting areas 
where the synthetic data approaches or deviates from the actual distribution. On the other hand, 
scatter plot diagrams provide a detailed way of viewing the distribution of points relative to the 
regression line, making it easier to identify variations between synthetic and real data. 

• For a deeper understanding of the relationships between the variables, the Factor Analysis of 
Mixed Data (FAMD) method was additionally used (Section 6.3.1.3) recognized from previous 
studies as a powerful method to examine and interpret complex data structures [106]. 

• To investigate in depth how the essential features of the original datasets are preserved, it is 
necessary to evaluate their representative statistics. In the present research, we chose to evaluate 
two essential statistics of the AIDS data set, namely the survival curve and the hazard ratio (Section 
6.3.1.4). This choice was based on the existence of a similar study carried out by the Avatar method 
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[94], which allows comparing the results with the results of other research carried out on the same 
data sets. 

 
RQ1.2: What is the utility level of the “Fusionstrap” framework compared to other data synthesis 
methods (CTGAN and SYNTHPOP)? 
To evaluate the utility data generated with “Fusionstrap” framework compared to other data synthesis 
methods, we applied various metrics and evaluation methods. The following results show that the 
performance of "Fusionstrap" is competitive or even superior to the performance of the CTGAN and 
Synthpop methods in terms of similarity of the synthetic data to the original data (Section 6.3.1): 

• "Fusionstrap" obtained smaller Hellinger distances for certain variables, indicating a greater 
similarity between the synthetic and real distributions.  

• "Fusionstrap" preserved the correlations between variables better than the two methods, a fact 
highlighted in radar plots and scatterplots.  

• Using Factorial Analysis of Mixed Data (FAMD), we found that "Fusionstrap" modeled the complex 
structures of synthetic data more efficiently. 

•  Hazard ratio and survival curve analysis showed that Fusionstrap preserved crucial statistics, which 
is essential in the context of critical datasets such as that associated with diabetes prediction. 

The better performance of “Fusionstrap” in creating data with distributions closer to the distributions of 
the real data compared to the analyzed methods can be justified by the specific characteristics of the 
method and the way it approaches data synthesis. Here are some possible explanations: 

• "Fusionstrap" is based on the concept of Gaussian Copula, which is effective in modeling complex 
distributions. This approach may be more appropriate in generating synthetic distributions that 
are closer to the real ones.  

• It is possible that the default settings or configurations chosen for "Fusionstrap" better match the 
variables of the analyzed datasets, thus providing better results. 

•  “Fusionstrap” combines observations from filtered datasets using the Bootstrap Rotation 
technique. This specific combination of techniques can help to better adapt to certain types of 
variables. 

These results suggest that "Fusionstrap" has demonstrated a significant level of utility in generating 
synthetic data in the context of preserving essential features of the original data sets. 
 
RQ1.3: To what extent does “Fusionstrap” resolve class imbalances compared to CTGAN and SYNTHPOP? 
“Fusionstrap” provides a flexible and adaptable approach to handle class imbalance in synthetic datasets. 
By means of precise parameter setting, the methodology can be trained to pay special attention and 
balance the class distribution for selected variables. This functionality allowed for superior results in 
resolving class imbalance compared to the CTGAN and SYNTHPOP alternatives. Detailed analysis of the 
results (Section 6.3.3) reveals that, for the specific variables selected for imbalance correction, 
“Fusionstrap” was able to significantly reduce the disparities between classes, thus validating its 
effectiveness in handling this complex problem. This feature strengthens the position of "Fusionstrap" as a 
promising option for addressing class imbalance in the context of synthetic data generation. 
 
RQ2: To what extent can “Fusionstrap” ensure the confidentiality of the original data? 
 
RQ2.1: How to quantify the risk of disclosure of synthetic data? 
To evaluate to what extent “Fusionstrap” ensures the confidentiality of the original data, we focused on 
the method based on data holdout and on specific evaluation metrics (section 3.5). Also, we used the 
disclosure risk testing method (Section 6.3.2.2). This approach allowed the quantification of the probability 
of re-identification of individuals in the synthetic data. 
 
RQ2.2: How well does “Fusionstrap” protect the privacy of the original data compared to other methods 
(CTGAN and SYNTHPOP)? 
The detailed analysis of the results on the three datasets, namely US Census, Diabetes Prediction and AIDS 
(Section 6.3.2), reveals that "Fusionstrap" stands out as an effective method in protecting data privacy 
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compared to CTGAN and Synthpop. "Fusionstrap" achieves lower values than these two methods in tests 
such as KS and CS on all three datasets, indicating a greater similarity between the distribution of synthetic 
and real data, which denotes better privacy protection. Regarding the risk of identification (re-
identification accuracy), "Fusionstrap" presents in most cases lower values than the other two methods. 
For example, for the US Census dataset, "Fusionstrap" records the lowest re-identification accuracy (0.31) 
compared to Synthpop (0.67) and CTGAN (0.68). This result indicates a decrease in the risk of exposure of 
sensitive data in the context of using "Fusionstrap". In conclusion, the obtained results indicate that 
"Fusionstrap" is at the forefront in terms of data privacy protection, offering greater similarity to real data 
and a reduced risk of re-identification. This aspect places it in a superior position to CTGAN and Synthpop 
in the specific context of these analyses.  Based on the DCR and NNDR tests, "Fusionstrap" showed superior 
values compared to CTGAN and Synthpop. These results indicate a better match of the synthetic data 
generated by "Fusionstrap" to the essential features of the real data sets, thus reflecting an increased 
quality in the generation of the synthetic data. Regarding the Logistic Detection test, "Fusionstrap" showed 
lower values, meaning that the generated synthetic data is less likely to be detected as artificial compared 
to those generated by CTGAN and Synthpop. This feature underlines the ability of "Fusionstrap" to produce 
synthetic data less susceptible to identification and distinction, thus strengthening its effectiveness in 
protecting privacy. These additional findings support the conclusions that "Fusionstrap" establishes itself 
as a robust option in managing the risk of exposure of sensitive data and offers significant advantages in 
privacy protection compared to CTGAN and Synthpop alternatives. 
 
As a final conclusion, our research indicates that the performance of methods in the generation of synthetic 
data must be analyzed through the prism of the requirements of the projects and the characteristics of the 
data sets used. Certain characteristics of data sets can influence the results and make a method more 
suitable for certain scenarios. In general, there is no one-size-fits-all approach to all data sets. The 
experiments carried out in our research demonstrated that: 

• Synthpop scores superior in terms of similarity to real distributions in most cases. 

• “Fusionstrap” shows good performance in handling class imbalances and privacy risk. 

• CTGAN indicated a relatively lower performance compared to the other two methods in most of 
the analyzed scenarios. 

This evaluation highlights that "Fusionstrap" is a viable option, especially in the context of class imbalance 
management and privacy protection, with solid performance but room for improvement in ensuring utility 
for some specific variables. Finally, this research opens doors for further development of synthetic data 
generation methods and continuous improvement of sensitive data protection. 
 
 

7.3 Limitations 
 
The ‘Fusionstrap” method represents an innovative approach for generating synthetic data, however, as 
the research results highlight, the following limitations must be taken into account: 

• Configuration Complexity: Optimizing the Fusionstrap parameters involved detailed expertise and 
fine-tuning. On the "AIDS" data set, for example, a deep understanding of the interactions between 
variables was required to achieve the desired results. 

• Variable Performance as a function of dataset: For example, “Fusionstrap” achieved notable results 
on the "US Census" dataset, but performed more modestly on the "Diabetes Prediction" dataset. 
This aspect indicates that its performance may vary depending on the specific characteristics of the 
data set used.  

• Vulnerability to reduced data variability: In the case of the "Diabetes Prediction" dataset, 
Fusionstrap had difficulty preserving the distribution of low-variance features such as 
"blood_glucose_level". 

•  Computational and time resources: Generating synthetic data can involve significant computing 
resources, thus limiting the widespread implementation and use of "Fusionstrap". Applying 
“Fusionstrap” to large datasets such as the US Census imposed a significant demand on 
computational resources, which can affect efficiency and execution time. 
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7.4 Future work 
 
This section is dedicated to further development directions of the “Fusionstrap” framework, given the 
complexity and importance of handling class imbalances and ensuring data privacy. Several research 
directions can be considered to improve and extend this framework: 

• Expanding Data Generation Capability: Further research may aim to optimize the architecture, 
parameters and associated technologies to increase the efficiency and accuracy of the method. An 
important consideration for further development of “Fusionstrap” is expanding its ability to 
generate synthetic data for a wider range of data types and domains. This may involve improving 
how “Fusionstrap” handles textual data, images, or other domain-specific data formats. 

• Refined Sampling Strategies: Continued research to improve the subsampling strategies used in 
“Fusionstrap”, such as the Circular Nearest Neighbor (CNN) algorithm, to ensure a more accurate 
selection of synthetic data. Evaluation and optimization of these strategies can lead to higher 
quality synthetic data. 

• Development of Advanced Evaluation Technologies: Creation of more advanced and rigorous 
evaluation methods to measure the quality of synthetic data generated by “Fusionstrap”. This may 
involve developing custom metrics or using more advanced privacy risk assessment technologies, 
such as MIA (Member Inference Attack). 

• Domain-Specific Customization: Adapting “Fusionstrap” to the specific requirements of different 
domains or industries to effectively address their specific class and privacy imbalance issues. 

• Integration with Machine Learning Technologies: Integration of “Fusionstrap” with advanced 
machine learning technologies such as deep learning or transfer learning to fully leverage the 
generated synthetic data. 

• Optimization of Computational Resources and Time: Continued efforts to optimize the use of 
computational resources and time required to run “Fusionstrap”, especially for large datasets, to 
make the framework more accessible and resource-efficient, and of time. 

These development directions could help strengthen and improve “Fusionstrap” into a powerful and 
versatile tool for managing class imbalances and protecting data privacy in data analytics and machine 
learning, with the potential to address a broad spectrum of problems and applications. 
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Appendices 
 

A. Description of data sets 
 
The relevance of the data sets selected for the experimental part also derives from the nature of the 
variables that compose them. For a better understanding of the experimental objectives and results, it is 
necessary to describe the variables. 
 
Table A.1: US census variables 

Variables Explanation and relevance 
Variable type 

 

Age Age in years. Integer greater than 0 (zero); Numerical 

Work class 
General term for the employment status of the person 
(e.g., Private, Selfempnotinc, Selfempinc, Federalgov, 
Localgov, Stategov, Withoutpay, Neverworked) 

Categorical 

fnlwgt 
Final weight - the number of people who meet the same 
characteristics (attributes) considered census inputs - 
integer greater than 0 

Numerical 

Education 

The highest level of education attained by an individual 
(e.g., Bachelors, Somecollege, 11 th, HSgrad, Profschool, 
Assocacdm, Assocvoc, 9 th, 7th8th, 12 th, Masters, 1st4th, 
10 th, PhDs, 5th6th, Preschool.   

Categorical 

Marital status of a 
person 

e.g. married, divorced, never married, separated, 
widowed, etc.; 
 

Categorical 

Occupation 

The general type of occupation of an individual 
(Techsupport, Craftrepair, Otherservice, Sales, 
Execmanagerial, Profspecialty, Handlerscleaners, 
Machineopinspct, Admclerical, Farmingfishing, 
Transportmoving, Privhouseserv, Protectiveserv, 
ArmedForces.   

Numerical 
Each type was 
labeled with a 
whole number 
greater than 0, 
from 1 to 14. 

Relationship 

What this individual is in relation to others. For example, an 
individual could be a spouse, child, relative, unmarried, etc. 
Each entry has a single relationship attribute and is 
somewhat redundant with the marital status, so this 
feature will not be used in the analysis 
 

Categorical 

Race 
Race description of an individual (White, AsianPacIslander, 
AmerIndianEskimo, Other, Black 

Categorical 

Sex The biological sex of the individual.  
Categorical 

 

Capital-gain 
Capital gains for an individual: integer greater than or equal 
to 0 

Numerical 

Capital-loss 
Capital loss for an individual: integer greater than or equal 
to 0 

Numerical 

Hours-per-week 
The hours an individual has reported to work per week: 
continuous. 

Numerical 

Native-country Country of origin for an individual Categorical 

The label 
Whether or not an individual makes more than $50,000 
annually (<=50k, >50k).  

Categorical 
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Table A.2: Diabet Prediction variables 

Variables Explanation and relevance 
Variable type 

 

Gender 
It involves classifying individuals as male or female. This 
demographic factor can influence various aspects of 
health. 

Categorical (0 or 1) 
 

Age 
The individual's age provides insight into the potential 
health risks associated with certain age groups and 
susceptibility to certain diseases. 

Numerical 

Hypertension 
High blood pressure is a medical condition characterized 
by persistently elevated blood pressure in the arteries 
with significant health risk if left unmanaged. 

Categorical (0 or 1) 
 

Heart disease 
It is a broad term that encompasses various 
cardiovascular disorders that can affect the overall 
functioning of the heart. 

Categorical (0 or 1) 
 

Smoking-history 
Smoking history indicates whether a person has a past or 
present habit of smoking tobacco products. Smoking is a 
well-known risk factor for many health problems. 

Categorical 

bmi 

Body mass index (BMI) provides an estimate of whether a 
person's weight is in a healthy range, or whether they are 
underweight or obese. BMI is commonly used as a 
screening tool to assess the risk of weight-related health 
problems. 

Numerical 

HbA1c_level 

The HbA1c (hemoglobin A1c) level is a laboratory test that 
measures the average level of sugar (glucose) in the blood 
over the last 2-3 months. It is commonly used in the 
diagnosis and management of diabetes mellitus.  

Numerical 

Blood_glucose_level 

Blood glucose level refers to the concentration of glucose 
(sugar) in the blood. Abnormal blood glucose levels, 
either too high (hyperglycemia) or too low 
(hypoglycemia), can be associated with various health 
conditions, especially diabetes. 

Numerical 

Diabetes 

Diabetes is a chronic condition characterized by high 
blood sugar levels due to insulin deficiency or ineffective 
use of insulin. It requires careful management and 
ongoing monitoring to prevent complications, impacting 
overall health and requiring lifestyle changes, treatments 
and regular medical care. 

Categorical (0 or 1) 
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Table A.3: AIDS variables 

Variables Explanation and relevance 
Variable type 

 

Age Age in years. Integer greater than 0 (zero); Numerical 

wtkg 

It contains information about the person's weight in 
kilograms and can be used to analyze relationships 
between weight and other characteristics or variables in 
the dataset. Usually, in medical or health analysis, body 
weight can be an important indicator for assessing a 
person's health status and identifying risk factors. 

Numerical 

hemo 

The level of hemoglobin in the blood can provide 
information about the health of the circulatory system and 
can be used to assess the oxygenation status of tissues and 
potential problems related to anemia or other conditions. 

Numerical (0 or 1) 
 

homo 

Indicates whether the individual is heterosexual (0) or 
homosexual (1). In HIV/AIDS studies, analysis of sexual 
orientation can help to understand the risk factors and 
specific needs of different groups. At the same time, 
consideration must be given to protecting the privacy of 
sensitive data, such as sexual orientation, to ensure respect 
for individual rights and research ethics. 

Numerical (0 or 1) 
 

drugs 

It indicates whether or not an individual uses drugs in the 
context of the AIDS-related condition. This variable could 
be used to analyze the impact of drug use on the risk or 
progression of AIDS-related disease within the data set. 

Numerical (0 or 1) 
 

zprior 
Binary indicator that provides contextual information 
about a patient's previous status or history. 

Numerical (0 or 1) 
 

preanti 
Reflect a pre-existing condition or previous intervention in 
the treatment or management of HIV/AIDS. 

Numerical 

strat 
Categorical or grouping variable, possibly related to the 
stratification of patients into different categories. 

Numerical 

symptom 
 

Indicates the presence or absence of certain symptoms 
related to HIV/AIDS. 

Numerical (0 or 1) 
 

treat 
 

Shows the type or status of treatment received by the 
patient. 

Numerical (0 or 1) 
 

offtrt Means if a patient has exited or discontinued treatment. Numerical (0 or 1) 

cd40, cd420, 
cd496, cd80, 
cd820 

Represent biological markers or measured values 
associated with laboratory tests for HIV/AIDS patients. 

Numerical 

cens 
Reflects whether a patient was censored or not in the 
study. 

Numerical (0 or 1) 

days 
The number of days or the specific period associated with 
certain events or measurements. 

Numerical 

arms 
Reflect the groups or categories into which the patients in 
the study are divided. 

Numerical 
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B. Utility evaluation 
B1. Results for the Hellinger distance 
 
This appendix provides the detailed results of the utility assessment using the Hellinger distance in our 
study. The Hellinger distance served as a metric for quantifying the similarity of probability distributions 
between authentic and synthetic data. We introduce this appendix to provide a detailed insight into how 
Fusionstrap compares to alternative methods, highlighting the results obtained for specific variables and 
the areas where the synthetic data best reflect the real data or show significant differences. 
 
 
Table B.1.1: Hellinger distance for US census 

Hellinger distance “Fusionstrap” CTGAN SYNTHPOP 

age 0.001503 0.019314 0.000514 

workclass  0.078416 0.017729 0.000113 

fnlwgt 0.008189 0.006950 0.042397 

education 0.043857 0.011028 0.000489 

education.num 0.087514 0.637059 0.000489 

marital.status 0.076949 0.015578 0.000055 

occupation 0.039127 0.030049 0.000389 

relationship 0.007804 0.010298 0.000341 

race 0.018131 0.002459 0.000150 

sex 0.000057 0.004805 0.000120 

capital gain 0.589907 0.646915 0.000338 

capital loss 0.091504 0.663078 0.000435 

hours-per-week 0.311244 0.599965 0.000547 

native.country 0.137408 0.030104 0.000321 

income 0.048115 0.002386 0.000050 

 
 
 
Table B.1.2: Hellinger distance for Diabet Prediction 

Hellinger distance “Fusionstrap” CTGAN SYNTHPOP 

gender 0.015110 0.000503 0.000004 

age 0.109009 0.390010 0.001567 

hypertension 0.003441 0.015873 0.000001 

heart_disease 0.176758 0.025038 0.000001 

smoking_history 0.024159 0.025451 0.000063 

bmi 0.174631 0.166406 0.008958 

HbA1c_level 0.064802 0.221252 0.000425 

blood_glucose_level 0.173604 0.097442 0.000498 

diabetes 0.172754 0.006338 0.000091 
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Table B.1.3: Hellinger distance for AIDS 

Hellinger distance “Fusionstrap” CTGAN SYNTHPOP 

age 0.006968 0.002495 1.200386e-03 

wtkg 0.104049 0.220726 2.780126e-03 

hemo 0.010972 0.000234 1.390168e-04 

homo 0.003339 0.015234 2.901719e-05 

drugs 0.009573 0.024315 7.721386e-04 

karnof 0.024923 0.001064 3.739790e-04 

oprior 0.021312 0.000231 1.611478e-04 

z30 0.000389 0.000529 2.615506e-04 

zprior 0.000000 0.000000 0.000000e+00 

preanti 0.247569 0.066064 6.758973e-03 

race 0.002058 0.000221 1.837184e-04 

gender 0.009469 0.000004 0.000000e+00 

str2 0.000173 0.002511 3.202560e-04 

strat 0.001292 0.013438 7.377601e-04 

symptom 0.008678 0.001305 1.743516e-05 

treat 0.006225 0.001702 8.281419e-07 

offtrt 0.011319 0.001832 1.138289e-04 

cd40 0.009836 0.010994 2.448701e-03 

cd420 0.007519 0.016215 3.046304e-03 

cd496 0.294832 0.207047 1.996838e-01 

r 0.002971 0.001585 2.802622e-05 

cd80   0.008362 0.008641 6.968380e-03 

cd820 0.007117 0.005718 5.711251e-03 

cens 0.006493 0.000870 2.098416e-07 

days 0.020985 0.011047 2.912420e-03 

arms 0.000188 0.015396 8.009934e-04 

 
 

B2. Difference synthetic-original between the correlation coefficients 
 
            Table B.2.1: Synthetic-original between the correlation coefficients for US census 

Variables “Fusionstrap” CTGAN SYNTHPOP 

age+capital.gain 0.030877356 0.037375304 0.005221219 

age+capital.loss 0.026183272 0.035784823 0.003031034 

age+education 0.182766844 0.150876996 0.004409319 

age+education.num 0.010447421 0.000537373 0.006960134 

age+hours.per.week 0.034251491 0.023278500 0.005711743 

age+marital.status 0.553763463 0.463126863 0.005583640 

age+native.country 0.046138620 0.015898270 0.029275029 

age+occupation 0.158382292 0.115456744 0.021877432 

age+race 0.026661355 0.035372352 0.008943997 

age+relationship 0.460738150 0.354427556 0.008086746 

age+sex 0.086566972 0.023515518 0.006441464 

age+workclass 0.188233334 0.126756490 0.007662513 
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age+income 0.207938504 0.094016119 0.013395730 

capital.gain+capital.loss 0.093977583 0.021983136 0.003723434 

capital.gain+education 0.105380997 0.174281754 0.019193401 

capital.gain+education.num 0.076850129 0.060448725 0.011419759 

capital.gain+hours.per.week 0.013959503 0.033641239 0.014702604 

capital.gain+marital.status 0.174703668 0.064196263 0.010184496 

capital.gain+native.country 0.174821315 0.001132947 0.008573591 

capital.gain+occupation 0.101131931 0.081133429 0.020793276 

capital.gain+race 0.112191410 0.008219819 0.003775339 

capital.gain+relationship 0.199006012 0.076675292 0.013556822 

capital.gain+sex 0.098862061 0.045832965 0.015703870 

capital.gain+workclass 0.130617382 0.082346235 0.011939874 

capital.gain+income 0.262891337 0.217380817 0.000781094 

capital.loss+education 0.094303478 0.068067926 0.007805528 

capital.loss+education.num 0.052414994 0.032128934 0.004329624 

capital.loss+hours.per.week 0.005309023 0.029478504 0.005890569 

capital.loss+marital.status 0.085814431 0.066350669 0.001239989 

capital.loss+native.country 0.086189957 0.018673666 0.009815501 

capital.loss+occupation 0.058623239 0.058660383 0.012507548 

capital.loss+race 0.056997577 0.011784708 0.016085378 

capital.loss+relationship 0.107487160 0.074136948 0.003439648 

capital.loss+sex 0.040345461 0.041952819 0.000587995 

capital.loss+workclass 0.117120128 0.026270330 0.020618690 

capital.loss+income 0.167554604 0.148626271 0.021713326 

education+education.num 0.634494573 0.960033808 0.000037300 

education+hours.per.week 0.067439118 0.168053433 0.006971713 

education+marital.status 0.041269957 0.033399522 0.010239546 

education+native.country 0.048304919 0.079586349 0.003988406 

education+occupation 0.096610667 0.131463247 0.001843328 

education+race 0.010890195 0.017821044 0.010660941 

education+relationship 0.050639450 0.044513774 0.011122570 

education+sex 0.094479051 0.002300630 0.020364687 

education+workclass 0.025329307 0.037538217 0.007809198 

education+income 0.257007073 0.177263663 0.027675521 

education.num+hours.per.week 0.007984622 0.072926457 0.000075432 

education.num+marital.status 0.184574930 0.086573435 0.023848846 

education.num+native.country 0.034203186 0.233640610 0.020001283 

education.num+occupation 0.248485787 0.444863032 0.006190355 

education.num+race 0.040873661 0.082253759 0.020755921 

education.num+relationship 0.194417328 0.121974978 0.026614011 

education.num+sex 0.161131251 0.027660482 0.006361728 

education.num+workclass 0.092743399 0.154426235 0.022809229 

education.num+income 0.242089953 0.279157835 0.029387507 

hours.per.week+marital.status 0.140313243 0.203863940 0.021882481 

hours.per.week+native.country 0.064882361 0.011324728 0.000457134 

hours.per.week+occupation 0.165818904 0.233054324 0.029611945 
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hours.per.week+race 0.006926266 0.030907664 0.001238525 

hours.per.week+relationship 0.175960845 0.275153605 0.004386715 

hours.per.week+sex 0.178773370 0.210192324 0.014663101 

hours.per.week+workclass 0.068054866 0.136123964 0.035740200 

hours.per.week+income 0.018204140 0.201909642 0.039659307 

marital.status+native.country 0.037399007 0.021750727 0.008823263 

marital.status+occupation 0.032238306 0.057629448 0.006356311 

marital.status+race 0.009418197 0.011884679 0.006820297 

marital.status+relationship 0.347863964 0.387149201 0.001712030 

marital.status+sex 0.300718944 0.289271122 0.009874321 

marital.status+workclass 0.029477802 0.021036201 0.002469485 

marital.status+income 0.071807155 0.225012527 0.003591563 

native.country+occupation 0.008509943 0.020069484 0.018063605 

native.country+race 0.330574080 0.361924321 0.001528088 

native.country+relationship 0.044334135 0.019225623 0.013207778 

native.country+sex 0.057915048 0.058260766 0.017776662 

native.country+workclass 0.062546889 0.041884506 0.011663536 

native.country+income 0.335342372 0.025824777 0.031699724 

occupation+race 0.021447279 0.016434843 0.014843947 

occupation+relationship 0.056275525 0.091738431 0.009699685 

occupation+sex 0.295910698 0.276802644 0.010081525 

occupation+workclass 0.111331513 0.127131257 0.004955766 

occupation+income 0.105343126 0.138732837 0.033818699 

race+relationship 0.012216267 0.022424179 0.004334013 

race+sex 0.034964953 0.012805125 0.021810190 

race+workclass 0.015452050 0.015019757 0.019363881 

race+income 0.172801801 0.028620832 0.023061911 

relationship+sex 0.461939166 0.431057022 0.001899806 

relationship+workclass 0.045822576 0.020119558 0.010206591 

relationship+income 0.154089283 0.165483406 0.000728824 

sex+workclass 0.007233333 0.026221975 0.029312744 

sex+income 0.087239686 0.016599846 0.009359481 

workclass+income 0.324506503 0.024203669 0.031039602 

MIN 0.005309023 0.000537373 0.000037300 

MAX 0.634494573 0.960033808 0.039659307 

PERCENT MINIMUM VALUES 7 10 87 

 
 

  the greatest value 

  the lowest value 

 
 
Table B.2.2: Synthetic-original between the correlation coefficients for Diabetes Prediction 

Variables “Fusionstrap” CTGAN SYNTHPOP 

age+HbA1c_level 0.182975004 0.095621293 0.013621623 

age+blood_glucose_level 0.18742279 0.066419895 0.029573192 
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age+bmi 0.047404811 0.041960622 0.011949234 

age+gender 0.242200629 0.061252577 0.031321632 

age+heart_disease 0.006595069 0.076150249 0.001031305 

age+hypertension 0.001914897 0.05509954 0.007515468 

age+smoking_history 0.157416932 0.160732263 0.005594546 

age+diabetes 0.351625979 0.064810368 0.090552499 

HbA1c_level+blood_glucose_level 0.235937311 0.03995681 0.004069638 

HbA1c_level+bmi 0.107994331 0.019540153 0.020937886 

HbA1c_level+gender 0.335330451 0.001740235 0.014096587 

HbA1c_level+heart_disease 0.279147575 0.072340508 0.02947701 

HbA1c_level+hypertension 0.260512655 0.029757724 0.034477795 

HbA1c_level+smoking_history 0.107124803 0.176140394 0.045412704 

HbA1c_level+diabetes 0.394827733 0.047012722 0.029523224 

blood_glucose_level+bmi 0.110707561 0.038980076 0.000760228 

blood_glucose_level+gender 0.364879923 0.047021006 0.003314622 

blood_glucose_level+heart_disease 0.284140289 0.012375275 0.03234896 

blood_glucose_level+hypertension 0.265012191 0.064639254 0.016345222 

blood_glucose_level+smoking_history 0.137181095 0.224359351 0.018587113 

blood_glucose_level+diabetes 0.413378282 0.171625083 0.029709135 

bmi+gender 0.14744782 0.109771348 0.014362579 

bmi+heart_disease 0.107729859 0.033703037 0.015372102 

bmi+hypertension 0.035859086 0.054317907 0.007880302 

bmi+smoking_history 0.108040874 0.029556079 0.008721758 

bmi+diabetes 0.185527511 0.021257398 0.087136853 

gender+heart_disease 0.098724616 0.000963539 0.019396628 

gender+hypertension 0.17293357 0.057192331 0.010025544 

gender+smoking_history 0.004700938 0.020382604 0.052038929 

gender+diabetes 0.44171699 0.050641666 0.019294253 

heart_disease+hypertension 0.066648308 0.067060149 0.042420228 

heart_disease+smoking_history 0.010536325 0.195893776 0.063317641 

heart_disease+diabetes 0.236444662 0.171414196 0.085740042 

hypertension+smoking_history 0.004789477 0.085751908 0.087866908 

hypertension+diabetes 0.21275362 0.183097886 0.027651244 

smoking_history+diabetes 0.108190884 0.250465857 0.086943738 

MIN 0.001914897 0.000963539 0.000760228 

MAX 0.441716990 0.250465857 0.090552499 

PERCENT MINIMUM VALUES 11 19 67 

 

  the greatest value 

  the lowest value 
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C. Univariate Distributions 
 
Another way to check the usefulness of the generated data is to compare their univariate distributions with 
the original. Univariate distributions refer to the probability distributions of a single variable or attribute in 
a data set. These distributions describe how the values of that variable are spread across the data set. If 
the univariate distributions of the synthetic data closely resemble those of the original data, it implies that 
the synthetic data has successfully retained the statistical characteristics of the authentic dataset. This is a 
measure of utility, as it shows that the synthetic data can be used for statistical analysis without significant 
harm to the results. 
To keep the paper to a reasonable size, we restricted the analysis of univariate distributions to the US 
Census data set. Thus, Figures C.1, C.2, and C.3 capture the resemblance of the univariate distributions in 
the synthetic datasets produced by the three methods ("Fusionstrap", CTGAN, and SYNTHPOP) in contrast 
to the initial US Census dataset. Probabilistic Density Distribution (PDD) Similarity serves as an indicator for 
gauging the likeness between the probability density distributions of either two datasets or two variables. 
This measure is used in data analysis and evaluation of synthetic data to determine how well the probability 
density distribution (such as a normal distribution or any other distribution) of the synthetic data matches 
that of the real or original data. "Category coverage" refers to the extent to which the synthetic data covers 
all possible categories or values of a variable or attribute in the original data. Values close to 100% for these 
measures show that the synthetic data follow the distribution characteristics of the real data. Analyzing 
the values of PDD Similarity and "Category coverage" for the three approaches (Figure C.1, Figure C.2 and 
Figure C.3), we observe that the synthetic data effectively preserved the distribution characteristics of the 
real data. 
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Figure C.1 
Univariate distributions with “Fusionstrap” 
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Figure C.2 
Univariate distributions with CTGAN 
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Figure C.3 
Univariate distributions with SYNTHPOP 
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