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Training classifier models with semi-labeled datasets, which often have only a
limited number of labeled samples, is challenging. This thesis proposes a user-
centric methodology for pseudo-labeling semi-labeled data, fusing automatic pseudo-
labeling algorithms with user-driven correction of mislabeled data points.

The methodology is supported by a number of visual analytics approaches in-
volving sample visualization via dimensionality reduction techniques and visual-
ization of classifier decision boundaries using so-called Decision Boundary Maps
(DBMs). These visuals allow users to find regions of uncertainty where automatic
pseudo-labeling may have made errors and correct these accordingly. To speed up
the visual analytics loop, we propose various heuristics for efficient and accurate
DBM computation. Conducted user experiments show that both domain expert and
non-expert users were able to consistently correct wrong labels and improve clas-
sifier performance for different datasets and classifier models, with only a limited
effort in a limited amount of time.

The study underscores the importance and potential of visualization tools in the
context of semi-labeled datasets and semi-supervised learning and provides a foun-
dation for future research in this area.
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Chapter 1

Introduction

1.1 Problem description

1.1.1 Context

Machine learning is more and more becoming a part of our lives. Even if we are
not data scientists or data engineers, all of us at some point in time will use ma-
chine learning algorithms. The most popular tasks in this field are such tasks as
classification (i.e. predicting a categorical label or class for a given input), cluster-
ing (i.e. grouping similar data points together based on their features without any
prior knowledge of the classes or labels), dimensionality reduction (i.e. reducing the
number of features or variables in a data set while retaining as much information as
possible) and more others.

The classification task is usually approached as follows, the data scientist has a
labeled data set and uses it to train a model that will predict labels for new points
that are not in the data set. This is a classical example of Supervised Learning.

In practice, however, one of the largest problems concerns the availability of suit-
able data sets for training and/or testing. Getting a reasonable-size labeled data set
is not impossible but at least very time-consuming. An approach to this problem is
to have at least a small amount of the data points labeled and then based on these
data points use specific algorithms (e.g. clustering algorithms) which assign the la-
bel for a data point based on the most similar data point that is already labeled.
This is an example of a sub-type of machine learning called Semi-Supervised Ma-
chine Learning. In general Semi-Supervised Learning is an intermediate approach
between supervised and unsupervised learning, where the model learns from par-
tially labeled data and uses the unlabelled data to improve the model.

Of course, automation in labeling non-labeled data points is saving a lot of hu-
man hours in such kinds of tasks. However, the core approach of assigning the same
label if two data points share similar features works only if the data can be perfectly
and easily separated into clusters. Thus, training a classifier on data labeled in such a
way is probably not going to give the best results for all kinds of data sets. Moreover,
if one could use a machine to achieve perfect pseudo-labeling, then starting from a
poorly labeled data set, a classifier can be directly trained from that data in the first
place. That means that pseudo-labeling and actually training a classifier are not very
different tasks conceptually. As we have acknowledged, constructing and training a
classifier with a few labels is a hard task. This implies that pseudo-labeling is also
not going to be an ’easy’ automated solution.

On the other hand, the best results can be achieved by hiring a domain expert for
the specific problem we are trying to solve and letting him/her label the whole data
set manually. However, this approach is very time-consuming.
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A trade-off will be to use an algorithm (e.g. clustering) that will assign the la-
bels automatically and then include the domain expert for fixing the labels where
the algorithm might have made mistakes. For this however, we need a special tool
to support the domain expert, which will indicate where the errors are, and give
insights into how the model (e.g. classifier) works (i.e. in which regions of the data
space the model predictions change, what is the confidence of the model in a specific
region, etc.). In this thesis, we consider the development of such a visualization tool
that will aid a domain expert in training a classifier. The scope of this thesis is to
analyze if the use of a visualization tool helps in building models in semi-labeled
data set contexts. Moreover, we want to analyze how the results differ when the
visualization tool is used when compared to manually assigning all the labels.

1.1.2 Problem requirements

A visualization tool for helping pseudo-labeling as described at the end of section
1.1.1 is developed in this project. In this section, we introduce a list of requirements
(R1, . . . , R5) that such a tool should comply with.

Low dimensional space visualization
Humans are not used to thinking in the n dimensional spaces where n > 3. However,
in practice, the data points are usually in these high-dimensional spaces. Therefore
a critical requirement for such a visualization tool is to represent the data set in a
low-dimensional space (i.e. 2D or 3D). We aim to design our tool for optimal user-
friendliness, and typically, humans find 2D representations the most intuitive and
easy to work with. Thus, we have the first requirement for our visualization tool as
follows:

• R1 Allow data visualization in the low dimensional 2D space

Classifier integration
Let D = {(xi, yi) | i ∈ {1, . . . , N}} be our data set. This data set is a subsample of
the data space D (i.e. D ∼ D). The goal of the end-user of our visualization tool
is to train a classifier C that given a point x ̸∈ D will predict a label ŷ = C(x) such
that ŷ = y where (x, y) ∈ D. Consider two points from our data set xi and xj (i ̸= j,
xi ̸= xj) and the corresponding labels yi and yj where (yi ̸= yj). Since the data space
D is dense, there is a set of points between xi and xj where the label changes from yi
to yj. The better the classifier C embeds this information the better the performance
of C. These regions of points where a point x has a label y1 and a neighbor of x has
a different label y2 (y1 ̸= y2) are called Decision Boundaries. The set of all these
decision boundaries for a data set D together with the Decision Zones (i.e. the areas
that are delimited by the decision boundaries) is called a Decision Boundary Map
(DBM).

Starting from the assumption that an end-user of the tool has domain knowledge
about the ground truth DBM (i.e. the DBM of D), if the user can visualize the DBM
of the classifier C, he/she can use it to guide the classifier (i.e. by re-assigning labels)
so that the classifier DBM matches the ground truth DBM. From this reasoning, we
have two additional requirements for our visualization tool:

• R2 Display a 2D Decision Boundary Map of a classifier C (which is provided
by the user)

• R3 Allow data points re-labeling in 2D space and re-training of the classifier C
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Let P be a function that for a given n-dimensional data point is returning a 2D
representation of this point. Requirement R3 states that the user needs to be able to
re-label a 2D representation of an n-dimensional data point. In order to re-train the
classifier after such labeling in the 2D space we need an inverse projection P−1 from
the 2D space to the nD.

At first sight, this inverse projection function might seem very straightforward.
The projection P takes an nD data point from the data set and gives us a 2D data
point, x2D

i = P(xi) for i ∈ {1, . . . , |D|}. Then for the 2D point x2D
j the nD counterpart

is just xi. This gives us only a discrete representation of P−1. However, recall that
we are also interested in the points outside of the data set D in order to compute the
DBM (R2). Therefore, we need another way to compute P−1. In this project, we are
presenting some of the methods present in the literature, that can generate such an
inverse projection.

Errors visualization
By reducing the dimensionality of the data we lose information. Consider for in-
stance that one wants to represent an N × M image with 2 coordinates in the 2D
space. If it was the case that we have such a projection method P and an inverse pro-
jectionP−1 that when combined gives us the exact initial image (i.e. x = P−1(P(x)))
then this will mean that we need only two numbers for storing any image. Even
though this would be wonderful and would have a lot of good implications, so far
this is not the case. Therefore, we can assume from the beginning that any projection
method we are using is going to have errors. The same reasoning holds for the in-
verse projection method. The user must be aware of these errors and should be able
to visualize them in our tool. Thus, we have the following additional requirements:

• R4 Display projection errors for each 2D point

• R5 Display inverse projection errors for each 2D point

1.1.3 Research questions

In this project, we want to study how we can develop an interactive visualization
tool (and subsequent API) that takes as input from a user a classifier C and a com-
pletely pseudo-labeled data set D and helps the user in correcting the pseudo-labels
and improving the classifier performance by providing functionalities that fulfill
requirements R1, . . . , R5. Another research question of this study is to assess the
utility of such a tool and make a conclusion about how feasible is the proposed hy-
brid pipeline (i.e. automatic pseudo-labeling followed by manual label correction)
in practice.

To address these inquiries, we have developed a tool, presented as a Python li-
brary named decision-boundary-mapper12. The core functionalities of this tool, includ-
ing a graphical user interface (GUI) application (previewed in figure 1.1), are eluci-
dated in the subsequent chapters. These chapters delve into the implementation de-
tails of the tool and illustrate how it meets the stipulated requirements (R1 through
R5). Furthermore, the library introduces innovative algorithms, such as a novel ap-
proach for pixel-based projection error computation, utilized by the visualization
tool to fulfill some of the specified requirements. Additionally, the library incorpo-
rates novel algorithms aimed at expediting the computation of Decision Boundary
Maps (DBMs).

1https://pypi.org/project/decision-boundary-mapper
2Github repository: https://github.com/cristi2019255/MasterThesis2023

https://pypi.org/project/decision-boundary-mapper
https://github.com/cristi2019255/MasterThesis2023
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(A) Configuration window

(B) Visualization tool

FIGURE 1.1: Visualization tool preview

1.2 Structure of this thesis

The project is organized as follows: In the current chapter 1, we articulated the ra-
tionale behind the utility of a visualization tool in assisting users during classifier
training in the context of semi-labeled data sets. We established a set of require-
ments for such a tool and deliberated on the proposed solution methodology for
addressing the identified problem.

In chapter 2 we are presenting the related work present in the literature. In this
chapter, we start by discussing some of the most used pseudo-labeling methods, af-
ter which we analyze the most known projection methods and compare them. The



1.2. Structure of this thesis 5

available inverse projection methods present in the literature are also presented in
this chapter along with techniques for learning both direct and inverse projection.
Existing metrics that spot the projection and inverse projection errors are also de-
bated in this chapter.

Chapter 3 presents the solution design of the visualization tool and the related
implementation details. This chapter starts by presenting the methods of projecting
the data sets in 2D and the construction of the DBM. Then we continue by present-
ing metrics that can be used by the tool in order to spot direct and inverse projection
errors. A series of algorithms that aims to speed up the computation of the DBMs
is then presented in the same chapter. Chapter 3 comes also with a section in which
we present an overview and a short usage guide for the newly implemented visual-
ization tool.

Chapter 4 exhibits a series of experiments that aims to show to what extent the
visualization tool is useful in the context of training a classifier when the data set
is semi-labeled. This chapter starts by analyzing the novel algorithms that are sup-
posed to speed up the computation of the DBM. Following, we present a series of
experiments where users are asked to train a classifier with the visualization tool. In
this chapter, we answer the core questions of this project, namely: "Is a visualization
tool helpful in this kind of task?".

Finally, in chapter 5 general discussions and conclusions about this project are
listed along with future directions of research and development.
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Chapter 2

Related Work

In this chapter, we present the literature-related works to the problem introduced in
chapter 1 as well as its requirements 1.1.2. This chapter is structured as follows, in
section 2.1 we make a short introduction regarding pseudo-labeling methods in the
semi-supervised learning context and present ways of automatic labeling. In section
2.2 we present a study that shows the advantages of low-dimensional space visual
representations of high-dimensional data in the context of getting insights about a
classification system. Several studies about projection techniques are presented in
the same section. Section 2.3 presents a paper that introduces a way of evaluating
projection errors. In 2.4, we present a paper that uses these projection methods and
introduces a methodology for how an inverse projection can be generated depend-
ing on the direct projection method. Section 2.5 presents a paper that introduces
a method for computing inverse projection errors. A way to generate both projec-
tion and inverse projection using the data set is presented in section 2.6. Section 2.7
exhibits papers that address ways of visually presenting the DBMs. This chapter
ends with section 2.8 in which we summarize the current knowledge base state, and
identify and list the gaps that our research aims to address.

2.1 Pseudo-labeling Methods in Semi-Supervised Learning

In chapter 1, we already stated that the scope of our visualization tool is to help a
user train a model in the semi-supervised learning context (i.e. the data set which
is used for training is not completely labeled). As we mentioned the most straight-
forward way to get a completely labeled data set is to have a domain expert who
will label the data points manually based on the domain knowledge. This method is
very expensive time-wise. An automatic way of solving this task saves a lot of time.
In this section, we present several automatic pseudo-labeling algorithms.

2.1.1 Label Propagation

Label Propagation (LP) introduced in paper [20] is an example of a method that aims
to label the complete data set given a small subset of labeled data points. The core
assumption of the algorithm is that the data points that are close to each other are
likely to have the same label. Starting from this assumption the algorithm constructs
a graph where each data point is a node and the edges between the nodes represent
similarities between the data points. For the data points that are labeled, the al-
gorithm assigns the correct label, for the unlabelled data points arbitrary labels are
assigned. Based on the similarities of a data point’s neighbors in the graph and the
neighbors’ labels the algorithm updates the label of each data point. This process
is repeated until a maximum number of iterations (defined by the user) is achieved
or the number of changes in label assignments between iterations is greater than
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a user-defined threshold. This easy-to-implement algorithm can handle non-linear
decision boundaries.

2.1.2 Optimal Path Forest

Another algorithm that starts with the same assumption as the Label Propagation
algorithm was introduced in paper [1]. The Optimal Path Forest (OPF) algorithm
constructs a decision tree over the data where nodes represent clusters of data sam-
ples and edges represent the similarity between clusters. A cost function that aims
to maximize the separability between classes is used to determine the best split at
each node. After the tree is constructed, the labels of the labeled samples are prop-
agated through the tree. The labels of the unlabelled samples are assigned based on
the closest labeled samples. The algorithm can be extended to use an ensemble of
such decision trees and use a majority voting system for instance to assign the label
of an unlabelled sample.

OPF is more robust to noise and outliers in the data than the LP algorithm (see
2.1.1). The reason is that OPF aims to maximize the separability between classes
rather than simply propagating the labels based on local similarities. On the other
hand, OPF is more expensive computationally than the simple label propagation
algorithm since it involves constructing and traversing one or more decision tree(s).
OPF has been shown to achieve competitive or even state-of-the-art performance on
a wide range of data sets and classification tasks, especially when the number of
labeled samples is small or when the data is noisy or high-dimensional.

2.1.3 Deep Feature Annotation

Deep Feature Annotation (DeepFA) [3], [2] is a more complex pseudo-labeling tech-
nique that is built on top of the OPF algorithm. This method iteratively repeats three
steps: 1) deep feature learning, 2) feature space projection, and 3) pseudo-labeling.
In the first step, the DeepFA uses a convolutional neural network in order to extract
features of the raw data samples. Complex CNNs like VVG-16 can be involved by
leveraging the CNNs’ ability to transfer knowledge and the small set of initially la-
beled samples in the first iteration. The features extracted in the first step are then
projected into the 2D space by means of a dimensionality reduction method (i.e. t-
SNE, see 2.2.3). In the last step a version of the OPF algorithm, namely OPFsemi, is
used for pseudo-labeling on the low dimensional space projection. In the same step,
each un-labeled sample is assigned a confidence value which represents the confi-
dence of the OPF algorithm in the label that has been assigned. All data samples for
which the labels were assigned with confidence values above a certain threshold are
then used for the CNN (i.e. feature extractor) re-training in the next iterative loop.
This pseudo-labeling technique outperforms the OPF algorithm, due to the addi-
tional feature learning and feature space projection steps. Moreover, this method
requires a minimal amount of annotated training samples per class.

In order to keep the generality of our visualization tool we do not embed any
of the labeling methods in the tool. The user needs to choose a preferred pseudo-
labeling method and provide the tool with the complete pseudo-labeled data set (see
implementation details in chapter 3). In our experiments (i.e. chapter 4) we mostly
use the DeepFA method due to the arguments provided above.
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2.2 Projection Methods

Projecting the data from an nD high dimensional space to a low dimensional space
is known in the literature as Dimensionality Reduction. A function P that takes a
high dimensional data point and converts it to a low dimensional representation is
called in domain literature a Projection method. The goal of a projection method is
to reduce the number of features in a data set whilst preserving its inherent structure.

2.2.1 Projections as Visual Aids for Classification Systems

Rauber et al. [15], examined a hypothesis that states that the concepts of a visu-
ally well-separated low dimensional projection and an easily separable nD data set
(e.g. by means of a classifier) are equivalent. Extending on this hypothesis this
article proposes a visual representation of the data sets based on dimensionality re-
duction in order to give feedback on classification efficacy. Furthermore, the study
demonstrates the utility of such projections in tasks involving the identification of
outliers and the identification of regions containing a mixture of class labels. In
summation, this research underscores the efficacy of dimensionality reduction to
low-dimensional spaces, such as 2D, thereby presenting a compelling alternative for
high-dimensional data visualization. Moreover, this paper serves as an additional
argument for the requirement R1.

Some of the best-known dimensionality reduction methods available are Princi-
pal Component Analysis (PCA), Uniform Manifold Approximation and Projection
(UMAP), and t-distributed Stochastic Neighbor Embedding (t-SNE), which we de-
scribe next.

2.2.2 Principal Component Analysis

PCA method was introduced by [14], the main idea of this method is to project the
high dimensional data by finding the eigenvectors of the data’s covariance matrix.
The eigenvectors represent the directions in which data has the greatest variance,
the corresponding eigenvalues representing the magnitude of this variance. Before
computing the eigenvectors and the eigenvalues, data is first standardized (e.g. us-
ing z-score or min-max normalization). This is done because we want to analyze
what features have the biggest variance. We are more interested in the relative val-
ues of the variance rather than in the absolute ones. If features have different scales
without normalizing the data the comparison of the variances might be misleading.
After the eigenvectors are sorted based on the eigenvalues in decreasing order the
PCA projects the original data onto the principal components by rotating the data
to align with these principal components. This is done by multiplying the standard-
ized data (in matrix form) with the matrix of sorted eigenvectors. The resulting data
has the same number of data points, however, the number of features is equal to the
number of principal components selected, which can be set as a parameter.

2.2.3 t-distributed Stochastic Neighbor Embedding

T-SNE method [11] is a nonlinear dimensionality reduction technique. The scope of
t-SNE is to preserve the pairwise similarity relationships between data points. This
projection method models the high dimensional similarities between data points us-
ing a student t-distribution and then finds a low dimensional representation that
preserves these similarities as closely as possible. The algorithm of the t-SNE pro-
jection method starts by computing pairwise similarities between all pairs of high
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dimensional data points. The similarities are typically based on a Gaussian kernel,
which measures the similarity between two points based on their distance in the
high dimensional space. The pairwise similarities are then converted into condi-
tional probabilities, which represent the likelihood of one point being selected as a
neighbor of another point, given their similarities. The conditional probabilities are
calculated using the student’s t-distribution, which has a heavier tail than the Gaus-
sian distribution and is better suited for capturing nonlinear relationships in the
data. A low-dimensional representation of the data is then created (e.g. at random).
t-SNE then iteratively adjusts the low dimensional representation to minimize the
difference between the conditional probabilities in the high dimensional space and
those in the low dimensional space. Gradient descent can then be used to adjust the
position of each low-dimensional point based on the similarity to other points.

This optimization process is controlled by several hyperparameters, one of which
is perplexity, which controls the balance between local and global structure in the
low dimensional representation. In other words, perplexity is defined as the ef-
fective number of neighbors of each data point in the high dimensional space. A
low perplexity value will force t-SNE to focus on local structure, preserving only
nearby neighbors and producing a compact and clustered low-dimensional repre-
sentation. A high perplexity value, on the other hand, will allow t-SNE to capture
more global structure, preserving both nearby and distant neighbors and produc-
ing a more spread-out and continuous low-dimensional representation. Different
datasets may require different levels of focus on local versus global structure, thus,
the perplexity parameter is data-dependent. This projection method is often used
for clusters and pattern identification in the data.

2.2.4 Uniform Manifold Approximation and Projection

UMAP method [12] shares some concepts with t-SNE but uses a different mathemat-
ical framework. Similar to t-SNE, UMAP preserves the local structure of the data
by modeling the distribution of nearest neighbor distances in the high dimensional
space and then finding a low dimensional space that preserves this distribution.

UMAP starts by converting the data into a weighted graph representation, where
each data point is a node and the weights represent the similarities between the 2
points. This graph is then converted into a fuzzy topological representation. For
each data point, UMAP identifies the k-nearest neighbors, these neighbors are then
used to construct a "simpical complex" (a mathematical structure composed of ver-
tices, edges, triangles, and higher-dimensional triangles called simplex/simplices).
The fuzzy topological representation is constructed by first assigning each simplex
in the simplical complex a fuzzy degree of membership. This degree of membership
is a measure of how closely the simplex resembles a uniform distribution of points.
Simplices that contain data points that are more similar to each other will have a
higher degree of membership, while simplices that contain data points that are more
dissimilar will have a lower degree of membership. UMAP then constructs a low-
dimensional representation of the data and uses a process called graph layout to em-
bed the fuzzy topological representation into the low-dimensional space. This pro-
cess involves iteratively adjusting the position of each point in the low-dimensional
space based on its similarity to other points in the high-dimensional space.

The fuzzy topological representation allows UMAP to capture both local and
global structure in the high dimensional data, as it incorporates information about
the nearest neighbors of each data point as well as the overall distribution of points
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in the data. This allows UMAP to create a low-dimensional representation that pre-
serves both the local and global structure of the data.

UMAP also incorporates a balancing parameter that controls the trade-off be-
tween preserving the global structure and preserving the local density of the data
points. This parameter allows the algorithm to adjust the emphasis placed on pre-
serving different types of structures in the data.

2.2.5 Projection methods comparison

All the projection methods presented so far have advantages and disadvantages.
PCA is a simple and fast algorithm, useful for visualizing the overall structure of
the data and identifying patterns and correlations between variables. On the other
hand, PCA may not be very effective in identifying clusters of similar data points
compared to t-SNE and UMAP. Moreover, PCA is very sensitive to outliers in the
data since such outliers might determine the principal components.

t-SNE is able to preserve the local structure of the data. Furthermore, t-SNE can
be used to identify outliers in the data, which can be difficult with PCA and UMAP.
However, t-SNE is computationally intensive and may require tuning of hyperpa-
rameters (e.g. perplexity) which might be time-consuming.

UMAP technique has the advantage of scalability over t-SNE and PCA. UMAP
also tends to better preserve the global structure of data than t-SNE. Parameter tun-
ing of UMAP is on the other hand a disadvantage when compared to PCA. UMAP
and t-SNE are both stochastic algorithms which means the results of the projection
might differ from one run to another of the algorithms, PCA on the other hand is
deterministic.

Each projection method has its own goals and the usage of one projection method
over another is to be decided by the user depending on the data and the insights
he/she wants to get from it. In our experiments, we use all these projection meth-
ods.

2.3 Projection Errors

In general, none of the projection methods will be able to fully preserve all the in-
formation and the structure in the original high-dimensional data. Hence, we need
metrics for projection methods that will tell us how much such a technique can be
trusted. In other words, evaluating how good the results given by the method for
the task at hand are. In paper [18] two metrics for the evaluation of projection tech-
niques were proposed.

Trustworthiness
The first metric called Trustworthiness is defined as follows:

T(k) = 1− 2
nk(2n− 3k− 1)

n

∑
i=1

∑
j∈U(i,k)

[ri,j − k] (2.1)

where n is the number of data points, k is a parameter that indicates the number of
neighbors we take into account, U(i, k) is the set of k nearest neighbors to the point
xi ∈ D in the high dimensional space, ri,j is the rank of the distance between points
xi and xj in the high dimensional space.

Trustworthiness measures the proportion of high dimensional pairwise similar-
ities that are preserved in the low dimensional projection up to a certain rank k. A
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perfect projection would have T(k) = 1 for all values of k, indicating that all pair-
wise similarities in the high dimensional space are preserved in the low dimensional
space.

Continuity
Another measure that counts the proportion of pairwise distances in the low dimen-
sional space that are also present in the high dimensional space up to a certain rank
k is called Continuity. The continuity metric is defined as follows:

C(k) = 1− 2
nk(2n− 3k− 1)

n

∑
i=1

∑
j∈V(i,k)

[r̂i,j − k] (2.2)

where r̂i,j is the rank of the distance between the projections of points xi and xj in
the low dimensional space, and V(i, k) is the set of k nearest neighbors to the point
P(xi) in the low dimensional space. A perfect projection would have C(k) = 1 for
all values of k, indicating that the low-dimensional projection accurately represents
the geometry of the high-dimensional space.

Trustworthiness and continuity capture both the preservation of pairwise simi-
larities and the accuracy of the overall geometry. Although these metrics are widely
used for the evaluation of projection techniques such as UMAP and t-SNE the ideas
that these metrics capture can be applied to evaluate any projection method. Pa-
per [8] presents a survey that uses metrics including the ones presented in order to
compare a wide body of projection techniques on several data sets with different
characteristics.

These metrics describe the projection method on a global level rather than on a
local level, in the sense that by looking only at one particular data point we can not
tell how good or bad the projection is. In section 3.2 we start from the definitions
introduced in the current section and adjust the equations 2.1 and 2.2 in order to
assess how good a projection method is for each individual data point.

2.4 Inverse Projection Methods

Inverse projection methods aim to reconstruct the high dimensional data from their
low dimensional projections. This problem of inverse dimensionality reduction was
studied in several papers, most notably: [17], [9].

Inverse Linear Affine Multidimensional Projection
In the paper [17], the authors introduce a technique known as Inverse Linear Affine
Multidimensional Projection (iLAMP). This method computes an affine transforma-
tion f (·) as follows. For a given low-dimensional point p, the method identifies the
nearest k neighbors within the set of instances in the low-dimensional space obtained
through the application of the projection method on the data set. Subsequently,
the corresponding high-dimensional counterparts are determined. The affine trans-
formation is designed in a manner that optimizes the distances between the high-
dimensional point f (p) and the high-dimensional counterparts of p’s neighbors,
aiming for these distances to closely mirror the distances between point p and its
neighbors in the low-dimensional space. The formula of f (·) is then given by solv-
ing a system of equations.

Regardless of the strong mathematical foundation, this technique has some dis-
advantages. For instance, the hyperparameter k (i.e. the number of neighbors),
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which is determining the inverse projection results. The value of this hyperparame-
ter is problem-dependent and needs to be carefully chosen. Another disadvantage is
the fact that this affine transformation is constructed based on the geometrical coor-
dinates in the high and low dimensional spaces, which makes this inverse projection
method not very suitable when used in combination with such projection techniques
like t-SNE that are focused more on preserving neighborhoods rather than preserv-
ing geometrical distances.

Inverse Neural Network Projection
In the paper [5] the authors propose to use neural networks as projection meth-
ods for dimensionality reduction. The core idea is to train a deep neural network
based on samples drawn from a given data universe, and their corresponding low-
dimensional projections, computed with any available projection technique (e.g. t-
SNE, UMAP, PCA, etc.). Then the network is used to infer projections of any data set
from the same universe. The biggest advantage of such Neural Network Projection
(NNP) is that it can directly handle out-of-sample data. In other words, it can project
data outside of the initial data set. Another advantage is that such a projection is less
computationally expensive and has no complex-to-set user parameters.

Based on the idea of NNPs, in paper [7], the authors proposed to use neural net-
works for inverse projections as well. The proposed approach is to train an Inverse
Neural Network (NNinv) that will map the low-dimensional points to the high-
dimensional points. The network operates as a decoder, taking the low-dimensional
embedding derived through the utilization of a projection method of the original
data as input, and its primary function is to reconstruct the original data. The goal
of NNinv is to minimize the disparity between the original high-dimensional data
set and the reconstructed data, which is derived by passing the low-dimensional
embedding through the NNinv.

On one hand, this method requires the developer to design a neural network. On
the other hand, this approach does not require any hyperparameters and is less com-
putationally expensive when compared to the iLAMP method, in the sense that once
the NNinv network is trained we can just use it to compute the high-dimensional
representation of a low-dimensional point straight away without the need to search
for neighbors in the data set.

The biggest advantage of the NNinv as the NNP is that they can handle data out-
side of the data set. We will see in the next chapters that this property for an inverse
projection method is crucial for the computation of DBMs. Therefore throughout this
project, we use NNinv in combination with direct projections introduced previously
(t-SNE, UMAP, PCA).

2.5 Inverse Projection Errors

Espadoto et al. [9] presented a metric for evaluating the inverse projection errors at
each point in the data space. This is done by computing a gradient image, which is
a 2D scalar field representing a pseudo total derivative of the inverse projection P−1
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computed using central differences as follows:

Dx(p) =
P−1(p + (w, 0))−P−1(p− (w, 0))

2w

Dy(p) =
P−1(p + (0, h))−P−1(p− (0, h))

2h

D(p) =
√
||Dx(p)||2 + ||Dy(p)||2

(2.3)

where p is the 2D projection of a data point and w, h is the pixel’s width and
height respectively. The regions with large gradient values illustrate where the high-
dimensional distance is changing most rapidly with respect to the changes in low-
dimensional distance. In other words, these regions indicate where the inverse pro-
jection method distorts the low-dimensional space.

Observe that this metric is not dependent on any data set. We will see why
this is important in section 3.2 where we present how this metric is used by our
visualization tool.

2.6 Self-Supervised Neural Projection

So far we presented a list of projection methodsP and a way to compute inverse pro-
jections P−1. Given a data set D the user has to choose one of the projection methods
and then based on the 2D projection D2d = P(D) learn the inverse projection P−1

such that P−1(D2d) = D. This approach has some disadvantages, namely, the same
projection method might give better or worse results depending on the data, and the
majority of these projection methods have hyper-parameters that have to be chosen
by the user (e.g. perplexity parameter in t-SNE).

In the paper [6] the authors propose a data-driven way for generating both P
and P−1. The core idea is that when composing the projection and inverse pro-
jection functions we must get the identity function, i.e. P−1(P(x)) = x. For this
purpose, an auto-encoder neural network can be used where the encoder part is re-
sponsible for the dimensionality reduction and the decoder part takes the role of
the inverse projection. Such methods of using auto-encoders for dimensionality re-
duction are not new. However, using only an auto-encoder on its own has been
noticed to yield worse visual cluster separation than popular projection methods
such as t-SNE and/or UMAP. In their paper, the authors propose to use such an
auto-encoder architecture but with an additional layer after the decoder part. This
approach is called Self-Supervised Neural Projection (SSNP). Based on the data la-
bels or pseudo-labels the last layer of the network is used to improve the cluster
separation. This additional layer will force the projection method (i.e. the encoder)
to group all data samples with the same labels into the same clusters (see figure 2.1).

In the context of our problem where the labels of data samples might be mis-
leading the SSNP approach might be error-prone and might confuse the user. On
the other hand, the cluster separation per class might help the user in taking faster
decisions about the correct labels of the data samples. Therefore, in our experiments
of chapter 4 we involve both the vanilla autoencoder and the SSNP approaches.
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2.7 Image-based visualization of Classifier Decision Bound-
aries

In section 1.1.2 one of the requirements of our visualization tool is to display to the
user a 2D Decision Boundary Map given a classifier C. A DBM is a graphical rep-
resentation that shows how the machine learning model separates data points into
different classes based on their input features. Once we have the low dimensional
embedding of the data and an inverse projection function P−1 constructing a graph-
ical representation is a straightforward task. An image-based representation is the
most understandable for a human user. The easiest way to generate such an image
is to choose a width and height and then for each pixel take its coordinates (x, y),
re-scale them with respect to the 2D embedding of the data to obtain (x̂, ŷ), and then
obtain the classifier predicted label l = C(P−1(x̂, ŷ)). For each class label, we assign
all the pixels with that label a certain color. The colored image is a representation of
the classifier decision boundary map.

In paper [16] the authors use an approach as the one described before and two
inverse projection methods: iLAMP [17] and NNinv [9] in order to generate image-
based visualizations for classifiers’ decision boundaries. In [13] the authors intro-
duce a technique called SDBM (Supervised Decision Boundary Maps). This method
uses SSNP [6] in order to generate image-based representations of classifiers’ deci-
sion boundaries.

Figure 2.1 presents two examples of the DBM for the same classifier C and the
MNIST data set [10]. Notice how the SDBM + SSNP approach is giving smoother
decision boundaries in 2D, whilst the NNinv together with the t-SNE projection is
giving noisier results. The simple DBM approach allows us to use any projection
method, whereas the SDBM approach enforces us to use the "built-in" projection
method (i.e. the encoder part). From this point of view, the DBM approach pro-
posed in [16] gives us more flexibility. On the other hand, before using the DBM
approach we need a good inverse projection method. Designing or choosing such a
method might be challenging. Thus, from this point of view, SDBM is better because
it generates both the projection and inverse projection together.

In both papers [16] and [13] the authors are building the DBM representation
pixel-based, in the sense that each 2D pixel is projected into the high-dimensional
space, then the classifier is used to assign each pixel with a color based on the pre-
dicted label. The complexity of this approach increases along with the resolution of
the desired DBM image. In this project, we analyze several ways of optimizing the
DBM computation.

2.8 Conclusions

In this chapter, we presented several works from the literature regarding pseudo-
labeling methods, direct and inverse projection methods along with metrics for spot-
ting the errors, and methods for the construction of DBMs.

In section 2.2.5 we discussed the advantages and disadvantages of each of the
presented direct projection methods. We saw that the choice of technique should
be driven by the task the user is trying to solve. The same holds for the inverse
projection methods. Section 2.7 presented a discussion about the pros and cons of
using the SDBM technique over the technique that generates the DBM only based on
the inverse projection. We could not identify beforehand what is the best method or
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(A) DBM, using NNinv and t-SNE projection (B) SDBM, using SSNP

FIGURE 2.1: DBM vs SDBM.
Data set: MNIST.

White and black pixels represent the data samples

combination of methods in general. Therefore, in our work, we consider comparing
different alternative methods for the same single task.

We observed that the current way of pixel-based DBM computation is not very
scalable in the sense that for high-resolution DBM images, the computation run
times might increase considerably, which can be a problem for visualization sys-
tems that need to show fast feedback to the user. Thus, in this project, we want to fill
this gap by providing new and faster ways of DBM computation.

We could not identify any study in the current literature that incorporates user in-
teraction via a visualization tool in the pipeline of improving/correcting the pseudo-
labels generated by an automatic algorithm.
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Chapter 3

Solution Design

In this chapter, we present implementation details of our visualization tool that aims
to fulfill the requirements from section 1.1.2:

• R1 Allow data set visualization in 2D space

• R2 Generate and display a Decision Boundary Map of a user-provided classi-
fier C

• R3 Allow data points re-labeling in 2D space and re-training of a classifier

– R3.1 Allow data points re-labeling in 2D space

– R3.2 Allow classifier re-training with re-labeled points

• R4 For the projection method in use display projection errors for each 2D point

• R5 For the inverse projection method in use display inverse projection errors
for each 2D point

Our visualization tool requires two inputs from the user, namely: the data set D
and the classifier C as shown in figure 3.1.

FIGURE 3.1: Pipeline of uploading data set and classifier to the visu-
alization tool

Once this input is provided, the tool must be able to generate the 2D projection
of the data set and the DBM of the classifier as shown in the pipeline presented in
figure 3.2. In section 3.1 of this chapter, we present implementation details regarding
the data points projection and the computation of the DBM image (R1, R2).
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In section 3.2 we present methods for computing projection and inverse projec-
tion errors in order to fulfill requirements R4 and R5. Section 3.3 gives implementa-
tion details about how the visualization tool allows the data points re-labeling and
classifier retraining (R3.1, R3.2). Section 3.4 presents a list of algorithms that our
visualization tool can use to speed up the computations for generating the DBM.
Section 3.5 presents an overview of the visualization tool and a short usage guide.
This chapter ends with section 3.6 in which we analyze how well our proposed so-
lution design matches the problem requirements.

3.1 Projecting the data set and generating the DBM

In this section, we present implementation details about the projection methods
the tool supports and the inverse projection methods. Furthermore, we explicitly
present an algorithm for the computation of the DBM images.

FIGURE 3.2: DBM and 2D data set embedding computation and vi-
sualization pipeline (R1 and R2)

3.1.1 Projection methods implementation details

As we saw in section 2.2 there exists a variety of projection methods that allow get-
ting a 2D representation of nD data. In order to create a visualization tool that is as
general as possible we allow the user to choose from one of three built-in projection
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methods: t-SNE, UMAP, and PCA. The user can also provide the 2D embedding of
data obtained by any other possible projection method.

We use the t-SNE and PCA algorithms from the sklearn Python library. The
perplexity in the t-SNE algorithm is set to 30, all the other parameters are using
the defaults from the library. For the UMAP projection method, we are using a
specialized Python library called "umap". All the parameters are using the default
values from that library. We allow for 2 more built-in projection methods, namely
by using the encoder of an Autoencoder neural network or an SSNP network (see
section 2.6).

3.1.2 Inverse projection methods implementation details

In this section, we give details about how we construct our inverse projection meth-
ods.

Data normalization
We would like to have all the features of our nD samples in the same range so

that all features contribute equally to all the operations we perform on the data.
Moreover, some projection and inverse projection methods (especially when using
deep learning) need the data to have values in the range [0,1]. For this purposes we
normalize each data sample d = (x1, . . . , xn) ∈ D as follows:

(x̂1, . . . , x̂n) = (
x1 −mini∈1,|D|xi,1

|maxi∈1,|D|xi,1 −mini∈1,|D|xi,1|
, . . . ,

xn −mini∈1,|D|xi,n

|maxi∈1,|D|xi,n −mini∈1,|D|xi,n|
)

(3.1)
Furthermore, we want to show the user a 2D plot of size W × H (i.e. the DBM

image), therefore we can use the same normalization to [0,1] as before and apply it to
the 2D projected data D2d. Converting the data such that the x coordinates are in the
range [0,W] and y coordinates are in the range [0,H] reduces to simply multiplying
the normalized projection data to W and H respectively. By abusing the notation
throughout this thesis we notate with D the normalized data set and with D2d the
normalized 2D representation of the data set D.

NNinv
One of the goals of our visualization tool is to visualize the Decision Boundary Map
for a given classifier C. The DBM can be represented by an image where each pixel
is colored according to the classifier label (see section 2.7). For the pixels that rep-
resent samples from the data set, we can use the classifier to get the label, however
not any pixel represents a data sample. Therefore, we need an inverse projection
method P−1. To learn the inverse projection method we can use NNinv (see section
2.4) which aims to decode a pair of 2D coordinates into an nD feature vector. The
architecture of the NNinv is presented in figure 3.3. The size of the last layer in this
architecture is determined by the data shape, i.e. the size is the data dimension n.
In figure 3.3 the size of 784 is taken from the MNIST data set where each data point
is a 28× 28 gray-scale image. In case another data set is used the value of n might
be different which means that the last layer of our decoder will have more or fewer
neurons depending on the value of n. The rest of the architecture stays the same
regardless of the data set in use. Observe that the architecture of our network is
quite simplistic, and the higher the value of dimensions n in the high-dimensional
space the worse the network will perform. The more complex the network is the
more time is required for training. We want to achieve an optimal trade-off between
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the training time and the ability to generate features in a relatively high-dimensional
space. Therefore, we choose exactly this type of architecture.

Activation functions We used a ReLU activation function for all hidden layers ex-
cept the last one. Since we normalize the data set D so that each feature is in the
range [0,1] we use the sigmoid activation function for the last output layer.

Weights initialization In all the layers we use the HeUniform kernel initializer, the
bias parameter is set initially to value 0.01.

Regularization The first dense layer uses an L2 regularization penalty with a reg-
ularization constant set to 0.0002.

Training and loss function We train our network for 300 epochs (with early stop-
ping strategy applied), as a loss function we use mean squared error (MSE).

FIGURE 3.3: NNinv Architecture

Vanilla Autoencoder
Our visualization tool provides the user the option to use an autoencoder in order to
generate projection and inverse projection functions. The autoencoder architecture
is presented in figure 3.4.

The decoder part of the autoencoder matches one-on-one to the NNinv archi-
tecture, we use the same activation functions and the same methods for weights
initialization. In the encoder part of the autoencoder, all the dense layers use the
ReLU activation function except the last one which uses sigmoid as the activation
function. The first dense layer uses an L2 regularizer with the constant set to 0.0002.
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The weights and biases are initialized in the same way as for the decoder and NNinv.
The number of training epochs is 300 and the loss function is the mean squared error.

(A) Encoder architecture (B) Decoder architecture

(C) Autoencoder

FIGURE 3.4: Autoencoder Architecture

SSNP Autoencoder
The user can opt for the usage of an SSNP as well. The main difference between the
SSNP architecture and the vanilla Autoencoder architecture introduced previously
is that SSNP has an additional clustering layer as shown in figure 3.5. Notice how the
architecture of the clustering layer is data-dependent. The architecture presented in
figure 3.5a is for the MNIST data set. The dense layer in the clustering part of SSNP
uses the softmax activation function.



22 Chapter 3. Solution Design

(A) SSNP clustering layer (B) SSNP architecture

FIGURE 3.5: SSNP Architecture

Whilst the Autoencoder has only one loss function to optimize, SSNP has two op-
timization targets, namely optimizing the loss function related to the data decoding
(i.e. the same as the Autoencoder) and optimizing the loss function related to the
data clustering. For the last one, we use the sparse categorical cross-entropy loss.
The ability to generate accurate nD data is more important than the ability of the en-
coder to generate well-separated clusters. Therefore, we assigned different weights
to the loss functions. The MSE loss (which controls the SSNP quality of generating
nD data) was assigned with weight w = 1, and the sparse categorical cross-entropy
loss (which controls the clustering separation) was assigned with weight w = 0.125.

The NNinv technique works with any chosen projection (see table 3.1). However,
in practice, a method that involves SSNP or Autoencoder is easier to train and use.
Moreover, the SSNP approach seems to give visually smoother decision boundaries
(e.g. see figure 2.1). Our visualization tool allows the user to make the decision of
which combination of projection and inverse projection techniques to use based on
the user’s needs. All the possible combinations that our tool supports are listed in
table 3.1.

Projection method P Compatible inverse projection method P−1 Supported in our tool
t-SNE

NNinv YesUMAP
PCA

Vanilla Autoencoder (encoder part)
Vanilla Autoencoder (decoder part) Yes

NNinv No

SSNP (encoder part)
SSNP (decoder part) Yes

NNinv No

TABLE 3.1: Projections and inverse projection methods possible com-
binations

3.1.3 DBM computation algorithm

The most straightforward approach for generating an image representing the DBM
is to take each pair of points that represents pixel coordinates of the image and use
the inverse projection P−1 to predict the high-dimensional feature vector which cor-
responds to these coordinates, then use the user-provided classifier C to predict the
label of that pixel after which color the pixel in a certain color depending on the label.
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Algorithm 1 presents the pseudo-code for this approach. We call such an algorithm
Dummy DBM because as we will see later on, this straightforward approach is not
the most optimal one. The output of algorithm 1 are two matrices of size W × H,
namely dbm and con f map. The former is a matrix of integers that represents the la-
bels assigned by C to each pixel of the DBM image. con f map is a matrix that contains
values in the range [0,1] representing the confidence of the classifier in the assigned
label for a specific pixel.

Algorithm 1 Dummy DBM

Input: W (int), H (int), P−1 : [0, 1]2 → [0, 1]n, C : [0, 1]n →N× [0, 1]
Output: dbm ∈ MW,H(N)
con f map ∈ MW,H([0, 1])

1: dbm← OW,H // Zeros matrix of size W × H
2: con f map← OW,H
3: for i← 0 to W do
4: for j← 0 to H do
5: d← P−1(i/W, j/H)
6: label, con f idence← C(d)
7: dbm[i][j]← label
8: con f map[i][j]← con f idence
9: end for

10: end for
11: return dbm, con f map

3.2 Projection and inverse projection errors

FIGURE 3.6: Errors computation pipeline (R4 and R5)

In sections 1.1.2 and 2.3, we highlighted that converting an n-dimensional point to a
2D representation results in substantial information loss. We aim to visually present
to the user areas where a projection might mislead. Additionally, constructing the
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DBM image involves employing the inverse projection, which can also be mislead-
ing in specific areas. Hence, this section introduces methods for calculating both
projection and inverse projection errors.

The pipeline in which the user interacts with the tool to compute these errors is
presented in figure 3.6.

3.2.1 Projection errors

Local projection errors metrics
In Chapter 2, we presented two metrics, namely Trustworthiness and Continuity,
designed to assess the quality of a projection. It’s important to note that equations
2.1 and 2.2 compute a value that characterizes the projection on a global scale. Essen-
tially, these metrics inform us about the overall effectiveness of a projection method
but do not pinpoint specific regions where mistakes occur in the 2D space. By "mis-
takes of a projection" we mean that the order of the neighbors in 2D differs from
the order in nD. In our application, we aim to visually highlight these regions with
mistakes for the user. We can build upon the foundational concepts from equations
2.1 and 2.2 by introducing the concepts of local Trustworthiness and local Continu-
ity. For a data point with index i, we define local trustworthiness and continuity as
follows:

Tk(i) = 1− 2
k(2n− 3k− 1) ∑

j∈U(i,k)
[ri,j − k]+ (3.2)

Ck(i) = 1− 2
k(2n− 3k− 1) ∑

j∈V(i,k)
[r̂i,j − k]+ (3.3)

where [x]+ = x if x ≥ 0 and 0 otherwise. Observe the distinction between equations
2.1, 2.2 when compared to 3.2 and 3.3 respectively. The shift from global to local
involves removing the summation over all data points and the subsequent averaging
(i.e. the division by n). The local trustworthiness and local continuity metrics tell us
how the neighbor’s order of a point is preserved in the high and low dimensional
space respectively. Since we want to visualize the errors we define the following
aggregate ϵk(i) that combines the local continuity and trustworthiness metrics.

ϵk(i) =
((1− Tk(i)) + (1− Ck(i)))

2
(3.4)

This metric ranges in [0, 1], the closer the value of this metric is to 1 for a point
xi ∈ D the worse the neighborhood of xi in nD matches with the neighborhood of
P(xi) in 2D. On the other hand, values close to 0 indicate that the neighborhood
is preserved well, which means we can trust the 2D representation given by the
projection method for the point xi.

Observe that these definitions can handle only 2D points that are representations
of n-dimensional data samples. We can not compute these metrics for any 2D point
because we simply do not have its n-dimensional counterpart. Thus, we can not
show the projection errors for all the points in our 2D space. Figure 3.7 supports this
statement by showing how for a subset of the MNIST data set, the 2D projection of
the data points forms a sparse 2D plot (i.e. there exists 2D points/pixels which are
not projections of a data point from the data set).
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FIGURE 3.7: Example of a 2D projection of a subset of MNIST data
set. The colored points represent 2D projections of the data points

We are quite limited in what we can show to the user. We can choose to display
the errors only for the pixels that represent a data point from our data set and for the
other pixels let the user guess what happens with the projection in these areas (e.g.
the dark regions in the figure 3.7). However, this approach is not very informative
for the user.

Computing projection errors using interpolation
We would like to have a function ϵ′k : [0, 1]2 → [0, 1] which takes as an input the
2D coordinates of a point and gives us the projection error. For the points that are
2D representations of samples from our data set (xi, yi) ∈ D2d, ∀i ∈ 0, |D|, we can
use the metric defined in equation 3.4, ϵ′k(xi, yi) = ϵk(i). We can assume that ϵ′k is a
continuous function. Starting from this assumption and from the fact that we have
the values of this function for several points we can use interpolation methods to
approximate this function. Once we have an approximation for ϵ′k we can just use
it to compute the projection error for each pixel in the DBM image. Algorithm 2
presents the pseudo-code that formalizes these ideas.

The points for which we can compute the actual values of ϵ′k form an unstruc-
tured point set. We do not have a lot of options for interpolation techniques we
can use in such a case. One option is to perform the Delaunay triangulation, then
use per-triangle bilinear interpolation to approximate ϵ′k. However, this would give
us a function with C0(R2) continuity (the derivatives of the reconstructed function
would be discontinuous along the edges of those triangles). Ideally, we would prefer
a function with C∞(R2) continuity. Another option is to use the Radial Basis Func-
tion (RBF) interpolation method 1. This method yields a smooth surface that passes
through to the projection error values for the given data points. It accomplishes this
by using radial basis functions centered at each data point to influence the interpo-
lated values at other locations. The resulting surface is smooth and continuous, and
the interpolation process provides a flexible way to estimate values between data
points. Hence, in our visualization tool implementation, we use the RBF method to

1https://shihchinw.github.io/2018/10/data-interpolation-with-radial-basis-functions-rbfs.html
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infer the projection errors for points outside of the data set. The amount of neigh-
bors k we take into account when computing ϵk(·) in our implementation is set to 10
(k = 10).

We have several choices for the specific radial basis function we can use, such
as Gaussian ϕ(r) = e−(ϵr)2

, multiquadric ϕ(r) = −
√

1 + (ϵr)2, linear ϕ(r) = −r
and others. Regardless of the less expressive power and the inability to capture
interaction effects in our implementation, we choose the linear ϕ(r) = −r function.
The reasons why we preferred this function are interpretability (it is easy to interpret
the contributions of errors of individual data points), and computational efficiency.

In figure 3.8 we use the same subset of samples from the MNIST data set (as in
figure 3.7) and algorithm 2 in combination with the RBF interpolation method (linear
radial basis function) to infer the projection errors for points outside of the data set.

Algorithm 2 Projection errors using interpolation
Input: W (int), H (int), k (int), interpolation (string), D, D2d
Output: errors ∈ MW,H([0, 1])

1: errors← OW,H
2: for i← 0 to |D| do
3: Compute ϵk(i) using equation 3.4
4: end for
5: for (xi, yi) ∈ D2d do
6: ϵ′k(xi, yi)← ϵk(i)
7: end for
8: Approximate ϵ′k using interpolation
9: for i← 0 to W do

10: for j← 0 to H do
11: errors[i][j]← ϵ′k(i/W, j/H)
12: end for
13: end for
14: return errors

FIGURE 3.8: Example of projection errors ϵ′10(·) computed using al-
gorithm 2. Interpolation method: RBF (linear ϕ(r) = −r). White

regions: high error values, dark regions: low error values
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When using an interpolation method to approximate a function we are making
an assumption about the function shape. For instance, if we are using a bilinear in-
terpolation we are assuming that between two samples for which we have evidence
the function behaves linearly. For different data sets this projection error function
we are trying to approximate might behave differently. Therefore using such an ap-
proach that implies interpolation, in general, might give us poor approximations.
For example, see the top-right corner of figure 3.8, the interpolation method tells us
that this is a region where the projection might be misleading (due to the high er-
ror values). This region is mostly determined by one single point from the data set
which is the closest to this region in 2D. Recall that the points in figure 3.8 are just
2D projections of a subset of points from our data set. Thus, there might be another
data point in our data set that, when projected in 2D, is closer to that specific region
and has a lower projection error associated with it. This means that all the points
in this region will have a lower projection error assigned. The same argumentation
holds if we use other radial basis functions like Gaussian or multiquadric, the only
difference is that we need to add more points to see the effect of the change in the
errors.

Adding a point (or a set of points) to our data set should only change the projec-
tion errors in the neighborhood of this point, not the entire regions of the 2D space.
Due to these reasons, we propose another approach for computing the projection
errors.

Computing projection errors using inverse projection
Our data set is just a sample of the space D, i.e. D ∼ D. For simplicity let us
assume that we have an ideal inverse projection P−1

+ , i.e. P−1
+ (P(x)) = x,∀x ∈ D.

In this case, computing the projection errors of P becomes an easy task, because, for
any 2D pixel, we can use the inverse projection to get its corresponding nD vector,
then use the 2D coordinates and nD coordinates to compute the projection errors
by using equation 3.4. Notice that for the samples in our data set, we have such an
ideal inverse projection, namely P−1

+ (xi, yi) = (xi,1, . . . , xi,n), ∀i ∈ 0, |D|, (xi, yi) ∈
D2d, (xi,1, . . . , xi,n) ∈ D. Now let us take a step back and think about what we are
trying to capture with the projection errors. Let (x, y) ̸∈ D2d, we want to see how
the neighbors of (x, y) are changing in the nD space, or in other words how the
projection is keeping the neighborhood of a certain nD point when reducing the
dimensionality. In general our inverse projection methodP−1 (learned using NNinv,
SSNP, etc.) will not give the same nD point as P−1

+ , i.e. P−1(·) ̸= P−1
+ (·). However,

if P−1 is a good enough approximation of P−1
+ then if we consider the order with

respect to the distance of the nD neighbors that are in D, this order will be the same
regardless of the usage of P−1 or P−1

+ . Figure 3.9 shows that depending of how well
our inverse projection method P−1 approximates P−1

+ the order of neighbors from
D change or not.

Starting from the assumption that our inverse projection method is an approxi-
mation of P−1

+ that preserves the neighbors’ order for each 2D point we can compute
the projection errors with the usage of P−1. Let x2d be an arbitrary 2D data point that
does not necessarily need to be a 2D embedding of a point from the data set D and let
xnd = P−1(x2d) then we can compute the projection error for x2d by using equation
3.5.

ϵ′′k (xnd, x2d) =
1

(2n− 3k− 1)
( ∑

i∈Uk(xnd)

[ri(xnd)− k]+ + ∑
i∈Vk(x2d)

[r̂i(x2d)− k]+) (3.5)
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(A) P−1 preserves the neighbors order (B) P−1 does not preserve the neighbors order

FIGURE 3.9: Examples of how the neighbors’ order is preserved de-
pending on how well P−1 approximates P−1

+

In equation 3.5 Uk(x) is the set of k closest neighbours to x in D, similarly Vk(x) is
the set of closest neighbours in D2d, ri(x) is the distance rank between xi ∈ D and x,
and r̂i(x) is the distance rank between xi ∈ D2d and x.

We can actually evaluate how well our assumption that P−1 approximates P−1
+

holds, by comparing ϵ′′k with ϵk for values from D2d. For points in D2d, the values of
ϵk represent the ground truth.

Algorithm 3 shows the pseudo-code for the computation of the projection errors
using the approach we described so far and equation 3.5.

Since we can compute the projection error for any arbitrary point x2d as follows
ϵ′′k (P−1(x2d), x2d) we do not need to perform any interpolation and make any as-
sumptions about the projection error function form. Thus, overcoming the limita-
tions of the algorithm 2. On the other hand, the accuracy of the projection errors
directly depends on how good P−1 approximates the ideal inverse projection P−1

+ .
Therefore we recommend the usage of this approach only in combination with a
visual representation of the inverse projection errors.

Figure 3.10 shows the same subset of data points from the MNIST data set as the
one used in figures 3.7 and 3.8. In this figure the algorithm 3 is used to compute the
projection errors.

In our visualization tool implementation, we allow the user to use both ap-
proaches described so far (i.e. algorithms 2 and 3).

Algorithm 3 Projection errors using inverse projection

Input: W (int), H (int), P−1, D, D2d
Output: errors ∈ MW,H([0, 1])

1: errors← OW,H
2: for i← 0 to W do
3: for j← 0 to H do
4: x2d ← (i/W, j/H)
5: xnd ← P−1(x2d)
6: Compute ϵ′′k (xnd, x2d) // using equation 3.5
7: errors[i][j]← ϵ′′k (xnd, x2d)
8: end for
9: end for

10: return errors
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FIGURE 3.10: Example of projection errors ϵ′′10(·) computed using al-
gorithm 3. White regions: high error values, dark regions: low error

values

3.2.2 Inverse Projection errors

In order to evaluate how our inverse projection method performs for a certain 2D
point p we compute an approximation of the derivative of P−1 at that point accord-
ing to equation 3.6 (see section 2.5 and paper [9]).

Dx(p) =
P−1(p + (w, 0))−P−1(p− (w, 0))

2w

Dy(p) =
P−1(p + (0, h))−P−1(p− (0, h))

2h

D(p) =
√
||Dx(p)||2 + ||Dy(p)||2

(3.6)

This equation captures the idea that the low distances between neighbors in 2D
should be preserved in the nD space. Regions with large gradient values illustrate
where the high-dimensional distance is changing most rapidly with respect to the
low-dimensional distance.

In equation 3.6 we have two parameters w and h, since we are interested in the
best approximation of the derivative we take w = 1 and h = 1. Figure 3.11 shows a
visual illustration of the way we compute this derivative.
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FIGURE 3.11: Example of inverse projection error computation using
the approximation of inverse projection derivative

We want to mix the visual representation of the projection errors with the inverse
projection errors in our tool. However, the values returned by the metric described
in equation 3.6 are not in the range [0,1]. In order to normalize the values of inverse
projection errors after computing these values for each point from our 2D space we
perform a min-max normalization. In figure 3.12 we show an example of a gradient
map of an inverse projection computed using the equation 3.6. The brightness of
the regions tells us how a small position change in the 2D space maps to a position
change in the nD space, the brighter the region the bigger the position change in the
high dimensional space.

FIGURE 3.12: Example of the inverse projection error gradient map.
White regions: high error values, dark regions: low error values

3.3 Data points re-labeling and classifier retraining

In the previous sections, we presented how for a given classifier C we can generate
the decision boundary map and compute the related projection and inverse projec-
tion errors. The end goal of our visualization tool is to help improve the classifier
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performance in the context of pseudo-labeled data sets. In order to achieve this we
need to allow the user to re-label data points and then re-train the classifier (i.e. re-
quirement R3).

Figure 3.13 presents the pipeline in which the user can interact with the tool to
re-label data points to improve the classifier. In order to enable the re-labeling we
provide the user with two options as follows:

• Click on a 2D representation of a data point use the keyboard to assign the new
label and click Enter to confirm the new label

• Use the mouse to draw a circle, then use the keyboard to assign all the points
within the circle with the new label

FIGURE 3.13: Data set re-labeling and classifier re-training pipeline
(R3.1 and R3.2)

After the user made all the changes in the labels that he/she considers necessary,
the classifier C is re-trained from scratch for a number of epochs (that can be specified
by the user, by default the number of epochs is 20) resulting in a new classifier C ′.
The old classifier is stored along with the label changes so that the changes can be
undone. The new classifier is evaluated and a plot that shows the differences in
performance is constructed so that the user can decide to undo the changes, continue
with the changes, or stop the tool. The classifier C ′ will have a different decision
boundary map than C, therefore each time the user applies changes in the labels we
have to re-compute the DBM image. Notice on the other hand that the projection and
the inverse projection are not affected by the changes in data points’ labels. Thus, so
are the projection and inverse projection errors. This observation tells us that these
kinds of errors can be computed at any iteration of the tool usage depending on
what the user demands. In conclusion, the only thing that needs to be re-computed
per iteration is the DBM image. If the DBM computation is not optimal this can slow
down the tool interaction process.
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(A) Initial DBM
Classifier accuracy: 87.93%

Cohen’s kappa score: 0.8685

(B) Changes in labels, pix-
els marked with blue triangles

have the new label set to "3"

(C) DBM after relabelling
Classifier accuracy: 79.27%

Cohen’s kappa score: 0.7689

(D) Color-map legend

FIGURE 3.14: Example of re-labeling and classifier re-training

Figure 3.14 presents an example of the described tool interaction process. In this
example, we use the following configuration:

• MNIST dataset [10] (training set - first 3500 samples from the MNIST training
set, test set - first 1500 samples from the MNIST test set)

• DBM image size 256 × 256

• Projection method: t-SNE

• Inverse projection method: Learned using NNinv (loss: mean-squared-error),
training and validation sets: 80/20 split of the training data set, training strat-
egy: early stopping strategy monitoring the validation loss, training epochs:
300 (early stopping after 235 epochs)

• Random seed set to 42

• Classifier C architecture: Flatten layer followed by a Dense layer with 10 neu-
rons and softmax activation, trained for 20 epochs

• Classifier performance is computed using the testing set

• Initial data labels are the same as the ones in the MNIST data set

• Re-fitting number of epochs: 20

• Algorithm 1 is used for re-computing the DBM after retraining

Observe how after changing the labels that were initially labeled as "0" to the la-
bel "3" the classifier performance changes (see figures 3.14a and 3.14c). The drop in
performance is caused by the fact that initially the labels were correctly set. Further-
more, notice that the DBM of the classifier after applying the changes in data sample
labels (i.e. figure 3.14c) is different from the initial DBM (i.e. figure 3.14a).
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3.4 Optimization heuristics for DBM generation

The most frequently used functionality in our visualization tool is the computation
of the Decision Boundary Map for a given classifier. So far we have presented the
algorithm 1 which can generate the DBM.

Let us assume that for our DBM images, we have W = H, and for simplicity let
us denote the width and height with n (i.e. n = W = H). Let us denote the cost
of C(P−1(x, y)) where (x, y) is a 2D point, with C. The complexity of algorithm 1
is then O(n2C) since for each n2 pixels of the DBM image we need to make a call to
C(P−1(·)).

Although the complexity of the algorithm 1 is linear in the number of pixels n2,
depending on the machine on which this algorithm is performed the run-time might
not be acceptable for a user of the visualization tool. Table 3.2 shows the run-times
for generating DBM for the MNIST data set with the use of algorithm 1 on two dif-
ferent machines. The direct projection is t-SNE and the inverse projection method is
computed by using NNinv as described at the end of the previous section. Gener-
ating the DBM for a resolution of 512× 512 takes 18.461 and 27.988 seconds respec-
tively (see figure 3.15 for different resolutions and the corresponding run-time of the
algorithm 1). This is problematic because the user will interact with our visualiza-
tion tool iteratively. At each step, the user will have to re-assign labels, re-train the
classifier, generate a new DBM, and then re-judge based on that DBM. Therefore, we
would like to make the generation of the DBM as fast as possible, so that the whole
process of using the tool is not slowed down by the computation of the DBM. Thus,
we need to improve on the complexity of algorithm 1.

OS CPU(s) GPU(s) Run time (seconds)
macOS 12.6 6-Core Intel(R) Core(TM) i7 - 9750H @ 2.60GHz Not used 18.461

Ubuntu 22.04.2 LTS 2-Core Intel(R) Core(TM) i7 - 7500U @ 2.70GHz Not used 27.988

TABLE 3.2: Run times of algorithm 1 for DBM resolution 512 × 512
on different machines. Data set: MNIST

FIGURE 3.15: Dummy DBM algorithm 1 run-times for different im-
age resolutions.

Dataset: MNIST, P : t-SNE, P−1: NNinv

In order to have better complexity we can aim for improving the complexity
of the C(P−1(·)) operation. However, we want also to keep the generality of our
visualization tool so that C and P−1 can be any kind of operations that fall under the
requirements of classifying a high-dimensional data point and converting a 2D point
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to a high-dimensional counterpart respectively. Thus, to preserve this generality we
aim to reduce the n2 part in the complexity of algorithm 1.

In general a classifier C has to achieve a trade-off between the ability to fit the
training set (which requires its decision boundaries to ‘twist’ to follow each training
sample) and the ability to generalize (which requires the decision boundaries to be
relatively smooth and simple in order to avoid the overfitting). Therefore most clas-
sifiers aim to create a few decision zones (in general more or equal to the number of
classes and less or equal to the training data samples) with relatively smooth bound-
aries, meaning that the decision boundaries are sparse in the nD space. The labels
of the DBM are assigned based on the probability vector that is given by C(P−1(·)),
since C andP−1 are continuous and the derivative ofP−1 is bounded, a small change
in the 2D position will lead us to a small change in the probability vector, which
means that the decision boundaries are sparse in the 2D space as well. The DBM rep-
resents a stair signal (function) that remains constant in the decision zones. We can
exploit the stair signal nature of the DBM and the fact that the decision boundaries
are not dense in the 2D and nD spaces by using various sampling strategies that re-
duce the number of points where we need to evaluate actual labels using C(P−1(·)).
Starting from this idea, in sections 3.4.1 and 3.4.2, we present two heuristic methods
that compute the DBM and aim to reduce the n2 term in the complexity of algorithm
1. In section 3.4.3 we propose a heuristic that aims to reduce both the n2 and C terms
in the O(n2C) complexity.

This section is structured as follows. In sections 3.4.1 and 3.4.2 we present two
simple heuristics for generating the DBM that aim to skip unuseful computations
based on pixels neighborhood analysis. Algorithm 9 in section 3.4.3 presents a
heuristic that infers the pixel label and the confidence of the classifier based on local
neighborhood interpolation. Section 3.4.4 compares all the presented heuristics in
terms of complexity and accuracy. In this section, we identify the limitations, ad-
vantages, and disadvantages of using each of the presented algorithms. For each
of the sections 3.4.1, 3.4.2 and 3.4.3 we present the core ideas of the DBM algorithm
along with the intuition and the pseudo-code that formalizes the presented ideas.
For each algorithm, we analyze the complexity and present how the algorithm per-
forms in terms of speed and accuracy.

For the experiments presented in these sections, we use the following configura-
tion:

• MNIST dataset [10] (training set - first 3500 samples from MNIST training set,
test set - first 1500 samples from MNIST testing set)

• Projection method: t-SNE

• Inverse projection method: Learned using NNinv (loss: mean-squared-error),
training and validation sets: 80/20 split of the training data set, training strat-
egy: early stopping strategy monitoring the validation loss, training epochs:
300 (early stopping after 235 epochs)

• Random seed set to 42

• Classifier architecture: Flatten layer followed by a Dense layer with 10 neurons
and softmax activation, trained for 20 epochs

• Machine configuration: macOS 12.6, 6-Core Intel(R) Core(TM) i7 - 9750H @
2.60GHz (CPU), GPU not used
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3.4.1 Binary Split heuristic

In this section, we introduce a heuristic we call Binary Split. This technique aims to
speed up the computation of the DBM image. We start by presenting the intuition of
the algorithm, then present the pseudo-code that formalizes the intuition, followed
by a complexity analysis and experimental results that show the differences of the
new heuristic when compared to algorithm 1.

Binary Split intuition

Let us start by taking a closer look at figure 3.14a. Consider for instance the top
row of the image, the label of the first pixel is "0" and continues to remain the same
for a considerable amount of pixels in that row. If it was the case that we knew the
coordinates (x, 0) where the classifier starts to predict a different label, there is no
need for us to use the classifier C to compute all the labels between (0, 0) and (x, 0)
since we know apriori that the classifier will predict the label "0" in this interval. The
problem is that we do not know the value of x.

Consider the following situation, we have a row of pixels and with coordinates
between (a, 0) and (b, 0). For simplicity let us assume that our classifier can predict
only two labels l1 and l2. Again for simplicity, we assume that there is only one point
x ∈ [a, b] where the value of labels changes from l1 to l2. We want to find this point
x. We can apply a simple numerical analysis technique called Bisection or Binary-
search method [4] in which we recursively cut our search interval [a, b] into smaller
intervals until we find x.

Next, we explain how we can apply the Binary-search method to our DBM gen-
eration problem, where we have more than 2 labels and instead of a one-dimensional
interval [a, b] we have a 2D interval [a, b]× [c, d].

For simplicity let us consider only the first row of our DBM from figure 3.14a.
We can split the interval [0,n− 1] into smaller intervals and take a "representative"
pixel from each interval. For instance, let us split the first row into 32 intervals,
each containing 8 pixels, i.e. [0, 7], [8, 15], . . . , [248, 255], and take from each interval
[ai, ai + 7] the pixel with coordinates (ai + 3, 0) (i.e. the middle pixel of the interval) as
representatives i.e. (3, 0), (11, 0), . . . , (251, 0). For each of the representative pixels,
we compute the label using the classifier. The result will be a sequence of labels
i.e. "0", "0", "0", . . . , "6", "6". Observe how the first 3 labels in this sequence are "0",
because the label is not changing we can assume that all the pixels in the first and the
second interval will have the label "0". On the other hand, if in this sequence we have
a sub-sequence li−1, li, li+1, li+2, where li−1 = li ̸= li+1 = li+2 then the conclusion
we can make is that the decision boundary lies somewhere between (ai + 3, 0) and
(ai+1 + 3, 0).

In order to find where exactly the label changes from li to li+1 we can apply the
Binary-search strategy, namely, take the intervals [ai + 3, ai + 7] and [ai+1, ai+1 + 3],
take the representative middle pixels from these intervals and compute their labels
l′i , l′i+1 include the labels in the initial sequence as follows: . . . , li, l′i , l′i+1, li+1, . . . and
repeat the same process described so far. If for instance li = l′i ̸= l′i+1 = li+1 then all
the pixels in the interval between the pixel with label li and the one with label l′i are
assigned with the label li. All the pixels between l′i+1 and li+1 are assigned with the
label li+1. The interval between the pixels with labels l′i and l′i+1 is split again into 2
sub-intervals. The procedure is repeated until we can not further split an interval.

Notice how based on neighboring intervals and representatives of the intervals
we can quickly find where decision boundaries are laying. So far we considered only
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one row of the image and made the analysis from a one-dimensional perspective.
These ideas however can be easily extrapolated so that instead of intervals in one
dimension we have 2D rectangles (i.e. windows/blocks). The difference now is that
instead of looking at the labels to the left and right intervals we need to analyze the
labels of the representative pixels of the 2D rectangles from the top, bottom, left, and
right. The core idea is to start by splitting the DBM image we want to generate into
a set of B2 blocks. For each block B, we take the central pixel as a representative
and analyze the representatives of the neighboring blocks. If all the neighbors have
the same label as the current block we can assign the same label to all the pixels in
that block. In such a way, we skip redundant computation steps. For the blocks that
have neighbors with different labels, we are splitting the block into 4 sub-blocks.
Once we have done it for all the blocks we can repeat the analysis of neighbors and
split further until each block has no neighbors with different labels or the block can
not be further split (i.e. the block is a pixel). Figure 3.16 gives an intuition of how the
Binary Split algorithm 4 works. Observe how we started with a grid of 5× 5 blocks
in figure 3.16a and in the following iteration, we split only some blocks (see figure
3.16c) in order to find where the decision boundary is.

(A) Iteration 1 - 2D blocks and their rep-
resentative pixels

(B) Iteration 1 - Labels of representative
pixels of 2D blocks

(C) Iteration 2 - 2D blocks and their rep-
resentative pixels

(D) Iteration 2 - Labels of representative
pixels of 2D blocks

FIGURE 3.16: DBM construction using the Binary Split heuristic for a
classifier with 2 classes
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Binary Split algorithm

So far we described how we can infer the label values for all the pixels. However,
along with the decision boundary map, we want to show the classifier confidence to
the user for each pixel. We can assign to all the pixels in a block the same confidence
as the central representative pixel of the block. However, in this case, we will receive
a stair function, and this is usually not how the confidence values of a classifier be-
have. For each central pixel of a block, we have the real confidence c of the classifier.
We can perform an interpolation over these values to approximate the confidence
function. In our experiments, we use three interpolation methods for computing the
confidence maps, namely: nearest neighbor, bilinear, and bicubic. We will explicitly
show the experiments and results for all the DBM optimization methods together
with all the interpolation methods in chapter 4.

If we start at the top left block and continuously split it until no more splits are
possible, then go to the next block and do the same, the neighbors to the left will
have a bigger impact on how we split this block than the neighbors on the right
because we did not split the block to the right yet. This might lead the algorithm
to non-accurate results. In order to avoid this, we would like to assign a priority
to a block split, such that splitting a block of the same size with the same amount
of neighbors happens in the same iteration of the algorithm. In this order of ideas
we need to use a priority queue to store the blocks that need to be split and at each
iteration split the blocks with the same priority and place the sub-blocks back in the
queue.

Algorithm 4 formalizes the intuition of the Binary Split heuristic. The sub-routines
used in algorithm 4 are described in procedures 5 and 6. Algorithm 4 can be mod-
ified to include a computational budget, such that the heuristics stop when there is
no more computational budget available.

Algorithm 5 Generate initial blocks sub-routine
1: procedure GENERATE INITIAL BLOCKS(n, B)
2: block_size← n

B
3: blocks← []
4: for i← 0 to B do
5: for j← 0 to B do
6: x, y← i ∗ block_size + block_size

2 , j ∗ block_size + block_size
2

7: blocks← blocks + [(x, y, block_size, block_size)]
8: end for
9: end for

10: return blocks
11: end procedure

Algorithm 6 Insert block into priority queue sub-routine
1: procedure INSERT PRIORITY QUEUE(priority_queue,dbm_image,B)
2: x, y, w, h← block
3: neighbors← [(x− w

2 − 1, y), (x + w
2 + 1, y), (x, y− h

2 − 1), (x, y + h
2 + 1)]

4: cost← 0
5: label ← dbm_image[x][y]
6: for (x, y) in neighbors do
7: if label ̸= dbm_image[x][y] then
8: cost← cost + 1
9: end if

10: end for
11: if cost > 0 then
12: priority← 1/(w ∗ h ∗ cost

len(neighbors) )

13: priority_queue.put(priority,B)
14: end if
15: end procedure
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Algorithm 4 Binary Split
Input: P−1 : [0, 1]2 → [0, 1]n, C : [0, 1]n → [0, 1]d, n (int), B (int), interpolation_method (string)
Output: dbm ∈ Mn,n(N)
con f map ∈ Mn,n([0, 1])

1: dbm← On,n
2: con f map← []
3: blocks← GENERATE_INITIAL_BLOCKS(n, B)
4: for block in blocks do
5: x, y, w, h← block
6: probabilities← C(P−1(x/n, y/n))
7: label, con f ← arg max(probabilities), max(probabilities)
8: dbm[x− w

2 : x + w
2 ][y−

h
2 : y + h

2 ]← label
9: con f map← con f map + [(x, y, con f )]

10: end for
11: priority_queue← PriorityQueue() // initialize a priority queue
12: for block in blocks do
13: INSERT_PRIORITY_QUEUE(priority_queue, dbm, block)
14: end for
15: while not priority_queue.empty() do
16: // pop the blocks with the highest priority from the queue
17: priority, blocks← GET_BLOCKS_WITH_HIGHEST_PRIORITY(priotiy_queue)
18: for block in blocks do
19: x, y, w, h← block
20: if w == 1 and h == 1 then
21: probabilities← C(P−1(x/n, y/n))
22: label, con f ← arg max(probabilities), max(probabilities)
23: dbm[x][y]← label
24: con f map← con f map + [(x, y, con f )]
25: continue
26: end if
27: δw, δh ← w

4 , h
4

28: points← [(x− δw, y− δh), (x− δw, y + δh), (x + δw, y− δh), (x + δw, y + δh)]
29: for x, y in points do
30: probabilities← C(P−1(x/n, y/n))
31: label, con f ← arg max(probabilities), max(probabilities)
32: dbm[x− δw : x + δw][y− δh : y + δh]← label
33: con f map← con f map + [(x, y, con f )]
34: end for
35: for x, y in points do
36: INSERT_PRIORITY_QUEUE(priority_queue, dbm, (x, y, 2δw, 2δh))
37: end for
38: end for
39: end while
40: con f map← INTERPOLATE(con f map, n, interploation_method)
41: return dbm, con f map
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Binary Split heuristic complexity analysis

In this paragraph, we want to analyze the complexity of the algorithm 4. Let C be
the cost of one operation C(P−1(·)) and n2 be the number of pixels in the image of
the decision boundary map we want to generate. With this notations the complexity
of algorithm 1 is O(n2C). Let B2, where 1 < B < n be the initial number of blocks we
are analyzing in order to construct the priority queue in algorithm 4. If the number
of classes in our data set is 1, our algorithm will not insert anything in the priority
queue, which means that the best-case complexity is O(B2C + n2), where B < n.
The term B2C represents the number of computations needed to split the image into
B2 blocks and decode the central representative pixels of each block. The term n2

represents the number of computations needed in order to perform the confidence
map interpolation.

In the worst-case scenario, we have to decode each pixel individually, which
means n2 pixels, i.e. the classes are distributed in such a way in the 2D space that
at each iteration for each block we need to replace it into the priority queue 4 new
blocks until the block size becomes 1x1. If we start with blocks of size n

B , and each
time split it into 4 sub-blocks we need a total of log2

n
B operations to get blocks of

size 1x1. The insertion to the priority queue is O(log(s)) where s is the size of the
priority queue.

The worst time complexity is then:

O(B2C + 4B2(C + log(B2)) + 42B2(C + log(4B2))+

· · ·+ 4kB2(C + log(4k−1B2)) + · · ·+ n
4

2
(C + log(

n2

16
)) + n2C + n2)

(3.7)

The term B2C is the number of computations we need for the initial computation
of the representative pixels of the blocks the term n2C represents the number of
computations we need in order to decode each pixel at the end when the block size is
1x1. The term n2 is the number of computations we need to compute the confidence
image using interpolation. The time complexity can be rewritten as:

O(n2 log(
n
B
)(C + log(n))) (3.8)

We can not simplify the above equation any further, because the complexity de-
pends on two parameters C and n. If C < log n then O(n2 log( n

B )(C + log(n))) =
O(n2 log( n

B ) log(n)). However, in practice is very unlikely that the user will want
to generate images with such big resolutions and such a simple classifier so that
C < log n. Therefore is more correct to assume that it usually will be the case that
C > log n. Then the most simplified formula of the worst-case complexity becomes
O(n2 log( n

B )(C + log(n))) = O(n2 log( n
B )C).

If B is taken as a portion of n then the worst-case complexity becomes O(n2(C +
log(n))). Even though the worst-case complexity of the Binary Split heuristic is
worse than the complexity of the vanilla DBM algorithm 1 the average complexity
of this heuristic is better. We can slightly change the implementation of the Binary
Split heuristic to include a computational budget in order to constrain the worst-case
complexity to O(n2C). Moreover, by introducing the computational budget param-
eter in this algorithm, we can reduce the complexity of the algorithm even further.
However, this comes at the cost of an increasing number of errors (i.e. misleading
labels). This trade-off depends on how deep the user wants to go in the splitting. In
other words, this computational budget embeds the maximum size of the smallest
block of pixels that is remaining in the map. In our implementation, we take the
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computational budget equal to n2, which means the worst-case complexity of the
algorithm 4 is O(n2C).

In practice, the number of pixels that construct the decision boundaries is Kn
where K (K ≪ n) is a constant that depends on the data set D, the classifier C and
the inverse projection P−1. Thus, the complexity of the binary split becomes:

O(B2C + c1B2(C + log(B2)) + · · ·+ cl B2(C + log(cl−1B2)) + KnC + n2) (3.9)

where ciB2 ≤ Kn, ∀i ∈ 1, l, l < log( n
B ). The average case complexity is then:

O(B2C + log(
n
B
)Kn(C + log(Kn)) + n2) =

O(B2C + log(
n
B
)Kn(C + log(n)) + n2)

(3.10)

If B is a constant that does not depend on n then the complexity becomes
O((Kn log n)(C + log n) + n2). Notice how by applying the Binary Split heuristic we
can reduce the average complexity of the decision boundary map construction from
O(n2C) to O((Kn log n)(C + log n) + n2), where K ≪ n.

Binary Split vs Vanilla DBM

In this paragraph, we experimentally compare the Binary Split heuristic (algorithm
4) with the Dummy DBM (algorithm 1) in terms of run-time and accuracy. The
complete global comparison of all the DBM optimization methods is presented in
section 3.4.4.

The Dummy DBM algorithm gives the correct labels and confidence values for
each pixel. Therefore, we take the Dummy DBM results as the ground truth. Fig-
ure 3.17 presents the errors in the label values of the Binary Split algorithm for the
resolution 256× 256. An error, in this case, means that the label assigned using the
algorithm 4 differs from the label assigned by algorithm 1. The pixels for which this
is the case are marked as red circles in figure 3.17.

FIGURE 3.17: Binary Split label errors.
Data set: MNIST, P : t-SNE, P−1: NNinv

Resolution: 256× 256, Initial blocks resolution: B = 32
Number of errors: 100 · 1

2562 = 0.0015%
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Figure 3.18 shows the run-time (in seconds) for different resolution values n of
the algorithms 1 and 4. Observe from figures 3.17 and 3.18 that the proposed heuris-
tic is generating accurate DBM images way faster than the vanilla DBM approach.

FIGURE 3.18: Binary Split vs Dummy DBM run-times.
Data set: MNIST, P : t-SNE, P−1: NNinv

Initial blocks resolution: B = 32

In order to rigorously test the accuracy of our heuristic algorithms we introduce
two metrics described by equations 3.11 and 3.12.

The ϵlabels metric describes the percentage of pixels in the DBM image for which
the heuristic assigns a different label l̂i when compared to the label assigned by
Dummy DBM li. δ(li, l̂i) is the complement of the Kronecker delta function which
equals 0 when li = l̂i and 1 otherwise.

ϵlabels = 100 ·

n2

∑
i=1

δ(li, l̂i)

n2 (3.11)

The normalized mean square error NRMSEcon f idence between the ground truth
confidence values fi and the approximated confidence values f̂i quantifies how well
the approximation of the confidence values given by the heuristic matches the ground
truth confidence map given by Dummy DBM. For the confidence map, we chose this
metric because, in contrast to the labels where we have values coming from a dis-
crete space, the confidence values are coming from a continuous space. Moreover,
we are interested in how well a heuristic approximates the ground truth signal glob-
ally rather than how well each confidence value is approximated in particular.

NRMSEcon f idence =

n2

∑
i=1

( fi − f̂i)
2

n2

∑
i=1

f 2
i

(3.12)

The relative labels error rate ϵlabels for DBM images with different resolutions
generated with Binary Split is shown in figure 3.19a. Figure 3.19b presents the error
rate NRMSEcon f idence of the confidence map generated using several interpolation
methods. The confidence values used for interpolation are the confidence values of
the pixels for which the classifier was used to compute labels during the execution
of the Binary Split heuristic.

Observe that even though the Binary Split is just a heuristic the algorithm is
quite accurate. When used in combination with the MNIST data set and the t-SNE



42 Chapter 3. Solution Design

projection the labels error rate ϵlabels is not higher than 0.35% and the confidence
error rate NRMSEcon f idence is not higher than 0.05.

(A) Labels error rate ϵlabels (B) Confidence error rate NRMSEcon f idence

FIGURE 3.19: Binary Split algorithm accuracy

3.4.2 Confidence-based Split heuristic

In the binary split heuristic, we are splitting a block into 4 smaller equally sized
sub-blocks with respect to a priority queue. Although this approach works, there is
one question that still remains, namely: is this approach the most efficient? In this
section, we are analyzing how we can use all the information given by the classifier
in order to further speed up the DBM computation.

Confidence-based Split intuition

Each time we evaluate a pixel’s high dimensional counterpart we are not only get-
ting the information about the class label but also the confidence of the classifier that
the pixel has this label. Moreover, we get the list of all probabilities the classifier
assigns to each class. Let d be the number of classes in our data set D, then for an
n-dimensional data point, our classifier C yield a list p1, . . . , pd, that represent the
probabilities that the data point appertains to each class, i.e. C : [0, 1]n → [0, 1]d,
label = arg maxi∈1,d pi, con f = maxi∈1,d pi.

In our next heuristic which we call Confidence-based Split, we take a similar
approach to the Binary Split, but we are considering the confidence values in order to
make better splits of the blocks. A split s1 of a block B is considered to be better than
another split s2 of the same block B if we can approximate all the labels of the pixels
inside B equally good but the number of operations to compute this approximation
is less when using s1 then s2.

Figure 3.20a presents a theoretical situation where we have a block for which
we computed the central pixel label and confidence using the classifier. The central
pixel is labeled as "0" with confidence 0.65. The closest pixels to the central pixel
outside of the block are labeled as "1", "2", "3" and "4" with confidence values of 0.87,
0.9, 0.67, and 0.74 respectively. In this figure, a gap between the block and the pixels
labeled as "1", "2", "3" and "4" is added in order to show that those pixels have a size
and are not just points in the continuous 2D space. These pixels are part of other
blocks for which we used the classifier to compute the label and confidence for the
central pixels and assigned the same value for all the pixels inside these blocks.
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In the situation shown in figure 3.20a, if we were to use the binary split we have
to take the 4 sub-blocks as shown, compute the labels of the central pixels and com-
pare each of the new blocks with the closest 4 pixels outside of the block, then repeat
this process recursively. On the other hand, if we take a closer look for instance at
the point labeled as "1" and the point labeled as "0" we would see that the classifier is
more confident in the first prediction (i.e. label "1" is predicted with confidence 0.87,
label "0" is predicted with confidence 0.65).

Let us denote the coordinates of the point with the label "1" in figure 3.20 with
(x1, y) and the coordinates of the point with label "0" with (x2, y). Imagine that
we are moving from the point (x1, y) in the direction of the point (x2, y) (i.e. we
are passing through the points (tx1 + (1− t)x2, y), ∀t ∈ [0, 1]). Also, imagine that
along this way the points we are passing through have the label "1" initially, and
then at some point the label changes to "0". Along this way, the confidence will
monotonically decrease until a point of inflection where the label changes and the
confidence will start increasing. Considering the confidence values of 0.87 and 0.65,
the intuition tells us that we will meet this point of inflection (t∗x1 + (1− t∗)x2, y)
after half of our way from x1 to x2 (i.e. t∗ > 1

2 ). This means the decision boundary is
closer to x2 than to x1.

The 2D line from (x1, y) to (x2, y) can be described by h : [0, 1] → R2, h(t) =
(1− t)(x1, y) + t(x2, y). For t ∈ [0, 1] we have (pt,0, pt,1, . . . , pt,d) = C(P−1(h(t))).

Let f , g : [0, 1] → [0, 1], f (t) = pt,1, g(t) = pt,0. In our case the function f is
decreasing as t is increasing from 0 to 1, whilst g is increasing. At t = 0, f (t) > g(t),
at t = 1, f (t) < g(t). If we were to know the form of these functions, then we could
find fast where the decision boundary is, namely by computing t∗, where f (t∗) =
g(t∗). If we assume that these functions are linear, i.e. f (t) = at + b, g(t) = ct + d,
then finding t∗ is trivial, t∗ = d−b

a−c , where b = p0,1, d = p0,0, a = p1,1 − p0,1, c =
p1,0 − p0,0.

Let us consider the following example: C(P−1(h(0))) = (0.47, 0.87, . . . ) and
C(P−1(h(1))) = (0.67, 0.57, . . . ). Using the previously described formulas: b =
0.87, d = 0.47, a = −0.3, c = 0.2, t∗ = −0.4

−0.5 = 0.8. This means, that if all our as-
sumptions hold the point with coordinates (0.2x1 + 0.8x2, y) is laying on the decision
boundary. Splitting the block B along x direction into two sub-blocks that are adja-
cent at 0.2x1 + 0.8x2 might make our heuristic faster because we are splitting near
the decision boundary (or if the assumptions hold, splitting exactly at the decision
boundary along x direction).

Figure 3.20b presents an example of the split of the same block from figure 3.20a
based on the method discussed so far.

Of course, the assumptions we made about confidence values behavior are poor.
However, our scope with this approach is not to approximate in one step where the
decision boundary lays, but rather to make the splits in such a way that on further
iterations the blocks do not need to be split further and we can skip computations.

Confidence-based Split algorithm

Algorithm 8 represents a modification of the algorithm 4 to include the idea of split-
ting the blocks based on the confidence values. The subroutines for algorithm 8 are
described in procedures 7, 5, 6. Notice that the main difference in the Confidence-
based Split algorithm when compared to the Binary Split is the way we are splitting
a block into sub-blocks. In the Binary split algorithm, a block is always divided into
4 sub-blocks, whilst in the Confidence-based split algorithm, the number of sub-
blocks can vary from 2 to 9 (all the possible configurations are: 2, 3, 4, 6, 9).
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(A) Binary Split (B) Confidence-based Split

FIGURE 3.20: Block split in "Binary Split" and "Confidence-based
Split" heuristics

Algorithm 7 Get the blocks based on confidence split
1: procedure GET_CONFIDENCE_BASED_SPLIT(dbm, dbm_indexes, probabilities_img, block)
2: splitsx , splitsy ← GET_SPLITS(dbm, dbm_indexes, probabilities_img, block)
3: if len(splitsx) == 0 and len(splitsy) == 0 then:
4: return SPLIT_BINARY(block)
5: end if
6: return CONSTRUCT_SUB_BLOCKS(splitsx , splitsy, block)
7: end procedure
8: procedure GET_SPLITS(dbm, dbm_indexes, probabilities_img, block)
9: x, y, w, h← block

10: splitsx , splitsy ← [], []
11: for neighbourx in x− w

2 − 1, x + w
2 + 1 do

12: label ← dbm[neighbourx , y]
13: center_label ← dbm[x, y]
14: (nx , ny)← dbm_indexes[neighbourx , y]
15: if label ̸= center_label then
16: c1,1, c1,2 ← probabilities_img[x, y][center_label], probabilities_img[nx , y][center_label]
17: c2,1, c2,2 ← probabilities_img[x, y][label], probabilities_img[nx , y][label]
18: splitsx ← splitsx + [GET_SPLIT_POSITION(x, nx , neighbourx , c1,1, c1,2, c2,1, c2,2)]
19: end if
20: end for
21: for neighboury in y− h

2 − 1, y + h
2 + 1 do

22: label ← dbm[x, neighboury]
23: center_label ← dbm[x, y]
24: (nx , ny)← dbm_indexes[x, neighboury]
25: if label ̸= center_label then
26: c1,1, c1,2 ← probabilities_img[x, y][center_label], probabilities_img[x, ny][center_label]
27: c2,1, c2,2 ← probabilities_img[x, y][label], probabilities_img[x, ny][label]
28: splitsy ← splitsy + [GET_SPLIT_POSITION(y, ny, neighboury, c1,1, c1,2, c2,1, c2,2)]
29: end if
30: end for
31: return splitsx , splitsy
32: end procedure
33: procedure GET_SPLIT_POSITION(x1, x2, bound, c1,1, c1,2, c2,1, c2,2)
34: a, b← c1,1−c1,2

x1−x2
, c1,1 − x1 ∗

c1,1−c1,2
x1−x2

35: c, d← c2,1−c2,2
x1−x2

, c2,1 − x1 ∗
c2,1−c2,2

x1−x2
36: if a == c then:
37: return
38: end if
39: boundary← round( d−b

a−c )

40: if bound < x1 and bound + 1 < boundary < x1 then
41: return boundary
42: end if
43: if bound > x1 and x1 < boundary < bound− 1 then
44: return boundary
45: end if
46: return
47: end procedure
48: procedure SPLIT_BINARY(block)
49: x, y, w, h← block
50: δw, δh ← w

2 , h
2

51: return [(x− δw
2 , y− δh

2 , δw, δh), (x− δw
2 , y + δh

2 , δw, δh), (x + δw
2 , y− δh

2 , δw, δh), (x + δw
2 , y + δh

2 , δw, δh)]
52: end procedure
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Algorithm 8 DBM Confidence-based split
Input: P−1 : [0, 1]2 → [0, 1]n, C : [0, 1]n → [0, 1]d, n (int), B (int), interpolation_method (string)
Output: dbm ∈ Mn,n(N)
con f map ∈ Mn,n([0, 1])

1: num_classes← number of classes in the data set D
2: dbm← On,n
3: dbm_indexes← On,n
4: probabilities_img← On,n,num_classes
5: con f map← []
6: blocks← GENERATE_INITIAL_BLOCKS(n, B)
7: for block in blocks do
8: x, y, w, h← block
9: probabilities← C(P−1(x/n, y/n))

10: label, con f ← arg max(probabilities), max(probabilities)
11: le f t, right, top, bottom← x− w

2 , x + w
2 , y− h

2 , y + h
2

12: dbm[le f t : right][top : bottom]← label
13: dbm_indexes[le f t : right][top : bottom]← (x, y)
14: probabilities_img[le f t : right][top : bottom]← probabilities
15: con f map← con f map + [(x, y, con f )]
16: end for
17: priority_queue← PriorityQueue() // initialize a priority queue
18: for block in blocks do
19: INSERT_PRIORITY_QUEUE(priority_queue, dbm, block)
20: end for
21: while not priority_queue.empty() do
22: // pop the blocks with the highest priority from the queue
23: priority, blocks← GET_BLOCKS_WITH_HIGHEST_PRIORITY(priotiy_queue)
24: for block in blocks do
25: x, y, w, h← block
26: if w == 1 and h == 1 then
27: probabilities← C(P−1(x/n, y/n))
28: label, con f ← arg max(probabilities), max(probabilities)
29: dbm[x][y]← label
30: dbm_indexes[x][y] = (x, y)
31: probabilities_img[x][y]← probabilities
32: con f map← con f map + [(x, y, con f )]
33: continue
34: end if
35: sub_blocks← GET_CONFIDENCE_BASED_SPLIT(dbm, dbm_indexes, probabilities_img, block)
36: for sub_block in sub_blocks do
37: x, y, w, h← sub_block
38: probabilities← C(P−1(x/n, y/n))
39: label, con f ← arg max(probabilities), max(probabilities)
40: dbm[x− w : x + w][y− h : y + h]← label
41: dbm_indexes[x− w : x + w][y− h : y + h]← (x, y)
42: probabilities_img[x− w : x + w][y− h : y + h]← probabilities
43: con f map← con f map + [(x, y, con f )]
44: end for
45: for sub_block in sub_blocks do
46: INSERT_PRIORITY_QUEUE(priority_queue, dbm, sub_block)
47: end for
48: end for
49: end while
50: con f map← INTERPOLATE(con f map, n, interpolation_method)
51: return dbm, con f map

Confidence-based Split heuristic complexity analysis

In this paragraph, we analyze the complexity of algorithm 8. In the best-case sce-
nario, when the data set has only one class, the complexity of the Confidence-based
Split does not differ from the complexity of the Binary Split since we are doing the
same operations. Therefore, the complexity, in this case, is O(B2C + n2). In the
worst-case scenario, the Confidence-based Split algorithm will have to call C(P−1(·))
for each of the n2 pixels.

Thus, the worst time complexity is:

O(B2C + c1B2(C + log(B2)) + · · ·+ cl B2(C + log(cl−1B2)) + n2C + n2) (3.13)
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where ciB2 < n2, ∀i ∈ 1, l and l is the number of iterations the algorithm makes.
The worst split possible is when we split a block B of size w× h into only two

blocks B1 with size w× (h− 1) and B2 with size w× 1. Alternatively splitting into B1
with size (w− 1)× h and B2 with size 1× h. Supposing that we have this situation
for all the blocks at any iteration i, then ci = 2ci−1, c0 = 1. Since cl B2 ≤ n2 and
cl = 2l , we have that 2l ≤ ( n

B )
2 and l ≤ 2 log2(

n
B ). The worst-case complexity then

becomes:

O(B2C + n2 log(
n
B
)(C + log n)) = O(n2 log(

n
B
)(C + log n)) (3.14)

Using the same argumentation as in section 3.4.1, the worst-case complexity can be
bounded by O(n2C) by means of a computational budget parameter.

In the average case the term ciB2 ≤ Kn, where K is a constant defined by the
classifier, inverse projection, and the data set (see section 3.4.1). Using the same ar-
gumentation as for the worst-case complexity the number of iterations l is bounded
by 2 log2(

n
B ). Thus, the average case complexity is:

O(B2C + c1B2(C + log(B2)) + · · ·+ cl B2(C + log(cl−1B2)) + n2) =

O(B2C + Kn log(
n
B
)(C + log n) + n2)

(3.15)

Confidence-based Split vs Binary Split vs Vanilla DBM

In this paragraph, we repeat the experiments we performed when comparing the
Binary split heuristic with the Dummy DBM in section 3.4.1 and extend by adding
the newly introduced Confidence-based Split heuristic. The complete global com-
parison of all the DBM optimization methods is presented in section 3.4.4.

Figure 3.21 presents the label errors when the labels are generated using the
Confidence-based Split algorithm for the resolution 256 × 256 (compare with fig-
ure 3.17). The pixels for which the labels differ when using algorithms 1 and 8 are
marked as red circles.

FIGURE 3.21: Confidence-based Split label errors.
Data set: MNIST, P : t-SNE, P−1: NNinv

Resolution: 256× 256, Initial blocks resolution: B = 32
Number of errors: 100 · 8

2562 = 0.0122%
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Figure 3.22 shows the run-time (in seconds) for different resolution values of the
algorithms 1, 4 and 8. Observe that the Confidence-based Split algorithm takes less
to compute the DBM when compared to the brute force Dummy DBM algorithm.
However, the Binary Split heuristic seems to be the fastest. This might be caused by
the fact that the different way of block splitting is leading the algorithm to generate
more blocks than the Binary Split, which causes the algorithm to make more calls to
the classifier. The total number of blocks with neighbors having the same label as
the central pixel of the block is smaller than in the Binary Split case which makes the
algorithm 4 cut down more redundant operations. Another explanation might be
that for this specific projection method, the decision boundaries are placed in such a
way in 2D that simply makes the "binary" way of splitting a block the most optimal.
In chapter 4 we generate the DBM for different projection methods. This series of
experiments answers the question of which algorithm brings better run times.

FIGURE 3.22: Confidence-based Split vs Binary split vs Dummy DBM
run-times. Data set: MNIST, P : t-SNE, P−1: NNinv

Initial blocks resolution: B = 32

The labels error rate ϵlabels of DBMs generated with Confidence-based Split for
different resolutions is shown in figure 3.23a. Observe that the Binary Split is per-
forming better than the Confidence-based Split in terms of label accuracy, even though
the differences are small. Again this behaviour might be caused by the different
ways of splitting the blocks which causes the algorithms to generate different sets of
blocks. Figure 3.23b presents the error rates NRMSEcon f idence in the confidence maps
generated using different interpolation methods. For the nearest neighbor and bilin-
ear interpolation methods, the NRMSEcon f idence metric gives almost the same values
for Binary and Confidence-based Split algorithms.

3.4.3 Confidence interpolation heuristic

In the Confidence-based Split heuristic, algorithm 8, we perform a local interpola-
tion based on the confidence values given by the classifier to find where we should
split a block. If we are splitting the image into a set of blocks and computing the
confidence values for the centers of the blocks, why not use these samples to ap-
proximate directly the confidence functions? This will reduce the computation cost
since after we have these functions we can use them to compute the confidence val-
ues for each pixel instead of using the classifier and the inverse projection function
which is a costly operation. In this section, we present another heuristic we call Con-
fidence Interpolation, that aims to reduce the C term in the O(n2C) complexity of
the algorithm 1.
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(A) Labels error rate ϵlabels (B) Confidence error rate NRMSEcon f idence

FIGURE 3.23: Confidence-based Split algorithm accuracy

Confidence interpolation intuition

Let d be the number of classes in our data set D. For each pixel (x, y) the compo-
sition C(P−1(x, y)) is returning a tuple of probabilities (p1, . . . , pd). Let f1, . . . , fd :
[0, 1]2 → [0, 1], such that C(P−1(x, y)) = ( f1(x, y), . . . , fd(x, y)). Algorithm 1 can
then be easily re-written so that instead of the usage of C(P−1(·)) we use the func-
tions f1, . . . , fd. Namely, for each pixel (x, y) the label of that pixel is determined by
arg maxi∈1,d fi(x, y) and the confidence is maxi∈1,d fi(x, y).

If we would have a fast and cheap way to infer the functions f1, . . . , fd and the
cost of the call to all these functions would be lower than the call to C(P−1(·)) we
can speed up the algorithm 1.

We can infer the functions f1, . . . , fd by taking a set of samples and applying an
interpolation method (e.g. bilinear interpolation). Let B2 be the number of samples
that we are taking in order to approximate the functions. For each such sample, we
need to compute the actual probability values using the classifier and the inverse
projection. In our implementation, we are taking these samples as follows: given
the desired resolution W × H of the decision boundary map image the user wants
to generate, split the image into B2 blocks, then take the center of each block as
a sample. The complexity of getting the samples and generating the probabilities
values is O(B2C) where C is the cost of the operation C(P−1(·)).

Once we have the B2 samples, we can perform a local interpolation (e.g. bilinear
interpolation, see figure 3.24) to compute the probabilities values for each pixel in
the DBM image we want to generate. Our implementation allows three interpolation
methods: nearest neighbor, bilinear, and bicubic. All these methods are doing local
interpolation, which means that for a pixel (x, y) we are computing each probability
vector (p1, . . . , pd) based on the neighbors of that pixel. The number of neighbors
we use is constant and the number of operations we are performing is also constant.
Thus, finding fi(x, y), i ∈ 1, d has the complexity O(1). The complexity of computing
all the probability vectors for all the pixels of an image of size n × n is, therefore,
O(n2d).
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(A) Interpolation samples

(B) f1

(C) f2

(D) f3

(E) f4

FIGURE 3.24: Confidence interpolation intuition for generating a
DBM with 4 classes using bilinear interpolation

Confidence interpolation algorithm

Algorithm 9 formalizes the intuition presented previously. It starts by generating
B2 samples which are central pixels of B2 blocks. For each pixel (x, y) and each
class c the algorithm uses the interpolation to find fc(x, y). Then for each pixel,
the algorithm assigns the label and the confidence value based on the values of
fi(x, y), ∀i ∈ 1, d.

Algorithm 9 DBM Confidence-interpolation
Input: P−1 : [0, 1]2 → [0, 1]n, C : [0, 1]n → [0, 1]d, n (int), B (int), interpolation_method (string)
Output: dbm ∈ Mn,n(N)
con f map ∈ Mn,n([0, 1])

1: num_classes← number of classes in the data set D
2: dbm← On,n
3: probabilities_map← []
4: con f _map← On,n
5: img_con f idences← On,n,num_classes
6: blocks← GENERATE_INITIAL_BLOCKS(n, B)
7: for block in blocks do
8: x, y, w, h← block
9: probabilities← C(P−1(x/n, y/n))

10: probabilities_map← probabilities_map + [(x, y, probabilities)]
11: end for
12: for k← 0 to num_classes do
13: map← []
14: for item in probabilities_map do
15: (x, y, probabilities)← item
16: map← map + [(x, y, probabilities[k])]
17: end for
18: img_con f idences[:, :, k]← INTERPOLATE(map, n, interpolation_method)
19: end for
20: for i← 0 to W do
21: for j← 0 to H do
22: dbm[i, j]← arg max(img_con f idences[i, j])
23: con f map[i, j]← max(img_con f idences[i, j])
24: end for
25: end for
26: return dbm, con f map
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Confidence interpolation heuristic complexity analysis

Let B represent the initial resolution we are considering in order to get the points
that decide the interpolation. We need to decode all these points (i.e. use the clas-
sifier and the inverse projection to get the probability vectors), which means we
need to perform B2C operations. Then for each of n2 pixels, we need to calculate
the probability of each of the d classes. Thus, the complexity of the algorithm 9 is
O(B2C + n2d).

Confidence interpolation vs Vanilla DBM

In this paragraph, we compare the Confidence Interpolation heuristic in terms of
run times with the Dummy DBM (algorithm 1). Furthermore, we are analyzing the
accuracy of the algorithm 9. The complete global comparison between all the DBM
generation algorithms is presented in section 3.4.4.

Figure 3.25 presents the label errors when the labels are assigned using algorithm
9 using different interpolation methods and the initial blocks resolution of B = 32
(compare with figures 3.17 and 3.21). The pixels with label errors are marked with
red circles.

(A) Interpolation method: nearest neighbor
ϵlabels: 100 · 3947

2562 = 6.0226%
(B) Interpolation method: bilinear

ϵlabels: 100 · 1413
2562 = 2.1560%

(C) Interpolation method: bicubic
ϵlabels: 100 · 953

2562 = 1.4541%

FIGURE 3.25: Confidence Interpolation label errors.
Data set: MNIST, P : t-SNE, P−1: NNinv

Resolution: 256× 256, Initial blocks resolution: B = 32
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Figure 3.26 shows how the Confidence Interpolation algorithm performs in terms
of run times for different resolutions when compared to the algorithm 1. Observe
that this heuristic is orders of magnitude faster than the Dummy DBM algorithm.

FIGURE 3.26: Confidence Interpolation vs Dummy DBM run-times.
Data set: MNIST, P : t-SNE, P−1: NNinv

Initial blocks resolution: B = 32

The label error rate ϵlabels when using algorithm 9 is shown in figure 3.27a. The
errors in the confidence map NRMSEcon f idence are shown in figure 3.27b. Observe
that when the nearest neighbor interpolation method is used we achieve the worst
labels and confidence values approximations. The most accurate results are achieved
when the Confidence Interpolation algorithm is used in combination with the bicu-
bic interpolation method.

(A) Labels error rate ϵlabels (B) Confidence error rate NRMSEcon f idence

FIGURE 3.27: Confidence Interpolation algorithm accuracy

3.4.4 DBM generation algorithms comparison

In this section, we compare all the heuristics introduced so far for the computation
of the decision boundary maps. We are comparing the methods in terms of run-time
complexity and accuracy. Moreover, we provide a discussion about the trade-offs of
using each algorithm and in which context one algorithm is better than another. For
each experiment and each heuristic, we use the initial number of blocks B = 32.



52 Chapter 3. Solution Design

Run time complexity analysis

Table 3.3 presents the theoretical complexity classes for each algorithm. Figure 3.28
presents a comparison in terms of run-times of all the 3 introduced heuristics and
the algorithm 1 for different values of n.

If we are looking from the perspective of the best-case complexity in table 3.3
the Binary and Confidence-based Split heuristics are clear winners. On the other
hand, in the worst case, these two heuristics might perform even worse than the
Dummy DBM algorithm. In the worst-case scenario time-wise the Confidence Inter-
polation algorithm seems to be the best. In the average case scenario ∃n such that
n(d − 1) > K log( n

B )(C + log n). Therefore, for big enough values of n the Binary
and Confidence-based Split heuristics might perform better than the Confidence in-
terpolation. Notice in figure 3.28 that this is the case for the Binary Split heuristic
that starts to perform better than the Confidence Interpolation for high-resolution
DBM images.

For small values of n, the Dummy DBM algorithm is outperforming in terms
of speed the Binary and Confidence-base Split heuristics. However, notice the ad-
vantages of the heuristics when n increases. From the perspective of run-time com-
plexity in practice when used together with the t-SNE projection and NNinv inverse
projection method the Binary Split and Confidence Interpolation algorithms are the
fastest. However, we can not state that this will be the case for other projection meth-
ods as well, because the performance of our algorithms depends on how the data is
placed geometrically in the 2D space. Therefore, in chapter 4 we perform a broad
series of experiments where we involve all our heuristics in generating DBM when
different projection and inverse projection methods are used.

Algorithm Best case complexity Average case complexity Worst case complexity
Dummy DBM (algorithm 1) O(n2C) O(n2C) O(n2C)

Binary Split (algorithm 4) O(B2C + n2) O(B2C + Kn log( n
B )(C + log(n)) + n2) O(n2 log( n

B )(C + log n))
O(n2C) (when computational budget included)

Confidence-based Split (algorithm 8) O(B2C + n2) O(B2C + Kn log( n
B )(C + log(n)) + n2) O(n2 log( n

B )(C + log n))
O(n2C) (when computational budget included)

Confidence Interpolation (algorithm 9) O(B2C + n2d) O(B2C + n2d) O(B2C + n2d)

TABLE 3.3: DBM heuristics complexity analysis

FIGURE 3.28: DBM heuristics run-times comparison.
Data set: MNIST, P : t-SNE, P−1: NNinv,

Initial blocks resolution: B = 32
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Accuracy analysis

In order to compare how each heuristic performs in terms of accuracy for differ-
ent resolutions we compute the label error rates ϵlabel and the confidence error rates
NRMSEcon f idence for different DBM image resolutions using all the algorithms de-
scribed so far and present the results in figure 3.29.

(A) Labels error rate ϵlabels (B) Confidence error rate NRMSEcon f idence

FIGURE 3.29: DBM algorithms accuracy comparison.
Data set: MNIST, P : t-SNE, P−1: NNinv

Initial blocks resolution: B = 32
Confidence map approximation method: Bilinear for Binary and
Confidence-base split, bicubic for the Confidence Interpolation algo-

rithm

Observe from figure 3.29a that the number of errors in regards to the labels (i.e.
ϵlabels) is bigger when the Confidence Interpolation heuristic is involved when com-
pared to the Binary and Confidence-based Split. These differences can be explained
as follows. Look at one of the green regions from figure 3.30 and imagine the central
pixel of this region. For the high-dimensional counterpart of that central pixel let us
assume that the classifier assigns a 0.51 probability of it having the green label and
0.49 for the red label. For simplicity assume that the classifier assigns all the pixels
in red regions with probability/confidence 1. If we use the Confidence Interpolation
algorithm and construct the functions f1 and f2 that assign the confidence for red
and green labels respectively, then for some of the pixels in the green region we will
have f1 > f2, which will give us label errors, all because of the fact that the central
pixel probability vector of a block and the probability vectors of the central pixels
of the neighboring blocks are directly determining all the labels of the pixels in the
block. Whereas when using the Binary or Confidence Split heuristic, the block will
be divided into sub-blocks and an analysis of the new central pixels of the sub-blocks
will be performed. Thus, the initial central pixel determines just to some extent the
labels of the other pixels in the blocks but not completely. Hence the label errors in
the Binary and Confidence split heuristics are smaller.

Another argumentation is that at the boundaries the classifier is quite uncertain
about which label to assign, and the probability vector (p1, . . . , pd) the classifier gen-
erates will have in the majority of the cases at least two very similar probabilities
(i.e. ∃i, j ∈ {1, d} such that |pi − pj| < ϵ, where ϵ ≥ 0 is a very small number). Even
though the approximation method in the Confidence Interpolation algorithm makes
it possible to approximate the probabilities vectors quite well (see NRMSEcon f idence
in figure 3.29b) even very small approximation errors might turn into label errors.
This type of error will especially appear at the decision boundaries, which can be
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FIGURE 3.30: Explanation of label errors

seen in figure 3.25 as well. On the other hand, the Binary Split and Confidence Split
algorithms do not use any approximations to infer the labels and, thus are more
accurate in generating DBMs with correct labels.

Even though the Confidence Interpolation algorithm gives more label errors, it
also gives more accurate confidence maps (see figure 3.29b) when compared to the
other two heuristics. This is caused by the fact of how the confidence maps are
generated. In the case of the Confidence Interpolation method, approximations of
the probability vectors are used, whereas in the case of Binary or Confidence-based
Split, only the confidence values are used to approximate the confidence map.

Discussions

In this chapter, we used only the t-SNE projection and the NNinv inverse projection
to test our DBM generation algorithms. In all our tests we used the initial block’s
resolution as B = 32. For this setup, we identified that for the Confidence Interpo-
lation algorithm, the best results are achieved when used together with the bicubic
interpolation. The confidence map is best approximated when the bilinear interpo-
lation method is used in the Binary and Confidence-based Split algorithms. For the
current setup seems that the Binary Split algorithm is the best to use if we want a fast
and accurate alternative for the Dummy DBM algorithm. In chapter 4 we provide a
broader set of tests in order to make more accurate and general statements about the
performance and usability of our heuristics.

3.5 Visualization tool overview

The previous sections describe the implementation details of different functionali-
ties of our visualization tool. In this section, we present our visualization tool from a
user perspective and give a guide on how the user can make use of the functionali-
ties of the tool. Figure 3.31 presents a simplified pipeline of user interaction with the
visualization tool. The user initially interacts with a configuration window where
he/she uploads the data set and the classifier, chooses the technique for DBM gener-
ation, and generates the DBM. Our visualization tool does not perform the automatic
labeling of a semi-labeled data set. The user can choose the preferred automatic
pseudo-labeling method (e.g. OPF, LP, DeepFA, etc.) and then use the visualization
tool to correct wrong labels by re-labeling data points. Therefore, the visualization
tool takes a completely labeled data set. After the DBM image is generated the user
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can interact with a visualization window where he/she can re-label data points and
re-train the classifier iteratively until the results match the user’s expectations. At
each step, after the classifier is retrained a copy of the classifier along with other rel-
evant metadata is stored in a temporary folder that the user can access after the tool
is closed.

FIGURE 3.31: Visualization tool usage workflow

3.5.1 Configuration window

Initially, when the user starts the visualization tool, a configuration window pops
up as the one shown in figure 3.32. In this window, the user has to perform the
following steps to generate a Decision Boundary Map (see figure 3.31, configuration
steps):

• Step 1: Choose/Upload a data set

• Step 2: Upload a classifier

• Step 3: Choose the technique/algorithm that will generate the DBM.

• Step 4: Press the "Show the Decision Boundary Mapping" button in order to gen-
erate the DBM.

Step 1: Choosing/Uploading a data set to the visualization tool The upload of a
data set can be performed in two ways. The user might opt for one of 3 data sets that
are supported by default, namely: MNIST, Fashion MNIST, or CIFAR10. In this case,
the uploading is done by just clicking the corresponding button as shown in figure
A.3a (the buttons are surrounded by red rectangles). In case the data set is not one
of these pre-determined data sets, the data set can be uploaded from a local folder
by selecting the files with the data set. In this case, we ask the user to provide a file
or folder with a training subset and a file or folder with the testing subset. Once
the respective file/folder is selected the user can click the corresponding button to
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FIGURE 3.32: Configuration window of the visualization tool

upload either of the subsets as shown in figure A.3b (the related parts of the UI
are surrounded by red rectangles). After the data set was successfully uploaded
metadata about the shape of the training and testing sets will appear as shown in
figure A.3c (the related UI components are surrounded by a green rectangle). In case
the data set can not be uploaded an error message will be shown in the Logger part
of the UI.

Step 2: Uploading a classifier to the visualization tool The uploading of the clas-
sifier to the visualization tool can be performed as shown in figure A.1 (the relevant
UI parts are surrounded by red rectangles). The user needs to select the folder in
which the classifier is stored, the classifier can be stored in a file with a ".h5" ex-
tension or a folder. After selecting the necessary file/folder the user can click on
the "Upload classifier" button. If both the data set and the classifier were uploaded
the user will see the "Show the Decision Boundary Mapping" button as shown in
figure A.1 (surrounded by a green rectangle).

Step 3: Choosing the Decision boundary mapping generation technique In this
step, the user can opt for one of the two techniques, to generate the decision bound-
ary map. The first technique called SDBM has two options, namely Autoencoder and
SSNP. By choosing one of these two options, both the direct and inverse projections
are learned by the visualization tool. The user has the option to provide the direct
projection (nD to 2D) by choosing the NNinv option as shown in figure A.4a. If this
option is selected a drop-down menu with 4 options will appear as shown in fig-
ure A.4b asking for a projection method to be chosen. The user can choose one of
the predefined projection methods such as: t-SNE, UMAP or PCA, or can provide
a custom projection by choosing the option CUSTOM in this menu. If the custom
option is chosen the user will see a UI element that will allow him to upload the 2D
projections of the training and testing subsets of the data set as shown in figure A.4c.
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FIGURE 3.33: DBM visualization window

Step 4: Generating the Decision Boundary Mapping After the user successfully
uploads the data set of interest along with the classifier he/she wants to improve
upon and chooses the DBM technique, the Decision Boundary Map can be gener-
ated. If the combination of data set, classifier, and DBM technique is used for the
first time, the computation of the DBM can take some time because the visualization
tool is learning the direct and inverse projections first. On the second run with the
same configuration the computation of the DBM will be faster because the tool stores
the projections in a temporary folder, that the user can further use. After the DBM is
successfully computed the DBM image will be displayed in the configuration win-
dow as shown in figure A.2 (surrounded by a green rectangle). The user can click on
that image, in this case, a new window will pop up as the one shown in figure 3.33.

3.5.2 Data set visualization and re-labeling window

In the previous section, we presented how the user can upload the data set and the
initial classifier in order to generate the DBM. In the last step, we showed how by
clicking on the image generated in the configuration window a DBM visualization
window is created (see figure 3.33). In this section, we present the components of
this window as well as a short usage guide regarding the functionalities it provides.

In the left part of the window, the user can see a plot with the 2D projection of the
data set, the points from the training set are presented as white pixels and the data
points from the testing set are colored in black. All of the other pixels are initially
colored with respect to the label the classifier assigns to the nD representation of
that pixel (given by the inverse projection). The opacity (i.e. alpha channel) of each
pixel encodes the classifier’s confidence regarding the prediction for that pixel. The
smaller the opacity the smaller the confidence.

When a pixel is hovered a tooltip image with the nD representation of the pixel
is shown. If the pixel is a 2D representation of a data point from the data set then
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FIGURE 3.34: DBM visualization window, tooltip image, and infor-
mation about the data point on hover

additional information such as the assigned label is shown as presented in figure
3.34.

The classifier’s accuracy is plotted in the right top corner. Below this plot the tool
shows the accuracy value and the loss of the current classifier.

Initially, the projection errors and the inverse projection errors are not computed,
the user can compute them by clicking on the respective buttons. For the projection
errors, the user can choose one of two options, namely Compute Projection Errors
(interpolation) (which will compute the projection errors of the points in the data set
and interpolate on the rest of the points using algorithm 2) or Compute Projection
Errors (inverse projection) (which will compute the projection errors by the use of
the inverse projection following the algorithm 3). The direct projection and inverse
projection errors are encoded in the opacity of the pixel, the greater the error the less
the opacity of that pixel. Regions with low opacity mean regions with high error
values.

On the right side of the visualization window, below the accuracy plot, there is a
list of check-boxes that the user can use to visualize such things as confidence, direct
and inverse projection errors, and classifier predictions (see figure A.5 for examples).
The user can mix these check-boxes to get more insights (e.g. figure A.6). Since the
confidence values, along with the direct and inverse projection errors values are
encoded in the opacity of the pixel we are computing the opacity of a pixel p as
c · (1− ϵP ) · (1− ϵP−1), (where c is the confidence value, and ϵP , ϵP−1 are the direct
and inverse projection error for p respectively). The more confident the classifier is
in the label and the less the projection and inverse projection errors are, the bigger
the pixel’s opacity.

Re-labelling and re-training classifier
In order to retrain the classifier the user needs to perform a series of actions as fol-
lows (see figure 3.31, re-labeling and re-training steps):

• Step 1: Re-label the points of interest

• Step 2 (Optional): Change the DBM generation strategy
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• Step 3: Apply the changes

• Step 4: Analyze the results and return to Step 1 if necessary or undo the
changes

Step 1: Relabel the points of interest The user has the option to select a chunk of
data points by clicking with the mouse and releasing to draw a circle as shown in
figure 3.35a. If the user wants to undo the drawing, this can be done by pressing
the Esc key from the keyboard. After the circle is drawn, the user can press on
the keyboard any digit key to assign a new label to all the points within the circle.
By pressing enter the new labels are fixed, all the data points within the circle are
marked with triangles and the circle is removed (see figure 3.35b). This process can
be repeated until the user is satisfied with all the changes.

(A) Select a chunk of points by drawing a cir-
cle with the mouse

(B) Assigning the new labels to the selected
points

FIGURE 3.35: Re-labeling the data points using the visualization tool

Step 2: Choose the DBM generation strategy Once the user has changed the la-
bels of the data points he/she thinks will improve the classifier performance, one
of 4 algorithms can be used to re-compute the DBM once the classifier is re-trained
(see figure 3.36). The options are: none (algorithm 1), binary_split (algorithm 4), con-
fidence_split (algorithm 8) and confidence_interpolation (algorithm 9).

Step 3: Apply the changes The classifier can be re-trained to consider the new re-
assigned labels by clicking on the Apply changes button. Once the user clicks on this
button a copy of the current classifier is stored as well as all the changes in labels
made by the user, after which the classifier is re-trained from scratch for a number
of epochs, and the DBM is re-computed using the strategy indicated in the previous
step. The Logger component shows the progress of the process.

Step 4: Analyze the results Once the new DBM with the corresponding changes
from step 1 was computed the user can analyze how the classifier performs. If the
2D plot showing the DBM does not adhere to what the user thinks about the data set
or the user is not satisfied with the new classifier’s performance, he/she can undo
the last changes by clicking on the Undo changes button. In this case, the previous



60 Chapter 3. Solution Design

FIGURE 3.36: Choosing the DBM generation algorithm in the visual-
ization tool

classifier will be restored and the DBM will be generated using that classifier. In case
the user is satisfied with the results, he/she can repeat the process from steps 1 to
4 to further improve the classifier, or stop the visualization tool. The classifier from
the last iteration is stored in a folder from which the user can retrieve and further
use it in other pipelines.

3.6 Conclusions

In this chapter, we presented the implementation details of our visualization tool.
We started with section 3.1 by describing how we can find the inverse projection
when a direct projection is given, and how to learn both the direct and inverse pro-
jection based on the data set. In the same section, we presented an algorithm that can
be used to compute the DBM by means of the inverse projection. Section 3.1 gave
the implementation details necessary for the visualization tool to fulfill the require-
ments: R1 and R2. In section 3.2 we discussed how we can solve the requirements
R4 and R5. We showed metrics for the errors of the direct and inverse projections
that are based on the neighbors in the 2D and the nD space. Section 3.3 described
how the visualization tool can fulfill requirements R3.1 and R3.2. After re-labeling
data points and re-training the classifier we need to re-compute the DBM each time.
In section 3.4 we presented three new heuristics that aim to speed up the process of
computing the DBM. The heuristics introduced in this section are compared against
each other on only one data set and one projection method. We could not identify
which heuristic is the best in the general case. In our next chapter, we present a series
of broad experiments in order to better compare and understand which heuristic is
the best in which context. In other words, we want to answer the following ques-
tion: Q1 "How fast and accurate are our DBM computation heuristics and can they
be used as alternatives to the Dummy DBM algorithm?". Section 3.5 presented an
overview of the visualization tool we have built. Moreover, a step-by-step usage
guide was presented in the same section.
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The proposed solution design fulfills all the problem requirements and more.
However, we are interested in how well these requirements are fulfilled and more
important if the proposed product is fulfilling the core goal of helping a user im-
prove the performance of a classifier. Therefore, in our next chapter, we answer the
following question: Q2 "How useful is the visualization tool in improving a classifier
in the context of semi-labeled data sets?".
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Chapter 4

Experiments And Results

The main goal of this chapter is to answer two main questions defined in the previ-
ous chapter:

• Q1 How fast and accurate are our DBM computation heuristics and can they
be used as an alternative to the Dummy DBM algorithm?

• Q2 How useful is our visualization tool in improving a classifier in the context
of semi-labeled data sets?

In order to answer these questions in this chapter we present a series of experi-
ments and discussions based on the results of these experiments. Details about the
environmental setup for our experiments can be found in tables B.1 and B.2.

Section 4.1 presents the data sets used for our experiments. Sections 4.2 and 4.3
have two subsections each, namely: Methodology and Experiments, Results and
Discussions. In the methodology and experiments section, we describe the list of
experiments we perform as well as the methodology we follow where we describe a
list of criteria in order to make the experiments reproducible.

In section 4.2 we are performing a series of experiments in which we compare
several configurations of our heuristic methods for DBM computation. The scope
of these experiments is to give us insights into which method is the best in terms of
speed and accuracy and answer question Q1.

In section 4.3 we aim to see both quantitatively and qualitatively how useful our
visualization tool is in aiding users to improve classifiers’ performance. This section
aims to answer the question Q2.

The chapter ends with section 4.4 in which we provide conclusions based on our
experimental results about the value our visualization tool adds to the process of
training a classifier in the context of semi-labeled data sets. This section reiterates
answers to questions Q1 and Q2.

4.1 Data sets used in the experiments

In our experiments, we are using two data sets, namely MNIST [10] and Protozoan
cysts [19]. In this section, we present a short overview of the properties of these data
sets.

The MNIST dataset consists of a collection of 28x28 pixel (784 pixels in total)
grayscale images (each pixel value ranges from 0 to 255) of handwritten digits (0
through 9), along with their corresponding labels, indicating which digit each image
represents. This data set contains 70,000 images of which 60,000 are usually used for
training and 10,000 for testing. In our experiments, we are using a sub-sample of
5000 images from which 70% are used for training (i.e. 3,500 samples) and 30% are
used for testing (i.e. 1,500 samples). We are taking the first 3,500 data points from
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the 60,000 provided in the training set and the first 1,500 from the 10,000 provided
in the testing set. Both the training and testing subsets contain a balanced amount
of samples from each class. We use a limited amount of samples of the MNIST data
set (i.e. 5000 samples) due to computational efficiency reasons (i.e. faster pseudo-
labeling and faster run times when re-training a classifier).

The Protozoan cysts [19] data set consists of a collection of 200x200 pixel (40,000
pixels in total) color images (each pixel is represented by a tuple of 3 values, each
value in the range from 0 to 255) representing microscopical images of human in-
testinal parasites. The data set consists of 3,852 images from which 2,696 are the
training set and 1,156 are the testing set. The classes in this data set are as follows:

0. E.coli (train: 590 images, test: 216 images)

1. E.histolytica (train: 12 images, test: 23 images)

2. E.nana (train: 440 images, test: 217 images)

3. Giardia (train: 486 images, test: 192 images)

4. I.butschlii (train: 1074 images, test: 451 images)

5. B.hominis (train: 94 images, test: 57 images)

The split into training and testing subsets for the Protozoan cysts data set was
done at random, and the indexes of the data samples that are in each of these subsets
are stored in a git repository 1.

Table 4.1 presents an overview of the properties of the data sets we are using.

Data set Number of classes Data point shape Train set samples Test set samples
MNIST 10 28x28x1 3500 1500

Protozoan cysts 6 200x200x3 2696 1156

TABLE 4.1: Overview of the data sets used in the experiments

4.2 DBM optimization heuristic algorithms

In this section, we want to answer the question Q1 of how scalable is our visualiza-
tion tool. For this purpose, we analyze the following criteria:

• What is the gain in speed when using the proposed heuristics as opposed to
when using the Dummy DBM algorithm?

• How accurate are our heuristics compared to the Dummy DBM algorithm in
terms of mislabelling and errors in confidence values?

Moreover, in this section, we are going to determine what hyper-parameters are the
best for our heuristics.

This section is structured as follows, in section 4.2.1 we present the series of ex-
periments we perform in order to test the above-described criteria along with details
about the experimental setup. In the following section 4.2.2, we present the results
of our experiments and perform a critical analysis of our heuristics. Section 4.2.3
lists our conclusions about how good in terms of scalability each heuristic is.

1https://github.com/cristi2019255/ParasitesDatasetIndexes
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4.2.1 Experiments and Methodology

In this section, we describe the experiments we perform to test the speed and ac-
curacy of each DBM image generation heuristic, along with the methodology we
follow.

In order to test the accuracy of our heuristic algorithms we use the same metrics
ϵlabels and NRMSEcon f idence introduced in section 3.4.1 by equations 3.11 and 3.12.

For our experiments, we use the MNIST data set as described in section 4.1 (a). In
our experiments we are going generate n×n size images, were n ∈ {100, 150, 200, . . . , 1950, 2000}.
These values for n were chosen from practical considerations because in practice the
probability that the user would like to generate DBM images with a resolution less
than 100× 100 or greater than 2000× 2000 is very low. The DBM images we gener-
ate in our experiments are representations of a classifier C decision boundaries. The
architecture of the classifier C is described in figure 4.1. For our experiments in this
section, we train C on the completely labeled MNIST data set as shown in figure 4.2.

Our heuristics have two hyper-parameters:

• B - The initial number of blocks

• con f idence_interpolation - The confidence interpolation method

In our first experiment, we want to determine what is the best value for the pa-
rameter B. The higher the value of this parameter the lower the amount of mis-
labeled pixels ϵlabels. On the other hand, the higher the value of B the higher the
chance that the heuristic algorithms will halt slower. Consider B1 < B2, if we start
our heuristic algorithms with B1 amount of blocks instead of B2 initially we will
have to spend less computational power to get all the probability vectors of the cen-
tral pixels of the blocks. However, it might happen that during the process we have
to split a lot of blocks and for each new block we have to use the classifier in order to
get the label values of the central pixels. Whereas if we start with a greater amount of
initial blocks B2 initially we have to perform more computation to decode the central
pixels of these blocks, but depending on how the classifier boundaries are geometri-
cally placed in 2D we might need fewer block splits in the long term. Thus, the run
time taken by the same heuristic for B1 might be bigger than the run time taken for
B2. We want to find for which values of B the run times and ϵlabels are minimal. Due
to the above-described values of n and to the constraint 1 < B < n the values of B
we are going to test are {8, 16, 24, ..., 88, 96}.

FIGURE 4.1: Classifier C architecture used in the experiments
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FIGURE 4.2: Experimental pipeline for DBM optimization heuristic
algorithms, (a) Experiment preparation, (b) Initial number of blocks B
hyperparameter tuning, (c) con f idence_interpolation hyperparameter

tunning, (d) Results analysis

In order to identify which values of B are the best we perform the following ex-
periment. For all the projection methods mentioned so far, we generate a 2000× 2000
DBM image using Binary Split and Confidence Interpolation heuristics for different
values of B, we track the run times and compute the ϵlabels as shown in figure 4.2
(b). Based on this experiment, we infer for which values of B our heuristics achieve
a trade-off between run times and the amount of label errors. In this experiment,
we fix the con f idence_interpolation parameter to "cubic" and generate the DBM for
several projection and inverse projection methods as described in figure 4.2 (b).

For our next series of experiments, we generate DBM images using all the de-
scribed heuristics for each projection method and for each value of n ∈ {100, 150, . . . , 1950, 2000}.
For each heuristic, we use the best value of B found in the previous experiment. We
track the run times, the number of label errors ϵlabels, and the NRMSEcon f idence metric
as shown in figure 4.2 (c). In this experiment, we want to test which heuristic is the
best in terms of run times and accuracy and find what is the best value of the hyper-
parameter con f idence_interpolation ∈ {nearest, linear, cubic}. In the Binary Split
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and Confidence Split algorithms, this hyper-parameter is used to generate the confi-
dence map at the end of the algorithm, which means the only things that would dif-
fer in the results of these algorithms for different values of con f idence_interpolation
would be the results of NRMSEcon f idence metric and negligible differences in the run-
times. On the other hand, for the Confidence Interpolation algorithm, this parame-
ter will directly influence the run time and the values of ϵlabels and NRMSEcon f idence
metrics.

Our end goal is to identify which heuristic is the best from the presented ones
and identify if is possible and under which conditions we can use these optimization
techniques as replacements for the Dummy DBM algorithm in practice. Therefore
we compare the run times and performance of each heuristic when used together
with the best identified values of hyper-parameters as shown in figure 4.2 (d).

4.2.2 Results and Discussions

Initial number of blocks B hyperparameter tuning
Table 4.2 presents the results of the B hyper-parameter tuning experiments. Observe
how the ϵlabels metric decreases drastically for values of B under 32, regardless of
the heuristic or the projection method. Notice that when the Binary Split heuristic is
used in combination with the projections such as Autoencoder or SSNP for B = 16,
ϵlabels is greater when compared to B = 8. This behavior might be caused by the fact
that for these values of B the central pixel labels of certain neighboring blocks are
the same and the algorithm does not split these blocks into smaller blocks, however,
these blocks contain a portion of one or more decision boundaries in them, thus the
algorithm is making mistakes. However, observe that the overall trend is that the
bigger the value of B the less the number of errors, the decrease being considerable
for B < 32. Moreover, the overall trend is not dependent on the projection or the
heuristic method in use.

Algorithm Run times ϵlabels

Binary split

Confidence
interpola-

tion

TABLE 4.2: Initial number of blocks B hyper-parameter tuning.
Data set: MNIST, con f idence_interpolation = cubic
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In terms of run times, there is no clear winner, in the sense that there is no value
of B for which each heuristic in combination with each projection method achieves
optimal run times. For instance, when using the Autoencoder projection the best
run times are achieved when B ∈ {40, 48} for the Binary Split and B = 24 for Confi-
dence Interpolation. When using a different projection method different values are
optimal, for instance, when PCA is used in combination with Binary Split best value
is B = 64, and when in combination with the Confidence Interpolation best value is
B = 40. Notice however that if we choose B = 32 we can achieve run-times near
optimal for all the heuristic and projection methods combinations.

Given the previous argumentation about the ϵlabels trend for values of B < 32, we
can conclude that B = 32 is the best value from the ones tested in our experiments.
Therefore, in our next experiments as the methodology describes we are using B =
32. We are not claiming that this value is going to bring optimal results in terms of
performance for all the values of n and for all projection methods. However, this
value will bring results near to optimal, and by choosing this value we are tending
to achieve a balance in terms of speed and accuracy.

Confidence interpolation hyperparamter tuning
Tables 4.3, 4.4, 4.5, 4.6 and 4.7 present the run times and the accuracy metrics for our
heuristics when used with different values for the con f idence_interpolation hyper-
parameter. Observe that regardless of the projection method when the Binary and
Confidence Split algorithms are used in combination with linear interpolation for the
confidence maps (i.e. con f idence_interpolation = linear) we obtained the smallest
errors in the NRMSEcon f idence metric. When the cubic interpolation method is used
in these algorithms we have the worst approximation of the confidence image. This
is caused by the differences in how the cubic and linear interpolation approximate
a signal. Consider the situation where our algorithm has generated two neighbor-
ing blocks (from left to right) b1, b2 where the central pixels of these blocks have
confidence values near 1. Suppose that b1 has a block on the left b0 and b2 has a
neighboring block at the right b3, if the central pixels of the blocks b0, b3 have val-
ues near 0, then by using the cubic interpolation all the pixels between the central
pixels of b1 and b2 will be assigned confidence values bigger than 1. This is not
the case if we use linear or nearest interpolation. Since the ground truth confidence
values are in the range [0, 1] the cubic interpolation approximation shows worse re-
sults if we have such blocks as described previously since the term ( fi − f̂i)

2 in the
NRMSEcon f idence metric would be higher as opposed to when using linear interpo-
lation. Therefore, for the Binary and Confidence Split algorithms, the best value of
the con f idence_interpolation hyper-parameter is linear. On the other hand, when
using the Confidence Interpolation algorithm, the best results are achieved for the
cubic interpolation, followed by linear interpolation and then the nearest neighbor
interpolation. This is caused by the fact that the cubic interpolation approximates
the probability functions f1, . . . , fd the best. Recall that the confidence interpolation
algorithm approximates a function for each class and then assigns the label and the
confidence value of each pixel by looking at all the probability functions together.
This difference in how this heuristic assigns the confidence values is why the cubic
interpolation is better than linear interpolation in this case when opposed to Binary
or Confidence Split where the confidence image is generated by approximating a
signal based on only one value per central pixels. In other words, the Confidence In-
terpolation approximates d signals (where d is the number of classes of the data set)
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and then constructs the confidence signal by taking the max value of these approxi-
mated signals for each pixel, whereas the other heuristics first get the max confidence
value for each pixel and then using these values approximate the confidence image.

Run-time-wise, the Confidence interpolation algorithm is the fastest when used
with the value of the con f idence_interpolation hyper-parameter set to linear. The
worst run times for this heuristic are achieved for the nearest neighbor interpolation
method. This is caused due to the fact that in order to use the nearest interpolation
method the values of the central pixels of the blocks are not enough. With this type
of interpolation, the algorithm needs to generate some additional blocks outside of
the DBM image such that the confidence values for the pixels at the edges of the
image can be approximated as well. This is causing the number of initial blocks to
be bigger and therefore the longer run times. The fact that when used with cubic
interpolation the algorithm takes slightly longer when compared to linear interpo-
lation is explained by the fact that the cubic approximation requires a slightly more
number of operations.

Algorithm Run times ϵlabels NRMSEcon f idence

Binary split
(algorithm

4)

Confidence
split

(algorithm
8)

Confidence
interpola-

tion
(algorithm

9)

TABLE 4.3: con f idence_interpolation hyper-parameter tuning.
Data set: MNIST, B = 32, P : t-SNE, P−1: NNinv
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Algorithm Run times ϵlabels NRMSEcon f idence

Binary split
(algorithm

4)

Confidence
split

(algorithm
8)

Confidence
interpola-

tion
(algorithm

9)

TABLE 4.4: con f idence_interpolation hyper-parameter tuning.
Data set: MNIST, B = 32, P : UMAP, P−1: NNinv

Algorithm Run times ϵlabels NRMSEcon f idence

Binary split
(algorithm

4)

Confidence
split

(algorithm
8)

Confidence
interpola-

tion
(algorithm

9)

TABLE 4.5: con f idence_interpolation hyper-parameter tuning
Data set: MNIST, B = 32, P : PCA, P−1: NNinv
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Algorithm Run times ϵlabels NRMSEcon f idence

Binary split
(algorithm

4)

Confidence
split

(algorithm
8)

Confidence
interpola-

tion
(algorithm

9)

TABLE 4.6: con f idence_interpolation hyper-parameter tuning.
Data set: MNIST, B = 32, P ,P−1: Autoencoder

Algorithm Run times ϵlabels NRMSEcon f idence

Binary split
(algorithm

4)

Confidence
split

(algorithm
8)

Confidence
interpola-

tion
(algorithm

9)

TABLE 4.7: con f idence_interpolation hyper-parameter tuning.
Data set: MNIST, B = 32, P ,P−1: SSNP

Heuristics performance analysis and comparison
Table 4.8 presents the performance of our heuristics when used with the best-identified
hyper-parameters: B = 32, con f idence_interpolation = linear for Binary and Confi-
dence Split; B = 32, con f idence_interpolation = cubic for Confidence Interpolation.

Observe that in terms of run-time, the Binary Split, and Confidence Interpolation
are performing almost the same. However, the Binary Split shows a quasilinear time
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complexity in terms of n, whereas the Confidence Interpolation algorithm shows a
quadratic time complexity trend. The Confidence-based Split algorithm is show-
ing worse results in terms of run times when compared to both Binary Split and
Confidence Interpolation. However, this algorithm also shows a quasilinear time
complexity trend. Therefore, for big enough values of n, the Confidence-based Split
algorithm might outperform the Confidence Interpolation algorithm. Notice that for
n > 1800 the Binary split algorithm is outperforming the Confidence Interpolation
heuristic. All the algorithms outperform the Dummy DBM algorithm run times for n
starting at 650. Confidence Interpolation is faster than the Dummy DBM algorithm
for any value of n. The Binary Split algorithm starts to outperform the Dummy
DBM algorithm for n bigger than 400. Recall that with the Dummy DBM algorithm,
we are using the classifier n2 times to compute the DBM pixel-wise. In our heuris-
tics we are using the classifier less than n2 times, however, we are doing additional
computations, such as updating a priority queue for instance. Moreover, to make
the classifier predictions we are using the Keras library, which is very optimized for
batch processing. This is why our algorithms really start to shine only at big enough
values of n (i.e. n > 650). The higher the value of n the bigger the gains in terms of
speed we are getting. Notice that this trend is occurring regardless of the projection
technique in use.

In terms of accuracy if we are analyzing the ϵlabels column from table 4.8 we
observe that the Confidence Interpolation algorithm is returning the worst results
when compared to the other algorithms. Notice however that the error rate is not
bigger than 2% for any projection technique and any heuristic. Observe that the
highest error rates for the Confidence Interpolation algorithm are for such projec-
tion techniques as UMAP and t-SNE. This is caused by the fact that these projection
methods create more small clusters of similar points when compared to SSNP for
instance, which tends to create one cluster per class. Since in the Confidence Inter-
polation algorithm we are looking at the 2D coordinates and interpolating the clas-
sifier confidence functions, our approximation of the confidence functions depends
on how well the projection method preserves the global structure of our data rather
than the local structure. In other words, if we start with the same amount of the
initial blocks, the worse the global structure is preserved by the projection technique
the worse the approximations for the confidence functions would be, due to a more
complex signal to approximate, leading to more errors in the generated labels.

Observe that both Binary and Confidence Split are performing better in the sense
of fewer label errors when compared to the Confidence Interpolation algorithm. This
is caused by the fact that these algorithms are locally based (i.e. each block is being
split based on the neighboring blocks), whereas in the Confidence Interpolation al-
gorithm, we are generating the DBM based on a global (per block) approximation
of the confidence functions. In other words, in the Confidence Interpolation algo-
rithm, a finite set of pixels at certain geometrical positions determines the labels.
The relative error rate for Binary and Confidence Split algorithms is no bigger than
0.3%.

If we analyze the confidence maps generated by the algorithms, all of them show
values for the NRMSEcon f idence less than 0.015, which means that the confidence
maps are quite good approximations of the ground truth ones. The Confidence In-
terpolation algorithm is showing better results than the other algorithms with the
NRMSEcon f idence not bigger than 0.002. The Binary and Confidence Split algorithms
are showing almost the same performance when compared to each other. This simi-
larity might be caused by the fact that even though the Binary and Confidence Split
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might converge to different partitions of the image into blocks, the confidence val-
ues of the central pixels of these blocks lead to almost the same approximation of the
confidence map.

Projection
and inverse
projection

method

Run times ϵlabels NRMSEcon f idence

t-SNE,
NNinv

UMAP,
NNinv

PCA,
NNinv

Autoencoder

SSNP

TABLE 4.8: DBM algorithms comparison.
Data set: MNIST.

Hyperparameters: B = 32, con f idence_interpolation = cubic for Con-
fidence Interpolation algorithm, con f idence_interpolation = linear

for Binary and Confidence Split algorithms

The discrepancy in the results given by Confidence Interpolation and the other
algorithms is again explained by the different ways of generating the confidence
map. In the Confidence Interpolation case we are computing all the confidence val-
ues for each pixel (by approximating all the class confidence functions of the clas-
sifier), we construct the confidence map by assigning the max confidence value for
each pixel. Whereas in the Binary and Confidence Split, we save only the max confi-
dence value for each central pixel of the blocks and then we are interpolating based
on these values in order to obtain the confidence map. Thus in this case we have
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a more poor approximation technique. Therefore the NRMSEcon f idence is slightly
higher. A way to achieve smaller error rates for the Split heuristics is to use the
same approach as in the Confidence Interpolation algorithm and store all the prob-
ability vectors for block representative pixels, interpolate the confidence functions
instead of the confidence map directly, and construct the confidence map based on
these functions. However, this approach would increase the complexity of these al-
gorithms. If we were to use such an approach we would trade from the speed of the
algorithm(s) in order to gain a slightly better confidence map. In practice, the user
will not observe the differences in the confidence map but will observe differences
in speed. Therefore, speed is a more important factor than a small increase in the
accuracy of the confidence map.

4.2.3 Conclusions

Answer to question Q1: The proposed heuristics show a considerable gain in speed
for generating highly accurate DBM images. The Binary Split method is a simple
and comprehensible heuristic that can serve as the best alternative for the Dummy
DBM algorithm in practice for the fast generation of accurate DBM images.

In this section, we experimentally analyzed how good the proposed DBM gen-
eration heuristics are in terms of performance. A set of hyperparameter tuning ex-
periments was carried out in order to reveal the optimal hyperparameter values for
our heuristics. We found that Binary and Confidence Split heuristics yield the most
accurate approximations of the confidence map when used together with the linear
interpolation. The Confidence Interpolation algorithm gives the best results when
the cubic interpolation is used. We presented both theoretical arguments and ex-
perimental results that support the choice of B = 32 as the initial number of blocks
hyper-parameter.

In terms of speed, we proved that all of our algorithms outperform the Dummy
DBM algorithm. The bigger the resolution of the DBM image we want to gener-
ate the bigger the difference in run-times between our heuristics and the Dummy
DBM algorithm. For instance, when the t-SNE projection method is used to gener-
ate a 2000× 2000 DBM image the Dummy DBM algorithm takes 285 seconds, the
Confidence-based Split takes 100 seconds, the Confidence Interpolation algorithm
takes 30 seconds and the Binary Split only 22 seconds. This trend is persistent re-
gardless of the projection method in use.

All our heuristics were able to generate quite accurate DBM with at most 1.8% of
mislabelled pixels and NRMSEcon f idence no greater than 0.0015.

Based on the results presented in this section we can conclude that the Binary
Split heuristic is the most scalable algorithm when compared to the other 2 options.
This algorithm should be used in practice as an alternative to the Dummy DBM for
fast DBM image generation. Not only does this algorithm yield DBM images that
show the lowest error rates in the number of labels and very good approximations
for the confidence map, but also it shows a quasilinear run time complexity. More-
over, further optimizations such as splitting blocks in parallel are possible and can
be incorporated into the proposed algorithm to achieve even more gains in speed.

4.3 Visualization tool evaluation

This section aims to answer question Q2. Based on this question we define the goals
of our experiments for this section as follows:
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• Goal 1 Quantitatively assess the effectiveness of our visualization tool in en-
hancing classifier performance in comparison to relying solely on an automatic
labeling algorithm. Additionally, identify the most beneficial projection meth-
ods within the context of using the tool.

• Goal 2 Evaluate qualitatively the tool’s impact on classifier performance in
scenarios where users have varying levels of knowledge about the data, and
assess the utility of direct and inverse projection error visualizations in data
points labeling and enhancement of classifier performance.

This section is structured as follows: section 4.3.1 outlines the methodology and
the experiment structure adopted in order to test the above-presented goals; section
4.3.2 delves into discussions surrounding the experimental results.

Due to the fact that in this section our main focus is to find out how useful the tool
is, in all the experiments described further we chose to configure the tool such that
it generates DBM images of size 256× 256 using the Dummy DBM algorithm. For
such a resolution of the DBM images all the optimization heuristics are performing
almost the same, the only difference is that the Dummy DBM algorithm is generating
DBM images without errors in labels and confidence map.

4.3.1 Experiments and Methodology

FIGURE 4.3: Experimental pipeline for the tool usage evaluation
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In this section, we detail the experiments conducted and the methodology applied
for assessing the tool’s utility. The experiments engage two tool users, each operat-
ing independently. Their results are kept confidential from one another to prevent
mutual biasing.

For each experiment, the user is allowed to re-label the data points, once the
user is satisfied with the changes he/she clicks the "Apply changes" button in the
tool. This initiates a complete re-training of the classifier with the newly indicated
training labels. We refer to this process of re-labeling and classifier re-training as
an iteration of the tool usage (see figure 4.3). Each iteration is subject to a 3-minute
timeout, meaning the tool allows the user to re-assign labels no more than 3 minutes
per iteration. The tool allows for 5 such iterations, after which further changes in
labels are restricted. Thus, per each experiment in this section, each user is allowed
to interact with the tool for 15 minutes.

To set the groundwork for our experiments, we introduce notations detailed in
table 4.9. The classifier C employed in our experiments has a simple architecture
comprising a flattened layer for reshaping the input and a dense layer with a softmax
activation function, the number of neurons aligning with the classes in our data set
(the architecture is presented in figure 4.1).

As indicated in our experiments pipeline shown in figure 4.3 we generate the
pseudo-labels of all the data samples using an algorithm A before starting the tool
usage. The algorithm A utilized is the DeepFA [2]. This iterative pseudo-labeling
technique enhances deep neural network training by selecting the most confident
unsupervised samples (see section 2.1.3 for more details).

In our experiments, we employed a subset of samples S ⊂ Dtrain, where |S| =
0.01 · |Dtrain|, generated by randomly selecting samples from Dtrain. The pseudo-
labels generated by the DeepFA algorithm (i.e., Y0

train) are stored in a Git repository2.
In order to ensure experiment reproducibility and safeguard against the stochas-

tic nature of neural networks, we standardized the random number generators in
our tool by setting a seed of 42. This seed is applied to every layer of each neural
network within the tool. The HeUniform kernel initializer from Keras, with a seed
of 42, is employed for each layer of each neural network and the classifier’s dense
layer. This meticulous approach aims to minimize variability and promote consis-
tent results in our experiments.

Notation Description
C The classifier used in the experiments (see figure 4.1)

(P ,P−1) ∈ {Autoencoder, SSNP, P - direct projection
(t− SNE + NNinv), (UMAP, NNinv), (PCA, NNinv)} P−1 - inverse projection

D = (Dtrain, Dtest) = ((Xtrain, Ytrain), (Xtest, Ytest)) The data set used in the experiments
A An automatic labeling algorithm

Y0
train = A(S, Dtrain) Labels obtained with algorithm A and a subset S ⊂ Dtrain

Yi
train, i ∈ {1, 2, 3, 4, 5} Labels of the training set after iteration i

Ci, i ∈ {0, 1, 2, 3, 4, 5} The classifier obtained when trained with (Xtrain, Yi
train)

acci, kappai, i ∈ {0, 1, 2, 3, 4, 5} The accuracy and Cohen’s kappa score when
the classifier Ci is evaluated with Dtest

Di = (Dtrain,i, Dtest) A subset of data set D. The test set is taken from D.
i ∈ {0.2, 0.4, 0.6, 0.8, 1.0} The train set is constructed

by taking at random i · |Dtrain| samples from Dtrain

TABLE 4.9: Key notations for tool usage evaluation

After each iteration the tool stores a screenshot with the view of the tool dis-
played to the user (i.e. step 2 in figure 4.3) then the tool re-trains a new classifier
with the same architecture using the updated labels the user provided (i.e. step 3 in

2https://github.com/cristi2019255/ParasitesDatasetIndexes
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figure 4.3). After each iteration, the classifier accuracy and Cohen’s kappa score are
evaluated and the results are stored (i.e. step 4 in figure 4.3). The tool then uses the
new classifier to generate a new DBM image using the Dummy DBM algorithm and
displays the new image to the user. This is the point where a new iteration starts.

MNIST data set experiments series
In our initial experiment series, subsets of the MNIST data set, denoted as Di where
i ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, are employed. For each Di and each (P ,P−1) ∈ {Autoencoder, SSNP, (t−
SNE, NNinv), (UMAP, NNinv), (PCA, NNinv)}, each user initializes the tool with
Di = (Dtrain,i, Dtest), (P ,P−1), and Y0

train,i = DeepFA(S, Dtrain,i). Users interact with
the tool through 5 iterations, with each iteration j ∈ {1, 2, 3, 4, 5} involving the re-
labeling of data points in Y j−1

train,i. After each iteration j, classifier performance metrics
accj and kappaj are monitored. The primary objective of this experiment series is to
quantitatively assess the impact of different projection methods on classifier perfor-
mance improvement. Both users possess knowledge about the data set, with User
1 having familiarity with the visualization tool and User 2 being new to its use (see
table 4.10).

Knowledge about the tool Knowledge about data set
(i.e. has used the tool before) (i.e. has seen the data set before)

MNIST data set experiments session
User 1 Yes Yes
User 2 No Yes

Protozoan cysts experiments session
User 1 Yes No
User 2 Yes Yes

TABLE 4.10: Users’ knowledge in experimental sessions

Protozoan cysts data set experiments series
Following the identification of the best (P ,P−1) pair in the initial experiment ses-
sion, each user employs the tool to refine pseudo-labels generated by DeepFA for a
more intricate real-world data set—the Protozoan cysts. As this experiment builds
upon the initial one, User 2 already possesses knowledge about the tool. User 2 has
more extensive knowledge about the Protozoan cysts data set compared to User 1,
who encounters the data set for the first time in this experiment (see table 4.10). This
experiment series aims to quantitatively assess the tool’s utility in the context of a
complex real-world data set. Additionally, we aim to evaluate the impact on classi-
fier performance when the tool is used by someone with no prior domain knowledge
compared to someone with some domain knowledge, quantifying the extent of this
discrepancy.

The Protozoan cysts data set presents significantly higher dimensionality than
the MNIST data set, with raw images being of size 200x200x3 compared to 28x28x1.
Using raw images from this data set with the same classifier as described earlier
would yield poor results for such complex data points. Moreover, there is a possi-
bility that even if a user accurately corrects all the labels, the classifier performance
may be inferior when trained with the correct labels when compared to training with
initially incorrect pseudo-labels due to the limitations of the classifier. To mitigate
this issue in our experiments while still utilizing the same simple classifier C, we
introduce a dimensionality reduction step before employing the tool (i.e. see fea-
ture extractor in figure 4.3). This means that the tool and the classifier are fed with
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reduced feature vectors rather than raw images. To achieve this dimensionality re-
duction, we utilize an Autoencoder, following the approach outlined in the paper
[19]. The architecture of the Autoencoder is outlined in figure 4.4. Let encoder and
decoder represent the encoder and decoder components of the Autoencoder. In this
experiment, instead of Xtrain and Xtest, we use Xtrain, f eatures = encoder(Xtrain) and
Xtest, f eatures = encoder(Xtest). The visualization tool can leverage the decoder func-
tion to generate and display images in the tooltip for each pixel of the DBM.

FIGURE 4.4: Feature extractor architecture for Protozoan cysts data
set
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4.3.2 Results and Discussions

In this section, we present the results of the experiments outlined in the previous sec-
tion, coupled with discussions on the utility of the visualization tool in guiding users
through the construction of a correctly labeled data set. The structure of this section
is as follows: initially, we present the outcomes of the experiment series utilizing
subsets of the MNIST data set paired with various projection and inverse projection
methods. Subsequently, the following section delves into the results of the experi-
ment series involving the Protozoan cysts data set, combined with the most effective
projection and inverse projection pair identified in the initial experiment series.

MNIST data set experiments series

As outlined in the methodology section, we derived a subset S from Dtrain and
employed the DeepFA algorithm to construct Y0

train. Subsequently, we randomly
selected a subset of the training set to create Di, where i ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
We proceeded to train a classifier C using Xtrain,Di and Y0

train,Di
(pseudo-labels of the

training set of Di computed by DeepFA), followed by the evaluation of its accuracy
and kappa score. We trained and evaluated the same classifier C using Xtrain,Di and
Ytrain,Di (the true labels of the training set of Di). Table 4.11 presents the absolute and
relative differences between Ytrain,Di and Y0

train,Di
in the first row (i.e. the number of

labels with wrong values). The subsequent rows display the classifier performance
when trained with (Xtrain,Di , Y0

train,Di
) and when trained with (Xtrain,Di , Ytrain,Di) re-

spectivelly. This table establishes the lower and upper boundaries for classifier per-
formance metrics. When the user initiates the tool, the classifier performance aligns
with the metrics described in the second row of table 4.11. When all the labels are
correctly assigned, the classifier performance aligns with the values presented in the
last row of table 4.11.

D0.2 D0.4 D0.6 D0.8 D1.0
Amount of wrong labels after 157 / 700 335 / 1400 478 / 2100 636 / 2800 792 / 3500

pseudo-labeling and before the tool usage 22.42% 23.92% 22.76% 22.71% 22.62%
Classifier performance when trained with pesudo-labels

Accuracy 75.07 77.80 79.87 78.93 75.40
Kappa Score 0.7226 0.7531 0.7761 0.7658 0.7266

Loss 0.8455 0.7481 0.6917 0.7036 0.7518
Classifier performance when trained with ground truth labels

Accuracy 83.47 88.07 89.60 90.00 89.47
Kappa Score 0.8161 0.8673 0.8844 0.8888 0.8829

Loss 0.6325 0.4830 0.4154 0.3910 0.3800

TABLE 4.11: Impact of pseudo-labels on classifier C performance: A
comparison with ground truth labels.

Data set: MNIST, the pseudo-labels generated by DeepFA
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P ,P−1 User
D0.2 D0.4 D0.6 D0.8 D1.0

accuracy kappa accuracy kappa accuracy kappa accuracy kappa accuracy kappa

Autoencoder
U1 81.67 0.7961 82.87 0.8094 83.53 0.8169 83.07 0.8117 81.40 0.7932
U2 81.80 0.7976 79.80 0.7754 81.60 0.7954 82.40 0.8043 81.40 0.7932

SSNP
U1 81.80 0.7976 81.67 0.7961 82.80 0.8087 80.07 0.7784 78.60 0.7621
U2 78.93 0.7657 78.40 0.7598 79.00 0.7664 79.20 0.7687 79.73 0.7746

t-SNE, NNinv
U1 82.07 0.8005 84.87 0.8317 86.27 0.8473 88.27 0.8695 88.67 0.8740
U2 84.00 0.8221 85.13 0.8348 84.80 0.8310 86.13 0.8458 86.00 0.8443

UMAP, NNinv
U1 81.67 0.7962 87.27 0.8584 86.67 0.8517 88.87 0.8762 86.33 0.8481
U2 83.33 0.8147 84.60 0.8288 82.60 0.8065 84.73 0.8303 84.87 0.8318

PCA, NNinv
U1 81.27 0.7917 81.20 0.7909 82.60 0.8065 81.27 0.7917 76.20 0.7355
U2 76.73 0.7413 77.20 0.7465 78.67 0.7628 76.73 0.7413 73.33 0.7034

TABLE 4.12: Classifier C performance after 5 iterations of tool usage.
Data set: MNIST

Table 4.12 showcases the classifier performance after 5 iterations of tool usage
for each user and every combination of Di and projection technique. Detailed stack
traces of classifier performance after each iteration of tool usage for User 1 are pre-
sented in tables 4.13 and 4.14. The same detailed stack traces for User 2 are provided
in tables 4.15 and 4.16. Each cell in tables 4.13, 4.14, 4.15 and 4.16 features a plot of
the classifier performance metric, accompanied by three helper function plots that
offer insights into how the classifier performance evolves over iterations.

For instance, the cell that represents the usage of D0.2 and the PCA projection in
table 4.13 shows that the classifier accuracy behaves almost linearly (i.e. C1x + C2).
This suggests that throughout the process, the user consistently improves the labels
in each iteration, implying that the projection technique might not be effective, as
the user isn’t discerning patterns or clusters from the 2D plot of the data set, merely
re-assigning labels based on individual data points.

In some cases, the performance plot might follow an exponential trend (i.e.,
C1ex + C2). For instance, the one that we see in the cell on the intersection of D0.6
column and SSNP row in table 4.13. This trend indicates that in the initial iterations,
the user struggled to detect patterns or clusters but gradually understood how to use
the tool in conjunction with that projection technique, fixing more and more labels
in the later iterations.

On the other hand, if the performance approximates an inverse exponential func-
tion (i.e. −C1

ex + C2), it suggests that the projection method was effective from the
start. The user could identify patterns or clusters early on, making substantial label
adjustments in the initial iterations and then focusing on specific points or smaller
clusters that required more attention and time. For example, observe the cell on the
intersection of the D0.6 column and "t-SNE, NNinv" row in table 4.13. The classifier
accuracy increases considerably in the first iterations and the difference in accuracy
from one iteration to another becomes smaller and smaller as the iterations keep
going.

In some cases, the performance plot might show a decreasing function. For in-
stance, the plots presented in the cells at the intersection of "PCA, NNinv" row and
columns D0.4, D0.6, D0.8, D1.0 in table 4.15. This behavior means that the projection
method is placing the data points in 2D so badly that the user is constantly making
mistakes when re-labeling the data samples.

When the performance trace shows an increasing trend over the iterations, the
more it approximates the inverse exponential helper function (−C1

ex + C2) the better
the projection method is, in the sense that the user is more comfortable when using
it.
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Table 4.17 showcases the improvement in classifier performance for several pro-
jection techniques. In other words, this table shows the difference in the performance
metrics before the user interacts with the tool and after interacting with the tool. Fig-
ures 4.5 and 4.6 provide plots for the results from table 4.17 for User 1 and User 2
respectively.

P ,P−1 User
D0.2 D0.4 D0.6 D0.8 D1.0

accuracy kappa accuracy kappa accuracy kappa accuracy kappa accuracy kappa

Autoencoder
U1 6.60 0.0735 5.07 0.0563 3.66 0.0408 4.14 0.0459 6.00 0.0666
U2 6.40 0.0710 4.40 0.0488 6.20 0.0688 7.00 0.0777 6.00 0.0666

SSNP
U1 6.73 0.0750 3.87 0.0430 2.93 0.0326 1.14 0.0126 3.20 0.0355
U2 3.86 0.0431 0.60 0.0067 -0.87 -0.0097 0.27 0.0029 4.33 0.0480

t-SNE, NNinv
U1 7.00 0.0779 7.07 0.0786 6.40 0.0712 9.34 0.1037 13.27 0.1474
U2 8.93 0.0995 7.33 0.0817 4.93 0.0549 7.20 0.0800 10.60 0.1177

UMAP, NNinv
U1 6.60 0.0736 9.47 0.1053 6.80 0.0756 9.94 0.1104 10.93 0.1215
U2 8.26 0.0921 6.80 0.0757 2.73 0.0304 5.80 0.0645 9.47 0.1052

PCA, NNinv
U1 6.20 0.0691 3.40 0.0378 2.73 0.0304 2.34 0.0259 0.80 0.0089
U2 1.66 0.0187 -0.60 -0.0066 -1.20 -0.0133 -2.20 -0.0245 -2.07 -0.0232

TABLE 4.17: Classifier C performance gains after 5 iterations of tool
usage.

Data set: MNIST

(A) Accuracy (B) Kappa score

FIGURE 4.5: Classifier C performance gains after 5 iterations of tool
usage for User 1. Data set: MNIST

(A) Accuracy (B) Kappa score

FIGURE 4.6: Classifier C performance gains after 5 iterations of tool
usage for User 2. Data set: MNIST
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Analyzing figures 4.5 and 4.6, it’s evident that the improvement in both accuracy
and kappa score is less pronounced when more data is utilized for the following pro-
jection techniques: SSNP, PCA. Observe that when the tool was used in combination
with the PCA projection by User 2, the performance decreased. When the Autoen-
coder projection method was used, User 1 obtained results comparable to the ones
yielded by the SSNP projection in terms of performance gains. User 2 obtained better
gains. All in all, the improvement in the classifier performance seems to not exhibit
a direct dependency on the amount of data used when the Autoencoder projection
is involved. Both users obtained the best gains when either the UMAP or t-SNE
projection was used. Notably, for UMAP projection, the improvement in classifier
performance, for User 1, does not exhibit a direct dependency on the amount of data
used. Conversely, the t-SNE projection illustrates that as more data is employed, the
potential improvement in classifier performance that users can achieve increases.

The least improvements in both accuracy and kappa score were observed when
PCA or SSNP projections were utilized. Specifically, with PCA projection, User 1
achieved accuracy improvements ranging from 0.8% up to 6.20%. The improvement
in the kappa score varied from 0.0089 to 0.0691. User 2 achieved improvements only
when D0.2 data set was used, namely 1.66% accuracy improvement and 0.0187 in
kappa score. In all other cases, User 2 was not able to improve the initial classifier.

When SSNP projection was used, the accuracy and kappa score improvements
for User 1 varied in the ranges of [1.14%, 6.73%] and [0.0126, 0.0750] respectively.
User 2 was not able to improve the initial performance when D0.6 data set was used.
For all other cases when User 2 was using the SSNP projection, the improvements
in accuracy were from 0.27% up to 4.33%, the kappa score improvements are in the
range [0.0029, 0.0480].

On the opposite end, the most substantial improvements were observed when
t-SNE projection was used. Users obtained classifiers that outperformed the ones
trained with pseudo-labels. Specifically, User 1 achieved accuracy improvements in
the range [6.40%, 13.27%] and improvements in the kappa score from 0.0712 up to
0.1474. User 2 was able to obtain improvements in the range [4.93%, 10.60%] for
accuracy and [0.0549, 0.1177] for the kappa score.

Both users demonstrated the capability to enhance the initial classifier perfor-
mance in a limited amount of time after employing the visualization tool with pro-
jection techniques such as Autoencoder, UMAP, and t-SNE. The clusters were rela-
tively easy to find when using t-SNE and UMAP, as opposed to the more challenging
scenarios presented by SSNP and PCA projections.

Based on the results presented in figures 4.5 and 4.6, along with the ones shown
in tables 4.13, 4.14, 4.15, and 4.16, we can conclude the following ranking (from best
to worst) of projection techniques when used in combination with the visualization
tool:

1. t-SNE + NNinv

2. UMAP + NNinv

3. Autoencoder

4. SSNP

5. PCA + NNinv

Observe that when the t-SNE projection is used the performance trace plot al-
most always approximates an inverse exponential function, which shows that both



4.3. Visualization tool evaluation 87

users were comfortable when using this projection, making big increases in the per-
formance from the first iterations.

Protozoan cysts data set experiments series

In this section, we present the experimental results of the second experiment se-
ries, as outlined in the methodology. Building upon the insights from the previ-
ous section, t-SNE projection was used in this experiment session. The classifier C
employed in this experiment adheres to the same architecture as described in the
methodology (see figure 4.1). The data set used in this experiment is constructed
from the feature vectors of the raw images of the Protozoan cysts data set (i.e.,
Xtrain, f eatures, Xtest, f eatures), as detailed in the methodology and figure 4.3.

Table 4.18 provides the count of absolute and relative incorrect labels (i.e., labels
that differ between Y0

train and Ytrain), along with the performance metrics of classi-
fier C when trained with (Xtrain, f eatures, Y0

train) and (Xtrain, f eatures, Ytrain) respectively.
Notice that when trained with the ground truth labels, the classifier performance
exhibits a difference of 2.25% in terms of accuracy and 0.0334 in terms of the kappa
score compared to when trained with the pseudo-labels.

Amount of wrong labels after 388 / 2696
pseudo-labeling and before the tool usage 14.39%

Classifier performance when trained with pseudo-labels
Accuracy 85.64

Kappa Score 0.8043
Loss 0.5410

Classifier performance when trained with ground truth labels
Accuracy 87.89

Kappa Score 0.8377
Loss 0.3283

TABLE 4.18: Impact of pseudo-labels on classifier C performance: A
comparison with ground truth labels.

Data set: Protozoan cysts, the pseudo-labels generated by DeepFA

The classifier performance achieved by each user after each iteration is shown in
table 4.19. Table 4.20 presents plots of classifier performance per user, along with
three helper functions as described in the previous results subsection. Table 4.21
indicates how many labels each user was able to fix after 5 iterations.

Accuracy Kappa score
Iteration User 1 User 2 User 1 User 2

0 85.64 0.8043
1 85.38 85.21 0.8019 0.7987
2 85.81 87.28 0.8096 0.8279
3 85.90 87.63 0.8107 0.8322
4 86.16 87.63 0.8131 0.8321
5 86.76 87.37 0.8211 0.8292

TABLE 4.19: Classifier performance trace over 5 iterations of tool us-
age.

Data set: Protozoan cysts



88 Chapter 4. Experiments And Results

Both users were successful in achieving improvements in classifier performance
when using the visualization tool. User 1 increased the accuracy by 1.12% and the
kappa score by 0.0168. User 2 achieved a 1.73% accuracy increase and a 0.0249 in-
crease in the kappa score. It’s worth noting that when trained with ground truth
labels, the classifier accuracy is 87.89%, and the kappa score is 0.8377. This implies
that User 2, through pseudo-labeling and the visualization tool in a limited amount
of time, obtained a classifier that performs nearly as well as the one trained with the
ground truth labels.

The results obtained for this more complex data set exhibit striking similarities in
terms of performance gain when compared to the outcomes achieved for the MNIST
data set. Similar trends of performance increase are observed, suggesting that the
benefits of the visualization tool in enhancing classifier performance are consistent
across different types of data sets, regardless of their complexity. This consistency
in results strengthens the argument for the effectiveness and general applicability of
the visualization tool in diverse data analysis scenarios.

Accuracy Kappa score

User 1

User 2

User results
comparison

TABLE 4.20: Comparison of classifier performance trace over 5 itera-
tions of tool usage per user.

Data set: Protozoan cysts
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User 1 User 2
Amount of wrong labels 295 / 2696 ( 10.94% ) 359 / 2696 ( 12.09% )
Amount of labels fixed 93 / 2696 ( 3.45% ) 29 / 2696 ( 1.08% )

TABLE 4.21: Amount of corrected labels per user after 5 iterations of
tool usage.

Data set: Protozoan cysts

From table 4.20 one can observe that User 2 achieved a slightly better classifier
performance than User 1. It’s important to note that User 1 had no prior knowledge
about the data set before the experiment, while User 2 had previous exposure and
experience with the data set (see table 4.10). Interestingly, the results of User 1 show
that this user was still able to significantly enhance the classifier’s performance and
rectify a substantial number of incorrect pseudo-labels. This is also supported by the
results presented in table 4.21.

Observe that User 1, corrected more labels compared to User 2 (i.e. 93 for User
1 and 29 for User 2). Nevertheless, User 2 obtained a slightly better increase in
performance, which means that User 2 was able to identify and fix clusters of data
samples that had more impact on the classifier training and predictions. In other
words, User 2 was able to identify and correct labels of more complex classes.

The outcomes of this section provide valuable insights, suggesting that the vi-
sualization tool offers accessible means to identify patterns and clusters in complex
data sets, even for users who are not domain experts. Nevertheless, it’s crucial to
acknowledge that more evidence is needed to substantiate this hypothesis, and such
evidence may not be derived solely from the conducted experiment sessions.

Quantitative evaluation

If we were to aggregate our findings in some simple averages, we see that in
15 minutes a user achieved an average increase of 5.03% in accuracy and 0.0556 in
the kappa score on the MNIST data set. When the tool was used with the t-SNE
projection and MNIST the increase on average was of 8.21% in accuracy and 0.0913
in kappa score. An average of 1.43% and 0.0209 increase in the accuracy and kappa
score respectively was achieved when the tool was used with the Protozoan cysts
data set. We can not generalize this to other data sets or users, however, the results
still suggest that there is a measurable added value provided by our visual tool.

The absolute values of the increase in performance depend on the initial classifier
C0 performance and the performance of the classifier when trained with the ground
truth labels. To factor out the absolute values we can compute the average increase
in performance as follows:

cmetric =
∑i∈{1,2}(cMNIST,useri ,metric + cProtozoan_cysts,useri ,metric)

4
(4.1)

where metric is either accuracy or kappa score, and cMNIST,useri ,metric, cProtozoan_cysts,useri ,metric
are the achieved increase divided by the possible increase (i.e. the value of the met-
ric when the classifier with ground truth labels is trained minus the value of the
metric achieved with C0). For instance, when using the Protozoan cysts data set
the first user got a classifier that has an accuracy of 86.76%, the C0 classifier accu-
racy is 85.64% and the accuracy of the classifier when trained with the ground truth
labels is 87.89%. Therefore, cProtozoan_cysts,user1,accuracy = 86.76−85.64

87.89−85.64 = 1.12
2.25 = 0.4978.

Analogously, cProtozoan_cysts,user2,accuracy = 1.73
2.25 = 0.7689. For the MNIST if we take
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the results of D1.0 and t-SNE projection, cMNIST,user1,accuracy = 13.27
14.07 = 0.9431 and

cMNIST,user2,accuracy = 10.60
14.07 = 0.7534. Thus, caccuracy = 0.4978+0.7689+0.9431+0.7534

4 =

0.7408. Analogously, ckappa_score =
0.9430+0.7530+0.5030+0.7455

4 = 0.7361.
By starting with an accuracy x and investing 15 minutes in fixing pseudo-labels

by means of the visualization tool when used together with the t-SNE projection a
user could obtain a classifier that on average will have an accuracy of x + 0.7408 ·
(y− x), where y is the accuracy of the classifier when trained with the ground truth
labels. When starting with a kappa score x the increase in the kappa score on average
is 0.7361 · (y− x), where y is the kappa score of the classifier trained with the cor-
rect ground truth labels. These aggregates show us the true power of the proposed
visualization tool.

Projection and inverse projection errors maps usefulness
One of the goals of the current section is to qualitatively evaluate the impact of the
direct and inverse projection error visualizations on users’ decisions. The users’
feedback suggests a hypothesis that the projection and inverse projection error visu-
alizations are prompting users to concentrate and allocate more attention to regions
with high error values when rectifying pseudo-labels. This hypothesis implies that
the error maps serve as effective guides, directing users to areas where the pseudo-
labels may be less accurate or ambiguous. Further investigation and user studies
could provide additional evidence to validate or refine this hypothesis, offering in-
sights into the specific mechanisms through which these visualizations contribute to
the label-fixing process

4.4 Conclusions

In this chapter, we conducted two primary sets of experiments: the DBM optimiza-
tion heuristic algorithms experiments and the visualization tool evaluation.

DBM optimization heuristic algorithms
The first set of experiments, outlined in section 4.2, aimed to determine the condi-
tions under which our proposed DBM computation heuristics could serve as a viable
alternative to the Dummy DBM algorithm. Through hyperparameter tuning, we
identified the optimal parameters for each heuristic. All heuristics exhibited a sig-
nificant speed improvement compared to the vanilla DBM algorithm, with highly
accurate DBM images generated. Notably, the Binary Split algorithm emerged as
the best practical alternative to the Dummy DBM algorithm.

Visualization tool usage
In our second experiment set, we empirically demonstrated that the proposed tool
effectively assists users in enhancing classifier performance (when t-SNE projection
was used the accuracy and kappa score increased on average with 8.21% and 0.0913
on the toy MNIST data set and with 1.43% and 0.0209 respectively on the complex
real-world Protozoan cysts data set) within a limited amount of time (15 minutes).
While we cannot definitively conclude that the tool will always provide the same
degree of assistance, we can assert that the proposed tool plays a constructive role
in refining labels and boosting a classifier’s performance. To make precise claims
about the extent to which the tool aids in this process, a more comprehensive set
of experiments is essential. This expanded experimentation should encompass a
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variety of data sets and involve multiple users, providing a broader perspective on
the tool’s effectiveness in diverse contexts.

We quantified the tool’s effectiveness in fixing pseudo-labels with different pro-
jection methods, highlighting its optimal performance when used in conjunction
with the t-SNE projection. Our experiments led to some open hypotheses, such
as the potential impact of projection and inverse projection error visualizations on
users’ decision-making regarding regions of focus when fixing labels. Another hy-
pothesis explores the idea that, regardless of a user’s domain expertise, non-expert
users aided by the visualization tool can achieve almost similar success in identify-
ing patterns and correcting mislabels as the users with domain knowledge. Substan-
tiating or challenging these hypotheses will be the focus of future work, involving
larger data sets and more users.

In conclusion, this chapter substantiates the effectiveness of the proposed hybrid
pipeline, where users commence with a sparse set of labeled data points, leverage a
pseudo-labeling algorithm to assign labels to the entire data set, and subsequently
engage in manual correction within a limited time frame using the proposed visu-
alization tool. The demonstrated outcomes underscore the achievement of a near-
optimal trade-off between the time invested in transforming a semi-labeled data set
into a fully labeled one and the accuracy of the pseudo-labels. This strategic ap-
proach proves to be a balanced and efficient methodology for enhancing data set
labeling precision within practical constraints.
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Chapter 5

Conclusions And Future Work

5.1 Conclusions

This project focuses on the challenge of training machine learning models, specifi-
cally classifiers, within a semi-labeled data set context. We have introduced a semi-
automatic pipeline designed to assist users in developing such classifiers. The out-
lined workflow involves automatic pseudo-labeling and manual correction of labels
through a visual tool, aiming to accurately transform the semi-labeled data set into
a fully labeled one.

Within this project, we scrutinized various visualizations intending to guide users
of such a tool towards optimal outcomes. Our system offers a comprehensible rep-
resentation of data sets through dimensionality reduction from nD to 2D space.
Additionally, we introduced a modified metric for calculating projection errors at
a sample-based level, departing from conventional global metrics that only assess
projection errors on the entire data set level. Furthermore, our system offers ways
for gaining insights into the classifier model developed by the user through the uti-
lization of decision boundary maps (DBMs).

We introduced three novel heuristics designed to efficiently produce precise,
high-resolution DBM images. The potential applications of these optimizations ex-
tend beyond the confines of this project, laying the groundwork for multiple visual-
ization tools aimed at providing almost real-time insights into the behavior of clas-
sifiers. Quantitative evaluation results indicate that the proposed optimization tech-
niques significantly outperform in terms of speed the simplistic approach, which
involves employing a classifier for each pixel of the DBM image (referred to as
the Dummy DBM algorithm). Specifically, the Binary Split algorithm exhibits a
speed enhancement of one order of magnitude. Furthermore, concerning accu-
racy, our evaluation suggests that the proposed optimization heuristics, in particular
the Binary Split approach, can serve as practical alternatives to the straightforward
Dummy DBM approach. The label error rate of a DBM image generated with Binary
Split does not exceed 0.3%.

The quantitative assessment of our proposed tool indicates that, even when ap-
plied for a limited duration (15 minutes) on complex real-world data sets, users can
effectively identify and rectify erroneous pseudo-labels. This corrective action sub-
sequently leads to an improved performance of the classifier under development.
The degree of benefit derived from the tool varies depending on the data set’s char-
acteristics. Drawing a general conclusion about a lower limit or an average perfor-
mance gain when using this tool is not feasible solely from the experiment series
provided in this project.

Based on the outcomes of the experiments, an open hypothesis regarding the
visualization tool has been formulated. When assisted by the tool, the impact of do-
main knowledge level on performance gains is minimal. In other words, the increase
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in performance is nearly equivalent when the tool is used by a non-domain expert
compared to a domain expert.

5.2 Future work

In the prospect of future research endeavors, the validation of our open hypothe-
sis regarding the visualization tool emerges as a critical imperative, necessitating an
extensive series of experiments across diverse data sets and involving users with
varied backgrounds. This pivotal avenue holds the potential to offer deeper insights
into the tool’s utility and forms the groundwork for ongoing enhancements. More-
over, such experiments might help in formulating a general hypothesis about the
degree to which the visualization tool assists manual annotation of training sets,
based on the data set’s characteristics.

Further strides in refining the proposed DBM computation heuristics present an
enticing focus for future work. The designing of algorithms that leverage paral-
lel computing advantages holds promise in further significantly reducing run times
for the generation of high-resolution DBM images, potentially reaching the realm
of real-time processing. For instance, a straightforward improvement for the Confi-
dence Interpolation heuristic involves the parallel interpolation of each confidence
function. Algorithms that can generate a DBM image in almost real-time can facili-
tate the development of visualization tools meant to assist classifier designing.

Another compelling trajectory for future research lies in a comparative analysis
of performance gains when such a tool as the one developed in this project under-
takes the projection of data sets and generates DBMs in 3D space, rather than in 2D.
Such a study can tell us for which types of projections the user is more comfortable
when the data is presented in 2D and for which in the 3D space. This analysis can
help us to improve our visualization tool and make its purpose more general.

The exploration of additional metrics that can visually present information to
users, aiding in swift and accurate decisions regarding the correctness of data point
pseudo-labels, stands out as a concept of considerable interest for future investiga-
tions. This direction has the potential to empower users with enhanced decision-
making capabilities, contributing to the overall robustness and user-friendliness of
the visualization tool.
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Appendix A

Figures

FIGURE A.1: Upload a classifier to the visualization tool

FIGURE A.2: Successfully computed DBM in the configuration win-
dow
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(A) Upload a predefined data set

(B) Upload a data set training and testing subsets from files

(C) Data set has been uploaded successfully

FIGURE A.3: Uploading a data set to the visualization tool
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(A) DBM techniques menu

(B) Direct projections menu when NNinv used

(C) Upload custom direct projection

FIGURE A.4: The DBM techniques menu
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(A) Confidence map (B) DBM labels

(C) Classifier predictions (D) Training data labels

(E) Projection errors (F) Inverse projection errors

FIGURE A.5: DBM plots based on the checkboxes from DBM visual-
ization window

FIGURE A.6: Example of confidence, direct and inverse error values
encoded in the opacity of the pixels
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Appendix B

Experiments environment set up

In this appendix, we present the environment set up for all of the experiments pre-
sented in this project.

We developed our visualization tool in Python programming language version
3.10.10. Table B.1 presents all the related libraries we used to develop our visual-
ization tool. Table B.2 presents the (hardware and software) relevant details of the
machine on which we run our experiments.

Library Version
dask 2023.2.0
keras 2.11.0

matplotlib 3.5.1
numba 0.56.2

numba_progress 0.0.4
numpy 1.22.2

opfython 1.0.12
pandas 1.5.3
Pillow 9.4.0

PySimpleGUI 4.60.4
scikit_learn 1.2.2

scipy 1.8.0
tensorflow 2.11.0
termcolor 2.2.0

tqdm 4.62.3
umap 0.1.1

TABLE B.1: All dependent libraries and versions

Characteristic type Value
Software characteristics

System Version macOS 12.6 (21G115)
Kernel Version Darwin 21.6.0

Hardware characteristics
CPU 6-Core Intel(R) Core(TM) i7 - 9750H @ 2.60GHz
GPU Not used

RAM Memory 16GB

TABLE B.2: System characteristics of the machine on which the exper-
iments were run
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