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Abstract

Due to a rapid advancement of digital technology and growing reliance on the internet, cybersecurity
has become a paramount issue for individuals, organizations, and governments. To address this
challenge, penetration testing has emerged as a critical tool to ensure the security of computer
systems and networks. The reconnaissance phase of penetration testing plays a crucial role in
identifying vulnerabilities in a system by gathering relevant information. Although various tools are
available to automate this process, most of them are limited to identifying reported vulnerabilities,
and they do not provide suggestions or predictions about vulnerabilities. Therefore, this research
aims to investigate the application of recommender systems to predict common vulnerabilities
during the reconnaissance phase. The main objective of this research is to investigate how active
learning affects the performance of a recommender system to identify vulnerabilities in software
products.

Item-Based k-NN Collaborative Filtering, a recommender system, can improve the identification of
potential vulnerabilities and the effectiveness of penetration testing by analyzing information from
similar data points. This research involves a comprehensive data preprocessing phase, which utilizes
data from the National Vulnerability Database (NVD). Several recommender systems are built using
this data, which enables the prediction of potential vulnerabilities during the reconnaissance phase
of penetration testing. The performances of these recommender systems are evaluated, and the top-
performing recommender system implements active learning to enhance its performance.

The findings of this research demonstrate that Item-Based k-NN Collaborative Filtering outperforms
other recommender systems in terms of overall performance when it comes to identifying software
vulnerabilities. Furthermore, when compared to Item-Based k-NN Collaborative Filtering prior
to active learning or with active learning and a random sampling technique, Item-Based k-NN
Collaborative Filtering with active learning incorporating a 4- or 10-batch sampling technique with
20 or 40 items added yields a statistically significant improvement in the precision score. This
indicates that a greater proportion of the predicted vulnerabilities are correct. Item-Based k-NN
Collaborative Filtering with active learning and a single-batch sampling strategy only results in
a statistically significant improvement in precision, compared to Item-Based k-NN Collaborative
Filtering prior active learning or with active learning and a random sampling technique, when 20
items are added instead of 40.

Furthermore, only Item-Based k-NN Collaborative Filtering with a 10-batch sampling strategy
adding 20 items demonstrated a statistically significant improvement in nDCG scores compared to
Item-Based k-NN Collaborative Filtering prior to active learning. This implies a more accurate
ranking of the vulnerabilities. However, this could potentially be a type I error.

From these findings, it can be concluded that introducing active learning in Item-Based k-NN
Collaborative Filtering, using the approaches outlined, leads to significant improvement in precision
score but not necessarily in nDCG score.

Considering this conclusion, it is advised to use Item-Based k-NN Collaborative Filtering with
active learning to predict vulnerabilities in software products and enhance the reconnaissance phase
of penetration testing. This can be achieved by incorporating a single-batch sampling technique
with 20 items added or a 4- or 10-batch sampling technique with 20 or 40 added.

The insights gained from this research can help individuals, organizations, and governments strengthen



their cybersecurity defences and protect against potential cyber threats.
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1 Introduction

This research will investigate the possibilities to improve the reconnaissance phase in ethical hacking
by predicting vulnerabilities in software products with the application of Item-Based k-NN Collab-
orative Filtering and active learning. First, the motivation for this research is elaborated and a
problem state is defined. Followed by the research questions.

1.1 Motivation
Over the past two decades, humans have become increasingly reliant on information networks, social
media, and other digital networks. With such heavy reliance on these systems, the consequences of
a cyber attack could be severe, ranging from financial losses to reputational damages. This creates
the necessity for cybersecurity to strengthen cyber defence mechanisms and prevent cybercrime.
Cybercriminals can break into a computer system by exploiting vulnerabilities in software or net-
works. These vulnerabilities can be found in the National Vulnerability Database (NVD) [1] and
could be caused by password management flaws, operating system design flaws, software bugs, and
many more things. To protect devices or networks a penetration test can be performed where eth-
ical hackers investigate potential vulnerabilities. As an IT-consulting Organization, Ordina could
perform such penetration tests. Ordina has a team of ethical hackers named the ’Red Team’ who
try to break into systems by conducting a penetration test to find vulnerabilities. This hack is
done according the steps in Figure 1 [2]. In the first two phases ’preparation’ and ’information
gathering’ the ethical hacker will gather information about the system and this information is later
used to examine the network. However, these phases are time-consuming, especially for larger
systems with multiple applications, software, and operating systems. It requires a lot of time to
find and review every vulnerability in the NVD. To make this process more efficient, it would be
beneficial to consider common vulnerabilities of similar systems. Artificial Intelligence and partic-
ularly recommender systems can discern patterns in data rapidly. When applied to cybersecurity
data, a recommender system can discover potential new vulnerabilities in products. This would
also discover potential vulnerabilities which are not yet reported in the NVD.

Figure 1: steps of penetration testing at Ordina
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1.2 Problem space
This research will investigate whether the work efficiency during the reconnaissance phase of ethical
hacking could be improved. Currently, there are a lot of tools to automate parts of this phase such
as Metasploit, Nmap, Shodan, Wireshark etc. Most of them are information exploit tools and some
are also capable of identifying vulnerabilities. However, this is based on reported vulnerabilities and
there are no suggestions or predictions made about the existence of other possible vulnerabilities.
Previous research has already explored machine learning for predicting vulnerabilities. For instance,
in [3] nine machine learning techniques are used for the predictions of software vulnerabilities.
Additionally, in [4] software vulnerability predictions are made using a machine learning algorithm
trained on data from the NVD. However, the use of a recommender system, particularly Item-
Based k-NN Collaborative Filtering, for predicting vulnerabilities has not yet been explored. This
represents an opportunity for improvement which is investigated in this research. Specifically,
this research explores the use of a recommender system in making predictions of vulnerabilities.
However, a recommender system may encounter the cold-start problem where it is unable to suggest
items to the user due to unavailable adequate information about them [5]. Active learning addresses
this problem by actively querying a user to provide information about (new) items [6]. Hence, this
research will also apply active learning to prevent the cold-start problem.

1.3 Research aims
Based on the problem represented in section 1.2 the main research question of this thesis is Formu-
lated as:

How does active learning affect the performance of recommender systems to identify vulnerabilities
in software products?

To answer this question, the following sub-questions need to be answered:

1. Data collection and preprocessing

(a) How to frame the prediction of vulnerabilities in software products as a problem suitable
for a recommender system?

(b) How to collect and pre-process data for recommender systems with active learning?

2. Recommender systems

(a) What types of recommender systems are suitable for predicting vulnerabilities in software
products?

(b) How can a recommender system be implemented for predicting vulnerabilities in software
products?

3. Active learning

2



(a) What types of strategies in active learning are suitable for implementing active learning
in recommender systems to predict vulnerabilities in software products?

(b) How can active learning be implemented in a recommender system for predicting vulner-
abilities in software products?

4. Evaluation

(a) How to measure the performance of the recommender systems and active learning?

(b) How to compare the performances of the recommender system before and after active
learning?

1.4 Thesis outline
To determine if active learning improves the performance of recommender systems for predicting
vulnerabilities in software products, a contextualization will precede the investigation. This contains
background information and related work. The methodology will be summarizing how the data is
collected, pre-processed, and how the algorithms are implemented. Additionally, more details about
the data can be found in the methodology. The subsequent section will contain all the results, which
will be discussed in detail. Finally, the conclusion and discussion with implications of this research
will be presented.
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2 Background & related work

To enhance the understanding of the topic regarding the impact of active learning on the perfor-
mance of recommender systems in predicting vulnerabilities, background information about the
data, recommender systems, active learning, and evaluation methods is collected. The general con-
cept of recommeder systems and active learning is explained, and multiple implementation methods
are presented. Lastly, section 2.5 will on elaborate previous similar research. More information
about vulnerabilities, penetration testing, and security can be found in the appendices.

2.1 Data
The data used in this research, is retrieved from the NVD which contains CPEs and CVEs. These
concepts are described in the following sections.

2.1.1 NVD

The National Vulnerability Database (NVD) [1] provides an overview of information about vulnera-
bilities, and methods for technical assessment. The National Institute of Standards and Technology
(NIST) maintains this database in the United States. The data is gathered from sources like
software vendors, security researchers, or other organizations that detect vulnerabilities.

2.1.2 CPE

The NVD uses Common Platform Enumeration (CPE) as a standardized method for describing
hardware, operating systems, and software components of a computer. The current version of CPE
is 2.3 which is also used in the NVD. The format of a CPE entry is constructed like in listing
1 [7] [8].

Listing 1: CPE
cpe : 2.3 : part : vendor : product : version : update : edition : language :

sw_edition : target_sw : target_hw : other

Breaking down Listing 1 into the variables to describe them:

1. part
Can have three possible values: ’a’, ’h’ or ’o’ which respectively represent ’Applications’,
’Hardware’, and ’Operating Systems’. It identifies the part of the product this vulnerability
refers to.

2. vendor
Supplier of the product in which this vulnerability is present.

3. product
The product name in which this vulnerability is present.

4. version
The version number of the product in which this vulnerability is present.

5. update
The update or service pack information in which this vulnerability is present.
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6. edition
Further details describing the build of the product beyond the update.

7. language
The language or localization of the product.

8. sw_edition
Further details describing the build of the software.

9. target_sw
Describing the target software environment that is compatible with this product.

10. target_hw
Describing the target hardware environment that is compatible with this product.

11. other
Any other information which was not included in preceding CPE details.

2.1.3 CVE and CWE

Another database containing vulnerabilities is the Common Vulnerabilities and Exposures (CVE)
database maintained by MITRE [9]. The vulnerabilities in this database have an "identification
number", description, public reference for publicly known cybersecurity vulnerabilities, vulnerabil-
ity patch information, exploits information, CPE, Common Weakness Enumeration (CWE), and
Common Vulnerability Scoring System (CVSS). The CWE is a resource that contains descriptions
of software weaknesses. It serves as an evaluation tool for software vulnerability assessment [10].
And CVSS is a specification for measuring the severity of software vulnerabilities [11]. The NVD
is fully synchronized with this MITRE CVE list, so the NVD contains all CVEs and provides
additional information about them.

2.1.4 Bias in data

As previously mentioned, the NVD relies on the reporting of vulnerabilities from multiple sources
like software vendors, security officers, researchers and users. The dependency on these sources
could cause a potential bias. Examples of potential biases are described below.

1. Report bias
When some vulnerabilities are more likely to be reported than others, this could create a bias
in the NVD data.

2. Location bias
The NVD is mainly focused on vulnerabilities affecting systems in the US which could cause
a location bias.

3. Severity bias
The NVD prioritizes the reporting of severe vulnerabilities. Table 1 represents the amount
of CVEs in 2022 with various severity classes. Almost 40% of the reported CVEs have the
severity class MEDIUM and 2% severity class LOW.

5



MEDIUM 9120
HIGH 8985
CRITICAL 3780
LOW 439

Table 1: Counts of severity levels in NVD data 2022

2.2 Recommender systems
Recommender systems are a type of information filtering technology that aims to predict the pref-
erences or interests of users and recommend items that they may like. This technology has become
increasingly important in recent years, especially in the context of online platforms and services
that offer a variety of choices.

Formulating a recommender system problem involves defining the variables for users u, and items
i. The variable rui is introduced to indicate the observations or ratings. For explicit datasets,
where users provided direct feedback or ratings for items, rui indicates ratings that represent the
preference of the user. For implicit datasets, where user preferences are not explicitly stated, rui
indicates observations for user actions [12]. The goal of recommender systems is to predict missing
or future ratings. This objective could be formulated like Formula 1. f(u, i) represents a general
function used to predict rui which differs among various recommender systems.

R̂ui = f(u, i) (1)

Recommender systems could be built according to three different approaches: content-based, knowledge-
based, and collaborative filtering. A content-based approach relies on the analysis of the attribute
or features of items to make recommendations. It will look at the user’s past behavior and rec-
ommend items that are similar in terms of their attributes or features. On the other hand, the
knowledge-based approach relies on a knowledge base or expert system to make recommendations.
This knowledge base contains information about the user’s preferences as well as information about
themselves and is used to reason about the user’s preferences [13]. Collaborative filtering is de-
scribed in section 2.2.1.

2.2.1 Collaborative filtering

Collaborative filtering is a type of recommender system that looks at patterns of item ratings or
interactions across a group of users to make recommendations. This approach does not rely on
explicit knowledge about the users or items but it uses other similar users or items to generate
recommendations. It is based on the assumption that people who have similar preferences in the
past will have similar preferences in the future [14].

Some techniques for collaborative filtering are memory-based methods, model-based methods, and
deep learning-based methods [15]. Memory-based methods make recommendations based on sim-
ilarity between users or items. This similarity is computed on the entire user-item interaction
matrix using measures like cosine similarity or Pearson correlation. Memory-based methods make
distinction between user-based collaborative filtering (UBCF) and item-based collaborative filter-
ing (IBCF). UBCF recommends items that similar users have liked or interacted with. Conversely,
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IBCF recommends items that are similar to the items the user has liked or interacted with in the
past [13]. These two types of collaborative filtering could be used together which is called Hybrid
Collaborative Filtering. The most common way to combine UBCF and IBCF is to use a weighted
combination of the recommendations from both techniques [14].

Model-based methods use machine learning algorithms to train a model on the user-item interac-
tion matrix and additional information about the users and items. This model is used to predict
ratings or preferences. Techniques such as Matrix Factorization (MF), Non-negative Matrix Fac-
torization (NMF), and Probabilistic Matrix Factorization (PMF) are examples of model-based
methods.

Deep learning-based methods learn the patterns in the user-item interaction matrix with neural
networks by understanding the users and items beforehand. Deep Neural Networks (DNNs), and
Convolution Neural Networks (CNNs) are examples of neural networks that could be used in deep
learning-based methods [16].

1. Memory-based algorithm

The general purpose of memory-based algorithms is to predict the votes of a particular user.
To do so, they operate over the entire user or item database to make predictions [17]. Assume
we have a user i, and an item j. To calculate the predicted rating of the active user on item
j: pa,j we can use the following Formula:

v̄i =
1

|Ii|
∑
j∈Ii

vi,j (2)

Formula 2 represents the mean vote for user i. Where |Ii| is the set of items on which user i
have voted. And, vi,j is the vote of user i on item j. The mean vote for the user can now be
used to predict the vote for item j of active user a: pa, j:

pa,j = v̄a + κ

n∑
i=1

w(a, i)(vi,j − v̄i)(3)

In Formula 3 n is the number of users in the database with nonzero weights. A normalized
factor, denoted as κ ensures that the absolute values of the weights sum to unity. Two
formulations for the weight calculation w(a, i) are listed below.

(a) correlation

w(a, i) =

∑
j(va,j − va)(vi,j − vi)√∑

j(va,j − va)2
√∑

j(vi,j − vi)2
(4)

Formula 4 represents the correlation between active user a and i. The j represents the
items for which user a and i both have voted.
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(b) Vector similarity

w(a, i) =
∑
j

va,j√∑
k∈Ia

v2a,k

vi,j∑
k∈Ia

v2i,k
(5)

In equation 5 the v2a,k and v2i,k serve to normalize votes so that users who vote on a
large number of items are not considered more similar to other users. This is achieved
by using a normalization technique that takes into account the number of items that a
user has voted on.

1.1 User- and item-based collaborative filtering
User- and item-based collaborative filtering are memory-based methods that both consist
of three steps: similarity computation, neighborhood selection, and rating prediction.
Correlation-based similarity and vector cosine-based similarity are two popular similarity
computation methods which are elaborated below. Two popular neighborhood selection
methods are: Max number (topk) and correlation threshold. These techniques either
select the top K users and items with the highest similarity scores or retain the users
and items whose similarity values exceed a threshold. Finally, the weighted sum method
for the ratings prediction is described in this section [18] [19].

i. Correlation-Based Similarity
The Pearson correlation between users u and v is presented in Formula 6. The
Pearson correlation between items i and j is presented in Formula 7

wu,v =

∑
i∈I(ru,i − r̄u)(rv,i − r̄v)√∑

i∈I(ru,i − r̄u)2
√∑

i∈I(rv,i − r̄v)2
(6)

wi,j =

∑
u∈U (ru,i − r̄i)(ru,j − r̄j)√∑

u∈U (ru,i − r̄i)2
√∑

u∈U (ru,j − r̄j)2
(7)

Formulas 6 and 7 are the user- and item-based implementations for Formula 4. In
Formulas 6 and 7, R represents rating whereas v represents vote in Formula 4.
However, these variables are equivalent. In addition,

∑
j in Formula 4 corresponds

with
∑

u∈U and
∑

i∈I in Formulas 6 and 7. In both formulas it represents the items
that both users u and v have rated or the users that have both rated items i and j.

ii. Vector Cosine-Based Similarity
The Vector Cosine-Based Similarity treats a user as a vector of ratings rated by
himself. An item is treated as vector of ratings rated by the set of users. A Vector
Cosine-Based Similarity close to 1 indicates a strong correlation between each other
[19]. Formulas 8 and 9 represent the Vector Cosine measure for users and items
respectively. These formulas are derived from Formula 5. In these formulas v and r
both represent the ratings.

cos(u, v) =

∑
i∈Iuv

ruirvi√∑
u∈Iu

r2ui

√∑
u∈Iv

r2vi

(8)
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cos(i, j) =

∑
u∈Uij

ruiruj√∑
u∈Ui

r2ui

√∑
u∈Uj

r2uj

(9)

iii. Weighted sum method
The weighted sum method predicts the rating of an active user based on the set of
K neighbors that are most similar to user u which is formulated as N i

u. The number
of neighbors, K, can be adjusted. Formulas 10 and 11 represent the weighted sum
method. In Formula 10, Simuv is the similarity value between user u and v. This
similarity value could be computed with formulas 6 till 9. In Formula 11,

∑
j∈Nu

i

is the set of neighbors (top K items) that are most similar to item i and have been
rated by the user u. Simij is the similarity value between items i and j which could
also be computed with formulas 6 till 9.

r̃ui =

∑
v∈Ni

u
Simuv × rvi∑

v∈Ni
u
|Simuv|

(10)

r̃ui =

∑
j∈Nu

i
Simij × ruj∑

j∈Nu
i
|Simij |

(11)

2. Model-based algorithm

The collaborative filtering task can be viewed as retrieving the expected value of a vote, given
what we know about a user. In other words, calculating the probability that the active user
will have a certain vote value for item j given the historical observed votes: pa,j and a trained
model. This is captured in Formula 12.

pa,j = E(va,j) =
m∑
i=0

Pr(va,j = i|va,k, k ∈ Ia)i (12)

Formula 12 includes Ia which represents the set of items on which user a has voted.

Two alternative probabilistic models for the model-based methods are cluster models and
Bayesian networks which are elaborated below.

(a) Cluster Model
For Cluster models, with a Bayesian classifier, the probability of votes is assumed to be
conditionally independent given membership in an unobserved class variable C. Users
or items can be grouped into certain classes that capture commonalities in preferences
or features. The model assumes that the features are conditionally independent given
the class, so the joint probability of the feature vector and the class can be decomposed
as a product of the individual conditional probabilities. This will be represented with
the standard naive Bayes Formulation in Formula 13. The joint probability, Pr(C =
c, v1, . . . , vn), represents the user that belongs to class C and provides a set of votes
denoted by v1, . . . , vn.
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Pr(C = c, v1, . . . , vn) = Pr(C = c)

n∏
i=1

Pr(vi|C = c) (13)

In Formula 13, Pr(C = c) is the probability of a membership for class c, and Pr(vi|C = c)
is the conditional probability of feature vi given class c. The model then uses Bayes’
theorem to compute the posterior probability of the class given the feature vector [17].

(b) Bayesian Network Model
The Bayesian Network Model is a probabilistic graphical model that represents variables
and their conditional dependencies using a directed acyclic graph (DAG). It has each
item in the domain represented as a node with possible vote values as states, including
a state for "no vote". The training data is used to learn the Bayesian Network. The
resulting model is a network with parent items that are the best predictors of its votes.
A decision tree encoding the conditional probabilities for that node is used to represent
each conditional probability table.

2.1 Matrix Factorization

Matrix Factorization is a model-based algorithm and one of the most popular techniques
for collaborative filtering. Matrix Factorization uses a user-item matrix R, where each
entry Ri,j represents the rating given by user i to item j. The goal is to predict the
missing ratings and make personalized recommendations to users based on their past
interactions with items [20].

Matrix Factorization characterizes the items with vector qi and the users with the vector
pu [21]. These vectors are inferred from item rating patterns. The elements in qi represent
the extent to which an item holds those characteristics and the elements in pu represent
the extent of interest a user has in items that correspond to those characteristics [22].
Funk [23] proposed the SVD algorithm where the rating matrix is denoted by R ∈ Rm×n

and it consists of m users, and n items. The regularized SVD algorithm decomposes the
rating matrix R into the products of two lower rank matrices U ∈ Rk×m and V ∈ Rk×n

as the feature matrices of users and items respectively where k represents the number
of latent factors or dimensions. Formula 14 represents this decomposition. R̃ illustrates
the matrix decomposed by UT and V .

R̃ = UTV (14)

Formula 15 represents the predicted rating of item i by user u based on the SVD algo-
rithm. qi represents the embedding vector for item i and pu for user u.

r̂ui = qTi pu (15)

Formula 16 represents the prediction of item i by user u based on the biased version of
the SVD algorithm

r̂ui = µ+ bu + bi + pTu qi (16)
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In Formula 16, µ represents the global mean, bu represents the bias for user u, and bi
represents the bias for item i.

The main objective of Matrix Factorization is to learn the embedding vectors qi and pu.
These are learned by solving the formula for minimizing the regularized squared error
on the known ratings which is represented by formula 17. Formula 18 represents the
minimization of the regularized squared error with bias.

min
q∗,p∗

∑
(u,i)∈κ

(rui − qTi pu)
2 + λ

(
∥qi∥2 + ∥pu∥2

)
(17)

min
u,i∈K

∑
(u,i)∈κ

(
rui − µ− bu − bi − pTu qi)

2 + λ(∥qi∥2 + ∥pu∥2 + b2u + b2i
)

(18)

In formulas 17 and 18, κ is the set of all the user-item pairs for which rui is known in the
training set. And λ is the constant that controls the regularization to avoid overfitting.
Additionally, rui represent the actual rating and qTi pu the predicted rating: r̂ui.

Approaches to minimize equations 17 and 18 are stochastic gradient descent, and alter-
nating least squared (ALS) [24].

Stochastic gradient descent

The Stochastic Gradient Descent Algorithm is a general iterative optimization algorithm
and loops through all ratings in the training set where it predicts rui for every training
case. It starts at a random point on a function and travels down its slope in steps until
it reaches the minimum point of that function.

It computes the related prediction error according to Formula 19.

eui =
def rui − qTi pu (19)

Afterwards qi and pu are modified like in formulas 20 and 21.

qi ← qi + γ · (eui · pu − λ · qi) (20)

pu ← pu + γ · (eui · qi − λ · pu) (21)

The γ in formulas 20 and 21 refers to the learning rate and proportional to this rate qi and
pu are modified in opposite direction of the gradient. For the biased SVD algorithm, the
bias terms are updated in line with update rules 22 and 23 and they are often initialized
to 0.

bi ← bi + γ(eui − λbi), (22)
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bu ← bu + γ(eui − λbu). (23)

Alternating Least Squares

Generally, ALS works by iteratively alternating between fixing one of the matrices qi or
pu and solving the other using least squares till convergence. Convergence is attained
when the difference between the actual ratings and the predicted ratings is minimized. It
first holds the user matrix fixed and runs an optimizing algorithm (like gradient descent)
with the item matrix. Then it holds the item matrix fixed and runs the optimizing
algorithm with the user matrix.

2.2 Probabilistic Matrix Factorization

Probabilistic Matrix Factorization is also a model-based collaborative filtering technique.
The difference with normal Matrix Factorization is the assumption about the user-item
interaction matrix. This assumption implies that the user-item interaction matrix follows
a Gaussian distribution and the latent factors are modeled as Gaussian distributions with
unknown mean and variance [25]. This conditional distribution is captured in Formula
24.

p(R | U, V, σ2) =

N∏
i=1

M∏
j=1

[N (rij | uiTvj, σ2)]Iij (24)

Here R is the rating matrix with entries rij for user i and item j. U and V are the latent
factor matrices. σ2 is the variance of the noise term. N (x | µ, σ2) is the probability
density function of the Gaussian distribution with mean µ and variance σ2.

The objective of probabilistic Matrix Factorization is to minimize the negative log-
likelihood of the observed data which Formula 25 represents:

E =
1

2

N∑
i=1

M∑
j=1

Iij(rij − uT
i vj)2 +

λU

2

N∑
i=1

||Ui||2Fro +
λV

2

M∑
j=1

||Vj ||2Fro (25)

In Formula 25, λU = σ2/σ2
U and λv = σ2/σ2

V . Additionally, || · ||2Fro indicates the
Frobenius norm. The local minimum of this function can be found with stochastic
gradient descent in U and V like in Formulas 19, 20, and 21.

2.3 Active learning
Recommender systems could face the cold start problem. This problem arises when the system has
not yet acquired enough ratings to generate reliable recommendations. When a new user or item is
introduced in the recommender system the cold start problem typically arises. Additionally, the cold
start problem is often introduced with recommder systems trained on very sparse datasets. Active
learning tackles this problem by focusing on obtaining more information that better represents the
user’s preferences.
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The general concept of active learning is improving the performance of a machine learning algorithm
with fewer labeled training instances by allowing it to choose the data from which it learns. The
active learning algorithm can be illustrated by the following generic schema: Given a training set of
N input-output pairs (x1, y1), (x2, y2), ....(xN , yN ) where xi ∈ X is an instance and yi ∈ Y is a label,
we assume there is a model M that maps the input to an output M : X → Y . A function Loss(M)
is defined that measures the error of the model. For every iteration j in the active learning process,
the learner selects a query qi ∈ potentialQueries ⊂ X, then requests the labels of them, and add
these labels to the model. The new model including these new instances (qi, yi) is presented as
M ′ [26].

Active learning can be implemented using online learning, where new data is available for the model
while learning. On the other hand, active learning can be implemented using offline learning. With
offline learning the model is implemented on a pre-collected dataset and does not consider new
data instances while operating [27]. For both implementations of active learning, a learner will seek
assistance from an oracle (e.g. human annotator) by asking queries in the form of unlabeled data
that require labeling by this oracle. With this approach the learner gains a deeper understanding
of the underlying patterns to make more accurate predictions. An example of active learning is
represented in figure 2. Graph ’a’ in figure 2 represents a dataset of 400 instances, drawn from two
Gaussian’s classes. Graph ’b’ represents a logistic regression model trained with 30 labeled data
points randomly picked from the problem domain in graph ’a’. The line in this graph represents
the decision boundary of the classifier. This model has an accuracy of 0.7. Graph ’c’ represents a
logistic regression model trained with 30 actively queried data points using uncertainty sampling.
this graph has an accuracy of 0.9 which is higher than graph of the model without active learning.
More about this method is explained in section 2.3.2 [28].

Figure 2: Example active learning

2.3.1 Algorithm

Figure 3 presents the pseudocode for a general active learning algorithm. The ’U ’ represents the set
of unlabeled data and ’L’ the set of labeled data. A classifier is trained to select instances to query.
When these instances got labeled by the oracle, the set L is updated with the labeled instances
and these instances are deleted from the set U [29]. This classifier will select the most informative
instance to query. Other methods for selecting instances are elaborated in section 2.3.2.
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Figure 3: Pseudocode active learning

2.3.2 Sampling strategies

Strategies for active learning in recommender systems can be classified into two main categories:
personalized and non-personalized. Each of them can be further divided int single-heuristic and
combined-heuristic [26] where combined-heuristic combines strategies. Some strategies are consid-
ered and elaborated.

1. Personalized

(a) Acquisition probability based
This strategy enhances the system’s performance by increasing the likelihood that the
user will recognize the queried item and will rate it. This is realized by personalizing the
rating request with various algorithms.

i. Item-Item
Item-Item will select items that are most similar to the items the user already rated.
The formulas in subsection 1.1 of the Collaborative Filtering section 2.2.1 present
the item similarity computation used for Item-Item.

ii. Binary Prediction
Binary Prediction will transform the rating matrix into a new matrix where is indi-
cated whether a user have rated an item. A factor model is then used to predict the
item the user is most likely to rate.

iii. Personality-Based Binary Prediction
The matrix is transformed into a new matrix as with Binary Prediction. However,
this matrix is now used to train an extended version of Matrix Factorization to
profile users in terms of known attributes.

(b) Impact Based
With the Impact Based strategy, items will be selected that minimize the rating predic-
tion uncertainty over all items.

i. Influence Based
This strategy calculates the effect of item ratings on the prediction of other items’
ratings. It will choose the items that have the greatest influence on the others. To
estimate this influence: first r̂ui for user u and unrated item i is computed. Then

14



r̂′ui is determined by r̂′ui = r̂ui − 1. Two models are trained where for one model
the training data includes r̂ui and the other includes r̂′ui. The absolute difference of
these predictions for the ratings of all items different from i are then computed and
summed up which results in the influence of i.

ii. Impact Analysis
Impact Analysis will select items whose ratings have the biggest impact on the
prediction of other ratings.

(c) Prediction Based
Strategies that are prediction based use a rating prediction model to predict which item
should be queried. Different models are considered.

i. Aspect Model
The probability of the user u giving a rating r ∈ R to an item i ∈ I is presented
by Formula 26. In this formula every user u has a probability-based membership
to multiple aspects z ∈ Z. Users that are in the same group have similar rating
patterns. p(r|u, i) represents how likely membership to group z for user u is. Addi-
tionally, p(r|z, i) represents how likely it is for the users of group z to give rating r
item i.

p(r|u, i) =
∑
z∈Z

p(r|z, i)p(z|u) (26)

ii. Highest or lowest Predicted
Highest Predicted strategy scores items based on their predicted rating and queries
the items with the highest scores. These items are estimated to have the highest
probability of being rated by the user. In contrast to, Lowest Predicted which uses
the opposite heuristic of the Highest Predicted strategy.

iii. MinNorm
For the strategy MinNorm, Matrix Factorization is used to compute the latent factors
for each item. It will select items with vectors that represent the minimum Euclidean
Norm.

(d) User Partitioning
For User Partitioning, the users are divided into clusters based on similar taste. It will
query the items that will reveal to which cluster the user belongs.

i. IGCN
Information Gain Clustered Neighbours (IGCN) constructs a decision tree with each
leaf node representing a users’ cluster. Each internal node represents tests to test
the users’ preferences.

2. Non-personalized
Non-personalized strategies are strategies that do not take personal preferences into consid-
eration. Some strategies are elaborated.

(a) Uncertainty-reduction
This strategy selects items to reduce uncertainty about ratings by querying controversial
or diverse ratings. Two strategies that can be involved in uncertainty-reduction are
considered.
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i. Variance
The item with the highest variance will be queried. A high variance indicates diverse
ratings for this item. Variance is represented in Formula 27, where Ui represents the
set of users who rated item i, rui is the rating user u gives to item i, and r̄ is the
average rating for i.

Variance(i) =
1

|Ui|
∑
u∈Ui

(rui − r̄i)
2 (27)

ii. Entropy
Entropy calculates the ratings’ distribution for a given item. Formula 28 captures
this where p(ri = r) is the probability that a user gives rating r to item i.

Entropy(i) = −
5∑

r=1

p(ri = r) log(p(ri = r)) (28)

(b) Error-reduction
This strategy will query items that will help to reduce the error in the system, and
therefore improve the prediction accuracy.

i. Greedy Extend
Greedy Extend searches for items whose ratings, when added to the training set and
elicited by users, produce the lowest system RMSE.

ii. Representative-based
Representative-based will try to determine a subset of items that best exemplify the
entire catalog.

(c) Attention-based
Attention-based strategies focus on querying the items that are most popular to the
users. Users can rate such items because they are likely to be familiar to them.

i. Popularity
This strategy simply queries the most popular items which is based on the highest
ratings among all users.

ii. Co-coverage
Co-coverage is represented in Formula 29. In this formula mij indicates the number
of users who have rated item i and item j both.

Co-coverage(i) =
n∑

j=1

mij (29)

Some other strategies for sampling in active learning are considered and elaborated below [28]
[30].

1. Uncertainty Sampling
Uncertainty sampling, queries the instances whose posterior probability of being positive
is 0.5. These are the instances that are most uncertain and close to the decision boundary.
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Another technique to implement uncertainty sampling uses entropy as an uncertainty measure
provided in equation 30.

x∗
ENT = argmax

x
−

∑
i

P (yi|x : θ)logP (yi|x : θ) (30)

In equation 30 yi varies over all possible labeling options. Theta θ denotes the vector of
parameters that specify the posterior distribution over models given the available training
data. Entropy is the measure of uncertainty or randomness and is used in uncertainty sampling
to quantify the amount of information in an instance. Additionally, instances can also be
sampled according ’confidence’. The instances with the ’least confident’ labeling will be
queried in line with equation 31

x∗
LC = argmin

x
P (y∗|x : θ) (31)

y∗ = argmaxyP (y|x : θ) and this represents the class labeling which is most likely. In other
words, Formula 31 represents the instance that is most uncertain about having the most likely
label.

2. Query-By-Committee
With the Query-By-Committee strategy, a ’committee’, C = θ(1), ..., θ(C), is maintained. This
committee consists of models that are trained on the current labeled set L but represent
competing hypotheses. Each member of C can vote on the labeling options of the query
candidates. The query they most disagree about is the most informative query. To decide the
amount of disagreement Formula 32 is considered.

x∗
V E = argmax

x
−
∑
i

V (yi)

C
log

V (yi)

C
(32)

In Formula 32 yi ranges over all the possible labeling options and V (yi) is the total amount
of votes a label receives from the committee’s members.

3. Expected Model Change
Expected model change is a method where the instance, that would bring the greatest change
to the current model, is queried when its label is known. To determine what instance would
bring the greatest change, Formula 33 is employed.

x∗
EGL = argmax

x

∑
i

P (yi|x : θ)∥∇ℓ(L ∪ ⟨xi, yi⟩ : θ)∥ (33)

In Formula 33, ∥·∥ is the Euclidean norm of each resulting gradient vector which points in
the direction of the steepest increase of a function. The length is calculated as an expectation
over the possible labeling options because the true label y is not known. ∇ℓ(L∪⟨xi, yi⟩ : θ) is
a gradient of the function ℓ with respect to θ that would be obtained by adding the instance
⟨xi, yi⟩ to L

17



4. Exhaustive search
Exhaustive search is querying each instance until one is not discarded.

5. Multiple-instance query
Instead of labeling individual instances, a set of instances is labeled when the multiple-instance
query strategy is applied. This set of instances is named a bag. It selects multiple bags for
labeling based on their uncertainty. Once a batch of bags is selected, the clustering algorithm
could be used to group the instances within each bag. The most informative in each cluster
are then labeled while the remaining instances are assumed to have the same label as the
cluster [31].

2.4 Evaluation methods
Evaluation methods are critical to determine how well a model is performing. Selecting the correct
evaluation method is essential to measure the relevant aspects of the model. Various evaluation
metrics are considered for evaluating the performances of recommender systems and active learning.
Additionally, these performance scores need to be compared in order to make statements about
the differences in the performances of the models. These comparisons could be performed using
statistical tests.

2.4.1 Cross-validation

Cross-validation is a popular data resampling technique used to evaluate the performances of models
by estimating the true prediction error. It is implemented on the input data where it generates
training set(s) and testing set(s) from data instances in the input. One critical aspect that needs
to be considered is that the train and test data are split and the model is only trained with the
train data. Some sampling methods are considered [32].

1. K-fold cross-validation
K-fold cross-validation distributes data instances over K groups that are called folds. Consider
dataset D, for each fold the data instances in this fold are split into a training set Dtrain and
a testing set Dtest. A different model per fold will be built using Dtrain. The resulting model
f̂(x,Dtrain) will be tested with Dtest. For every fold a different subset is used as a testing
set with no overlap between validation sets of different folds. The average of the performance
scores that these models achieved is an estimate of the performance of the final model f(x,D).

2. Single hold-out validation
With the single hold-out validation method some data instances from the input data are
sampled to use as a validation set while the remaining data instances are used for the learning
set. Generally, the test set contains 10% to 30% of the data instances. A single model is
trained on Dtrain and then tested with Dtest.

3. K-fold random subsampling
K-fold random subsampling is similar to K-fold cross-validation. However, the difference is
in how the data instances are distributed over the folds. For K-fold random subsampling,
the data instances are randomly distributed over the folds where any two training sets or two
testing sets, may overlap. However, as with K-fold cross-validation: any pair of the training
and testing set is disjoint Dtrain,j ∩Dtest,j = ∅.
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4. Leave-one-out cross-validation
Leave-one-out cross-validation is a special case of K-fold cross-validation where the testing
set Dtest consists of one single data point and the model is trained on the remaining data,
Dtrain. This process is repeated for every data point in D.

2.4.2 Performance metrics

There is a wide range of performance metrics available, each intended to measure different aspects
of a model’s performance. In context of recommender systems, aspects such as ranking could be
more important than accuracy. Elaborations on some performance metrics follow [33] [34] [35].
Table 2 contains the description of generally used terms in evaluation metrics.

Term Description
True negative Predicted negative, actual negative
False negative Predicted negative, actual positive
True positive Predicted positive, actual positive
False positive Predicted positive, actual negative

Table 2: Terms and descriptions of concepts in evaluation

1. MAE, MSE, and RMSE
The formulas for Mean Absolute Error (MAE), Mean Square Error (MSE), and Rooted Mean
Square Error (RMSE) are presented in equations 34, 35, and 36. The MAE, MSE, and RMSE
capture the accuracy of a model. They differ in quantifying the difference between the actual
and the predicted rating. MAE evaluates the absolute differences. In contrast, MSE squares
the differences which make all the results positive. RMSE, on the other hand, takes the square
root of the differences for a more interpretable and directly comparable result by aligning its
scale with the original data. In formulas 34, 35, 36, Q represents the test set of the model,
rui the actual rating of item i by user u, and r̂ui the predicted rating of item i by user u.

(a) MAE

MAE =
1

|Q|
∑

(u,i)∈Q

|rui − r̂ui| (34)

(b) Mean Square Error

MSE =
1

|Q|
∑

(u,i)∈Q

(rui − r̂ui)
2 (35)

(c) Root Mean Square Error
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RMSE =

√√√√ 1

|Q|
∑

(u,i)∈Q

(rui − r̂ui)2 (36)

2. Precision, Recall, F-measure

(a) Precision
Precision measures the accuracy of positive predictions. Positive predictions are data
instances classified to be part of a specific class. It is calculated as the ratio of true
positive predictions to the total of positive prediction (the incorrect and the correct
ones). This is captured in Formula 37. Table 2 contains the explanation of the terms.

Precision =
True Positives

True Positives + False Positives
(37)

(b) Recall
Recall measures the ability of the model to identify all instances of the positive class.
It is calculated as the ratio of true positive predictions to the total number of actual
positive instances. False negatives are positive instances classified as negative by the
model.

Recall =
True Positives

True Positives + False Negatives
(38)

(c) F-measure
The F-measure combines Precision and Recall into a single evaluation metrics. It incor-
porates the aspects of both Precision and Recall.

F-Measure =
2× Precision× Recall

Precision + Recall
(39)

3. ROC Curve
The Receiver Operating Characteristic (ROC) Curve is represented as a two-dimensional
graph with the false positive rates (FPR) on the X-axis and the true positive rate (TPR) on
the Y-axis. It visualizes the trade-off between FPR and TPR.

4. Mean Average Precision (MAP) and MAP@K
MAP is a performance metric that considers the ranking of items. It captures the accuracy
and order of the items which is shown in formulas 40 and 41. In formulas 40 and 41, Q is the
number of recommendations, k is the rank in a list of recommendations, rel(k) is the relative
function given rank k which determines the relevance of the item at rank k, and p(k) represents
the precision given rank k. MAP@K focuses on a subset (of K) of the recommendations in
stead of considering all recommendations.
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MAP =
1

Q

Q∑
q=1

AveP (q) (40)

AveP (q) =

∑n
k=1 p(k)× rel(k)

n
(41)

5. Mean Reciprocal Rank
The Reciprocal Rank evaluates whether the model places the most relevant items in front.
This is captured by Formula 42 where Q is the number of recommendations and ranki is the
rank of the first relevant item in the ranked list of recommendations. So, the Reciprocal rank
is calculated as the inverse of the rank of the highest-ranked relevant item.

MRR =

Q∑
q=1

1
ranki

Q
(42)

6. Normalized Discounted Cumulative Gain (nDCG)
nDCG is an evaluation metric that takes into account the relevance of the item and its position
in the ranked recommendation list. It measures how well the model performs in presenting
relevant items at the top of the ranked list. Formula 44 represents the DCG which gives
weights to relevant items that are at the top of the ranked list. In this formula disc(r(i))
is a discount function based on the ranking, making the rating of the preceding items more
important and u(i) is the relevance of the items in the list, a higher value for u(i) corresponds
with more relevance. In Formula 43, DCG(rperfect) represents the outcome of Formula 44 for
a perfectly ranked list [36].

nDCG =
DCG(r)

DCG(rperfect)
(43)

DCG(r) =

n∑
i=1

disc(r(i))u(i) (44)

7. Hit
Hit-rate is presented in Formula 45. The hit-rate refers to the number of items in the test set
that also appear in the list with predicted items. In this formula n represents the amount of
users. A Hit-rate of 1.0 indicates that the model always recommends the correct items.

HR =
Number of Hits

n
(45)

8. Coverage
Coverage refers to the proportion of items recommended, relative to the total items as Formula
46 presents. In Formula 46 I(u) is the number of items recommended for user u and I represent
the total number of items.
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Coverage =

⋃
u∈U I(u)

I
(46)

9. Personalization
Personalization computes recommendation similarity across users. A high personalization
score indicates a good personalization where the lists of recommendations differ among users.
Cosine similarity can be used to determine the similarity between the lists of recommendations
for users which is captured in Formula 47. In this formula, x and x′ are the lists with
recommendations being compared for two users where d represents the dimensions (features)
of the input space. Personalization score is the dissimilarity (1-cosine similarity) between x
and x′ [37] [38].

cos(θh) =

∑d
i=1 xi × x′

i√∑d
i=1 x

2
i ×

√∑d
i=1 x

′2
i

(47)

10. Novelty
The novelty of a model is its ability to suggest items to users that are unfamiliar. Formula
48 captures the general idea of novelty where θ is a contextual variable and represents any
element that influences item discovery. Novelty is defined as the difference between an item
and "items that have already been observed" in some context. Additionally, p(seen|i, θ)
reflects a factor of item popularity where high novelty scores correspond to items that few
users have interacted with [39].

nov(i|θ) = 1− p(seen|i, θ) (48)

2.4.3 Statistical hypothesis testing

Statistical hypothesis testing is a method to verify the truth of two hypotheses: the null hypothesis
and the alternative hypothesis. The null hypothesis states "there is no difference between the
variables", and the alternative hypothesis contradicts the null hypothesis where it states "there is
a significant difference between the variables". This method can be implemented using following
approaches.

2.4.3.1 Paired t-test

The paired t-test, or dependent sample t-test, compares the means of two sets of observations taken
from the same object. By doing this test, it is assumed that the population of difference scores
is normally distributed [40]. Normality in the distribution of the population can be tested with a
Shapiro-Wilk test.

Conducting a paired t-test for testing hypotheses about the population mean difference µd is done
according to Formula 49 [41]. In this formula d̄ is the sample mean difference, µd0 is the hypothesized
population mean difference assumed for the null hypothesis, sd is the standard deviation of the
sample differences, and n is sample size.
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Null hypothesis for paired t-testing is represented in Formula 50, it indicates no significant differ-
ences between the means of the paired populations.

After determining the critical value from the t-distribution [42] with the chosen significance level
and degrees of freedom (which is sample size −1) the critical value is compared against the abso-
lute outcome of the t-statistic in Formula 49. The null hypothesis is rejected when |t| ≥ critical
value.

t =
d̄− µd0

sd√
n

(49)

H0 : µd = 0 (50)

However, another key assumption is that data instances in each sample are independent. When
using cross-validation as described in section 2.4.1, this assumption is violated [43]. As part of the
K-fold cross-validation, a given data instance will be used in the training data k − 1 times. This
results in dependent performance scores because the models are trained on the (partially) same
data. Advised is to use a nonparametric test with fewer assumptions like the Wilcoxon signed-rank
test which is elaborated in section 2.4.3.2 [44].

Shapiro-Wilk test

A Shapiro-Wilk test can help with determining whether a population is normally distributed [45]
[46]. It is based on the statistic in Formula 51 where X(1) ≤ X(2) ≤ . . . ≤ X(n) represent the ordered
values of a sample X1, X2, . . . , Xn, and ai denotes the predefined constants. The null hypothesis is
represented in Formula 52. This hypothesis states that distribution X follows a normal distribution
with mean µ and variance σ2. Using Formula 51 for testing hypothesis 52 we got Formula 53.
When W0 < W0(α, n) holds, where W0(α, n) is the critical value at significance level α, the null
hypothesis in Formula 52 is rejected. This indicates strong evidence against normality.

W =

(∑n
i=1 aiX(i)

)2∑n
i=1(Xi − X̄)2

(51)

H0 : X ∼ N (µ, σ2) (52)

W0 =
(
∑n

i=1 aiX(i))
2∑n

i=1(Xi − µ0)2
(53)

2.4.3.2 Wilcoxon signed-rank test

A Wilcoxon signed-rank test is known to perform well on small datasets. It is a nonparametric
statistical procedure that uses the magnitudes of differences between paired observations rather
than just the signs of the differences [41] [47]. This test can either be one-sided or two-sided. In
a one-sided Wilcoxon signed-rank test, it tests whether the median difference in the population is
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greater or less than than the median difference for the other population. For a two-sided Wilcoxon
signed-rank test, it tests whether or not the median differences equal zero.

The null hypothesis for a two-sided Wilcoxon signed-rank test is presented in Formula 54 it indicates
that the median difference of the population is equal to m0 which is the median difference of the
other population. Its alternative hypothesis in Formula 55 indicates they are not equal.

H0 : µ = µ0 (54)

HA : µ ̸= µ0 (55)

The null and alternative hypotheses for the one-sided Wilcoxon signed-rank test in both directions
are presented in formulas 56 to 59.

H0 : µ ≥ µ0 (56)

HA : µ < µ0 (57)

H0 : µ ≤ µ0 (58)

HA : µ > µ0 (59)

The following calculations need to be performed to decide whether to reject the null hypothe-
sis:

1. For each observation in the population compute di which is the difference score between
the paired observations. A paired observation refers to a set of data instances where each
observation is matched with a specific observation from another population.

2. Rank the differences scores where rank 1 is assigned to the smallest difference score.

3. Find T+ and T− which are the sum of the ranks with positive signs and the sum of ranks with
negative signs respectively.

For the two-sided Wilcoxon signed-rank test, the null hypothesis is true when no big differences in
the values of T+ and T− are expected. However, when the null hypothesis is rejected, either a small
value of T+ or T− is observed.
For the one-sided Wilcoxon signed-rank test the null hypothesis in Formula 56 is rejected at sig-
nificance level α when T+ is less than or equal to the tabulated T for n and preselected α. The
tabulated T can be found in the Table with critical values [48]. Finally, for the one-sided Wilcoxon
signed-rank test the null hypothesis in Formula 58 is rejected at significance level α when T− is less
than or equal to the tabulated T for n and preselected α.
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2.5 Related work
This section elaborates the related literature at the intersection of the topics introduced above.
However, there is a gap in the literature concerning the implementation of recommender systems
and active learning on cybersecurity data for predicting vulnerabilities. This gap emphasizes the
absence of research where recommender systems are used to predict vulnerabilities and are improved
with active learning. Existing literature mainly focuses on automatically finding vulnerabilities
in source code, predicting the likelihood of a vulnerability to be exploited, or generating attack
graphs.

In [49] a machine learning-based system is proposed that gathers artifacts such as social media posts,
write-ups and proof-of-concepts with information related to vulnerabilities. These artifacts are uti-
lized to predict the likelihood of exploits being developed against these vulnerabilities. In [50] M.
Edkrantz also predicts exploit likelihood by employing multiple machine learning algorithms trained
on data from the National Vulnerability Database (NVD) and the Exploit Database (EDB). Among
these machine learning algorithms, the linear time Support Vector Machine (SVM) algorithm out-
performs the other algorithms in terms of performance metrics and execution time. This work also
indicates the features: common words, references, and vendors as the most important features for
the machine learning algorithms.

in [3] an empirical study is conducted where 9 machine learning techniques and 3 statistical tech-
niques are used to predict software vulnerabilities. Important to note is that these machine learning
techniques do not include recommender systems. This study concludes that the machine learning
techniques achieved higher performance scores in the prediction task than the statistical techniques.
Among the machine learning techniques, the adaptive-neuro fuzzy inference system outperformed
the others. In [4] predictions are made for software vulnerabilities using historical patterns of the
vulnerabilities from the National Vulnerability Database (NVD). N-grams are extracted from these
historical patterns and used to make the predictions. It was found that the sequential patterns of
vulnerability events follow a first-order Markov property. Meaning, the next vulnerability can be
predicted by only using the previous vulnerability with a precious of around 90%.

Recommendation systems can also be utilized to make predictions about vulnerabilities. For exam-
ple, N. Polatidis et al. [51] use a parameterized version of multi-level collaborative filtering method
in combination with attack graph analysis, where they examine a network and predict how an at-
tacker could move after access is gained. Similar to this, in [52] recommender systems are used to
predict attacks within a network and to present a ranked list with cyber defence actions. The rec-
ommender system functioning as an attack predictor uses the collaborative filtering algorithm and
the recommender system to rank defence actions uses a knowledge-based algorithm. Additionally,
in [53] a recommender system is used to rank vulnerability-exploit. This recommender system is
based on the TOPSIS algorithm and trained on data from the NVD and CNVD databases.

In the paper titled ’A Recommender System for Tracking Vulnerabilities’, Philip Huff, Kylie Mc-
Clanahan, Thao Le, and Qinghua Li present a recommender system to automatically identify a
minimal candidate set of CPEs for software names [54]. A problem for matching vulnerability
reports is identified and solved with a pipeline of natural language processing (NLP), fuzzy match-
ing, and machine learning. Fuzzy matching is used to automatically match the target CPE (the
concept ’CPE’ is explained in section 2.1) against an enterprise hardware and software inventory.
This is done during a three phase automation process. First, word vectors of the hardware and
software inventory are extracted with Word2VEc which is a natural language processing technique.

25



Then, based on these word vectors, the software inventory package names are matched to a set of
CPEs with fuzzy matching. This matching is based on the similarity between the software package
inventory and the CPE. Similarity is calculated according to Formula 60.

cosθ =
A ·B
||A||||B||

(60)

Lastly, machine learning is used to order these CPEs and produce a small set of candidate target
CPEs that match the hardware or software. It will recommend the most likely CPEs first.

In [26] a survey is conducted on active learning in collaborative filtering recommender systems
where they classified different active learning strategies. They also identified some issues with
implementing active learning in recommeder systems: the cold start problem, little user engagement
in rating items, algorithmic complexity, context awareness for active learning, and continuous active
learning.

Additionally, in [55] a study is presented where active learning is implemented in recommender
systems, taking into account the characteristics of the aspect models which is a model used in
active learning. This research shows better performances than with the Bayesian approaches in
terms of accuracy. The proposed active learning implementation with the aspect model shows to
be a promising solution for improving the performance of recommender systems.

Finally, in [56] a K-nearest neighbors algorithm is implemented to recommend movies. Multiple
similarity measures like cosine, msd, pearson, and pearson baseline are implemented and compared
on accurcay metrics. It has been observed that the error like RMSE, MSE, and MAE are stable
after the neighborhood size of 40. The conclusion is that 40 is the optimized value of K number of
nearest neighbor for movie recommendations.

Related research described above are all related to cybersecurity and some implement recommender
systems. However, none of them uses recommender systems in combination with active learning
to predict vulnerabilities in software products. Therefore, the related research is limited and the
performance of a recommender system to predict vulnerabilities is unknown. Due to the lack of
related work, there is no established consensus on the optimal method for implementation of a
recommender system on cybersecurity data. As a result, further research is necessary.
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3 Methods

To investigate how active learning affects the performance of a recommender system by identifying
vulnerabilities in software, multiple implementations of recommender systems and active learning
should be considered. In section 2.2 various implementations of the recommender systems are
discussed: the classes ‘memory-based’ and ‘model-based’, and the approaches ‘item-based’, ‘user-
based’ or ‘hybrid’. In section 2.3 multiple methods and query strategies for active learning are
elaborated. To select the best fitting choice we should formulate the problem. Section 2.2 describes
how a recommender system problem should be formulated. First, users u and items i should be
defined. In terms of predicting vulnerabilities in software products, the vulnerabilities are defined as
items i and the software products as users u. Furthermore, the rating rui is binary where 1 indicates
the presence of a vulnerability and 0 its absence. Additionally, these ratings are considered implicit
feedback. To implement this recommender system problem, the data must first be considered.

3.1 Data
The data used in this research is fetched from the NVD [1] with a Python script that can be found
in my GitHub repository [57]. This script also manipulates the data to ensure it conforms to the
required format for the recommender systems. Specifically, it subtracts the software product names
from the description and adds it as a column to the data. In cases where these names could not be
subtracted, they will be included as ’unknown’. The cause for the inability to subtract some names
is because some vulnerabilities are named differently in the database because they were rejected
since they were incorrectly assigned.

Only data from 01-01-2005 till 31-07-2023 is considered to exclude outdated data. The total amount
of CVEs is 234102. From this total, 13788 CVEs have an unknown product name. Investigation of
the data shows that for all CVEs with unknown product names, CVEs were incorrectly assigned
and could therefore be ignored and subtracted from the data. Figure 4 shows the long tail plot
of the distribution of CVEs in the top 100 Vendor-Product combinations based on the amount of
CVEs.

Figure 5 represents the occurrences of unique CVEs in the dataset. This plot reveals that the
majority of CVEs occurs only once. Additionally, the CVEs that occurred twice are most of the
time duplicates. So, the dataset is mainly occupied with unique CVEs. When defining items i
as CVEs and users u as software products, every item in the dataset would only have one user.
Such sparse data could not be handled in recommender systems. Therefore, the CWE is considered
which is explained in section 2.1.3. The items i are now defined as CWE instead of CVE.

Finally an interaction sequence dataset is constructed with all users, items and their ratings. Each
row in this dataset contains a user ID, item ID, and rating value. The rating value is always 1
which represents a CWE being present in the software product.
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Figure 4: Long tail plot of CVEs
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Figure 5: Amount of occurrences of CVEs in 2015-2023

Table 3 contains general information about the data where items represent CWEs and users the
software products. The average number of users per item is 2, which could introduce a cold start
problem especially when using K-fold cross-validation with K > 2. Since this could make test sets
with users that are not provided in the training data. To prevent the item cold start problem,
items with less than 5 users are subtracted from the dataset. However, pruning those items will
result in some users having less than 5 items which could lead to user cold start problem. A loop
is implemented that stops with pruning when every item and every user has more than or equal
to 5 users and items respectively. A total of 42673 users and 215 items are subtracted. General
information about this new dataset is presented in Table 4.

Total users 46187
Total items 394
Average number of users per item 238
Average number of items per user 2
User with most items Android
Item with most users CWE-79
items with less than 5 users 198
users with less than 5 items 42659

Table 3: General overview data before pruning
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Total users 3514
Total items 179
Average number of users per item 186
Average number of items per user 9
User with most items Android
Item with most users CWE-70

Table 4: General overview data after pruning

Figures 6 and 7 represent the number of users per item, and number of items per user respectively.
Both plots are based on the pruned data.
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Figure 6: Number of users per item
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Figure 7: Number of items per user
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After pruning, the data will be randomly divided into 5 folds according to a script available in my
GitHub [57]. Every fold will once be used as test set where the remaining folds serve as training
set. Every fold consists of 6653 data points, so for every iteration the model will be trained on a
training set of 26612 data points and it will be tested on the test set of 6653 data points.

3.2 Recommender systems
Figure 8 shows the steps for implementing multiple recommender systems and selecting the top-
performing one. All these steps are implemented as executable code that can be found in my
GitHub repository [57]. A description of these steps is elaborated below:

1. From the library ’Lenskit.algorithms’ [58] in Python, multiple recommender systems are im-
plemented. The names of these recommender sytems are explained in Table 5. This table
also contains the implemented parameter values which are chosen based on information and
examples from the Lenskit documentation. For every recommender system the following steps
will be performed:

(a) As described in section 3.1, 5-fold cross-validation is implemented and for every fold the
following steps will be performed:

i. The training data in this fold is used to train the recommender system.

ii. This trained recommender system is now used to make predictions. For every unique
user in the test set, 5 recommendations are generated.

iii. The test data in this fold is used to evaluate the performance of this recommender
system. Evaluations are performed with the evaluation methods described in section
3.4.

2. The top-performing recommender system is selected based on the evaluation metrics from the
previous step.
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Figure 8: Diagram process recommender systems
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Table 5: Names of algorithms from Lenskit library
Name algorithm Explanation Parameters

item_knn Item-Based k-NN Collaborative Filtering k=10
feedback=implicit

user_knn User-based k-NN Collaborative Filtering k=10
feedback=implicit

basic.Random Random item recommender
basic.Popular Item recommender that recommends the most popular

items the user has not already rated
als.BiasedMF Alternating least squares implementation of biased Ma-

trix Factorization
features=50

als.ImplicitMF Alternating least squares implementation of Matrix Fac-
torization for implicit feedback

features=50

svd.BiasedSVD Biased Matrix Factorization for implicit feedback using
SciKit-Learn’s SVD solver. It operates by first comput-
ing the bias, then computing the SVD of the bias resid-
uals.

features=50

funksvd FunkSVD Matrix Factorization. FunkSVD is a regular-
ized biased Matrix Factorization technique trained with
featurewise stochastic gradient descent

features=50

basic.Popular Item recommender that recommends the most popular
items the user has already rated or not

selector=AllItems-
CandidateSelector

3.3 Active learning
Figure 9 shows the steps performed to implement active learning on the top-performing recom-
mender system, which are again implemented as executable code [57]. Detailed explanation of
these steps is elaborated:

1. Offline active learning is implemented with an adapted version of the strategy ’Expected
Model Change’ which is explained in section 2.3. Multiple implementations of learning with
this strategy are considered and described later in this section. The implemented parameter
values in the top-performing recommender system are the same as described in Table 5. For
every implementation the following steps will be performed:

(a) As described in section 3.1, 5-fold cross-validation is implemented where the same folds,
with the same data are used as in section 3.2. For every fold the following steps will be
performed:

i. The training data in this fold is used to train the model which includes an imple-
mentation of active learning. From the training data, one user and all its items
are removed. The removed data is used for an automatic oracle for active learning.
When querying an item during active learning, the automatic oracle scans through
the removed items and provides a label based on the label before the removal. The
removal of a user is essential because it creates space for the introduction of new
items with a correct label. Every fold has a different user removed which is hard
coded in the executable code [57]. However, across the different implementations
of active learning, the same user is consistently excluded for a given fold. This en-
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sures that any difference in performance across different implementations of active
learning is not caused by the difference in training data.

ii. The trained model is now used to make predictions. For every unique user in the
test set, 5 recommendations are generated.

iii. The test data in this fold is used to evaluate the performance. Evaluations are
performed with the evaluation methods described in section 3.4.

2. The outcomes of the evaluation metrics are compared using a Wilcoxon signed-rank test from
the library ’Scipy.stat’ in Python [59].

As already mentioned, active learning with an adapted version of the strategy ’Expected Model
Change’ is used. This strategy is coded by myself and can be found in the GitHub repository [57].
Generally, a sampling function will compute the performance score of the evaluation metric ’correct
counts’ for every distinct item. This calculation is performed under the assumption that the item,
with label 1, is added to the training set on which the model is trained. This aims to capture the
difference in performance by inclusion of this specific item. The sampling function will then return
a sorted list with items arranged according to the greatest improvement in the ’correct counts’
score. Various implementations for updating and adding items are considered:

1. Random-20
This implementation will not use the strategy ’Expected Model Change’. In stead, it randomly
selects 20 items and adds them to the training set with the correct label. When the item was
already present in the training set it will not add it again. Random-20 serves as a benchmark
to compare the performances of the active learning method.

2. SingleBatch-20
SingleBatch-20 will make use of the strategy ’Expected Model Change’. It will add the top
20 items from the list returned by the sampling function all at once.

3. SingleBatch-40
SingleBatch-40 has the same implementation as SingleBatch-20. However, instead of adding
20 items all at once it will add 40 items all at once.

4. 4Batch-20
4Batch-20 uses the sampling function 4 times with each iteration adding the top 5 items of the
list returned by the sampling function to the training data. In the first iteration the sampling
function is based on the initial model. For the subsequent iterations, the models trained on
the updated training data, including the 5 items added in the previous iteration, are taken
into consideration.

5. 4Batch-40
4Batch-40 employs the same strategy as 4Batch-20. However, instead of 5 items, 10 items are
added in every iteration.

6. 10Batch-20
10Batch-20 is a variation of the 4Batch-20 strategy where instead of 4 batches, 10 batches are
used. For every iteration 2 items are added.

7. 10Batch-40
10Batch-40 is the same as 10Batch-20 with for every iteration 4 items added instead of 2.
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Figure 9: Diagram process active learning

3.4 Performance measure
Due to time constraints, a subset of the evaluation metrics, described in section 2.4 are employed
to evaluate the performances of the recommender systems:

1. Correct Counts
This evaluation metric is a simple counter that counts the amount of correct recommended
items. Specifically, it determines whether the predicted items align with the items in the test
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set.

2. nDCG
Implementation of nDCG is based on nDCG from the library rank_metrics [60].

3. Precision, Hit, Recip_rank
The evaluation metrics Precision, Hit, and Recip_rank are all imported from the library
Lenskit.Metrics.topn [61].

4. MAP@K
MAP@K is implemented using Metrics.Python.ml_metrics.average_precision in Python [62].

5. Coverage, Novelty, Personalization
Coverage, Novelty, and Personalization are implemented by the library Recmetrics.metric [63].
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4 Results

This section elaborates the outcomes of the analysis by evaluation metrics to assess the perfor-
mance of multiple recommender systems. Subsequently, the performances of the best-performing
recommender system with active learning using different sampling strategies is also evaluated using
these evaluation metrics and the outcomes are presented in this section. Additionally, outcomes of a
statistical test to validate a significant difference between the performances of active learning with
various sampling strategies implemented are elaborated. An explanation of the used evaluation
metrics can be found in the sections 3.4 and 2.4.

4.1 Recommender system
The outcomes of the evaluation metrics: precision and nDCG are presented in Figures 10 and 11.
Results of the evaluation criteria: coverage, novelty, and personalization are presented in figures
12 till 14. In Appendix A.1 figures 19 till 22 represent the outcomes of evaluation metrics correct
counts, hit, MAP@K, and recip_rank.

The graphs presented in this section serve as a visual illustration in understanding the differences
between performances of multiple recommender systems. The names of the algorithms in the figures
are explained in Table 14.

Figure 10: Precision per fold

39



Figure 11: nDCG per fold

Figure 12: Coverage per fold
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Figure 13: Novelty per fold

Figure 14: Personalization per fold
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4.1.1 Discussion

Figure 10 and 11 indicate that the ItemItem has the best overall performance because it has the
highest score on precision and nDCG. A high precision score, indicates a high percentage of correctly
recommended items. Whereas, the nDCG score places importance on the overall precision and the
order of the ranking. So, the ItemItem is the best in correctly recommending items and ranking
them compared to the other recommender systems in figures 10 and 11.

Besides ItemItem, UserUser has high scores on precision, and nDCG. This indicates that k-NN Col-
laborative Filtering is well-suited for this type of recommender problems. A plausible explanation
is that the data is very sparse and the k-NN Collaborative Filtering works well with sparse data.
It can infer relationships between users and items by only looking at the user-item interaction data
without any additional data. The ItemItem analyzes item similarity and can suggest items based
on a user’s previously rated items. Additionally, the UserUser analyzes user similarity and suggests
items based on similar user preferences. This technique is beneficial in such sparse data. Fur-
thermore, ItemItem and UserUser have higher precision and nDCG scores than the algo_random,
algo_pop_unseen, and the algo_pop_seen. These recommenders use no intelligence in recom-
mending as algo_random makes random recommendations and the algo_pop_unseen, and the
algo_pop_seen make recommendations based on items that are popular. Therefore, it is antici-
pated that k-NN Collaborative Filtering, which uses a more intelligent approach, would outperform
these recommenders.

As indicated in figures 10 and 11 the algorithm algo_als has low performance scores. This algorithm
is suitable for explicit feedback data. Since the dataset used in this research is implicit feedback
data the results align with the expectations.

Algorithms algo_biasedsvd, and algo_funksvd also have low performance scores. Matrix Factor-
ization decomposes the user-item interaction data into two lower-dimension matrices that represent
the latent features captured in the user-item interactions. With such sparse data the algorithm
could have trouble inferring those two lower-dimensional matrices which makes it harder to make
relevant recommendations. In addition, Matrix Factorization is more complex which could lead to
overfitting or underfitting.

Figure 12 shows the predictions coverage per algorithm. As expected: the algo_random has a
coverage of 100%, meaning this algorithm is able to generate recommendations for all user-items
pairs in the dataset. In contrast, algo_pop_seen and algo_pop_unseen have a very low coverage
percentage because they can only recommend the popular items. The coverage score for ItemItem
and UserUser is higher than the coverage score of algo_pop_seen and algo_pop_unseen which
indicates it considers more items to predict than only the popular items which could indicate the
inferred relations are not solely based on popularity. In addition, having an extremely high coverage
is not desirable since it might lead to general or less tailored recommendations.

The plots with the outcomes of the evaluation metric "correct counts" are placed in Appendix
A. This evaluation metric solely counts the amount of accurate recommendations compared with
the testing set. However, it should be noted that it does not consider the difference in amount
of recommendations. Each recommender system is designed to generate 5 recommendations per
unique user in the testing set. As the number of unique users varies per fold, the total number
of recommendations is not equal. Thus, this evaluation metric may not produce an objective
assessment.
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Figure 12 provides the novelty scores of the recommender systems. It shows a very high novelty
for the algo_funksvd. algo_funksvd uses stochastic gradient descent which minimizes the error
between the recommended item and the real relevant items to the user. Doing so, it adjusts latent
factors for users and items which could potentially reveal hidden patterns or connections between
users and items that weren’t visible in the data before and thus recommend items that before would
not be considered. ItemItem and UserUser have relatively low novelty scores. This can be explained
by the algorithms as both algorithms depend on user-item interactions which limit their ability to
recommend items completely new to users/items. However, a low novelty score doesn’t imply bad
performance of the recommender system.

Lastly, Figure 14 shows that ItemItem and UserUser have personalization scores of more than 0.6
which indicates moderate levels of customization within the recommendation, meaning the rec-
ommendations are based on personal interests or behavior of the users. This is coherent since
ItemItem and UserUser are based on user-item interactions. Also: algo_pop_seen, algo_random,
algo_als, ItemItem, and UserUser score high on personalization. All these algorithms, except
algo_random, also score high on the evaluation metrics for performance on recommender systems.
It would be reasonable to expect a correlation between personalization score and the performance of
a recommender system since recommendations are inherently individualized and depend on user’s
preferences. However, this wouldn’t explain the high personalization score of the random recom-
mender.

In conclusion, ItemItem is the top-performing recommender system based on the outcomes of the
evaluation metric precision and nDCG. UserUser also has a high precision and nDCG score which
indicates a good overall performance of k-NN Collaborative Filtering on such recommender system
problems.

Table 6: Explanation of algorithms from Lenskit
Name algorithm Explanation

ItemItem Item-Based k-NN Collaborative Filtering
UserUser User-based k-NN Collaborative Filtering

algo_random Random item recommender
algo_pop_unseen Item recommender that recommends the most popular items the

user has not already rated
algo_als Alternating least squares implementation of biased Matrix Fac-

torization
algo_implicitmf Alternating least squares implementation of Matrix Factorization

for implicit feedback
algo_biasedsvd Biased Matrix Factorization for implicit feedback using SciKit-

Learn’s SVD solver. It operates by first computing the bias, then
computing the SVD of the bias residuals.

algo_funksvd FunkSVD Matrix Factorization. FunkSVD is a regularized biased
Matrix Factorization technique trained with featurewise stochastic
gradient descent

algo_pop_seen Item recommender that recommends the most popular items the
user has already rated or not
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4.2 Active learning
Active learning is applied on ItemItem. Multiple implementation of active learning are considered.
Table 7 contains the naming convention used for every implementation of the algorithm.

Outcomes of the evaluation metrics: precision and nDCG for ItemItem are represented in Figures 15
and 16. These metrics are obtained by incorporating active learning with a sampling method that
is either random, single-batch, 4-batch or 10 batch, and 20 or 40 items are added. The outcomes
for evaluation metrics hit, correct counts and MAP@K, recip_rank are presented in Appendix A.2
in figures 23 till 26.

Figures 17 and 18 represent the learning curves where the performance scores of every fold are
plotted against every additional item for every different implementation of active learning. For
every different implementation of active learning, every fold has a different starting point since
performance scores differ among different folds. No learning curve for ItemItem without active
learning is visible since no learning is involved here. The learning curves for performance scores
obtained with the evaluation metrics hit, correct counts and MAP@K, recip_rank are presented in
Appendix A.2 in figures 27 till 30.

Table 8 contains the mean values of the performance scores from all evaluation metrics for ItemItem
before active learning, or with Random-20, SingleBatch-20, SingleBatch-40, 4Batch-20, 4Batch-40,
10Batch-20, and 10Batch-40. In addition, tables 9 and 10 represent the mean values of precision and
nDCG per different implementation of active learning. In Appendix A.2 tables 13 till 16 represent
the mean values of the outcomes for each remaining evaluation method.

Finally, Appendix A includes more detailed graphs on the outcomes of all evaluation metrics on
pairs of different implementations of active learning.

Table 7: Naming convention implementation algorithm
Naming convention detailed name

Random-20 Item-based k-NN CF with random sampling active learning, adding 20 items.
SingleBatch-20 Item-based k-NN CF with single-batch active learning, adding 20 items.
SingleBatch-40 Item-based k-NN CF with single-batch active learning, adding 40 items.

4Batch-20 Item-based k-NN CF with 4-batch active learning, adding 20 items.
4Batch-40 Item-based k-NN CF with 4-batch active learning, adding 40 items.
10Batch-20 Item-based k-NN CF with 10-batch active learning, adding 20 items.
10Batch-40 Item-based k-NN CF with 10-batch active learning, adding 40 items.
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Figure 15: Precision per fold for every sampling method with 20 or 40 items added

Figure 16: nDCG per fold for every sampling method with 20 or 40 items added
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Figure 17: Learning curve precision per fold with all sampling methods, adding 20 or 40 items

Figure 18: Learning curve nDCG per fold with all sampling methods, adding 20 or 40 items
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Table 8: Mean values of the performance scores per sampling method
Algorithm Mean value perfor-

mance score
Random-20 453.852452

Before active learning 453.852480
SingleBatch-40 454.352581
SingleBatch-20 454.786093

4Batch-20 455.152813
10Batch-20 455.186071
4Batch-40 455.286249
10Batch-40 455.419503

Table 9: Mean values of precision per sampling method
Algorithm Mean value precision
Random-20 0.192763

Before active learning 0.192832
SingleBatch-40 0.192976
SingleBatch-20 0.193160

4Batch-20 0.193316
10Batch-20 0.193330
4Batch-40 0.193373
10Batch-40 0.193429

Table 10: Mean values of nDCG per sampling method
Algorithm Mean value nDCG
Random-20 0.501793

Before active learning 0.501801
SingleBatch-40 0.501951

10Batch-20 0.501985
10Batch-40 0.502065
4Batch-20 0.502098

SingleBatch-20 0.502106
4Batch-40 0.502238

4.2.0.1 Statistical Hypothesis Testing
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A Wilcoxon singed-rank test is conducted to compare the precision and nDCG score of ItemItem
with Before, Random-20, SingleBatch-20, SingleBatch-40, 4Batch-20, 4Batch-40, 10Batch-20, and
10Batch-40. The outcomes of the tests are listed in Tables 11 and 12. Outcomes that indicate a
significant difference are marked.
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Table 11: W, p-value for Wilcoxon signed-rank test on precision

Algorithm Before Random-20 SingleBatch-
20

SingleBatch-
40

4Batch-20 4Batch-40 10Batch-20 10Batch-40

Before x 14.0, 0.0625 0.0, 1.0 3.0, 0.90625 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0
Random-20 1.0, 0.96875 x 0.0, 1.0 3.0, 0.90625 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0

SingleBatch-20 15.0, 0.03125 15.0, 0.03125 x 14.0, 0.0625 1.0, 0.96875 0.0, 1.0 2.0, 0.9375 0.0, 1.0
SingleBatch-40 12.0, 0.15625 12.0, 0.15625 1.0, 0.96875 x 0.0, 0.96606 0.0, 1.0 0.0, 1.0 0.0, 1.0

4Batch-20 15.0, 0.03125 15.0, 0.03125 14.0, 0.0625 10.0, 0.03394 x 1.0, 0.92794 8.0, 0.5 1.0, 0.96875
4Batch-40 15.0, 0.03125 15.0, 0.03125 15.0, 0.03125 15.0, 0.03125 9.0, 0.07206 x 4.0, 0.29649 0.0, 0.91014
10Batch-20 15.0, 0.03125 15.0, 0.03125 13.0, 0.09375 15.0, 0.03125 7.0, 0.59375 2.0, 0.70351 x 1.0, 0.85748
10Batch-40 15.0, 0.03125 15.0, 0.03125 15.0, 0.03125 15.0, 0.03125 14.0, 0.0625 3.0, 0.08986 5.0, 0.14252 x
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Table 12: W, p-value for Wilcoxon signed-rank test on nDCG

Algorithm Before Random-20 SingleBatch-
20

SingleBatch-
40

4Batch-20 4Batch-40 10Batch-20 10Batch-40

Before x 8.0, 0.5 2.0, 0.9375 6.0, 0.6875 3.0, 0.90625 1.0, 0.96875 0.0, 1.0 2.0, 0.9375
Random-20 7.0, 0.59375 x 1.0, 0.96875 5.0, 0.78125 2.0, 0.9375 1.0, 0.96875 2.0, 0.9375 1.0, 0.96875

SingleBatch-20 13.0, 0.09375 14.0, 0.0625 x 10.0, 0.3125 8.0, 0.5 4.0, 0.84375 10.0, 0.3125 8.0, 0.5
SingleBatch-40 9.0, 0.40625 10.0, 0.3125 5.0, 0.78125 x 5.0, 0.78125 4.0, 0.84375 7.0, 0.59375 5.0, 0.78125

4Batch-20 12.0, 0.15625 13.0, 0.09375 7.0, 0.59375 10.0, 0.3125 x 3.0, 0.90625 11.0, 0.21875 8.0, 0.5
4Batch-40 14.0, 0.0625 14.0, 0.0625 11.0, 0.21875 11.0, 0.21875 12.0, 0.15625 x 13.0, 0.09375 10.0, 0.3125
10Batch-20 15.0, 0.03125 13.0, 0.09375 5.0, 0.78125 8.0, 0.5 4.0, 0.84375 2.0, 0.9375 x 6.0, 0.6875
10Batch-40 13.0, 0.09375 14.0, 0.0625 7.0, 0.59375 10.0, 0.3125 7.0, 0.59375 5.0, 0.78125 9.0, 0.40625 x
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4.2.0.2 Discussion

From Table 8 it can be concluded that ItemItem with 10Batch-40 has the best mean performance
compared to the other sampling methods. ItemItem with 4Batch-40 is second best. On the third
and fourth place respectively are 10Batch-20 and 4Batch-20. From this information, it is reasonable
to draw the following conclusion: the influence of batch size in the active learning sampling method
for ItemItem is less influential to the mean performance scores than the amount of items that
are added to the dataset during active learning. Interestingly, when using active learning with
a single-batch sampling method, the mean increment in performance of ItemItem is higher when
20 items are added in contrast to when 40 items are added. The underlying reason could be
the interdependencies and effects among the items. With the single-batch sampling method the
model considers the initial performance of the algorithm and finds the items that will improve this
performance. With the batch sampling method, the model’s state is considered after the insertion
of the batch items.

The order of Table 9 corresponds with the order of Table 8. Here, ItemItem with a 10Batch-40 has
the highest precision score. Additionally, ItemItem with Random-20 has the lowest precision score.
However, this does not hold for Table 10 which represents the mean values of the nDCG scores per
implemented sampling method. ItemItem with SingleBatch-20, 4Batch-20, 4Batch-40, 10Batch-20
and 10Batch-40 are at different ranks according highest nDCG score in comparison with the ranks
for mean performance scores. In Table 10 the 4-batch-40 has the highest nDCG score. However,
Table 12 indicates no significant difference between the performances of ItemItem with SingleBatch-
20, 4Batch-20, 4Batch-40, 10Batch-20 and 10Batch-40. Specifically, the lack of statistical difference
suggests that the ranking order may not be of paramount importance here.

Table 12 demonstrates that only for ItemItem Before and ItemItem 10Batch-20 the null hypothesis
of the Wilcoxon Signed Ranked Test is rejected. This indicates a statistically significant improve-
ment at α = 0.05 in nDCG sore for ItemItem with 10Batch-20 compared to ItemItem with Before.
However, ItemItem with 10Batch-20 doesn’t demonstrate the biggest difference in mean value of
the nDCG score against ItemItem with Before in Table 8. This can be attributed to the fact that
the Wilcoxon signed-rank test examines the population median of the difference scores. Unlike the
mean value which is obtained over all folds without focusing on the distribution of difference scores
between paired samples.

Additionally, Table 11 highlights more instances with a statistically significant improvement at
α = 0.05 for the precision score. Here is revealed that SingleBatch-20, 4Batch-20, 4Batch-40,
10Batch-20 and 10-Batch 40 have a significant improvement in the precision score compared with
ItemItem with Before and Random-20. 4Batch-40, 10Batch-40 have a significant improvement
in precision score compared with SingleBatch-20. And, 4Batch-20, 4Batch-40, 10Batch-20, and
10Batch-40 have a significant improvement in precision score compared with SingleBatch-40. It
therefore can be concluded that ItemItem with SingleBatch-20, 4Batch-20, 4Batch-40, 10Batch-
20 and 10Batch-40 does statistically significantly improve the precision score of ItemItem with
Before and Random-20. In addition, ItemItem with 4Batch-40 and 10Batch-40 has a significant
improvement in precision score compared to ItemItem with SingleBatch-20. Lastly, ItemItem with
4Batch-20, 4Batch-40, 10Batch-20 and 10Batch-40 does significant improve the precision score of
ItemItem with SingleBatch-40. The potential reasons are already detailed above.

Tables 11 and 12 differ in amount of instances that have a significant improvement in performance
scores. Where table 11 has 16 instances with significant improvement compared to another instance,
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Table 12 only has 1 instance. Table 12 contains the outcomes of the Wilcoxon Singed Rank Test
for the nDCG scores and Table 11 for the precision scores. Since in Table 12 0 active learning
implementations show significant improvement compared to ItemItem with Random-20, it can
be concluded that introducing active learning in ItemItem doesn’t significantly improve the nDCG
score. However, 10Batch-20 shows a significant improvement compared to Before. In contrast, there
is no significant improvement with Random-20. This seems contradictory as there is a significant
improvement in nDCG score for 10Batch-20 compared to Before, but no significant difference when
comparing either 10Batch-20 to Random-20 or Random-20 to Before. This could potentially be a
Type I error (false positive) which could be caused by the small sample size of only 5 performance
scores in this Wilcoxon signed-rank test. Since, a small sample size reduces the statistical power
of the Wilcoxon signed-rank test. Further investigation is needed to understand the underlying
factors contributing to this consistency.

From the fact that there are more statistically significant improvements in precision score then
in nDCG score when using multiple implementations of active learning in ItemItem, it could be
concluded that active learning improves the ability of ItemItem to make correct recommendations.
However, it does not necessarily improve its ability to rank those recommendations, as evidenced
by the relatively stable nDCG score across various active learning implementations. This could
be explained by the behavior of active learning with the query strategy ’Expected Model Change’,
where active learning will query the items that will result in the most correct recommendations
without considering their rank. This does not give additional information about the rankings of
the items which implies no improvement in nDCG score.

Figure 15 illustrates the precision score per fold per implementation of ItemItem and active learning.
This figure serves as a visual representation of Table 9. Similarly, figure 16 illustrates the nDCG
score per fold per implementation and serves as visual representation of the Table 10.

In addition, in figures 15 and 16, the differences in precision and nDCG scores among the different
folds are visible. Where fold 4 holds the highest and fold 2 the lowest overall precision and nDCG.
A potential explanation for the difference between the folds could be that fold 4 has the most
favorable training data. Since, cross fold validation involves random splitting to divide the data
into folds, one fold may contain data with more meaningful interaction the model can use to make
recommendations. Also, the data in the test set of fold 4 could contain items that the model
demonstrates more confidence in its recommendations. Difference in the performance scores of
folds could also be caused by the different users and items being removed per fold. Some users and
items could influence the user-item interactions more than others.

In figure 17 and 18, it is evident that, for each fold, the precision and nDCG score for the first
batch of the 4Batch-20, 4Batch-40, 10Batch-20 and 10Batch-40 are the same. Each strategy has
a different amount of items per batch: 4Batch-20 has 5 items, 4Batch-40 has 10 items, 10Batch-
20 has 2 items and 10Batch-40 has 4 items. This is visible in the plots since for these strategies
the precision and nDCG score of the amount of items in their first batches are the same. For
SingleBatch-20 and SingleBatch-40 this also holds for all the 20 items of the SingleBatch-20. This
aligns with the expectations since the first batch of every strategy anticipates on the first state of
the model, which is for all strategies the same.

In summary, this discussion has explored the results of the research focusing on the impact of active
learning on a recommender system to predict vulnerabilities in software products. The results
reveal that ItemItem has the highest performance scores for predicting vulnerabilities in software
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products. In addition, ItemItem with 4Batch-20, 4Batch-40, 10Batch-20 and 10Batch-40 results
in a statistically significant improvement in precision against ItemItem with Before and Random-
20. For ItemItem with SingleBatch there was only a statistically significant improvement when 20
items were added instead of 40. For the nDCG scores, only ItemItem with 10Batch-20 showed a
statistically significant improvement compared to ItemItem with Before. However, this could be a
type I error. Overall, introducing active learning in ItemItem leads to significant improvement in
precision score but not in nDCG score.
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5 Conclusion

We now live in a time where we are very reliant on digital technologies, which elevates the importance
of cybersecurity. To strengthen cybersecurity, it would be beneficial to discover new vulnerabili-
ties in software products with Artificial Intelligence. This research introduces a novel approach
where a recommender system is implemented to predict vulnerabilities in software products and
its performance is improved with active learning. Multiple recommender systems are implemented
on cybersecurity data from the NVD [1]. Notably, the Item-Based k-NN Collaborative Filtering
achieves the highest performance scores on predicting vulnerabilities. To improve its performance,
active learning with an adapted version of query strategy ’Expected Model Change’ is incorporated
with various update methods: a single-batch, a 4-batch, or a 10-batch and either 20 or 40 items
are added. The evaluation metrics and statistical tests show a significant improvement on preci-
sion for the single-batch strategy adding 20 items, and the 4-batch and 10-batch adding 20 and 40
items compared to Item-Based k-NN Collaborative Filtering without active learning or with active
learning and a random sampling strategy. For nDCG score only Item-Based k-NN Collaborative
Filtering with active learning and the 10-batch sampling strategy, adding 20 items showed signif-
icant improvement compared to Item-Based k-NN Collaborative Filtering without active learning
which could be a potential type I error. Therefore, it can be concluded that introducing active
learning, with an adapted version of the query strategy ’Expected Model Change’ that focuses on
the number of correct recommendations rather than rankings, will improve the precision score of
Item-Based k-NN Collaborative Filtering when a 4-batch or 10-batch update strategy is used or a
single-batch strategy only with 20 items added instead of 40. It is evident these findings form the
answer to the main research question: "How does active learning affect the performance of recom-
mender systems to identify vulnerabilities in software products?". In conclusion, active learning
significantly improves the precision of Item-Based k-NN Collaborative Filtering to predict vulner-
abilities in software products but not necessarily the nDCG score and thus the ability to rank the
vulnerabilities.

Furthermore, the investigation into sub-questions introduced in the introduction has contributed
to answering the main research question. The findings of these sub-questions are elaborated be-
low.

1. Data collection and pre-processing

(a) How to frame the prediction of vulnerabilities in software products as a problem suitable
for a recommender system?
To formulate the prediction of vulnerabilities in software products as a recommender
system problem we need to specify the users and items. As elaborated in section 2.2, the
objects represented with "u" correspond to the software products that are the users in
this problem. The objects represented with "i" are the vulnerabilities (the CWEs) which
are the items. rui represents the rating user "u" gave to item "i". Where rui could be a
1 indicating the vulnerability "i" is present in software product "u" and a 0 otherwise.

(b) How to collect and pre-process data for recommender systems with active learning?
Data is collected from the NVD database and analyzed using visual graphs as presented
in section 3.1. The CWE and software product name are subtracted and used to make
an interaction sequence where each software product name is listed with the CWE it
contains. To address the cold start problem, software products with less than 5 CWEs
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are pruned from the dataset. Additionally, the data is randomly distributed over 5 folds
where every fold is once used as test set.

2. Recommender systems

(a) What types of recommender systems are suitable for predicting vulnerabilities in software
products?
Taking into account that the data is sparse with implicit feedback and the ratings are
binary, suitable recommender system algorithms are item- and user-based k-NN Col-
laborative Filtering, Alternating least squares implementation of Matrix Factorization
with implicit feedback, Biased Matrix Factorization for implicit feedback, and FunkSVD
Matrix Factorization.

(b) How can a recommender system be implemented for predicting vulnerabilities in software
products?
To implement the recommender systems, the Python library ’Lenskit’ is used. These
recommender system models are fitted on the training data and tested on the test data
with cross fold validation.

3. Active learning

(a) What types of strategies in active learning are suitable for implementing active learning
in recommender systems to predict vulnerabilities in software products?
Pool-based active learning with an adapted version of the query strategy ’Expected
Model Change’ is used to implement active learning which is explained in section 2.3.2.
Section 2.3 contains more information about other suitable strategies.

(b) How can active learning be implemented in a recommender system for predicting vulner-
abilities in software products?
Active learning is implemented by programming an adaption version of ’Expected Model
Change’ query strategy. For each item, the change in number of correct recommenda-
tions when this item is added with label 1 to the dataset, is calculated and the item that
causes the highest number of correct recommendations is queried. The item, upon its
return, will be assigned a label of 0 or 1 and will be added to the dataset.

4. Evaluations

(a) How to measure the performance of the recommender system and active learning?
To measure the performance of the recommender systems and active learning, the evalu-
ation metrics: count of correct predicted items, HIT, MAP@K, nDCG, recip_rank, and
precision are used. Evaluation of the performances with these metrics is done before ac-
tive learning and after active learning with various sampling strategies. Additionally, the
evalaution methods: novelty, personalization, and coverage are implemented to reveal
characteristics of the recommender systems

(b) How to compare the performances of the recommender system before and after active
learning?
The performance scores, of each evaluation metric on the recommender system before and
after active learning with various sampling strategies, are compared using a statistical
test named Wilcoxon signed-rank test.
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5.1 limitations and future work
While this research provides valuable insights, it is essential to mention its limitations. A key
limitation is the limitation of the Wilcoxon signed-rank test that is used to compare performance
scores. The statistical power of the Wilcoxon signed-rank test is reduced when using the test on
a small sample size. Since, 5-fold cross-validation is used every implementation of Item-Based k-
NN Collaborative Filtering with or without active learning has 5 performance scores. This results
in a small sample size in the Wilcoxon signed-rank test which contributes to less confidence in
the outcomes. An additional limitation is the limitation of the nDCG score used on this type of
data. nDCG is designed to handle the graded relevance of items and ranking values. However,
the data used in this research is binary which causes the model to make no distinction between
degrees of relevance and it treats all non-zero values equally. This could result in incorrect nDCG
scores. Furthermore, the query strategy used in active learning focuses on the increment of correct
recommendations rather than ranking. Therefore, it is hard to make a general conclusion about
the improvement in nDCG score when using active learning. Additionally, the Item-Based k-
NN Collaborative Filtering with active learning using a 10-batch sampling strategy and adding
40 items took approximately 50 hours to run. With limited resources and time for this research
using a sampling method with more than 10 batches and 40 items was not feasible despite the
potential for improved outcomes. Due to this limited time, no additional investigation on varying
the K in K-fold cross-validation, the amount of batches in active learning, the parameters used in
the implementation of recommender systems, and the amount of items added in active learning
could be performed. Lastly, an interesting observation is that the Item-Based k-NN Collaborative
Filtering has the potential to recommend items that may not appear in the test set but do exist
in real-life scenarios. So, it could predict a vulnerability in a software product that is classified as
incorrect but is correct. This could eventually lead to inaccurate performance scores.

These limitations introduce some potential directions for future work. It would be interesting to
investigate Item-Based k-NN Collaborative Filtering with other query strategies in active learning
and how they contribute to the nDCG and precision score to investigate the influence of the query
strategy on the performance scores. Also, adding more items during active learning to identify the
optimal active learning implementation for this problem would be interesting. Finally, research
where more features of the data like CVE score, vendor names, and version numbers are used in
recommender systems could be beneficial.
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Appendices

A results

A.1 Recommender system
The outcomes of the evaluation metrics: correct counts, recip_rank, MAP@K and hit per different
recommender system are depicted in the Figures 19 till 22.

The graphs presented in this section serve as visual illustration in understanding the differences
between performances of multiple recommender systems. The names of the algorithms in the
Figures 19 till 22 are explained in Table 14.

Figure 19: Count of correct predicted items per fold
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Figure 20: Hit per fold

Figure 21: MAP@K per fold
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Figure 22: Recip_rank per fold

A.2 All sampling strategies adding 20 or 40 items
Outcomes of the evaluation metrics: count of correct predicted items, HIT, MAP@K, and re-
cip_rank for Item-Based k-NN Collaborative Filtering are represented in Figures 23 till 26. These
metrics are obtained by incorporating active learning with a sampling method that is either random,
single-batch, 4-batch or 10 batch, and 20 or 40 items are added.

Figures 27 till 30 represent the learning curves where the performance scores of every fold is plotted
against every additional item for every sampling method. For every sampling method, every fold
has a different starting point since performance scores differ among different folds.

Tables 13 till 16 represent the mean values of all outcomes for each evaluation method seper-
ate.
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Figure 23: Count correct recommendations per fold for every sampling method with 20 or 40 items
added

Figure 24: Hit per fold for every sampling method with 20 or 40 items added
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Figure 25: MAP@K per fold for every sampling method with 20 or 40 items added

Figure 26: Recip_rank per fold for every sampling method with 20 or 40 items added
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Figure 27: Learning curve count of correct recommendations per fold with all sampling methods,
adding 20 or 40 items

Figure 28: Learning curve hit per fold with all sampling methods, adding 20 or 40 items
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Figure 29: Learning curve MAP@K per fold with all sampling methods, adding 20 or 40 items

Figure 30: Learning curve recip_rank per fold with all sampling methods, adding 20 or 40 items
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Table 13: Mean values of correct counts per sampling method
Algorithm Mean value

Before active learning 2721.0
Random-20 2721.0

SingleBatch-40 2724.0
SingleBatch-20 2726.6

4Batch-20 2728.8
10Batch-20 2729.0
4Batch-40 2729.6
10Batch-40 2730.4

Table 14: Mean values of hit per sampling method
Algorithm Mean value
Random-20 0.660819

Before active learning 0.660840
SingleBatch-40 0.660890
SingleBatch-20 0.661527

4Batch-20 0.661597
10Batch-20 0.661314
4Batch-40 0.661739
10Batch-40 0.661597

Table 15: Mean values of recip_rank per sampling method
Algorithm Mean value

Before active learning 0.458035
Random-20 0.458038
10Batch-20 0.458134
10Batch-40 0.458198

SingleBatch-20 0.458231
4Batch-20 0.458247

SingleBatch-40 0.458251
4Batch-40 0.458369
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Table 16: Mean values of MAP@K per sampling method
Algorithm Mean value
Random-20 0.301296

Before active learning 0.301372
SingleBatch-40 0.301416
SingleBatch-20 0.301536

4Batch-20 0.301620
10Batch-20 0.301661
10Batch-40 0.301730
4Batch-40 0.301774

A.3 Single-batch and random sampling strategy adding 20 items

Three scenarios are made: Item-Based k-NN Collaborative Filtering algorithm with active learning
using a specific sampling technique, Item-Based k-NN Collaborative Filtering algorithm with active
learning using random sampling and just the Item-Based k-NN Collaborative Filtering algorithm.
The performances of the three scenarios are compared using the evaluation metrics: count of correct
predicted items, HIT, MAP@K, nDCG, recip_rank, and precision. The outcomes are depicted in
Figures 31 till 36 .

Figures 37 till 42 represent the learning curves where the performance scores of every fold is plotted
against every additional item for random and single-batch sampling adding 20 items.
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Figure 31: Count of correct recommendations per fold before and after active learning with random
sampling and single-batch sampling, adding 20 items

Figure 32: Hit per fold before and after active learning with random sampling and single-batch
sampling, adding 20 items
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Figure 33: MAP@K per fold before and after active learning with random sampling and single-
batch sampling, adding 20 items

Figure 34: nDCG per fold before and after active learning with random sampling and single-batch
sampling, adding 20 items
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Figure 35: Precision per fold before and after active learning with random sampling and single-
batch sampling, adding 20 items

Figure 36: Recip_rank per fold before and after active learning with random sampling and single-
batch sampling, adding 20 items
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Figure 37: Learning curve count of correct recommendations per fold with random sampling and
single-batch sampling, adding 20 items

Figure 38: Learning curve hit per fold with random and sampling active learning
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Figure 39: Learning curve MAP@K per fold with random sampling and single-batch sampling,
adding 20 items

Figure 40: Learning curve nDCG per fold with random sampling and single-batch sampling, adding
20 items
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Figure 41: Learning curve precision per fold with random sampling and single-batch sampling,
adding 20 items

Figure 42: Learning curve recip_rank per fold with random sampling and single-batch sampling,
adding 20 items
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A.4 Single batch sampling strategy adding 20 or 40 items
Outcomes of the evaluation metrics: count of correct predicted items, HIT, MAP@K, nDCG,
recip_rank, and precision for Item-Based k-NN Collaborative Filtering incorporating active learning
with a single batch sampling strategy where 20 items or 40 items are added are depicted in Figures
43 till 48.
Figures 97 till 102 represent the learning curves where the performance score of every fold is plotted
against every additional item for single batch active learning with 20 items added and single batch
active learning with 40 items added.

Figure 43: Count correct recommendations per fold for sampling active learning with 20 and 40
items added
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Figure 44: Hit per fold for sampling active learning with 20 and 40 items added

Figure 45: MAP@K per fold for sampling active learning with 20 and 40 items added
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Figure 46: nDCG per fold for sampling active learning with 20 and 40 items added

Figure 47: precision per fold for sampling active learning with 20 and 40 items added
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Figure 48: Recip_rank per fold for sampling active learning with 20 and 40 items added

Figure 49: Learning curve count of correct recommendations per fold with single-batch sampling,
adding 20 or 40 items
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Figure 50: Learning curve hit per fold with single-batch sampling, adding 20 or 40 items

Figure 51: Learning curve MAP@K per fold with single-batch sampling, adding 20 or 40 items
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Figure 52: Learning curve nDCG per fold with single-batch sampling, adding 20 or 40 items

Figure 53: Learning curve precision per fold with single-batch sampling, adding 20 or 40 items
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Figure 54: Learning curve recip_rank per fold with single-batch sampling, adding 20 or 40 items

A.5 4-Batch and single-batch sampling strategy adding 20 items
Outcomes of the evaluation metrics: count of correct predicted items, HIT, MAP@K, nDCG,
recip_rank, and precision for Item-Based k-NN Collaborative Filtering are represented in Figures
55 till 60. These metrics are obtained by incorporating active learning with a single batch sampling
strategy and a 4-batch sampling strategy where the strategy is updated 4 times. For both strategies,
20 items in total are added. In the 4-batch sampling strategy, 5 items are added per batch.

Figures 61 till 66 represent the learning curves where the performance scores of every fold is plotted
against every additional item for active learning with single batch sampling strategy and 4 batches
sampling strategy.
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Figure 55: Count of correct recommendations per fold before and after active learning with single-
batch and 4-batch sampling, adding 20 items

Figure 56: Hit per fold before and after active learning with single-batch and 4-batch sampling,
adding 20 items
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Figure 57: MAP@K per fold before and after active learning with single-batch and 4-batch sampling,
adding 20 items

Figure 58: nDCG per fold before and after active learning with single-batch and 4-batch sampling,
adding 20 items
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Figure 59: Precision per fold before and after active learning with single-batch and 4-batch sampling,
adding 20 items

Figure 60: Recip_rank per fold before and after active learning with single-batch and 4-batch
sampling, adding 20 items
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Figure 61: Learning curve count of correct recommendations per fold with single-batch and 4-batch
sampling, adding 20 items

Figure 62: Learning curve hit per fold with single-batch and 4-batch sampling, adding 20 items
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Figure 63: Learning curve MAP@K per fold with single-batch and 4-batch sampling, adding 20
items

Figure 64: Learning curve nDCG per fold with single-batch and 4-batch sampling, adding 20 items
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Figure 65: Learning curve precision per fold with single-batch and 4-batch sampling, adding 20
items

Figure 66: Learning curve recip_rank per fold with single-batch and 4-batch sampling, adding 20
items
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A.6 10-batch and single-batch sampling strategy adding 20 items
Outcomes of the evaluation metrics: count of correct predicted items, HIT, MAP@K, nDCG,
recip_rank, and precision for Item-Based k-NN Collaborative Filtering are represented in Figures
67 till 72. These metrics are obtained by incorporating active learning with a single batch sampling
strategy and a 10-batch sampling strategy where the strategy is updated 10 times. For both
strategies, 20 items in total are added. In the 10-batch sampling strategy, 2 items are added per
batch.

Figures 73 till 78 represent the learning curves where the performance scores of every fold is plotted
against every additional item for active learning with single batch sampling strategy and 10-batch
sampling strategy.

Figure 67: Count of correct recommendations per fold before and after active learning with single-
batch and 10-batch sampling, adding 20 items
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Figure 68: Hit per fold before and after active learning with single-batch and 10-batch sampling,
adding 20 items

Figure 69: MAP@K per fold before and after active learning with single-batch and 10-batch sam-
pling, adding 20 items
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Figure 70: nDCG per fold before and after active learning with single-batch and 10-batch sampling,
adding 20 items

Figure 71: Precision per fold before and after active learning with single-batch and 10-batch sam-
pling, adding 20 items
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Figure 72: Recip_rank per fold before and after active learning with single-batch and 10-batch
sampling, adding 20 items

Figure 73: Learning curve count of correct recommendations per fold with single-batch and 10-
batch sampling, adding 20 items
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Figure 74: Learning curve hit per fold with single-batch and 10-batch sampling, adding 20 items

Figure 75: Learning curve MAP@K per fold with single-batch and 10-batch sampling, adding 20
items

93



Figure 76: Learning curve nDCG per fold with single-batch and 10-batch sampling, adding 20 items

Figure 77: Learning curve precision per fold with single-batch and 10-batch sampling, adding 20
items
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Figure 78: Learning curve recip_rank per fold with single-batch and 10-batch sampling, adding 20
items

A.7 4-batch and single-batch sampling strategy adding 40 items
Outcomes of the evaluation metrics: count of correct predicted items, HIT, MAP@K, nDCG, re-
cip_rank, and precision for Item-Based k-NN Collaborative Filtering are represented in Figures
79 till 84. These metrics are obtained by incorporating active learning with a single batch sam-
pling strategy and a 4-batch sampling strategy where the strategy is updated 10 times. For both
strategies, 40 items in total are added. In the 4-batch sampling strategy, 10 items are added per
batch.

Figures 97 till 90 represent the learning curves where the performance scores of every fold is plotted
against every additional item for active learning with single batch sampling strategy and 10-batch
sampling strategy.
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Figure 79: Count of correct recommendations per fold before and after active learning with single-
batch and 4-batch, adding 40 items

Figure 80: Hit per fold before and after active learning with single-batch and 4-batch, adding 40
items
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Figure 81: MAP@K per fold before and after active learning with single-batch and 4-batch, adding
40 items

Figure 82: nDCG per fold before and after active learning with single-batch and 4-batch, adding
40 items
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Figure 83: Precision per fold before and after active learning with single-batch and 4-batch, adding
40 items

Figure 84: Recip_rank per fold before and after active learning with single-batch and 4-batch,
adding 40 items
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Figure 85: Learning curve count of correct recommendations per fold with single-batch and 4-batch
sampling, adding 40 items

Figure 86: Learning curve hit per fold with single-batch and 4-batch sampling, adding 40 items
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Figure 87: Learning curve MAP@K per fold with single-batch and 4-batch sampling, adding 40
items

Figure 88: Learning curve nDCG per fold with single-batch and 4-batch sampling, adding 40 items
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Figure 89: Learning curve precision per fold with single-batch and 4-batch sampling, adding 40
items

Figure 90: Learning curve recip_rank per fold with single-batch and 4-batch sampling, adding 40
items
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A.8 10-batch and single-batch sampling strategy adding 40 items
Outcomes of the evaluation metrics: count of correct predicted items, HIT, MAP@K, nDCG,
recip_rank, and precision for Item-based k-NN Collaborative Filtering are represented in Figures
91 till 96. These metrics are obtained by incorporating active learning with a single batch sampling
strategy and a 10-batch sampling strategy where the strategy is updated 10 times. For both
strategies, 40 items in total are added. In the 10-batch sampling strategy, 4 items are added per
batch.

Figures 97 till 102 represent the learning curves where the performance scores of every fold is plotted
against every additional item for active learning with single batch sampling strategy and 10-batch
sampling strategy.

Figure 91: Count of correct recommendations per fold before and after active learning with single-
batch and 10-batch sampling, adding 40 items
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Figure 92: Hit per fold before and after active learning with single-batch and 10-batch sampling,
adding 40 items

Figure 93: MAP@K per fold before and after active learning with single-batch and 10-batch sam-
pling, adding 40 items
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Figure 94: nDCG per fold before and after active learning with single-batch and 10-batch sampling,
adding 40 items

Figure 95: Precision per fold before and after active learning with single-batch and 10-batch sam-
pling, adding 40 items
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Figure 96: Recip_rank per fold before and after active learning with single-batch and 10-batch
sampling, adding 40 items

Figure 97: Learning curve count of correct recommendations per fold with single-batch and 10-
batch sampling, adding 40 items

105



Figure 98: Learning curve hit per fold with single-batch and 10-batch sampling, adding 40 items

Figure 99: Learning curve MAP@K per fold with single-batch and 10-batch sampling, adding 40
items
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Figure 100: Learning curve nDCG per fold with single-batch and 10-batch sampling, adding 40
items

Figure 101: Learning curve precision per fold with single-batch and 10-batch sampling, adding 40
items

107



Figure 102: Learning curve recip_rank per fold with single-batch and 10-batch sampling, adding
40 items
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