
Master’s Thesis

Integrating Trust in the Worldwide
Software Ecosystem: A Practical Tool for

Enhanced Package Security

Angel Temelko
8221113

Supervised By:
Supervisor: Dr. Slinger Jansen

Co-Supervisor: Dr. Siamak Farshidi

Faculty of Science
Master Computing Science

Utrecht University
The Netherlands

December 22, 2023

Abstract

The landscape of open-source software development is significantly enhanced by tools that
enable developers to evaluate the trustworthiness of software packages. A recent initiative in
this realm focuses on providing trust assessments for software packages, thereby bolstering the
security and reliability of open-source communities. This initiative has led to the creation of
a command-line tool, designed to integrate seamlessly with popular package management sys-
tems. The tool is particularly innovative in its approach, offering both pre-installation and post-
installation analysis, along with policy-based evaluations and comprehensive package research
capabilities. Feedback from the interview study involving 20 developers has been predomi-
nantly positive, though there are suggestions for improvement regarding the data sources used.
This development marks a significant step towards integrating enhanced security measures into
everyday open-source software practices.

The tool developed for this study can be accessed at:
https://github.com/angeltemelko/TrustSECOjs

https://github.com/angeltemelko/TrustSECOjs

Contents

Contents 1

1 Introduction 3
1.1 Problem Statement . 4
1.2 Thesis Layout . 5

2 Research Approach 6
2.1 Research Questions . 6
2.2 Methodology Mapping to Research Questions 6
2.3 Research Methods . 7
2.4 Literature Review . 7

2.4.1 Understanding Systematic Literature Reviews 7
2.4.2 Steps in the framework . 7

2.5 Design Science . 8
2.6 Interview study . 9

3 Literature review 10
3.1 Search Strategy . 10

3.1.1 Search process . 12
3.1.2 Duplicate removal . 12

3.2 Inclusion/Exclusion Criteria . 12
3.3 Quality Assessment . 13
3.4 Data Extraction . 14
3.5 Results . 18

3.5.1 Trust Reinforcement Mechanisms in npm Ecosystems 18
3.5.2 Software engineers security practices and behavior 30
3.5.3 Third-party library usage . 33

3.6 Software Ecosystem . 37
3.7 The npm Ecosystem . 39
3.8 Background on TrustSECO . 40

3.8.1 Distributed Ledger . 40
3.8.2 Spider . 41
3.8.3 Portal . 41
3.8.4 Trust Score Calculation . 41

3.9 Grey Literature Review . 42
3.10 Discussion . 44

1

4 Design Science 46
4.1 Conceptualization of TrustSECO.js . 46

4.1.1 Core Functionalities and Post-installation Analysis 46
4.1.2 Additional Features: Reporting and Policy-Based Access 46

4.2 Design Rationale . 47
4.3 Detailed Design . 48

4.3.1 Install Command . 50
4.3.2 Scan Command . 51
4.3.3 View-Tree Command . 52
4.3.4 Info Command . 52

4.4 Preliminary Testing . 55
4.4.1 Dependencies used and additional UX 56

4.5 Design Limitations . 57

5 Interview study 58
5.1 Methodology . 58

5.1.1 Interview participants . 59
5.1.2 Interview Design . 59
5.1.3 Interview Process . 60
5.1.4 Ethical & Privacy Considerations . 60

5.2 Results . 60
5.2.1 Introduction and Context . 60
5.2.2 General Feedback . 63
5.2.3 Usability . 66
5.2.4 Functionality and Features . 67
5.2.5 Performance . 70
5.2.6 Comparison with Existing Tools/Practices 71
5.2.7 Future Development and Improvement 71
5.2.8 Closing Thoughts . 72

6 Discussion 74
6.1 Research questions . 75
6.2 Limitations - Threats of validity . 76

7 Conclusion 78
7.1 Contributions . 78
7.2 Recommendations for Future Work . 79

Bibliography 84

2

Chapter 1

Introduction

A "software ecosystem" represents a collaborative and interconnected environment in which
a variety of actors, both internal and external to an organization, engage to develop software
systems[10]. Historically, companies primarily focused on developing proprietary software for
their use. However, recent strategies demonstrate a shift towards greater openness. Today’s
businesses are actively seeking contributions from broader communities, encouraging them
to enhance and refine their software. This approach not only sparks innovation by sharing
enterprise software with external groups but also benefits from the expertise these communities
bring. This mutually beneficial relationship offers shared advantages [8, 51, 33].

Open-source software (OSS) systems prioritize code transparency, allowing software stake-
holders to access and share it. This model heavily relies on trust, with users expecting the
community to provide reliable and safe software [33]. However, there is an inherent risk. In
every community, a few might have malicious intentions. When examining platforms such as
npm, the network of relationships can be likened to a complicated web. Given this intercon-
nectedness, vulnerabilities in one area can quickly affect many others. For instance, an issue
in a single software product can ripple to others that depend on it [77]. It is noteworthy that
40% of the open source software on npm has known vulnerabilities [77]. Similarly, in Java’s
open-source realm, about one-third are vulnerable [69].

This raises the question: How safe are we within the open-source community? The
answer to this question is complex and multi-faceted, rather than a straightforward affirmation
or negation. It is vital that we use software that has undergone checks by trusted organizations,
in a manner similar to how Google reviews apps before permitting them on the Play Store.
Google Play uses a mix of automated tools and human checks to maintain app and software
engineer quality. Google Play Protect (GPP) defends users from possible threats by checking
apps, rating their safety, and using ongoing device checks. This involves techniques such as
machine learning and both dynamic and static assessments [22]. In contrast, package managers,
e.g., npm, yarn, lack a strict review process. While people can flag issues, this might not be
sufficient [77].

The issues discovered in Log4j clearly showed the security risks tied to open-source soft-
ware. This flaw allowed harmful strings to be added to the popular Log4j library, enabling
unauthorized remote code actions. The so-called Log4Shell problem was not only tough to
address but also came with high costs [32, 29]. Events such as this underline the urgent need
for tools that shield both users and software engineers from dangerous open-source software,
highlighting the significance of proactive security measures in software development.

Most organizations’ codebase is made up of 80% to 90% open-source software [60, 76].
This underscores the importance of having tools to guard against non-trustworthy open-source

3

software. Regular users, whether they are using a mobile app or an npm library, pose a consis-
tent challenge. They often overlook security warnings, whether on command lines or phones,
and do not treat them as urgent.

For instance, a large number of software engineers view updates and vulnerability fixes as
extra tasks, not essentials. Surprisingly, 69% of software engineers are not aware that their
codebases have security issues [45]. Similarly, about 64% of the general public feels they are
not accountable for their smartphone’s security [44].

TrustSECO is a system that allows users to obtain trust metrics for their third-party pack-
ages, thereby bolstering the trustworthiness of the SECO. Further details on TrustSECO will
be elaborated in the subsequent sections. In light of this context, our objective is to enhance
the functionality of the TrustSECO tool by integrating it within a software package manager.
Specifically for this thesis, it will be integrated with npm package manager. Our objective is to
send users timely alerts before the libraries are downloaded. We think that by taking a proactive
approach, users will be more likely to act responsibly and avoid potential threats rather than
having to deal with them after integration.

1.1 Problem Statement
TrustSECO has emerged as a beacon of trust in this complex landscape, providing a community-
managed infrastructure to gauge the trustworthiness of various software packages and projects [33].
There is a clear gap even though this initiative has made significant progress in building trust
within SECOs. The majority of JavaScript software engineers get their software from package
managers, such as npm, and TrustSECO is currently not integrated with this system. Users may
not be aware of potential risks if TrustSECO’s trust ratings are difficult to see directly on these
platforms or may need to take extra steps to access them.

Additionally, due to the dynamic nature of the software engineering industry, characterized
by constant updates, patches, and new releases, trust metrics must be flexible, frequently up-
dated, and simple to access. Without a successful integration, the larger digital ecosystem and
particular users are in danger. A compromise in one package spreading to numerous connected
systems can cause widespread vulnerabilities [77].

Intriguingly, while fast fixes are common, about 85.72% of patching releases for npm vul-
nerabilities come with unrelated changes, causing delays in their adoption by users. Only
21.28% of users update promptly [15]. Moreover, around 25% of npm dependencies and 40%
of its releases fall behind, skipping crucial updates. These delays termed technical lags, often
last between 7 to 9 months, with updates taking 12 to 22 days. Surprisingly, most releases
start off with this delay, which usually deepens over time. Even updates touted as backwards-
compatible often contribute to this delay, raising questions about their ease of adoption [21].

While the majority of packages in the npm package ecosystem primarily comprise JavaScript
source files, some require additional steps during installation, such as configuring files or com-
piling code. npm permits packages to incorporate shell scripts to support these features, stream-
lining required tasks. But as the Twilio-npm package demonstrates, this adaptability can also
be used for evil purposes. It may have appeared innocent, but it hid an install script that covertly
started a reverse shell to a remote server [72]. The damage that such scripts can cause is sig-
nificant, given that they frequently run with user-level permissions and occasionally even with
administrative rights. This emphasizes the critical requirement for preventative measures to
stop such untrustworthy packages from entering our projects.

Thus, addressing this integration challenge is crucial to strengthening the security architec-

4

ture of digital ecosystems as well as the user experience. It is critical to investigate techniques
and strategies to improve the connection between TrustSECO and package managers to sim-
plify the trust verification process and guarantee that users can make informed decisions about
the software they use.

Our research, through a literature review will also explore how software engineers typically
interact with package managers. Further, our research will analyze the existing security tools
available and identify potential gaps. We will also gather feedback directly from users. Through
conducting interviews, our objective is to ascertain whether users would perceive these security
features as beneficial or if they would prefer their absence.

1.2 Thesis Layout
The remainder of the thesis is organized as follows. In Chapter 2, we elucidate our research
design, elaborating on methodologies such as the Systematic Literature Review, Design Sci-
ence, and Interview study while also justifying their inclusion. Chapter 3 reviews existing
literature on software trust systems. It contrasts TrustSECO with other notable trust tools in
the npm ecosystem, investigates software engineers’ security practices and behaviors, and ex-
amines their reliance on third-party libraries. This section also outlines the meticulous process
of sourcing and categorizing relevant literature, underlining pivotal findings, and spotlighting
research gaps. In Chapter 4, we delve into the creation of TrustSECO.js, highlighting cru-
cial user experience design elements, major design components, and the logic underpinning
them. Chapter 5 details the systematic approach employed in organizing and conducting
our research, specifically through an interview study. This chapter showcases the results ob-
tained, captures user feedback from the interviews conducted, and offers an in-depth analysis
of the findings. Chapter 6 provides an exhaustive evaluation of our discoveries, aligning them
with insights from our literature review, emphasizing implications for software ecosystems, and
proposing future directions. Concluding the thesis, Chapter 7 reviews the research objectives,
summarizes the main conclusions, and recommends directions for future research.

5

Chapter 2

Research Approach

This research predominantly employs three methodologies: the Systematic Literature Review,
Design Science, and Interview study. Each method provides a unique perspective and can
address one or more of the research questions formulated. While some questions may benefit
from a singular approach, others might require a combination of methods to gain a detailed
understanding.

2.1 Research Questions
The primary research question for this thesis arises from the problem statement:

MRQ: “How can package managers reinforce trust within the worldwide Software Ecosys-
tem?”

To comprehensively address the MRQ and provide structured insights, it has been subdi-
vided into four additional research questions:

RQ1: What kind of trust reinforcement mechanisms exist in package ecosystems?

RQ2: How effective are trust reinforcement mechanisms in package ecosystems?

RQ3: How do software engineers perceive the balance between adding new features and
ensuring security while using third-party packages?

RQ4: How can third-party trust score tools be effectively integrated into a widely-used
package manager through the development of a command-line interface?

RQ5: How useful is the implemented tool from an expert’s perspective?

2.2 Methodology Mapping to Research Questions
To provide clarity on which method addresses which research question, below is a representa-
tion of it:

The Systematic Literature Review provides foundational insights and reveals existing
knowledge gaps. It is instrumental for the RQ1, RQ2, RQ3. Design Science focuses on the
practical application and development of solutions, thus relevant for RQ4. Lastly, Interview
study validate the practicality and efficacy of proposed solutions, making them critical for
RQ5.

6

Research Questions Systematic Literature Review Design Science Experiments
MRQ X X
RQ1 X
RQ2 X
RQ3 X
RQ4 X
RQ5 X

Table 2.1: Mapping of research methods to research questions.

2.3 Research Methods
In this study, we conducted a systematic literature review(SLR), design science, and Interview
study, which will help us answer our research questions. Every research question can be an-
swered through 1 or more of these methods.

2.4 Literature Review
We conducted a thorough SLR to better grasp the challenges and possible solutions associated
with existing npm security tools. Our goal was to delve into documented experiences and
findings. Specifically, we were keen to learn about the motivations behind choosing third-party
packages, software engineers’ responses to warning messages, and their overall understanding
of security issues.

The main aim of this review was to pinpoint prevailing trends, methods, and concerns in
trust tools for the present npm environment. Furthermore, we sought to understand the com-
plexities of integrating SECO into platforms such as npm. By analyzing earlier studies, our
intention was to spot any overlooked areas and steer our research to address them.

2.4.1 Understanding Systematic Literature Reviews
A group of researchers explains the nature and purpose of SLRs in the paper titled "Systematic
literature reviews in software engineering – A tertiary study" [42]. According to them, SLRs
serve to combine knowledge on a software engineering topic or research query in a manner
that is unbiased, transparent, and reproducible. Such reviews are labeled as secondary studies,
while the ones they assess are termed primary studies. There are primarily two types of SLRs:

• Conventional SLRs

• Mapping Studies

We are using the systematic review framework outlined by Kitchenham, Barbara in "Pro-
cedures for performing systematic reviews"[41].

2.4.2 Steps in the framework
• Problem Formulation and Research Question: It is important to define a specific prob-

lem that needs to be investigated in detail. The researcher identifies the topic and estab-
lishes its parameters in this initial stage of the research process. The problem must be

7

accurately described in order to generate a research question. The purpose of the study
is to provide an answer to this straightforward and concise question. Usually, a single,
larger research question is followed by several smaller ones.

• Search Strategy: To identify relevant academic papers for our study, we explored four
esteemed libraries: IEEE Explore, Springer, ScienceDirect and ACM Digital Library.
Our primary focus was on papers from 2017. By examining these initial papers, we de-
veloped specific search strings to streamline our literature search. Using these strings,
we further extracted data and performed targeted searches in the libraries. After accumu-
lating a substantial collection, we systematically organized the findings in a spreadsheet.
Each paper was then screened for its relevance to ensure alignment with our research
objectives.

• Inclusion/Exclusion Criteria: After screening, we use certain guidelines to pick papers
for our study. We look at their relevance, studies that were not books or gray literature,
and studies that were in English. It is essential to find a balance: if we are too relaxed in
our choices, we might include lower-quality papers, but if we are too strict, our findings
might not apply broadly.

• Quality Assessment: When examining studies, determining their quality is an important
step. It is not just a matter of choosing which studies to include; you also need to consider
how reliable and relevant they are. To do this, you must consider the type of research that
was conducted, the methods used to gather the data, and the clarity of the conclusions
reached. It is used to assess a paper’s level of quality.

• Data Extraction: The step after the quality assessment is to extract the relevant dataset.

• Analyzing and Synthesizing Data: We then delved deeper into understanding the data
we had gathered.

• Results: Presenting the findings of the SLR and answering our preliminary research
questions.

2.5 Design Science
Hevner, March, and their team [31] say that Design Science has two main parts: the process of
designing (how you design something) and the result (what you create at the end). Essentially,
Design Science resembles a feedback cycle that connects understanding a problem to finding
its solution. Through repeated cycles, the final product becomes better tailored to the problem.

Based on principles from Hevner & Chatterjee [30], the main idea is that Design Science
helps create new solutions that can be applied in real-world settings. In fields such as infor-
mation systems, these solutions could be in the form of models, methods, algorithms, or even
usable software. The information system research framework can be seen in Figure 2.1.

Cycles of the framework:

1. Relevance Cycle: In this phase, the main problem is identified, and the standards for a
good solution are set. The goal is to see how the finished product will help in real-world
situations.

8

2. Design Cycle: Here, the focus shifts to building a solution (or prototype) aligned with the
requirements from the Relevance Cycle. Feedback loops ensure continuous refinement,
adapting the design based on evaluations.

3. Rigor Cycle: This final cycle evaluates the solution’s efficacy, ensuring it meets the
benchmarks set earlier. Researchers will assess the solution against set standards, often
through experiments or other validation techniques.

Figure 2.1: Information Systems Research Framework by [31].

2.6 Interview study
Survey research, as defined by [13], revolves around gathering data from a selected group
by asking them a set of questions. In essence, it offers insights through the responses of the
participants. In our study, this research approach will be instrumental in obtaining feedback
on the npm integration. It will encompass in-depth interviews targeting JavaScript software
engineers.

Taherdoost [66] highlights the detailed nature of conducting interviews, noting the impor-
tance of designing clear, open-ended questions that allow for in-depth responses. He points out
the significance of carefully choosing participants and discusses the decision process regarding
the format of the interview, whether it be semi-structured or fully structured. According to him,
these factors are pivotal in determining the quality of an interview study.

The interview protocol for this thesis is detailed in Section 5.1. This protocol adheres to the
principles established by Taherdoost for conducting interview studies, ensuring a comprehen-
sive and methodologically sound approach.

9

Chapter 3

Literature review

In this section, we will discuss the outcomes of our thorough examination of previous research,
which we conducted using a Systematic Literature Review. Our main goal was to locate signif-
icant studies that were relevant to our subject and provide the answers to the initial questions
we posed. We looked at all of this research to better understand current tools and their effec-
tiveness. Additionally, we wanted to determine whether software engineers were aware of the
problems with these platforms.

3.1 Search Strategy
Our literature search strategy employed a mix of both automatic and manual methods. We
initiated our search by identifying relevant keywords that align with our research objectives
and the problems we aim to address. The core of our investigation lies in the incorporation of
software into package managers, emphasizing the associated challenges and limitations.

Given the multitude of package managers for different programming languages, it was vital
to specify our focus. We chose the Node Package Manager (npm) as our primary subject, as
that is the tool we aim to integrate with.

We have also added “Node Package Manager” and "Node.js" to widen our search, cap-
turing a more comprehensive view of this ecosystem. By including "software engineer and
npm" and "software engineer and packages", we hope to gain insights into software engineers’
interactions with npm and packages in general, and also similar tools in the npm ecosystem.

“Best practices” serve to gather research on industry-recognized standards for npm and
building CLI tools. Also to help us retrieve best practices in security for picking third-party
packages.

In the context of npm packages, terms such as “security”, “trust systems”, “vulnerability
scanner”, and “scanner implementation” are crucial for understanding the security protocols.
By examining similar trust systems and vulnerability scanners, we can gain insights into the
design and operation of these tools.

Considering the primary mode of interaction with the npm is through the terminal, “CLI”
and “command line interface” were chosen. These keywords will provide insights into tools,
extensions, and best practices software engineers should be aware of when operating within the
command-line environment.

The phrase “open source” is crucial. It highlights the clear and community-focused ap-
proach of many packages in npm. Both TrustSECO’s open-source structure and our new tool
show the importance of this approach in our study.

10

“Investigating”, “Empirical”, “Characteristics”, and “Analysis” are research-oriented terms
aiming to narrow down our search to studies or reports that offer in-depth insights and findings
on the subject matter.

The word “survey” helps us gather opinions, possibly revealing what the larger software
engineer community thinks about npm and its use of third-party libraries. This is important for
understanding their current needs and issues. It also helps us see how software engineers view
security.

Lastly, terms such as "dependencies" and "trivial packages" highlight the details of handling
package relationships and the challenges of using packages, whether it is trivial or non-trivial
packagesdependencies.
npm Query:

(
"npm"
OR "Node Package Manager"
OR "Node.js"
OR "developer and npm"
OR "developer and packages"

)
AND
(

"best practices"
OR "trust systems"
OR "CLI"
OR "command line interface"
OR "integration"
OR "security"
OR "vulnerability scanner"
OR "scanner implementation"
OR "open source"
OR "Investigating"
OR "Empirical"
OR "Characteristics"
OR "Analysis"
OR "developer"
OR "survey"
OR "dependencies"
OR "trivial packages"

)

We carefully chose the following databases for our systematic literature review:

• IEEE Explore

• Springer

• ScienceDirect

• ACM Digital Library

11

These databases were picked for their trustworthiness, the range of their content, and their
relevance to the topic of our study. We aimed to ensure a comprehensive and varied pool of
literature for our review by utilizing the advantages of these platforms.

3.1.1 Search process
We obtained a total of 98 articles from the ACM Digital Library, 250 from IEEE Xplore, 374
from ScienceDirect, and 500 from Springer through our automated scholarly search. Thus, a
total of 1,222 articles were produced by our primary sources.

3.1.2 Duplicate removal
We carried out a duplication removal process based on title and publication year to ensure
the originality of the papers acquired and to gain a precise understanding of the volume of our
acquisitions. 277 duplicates were found in the primary source dataset, and after removing them,
we were left with a total of 945 papers.

Interestingly, as shown in Figure 3.1, there was a marked spike in publications during the
years 2021 to 2023. This period seems to have been a breeding ground for discussions related
to our topic. This also implies that we looked into the most recent trends in the field.

Figure 3.1: Yearly distribution of selected papers in primary source

3.2 Inclusion/Exclusion Criteria
To engage with each paper thoroughly would be neither efficient nor practical given the sizeable
volume of more than 945 papers. Establishing strict inclusion and exclusion criteria is essential
to speed up the selection process because false positives are a given in any scholarly search.

In the initial round of filtration, a thorough manual review was conducted to narrow down
the pool of studies. The criteria for exclusion included:

12

• Papers that were irrelevant or outside the purview of our research goals.

• Studies that were books or gray literature.

• Studies that were not in English.

For each paper, the title and the abstract were carefully examined, and the relevance of
each was determined based on its abstract, leading to its inclusion or exclusion accordingly.
During this process, a significant number of false positives were identified, particularly within
the Springer database. We speculate that these discrepancies arose due to the database’s search
mechanism and how it queries data. Nevertheless, through meticulous extraction of relevant
papers, we managed to refine our list to 147 papers.

3.3 Quality Assessment
We conducted an evaluation of the publications we had incorporated in the next stage of the
Systematic Literature Review (SLR). We only used journal articles and conference proceedings
as our primary sources, which came from reputable academic libraries. Despite the reputation
of our primary libraries, it remains paramount to ensure the quality of each chosen publication.
Thus, our evaluation criteria emphasized several key attributes:

1. Addressing at least one research question.

2. Giving a clear statement of the study goal.

3. Articulating clear and coherent findings.

4. Presenting a well-defined problem statement.

5. Focus on Third-party libraries.

6. Focus on vulnerabilities in npm.

7. Focus on software engineer security behavior.

After conducting a thorough quality assessment process, which involved a manual review of
the papers. We were left with a final count of 57 papers, from which we conducted the process
of extracting data and subsequently analyzing and synthesizing the collected information.

The whole process of our search strategy can be seen in Figure 3.2

13

Initial Search

Articles Identified (n = 1222)

Duplicates Removal

Unique Articles (n = 945)

Inclusion/Exclusion

Eligible Articles (n = 147)

Quality Assessment

Included Articles (n = 57)

Figure 3.2: Flow Diagram representing the article selection process for the Systematic Litera-
ture Review.

3.4 Data Extraction
After completing our quality assessment, we dived into the papers to extract crucial informa-
tion. This extraction procedure helped us answer some of our research questions. During this
extraction, we focused primarily on two areas: Insight into Tools for Vulnerabilities and Trust
Checking in the npm Ecosystem and software engineer Behavior and Dependency on Third-
Party Libraries.

Insight into Tools for Vulnerabilities and Trust Checking in the npm Ecosystem: This
served as the foundation for RQ1 and RQ2 responses. Our investigation aimed to comprehend
the reasons behind and goals of these studies—what issues were they trying to address? We
looked at their methodology choices to see if they used exploratory case studies, empirical
studies, or other techniques. To gain a thorough understanding of the focus of these studies,
a closer examination of the specific features they measured was also conducted. The focus
then turned to their measurement metrics: Were they looking at code injections, transitive
vulnerabilities, malicious packages, policy validation, or some other features? We tried to
understand how their tools worked. To do this, we identified the methods they used, such as
machine learning, static analysis, dynamic analysis, or some other technique. To assess the
robustness and effectiveness of these tools, we also extracted their effectiveness metrics and
results. Additionally, we made note of studies that explicitly stated their limitations because
we thought it was important for our research. Finding out whether tools operated before or
after installation—i.e., whether the package was evaluated before or after integration—was a
crucial point of investigation. All of the data extracted can be seen in Table 3.1

Software engineer Behavior and Dependency on Third-Party Libraries: The second
round of our investigation focused on how software engineers deal with security issues and
how much they rely on third-party libraries. We looked at 11 studies on software engineer

14

Extraction Description
Title The title of the paper
Year The year of the publication
Authors The authors of the paper
Source Which library was selected from
Keywords Keywords of the publication
Goal of the study What was the goal of the paper
Research method The research method of the paper
Names of the tools Name of the tool
Tool Description How is the tool described
Tool purpose What is the purpose of the tool
Features they measure Specific features they measured
Measurement Measurement metrics
Tool type/Approach What approach they used for the tool
Effectiveness Metrics How effective is the tool
Results Results that are not contained in the Effectiveness metrics
Limitations Limitations of the tool
Pre-install / Post-install Is the tool checking packages before or after installation

Table 3.1: Summary of Extracted Data for existing tools

behaviour and reliance on outside libraries. Understanding the research methods used was a
crucial component of our review since it gave us insights into the procedures used to examine
software engineer behaviours and third-party library dependencies in light of the chosen study
goals. The software engineer’s behaviour and Third-party libraries extracted data reliance can
be seen in Table 3.2 and Table 3.3 respectively.

15

Attribute Description
Title The title of the reviewed document or article.
RQ The research questions posed in the document.
Year The year in which the document was published.
Authors The authors of the document.
Source The source where the document was published.
Keywords Keywords associated with the document or study.
Goal of the study The main objective or purpose behind the study.
Methodology The methodology used in the research or study.
Software engineers’ Perceptions Perceptions and practices of Software engineers as

found in the study.
Actual Security Outcomes The real security results or outcomes as reported in

the study.
Factors Influencing software engineers Factors that influence the software engineers’ de-

cisions or behaviors.
Recommendations/Best Practices Recommended best practices or suggestions made

in the document.
Most Common Perception The most prevalent perceptions among software

engineers as reported in the study.
% of software engineers (if available) Percentage of software engineers that hold a cer-

tain perception or follow a practice.
Most Adopted Practice The most commonly adopted practices by software

engineers.
Key Awareness Factor(s) Major factors or events that raise awareness among

software engineers.

Table 3.2: Summary of Extracted Data for software engineers

16

Attribute Description
Document Title Title of the article.
RQ Research questions posed.
Year Publication year.
Authors Authors of the articles.
Source Publication source or journal.
Keywords Associated keywords.
Goal of the study Main objective of the articles.
Methodology Research methodology used.
Reasons for Using Packages Reasons software engineers use such packages.
Empirical Data on Packages Data derived from analyzing packages.
Consequences of Using Packages What are the consequences of using such packages
Packages Studied Total count of packages.
Packages with Tests Count of packages that have tests.
Packages with High Dependency packages with a significant dependency count.
Reasons for Using Packages Listed reasons for package adoption.
software engineers’ Awareness Level Awareness level of using packages.
software engineers’ Adoption Rate package adoption among software engineers.
packages in open source Details packages in open-source.
Reasons for Avoiding Packages Reasons software engineers avoid certain packages.
Recommendation Tools Indication of tool requirements to recommend pack-

ages.

Table 3.3: Summary of Extracted Data on (Trivial) Packages

17

3.5 Results
Upon completing the data extraction, we started by analyzing the data and answering our re-
search questions. The outcomes have been categorized into three significant sections: Trust
Reinforcement Mechanisms in npm Ecosystems, software engineers’ security practices and
behaviours, and utilization of third-party libraries. In the subsequent subsections, a thorough
discussion on each of these categories will be conducted separately.

3.5.1 Trust Reinforcement Mechanisms in npm Ecosystems

Methodology Occurrences
Empirical Study 16
Design science 4
Case study 2
Exploratory study 1
Corpus analysis / Tool evaluation 1

Table 3.4: Occurrences of Research Methods in npm

There are 25 papers discussing tools for npm that can check for security-related features
such as injections, vulnerabilities, and malicious code. Key information about these tools is
presented in Table 3.7. To keep the analysis concise, only the essential fields have been in-
cluded, while other fields, such as keywords, have been left out to avoid over-complicating the
process. The majority of the papers, 16 to be exact, were empirical studies, as can be seen in
Table 3.4. As shown in Table 3.5, most of them employed approaches for static and dynamic
analysis to check for vulnerabilities. The tools primarily measured vulnerabilities, including
taint-style, taint-flow, injection, and security issues. Others, such as Latch[72], took a policy-
based approach and prevented users from installing particular packages based on their policies
instead of looking for vulnerabilities. Latch is a system designed to mitigate risks associated
with install-time software supply chain attacks in the npm ecosystem. Latch primarily focuses
on mediating the install-time capabilities of npm packages through an innovative permission
system. The tool flagged 100% of the tested malicious packages and maintainer policies, it is
interesting that latch is a pre-installation tool, meaning that it will catch the problem before the
user can install the application. 82% of tested potentially unwanted packages, 100% of tested
malicious packages, and 1.5% of all npm packages are blocked by it.

Two further tools that are associated with permission systems are Demo[58] and Lightweight
Permission System[24]. The Demo tool is employed to identify zero-day vulnerabilities inside
third-party libraries that are not detectable by npm audit and Snyk. This is achieved by ac-
quiring proper authorization and doing scans on the libraries subsequent to their installation.
Static and dynamic analysis are employed to ascertain the necessary permissions for the seam-
less functioning of these libraries. The study highlights that the exclusive reliance on estab-
lished tools such as Snyk test and npm audit may overlook possible vulnerabilities, particularly
those that are not yet identified. The efficacy of their technology surpasses that of both Snyk
and npm. The Lightweight Permission System is designed to provide sandboxes for node.js
packages, namely those that do simple calculations, in order to prevent them from accessing
security-sensitive resources. The tool has a dual purpose, functioning as both a pre-installation
and post-installation mechanism. During the pre-installation phase, software engineers declare
the rights required by their packages. Subsequently, the system enforces these permissions to

18

Tool Type / Approach Occurrences
Static analysis 10
Dynamic analysis 6
Taint analysis 2
ML 2
Anomaly detection 1
Query (GitHub Advisory Database) 1
Build automation 1
Data analysis and modeling 1
Benchmark suite 1
CLI (not specifically mentioned) 1
Analytical tool 1
Pattern recognition 1
Hashing and content comparison 1
Graph-based approach 1
Blockchain and smart contracts (Ethereum) 1
Code-centric approach (not specifically mentioned) 1

Table 3.5: Occurrences of Tool Types and Approaches

guarantee that packages remain within their designated boundaries. Furthermore, installation
prompts serve as reminders to software engineers regarding the declared permissions. The per-
mission system that has been presented has the potential to significantly decrease the amount
of work needed to review updates in the analyzed scenario. This reduction in effort can range
from 6% to 52%.

Visualization tools, such as V-Achilies [37], leverage the GitHub advisory database to gen-
erate graphical visualizations of transitive dependencies. This means the tool not only visual-
izes the immediate dependencies of a project but also the dependencies of those dependencies.
Notably, V-Achilies functions as a post-installation tool. The tool successfully detected vul-
nerabilities in four of the ten most highly regarded npm projects, namely sinopia, cnpmjs.org,
windows-build-tools, and npx. The vulnerabilities exhibited a range of severity and were cate-
gorized based on their direct or transitive nature.

The npm-miner[12] is a tool that has similarities with V-Achilies, although it differs in
its absence of visualization capabilities. The primary approach employed by this application
for the crawling and analysis of npm JavaScript packages is static analysis. It is important to
highlight that the primary data source utilized by the system is GitHub. In the present con-
text, it is noteworthy to include npm-filter[6] as an additional tool of significance. While it
utilizes GitHub data in a similar manner, its primary objective diverges as it focuses on extract-
ing dynamic metadata from program execution. This includes characteristics, namely testing
mechanisms, code coverage analysis, and performance metrics. npm-filter is a build automa-
tion tool that facilitates the installation, building, and testing of applications within a Docker1

environment. This tool ensures a regulated and standardized setting for these tasks. It is note-
worthy that npm-filter operates as a pre-installation tool, whereas npm-miner operates within a
post-installation context.

Another static analysis tool is OpenSSF[74] seeks to enhance the security of open-source
software (OSS). It functions as an automated tool specifically developed to examine the secu-

1https://www.docker.com/

19

https://www.docker.com/

rity status of software packages. OpenSSF utilizes GitHub metrics to evaluate the health of a
package before installation. This evaluation is based on various factors such as code reviews,
vulnerabilities, licenses, and other features offered by GitHub. The evaluation conducted by
the Scorecard tool provided valuable insights into the security procedures throughout the NPM
ecosystem. In particular, the documentation of licenses in their respective repositories was
found to be present in just 68% of npm packages. In relation to permissions, the Token-
Permission metric revealed that 84.4% of npm packages exhibited optimum file permissions
inside their GitHub processes. Nevertheless, there were also apprehensions. According to
the findings of the Scorecard, it was determined that around 15.6% of npm repositories were
found to have yaml files that possessed write access rights. This discovery highlights a possible
security vulnerability that may be exploited. Moreover, it is worth noting that a significant pro-
portion of npm packages, specifically 30%, lacked a legal license inside their respective GitHub
repositories. In relation to the implementation of security measures, it was found that a signif-
icant proportion of npm packages, namely 69%, did not consistently adhere to Code-Review
procedures. Furthermore, a substantial majority of 86% of these packages showed that they
were not subject to regular maintenance. Furthermore, it was observed that around 90% of npm
packages exhibited a lack of implementation of default Branch-Protection and Security-Policy
standards inside their repositories. The Scorecard tool utilizes recognized security metrics to
assess the security posture of repositories within the npm ecosystem.

Within the domain of static analysis tools, LastJSMile[64], which draws inspiration from
LastPyMile[67], has been developed to find code injections in malicious npm packages by dis-
cerning inconsistencies between the source code and the package. It has been observed that
this tool exhibits a performance improvement of 20.7 times compared to the git-log technique.
In the case of authentic npm packages, the tool’s regulations resulted in several incorrect no-
tifications. The following static analysis tool is FAST [39], designed to identify taint-style
vulnerabilities in JavaScript packages, with a focus on achieving a balance between analy-
sis scalability and accuracy. The tool identified a total of 182 zero-day vulnerabilities out of
the 242 that were examined. The FAST tool had the most favourable rates of false positives
(7.2%) and false negatives (5.1%) compared to the other tools that were evaluated.DAPP[40]
is designed to automatically identify prototype pollution vulnerabilities inside Node.js mod-
ules. Additionally, it is capable of doing parallel analysis on all npm modules. The DAPP
system conducted tests on around 75,000 modules, accounting for three-quarters of the total
100,000 modules. The tests revealed an error rate of approximately 26%. Each module was
checked by DAPP in around 6 seconds. Nodest[55] is a feedback-driven static taint analysis
tool that is designed to detect injection vulnerabilities in Node.js applications. It employs a
feedback-driven approach to do static analysis and identify potential injection vulnerabilities
inside the codebase. Nodest demonstrated a commendable level of precision by successfully
identifying vulnerabilities in 22 out of 25 modules without any instances of false positives. The
Jam[56] tool is utilized to generate accurate call graphs for Node.js in order to gain insights
into potential security issues. The precision of Jam is found to be around 84.35% on average,
while js-callgraph has an average precision of 58.64%. The memory rate of Jam is 98.62%, but
the recall rate of js-callgraph is 48.16%. The call graphs generated by Jam exhibited a higher
degree of accuracy compared to those created by js-callgraph. The duration of Jam’s analysis
varied, with toucht taking less than one second and jwtnoneify taking around 23 seconds, both
toucht and jwtnoneify are nodejs packages on which tests were conducted. On the other hand,
the performance of js-callgraph was significantly lower. The use of the modular method by
Jam resulted in expedited analysis for all benchmarks, with completion times of less than one
second seen in several instances. All of these tools employed static analysis techniques at some

20

stage and were categorized as post-installation tools.
During the literature study, two Machine Learning tools were identified in our research. The

tool developed by K. Garrett et al [26]. This study presents a novel tool designed to identify
malicious package updates within the npm ecosystem. The tool utilizes an analysis of security-
relevant features to distinguish between benign and malicious updates. When subjected to
testing using recent package updates, the detection model exhibited a significant 89% reduction
in the need for manual review. This promising outcome suggests that the tool has the potential
to streamline the verification process for software engineers by effectively flagging suspicious
updates. Furthermore, the Amalfi[65] system incorporates classifiers, reproducibility checks,
and clone detection techniques, enhancing its accuracy during the process of retraining. The
results of the 10-fold cross-validation conducted on the basic corpus indicated that all of the
models exhibited a notably high level of accuracy. However, the recall of the Naive Bayes and
Support Vector Machine (SVM) classifiers was lower. This can be attributed to the fact that the
dataset had a naturally low proportion of dangerous packages.

We already outlined the tools, Lightweight permission system[24], Demo[58], and Latch[72]
functions in the context of dynamic analysis. We also have three more dynamic analysis tools.
The first is NodeMedic[11] is a software tool that optimizes the operational procedures of the
Node.js ecosystem, namely in the areas of triage, vulnerability verification, and the develop-
ment of package drivers. NodeMedic is a software solution that specifically addresses the
server-side dataflow vulnerabilities known as ACE (Asynchronous Code Execution) and ACI
(Asynchronous Code Injection). The program revealed vulnerabilities in 40 out of 200 pack-
ages, representing a 20% occurrence rate. Additionally, 85% of the reported vulnerabilities
were effectively exploited with tailored exploits. The second tool in question is NodeXP[57].
The main objective of the Python program is to automatically identify detection and expla-
nations of Server-Side JavaScript Injection (SSJI) vulnerabilities in Node.js web applications,
employing obfuscation techniques to bypass filters and defensive mechanisms. In contrast to
other tools, NodeXP was the only tool that successfully identified all the Server-Side JavaScript
Injection (SSJI) vulnerabilities present in the apps. The Buildwatch[59], the last tool utilized
in the dynamic analysis approach, effectively identifies and mitigates security vulnerabilities
arising from third-party dependencies inside the software supply chain. With the exclusion
of buildwatch, a tool that is linked to continuous integration and continuous deployment and
might be subject to argument as either a tool used after installation or before installation, the
aforementioned dynamic tools are all categorized as post-install tools.

We also discovered benchmarking tools during the data extraction process, such as SecBench.js[7],
an executable security benchmark tool for server-side javascript. Contains flaws from advisory
databases that cover threat classes, for instance, code injection and path traversal. The bench-
mark contains 1,244 assertions, averaging 2.07 assertions per exploit.

There are two tools that serve as comprehensive alternatives to npm, effectively replacing
or updating the whole npm. The first tool Maxnpm [62] serves as a substitute for npm and
provides a configurable and efficient approach to resolving dependencies. Combines multiple
objectives during installation, such as minimizing vulnerabilities and code size. The MAXnpm
tool exhibits enhanced efficacy compared to the conventional npm approach, particularly in its
ability to mitigate vulnerable dependencies by 30.51% and provide newer package solutions
with an average improvement of 2.62%. The second tool is by D’mello et al. [23]. The
solution makes use of smart contracts and Ethereum’s blockchain technology. The technology
decentralizes the administration of software packages. In addition to providing an immutable,
transparent trace of software provenance, it seeks to avoid potential vulnerabilities discovered
in centralized systems. Solidity-based smart contracts are used to manage and store data. They

21

operate in a decentralized environment, with package uploads taking place on peer-to-peer
storage. The tool is intended to replace conventional package management systems completely.

In addition, we encountered analytical tools such as DepReveal[5], which were designed
to examine and comprehend the effects of dependency vulnerabilities in Node.js applications.
The fundamental objective of these tools was to enhance software engineers’ consciousness
about security vulnerabilities present in their dependencies. Out of a total of 200 packages,
the system successfully found 40 packages (20%) that included vulnerabilities. Additionally,
it was able to efficiently create exploits for 85% of the identified vulnerabilities. In addition,
we discovered pattern recognition tools, such as the Vulnerability Detection Framework[43],
which was employed to identify instances of prototype pollution and ReDoS. The precision
rate for detecting prototype pollution was 92%, while for ReDoS it reached 97%.

Affogato [27] is a runtime Detection of Injection Attacks for Node.Js using dynamic grey-
box taint analysis, it detects all vulnerable flows, meaning it has high recall, and produces no
spurious flows, which translates to high precision. Specifically, it detected all vulnerable flows
in the given benchmarks and produced no false positives. Poster [68] tool for detecting ma-
licious code injections in software packages by comparing package repositories with source
code repositories using hashing and content comparison approach. The poster needed 12 sec-
onds for processing a source code repository, 0.04 seconds for scanning a suspected artifact,
and 33 seconds median execution time for processing the source code repositories, with a 97%
accuracy.

The Unwrapper[71] tool is a unique solution designed to tackle the problem of "shrinkwrapped
clones" within the npm ecosystem. It effectively detects and identifies instances of shrinkwrapped
clones, while also identifying similar npm packages that have been cloned. This tool is highly
valuable as it helps to address the potential risks associated with package vulnerabilities. By
identifying cloned packages, it becomes possible to recognize instances where vulnerabilities
are replicated, thereby emphasizing the importance of utilizing such a tool. The precision of
the Clone Detector was determined to be 94%, indicating that out of 100 samples, 94 were cor-
rectly identified as genuine positives while six were falsely identified as positives. Additionally,
the recall of the Clone Detector was found to be 95.3%.

Plumber [70] is not a regular vulnerability checker, it focuses on the delay in propaga-
tion vulnerability fixes in the npm ecosystem, analysis of dependence structures, and package
metadata. It provides repair tactics for vulnerable packages. The PLUMBER’s efficacy is de-
termined to be 79.8%, indicating that the proposed repair solutions provided by the tool line up
with the actions taken by software engineers in the real-world context in over 80% of cases.

The last two tools that we are going to check in this Literature review are the DTReme
[48] a graph-based approach tool and an extension of the Eclipse-Steady [16] tool which uses a
code-center approach. DTreme deals with the npm ecosystem’s vulnerabilities caused by third-
party library dependencies. It seeks to correct errors in current approaches that do not take into
consideration npm-specific dependency resolution criteria. The DVGraph insights serve as the
foundation for the dependency tree-based vulnerability mitigation tool known as DTReme for
npm packages. DTReme outperformed npm’s official audit fix in handling vulnerabilities in 77
out of 262 projects.

The Eclipse-Steady[16] tool, initially developed for Java and Python programs, was ex-
panded in this study to provide support for JavaScript. The primary objective of this tool is
to detect and analyze open-source vulnerabilities inside Node.js applications by employing a
comprehensive and code-focused methodology. The identification of occurrences when vulner-
able code is repackaged or reused within Node.js applications constituted a fundamental aspect
of the tool.

22

The landscape of tools designed to address npm package vulnerabilities reveals a notable
trend. As delineated in Table3.6, the majority of these tools operate at a post-installation stage.
Only a limited subset is designed for pre-installation checks, while a few ambitious solutions
advocate for a comprehensive replacement of npm as the primary package management system.

Stage Occurrences
Post-install 20
Pre-install 4
Total replacement 2
Pre-install / Post-install 1
Pre-install on CI/CD 1

Table 3.6: Occurrences of Installation Stages

Concerning the metrics used by these tools, there is a pronounced emphasis on assessing
various forms of vulnerabilities. Prominently, vulnerabilities related to taint flows, transitive
dependencies, and injection attacks are frequently measured. Beyond vulnerabilities, a minor-
ity of tools also focus on evaluating the quality and health of packages. Other areas of mea-
surement encompass policy automation, dependency management, and avant-garde techniques
and solutions. A comprehensive breakdown of these metrics is detailed in Table 3.8.

The reproducability excel for the Table 3.7 can be accessed at this Excel link

23

https://solisservices-my.sharepoint.com/:x:/g/personal/a_temelko_students_uu_nl/EYHptS7bCO9BmPtcbVnmk8ABGaHH7662jvt4mSilqODGFg?e=o6TBwi

Table 3.7: Summary of the key information of Reinforcement Mechanisms/Tools adopted in npm security checking

Name Description Measurement Type/Approach Results Effectiveness Metrics Limitations Setup

NAN Detect malicious
package updates in
Node.js/npm ecosys-
tem.

Malicious package Anomaly detection /
ML

Demonstrated 89% re-
duction in manual re-
view effort; identified
eslint-scope attack.

89% reduction preliminary evaluation,
missing suspicious
packages, untested
scalability, no expla-
nation mechanism,
and no real-time dash-
board for suspicious
packages.

Post-install

V-Achilles Detect vulnerabilities
in npm projects, direct
and transitive depen-
dencies, introduces
graph UI.

Transitive vulern-
abilities

vulnerability Identified vulnera-
bilities in 4 top npm
projects; direct and
transitive dependen-
cies.

NAN NAN Post-install

Latch Tackle risks of install-
time software sup-
ply chain compro-
mise with Latch
(Lightweight instAll-
Time CHecker).

Policy vialation Dynamic analysis Blocks 1.5% npm, 82%
undesirable, 100% ma-
licious packages; 1.6%
workflow impact.

100% of tested mali-
cious packages

limitations in porta-
bility across operating
systems, potential
gaps for sophisticated
adversaries.

Pre-install

npm-miner Analyze npm
JavaScript packages,
data management layer,
worker processes, and
web application com-
ponents.

Quality of its pack-
ages based on main-
tainability and secu-
rity

Static analysis Analyzed 2,000
GitHub packages;
found 476K errors,
279K warnings.

NAN NAN Post-install

npm-filter Automatically install,
build, and test npm
packages.

Automation build automation Running isolated in
Docker can install,
build, and test any
application

NAN Supports only GitHub
packages.

Pre-install

24

Table 3.7 continued from previous page

Tool Name Description Measurement Type/Approach Results Effectiveness Metrics Limitations Setup

OpenSSF Automate monitor-
ing of open-source
software security
health.

Health and security
package

static analysis and
automation tool.

Scorecard: 68% had
licenses, 84.4% opti-
mal permissions; some
practices lacking.

NAN Focuses on GitHub
metrics, potential false
positives for non-
GitHub projects, does
not account for empty
repositories.

Pre-Install

Plumber Identify and remedy
software vulnerabilities
in package ecosystems.

Vulnerabilities
within packages,

data analysis PLUMBER: 47.4%
positive feedback from
major npm projects.

nearly 80% Applicability limited to
npm packages, results
may not generalize to
other ecosystems, po-
tential omissions in the
dataset, manual inspec-
tion errors.

Post-install

NodeMedic NAN Vulnerabilities, Effi-
cacy of Exploit Syn-
thesis

Dynamic Analysis NODEMEDIC: De-
tected vulnerabilities in
20% of 200 packages,
85% exploitable.

85% of the identified
vulnerabilities.

focuses on ACE and
ACI vulnerabilities,
does not address oth-
ers, limitations in
automation and exploit
synthesis.

Post-install

SecBench.js SecBench.js bench-
mark suite with 600
JavaScript vulnerabili-
ties across major threat
classes.

Vulnerabilities Benchmark suit SECBENCH.JS: 1,244
assertions, average
2.07 assertions per
exploit.

Exploit success via Or-
acle, 1,244 assertions,
avg 2.07 per exploit.

NAN post-install

Lightweight
permission
system

It is tailored for Node.js
applications to mini-
mize attack surface.

Permission sys-
tem for sandboxes
individual packages

dynamic analysis Permission system re-
duces update review ef-
fort by 6%-52%.

6% to 52% reduction. NAN Pre-install /
Post-install

Amalfi Detect malicious npm
packages automati-
cally, addressing vast
numbers and updates.

Malicious packages ML Models showed high
precision; Naive Bayes
and SVM had lower re-
call.

High precision. Low
recall

biases in training data
affect generalizability,
sustainability issues
with continuous re-
training, and accuracy
issues due to short
inspection windows.

Post-install

25

Table 3.7 continued from previous page

Tool Name Description Measurement Type/Approach Results Effectiveness Metrics Limitations Setup

Maxnpm A complete, drop-in re-
placement for npm us-
ing PACSOLVE and
Max-SMT solver.

vulenrabilities Basic CLI - not men-
tioned

MAXnpm: Reduces
vulnerable dependen-
cies by 30.51%, slight
solving time increase.

33% better audit,
2,62% new packages,
4,37% code reduction,
1.9% less duplication.
Worse in tests and
slower.

The selection may not
represent the entire
npm ecosystem, possi-
ble bugs in tool results,
and evaluation criteria
may not align with
developer priorities.

Pre-install
total re-
placement

Nodest A feedback-driven
static taint analysis
tool for detecting injec-
tion vulnerabilities in
Node.js apps.

zero-day injection
vulnerabilities, taint
flows

Static analysis using
feedback-driven ap-
proach, taint analysis

Nodest: Detected
vulnerabilities in 22/25
modules, no false
positives.

find vulnerabilities in
22 out of 25 modules

Use GitHub only. Post-install

DepReveal A Node.js project an-
alytical tool for de-
pendency discoverabil-
ity levels on GitHub.

vulnerabilities Analytical tool DepReveal analyzed
dependency vulnera-
bilities, and provided
insights.

Vulnerabilities de-
tected: 40 out of
200 packages (20%)
Exploits successfully
crafted: 85% of the
identified vulnerabili-
ties.

Semgrep rules tai-
lored to prototype
pollution and ReDoS,
may overlook other
vulnerabilities, and
struggle with ob-
fuscated JavaScript
code.

Post-install

Vulnerability
detection
framework

Experimental vul-
nerability detection
framework with Sem-
grep and textual
similarity methods.

vulnerable functions Pater recognition/
Static analyisis

Detected 18K proto-
type pollution, 1.7K
ReDoS; 92-97% preci-
sion.

Prototype pollution:
92% ReDoS: 97%. The
precision rate is 98%.
Vulnerable functions
detected 94,5%

NAN Post install

Affogato A dynamic grey-box
taint analysis tool com-
bining black-box and
white-box analysis.

injection vulnerabili-
ties

taint analysis tool Affogato: High preci-
sion/recall detecting in-
jection vulnerabilities.

high recall, high preci-
sion).

NAN Post-install

Demo Conduct static and
dynamic program
analysis on server-side
JavaScript third-party
libraries.

NAN Static/Dynamic anal-
ysis

Tool surpasses snyk
test and npm audit in
uncovering unknown
vulnerabilities.

More effective than
synk and audit

NAN Post-install

26

Table 3.7 continued from previous page

Tool Name Description Measurement Type/Approach Results Effectiveness Metrics Limitations Setup

Poster Compare distributed
software artifacts
code with source code
repositories.

code injection hashing and content
comparison approach

34 malicious artifacts
with code discrepan-
cies; 97% accurate to
source.

12 seconds for pro-
cessing a source code
repository.0.04 seconds
for scanning a sus-
pected artifact.33 sec-
onds median execution
time for processing the
source code reposito-
ries.

NAN Post-install

DAPP An automatic static
analysis tool for
prototype pollution
vulnerabilities in
Node.js modules.

prototype pollution
vulnerability

static analysis DAPP found 37 gen-
uine prototype pollu-
tion vulnerabilities in
30K modules.

DAPP: 37 true pos-
itives, 38 false pos-
itives; 25.68% error
rate; 6.17s avg. test
time.

Significant rate of false
positives and false neg-
atives, results require
manual verification.

Post-install

NodeXp A Python tool for de-
tecting and exploiting
SSJI vulnerabilities in
Node.js applications.

The Server Side
JavaScript Injection
(SSJI) vulnerabilities
in

Dynamic Analysis NodeXP discovered a
0-day vulnerability in
SubleasingUIU app.

compared to other tools
only NodeXP detected
all the SSJI vulnerabili-
ties in the applications.

NAN post-install

DTReme
Algortihm

A dependency tree-
based vulnerability
remediation tool for
npm packages.

vulnerabilities in de-
pendency trees

Graph-based ap-
proach (namely
terms Graph Tree
and DVGraph).

DTResolver 90.58%
accurate in dependency
resolution; outperforms
npm-remote-ls.

vulnerability detection,
DTResolver achieved
coverage of 98.1%
while npm-remote-ls
had 97.7%.

Overlooks indirect
dependency vulnera-
bilities, CVE mapping
errors, missing depen-
dencies, and high-risk
version exclusions

post-install

Eclipse-
Steady

Detect, assess, and mit-
igate vulnerabilities in
open source dependen-
cies.

vulnerabilities code-centric ap-
proach - Not men-
tioned

NAN Analysis covered 42
out of 65 apps; applica-
tion constructs outnum-
ber dependency con-
structs by a factor of
three (75 vs. 26).

NAN Post-install

27

Table 3.7 continued from previous page

Tool Name Description Measurement Type/Approach Results Effectiveness Metrics Limitations Setup

NAN Manage package inter-
actions via smart con-
tracts, with decentral-
ized verification and a
tree data structure.

decentralizing pack-
age management
using blockchain
technology and
smart contracts.

Ethereum’s
blockchain and
smart contracts

NAN Metadata latency: 148
ms; Peak bandwidth:
650.48 Kbit/s; Other
metadata: 396.32
Kbit/s.

Low gas can delay
transactions; worker
crashes from fund
shortages; single fail-
ure point; slow node
sync; unstable dynamic
structure support.

Total re-
placement

LastJSMile Detect code injections
in npm packages by
comparing source
code with packaged
versions, similar to
LastPyMile for Python

injections in mali-
cious npm packages

Static analysis New approach is 89.4%
faster than git-log; re-
duces false positives.

Tool speed: 20.7x
faster than git-log;
False positives: 90.2%
for whole artifacts,
21.3% for "phan-
tom" files; Recall:
consistent.

Imbalances in the
dataset, dependency
on GitHub repos,
changes in file hashes
from code movement,
and overlooking di-
rect malicious code
commits.

Post-install

FAST Analyze JavaScript us-
ing unique abstract in-
terpretation techniques
for efficient vulnerabil-
ity assessment.

Zero day vulenrabil-
ities, taint-style vul-
nerabilities

Static analysis / taint
style

AST detected 242 zero-
day vulnerabilities; 21
CVEs issued.

182 out of 242 zero-
day vulnerabilities.
FAST-det had the
lowest FP(7.2%) and
FN(5.1%)

Balancing JavaScript’s
dynamic features with
analytical scalability
and accuracy is a
key challenge, often
leading to a trade-off
between the two.

post-install

Jam Build call graphs for
JavaScript modules
through summary
composition.

Security vulnerabili-
ties.

Static analysis Jam’s precision
84.35%, faster analysis
than js-callgraph.

found all 8 vulnerabil-
ities, yielding a 100%
recall. reduced false
positives by 81% com-
pared to NPM audit.
The precision is 61%
compared to the 24%
precision of NPM au-
dit.

NAN Post-install

BuildWatch Analyze software
dependencies dynami-
cally.

Malicious packages, Dynamic analysis NAN NAN NAN pre-install
on CI/CD

28

Table 3.7 continued from previous page

Tool Name Description Measurement Type/Approach Results Effectiveness Metrics Limitations Setup

Unwrapper Detect duplicate NPM
packages with a focus
on speed and indepen-
dence from the NPM
database.

Clone packages, vul-
nerabilities in clone
packages

file tree structures
and file content
comparisons.

10.4% of 6,000 NPM
packages were clones;
potential 178K cloned.

Clone Detector’s preci-
sion is 94% (94 true
positives out of 100
samples, with 6 false
positives). Prefilter’s
recall is 95.3%.

NAN post-install

29

Measurement Category Occurrences
Vulnerability Types 20
- Malicious package 3
- Transitive vulnerabilities 1
- Vulnerabilities within packages 1
- zero-day injection vulnerabilities 1
- Injection vulnerabilities 3
- taint flows 1
- vulnerable functions 1
- prototype pollution vulnerability 1
- Server Side JavaScript Injection (SSJI) 1
- taint-style vulnerabilities 1
- security vulnerabilities 1
- injections in malicious NPM packages 1
- Impact of a vulnerability 1
Package Quality and Health 2
- Quality of packages 1
- Health and security package 1
Policy and Automation 2
- Policy violation 1
- Automation 1
Dependency Management 3
- Dependency relationships 1
- Evolution of dependencies 1
- vulnerabilities in dependency trees 1
Advanced Techniques and Solutions 3
- Efficacy of Exploit Synthesis 1
- Permission system for sandboxes 1
- Decentralizing package management (blockchain) 1

Table 3.8: Summary of Measurement Categories Assessed by Tools for Trust Reinforcement in
the npm Ecosystem

3.5.2 Software engineers security practices and behavior
We have analyzed five papers, to understand the security best practices and how software engi-
neers behave towards those securities and practices. 3 papers were Empirical studies, and two
papers were Qualitative studies, as can be seen in Table 3.10. The data that we extracted can
be seen in Table 3.9

Kabir et al. [38] conducted a study examining three optimal methodologies. In the first
step, the user should employ the command "npm audit" to identify vulnerabilities present in
library dependencies. Subsequently, these vulnerabilities can be addressed by utilizing the
command "npm audit fix". Moving on to the second step, the user should conduct a thorough
examination of the packages to identify any unused or duplicated ones. This can be accom-
plished by employing tools such as "depcheck". Once identified, the user should proceed to
delete any redundant packages using the command "npm dedupe". Lastly, to ensure stability
and consistency in library dependency versions, it is recommended to enforce the usage of the

30

Attribute Description
Title The title of the reviewed document or article.
RQ The research questions posed in the document.
Year The year in which the document was published.
Authors The authors of the document.
Source The source or journal where the document was

published.
Keywords Keywords associated with the document or study.
Goal of the study The main objective or purpose behind the study.
Methodology The methodology used in the research or study.
software engineers’ Perceptions Perceptions and practices of software engineers as

found in the study.
Actual Security Outcomes The real security results or outcomes as reported in

the study.
Factors Influencing software engineers Factors that influence the software engineers’ de-

cisions or behaviors.
Recommendations/Best Practices Recommended best practices or suggestions made

in the document.
Most Common Perception The most prevalent perceptions among software

engineers as reported in the study.
% of software engineers (if available) Percentage of software engineers that hold a cer-

tain perception or follow a practice.
Most Adopted Practice The most commonly adopted practices by software

engineers.
Key Awareness Factor(s) Major factors or events that raise awareness among

software engineers.
% Aware (if available) Percentage of software engineers who are aware of

a certain factor or practice.
% Unaware (if available) Percentage of software engineers who are not

aware of a certain factor or practice.

Table 3.9: Summary of Extracted Data for software engineers

package-lock.json file. This file serves as a lock file and effectively pins the versions of li-
brary dependencies. It was discovered that a majority of software engineers do not adhere to
best practice BP1, as evidenced by the identification of vulnerabilities in 55% of the projects
examined through the utilization of npm audit. In the context of BP2, it has been observed
that a significant proportion of projects have a worrisome abundance of duplicate instances. In
the context of BP3, it was discovered that a mere 32% of the apps surveyed used the practice
of explicitly specifying version numbers for their package dependencies. The researchers also
aimed to investigate the underlying causes of the violation of these best practices. Their find-
ings indicate that software engineers recognize the significance of security, yet they express
scepticism towards npm-audit due to its high rate of false positives. Additionally, it was shown
that software engineers often disregarded or misinterpreted alerts regarding duplicate depen-
dencies. A considerable number of engineers did not assign significant importance to concerns
related to duplicate dependencies. Certain engineers underlined the necessity of preserving
distinct versions of packages, whilst others expressed doubts over the reliability of depcheck.
Many software engineers failed to acknowledge the significance of lock files in ensuring con-

31

Methodology Occurrences
Empirical Study 3
Qualitative Study 2

Table 3.10: Occurrences of Research Methods in software engineer Behavior

sistent builds, either due to a lack of understanding of the functioning of the locking mechanism
or due to misunderstandings around it.

The study conducted by Zahan et al [75]. aimed to investigate the potential correlation
between software security measures and the occurrence of vulnerabilities. The researchers uti-
lized data obtained from the OpenSSF tool [74] in order to investigate the correlation between
security practices and the number of vulnerabilities. The researchers incorporated a set of 15
established security practices identified in a prior study. Additionally, they collected data from
a substantial number of packages, namely 767,389 npm packages and 191,158 PyPI packages.
The vulnerability count was obtained from the OSV and Snyk databases. The researchers dis-
covered that the practices of Security Policy, Maintenance, Code Review, and Branch Protec-
tion were identified as the most crucial measures for reducing vulnerabilities. It was discovered
that packages possessing enhanced security measures frequently exhibited a higher frequency
of reported concerns. This phenomenon may be attributed to the higher frequency of usage and
more rigorous testing of these programs. Nevertheless, it remains uncertain if the enhancement
of security measures directly leads to the discovery of more vulnerabilities, or if there are other
contributing elements at play. Additional investigation is required to provide elucidation on
this matter.

In a study conducted by Paschenko et al. [61], 25 software engineers were interviewed in a
semi-structured manner to gain insight into their decision-making processes regarding the se-
lection, management, and updating of software dependencies. From the interviews, they found
out that software engineers often select third-party packages based on company policies, com-
munity support, and the library’s core functionality, most interesting finding was that software
engineers were mostly always focusing on functionality over security. This means a library’s
ability to perform its intended function is often valued more than its potential security vul-
nerabilities. When they updated the dependencies, their motivations were, security concerns,
they were updating to mitigate vulnerabilities. However, an interesting fact is that software
engineers were choosing stability over security, they were only updating it if they knew that
it would not crash the application. They were also avoiding dependency updates due to fear
of breaking changes. Organizational policies have a substantial impact on whether software
engineers update dependencies, and lastly, software engineers find managing and updating de-
pendencies challenging due to the high number of transitive dependencies, which are often
difficult to control. They also discussed mitigating unfixed vulnerabilities, they found out that
the first thing a software engineer does when faced with a weak dependency is assess the impact
it will have on their project. While they wait for an official patch, some people might choose
to disable the compromised functionality temporarily. When a vulnerability arises, knowledge-
able people frequently take matters into their own hands, addressing the issue on their own and
occasionally adding fixes to the original open-source repositories. It may be practical to switch
to another library that offers comparable features in situations where patching the vulnerability
is complicated or where the affected library is undersupported.

In their empirical study, Kula et al. [46] sought to investigate the behavior of software en-
gineers in updating their library dependencies and their response to security advisories. This
investigation was conducted through the examination of 4659 projects and the running of a

32

software engineer survey. The researchers discovered that a significant proportion of software
engineers are neglecting to update their library requirements. Specifically, of the projects exam-
ined, a staggering 81.5% were found to have outdated dependencies. A significant proportion,
namely 69%, of the software engineers who participated in the survey shown a lack of aware-
ness of the vulnerabilities present in their software. However, when being notified about these
vulnerabilities, they promptly undertook efforts to correct them. The process of updating these
libraries is not simple. Such updates are a difficult choice due to the intricate web of library
relationships, also known as "dependency hell." The costs and advantages of updating are fre-
quently compared. These updates are often viewed by software engineers as extra work that is
best completed when they have free time. The decision to update also depends on the software
engineer’s workload and how much weight their team or organization gives to such updates.
Even when there are newer alternatives, software engineers favor more established, older li-
braries. The potential impact of the vulnerability and the role of the dependency in the project
are frequently taken into consideration when deciding whether to react to a security advisory.
It was claimed by some software engineers that the failure to update the vulnerable dependency
was due to the inactivity of the project or due to its lack of criticality. Others believed that the
vulnerable element’s influence on the project’s goals was minimal.

In many instances, software engineers tend to emphasize the usefulness of software over its
security, especially when security measures have the potential to impact the product’s opera-
tional capabilities. Ivory et al. [35] found that professionals tend to prioritize feature completion
above security due to their demanding schedules and imminent deadlines. It has been shown
that software engineers exhibit a prevalent optimism bias, wherein they possess a belief that
they can efficiently identify and rectify security vulnerabilities. Indeed, a significant number
of security vulnerabilities are typically overlooked. It is noteworthy that certain engineers ac-
knowledge a lack of interest in or familiarity with security, hence rendering their programs
more susceptible to vulnerabilities. Moreover, software engineers often rely on their existing
expertise, implying that they may only possess an awareness of issues they have already expe-
rienced. A significant number of individuals choose heuristic-based coding, a method that may
exhibit biases and inaccuracies. They often rely on their friends for guidance instead of consult-
ing security experts, exposing themselves to the potential of receiving inaccurate information.
Moreover, certain software engineers may opt to disregard a vulnerability if it poses a risk to
the overall operation. Based on the findings of the study, it can be seen that in the absence of
a specific motivation, software engineers commonly resort to employing heuristic methods as
their default strategy. In many cases, prioritizing functionality is given greater importance than
the abstract concept of security due to its tangible nature. Solo software engineers may exhibit
a higher degree of idealism and prejudice as a result of limited exposure to contrasting view-
points. Nevertheless, the prioritization of security by software engineers may be influenced by
a company’s attention to this aspect.

3.5.3 Third-party library usage
The papers that we found in our quality assessment round for Trivial Packages and Third-party
library usage are 9. All of them are Empirical case studies, and a comprehensive breakdown
of the research methods can be seen in Table 3.11. The data that we extracted can be seen in
Table 3.3.

The initial study conducted by Abdalkareem R. et al. [4] aimed to gain insights into the
utilization of trivial packages within Node.js applications. The researchers examined a total
of 230,000 NPM packages and administered surveys to Node.js software engineers in order

33

Methodology Occurrences
Empirical case study 8
Exploratory study + Empirical case study 1

Table 3.11: Occurrences of Research Methods in Thrid-party libraries

to gather information regarding the usage of third-party libraries and the concept of "trivial
packages".Upon conducting an investigation, it was determined that a package is classified as
trivial if it contains fewer than 35 lines of code and had a McCabe’s cyclomatic complexity
of less than 10. More than 50% of the trivial packages examined lacked test coverage, had
fewer releases, and 43.7% had at least one dependency. Moving to the software engineers,
the researchers discovered that the utilization of third-party libraries and trivial packages is
mostly driven by their well-implemented and well-tested nature. These tools contribute to
enhanced productivity, maintainability of code, improved readability, and reduced complexity
within the application. There were instances in which individuals claimed that it enhanced
their performance. It was determined that the software engineer community has a significant
level of awareness on the benefits and challenges associated with utilizing trivial packages and
third-party libraries.

Abdaklerem R, et al. [3] extended their previous work, included 501,001 packages, and
also tested the PyPl together with npm. They found out that trivial package definitions are the
same for JavaScript and Python. software engineers of JavaScript and Python see trivial pack-
ages differently. In contrast to Python software engineers, who see the usage of trivial packages
as a negative practice in 70.3% of cases, just 23.9% of JavaScript software engineers thought
it was harmful to use such packages. software engineers predominantly use trivial packages
for their well-implemented and tested nature, with 54.6% of JavaScript and 54.1% of Python
respondents citing this reason. 47.7% of JavaScript and 32.4% of Python software engineers
believe these packages enhance productivity. A minority of respondents, 9.1% from JavaScript
and 5.4% from Python held the belief that Well-maintained code is a significant factor. They
identified several drawbacks, A significant 55.7% of JavaScript and 67.6% of Python software
engineers face “dependency hell”. Additionally, there is the risk of application breakage. As
noted by 18.2% of JavaScript and 32.4% of Python software engineers. Performance can be
impacted too, with 15.9% of JavaScript and 8.1% of Python software engineers citing slower
build, run, and installation times. In some cases, instead of speeding up work, trivial pack-
ages can cause delays (12.5% JavaScript, 10.8% Python). While 9.1% of JavaScript software
engineers mention potential missed learning opportunities, both communities are particularly
concerned about security: 8.0% of JavaScript and a notable 13.5% of Python software engi-
neers underscore the vulnerabilities trivial packages might bring.

The paper by M. A. R. Chowdhury et al. [17] also explored the reasons for adopting these
trivial packages, they found out that most of the trivial packages are deeply integrated into
projects, meaning if the packages are down it will affect the project. The overwhelming influ-
ence trivial packages had on both individual projects and the larger npm ecosystem surprised
many software engineers. The information sparked reflection, and several software engineers
hypothesized that the prevalence of trivial packages might be due to the void left by the lack of
a solid standard library for JavaScript. Another interesting observation was that when consid-
ering whether to include dependencies, software engineers frequently gave priority to elements
such as community acceptance and active project activity, frequently ignoring the triviality.
They stressed that software engineers who use these packages should not undervalue their sig-
nificance. Before incorporating these packages into their projects, they should make sure they

34

are regularly updated and carefully reviewed. Notably, these unimportant packages continue to
be project dependencies after their initial inclusion as well. To reduce dependency risks, soft-
ware engineers are urged to rigorously assess possible dependencies while taking into account
their trivial nature and investigate refactoring or migration approaches.

In their study, Enrique Larios Vargas et al. [47] examined the perspective of software en-
gineers in the process of selecting third-party libraries. A total of 16 software engineers were
interviewed, and a survey was conducted with 115 software engineers. The examination en-
compassed the technical, human, and economic factors that software engineers consider when
choosing third-party libraries. In relation to the technical aspect, the software engineers ex-
pressed their preference for libraries that are active and maintained long-term, they have regu-
lar updates, recent releases, and active contributions, and provide insights into library vitality.
The quality elements that have an impact on a library include good documentation, usabil-
ity, alignment with their architecture, good test coverage, no security vulnerabilities, and good
performance. The most fundamental criterion was the extent to which the library fulfilled its
project requirements. Another noteworthy observation is that software engineers who initi-
ate projects from the beginning have greater autonomy in choosing libraries, but for ongoing
projects, library selection is impacted by the necessity to conform with the existing software.

Xu et al [73] conducted two surveys exploring library reuse and re-implementation to dis-
cern why software engineers either substituted self-created code with an external library or vice
versa. Their findings revealed that 69.6% of respondents agreed on the commonality of replac-
ing self-implemented code with a library method, with 83.9% admitting to having done this
in their practice. Only 39.3% believe that replacing a library method with a self-implemented
code is common, but a larger 76.8% have done this in their practice. The reasons for replacing
the library method they gave were Improving reliability by 25%, Development efficiency by
24%, Testability by 22%, and Maintainability by 20%. Their criteria for library selection were
as follows: 22 out of 34 participants were in Library maintenance and testing, for Library repu-
tation, there were nine participants, Code and documentation readability had four participants,
and Stability had four participants. Library size/complexity had three participants, License
compatibility had 3 participants and finally, Integration ease had 2 participants. The findings
reveal that due to a lack of knowledge of the library or because the library’s method was not
yet introduced, software engineers frequently replaced their internally implemented methods
with those from external libraries. They decide against using their own implementation when
they later come across a well-maintained and tried library that meets their needs in the context
of why software engineers Replace an External Library Method. With their Self-Implemented
Code, they found out that 21% wanted to reduce dependency, 19% wanted to improve flexi-
bility, 18% wanted a simpler solution, and the interesting fact was that only 3% wanted better
security.

Mujahid et al [54] conducted a qualitative study on a survey of JavaScript software engi-
neers to determine the qualities that JavaScript software engineers want in npm packages. They
surveyed 118 JavaScript software engineers for this study. The researchers discovered that the
primary factors influencing the choice of a library include documentation, which received a
93% preference rate, followed by download counts at 85%. The star count, rated on a 5-point
scale, averaged at 4.0. Lastly, around 62% of software engineers considered vulnerabilities
when making their selection. The parameters that exhibited some degree of significance were
release dates, commit frequency, test code, license, dependent applications count, number of
dependencies, closed issues count, and number of contributors. Another noteworthy consid-
eration for software engineers when picking libraries was the level of support from prominent
companies such as Facebook, Formidable Labs, and Infinite Red. Libraries backed by these

35

companies were perceived as more trustworthy and dependable. Positive reception is often
observed for active community conversations and endorsements from reputable software engi-
neers within the community.

In their study, Chen et al. [14] conducted a survey including 59 Javascript software engi-
neers who actively create trivial npm packages. The objective of the study was to investigate
the motivations behind software engineers’ decision to publish such packages, as well as their
perceptions of the negative repercussions associated with these products. Additionally, the re-
searchers aimed to assess the extent to which these negative concerns may be alleviated. The
results obtained from the study indicated that the advantages of publishing simple packages
were as follows. The primary focus of this study is on the development of reusable compo-
nents, which accounts for 64.41% of the overall emphasis. Additionally, the examination also
encompasses the evaluation and documentation of these components, constituting 33.90% of
the research concerns. The concept of separation of concerns, with a significance of 32.2%,
is another crucial aspect that is explored. Furthermore, the study delves into the optimization
of these components, which has an importance of 27.12%. Lastly, the study acknowledges
the importance of contributing to the community and personal satisfaction, which accounts for
22.03%. When they were asked what the disadvantages were, the respondents predominantly
indicated the need to manage various packages, the emergence of dependency conflicts, and
the challenge of identifying suitable packages. They proposed grouping their packages, and it
will save 13% of the number of dependencies in the ecosystem.

Lopez et al. [49] proposed several metrics for software engineers to consider when selecting
libraries:

• Popularity: Number of client projects using the library.

• Release Frequency: Average interval between consecutive releases.

• Issue Response And Closing Times: Average times for issue responses and issue reso-
lutions.

• Recency: The date of the latest library update or release.

• Backwards Compatibility: Average number of breaking changes per release.

• Migration: Frequency of library replacements in client projects.

• Fault-proneness: Measured by the number of bug fixes.

• Performance & Security: Efficiency of the library’s code and its vulnerability.

In a subsequent study, Lopez et al. [20] conducted research aimed at examining the efficacy
of software metrics in facilitating software engineers’ decision-making process when selecting
libraries. The majority of participants expressed that metric-based comparisons were beneficial,
as shown by an average Likert scale rating of 3.85. Performance, Popularity, and Security were
the top three metrics influencing software engineers’ decisions. Their means were 4.08, 4.06,
and 4.00, respectively. Other metrics, such as Issue Closing Time and Last Discussed on Stack
Overflow were found to be less influential. The software engineers are in need of supplementary
metrics pertaining to the usability of documentation and libraries. The significance of specific
indicators differs across different areas. For instance, the importance of security varies across
different areas.

36

3.6 Software Ecosystem
Before delving into TrustSECO’s background and functionalities, it is essential to understand
the concept of the software ecosystem: its definition, the various types of ecosystems, and
their mining capabilities. SECOs are defined as "are sets of actors that collaboratively serve
a market for software and services, typically with an underlying technical platform" [34, 36].
The roles within the software ecosystem include [34]:

• End-user: An individual who uses the software to improve their productivity.

• End-user Organization: A group of end-users using the software to support their orga-
nization’s objectives.

• Software Engineer: Professionals who develop and maintain software products.

• Software Producing Organization: An entity that employs software engineers to de-
velop and maintain software aimed at broad adoption.

• Package Maintainers: Software engineers responsible for the upkeep of software pack-
ages, often working independently and utilizing platforms like GitHub for storage and
maintenance.

Furthermore, they describe the exchanges within the software ecosystem, which consist of:

• Software Product: "A prepared collection of software elements or a service powered by
software, complete with supporting materials, made available for a particular market."

• Component: "An independent module with specified connectors and requirements that
can be assembled and implemented on its own."

• Library: A compilation of functions tailored for specific tasks, such as React, which
provides functions that facilitate writing client-side code.

• Package: A collection that includes software, libraries, and metadata detailing the name,
version, and dependencies of the software.

Lastly, the authors elucidate the following ecosystem services in Figure 3.3.

• Ecosystem Services: Services that enhance existing software, such as Integrated Devel-
opment Environments (IDEs) that assist in code writing and debugging.

• Package Manager: A tool for the automated management and updating of software
packages on a computer system.

• Package Repository: A storage server where software packages are hosted and made
accessible.

More researchers provide an exploration of the SECO. According to Mens and De Roover,
SECO can be viewed from various perspectives, including ecological, economic, technical,
and social, each perspective offers a unique context and structure [52]. This understanding
is from Manikas[50] that encapsulates all these views, describing a software ecosystem as:
“the interactions of a set of actors on top of a common technological platform, resulting in

37

Figure 3.3: Structure of the software package ecosystem[34].

a number of software solutions or services. Each actor has specific motivations or business
models and is connected to other actors and the ecosystem through symbiotic relationships. The
technological platform is structured to allow the involvement and contribution of the different
actors”. Additionally, they further categorize software ecosystems into six primary types:

• Digital Platforms: These are defined as platforms where the product is owned by a
company, such as Apple’s App Store, JetBrains’ IntelliJ IDEA, or Microsoft’s VSCode.
They allow third-party apps or plugins to integrate, with contributors being the software
engineers of these third-party libraries and their respective users.

• Social Coding Platforms: These platforms primarily host software projects. They serve
as repositories where software engineers can version, store, and maintain their codebases.
Examples include GitHub, GitLab, and BitBucket. In this context, the components are
the software projects, and the contributors are the software project software engineers.

• Component-based Software Ecosystems: This concept is centered around the reuse
of software components, enabling the efficient utilization of previously developed soft-
ware, thereby saving time and reducing costs. Initially proposed by McIlroy, this idea
did not gain much traction during its inception. However, with the advent of cloud com-
puting and the emergence of OSS, it has witnessed significant success. A prime exam-
ple of such ecosystems is the realm of third-party libraries, which is the focal point of
this thesis. Each ecosystem is accompanied by its own package managers and package
registries where the software packages are stored. For instance, Python utilizes PyPi,
JVM languages use Maven, JavaScript employs npm, and .NET relies on NuGet. The
core components of these ecosystems are the interdependent software packages, while
the contributors encompass both the consumers and producers of software packages and
libraries.

• Software Automation Ecosystems: These ecosystems are centred around automating
various facets of software management, development, and deployment. Examples in-
clude:

– Containerization: Software engineers package components into containers, ensur-
ing uniform behavior across different environments.

38

– Management: Tools such as Bicep and Terraform, which use Infrastructure as Code
(IaC), help automate infrastructure management tasks.

– DevOps and CI/CD: Continuous deployment and delivery tools streamline and au-
tomate workflows during deployments. Here, the components are container images
and CI/CD pipelines, and the contributors are DevOps professionals.

• Communication-oriented Ecosystems: Unlike technical ecosystems, these primarily
focus on platforms facilitating communication within software communities. Examples
include modern communication platforms such as Slack and Discord, and discussion
forums, namely Stack Overflow where software engineers seek and offer advice. The
components in these ecosystems are emails, messages, posts, and questions, while the
contributors encompass software engineers, end-users, and researchers.

• OSS Communities: OSS communities are decentralized groups that maintain open and
transparent projects. While they offer the benefits of transparency and openness, chal-
lenges such as delayed updates and unmaintained components persist, often because
many contributors volunteer their time unpaid. However, initiatives are emerging to fi-
nancially support these contributors. Prominent OSS communities include the Apache
Software Foundation and the Linux Foundation.

The above classification of SECOs reveals their various roles in the industry. Together, these
ecosystems form a complex environment that is critical for understanding modern software
development, particularly with regard to third-party libraries.

3.7 The npm Ecosystem
In this thesis, we delve into the realm of Component-based software ecosystems, with a spe-
cific focus on the npm ecosystem. This selection is due to a discernible gap in the literature
and the intended design of a tool tailored for this ecosystem. Npm, an acronym for Node Pack-
age Manager, is a package manager for the Node.js platform. According to the official npm
documentation, the current count of packages is 2,565,715.

Package managers, as defined by Hisman et al. [53], are “programs that map relations
between files and packages (which correspond to sets of files), and between packages (depen-
dencies), facilitating users in maintaining their systems at the package level rather than dealing
with individual files”. In essence, package managers simplify the task of packaging files and
code, promoting reusability within our codebases. This is the core functionality of npm, which
aids developers in packaging reusable code to be used within the Node.js environment [2].

npm is recognized as the world’s largest software registry. The npm ecosystem comprises
three primary components:

• Website: Utilized for searching and examining packages.

• CLI (Command Line Interface): Employed by developers to manage packages, including
retrieving and uploading them to the registry with commands such as npm install and
npm publish.

• Registry: The database that contains all the JavaScript packages.

39

We can understand the roles within the npm ecosystem by referencing the model presented
by Hou and Jansen, as shown in Figure 3.3. The primary users of npm are software engineers
and organizations that utilize the packages available through npm’s Command Line Interface
(CLI). Npm itself acts as the package manager, overseeing a registry that stores packages and
facilitates their retrieval and installation upon user request. Additionally, npm maintains a local
database that aids in managing the metadata of installed packages. The packages in the npm
registry are maintained and kept up-to-date by software engineers. The package can also have
dependencies in the npm, other dependent packages which are called transitive dependencies,
the npm automatically detects and installs all the packages.

They also explain the trust factors in the software package managers, the factors that con-
tribute towards the trust are dependency hell, security vulnerability, and package prevention. In
npm there is no such solution to dependency hell, when you install a package it will give you
all the dependencies, npm is not strong enough with prevention as explained in [77], most of
the high vulnerabilities and preventions are done when a user reports it and they can take down
the package, also regarding the vulnerabilities, there can be packages with vulnerabilities and
the only thing that npm is doing is giving you with warning using npm audit, and an ability to
fix with npm audit fix, however, it does not detect all the vulnerabilities and it does not fix all
of them.

Compared to other Software Ecosystems (SECOs), npm is distinct as it is open-source,
allowing everyone to contribute and view the code. This contrasts with many other SECOs
that are closed-source. Another unique aspect of npm is its centralization around a single
repository, the npm registry. Governance in npm is community-driven, which sets it apart from
others. Additionally, npm excels in dependency management, offering robust features in this
area. Furthermore, the ease of versioning and publishing in npm is notable, making it more
user-friendly compared to other SECOs.

3.8 Background on TrustSECO
TrustSECO is an innovative system designed to help users confidently choose and install soft-
ware based on its reliability. Its main spotlight is on tracking and assessing different versions
of software packages. The system gathers insights from a wide array of users, including reg-
ular software users, software-making companies, and even the individuals behind the creation
of these software packages. They all come together to pool information that provides insight
into the software’s past performance, any known issues, and its general trustworthiness. This
gathered data is housed in an online ledger that serves as the foundation of TrustSECO. using
a specially created scoring mechanism, this ledger actively assists in determining how much a
user can trust a specific software package. By ensuring users have all the information they re-
quire about software before deciding to use it, TrustSECO essentially aims to make the digital
world safer and more dependable [33]. In the following subsection, we explain and dive into
each part of the TrustSECO software.

3.8.1 Distributed Ledger
The Distributed Ledger was designed to decentralize the database, allowing the community to
create and access it. The community ensures the system remains private and secure to prevent
the entry of unchecked data, employing “spider jobs” that come with a variable fee.

This ledger lets both users and software providers input data. Based on the information
provided, the ledger adjusts the score: factors such as the number of GitHub stars can boost the

40

score, while the presence of harmful bugs might reduce it.

3.8.2 Spider
The spider is in charge of collecting the information or trust facts via API calls or web crawling.
It pulls data from several sources, including Stack Overflow, Libraries.io, GitHub, and CVE to
collect the data.

3.8.3 Portal

The portal of the project is created in Vue.js2. The main purpose of the portal is to provide UI
for the user, so they can spider and/or retrieve/store data on the distributed database.

3.8.4 Trust Score Calculation
Through the use of a trust score, TrustSECO has developed a system to evaluate the trustwor-
thiness of software packages. This rating has several properties:

1. Multi-dimensionality: It assesses the software package as well as its particular version
and the software engineer community that supports it.

2. Transparency: The score calculation is replicable given the same data, promoting com-
munity consensus.

3. Combinatorial: The evaluation of package combinations can be done by combining
various scores.

4. Numeric: Designed to quickly determine whether a piece of software is reliable.

According to TrustSECO, software trust has many facets and is influenced by both the
software and additional factors. They have a number of properties that they are calculating
based on TrustSECO’s scoring. Starting with Packages + Versions, because trust is variable,
different versions of the same package might have different trust ratings. Bug resolution times,
user feedback, known vulnerabilities, and confidence in the contributing software engineers are
all factors that affect this. Secondly, the sole Package Managers, they are potentially unsafe.
TrustSECO’s assessment criteria encompass Usage frequency. Any malicious, outdated, or
broken dependencies. Reputation and popularity. Compliance with security standards. Recent
compromises of the package manager. Another part of the calculation involves the Software
Engineers, who are critical to the collection of the Trust facts because they are providing
information such as activity duration on platforms such as Github, star ratings, and negative
experience. Last, it is the Software Organizations, they are considering the following factors:
Organizational support and popularity.

The steps for Trust Score calculation are as follows:

1. A user submits a package name and version.

2. Relevant trust facts for that package are retrieved.

3. Each trust fact’s data points are counted and stored in an array.

2https://vuejs.org/

41

https://vuejs.org/

4. Each data point, converted to an integer, is multiplied by its weight. This value is then
divided by the number of data points for that trust fact to obtain an average.

5. The final score is adjusted to fit within a 0-100 range

The model of the TrustSECO can be seen in Figure 3.4

Figure 3.4: Architecture for Integration of TrustSECO with npm [9].

The implementation details and source code of TrustSECO are available for review on
GitHub at this link.

3.9 Grey Literature Review
In the systematic literature review (SLR), we identified various tools for trust reinforcement
mechanisms within the npm ecosystem. A notable gap was observed in the literature regarding
the development of such tools. Given that our tool is intended to be command-line based,
a decision influenced by the common interaction of developers with npm through CLI, we
explored this direction further. The npm ecosystem primarily comprises three components:
the website, CLI, and the registry. While the website facilitates library exploration and the
registry serves as a storage medium, the CLI remains the most interactive element for software
engineers. Hence, our focus is on developing a CLI wrapper tool over npm. However, existing
literature lacks detailed insights into the development methodologies, libraries used, and best
practices followed in the creation of such tools. Consequently, we turned to grey literature to
bridge this knowledge gap.

For adherence to best practices in CLI tool development, we referred to sources such as
Prasad et al. [63], Jeff D [19], official Heroku documentation [1], Gnu Standards for Command
Line Interfaces [28], and Czapski [18].

Czapski emphasizes the development of command-line interfaces (CLIs) across various
programming languages, highlighting key guidelines for optimal CLI design. These guide-
lines include ensuring command clarity, producing easily interpretable outputs, and enhancing
command discoverability.

Jeff presents a structured approach with 12 critical factors for building effective CLIs that
they introduced in Heroku. These encompass the necessity of comprehensive help features, a

42

https://github.com/SecureSECO/TrustSECO

preference for flags over arguments, inclusion of version control, attention to input and output
streams, robust error handling, user-friendly interfaces, interactive prompts, the use of tabular
data representations, optimizing for performance, fostering a community for contributions, and
clarity in subcommand structures.

The official GNU documentation advocates for simplicity and user-friendliness in CLI de-
sign. It recommends the implementation of both short and long-named options, such as ’-o’
and ’–options’, to cater to user preferences. A fundamental requirement is the inclusion of
’–version’ and ’–help’ flags in all CLIs. Additionally, it stresses the importance of maintaining
consistency in commands, flags, and arguments throughout the program.

Prasad’s guide offers a thorough framework for creating effective command-line interface
(CLI) tools. His methodology focuses on a ’human-first’ design, prioritizing user experience in
CLI development. He emphasizes the critical role of comprehensive documentation and readily
accessible help functions to guide users. The guide also delves into the importance of designing
intuitive and clear outputs, ensuring that users can easily understand and interact with the CLI.

Error handling is another key aspect highlighted by Prasad, underscoring the need for CLIs
to manage and report errors effectively. He discusses the optimal use of arguments and flags
to enhance user command control, as well as the significance of CLI interactivity for a more
engaging user experience. Subcommands are addressed, with a focus on their organization and
clarity.

Furthermore, Prasad underscores the importance of robustness and future-proofing in CLI
tools. This includes considerations for scalability and adaptability in response to evolving user
needs and technology advancements. Lastly, he provides insights into effective naming con-
ventions, ensuring that command and option names are intuitive and self-explanatory, thereby
enhancing overall usability.

Our exploration in the npm registry and various articles led us to identify the following
libraries that aid in CLI tool development:

• yargs: 90,783,468 Weekly Downloads, 7 dependencies, last release: 7 months ago,
Health Analysis: 91/100.

• oclif: 124,840 Weekly Downloads, 18 dependencies, last release: 1 month ago, Health
Analysis: 86/100.

• minimist: Weekly Downloads: 56,176,805, Dependencies: 0, last release: 9 months ago,
Health Analysis: 88/100.

• meow: 18,440,305 Weekly Downloads, Dependencies: 0, last release: 3 months ago,
Health Analysis: 91/100.

• inquirer: Weekly Downloads: 28,800,689, Dependencies: 15, last release: 6 days ago,
Health Analysis: 97/100.

• vorpal: 34,767 Weekly Downloads, Dependencies: 10, last release: unknown, Health
Analysis: 53/100.

• commander.js: Weekly Downloads: 134,435,650, Dependencies: 0, last release: 2 days
ago, Health Analysis: 93/100.

The Health Analysis is done with Snyk. Among these seven npm libraries, oclif is classified
as the most comprehensive framework. However, its popularity is moderate, it has numerous

43

dependencies, and its health rating is below 90. In contrast, yargs, minimist, meow, and com-
mander.js are more lightweight and provide essential features for CLI development. Inquirer is
a utility for interactive prompts. Vorpal, however, is no longer supported and has a significantly
low health rating.

In the evaluated npm libraries, commander.js stands out as a notable example, striking an
optimal balance between being lightweight and feature-rich. It emerges as the most popular
among its counterparts, characterized by its extensive maintenance. Remarkably, commander.js
operates with zero dependencies and has achieved a health score of 93, further solidifying its
position as a preferred choice in this domain.

3.10 Discussion
With the SLR and all the data that we gathered, we can answer our research questions. We have
25 papers to study to answer RQ1 and RQ2, and 15 papers for RQ3, the data extracted can be
seen in Table 3.12

Research questions Papers
RQ1 29
RQ2 29
RQ3 14

Table 3.12: Research questions with number of papers

RQ1: What kind of trust reinforcement mechanisms exist in package ecosystems?
Answer: Addressing this question is complex. Initially, we must define what constitutes

trust in the software ecosystem. According to Hou et al.[9], it is the end-user’s willingness
to take risks, grounded in their belief that the system providers will be dependable. Based on
this definition, trust in package ecosystems involves the end-user trusting that both the package
provider and creator will be reliable. However, trust cannot always be assured, especially in
less stringent open-source systems like npm. While npm strives to enforce security and depend-
ability, vulnerabilities can still be introduced. As noted in subsection 3.5.1, there are numerous
tools enhancing trustworthiness in these ecosystems. These include various approaches like
dynamic and static analysis, build automation, sandboxing, and machine learning techniques
to identify vulnerabilities. These tools focus on different aspects, such as transitive vulnerabil-
ities, code injections, zero-day vulnerabilities, clone packages, malicious code, and permission
systems, each with its specific use cases. The npm ecosystem performs checks for potential
security issues, but some risks may still bypass these measures. Notably, most tools do not
prevent the installation of a package but rather operate as post-installation tools, scanning the
codebase or requiring manual package checks, as shown in Table 3.6. We identified a gap in
our study: the need for a tool that safeguards users before they install a package, allowing them
to assess its trustworthiness.

RQ2: How effective are trust reinforcement mechanisms in package ecosystems?
Answer: The evaluation of trust reinforcement mechanisms in package ecosystems, as re-

ported in the literature, generally indicates positive outcomes. Tools analyzed in various studies
demonstrated high precision in detecting issues and security vulnerabilities in libraries. How-
ever, there’s a variance in the reported effectiveness. Some studies did not disclose effectiveness
metrics, while those that did revealed differing perceptions of effectiveness. This variation is

44

often attributed to factors like the occurrence of false positives or negatives, performance mea-
surements, and the number of errors identified.

In terms of capabilities, certain tools were effective in identifying basic errors, whereas
others were advanced enough to detect zero-day vulnerabilities. The diversity in techniques
used by these tools complicates the task of establishing a uniform standard for comparing their
effectiveness. Additionally, the literature often points to limitations such as high rates of false
positives or negatives, reliance on specific platforms like GitHub, and constraints unique to
particular tools. These factors collectively contribute to the challenge of assessing the overall
efficacy of trust reinforcement mechanisms in package ecosystems.

RQ3:How do software engineers perceive the balance between adding new features
and ensuring security in their npm packages?

Answer: In Subsection 3.5.2 and Subsection 3.5.3, we examined the literature related to the
utilization of third-party libraries and the security awareness of software engineers. Our anal-
ysis revealed that software engineers demonstrate an increased level of security consciousness
when selecting third-party libraries, regardless of whether they are complex libraries or simple
packages. Nevertheless, while selecting libraries or attempting to upgrade them, the emphasis
is consistently placed on prioritizing the library’s usefulness or the stability of the system rather
than its security. Security vulnerabilities are not their first priority. When selecting a library,
individuals tend to value indicators such as documentation quality, download numbers, and
star counts. A significant proportion of software engineers are unaware of the vulnerabilities
present in their libraries, and many of them neglect to update these libraries due to perceiving
it as a burdensome task.

Based on our examination of Research Questions 1, 2, and 3, it is apparent that a defi-
ciency exists within the current body of literature. To begin with, it is worth noting that there
is currently a lack of available tools that offer proactive warnings or safeguards prior to the
installation process. Furthermore, it is evident that software engineers acknowledge the need
of security; nevertheless, it is not frequently prioritized within their top three factors when
making package selections. It is believed that the implementation of this tool will serve as a
preventive measure against the installation of potentially harmful third-party libraries. This is
due to the observation that software engineers generally lack the initiative to thoroughly assess
security vulnerabilities when selecting packages, as well as the limited effort put into updating
existing packages. By "preventing" software engineers from initiating installations altogether,
it is anticipated that a significant portion of the challenges currently encountered by software
engineers can be mitigated.

45

Chapter 4

Design Science

In this chapter, we describe the creation of our artifact: TrustSECO.js. This CLI-based tool
is developed to address gaps highlighted in our earlier literature review. Its primary function
is to offer both pre-installation and post-installation features, with a particular focus on the
former. This ensures users avoid adding unreliable or harmful software to their projects. A
pre-installation tool or feature provides a safeguard for software engineers, ensuring safety
and compatibility before installing any package or software in a project or on a machine. On
the other hand, a post-installation tool or feature is used for conducting thorough checks and
assessments after the software or package has been installed.

4.1 Conceptualization of TrustSECO.js
TrustSECO.js serves two main purposes: first, it protects developers from questionable and
vulnerable software. Second, it allows for an analysis after software installation. If develop-
ers have already used several third-party libraries, our tool offers two methods to check the
trustworthiness of these packages. The main method involves scanning the entire codebase,
specifically the package.json file, to identify dependencies. These are then checked against the
distributed ledger of TrustSECO. This method has two paths: one that looks only at primary de-
pendencies and another that examines deeper transitive dependencies. Based on our literature
study, vulnerabilities in one dependency can affect its connected elements. Thus, understand-
ing these deeper connections helps developers decide whether they should switch libraries or
update versions.

4.1.1 Core Functionalities and Post-installation Analysis
TrustSECO.js serves a dual purpose: it protects developers from untrustworthy software and
allows post-installation scrutiny. For projects with pre-existing third-party libraries, the tool
offers two distinct methods for trustworthiness evaluation: scanning the codebase to list depen-
dencies and offering both primary and deeper transitive dependency analyses.

4.1.2 Additional Features: Reporting and Policy-Based Access
To cater to various developer and organizational needs, TrustSECO.js can produce CSV re-
ports of dependencies. The exploration of transitive dependencies without installing the spe-
cific library is also facilitated. Furthermore, drawing from our literature insights, a policy-based
access feature is planned, allowing entities to set specific installation policies.

46

In essence, TrustSECO.js seeks to furnish developers with a holistic view of their software
libraries. The subsequent sections will delve deeper into the design details of TrustSECO.js.

Figure 4.1: Meta model of the initial design.

Meta-model can be seen in Figure 4.1

4.2 Design Rationale
During our literature review, we noticed that many tools focused on what they achieved, how
they operated, and the results they delivered. Still, there was a lack of detail on how they were
developed, the challenges faced, or the specific tools used. This observation led us to explore
grey literature to better understand how to develop our NPM CLI integration.

We primarily turned to content written by experienced developers because of their hands-on
tool-building insights. Medium articles1 and the official node.js documentation were particu-
larly informative.

According to the Node.js documentation, it is possible to create CLI tools using built-in
modules by processing command-line arguments provided to the Node.js script using pro-
cess.argv, which allows access to user inputs. We can also use child_process. This method

1https://medium.com

47

https://medium.com

lets us run external programs within our Node.js application [25]. However, this manual ap-
proach can be quite time-consuming and requires a lot of manual work, especially when han-
dling different command-line inputs, where we have to parse and validate the command-line
arguments.

Instead of spending too much time on detailed low-level tasks, we looked for existing li-
braries that could help speed up our work. Third-party library helps us abstract the repetitive
tasks of processing the command-line arguments, it makes the process more efficient and less
error-prone.

Our search in the npm registry brought us to several promising CLI libraries explained in
SLR, namely the Grey literature section:

• yargs2

• oclif3

• minimist4

• meow5

• inquirer6

• vorpal7

• commander.js8

Many of these libraries depended on others. Following the advice from Prasad et al. [63],
we aimed for libraries with few dependencies to reduce potential risks. We wanted a simple
tool but one that also had all the functions we needed, regarding this part, most of the libraries
that we looked at the base and necessary features required to build a CLI tool. From the
libraries listed, commander, minimist, and meow had no dependencies. When we checked their
trust scores, we found that inquirer, yargs, meow, and commander all had substantially high
scores, the scores were obtained from the Snyk database. Given that TrustSECO is known to
occasionally produce false positives, we aimed to ensure the accuracy of our library selection by
cross-referencing with this more reliable source. Ultimately, we chose commander.js because
it is widely used, has a high trust score, an active user community, regular updates, and has the
highest download count.

TrustSECO.js tool was built using TypeScript9, chosen over JavaScript for better type-
checking. Since the tool is for npm, using its native language was sensible.

4.3 Detailed Design
This section provides an in-depth look at the design of our Command Line Interface (CLI) tool,
breaking down the architecture of commands, the method of output delivery, and the design of

2https://www.npmjs.com/package/yargs
3https://www.npmjs.com/package/oclif
4https://www.npmjs.com/package/minimist
5https://www.npmjs.com/package/meow
6https://www.npmjs.com/package/inquirer
7https://www.npmjs.com/package/vorpal
8https://www.npmjs.com/package/commander
9https://www.typescriptlang.org/

48

https://www.npmjs.com/package/yargs
https://www.npmjs.com/package/oclif
https://www.npmjs.com/package/minimist
https://www.npmjs.com/package/meow
https://www.npmjs.com/package/inquirer
https://www.npmjs.com/package/vorpal
https://www.npmjs.com/package/commander
https://www.typescriptlang.org/

the user interface. It offers a thorough exploration of the thought process behind each feature,
the libraries chosen for implementation, and the reasons behind these choices.

Our CLI tool is developed with a focus on human-first interaction, meaning its primary
function is to engage with users to carry out various tasks. To craft a user-friendly experience
for developers, we followed guidelines from several well-known sources, including Prasad et
al. [63], Jeff D [19], the official Heroku documentation [1], Gnu Standards for Command Line
Interfaces [28], and Czapski [18].

Commander.js played a crucial role in the tool’s development, providing high-level func-
tionalities that made the setup of our CLI tool straightforward. The library’s built-in commands
created a structured way of defining the commands that trigger specific logic. We started with
an initial version of our tool, supplemented with a detailed description of its purpose, and then
introduced four main commands—info, install, scan, and view-tree. Each of these commands
will be introduced in more detail in the following sections. The commands are associated with
specific keywords and a concise explanation, as represented in Figure 4.2, helping users utilize
the tool effectively without constantly referring to external documentation.

Figure 4.2: Comprehensive help information

Figure 4.3: Comprehensive help information of Scan command

Figure 4.4: Loading Process

49

One of the key principles in our development process was to extend commands through
the use of flags, avoiding the introduction of additional arguments or separate commands. This
approach resulted in enhancing the scan command with flags such as -dependencies and -report,
allowing users to include transitive dependencies in the scan and export the results to a CSV
report, respectively. For user convenience, shorter versions of the flags (-d and -r) were also
made available.

Once the basic structure of the CLI tool was in place, we focused on creating detailed help
sections for each command. Thanks to Commander.js’s inherent help flag, users can easily
access general information and a list of available commands, enhancing their experience as
shown in Figure 4.3.

4.3.1 Install Command
The install command is a fundamental element of the CLI tool, acting as the main mechanism
for developers to incorporate third-party libraries. It mirrors npm’s functionality, allowing de-
velopers to specify a library name and, if needed, its version. Detailed information is available
through the -h or –help flag, as illustrated in Figure 4.6.

A significant feature of the install command is the policy checker. It allows for the incorpo-
ration of custom policies by adding a policy.{env}.json file to the project’s root directory. With
a Permissive Approach, the policy checker functions smoothly when there are no restrictions,
operating similarly to the standard npm. The flexibility in the allowed and blocked proper-
ties guides the accessibility to libraries, with warnings presented for any policy breach. The
mandatory presence of a policy json file in the root directory and the non-restrictive nature of
this feature are essential, ensuring developers have the final say, as depicted in Figure 4.8 and
Figure 4.7.

After the policy verification step, the trust score and package details are fetched from the
ledger and displayed in a user-friendly ASCII table format. If the trust score is below a set
threshold, a conspicuous yellow warning is issued, seeking user confirmation to proceed. This
process, detailed in Figure 4.5, highlights the intricate nature of the install command in our tool,
significantly contributing to secure and efficient software development. For each array-like
structured data retrieved from the ledger, an effort is made to display it in a separate table. This
approach aims to enhance the intuitive understanding and user experience for the developer.

Figure 4.5: Install Intercept Process

50

Figure 4.6: Install command help

Figure 4.7: Blocked Library Alert

4.3.2 Scan Command
The second command incorporated in our tool is the scan command. During the development
phase and the subsequent literature review, our tool was envisioned with the primary objec-
tive of establishing a pre-installation mechanism to prevent users from incorporating malicious
packages. Although our tool was originally designed for pre-installation, it possessed the es-
sential features enabling it to function as a post-installation tool as well. This capability is
particularly beneficial for projects that are already built, allowing them to scan their existing
installed packages. Similar to the install command, developers can employ a help flag to review
the description and functionality of the command, as illustrated in Figure 4.3.

The core function of this command is to scrutinize the packages.json file, extract all the
dependencies, perform a scan over the distributed ledger of TrustSECO, and display the results
in the terminal. Any trust score falling below the predetermined threshold will be highlighted
in yellow to attract the developer’s attention. The scan command is also equipped with two
additional features: the ability to scan dependencies and generate reports. We have enhanced
the tool to scan not only the primary dependency but also include transitive dependencies.
By executing the flag -d or –dependencies, we leveraged the npm ls command to retrieve all
transitive dependencies and present a tree-like visualization of the trust scores, as depicted in
Figure 4.10. In the transitive dependency scan, we relied on npm to list dependencies. While the
npm ls command provides an extensive tree of all dependencies, our CLI needed to traverse
each package to obtain its trust score. Given the potentially vast number of packages, this
process involves significant recursion. To optimize data fetching, we employed memoization
and caching portions of the tree. If a trust score for a package was previously calculated, we
retrieved it from the cached data.

The final feature of the scan command is report generation. For every scan or transitive scan,
the flag -r or –report can be added to generate a CSV file named trust_scores_report.csv in the
project’s main root. This feature facilitates better reporting for developers and aids in the future
improvement of their untrusted dependencies, with an example of the reporting illustrated in
Figure 4.11.

51

Figure 4.8: Allowed Libraries

Figure 4.9: Dependency Scan with Report Export

4.3.3 View-Tree Command
The view-tree command serves as an augmentation to our pre-installation strategy. It is partic-
ularly useful when there is a need to inspect transitive dependencies without downloading the
app or navigating to the portal. By employing the view-tree command, users can visualize the
transitive dependencies along with the trust scores, as demonstrated in Figure 4.12.

4.3.4 Info Command
Lastly, the info command serves as an alternative approach to the install option. It accommo-
dates developers who may prefer to review detailed information and the trust score of a package
prior to installation. This command, as exemplified in Figure 4.13, enables such functionality,
providing users with insights into package details without necessitating installation.

52

Figure 4.10: Transitive Dependency Scan

53

Figure 4.11: CSV report

Figure 4.12: Dependency Visualization Tree

Figure 4.13: Library Information Retrieval

54

4.4 Preliminary Testing
For the examination of the TrustSECO.js tool, two distinct testing methodologies were adopted.
The first method involved the utilization of the Jest10 testing framework, a widely acknowl-
edged and industry-recommended tool, for conducting automatic unit tests. Unit testing is a
foundational approach in software engineering, aimed at validating the smallest components of
an application, thereby enabling developers to identify and rectify issues at an early stage.

The second method was manual testing, which entailed executing each command on a va-
riety of third-party packages. The combination of both automatic and manual testing strategies
proved invaluable in identifying and resolving logical and critical bugs within the tool, thereby
enhancing its reliability and efficiency. Nevertheless, it is relevant to note that the tool’s per-
formance is contingent on third-party API calls, such as requests to the TrustSECO Distributed
Ledger and npm APIs. Addressing potential bottlenecks related to these dependencies extends
beyond the purview of this study, as it necessitates optimizations at the backend of TrustSECO.

The importance of speed in the operability of any CLI tool is underscored by Jeff D. [19],
emphasizing that while promptness is crucial, certain allowances must be made for tools per-
forming significant tasks. The TrustSECO.js tool aligns with this observation, as it undertakes
substantial tasks, notably the API fetching of each transitive dependency. Consequently, vari-
ations in performance were observed, with some components exhibiting expedited responses,
while others necessitated extended durations.

A summary of the testing results for each command and flag is as follows:

• install: 2790ms with verions. 4414ms without version

• info: 1500ms

• scan: 4000ms

• scan -d: 137s

• scan -r: 4000ms

• view-tree: 19s

The test was conducted using the Bookshelf library to examine the installation process,
utilizing the MeasureCommand11 PowerShell command to gauge the execution speed. The
selection of Bookshelf as a testing library was based on its profile of having few dependen-
cies, numerous unresolved issues, known vulnerabilities, and a lack of releases in the past three
years. This made it an ideal candidate for evaluating the trust score and assessing the perfor-
mance of the library.

The tests were done on a Windows 11 laptop with the following specs:

• Intel Core i7-1185G7 @ 3.00GHz

• 32GB RAM
10https://jestjs.io/
11https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/

measure-command?view=powershell-7.3

55

https://jestjs.io/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command?view=powershell-7.3

The results show that the install function is notably slower, nearly twice as slow as a stan-
dard npm install, when the version is not specified. This slowdown is due to the need for two
HTTP calls, one for fetching data and another for obtaining the latest version from the npm
registry. On the other hand, a significant speed improvement is observed when the version is
specified by the user. The time taken is close to that of npm install, with a small additional
delay of 300 milliseconds in our setup, which is deemed reasonable.

The performance of the ’info’ command is also commendable, executing in a relatively
quick 1500 milliseconds. This speed is appreciated, especially given the necessity to initialize
the JavaScript compiler, a step known to take a significant amount of time. However, the eval-
uation of other commands such as ’scan’ and ’transitive dependencies’ faced a challenge due
to issues in the backend system that generate trust scores, preventing their interaction with our
packages. To work around this, a mock delay of 300 milliseconds was introduced to simulate
the fetching of trust scores and trust facts. The choice of a 300-millisecond delay was based
on the observed time difference between npm install and our install process, assumed to be
the data retrieval time. It is important to note that this setup is experimental, and the findings
should be viewed cautiously. A more thorough assessment is planned upon the stabilization of
the backend system in a production setting, which will provide a clearer understanding of the
process.

The ’scan’ command was tested on a collection of 12 different packages namely axios,
bookshelf, chalk, commander, express, lodash, moment, node-fetch, oo-ascii-tree, ora, semver,
and typescript. The scanning process took a considerable duration of approximately 137 sec-
onds, largely due to the numerous transitive dependencies associated with most packages. How-
ever, Bookshelf, with fewer dependencies, displayed a significantly faster scan time of 19 sec-
onds, indicating a relationship between the number of dependencies and the time required for
the scanning process.

4.4.1 Dependencies used and additional UX
In the project, we utilized several dependencies to facilitate the development process. We aimed
to minimize the number of dependencies for our tool, prioritizing those with the fewest tran-
sitive dependencies. Additionally, this subsection will discuss various UI/UX improvements
implemented in the tool.

Three additional dependencies were incorporated:

• oo-ascii-tree12: Enables tree-structured visualization for dependency scans.

• semver13: Aids in clean versioning of dependencies for ledger communication.

• ora14: Enhances UI via an interactive loading spinner.

Each command provides detailed feedback, as previously discussed. A loading indicator,
illustrated in Figure 4.4, informs the user of ongoing processes. For lengthier processes such
as scans, additional information regarding the expected duration is provided, improving user
engagement. Users also have the option to use aliases for the lengthy trustseco, they can utilize
the shorter version ts, and also for each command they can use their respective aliases which
can be seen in Figure 4.2

12https://www.npmjs.com/package/oo-ascii-tree
13https://www.npmjs.com/package/semver
14https://www.npmjs.com/package/ora

56

https://www.npmjs.com/package/oo-ascii-tree
https://www.npmjs.com/package/semver
https://www.npmjs.com/package/ora

4.5 Design Limitations
The major design constraint, as discussed earlier, is the developmental stage of the distributed
ledger, which does not yet provide users with a complete experience akin to a production en-
vironment. This limits our ability to optimize our tool fully. Concerning the tool’s features, a
notable bottleneck is observed in the view-tree function while checking transitive dependen-
cies, as it requires frequent calls to the npm API to retrieve dependencies. This area might
benefit from future optimizations or feature enhancements to reduce these API calls. However,
it is crucial to mention that we have made strides to improve the performance by implementing
a top-down memorization approach for the view-tree to limit recalculating the same tree pieces
for a particular package.

57

Chapter 5

Interview study

In this interview study, the primary objective is to conduct a series of interviews with software
engineers actively using or have been using Javascript and Node.js in their routine software
development activities. The intention behind these interviews is to gain valuable insights into
the software engineers’ attitudes and practices regarding the use of third-party libraries. This
involves obtaining an understanding of the frequency with which libraries are used and the
factors software engineers deem important when selecting such packages.

A central goal of this part is to assess the practicality and utility of the introduced CLI tool
from the participants’ viewpoint.

A key aspect of our investigation will be gathering general feedback and evaluating the
usability and user experience of TrustSECO.js. The interview study will compare the tool
with others that participants might have used previously, aiming to understand the perceived
effectiveness of our tool. A crucial component of our research will focus on the performance
and reliability of TrustSECO.js, identifying any inconsistencies or issues encountered by the
users.

Furthermore, the study seeks software engineers’ suggestions and insights for future de-
velopments and improvements, aiming to refine and enhance the tool based on real-world user
feedback and experiences.

5.1 Methodology
The methodology for conducting our interviews was based on the principles outlined by Taher-
doost [66], which provides a comprehensive guide to organizing effective research interviews.
According to Taherdoost, interviews can be conducted either remotely or face-to-face, adopting
one of three formats: structured, semi-structured, or unstructured.

A pivotal aspect of the interview process is designing the questions. In qualitative stud-
ies, creating open-ended questions is vital to allow participants the freedom to express their
viewpoints thoroughly. Another vital component is the selection of participants. It is imper-
ative to choose individuals whose insights are appropriate to the study, ensuring the gathered
information is relevant. Taherdoost recommends a participant range of 10 to 50 individuals.

The interviewer’s skills significantly influence the success of the interview. Essential abili-
ties include active listening, effective conversation management, patience, timing, flexibility in
phrasing, avoiding biases, and maintaining confidence throughout the interview process.

Additionally, managing the interview session is crucial. Consideration of the interview’s
duration, as well as the impact of the site and location, is essential. The interviewer must be
well-prepared and present information clearly to the interviewee, ensuring an understanding of

58

the interview’s purpose and structure. Consideration should also be given to how the interview
will be recorded.

Maintaining focus, revisiting specific questions, posing a final question, expressing appre-
ciation to participants, and collecting feedback are all important elements of conducting an
interview. To enhance the quality of the interview, it is advisable to avoid common mistakes
such as disregarding participants’ emotions, failing to seek additional information, causing in-
terruptions, and relying exclusively on close-ended questions.

5.1.1 Interview participants
A total of 20 developers were interviewed for the interview study, a number considered suffi-
cient to gather important information for our study.

The participant demographic was intentionally focused on industry professionals possess-
ing a minimum of two years of experience in the field. This criterion was established to avoid
the inclusion of students lacking professional experience, as their participation could poten-
tially introduce inaccuracies in the findings due to their limited exposure to the professional
industry.

Most participants were found through my own connections, built over three years of work-
ing in this field. These relationships, formed through direct contacts and recommendations,
helped in identifying willing participants for the study.

5.1.2 Interview Design
During the design phase of our interview process, a concentrated effort was made to address
our fifth research question (RQ5). The formulation of the interview questions was meticulously
aligned with the research question, ensuring relevance and coherence. We adopted a semi-
structured approach, a widely recognized methodology in scientific research, which allows
for a combination of predetermined questions and the flexibility for the interviewer to seek
clarification through additional inquiries.

The decision was made to conduct interviews through a hybrid model, incorporating both
in-person and remote interactions. In-person interviews were favored due to the direct contact
they facilitate with the interviewees; however, to accommodate developers unable to meet in
person, remote interviews were also integrated.

The interview questions were systematically divided into nine sections. The initial section,
Introduction and Context, aimed to gather insights into the developer’s behavior towards third-
party libraries. The subsequent section was designed to obtain general feedback regarding our
tool. The third and fourth sections were concentrated on exploring the usability, functionality,
and features of our CLI. Following this, we sought to understand the performance and reliability
of the tool and glean insights into how it compares with existing tools used by the developers.

Additionally, developers were prompted to share ideas for future developments and im-
provements. Closing inquiries were made to assess the likelihood of the developers utilizing
our tool in the future and recommending it to their peers. The comprehensive list of questions
is detailed in Appendix A.

Through this methodical approach, we anticipate covering all facets of the usefulness of our
implementation of TrustSECO.js, thereby garnering valuable results.

59

5.1.3 Interview Process
The initial design had each interview lasting approximately 60 minutes. While this duration
was suitable for some developers, others found it too lengthy. After conducting four inter-
views, we opted to record a video in which we explained and demonstrated the tool. This video
was sent to participants prior to their interviews, effectively reducing the meeting time to 30
minutes. Throughout each session, data was diligently collected either through notes or record-
ings, with interviewee responses documented in OneNote. The transcripts of OneNote can be
accessed in Appendix A. The recordings were done using Microsoft Teams. At the end of the
interview, they were also asked if they would prefer a summarized version of the document,
which included the questions, sent to their email.

5.1.4 Ethical & Privacy Considerations
In accordance with university guidelines pertaining to ethics and privacy, every participant
interviewed for this study provided their consent through a written consent form, referenced in
Appendix B. Measures were implemented to maintain the confidentiality and anonymity of the
participants, ensuring that any sensitive data acquired would not be disclosed in our study, with
the exception of the participants’ positions and years of experience in development.

Sensitive information such as names and surnames were solely utilized by the thesis author
for the purpose of organizing and tracking the interviews conducted. Participants were afforded
the right to pose any questions, withdraw from the interview at any time, and request the dele-
tion of their data at any time. Furthermore, this study has been categorized as low-risk, with
the university determining that no additional ethical review or privacy assessment was required.
The Ethics and Privacy Quick Scan results can be accessed in Appendix B.

5.2 Results
In this section we will provide the results obtained by our interview, the section is subdivided
into multiple subsections, each representing a subpart of our questions. We will both give
explanations and provide visualization for some of the data that we have gathered.

5.2.1 Introduction and Context
As discussed in the previous subsections, our goal was to interview software engineers with
a significant amount of experience. The respondents had experience ranging from 2 to 29
years. Notably, a substantial portion of the developers, specifically 60% of the respondents, had
over 6 years of experience. These findings are illustrated in Figure 5.1. This high percentage
of seasoned professionals suggests that the insights derived from our study are particularly
valuable, given that the feedback is from developers who have spent a considerable amount of
time in the industry.

The majority of our respondents, comprising 70% (14 out of 20 developers), identified as
Full-Stack developers. This means they have experience working on both the UI and server
sides of systems, providing them with a comprehensive understanding when discussing npm
packages. It is worth noting that 15% (3 out of 20 developers) of the respondents were Cloud
Architects, further diversifying the expertise and perspectives gathered in our study. The results
are illustrated in Figure 5.2.

60

2 ye
ars

3 ye
ars

6-8
ye

ars

10
-15

ye
ars

20
-29

ye
ars

2

2.5

3

3.5

4

4.5

5

5.5

6

2

6

3

5

4

N
um

be
ro

fR
es

po
nd

en
ts

Figure 5.1: Distribution of Years of Experience among Respondents.

When developers were asked about the frequency with which they use third-party libraries
in their projects, rating on a scale from 1 to 5 (where 1 indicates never using them and 5 indi-
cates daily use), the results were quite revealing. Notably, none of the developers refrained from
relying on third-party libraries. In fact, a significant majority, 60% (12 out of 20 developers),
indicated a frequency level of 4, suggesting that they frequently integrate third-party libraries
into their work. Furthermore, a whopping 80% (16 out of 20 developers) reported a score
greater than or equal to 4. This underscores the ubiquity of third-party library usage in daily
development tasks. These findings resonate with the literature review, further emphasizing that
developers heavily rely on third-party libraries. Such a trend highlights the need for a secure
open-source ecosystem, reinforcing the relevance and necessity of our tool, TrustSECO.js. The
distribution of responses is depicted in Figure 5.3.

When the developers were asked about their considerations in choosing a third-party li-
brary, their responses were as follows: 60% (12 out of 20 developers) considered ’Popularity’
as a major factor; ’Maintenance Activity’ was a concern for 55% (11 out of 20 developers);
’Functionality’ was 30%(6 out of 20 developers) ’Known Vulnerabilities’ influenced 25% (5
out of 20 developers) of the respondents; ’Community Support’ was considered by 20% (4
out of 20 developers); ’Licensing’ was specifically mentioned by two developers, accounting
for 10% (2 out of 20 developers); ’Source Trustworthiness’ was significant for 20% (4 out of
20 developers); ’Size and Efficiency’ was pointed out by three developers, which translates to
15% (3 out of 20 developers); and ’Peer Experiences’ affected the decisions of 10% (2 out of
20 developers). Our tool encompasses most of these factors. All the data can be seen in Figure
5.4.

When asked about their practices in assessing the security of third-party libraries, a majority

61

of the respondents admitted they do not conduct independent checks and typically rely on feed-
back from the npm install process. Some base their decisions on feedback from open-source
communities, while a small amount utilize tools such as Snyk or other prebuilt CI tools. Inter-
estingly, developers from smaller companies often reported a lack of formal policies regarding
third-party library usage; these companies tend to trust their developers’ judgment in selecting
appropriate libraries. In contrast, those employed by enterprise-level organizations or within
the financial sector indicated stringent regulations and policies. Such developers have access
to a pre-approved list of libraries, and any deviation requires following a specific protocol for
approval.

Software engineers’ responses on question Does your company or team have a policy re-
garding the use of third-party libraries? If yes, how does it influence your choices? And how is
the company enforcing those policies? :

• ID-9 Yes, we have, and of course, it influences what kind of library do I pick. We need to
discuss it before we use it. We have to get an agreement between team members

• ID-13 Our company doesn’t have a strict policy on third-party libraries. We typically
discuss within our team and decide collectively. The company and clients trust us to
select the best available solutions.

• ID- 16 At Company, we have a stringent policy against using third-party libraries. If
there’s an exception, a rigorous review process is initiated through our support team.
Developers are also required to have certain certifications before they can install third-
party libraries.

• ID-19 Our company doesn’t have a strict policy on third-party libraries. Mostly, they
trust developers to make informed choices.

• ID-7 Our company does have a policy concerning the use of third-party libraries. The
primary emphasis of our policy isn’t necessarily on security but rather on preventing
application bloat and ensuring optimal performance. In essence, we’re advised not to
mindlessly add a multitude of packages, especially those that aren’t genuinely beneficial
or necessary for our projects. While we’ve had occasional security concerns, the guide-
line has been to exercise caution, especially with lesser-known or inactive packages, and
apply common sense. However, during my time at a financial company, there was a more
stringent approach. Given the nature of their operations, security was of great impor-
tance. They provided an approved list of libraries and any deviation from that required
explicit approval from security personnel. It was a more structured and strict enforce-
ment of third-party library use policies. Starting a new project, the financial institution
has a list of approved packages. If someone wants to use a different package, they can’t
just decide on their own. They need to discuss it with the team. If the team agrees, they
still need permission from higher-ups. It’s a detailed process to make sure we only use
the best and safest packages.

The demographic characteristics of the interview participants are presented in Table 5.1.
Regarding company size, responses varied, with some participants providing approximate fig-
ures. Notably, a number of respondents indicated the size of their client organizations instead
of their direct employers, reflecting the consultancy nature of their companies.

62

Clou
d Arch

ite
ct

&
Full

-S
tac

k

Full
-st

ac
k

Fron
ten

d
2

4

6

8

10

12

14

3

14

3N
um

be
ro

fR
es

po
nd

en
ts

Figure 5.2: Distribution of Developer Roles among Respondents.

5.2.2 General Feedback
After using the CLI, developers consistently expressed positive feedback. They saw its poten-
tial and highlighted various ways it could benefit them and their colleagues. One of the main
advantages they identified was the tool’s ability to streamline research and enhance security,
preventing potentially risky decisions. Many appreciated the CLI’s user-friendly nature, espe-
cially because it resembled familiar npm commands. Several even contemplated integrating it
into their existing projects.

However, there were concerns. Some developers pointed out the need for comprehensive
and accurate information in the backend system, emphasizing that a tool lacking key data might
be less effective. There were also questions about the trustworthiness and metrics behind the
"TrustSECO". Even though the primary focus of this study was the integration of the npm CLI
tool, the developers still felt the need to voice their thoughts on these interconnected issues.

Software engineer’s responses for question: What are your initial thoughts after using the
CLI tool?

• ID-2: "I think ease of use is one of the most important aspects of this tool. It has well-
defined general parameters and intuitive command names, such as ’I’ for installation.
When writing a CLI, ensuring it’s user-friendly and provides helpful guidance is crucial.
I appreciate the tree view feature, which offers extensive information about where each
element fits within the overall stack of dependencies. "

• ID-3: "I find it very good and interesting. Similar to the Apple Store, which has stringent
security measures where apps are thoroughly scanned and examined before being made
public, I think npm is somewhat less strict. I haven’t given it much thought before because
I usually rely on the popularity and maintenance activity of a package, trusting it based
on a gut feeling. Based on the SLR, this is almost the first time a CLI tool has been

63

1 2 3 4 5

0

5

10

0

2
3

12

4
N

um
be

ro
fR

es
po

nd
en

ts

Figure 5.3: Frequency of Using Third-party Libraries on a scale 1-5.

developed specifically for npm to enhance trust in packages. Even with NuGet, the C#
.NET alternative, I’m not aware of any system that scans for trust scores. In contrast,
even though the Microsoft Store states that downloading something like “winget install
Google Chrome” is the user’s responsibility, I believe this new CLI tool is brilliant.
Often, the discussion around these packages is based on hearsay, so having a tool to
verify trustworthiness is extremely valuable."

• ID-4: "It looks good, but its effectiveness largely depends on the database (ledger) behind
it. If the database is well-structured and reliable, then the tool will be truly usable."

• ID-5 "After understanding its purpose, I realized how handy this tool could be for projects.
It not only provides insights about the trust score but also about dependencies. Often, it’s
not clear what libraries a package relies on. This tool makes that information very clear
and transparent."

• ID-6 "I think the CLI tool you showed is quite interesting. The feature to allow and
disallow specific packages stands out to me. It’s essential for users to see safety, security,
and trustworthiness scores for packages, as not everyone might consider these factors,
though they should. Especially for organizations that prioritize security, this tool could
be highly beneficial. However, I would like to understand better how these ratings are
determined and who decides the scores. Knowing the scoring system’s details will help
better assessing its reliability."

• ID-20 "I think it’s fine. An extra warning before I do something stupid. "

When we asked developers about their favorite features, ’transitive dependencies’ was the
top choice. Out of 20 developers, 15 pointed to this feature. Among them, 11 chose it on
its own, and four paired it with other features. Next in line was the ’regular scan’ feature,
picked by three developers, but always with other features. The ’info’ feature was noted by two
developers: once by itself and once with ’regular scan’. Both ’reporting’ and ’info’ were picked
twice. ’Reporting’ was combined with ’transitive scan’, while ’info’ appeared both on its own
and with ’regular scan’. Finally, ’view-tree’, ’install’, and ’policy’ each got a single mention,
with ’view-tree’ linked with ’transitive scan. The visualization can be seen in Figure 5.6

64

Pop
ula

rit
y

M
ain

ten
an

ce

Fun
cti

on
ali

ty

Vuln
era

bil
itie

s

Com
mun

ity

Trus
tw

ort
hin

ess

Size
/E

ffi
cie

nc
y

Pee
r Exp

eri
en

ce
s

Lice
ns

ing
0

5

10

15

20

12
11

6
5

4 4
3

2 2

N
um

be
ro

fD
ev

el
op

er
s

Figure 5.4: Factors Considered by Developers When Selecting Third-party Libraries.

When gathering feedback about potential additions or changes to the CLI tool, the responses
from developers were diverse. Some felt that the current version of the tool met their needs well.
Another group mentioned they would need more regular interaction with the tool in their daily
tasks before giving more specific feedback. They felt that more use might uncover other areas
for improvement.

Nevertheless, a number of developers shared specific ideas for the tool. These suggestions
included:

1. Integrating the tool to work directly with npm install rather than operate as a separate
entity. ID-2

2. Enabling automatic policy blocking for libraries that fall below a certain trust threshold.
ID-12

3. Introducing HTML-based reporting. ID-6, ID-10, ID-15

4. Implementing more visually distinct alerts for libraries with notably low trust scores ID-
2, ID-16

5. Making tabled information more intuitive and less technical. ID-3, ID-4

6. Allowing users to set trust levels for different libraries individually. ID-19

However, it is crucial to remember that many of these developers had only a brief experience
with the tool. Their feedback was based on initial reactions, not extensive usage.

65

Interviewee
ID

Years of Ex-
perience

Role Company Size
(Client)

Use of 3rd-Party
Libraries (1-5)

1 3 Full-Stack 15-20 3
2 23 Full-Stack 30,000 5
3 20 Full-Stack 300 5
4 15 Full-Stack 40.000 4
5 29 Cloud Architect / Full-Stack 350 5
6 10 Cloud Architect / Full-Stack 20 4
7 15 Full-Stack 300 4
8 3 Front-End 20 4
9 3 Full-Stack 80 2
10 10 Full-Stack 250 4
11 6 Full-Stack 10 2
12 3 Full-Stack 20 4
13 3 Front-End 200 3
14 3 Front-End 200 4
15 11 Full-Stack 400 4
16 8 Full-Stack 90.000 3
17 2 Full-Stack 10 4
18 25 Full-Stack 20.000 4
19 6 Full-Stack 400 4
20 2 Full-Stack 130 5

Table 5.1: Demographic Information of Software Developers

5.2.3 Usability
All respondents unanimously agreed that the tool was straightforward to use, install, and set
up. This consensus was consistent even though the tool is not available in the npm registry.
Developers found the process of cloning and running the tool hassle-free. Furthermore, they
universally appreciated the CLI’s intuitiveness, emphasizing that no flags or commands were
confusing. The comprehensive documentation provided, especially through the help flag, re-
ceived commendations for its clarity and informativeness.

In terms of understanding the tool’s output, an overwhelming 95%(19 out of 20 developers)
confirmed that the results were clear and easily interpretable. However, there were a few areas
of feedback. Some developers pointed out that table entries occasionally overflowed due to the
length of the names. Others felt that the data naming was not as user-friendly as it could be,
and the values lacked context. We anticipated these comments due to design limitations we
previously addressed. The backend of TrustSECO, particularly the distributed ledger, could
not supply more user-friendly information. We acknowledged the possibility of rectifying this
on the frontend, but we prioritized backend improvements for TrustSECO DL as a future en-
hancement. A single developer felt the information was presented as an overwhelming block
of data.

To sum up the usability section, graphical representations are absent since the majority of
the feedback indicated near-complete satisfaction.

66

Tran
sit

ive
Dep

en
de

nc
y

Rep
ort

Reg
ula

r Sca
n

Inf
o

0

5

10

15
16

2
1 1N

um
be

ro
fR

es
po

nd
en

ts

Figure 5.5: General Feedback on the Tool.

5.2.4 Functionality and Features
When the developers were asked if the trust score feature was useful to them, before they
installed an up and if changed their mind, overwhelmingly positive feedback emerged from the
surveyed developers. Specifically, 19 out of 20 developers believed that this feature improved
their understanding of the packages they were considering. They felt it promoted more careful
decision-making.

ID-2 response: "Definitely, because it provides a much better understanding. Otherwise,
I would have to visit the npm homepage or their GitHub, which is where most information
typically is. I’d try to read through it, scan it, and decide if it looks good. I often go through
the code, but if you get a trust score back that says it’s 90% or something similar, it’s already a
big help. It makes it easier to decide, ’OK, yeah, we can use this.’ Then, maybe after some time
using it, we can do some additional checks."

ID-5 response: It can surely help. I’ve been thinking about at what point I would decide
not to install a package. The trust score should make me pause and consider for a few seconds
longer before installing, especially from a security standpoint. Vulnerabilities and other risks
need to be more prominently highlighted. A low trust score should be a significant deterrent,
emphasizing the potential risks. I believe there should be a clear explanation as to why a
package should not be installed. It’s not enough for it to be marked in red; there needs to be a
concise yet informative explanation, in a few sentences or words, outlining the specific reasons
for avoiding it.

Interestingly, 2 out of these 20 developers said that before this feature, they had not con-
sidered the trustworthiness of specific libraries. Now, they have begun to see the importance
of being cautious before using external libraries, especially in larger projects that depend on
many libraries. Some mentioned that using standard commands, such as "npm install", might
sometimes cause them to miss details about a package. The trust score acts as a guide to prevent
such oversights

67

Tran
sit

ive
Dep

en
de

nc
ies

Reg
ula

r Sca
n

Inf
o

Rep
ort

ing

View
-tr

ee
Ins

tal
l

Poli
cy

0

2

4

6

8

10

12

14

16

N
um

be
ro

fM
en

tio
ns

Standalone In Combination

Figure 5.6: Distribution of mentioned features by developers.

68

ID-12 response Prior to being introduced to the tool, I hadn’t given much thought to the
concept of ’trust’ in packages. However, after seeing the trust score feature, I’ve come to
realize its significance. It’s undeniably useful, not just for me but for everyone. It emphasizes
the importance of caution when deciding which packages to integrate into one’s project.

ID-14 response Initially, I hadn’t considered this, as I typically navigate to websites to
search, read, and gather information. However, having all of that directly on the CLI is incred-
ibly beneficial for developers. I believe many organizations will find great value in using this
tool.

However, there were concerns. Some developers felt the trust score could be unfair to
new packages. Just because a package is new and has a low trust score does not mean it has
problems. There were also doubts about how the score is calculated. For example, a library that
does not have frequent updates might still be reliable. It might just be a small tool that works
well and does not need constant changes. Also, using metrics such as the number of GitHub
stars might not always reflect the true value of a library.

ID-10 Response: The trust score feature is quite insightful. If the tool flags a library with
serious vulnerabilities, I’d definitely be hesitant to use it. However, it’s interesting to note that
a new package might not have vulnerabilities but could still have a low trust score due to its
novelty and fewer downloads. This certainly adds another layer to the decision-making process
when selecting packages.

ID-20 software engineer suggested a change: if a main library uses another library with a
low trust score, then the main library’s score should not be higher than this sub-library. This
would address situations where a main library seems trustworthy but depends on a less reliable
sub-library. Additionally, I find some of the metrics are questionable - although these aren’t
part of the CLI but the service itself. The yearly commit count was given as an example. A
library that is working perfectly doesn’t need anything committed, so that would drop to close
to 0 lowering the trust score for no reason. Another one is the contributor count, I can’t see
any reason why the number of people working on it would matter.

To sum up, while the trust score was appreciated for helping developers make better choices,
some areas need further consideration to ensure the scores are both fair and helpful.

All developers unanimously agreed that the message provided in the CLI was both clear
and actionable.

When inquired about the utility of the transitive scan, an overwhelming majority found it
valuable. Specifically, 19 out of 20 developers recognized its benefits, with 15 out of 20 even
considering it the most beneficial feature of the tool. One particular response from Developer
20 stood out: "I think checking transitive dependencies should not even be a question. Check
everything I am installing every time please." This sentiment underscores the importance and
success of the transitive scan feature. This feedback affirms that our choice to incorporate
this feature was both well-founded and well-received by the users. On the contrary, only one
developer found it to be somewhat beneficial.

When asked about the value of additional package information (such as GitHub stars and
maintainability), a large portion of developers responded positively. Specifically, 12 out of 20
found the feature "very valuable," often citing the time-saving convenience of the CLI tool
compared to manual GitHub repository browsing.

However, there were variations in feedback. 4 out of 20 felt certain data points, such as
GitHub stars, first release date, and contributor count, were redundant or not particularly use-
ful. Additionally, one developer was confused about data presentation, specifically regarding
package age.

Lastly, a group of 3 developers, while understanding the feature’s broader appeal, person-

69

ally preferred accessing information directly from GitHub.
All of the developers said that they found the scan feature to be useful to them. when they

were asked if the feature is beneficial for them
When prompted about the utility of the report feature, the developers offered varied feed-

back. A majority, with 12 out of 20, regarded it as a highly useful tool for reporting purposes. A
smaller subset, 3 out of 20, expressed interest in using the feature but suggested enhancements,
such as customizable headers and the option to export to HTML.

Two developers acknowledged the general usefulness of the tool but felt it would not serve
their specific needs, suggesting that others might find it more beneficial. Lastly, another 3 out
of 20 saw potential in the feature but believed its real value would come into play in larger
projects with an extensive list of dependencies.

When asked about the usefulness of the policy feature, developers shared mixed yet pre-
dominantly positive responses. A clear majority, with 14 out of 20, found the feature beneficial,
especially in larger organizational settings where there are stringent guidelines on package us-
age. The ability to easily set and adjust these rules directly was seen as an advantage. They
also mentioned that this feature could be integrated into DevOps pipelines to ensure rules are
consistently followed.

Some developers highlighted the feature’s role in controlling projects and ensuring software
safety. They felt it was particularly good at preventing less experienced developers from using
potentially risky software parts.

However, not everyone was in agreement. 3 out of 20 developers were either neutral or had
reservations about the feature. They felt it might not be as relevant to their own work, but could
see its value for others. The last 3 developers acknowledged the feature’s potential without
diving deep into its impact on their specific tasks.

When asked what you think about the info command, an overwhelming majority (19 out
of 20 developers) deemed it beneficial. They emphasized its significant assistance during their
package library research and appreciated the convenience of quick lookups. However, despite
their recognition of its utility, there was unanimous feedback highlighting concerns over data
presentation. This was consistent with previous usability feedback where developers mentioned
that the data naming could be more intuitive, and the presented values required clearer context.

5.2.5 Performance
When asked about the tool’s performance, the majority of developers indicated that they did
not observe any significant performance issues. Some of the respondents reasoned that perfor-
mance was not a primary concern for them, given that they will use the tool once in a while.
For them, the benefits of ensuring trustworthiness outweighed any potential performance draw-
backs. Those who did observe performance hiccups primarily noted them during the transitive
dependency scans. Nevertheless, these respondents felt that such delays were anticipated due
to the recursive nature of fetching all the packages. Some even pointed out that manually ob-
taining all the transitive dependencies would be a far more time-consuming task. Additionally,
positive feedback was received about the loading spinner; respondents found it beneficial as it
assured them the tool was actively working and had not stalled. Overall there were no substan-
tial concerns regarding the tool’s performance.

Some of the software engineers responses:

• ID-1 "Because there’s no hurry, there’s no millisecond requirement using this tool when
you’re developing software. I don’t see the performance as an issue, so I would say it is
good"

70

• ID-3 "When I use a CLI, there are moments where nothing appears on the screen, leaving
me unsure if it’s frozen or processing. Having visual feedback, such as a loading indi-
cator, is helpful. Overall, the feature seems engaging and practical. The performance is
also good."

• ID-5: "The performance was good because it deals with transitive dependencies using a
recursive approach. We have to look at each dependency one by one, so the speed seems
fine. Doing this by hand would take three days, so waiting a few minutes is no big deal."

• ID-8: "Since the basic installation command is not slow, I don’t think it will matter much
to me. Scanning the transitive dependencies might take more time, but on the other hand,
it’s a useful feature to have."

• ID-20: "I don’t care about the package installation process that much. Even if it was
significantly slower, I just wait for it 1 time and never again."

5.2.6 Comparison with Existing Tools/Practices
A significant majority of 85%(17 out of 20 developers) mentioned that they primarily rely
on manual methods to determine the trustworthiness of npm packages. These manual checks
include visiting the npm website, and GitHub repositories, checking download numbers, and
reading community forums, and reviews.15%(3 out of 20 developers) developers cited the use
of other tools, such as Dependabot and "rong core tools", but noted distinctions between these
tools and TrustSECO.js. The results can be seen in Figure 5.7.

Around 45% (9 out of 20 developers) mentioned that the tool would likely supplement their
current practices or tools. They viewed the tool as an additional layer of assurance, comple-
menting other methods or tools they currently use. Approximately 40% (8 out of 20 developers)
indicated that the tool would replace their current methods. 3 out of 20 developers expressed
conditional sentiments. Their adoption of the tool would depend on its availability in the npm
registry, its database stability, or directives from higher-ups. One developer emphasized the
need for long-term use before deciding on the tool’s permanence in their workflow.

5.2.7 Future Development and Improvement
In discussing potential developments and improvements for the tool, developers provided a
variety of suggestions. A prominent idea was the integration of the tool with Visual Studio
Code. Many emphasized their preference for this, noting that they spend a significant amount
of time within the VS Code environment. This would allow them to run commands seamlessly
without having to switch interfaces.

Another frequently mentioned enhancement was integration with DevOps pipelines, en-
abling real-time checks and validations. This would streamline the development process by
ensuring that the code aligns with organizational policies before deployment.

HTML reporting was also a common suggestion. Several developers expressed a preference
for this feature, emphasizing that it would enable more precise data visualization. For instance,
a transitive dependency, which might be complex when viewed in the terminal, could be more
lucidly visualized in an HTML report.

Other developers expressed a desire for a Chrome extension. This extension would, upon
visiting a GitHub page, automatically fetch data to provide the trust score and relevant informa-
tion about the repository. Furthermore, there was an innovative proposal to directly integrate

71

M
an

ua
l m

eth
od

s

Othe
r too

ls

5

10

15

17

3N
um

be
ro

fR
es

po
nd

en
ts

Figure 5.7: Methods to Check the Trustworthiness of npm Packages.

a trust score with npm, potentially intercepting the npm install command. This would allow
users to gauge the trustworthiness of packages during installation.

Another noteworthy suggestion was the assignment of verification badges or trust scores
to established corporations or reputable repositories. Such badges would give users immediate
insight into the credibility of a package.

While there were many suggestions, a segment of the developers felt that the tool did not
need any immediate enhancements or future developments.

5.2.8 Closing Thoughts
When surveyed about their potential utilization of the tool, a substantial 70%(14 out of 20
developers) of developers expressed a definite willingness to use it. Within those positive re-
sponses, a subset of 15%(3 out of 20 developers) had specific reservations or conditions for
adoption, encompassing concerns about licensing permissions, the quality of the backend, or
the availability of integrations, such as with Visual Studio Code. A smaller fraction, 5%(1 out
of 20 developers), mentioned they would be inclined to use the tool if it underwent further en-
hancements. On the more cautious end, one developer (5% of respondents) stated they would
consider deploying the tool only if it became a company mandate, while another (another 5%)
would be open to it upon receiving approval from their supervisor. A representation can be
seen in Figure 5.8

Regarding referrals, there was unanimous agreement among developers about recommend-
ing the tool to peers or colleagues. While some showed unconditional support, others would
suggest it if a colleague articulated a need for such a tool. Furthermore, all participants ex-
pressed enthusiasm for future versions and updates of the tool, keen to see its evolution in
developmental or production environments.

72

W
illi

ng
to

us
e with

ou
t c

on
tin

ge
nc

ies

W
illi

ng
to

us
e with

sp
ec

ific co
nti

ng
en

cie
s

W
ou

ld
us

e if
man

da
ted

by
the

co
mpa

ny

W
ou

ld
us

e if
giv

en
pe

rm
iss

ion
by

a su
pe

rvi
so

r

W
ou

ld
us

e if
more

en
ha

nc
ed

0

5

10

15 14

3

1 1 1N
um

be
ro

fR
es

po
nd

en
ts

Figure 5.8: Intent to Use the Tool in the Future.

73

Chapter 6

Discussion

In this study, our primary aim is to identify gaps in the literature concerning security software
tools within the npm ecosystem. This was achieved through a systematic literature review
(SLR) of existing academic papers. A key component of our research involved examining how
developers strike a balance between the functionality and security of npm packages and what
the gaps in the current security tools in the academic world. To bridge the gap identified in
existing literature, as observed with tools like DapReveal [5], Nodest [55], and NodeXp[57]
and all the other tools observed in the SLR, we introduced TrustSECO.js. This tool is designed
to enhance the safety of developers by ensuring secure tool installation practices

Our systematic literature review has made a significant contribution by providing a founda-
tion for future research in the realm of security tools. TrustSECO.js not only fills the identified
gap but also serves as a baseline for researchers or developers interested in designing similar
tools with the best practices that we got from the grey literature like Czapski [18], Prasad et
al.[63], the GNU standards[28] and Jeff [19]. The Design Science methodology employed in
our research outlines the consideration of both functionality and user experience when creating
such tools. Drawing from various guidelines, we developed TrustSECO.js with a focus on its
potential impact and usability.

The empirical data from our interview study suggest that developers welcomed our tool.
This positive reception reinforces the effectiveness of our design science approach. Moreover,
our findings contribute to the literature by offering a detailed process and guidelines for devel-
oping command-line interface tools specific to the npm or JavaScript ecosystem.

Our diverse pool of respondents all shared an appreciation for third-party libraries, whether
for professional or personal projects. A recurring trend we identified was a general oversight
by developers regarding the security of these libraries. Interestingly, many were swayed by
factors such as popularity, maintenance, and functionality.

On the topic of library policies, we observed variance based on company size and sector,
with larger companies, especially those in the financial sector, exhibiting stricter controls over
third-party library usage. Feedback on TrustSECO.js was predominantly positive, with the
transitive dependency scanner feature being particularly well-received, which was somewhat
unexpected.

There were, of course, areas of improvement highlighted by the users. Some users desired
enhanced reporting features, while others provided feedback on aesthetics. Usability, however,
was universally commended. This positive reception indicates the successful implementation
of our design science principles, offering an intuitive tool with clear and actionable guidance.
While some users felt the detailed technical data was excessive, this was an integral aspect of
the distributed ledger system.

74

The concept of a ’trust score’ was enlightening for many developers. Previously, many,
including myself, installed npm packages without significant security considerations. This
observation was especially true for developers not associated with enterprise-level or financial
sector companies.

In terms of tool performance, most users were more concerned with user experience than
raw speed. Many praised the spinner feature, recognizing it as a valuable real-time feedback
mechanism. While performance was not a major concern, the majority were willing to sacrifice
some speed in favor of enhanced security and trustworthiness.

When considering integration with existing workflows, many developers believed Trust-
SECO.js would enhance their productivity. They expressed interest in broader platform inte-
gration and eagerly anticipated its stable production release. Compared to existing literature,
our approach of incorporating real-world developer feedback sets our tool apart, lending it
increased credibility.

In conclusion, TrustSECO.js has shown significant promise as a minimum viable product
(MVP). This research provides a foundation for further development or for other researchers
wishing to expand upon this work.

6.1 Research questions
At the close of our study, we have effectively tackled all the research questions we began
with. Importantly, the answers to three out of these five questions were already covered in
our Literature Review. To provide a clear overview, we will list each research question and its
answer:

RQ1: What kind of trust reinforcement mechanisms exist in package ecosystems?
Answer: Addressing this question is challenging. As discussed in subsection 3.5.1, various

tools adopt different methodologies, ranging from dynamic and static analyses to sandboxing
and the application of Machine Learning techniques for vulnerability detection. These tools
can be integrated into CI/CD pipelines and assess a diverse array of threats, including transitive
vulnerabilities, code injections, zero-day vulnerabilities, clone packages, malicious code, and
permission systems. Each tool serves distinct use cases. A notable observation is the lack
of pre-installation safeguards among these tools. Predominantly, as presented in Table 3.6,
they operate post-installation, either by scanning the existing codebase or necessitating manual
package input for checks. The gap we identified in the study is the need for a tool to protect
users before they even install a package, ensuring its trustworthiness. While many tools simply
check for vulnerabilities, they do not provide a trustworthiness score such as TrustSECO does.
These represent the two primary gaps we have observed.

RQ2: How effective are trust reinforcement mechanisms in package ecosystems?
Answer: The evaluation of trust reinforcement mechanisms in package ecosystems, as re-

ported in the literature, generally indicates positive outcomes. Tools analyzed in various studies
demonstrated high precision in detecting issues and security vulnerabilities in libraries. How-
ever, there’s a variance in the reported effectiveness. Some studies did not disclose effectiveness
metrics, while those that did revealed differing perceptions of effectiveness. This variation is
often attributed to factors like the occurrence of false positives or negatives, performance mea-
surements, and the number of errors identified.

In terms of capabilities, certain tools were effective in identifying basic errors, whereas
others were advanced enough to detect zero-day vulnerabilities. The diversity in techniques
used by these tools complicates the task of establishing a uniform standard for comparing their

75

effectiveness. Additionally, the literature often points to limitations such as high rates of false
positives or negatives, reliance on specific platforms like GitHub, and constraints unique to
particular tools. These factors collectively contribute to the challenge of assessing the overall
efficacy of trust reinforcement mechanisms in package ecosystems.

RQ3: How do software engineers perceive the balance between adding new features
and ensuring security while using third-party packages?

Answer: In Subsection 3.5.2 and Subsection 3.5.3, we examined the literature related to
the utilization of third-party libraries and the security awareness of developers. Our analysis re-
vealed that developers demonstrate an increased level of security consciousness when selecting
third-party libraries, regardless of whether they are complex libraries or simple packages. Nev-
ertheless, while selecting libraries or attempting to upgrade them, the emphasis is consistently
placed on prioritizing the library’s usefulness or the stability of the system rather than its se-
curity. Security vulnerabilities are not their first priority. When selecting a library, individuals
tend to value indicators such as documentation quality, download numbers, and star counts. A
significant proportion of developers are unaware of the vulnerabilities present in their libraries,
and many of them neglect to update these libraries due to perceiving it as a burdensome task.

RQ4: How can third-party trust score tools be effectively integrated into a widely-used
package manager through the development of a command-line interface?

Answer: In Chapter 4, we detailed the process of designing the npm tool. We employed
commander.js, a streamlined third-party library, to develop the core commands and flags for
our CLI tool. To fuse TrustSECO with the npm environment, we leveraged API calls to re-
trieve necessary data from the distributed ledger. Adhering to best practices for usability and
intuitiveness, we successfully crafted a CLI tool that seamlessly interfaces with TrustSECO.

RQ5: How useful is the implemented tool from an expert’s perspective?
Answer: Experts largely viewed the CLI tool favorably. While not all saw a direct appli-

cation for their individual needs, they recognized its potential value within the broader open-
source landscape. Many found the tool intuitive with a commendable user experience. Different
functionalities resonated with different experts, indicating its versatility. The overarching sen-
timent was positive, both in terms of its usability and its contribution to the community. Many
expressed a willingness to use it if the tool was made available to them and recommended it to
colleagues. Performance-wise, it met expert expectations.

MRQ: How can package managers reinforce trust within the worldwide Software
Ecosystem?

Answer: In addressing our main research question, our findings shed light on the integra-
tion potential of TrustSECO with package managers such as npm. As delineated in the results,
TrustSECO’s integration can be streamlined by leveraging best practices and adopting optimal
toolsets. The need for an effective CLI tool, which addresses a clear gap in the domain, was
verified by our research. Even though several tools exist both in literature and the market, the
distinct value of providing trust scores to developers was underscored in our interview study.
As evidenced by developer feedback, such scores were not just beneficial but crucial in reshap-
ing developer perspectives on trust features in SECO. This, in turn, contributes to enhanced
productivity by saving them significant time and fostering more informed decision-making.

6.2 Limitations - Threats of validity
As with all research endeavours, this study has its limitations and biases, which we have ac-
knowledged throughout the thesis.

76

1. Backend Limitations of TrustSECO: The most significant limitation stems from Trust-
SECO’s backend. We were unable to utilize real data for testing transitive dependencies
and the scanning capabilities of the tool. This limitation critically impacted our ability to
validate the tool’s effectiveness comprehensively.

2. Trust Score Ambiguity: The derivation of the trust score is another area of concern. As-
signing trust scores based on certain GitHub features might disadvantage new or smaller
packages, especially those that fulfill specific functions and do not require frequent up-
dates. It is crucial for potential users to understand that the trust score should be inter-
preted with caution. Its accuracy is not guaranteed, especially given that data retrieval
often encounters errors.

3. Deployment Constraints: At this juncture, the tool cannot be deployed to the npm reg-
istry due to the unavailability of TrustSECO’s Distributed Ledger (DL). Even if available,
the DL has existing issues that need addressing before it can be deemed stable. The in-
formation retrieved from the DL is not always user-friendly or human-readable.

4. Tool Dependencies: Our tool heavily relies on npm for information on transitive de-
pendencies. Furthermore, it operates under the limitation that the DL only recognizes
GitHub package names, which can be different from npm names. This differentiation
can impact the tool’s efficiency and accuracy.

5. Initial Phase and MVP Status: It is vital to understand that this tool is in its initial phase.
It is best described as a Minimum Viable Product (MVP) - a prototype that showcases
the potential of a fully developed version. Based on the feedback we have gathered, there
is a clear path to refining the tool into something highly beneficial for developers.

6. Potential Biases: Biases might have been introduced during the research phase. While
effort was put into identifying npm scanner tools for vulnerabilities or security checks,
some might have been overlooked. This oversight, especially concerning gray literature
or open-source tools not reported in academic publications, could introduce bias. Feed-
back on the tool’s effectiveness might also be skewed. For instance, if we predominantly
gather feedback from a specific subset of professionals, such as software engineers em-
ployed at prominent tech companies (represented by the acronym FAANG, which stands
for Facebook, Amazon, Apple, Netflix, and Google), the results could differ from a more
diverse sample. The framing of our interview questions could also introduce bias: more
negative phrasing could elicit different responses.

In conclusion, this tool remains in its developmental stage, created by a single researcher
with limited resources and time. When reviewing or considering the tool for application, it is
essential to set realistic expectations.

77

Chapter 7

Conclusion

In this thesis, we conducted a thorough literature review on npm security tools, developer secu-
rity practices and behavior, and the use of third-party libraries. Our examination of various tools
revealed a significant gap: the lack of pre-installation safeguards for npm packages. This was
evident when compared to the predominantly post-installation focus of tools such as Plumber
[70], Affogato [27], and NodeXp [57], as well as others discussed in section 3.5.1. This finding
is particularly crucial considering that developers often prioritize functionality over security
[38, 75, 61, 35].

Recognizing this gap, we introduced the TrustSECO.js CLI tool, leveraging the TrustSECO
distributed ledger to access information and trust scores for diverse packages. While primarily
designed for pre-installation processes, our extensive review of existing academic and industry
research inspired the implementation of additional features. For instance, inspired by Ferreira
et al. [24], who designed a permission-based system to protect against malicious updates,
we incorporated a similar feature. This allows for a permission-based approach in our tool,
enabling companies to enforce policies that restrict the installation of certain libraries. Further-
more, Jarukitpipat et al.’s study [37] on the risks associated with transitive dependencies led us
to add transitive scanning capabilities, enhancing our tool’s security measures.

Following the tool’s development, we engaged 20 developers in interviews, probing into
their practices and seeking feedback on our tool. The response was overwhelmingly positive.
Developers recognized its potential and deemed it a promising venture. However, no software
is without its challenges. Being the inaugural version of our tool, it had its share of critiques.
A significant portion of this feedback revolved around the displayed data, which is intrinsically
tied to the TrustSECO DLT, a factor beyond the scope of our study.

In conclusion, this thesis journey has been a rewarding one. We successfully designed a
preliminary version of a tool aimed at seamlessly integrating TrustSECO with the npm ecosys-
tem. The overarching goal was to enhance the safety of the open-source community, and we
believe we have made strides in that direction. While the tool is still evolving and the feedback
has illuminated areas of improvement, especially concerning TrustSECO, the positive reception
from developers underscores its potential. We delve deeper into recommendations for future
iterations in the subsequent section.

7.1 Contributions
This research makes pivotal strides in understanding and enhancing software trustworthiness
and security within software ecosystems (SECOs). The primary contributions are:

78

1. Uncovering software engineer Practices in npm Ecosystem
We present a comprehensive analysis of software engineer habits within the npm ecosys-
tem, revealing:

• Motivations behind the adoption of third-party packages.

• Trends related to package updates’ frequency and immediacy.

• software engineer reactions to vulnerabilities and their influence on decision-making.

• software engineer awareness of security.

This analysis addresses the challenge of identifying best practices among developers re-
garding the use of third-party libraries. Understanding these trends helps in shaping the
tool we have developed.

2. Vulnerability tools analysis
Additionally, a comprehensive examination of existing tools within the literature was
conducted, assessing their effectiveness, which will serve as a motivating factor for the
integration of our prototype.

This effort identifies gaps in the current landscape of npm tools, guiding us in creating a
unique tool that fills these gaps.

3. Enhanced TrustSECO Prototype
Our research has pioneered the development of a prototype that augments TrustSECO’s
capabilities. This innovative prototype called TrustSeco.js seamlessly integrates with
pivotal platforms such as npm, fortifying the trust layer within SECOs.

This contribution addresses the challenge of creating a practical tool that fills the identi-
fied gaps in the existing npm ecosystem.

4. In-depth Feedback Analysis
We present an extensive analysis of feedback from software engineers concerning:

• Adoption rates of the TrustSECO.js CLI tool.

• Effectiveness of TrustSECO.js

This analysis helps determine the effectiveness and reception of our tool among profes-
sionals, ensuring its relevance and utility in the field.

7.2 Recommendations for Future Work
From the feedback gathered from developers during the interview study in Section 5.2 es-
pecially in Subsection 5.2.7, we have identified several areas for potential improvement and
exploration. While some of these ideas might step beyond the current study’s immediate realm,
they provide valuable insights for future endeavors. Key areas of focus include:

1. Improving the TrustSECO Distributed Ledger: A foundational element of our tool,
the TrustSECO Distributed Ledger, needs further enhancement. By setting it up on a
dedicated server with daily updates, we can ensure users consistently receive the latest
package details, optimizing the tool’s effectiveness.

79

2. Introducing HTML Reporting: A common suggestion was the addition of an HTML-
based reporting feature. This would produce a user-friendly HTML document, presenting
clear and interactive data views or dependency outlines.

3. Broadening Tool Accessibility: It is worth considering creating versions of our tool for
browsers, software development platforms, and DevOps systems. This could make the
tool more integral to developers’ daily tasks.

4. Adding Trust badges: To avoid biases in our tool’s outputs, we could incorporate badges
or signs that show validations from well-respected sources or major library maintainers.

5. Integration Across Multiple Package Managers: The tool should be made available
across diverse programming language ecosystems and not just limited to npm users. It
would be beneficial to design the tool such that users can specify which package manager
they intend to use during installation.

By addressing these points, we can position future versions of our tool and research to
resonate more deeply and effectively within the developer community.

80

Appendix A: Interview Questions
Before the interview began, I introduced myself and explained the research I was conducting
and the purpose of this interview. Although I had previously communicated this information in
the email invitation, I felt it was important to reiterate it. Following the introduction, I asked
for their permission to record the meeting.

Afterwards, we began with the questions below:

1. Introduction and Context

1.1. Introduce myself, what research I am doing, and what is the goal of this interview.

1.2. How many years of experience do you have in software development?

1.3. Would you classify yourself as a frontend, backend, or full-stack developer?

1.4. Number of employees in the company?

1.5. How frequently do you use third-party libraries in your projects? Please rate on a
scale from 1 to 5, where 1 means you never use them, and 5 means you use them
every day.

1.6. What factors are most important to you when deciding whether to use a third-party
library? (e.g., popularity, maintenance activity, known vulnerabilities, etc.)

1.7. Do you check the security of a third-party library before using it, if yes, how?

1.8. Does your company or team have a policy regarding the use of third-party libraries?
If yes, how does it influence your choices? And how is the company enforcing those
policies?

2. General Feedback

2.1. What are your initial thoughts after using the CLI tool?

2.2. Were there any features that stood out to you?

2.3. Were there any features that you felt were missing or could be added?

3. Usability

3.1. Was the tool easy to install and set up?

3.2. Did you find the command-line interface intuitive? Were there any commands or
flags that were confusing?

3.3. Was the output information clear and easily understandable?

4. Functionality and Features

4.1. How useful did you find the trust score feature? Did it change how you felt about
installing a package?

4.2. Was the warning message clear and actionable?

4.3. How did you feel about the tool checking transitive dependencies? Was this feature
beneficial for you?

4.4. How valuable was the additional package information (such as GitHub stars, main-
tainability, etc.)?

81

4.5. What do you think about the full scan of the dependencies? Was the output helpful?

4.6. What do you think about the report feature, was it useful?

4.7. What do you think about the policy feature, was it useful?

4.8. What do you think about the info command, was it useful?

5. Performance

5.1. Did you notice any performance issues when using the tool? For instance, did it
significantly slow down the package installation process?

6. Comparison with Existing Tools/Practices

6.1. Are there other tools or manual methods you use to check the trustworthiness of
npm packages? How does this tool compare?

6.2. Would this tool replace or supplement any current tools or practices you use?

7. Future Development and Improvement

7.1. Would you like integrations with any other tools or platforms?

8. Closing Thoughts

8.1. Will you use this tool?

8.2. Would you recommend this tool to your colleagues or peers?

8.3. Would you be interested in future updates or iterations of the tool?

8.4. Any additional comments or feedback that we have not covered?

8.5. Can we contact you if we have any further questions?

Link of the interview questions and answers for reproducibility: One note

82

https://solisservices-my.sharepoint.com/:o:/g/personal/a_temelko_students_uu_nl/EhJKugbPKplFtJWqizQsbg8BGSJ691-DWUigPvlHPwH41A?e=COeDI6

Appendix B: Interview Consent Form

Appendix C: Ethics and Privacy from the University
Ethics and Privacy Quick Scan pdf link

83

https://solisservices-my.sharepoint.com/:b:/g/personal/a_temelko_students_uu_nl/EcpIf5-HvulKkMQUYwlA1uABC3IXHLlGoqpJ5YupkUyqoA?e=O4wyTN

Bibliography

[1] Cli style guide by heroku. https://devcenter.heroku.com/articles/cli-style-guide, 2023. Ac-
cessed: 9/20/2023.

[2] npm Documentation. https://docs.npmjs.com/, 2023. Accessed: 2023-11-06.

[3] R. Abdalkareem, V. Oda, S. Mujahid, et al. On the impact of using trivial packages: an
empirical case study on npm and pypi. Empirical Software Engineering, 25:1168–1204,
2020.

[4] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad Shihab.
Why do developers use trivial packages? an empirical case study on npm. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
page 385–395, New York, NY, USA, 2017. Association for Computing Machinery.

[5] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Bram Adams. On the discov-
erability of npm vulnerabilities in node.js projects. ACM Trans. Softw. Eng. Methodol.,
32(4), may 2023.

[6] Ellen Arteca and Alexi Turcotte. Npm-filter: Automating the mining of dynamic informa-
tion from npm packages. In Proceedings of the 19th International Conference on Mining
Software Repositories, MSR ’22, page 304–308, New York, NY, USA, 2022. Association
for Computing Machinery.

[7] Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis,
Michael Pradel, and Cristian-Alexandru Staicu. Secbench.js: An executable security
benchmark suite for server-side javascript. In 2023 IEEE/ACM 45th International Con-
ference on Software Engineering (ICSE), pages 1059–1070, 2023.

[8] Vittorio Dal Bianco, Varvana Myllärniemi, Marko Komssi, and Mikko Raatikainen. The
role of platform boundary resources in software ecosystems: A case study. In 2014
IEEE/IFIP Conference on Software Architecture, pages 11–20, 2014.

[9] G.A. Blanken, Y. Bok, A.N. van der Goot, V.A. Hoffman, G.J.J. Jansen, M.T. Loo, J.A.
Schenkel, D.S. van der Spek, A. Vakili, A.W. Verhoef, and B.D. Wout. Trustseco com-
puting science bachelor’s thesis, 6 2022.

[10] Vasilis Boucharas, Slinger Jansen, and Sjaak Brinkkemper. Formalizing software ecosys-
tem modeling. In Proceedings of the 1st International Workshop on Open Component
Ecosystems, IWOCE ’09, page 41–50, New York, NY, USA, 2009. Association for Com-
puting Machinery.

84

https://docs.npmjs.com/

[11] Darion Cassel, Wai Tuck Wong, and Limin Jia. Nodemedic: End-to-end analysis of
node.js vulnerabilities with provenance graphs. In 2023 IEEE 8th European Symposium
on Security and Privacy (EuroS&P), pages 1101–1127, 2023.

[12] Kyriakos Chatzidimitriou, Michail Papamichail, Themistoklis Diamantopoulos, Michail
Tsapanos, and Andreas Symeonidis. npm-miner: An infrastructure for measuring the
quality of the npm registry. In 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR), pages 42–45, 2018.

[13] James Check and Russell K Schutt. Research methods in education. SAGE Publications,
2012.

[14] X. Chen, R. Abdalkareem, S. Mujahid, et al. Helping or not helping? why and how trivial
packages impact the npm ecosystem. Empirical Software Engineering, 26(27), 2021.

[15] Bodin Chinthanet, Raula Gaikovina Kula, Shane McIntosh, Takashi Ishio, Akinori Ihara,
and Kenichi Matsumoto. Lags in the release, adoption, and propagation of npm vulnera-
bility fixes. Empirical Softw. Engg., 26(3), may 2021.

[16] Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Raula Gaikov-
ina Kula, Takashi Ishio, and Kenichi Matsumoto. Code-based vulnerability detection in
node.js applications: How far are we? In 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1199–1203, 2020.

[17] Md Atique Reza Chowdhury, Rabe Abdalkareem, Emad Shihab, and Bram Adams. On
the untriviality of trivial packages: An empirical study of npm javascript packages. IEEE
Transactions on Software Engineering, 48(8):2695–2708, 2022.

[18] Adam Czapski. Guidelines for creating your own cli tool. https://medium.com/
jit-team/guidelines-for-creating-your-own-cli-tool-c95d4af62919, 2022.
Accessed: 9/20/2023.

[19] Jeff D. 12 factor cli apps. https://medium.com/@jdxcode/12-factor-cli-apps-
dd3c227a0e46, 2023. Accessed: 9/20/2023.

[20] Fernando López de la Mora and Sarah Nadi. An empirical study of metric-based compar-
isons of software libraries. In Proceedings of the 14th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering, PROMISE’18, page 22–31,
New York, NY, USA, 2018. Association for Computing Machinery.

[21] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the evolution of technical lag
in the npm package dependency network. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 404–414, 2018.

[22] Google Developers. Cloud-based protections, 2023. Accessed: 2023-09-03.

[23] Gavin D’mello and Horacio González-Vélez. Distributed software dependency manage-
ment using blockchain. In 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pages 132–139, 2019.

[24] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. Containing malicious
package updates in npm with a lightweight permission system. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 1334–1346, 2021.

85

https://medium.com/jit-team/guidelines-for-creating-your-own-cli-tool-c95d4af62919
https://medium.com/jit-team/guidelines-for-creating-your-own-cli-tool-c95d4af62919

[25] Node.js Foundation. Node.js Documentation. Node.js Foundation, 2023. Accessed:
2023-09-28.

[26] Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. De-
tecting suspicious package updates. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pages 13–16,
2019.

[27] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. Affogato: Runtime de-
tection of injection attacks for node.js. In Companion Proceedings for the ISSTA/ECOOP
2018 Workshops, ISSTA ’18, page 94–99, New York, NY, USA, 2018. Association for
Computing Machinery.

[28] GNU. 4 program behavior for all programs.
https://www.gnu.org/prep/standards/html_node/Program-Behavior.html, 2023. Ac-
cessed: 9/20/2023.

[29] Hritik Gupta, Alka Chaudhary, and Anil Kumar. Identification and analysis of log4j vul-
nerability. In 2022 11th International Conference on System Modeling & Advancement
in Research Trends (SMART), pages 1580–1583, 2022.

[30] Alan Hevner and Samir Chatterjee. Design Science Research in Information Systems,
pages 9–22. Springer US, Boston, MA, 2010.

[31] Alan R. Hevner, Salvatore T. March, S. Ram, and J. Park. Design science in information
systems research. MIS Quarterly, 28(1):75–105, 2004.

[32] Raphael Hiesgen, Marcin Nawrocki, Thomas C Schmidt, and Matthias Wählisch.
The race to the vulnerable: Measuring the log4j shell incident. arXiv preprint
arXiv:2205.02544, 2022.

[33] Fang Hou, Siamak Farshidi, and Slinger Jansen. Trustseco: A distributed infrastruc-
ture for providing trust in the software ecosystem. In Artem Polyvyanyy and Ste-
fanie Rinderle-Ma, editors, Advanced Information Systems Engineering Workshops, pages
121–133, Cham, 2021. Springer International Publishing.

[34] Fang Hou and Slinger Jansen. A systematic literature review on trust in the software
ecosystem. Empirical Software Engineering, 28(1):8, 2022.

[35] Matthew Ivory, Miriam Sturdee, John Towse, Mark Levine, and Bashar Nuseibeh. Can
you hear the roar of software security? how responsibility, optimism and risk shape de-
velopers’ security perceptions. page 41, New York, NY, USA, 2023. ACM.

[36] Slinger Jansen, Michael A Cusumano, and Sjaak Brinkkemper. Software ecosystems:
analyzing and managing business networks in the software industry. Edward Elgar Pub-
lishing, 2013.

[37] Vipawan Jarukitpipat, Klinton Chhun, Wachirayana Wanprasert, Chaiyong Ragkhitwet-
sagul, Morakot Choetkiertikul, Thanwadee Sunetnanta, Raula Gaikovina Kula, Bodin
Chinthanet, Takashi Ishio, and Kenichi Matsumoto. V-achilles: An interactive visual-
ization of transitive security vulnerabilities. In Proceedings of the 37th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE ’22, New York, NY,
USA, 2023. Association for Computing Machinery.

86

[38] Md Mahir Asef Kabir, Ying Wang, Danfeng Yao, and Na Meng. How do developers
follow security-relevant best practices when using npm packages? In 2022 IEEE Secure
Development Conference (SecDev), pages 77–83, 2022.

[39] Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, V. N. Venkatakr-
ishnan, and Yinzhi Cao. Scaling javascript abstract interpretation to detect and exploit
node.js taint-style vulnerability. In 2023 IEEE Symposium on Security and Privacy (SP),
pages 1059–1076, 2023.

[40] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin Lee, Si Woo Mun, Jeong Hoon Shin,
and Kyounggon Kim. Dapp: Automatic detection and analysis of prototype pollution
vulnerability in node.js modules. Int. J. Inf. Secur., 21(1):1–23, feb 2022.

[41] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele
University, 33(2004):1–26, 2004.

[42] Barbara Kitchenham, Rialette Pretorius, David Budgen, O. Pearl Brereton, Mark Turner,
Mahmood Niazi, and Stephen Linkman. Systematic literature reviews in software engi-
neering – a tertiary study. Information and Software Technology, 52(8):792–805, 2010.

[43] Maryna Kluban, Mohammad Mannan, and Amr Youssef. On measuring vulnerable
javascript functions in the wild. In Proceedings of the 2022 ACM on Asia Conference
on Computer and Communications Security, ASIA CCS ’22, page 917–930, New York,
NY, USA, 2022. Association for Computing Machinery.

[44] Murat Koyuncu and Tolga Pusatlı. Security awareness level of smartphone users: An
exploratory case study. Mobile Information Systems, 2019:1–11, 05 2019.

[45] R.G. Kula, D.M. German, A. Ouni, et al. Do developers update their library dependen-
cies? Empirical Software Engineering, 23:384–417, 2018.

[46] R.G. Kula, D.M. German, A. Ouni, et al. Do developers update their library dependen-
cies? Empir Software Eng, 23(1):384–417, 2018.

[47] Enrique Larios Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink, and Geor-
gios Gousios. Selecting third-party libraries: The practitioners’ perspective. In Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, page 245–256,
New York, NY, USA, 2020. Association for Computing Machinery.

[48] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng. Demys-
tifying the vulnerability propagation and its evolution via dependency trees in the npm
ecosystem. In Proceedings of the 44th International Conference on Software Engineer-
ing, ICSE ’22, page 672–684, New York, NY, USA, 2022. Association for Computing
Machinery.

[49] Fernando López de la Mora and Sarah Nadi. Which library should i use?: A metric-based
comparison of software libraries. In 2018 IEEE/ACM 40th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER),
pages 37–40, 2018.

[50] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems: A systematic
literature review. Journal of Systems and Software, 86(5):1294–1306, 2013.

87

[51] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems – a systematic
literature review. Journal of Systems and Software, 86(5):1294–1306, 2013.

[52] Tom Mens and Coen De Roover. An introduction to software ecosystems. Preprint, 2023.

[53] Hisham Muhammad, Lucas C. Villa Real, and Michael Homer. Taxonomy of package
management in programming languages and operating systems. In Proceedings of the
10th Workshop on Programming Languages and Operating Systems, PLOS ’19, page
60–66, New York, NY, USA, 2019. Association for Computing Machinery.

[54] Suhaib Mujahid, Rabe Abdalkareem, and Emad Shihab. What are the characteristics of
highly-selected packages? a case study on the npm ecosystem. Journal of Systems and
Software, 198:111588, 2023.

[55] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. Nodest:
Feedback-driven static analysis of node.js applications. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2019, page 455–465, New York,
NY, USA, 2019. Association for Computing Machinery.

[56] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call graph
construction for security scanning of node.js applications. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2021,
page 29–41, New York, NY, USA, 2021. Association for Computing Machinery.

[57] Christoforos Ntantogian, Panagiotis Bountakas, Dimitris Antonaropoulos, Constantinos
Patsakis, and Christos Xenakis. Nodexp: Node.js server-side javascript injection vul-
nerability detection and exploitation. Journal of Information Security and Applications,
58:102752, 2021.

[58] Grigoris Ntousakis, Sotiris Ioannidis, and Nikos Vasilakis. Demo: Detecting third-
party library problems with combined program analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, CCS ’21, page
2429–2431, New York, NY, USA, 2021. Association for Computing Machinery.

[59] Marc Ohm, Arnold Sykosch, and Michael Meier. Towards detection of software supply
chain attacks by forensic artifacts. In Proceedings of the 15th International Conference on
Availability, Reliability and Security, ARES ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

[60] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio Mas-
sacci. Vulnerable open source dependencies: Counting those that matter. In Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’18, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[61] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. A qualitative study of dependency
management and its security implications. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’20, page 1513–1531, New
York, NY, USA, 2020. Association for Computing Machinery.

88

[62] Donald Pinckney, Federico Cassano, Arjun Guha, Jonathan Bell, Massimiliano Culpo,
and Todd Gamblin. Flexible and optimal dependency management via max-smt. In Pro-
ceedings of the 45th International Conference on Software Engineering, ICSE ’23, page
1418–1429. IEEE Press, 2023.

[63] Aanand Prasad, Ben Firshman, Carl Tashian, and Eva Parish. Command line interface
guidelines. https://clig.dev/, 2023. Accessed: 9/20/2023.

[64] Simone Scalco, Ranindya Paramitha, Duc-Ly Vu, and Fabio Massacci. On the feasibility
of detecting injections in malicious npm packages. In Proceedings of the 17th Interna-
tional Conference on Availability, Reliability and Security, ARES ’22, New York, NY,
USA, 2022. Association for Computing Machinery.

[65] Adriana Sejfia and Max Schäfer. Practical automated detection of malicious npm pack-
ages. In Proceedings of the 44th International Conference on Software Engineering, pages
1681–1692, 2022.

[66] Hamed Taherdoost. How to conduct an effective interview; a guide to interview design in
research study. International Journal of Academic Research in Management, 11(1):39–
51, 2022. Available at SSRN: https://ssrn.com/abstract=4178687.

[67] Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta. Last-
pymile: Identifying the discrepancy between sources and packages. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2021, page 780–792, New York,
NY, USA, 2021. Association for Computing Machinery.

[68] Duc Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta. To-
wards using source code repositories to identify software supply chain attacks. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’20, page 2093–2095, New York, NY, USA, 2020. Association for Computing
Machinery.

[69] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng, Yijian
Wu, and Yang Liu. An empirical study of usages, updates and risks of third-party libraries
in java projects. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 35–45, 2020.

[70] Ying Wang, Peng Sun, Lin Pei, Yue Yu, Chang Xu, Shing-Chi Cheung, Hai Yu, and Zhil-
iang Zhu. Plumber: Boosting the propagation of vulnerability fixes in the npm ecosystem.
IEEE Transactions on Software Engineering, 49(5):3155–3181, 2023.

[71] Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. What the fork? finding hidden
code clones in npm. In 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE), pages 2415–2426, 2022.

[72] Elizabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli. Wolf at the
door: Preventing install-time attacks in npm with latch. In Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security, ASIA CCS ’22, page
1139–1153, New York, NY, USA, 2022. Association for Computing Machinery.

89

https://clig.dev/

[73] B. Xu, L. An, F. Thung, et al. Why reinventing the wheels? an empirical study on library
reuse and re-implementation. Empirical Software Engineering, 25:755–789, 2020.

[74] Nusrat Zahan, Parth Kanakiya, Brian Hambleton, Shohanuzzaman Shohan, and Laurie
Williams. Preprint: Can the openssf scorecard be used to measure the security posture of
npm and pypi? arXiv preprint arXiv:2208.03412, 2022.

[75] Nusrat Zahan, Shohanuzzaman Shohan, Dan Harris, and Laurie Williams. Do software
security practices yield fewer vulnerabilities? In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),
pages 292–303, 2023.

[76] Stan Zajdel, Diego Elias Costa, and Hafedh Mili. Open source software: An approach
to controlling usage and risk in application ecosystems. In Proceedings of the 26th ACM
International Systems and Software Product Line Conference - Volume A, SPLC ’22, page
154–163, New York, NY, USA, 2022. Association for Computing Machinery.

[77] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel. Small
world with high risks: A study of security threats in the npm ecosystem. In 28th USENIX
Security Symposium (USENIX Security 19), pages 995–1010, Santa Clara, CA, August
2019. USENIX Association.

90

	Contents
	Introduction
	Problem Statement
	Thesis Layout

	Research Approach
	Research Questions
	Methodology Mapping to Research Questions
	Research Methods
	Literature Review
	Understanding Systematic Literature Reviews
	Steps in the framework

	Design Science
	Interview study

	Literature review
	Search Strategy
	Search process
	Duplicate removal

	Inclusion/Exclusion Criteria
	Quality Assessment
	Data Extraction
	Results
	Trust Reinforcement Mechanisms in npm Ecosystems
	Software engineers security practices and behavior
	Third-party library usage

	Software Ecosystem
	The npm Ecosystem
	Background on TrustSECO
	Distributed Ledger
	Spider
	Portal
	Trust Score Calculation

	Grey Literature Review
	Discussion

	Design Science
	Conceptualization of TrustSECO.js
	Core Functionalities and Post-installation Analysis
	Additional Features: Reporting and Policy-Based Access

	 Design Rationale
	Detailed Design
	Install Command
	Scan Command
	View-Tree Command
	Info Command

	Preliminary Testing
	Dependencies used and additional UX

	Design Limitations

	Interview study
	Methodology
	Interview participants
	Interview Design
	Interview Process
	Ethical & Privacy Considerations

	Results
	Introduction and Context
	General Feedback
	Usability
	Functionality and Features
	Performance
	Comparison with Existing Tools/Practices
	Future Development and Improvement
	Closing Thoughts

	Discussion
	Research questions
	Limitations - Threats of validity

	Conclusion
	Contributions
	Recommendations for Future Work

	Bibliography

