
Utrecht University

Thesis

Business Informatics

Department of Information and Computing Sciences

Process Miner: how sure are you?
Comparing behavioral qualities in event logs

Author: Supervisors:
N.F. Geijtenbeek BSc. Dr. ir. J.M.E.M. van der Werf
n.f.geijtenbeek@uu.nl Dr. M.J.S. Brinkhuis
6214096

September 2023

Abstract
This project aimed to explore comparative techniques to quantify the
(dis)similarity between event logs based on the behavior data present
within them. The research uncovered two behavior abstractions that
can be used as the basis of comparison. One is based on the direct-
follows relation (DFR) and the other is on the full temporal relationships
between events (EFR). Using these abstractions, existing metrics that
quantify distance, divergence, and similarity were adopted to use this data
for comparison. The anticipated correlation between these comparative
metrics on the data level, and existing model quality measures was not
as strong as expected. Limitations of this work are mainly in the form of
constraints on experimentation, which is not conducted in a controlled
lab setting, but instead on real-life event logs. Future work is suggested
to dive deeper into the underlying relationship of data quality, and the
quality of discovered process models.

Contents

1 Introduction 1
1.1 Problem Identification . 1
1.2 Project Aim . 2
1.3 Research Questions . 3
1.4 Research Approach, Context & Method . 3

1.4.1 Process Discovery Engineering . 4
1.4.2 Design Science . 5
1.4.3 Literature Research . 5
1.4.4 Experimentation Approach . 6

1.5 Contribution . 6

2 Process Mining 7
2.1 Event Logs . 8

2.1.1 Sources of Event Data . 8
2.1.2 Common Mathematical Notations . 9
2.1.3 Event Log Data Quality . 10
2.1.4 Data Quality in Process Mining . 11
2.1.5 Data Quality Handling . 13
2.1.6 Event Logs as Streaming Data . 14

2.2 Process Models . 14
2.3 Process Discovery . 18

2.3.1 Data Quality Principles and their Effects . 18
2.3.2 Assumptions on Completeness of Logged Behavior 19
2.3.3 Challenges within Process Discovery . 19

3 Event Log Sampling 21
3.1 Probability Sampling Approaches . 21

3.1.1 Simple Random Sampling . 22
3.1.2 Not Completely Random Sampling . 22

3.2 Non-probability Sampling Approaches . 23
3.2.1 Biased Sampling . 23

3.3 Quality of Samples . 24
3.4 Convenience Samples . 25

4 Comparing Event Log Behavior 26
4.1 Comparison Within Process Mining . 26
4.2 Definition of Behavior & Extraction . 26

4.2.1 Extracting Traces . 27
4.2.2 Extracting Behavior . 27
4.2.3 Extracting Eventual Behavior . 27
4.2.4 Transformation into Analyzable Data . 27

4.3 Existential Completeness Metric . 28
4.4 Requirements & Notation . 29

4.4.1 Identified Requirements . 29
4.4.2 Notation . 30

4.5 Distance Metrics . 31
4.5.1 Euclidean Distance . 31

i

4.5.2 Manhattan Distance . 31
4.5.3 Chebyshev Distance . 32
4.5.4 Canberra Distance . 32

4.6 Entropy & Divergence Measures . 33
4.6.1 Shannon’s Entropy . 33
4.6.2 Kullback-Leibler Divergence . 33
4.6.3 Jensen-Shannon Divergence . 34
4.6.4 Chi-Squared Divergence . 35

4.7 Similarity Metrics . 36
4.7.1 Cosine Similarity . 36
4.7.2 Jaccard Similarity . 37

5 Evaluation 39
5.1 Real-Life Event Logs . 40

5.1.1 Data Description . 40
5.1.2 Pre-processsing . 40

5.2 Generation of Data . 40
5.3 Evaluation of Requirements . 41
5.4 Evaluating the Metrics . 42

5.4.1 Conclusions . 42
5.5 Behavioral Comparison and Model Quality Measures . 43

5.5.1 Visual Exploration . 44
5.5.2 Correlation Analysis . 45
5.5.3 Conclusions . 46

6 Conclusion, Limitations, Discussion, and Future Work 48
6.1 Conclusion . 48
6.2 Limitations . 49
6.3 Discussion & Future Work . 50

A Code Snippets i

B Evaluation v

ii

Chapter 1

Introduction

In today’s world, decisions in organizations are heavily data-driven. Process mining, positioned at the
crossroads of data and process science, uses historical data to reveal and understand (complex) processes
[52]. This historical data originates from the process under study itself, and these collections are called
event logs. Often within the context of process mining, the exact details of the process under study are
unknown [52, 59]. The process under study can however be approximated using the details present within
event logs. The event logs thus play a vital role in any process mining initiative.

Over the years, process mining has gained significant traction, gaining attention from both academia and
industry alike. A notable trend is existing software applications within the business intelligence domain
integrating process mining functionality. This and other similar developments have introduced process
mining to a broader audience, who are eager to apply these techniques in a wide variety of business
domains. Such rapid adoption inevitably introduces new challenges, such as for example, event data
extraction [61]. As a result, there is a growing demand for research and methods that aim to increase the
validity and quality of conclusions drawn from process mining initiatives.

1.1 Problem Identification

To understand the aforementioned demand, the basis of process mining needs to be explained. One
of the core applications of process mining is process discovery. In process discovery, the data present
within event logs is used to approximate a process model [52, 53]. Often this model forms the basis of
any process mining initiative. To generate such a model, behavioral data in the form of event logs are
required. This data has to originate from some source, usually, it is extracted from existing information
systems. A general overview of a process mining initiative is provided in Figure 1.1. In Figure 1.1 the
teal border sketches the usual approach to process mining. Data is collected and agglomerated into a
single, possibly large, event log. This event log serves as input for a process discovery algorithm, which
produces a process model that describes the behavior present in the data sufficiently well. This resulting
model then takes center stage in any further analysis, influencing any possible conclusions that can be
derived from the process mining initiative.

In a realistic context, it is not always the case that a large amount of historical data is directly available
from the start. Due to the continuous integration of process mining functionality in existing software
ecosystems, it will become more common that data collection will start playing a more significant role
compared to the mere extraction of existing bulk data. This will leave practitioners at risk of discovering
models prior to having enough data captured to adequately describe the underlying process under study.
No real issues appear to arise when a singular event log is used as input for process discovery, but some
interesting phenomena arise when another independent event log is collected.

One phenomenon is that this newly acquired sample could contain different data compared to the
previously collected sample. Due to these differences, a model can be discovered that looks divergent
compared to the previously discovered model. The newly discovered model can then be used to deducee
different conclusions from the initially discovered model, as is visually shown in Figure 1.1. The practitioner
is now forced to evaluate which of these event logs is most relevant. Which model describes the process
the best? Can these two samples be combined into one larger sample? How can two event log samples be

1

Figure 1.1: Execution of a process mining initiative(s)

compared with each other? Many questions arise, some of which might be more daunting than others. In
this scenario, it becomes evident that the captured data has profound effects throughout the entirety of a
process mining initiative. Hence, this phenomenon illustrates the growing need for validation of event log
quality.

In theory, every single event log is nothing more than a sample of the stream of behavior possible within
the underlying process under study (often called ”true process”) [24]. As this stream can be infinite, one
can never be sure whether all behavior, some behavior, or just a fraction of the possible behavior has
been recorded. A concrete example of this issue would be when the practitioner captures data from an
administrative process, only to stop recording before the generation of payslips, leaving this behavior out
of the sampled event log.

Creating a more nuanced understanding of how to compare event log samples not only positively influences
the quality of the resulting initiative, but also allows shedding more light on the often underspecified data
collection aspect of process mining as a whole. A more concrete way to describe this phenomenon would
be as follows: using process discovery on two different event logs L1 and L2 could produce two completely
different models, even though the data is generated by the same underlying process. Discovering two
different models can be attributed to either the discovery algorithm employed or the behavioral data
present within the event log (or some intersection between these two). This is a symptom of a larger
issue: there is little knowledge surrounding the concrete relationship between data quality, and the quality
of the discovered process. This thesis will focus on the quality of event logs used as input for process
discovery, to increase the validity and quality of conclusions drawn from process mining initiatives.

In summary: during this project, the quality of event log samples will be analyzed in terms
of the behavior present within the samples. More robust ways of comparing two event log
samples will be explored, and bridges will be built between the analysis of event log samples
and existing model quality measures.

1.2 Project Aim

This research project has two aims. The first aim is to establish a notion of behavior on the data level of
event logs. The second is to use these notions to create meaningful comparisons between two event log
samples. This in turn could increase the confidence and quality of any conclusions derived from process
mining initiatives. These aims are closely interrelated and draw from the same background of process
mining, data science, and statistics. These aims have been combined into the following goal using the
template provided by Wieringa [68]:

2

The aim of this research is to improve the understanding of the role of data quality in process discovery,
by providing techniques for comparison of the behavioral data present within event logs that satisfies the
exploratory nature of process mining in order to increase the confidence in ant results coming forth of
the process mining initiative.

1.3 Research Questions

In this section, the research questions associated with this project are defined. As previously stated, the
primary objective of this research is to investigate the use of behavioral qualities of event log samples to
improve the quality of process mining results. The three research questions will explore the underlying
foundations, methods, and techniques that can be used to describe, measure, and compare the quality of
event log samples based on the behavior present within them. Additionally, the relationship between
these qualities on a data level, and their associated process models will be evaluated. The main research
question of this project is as follows: How can event logs be compared using behavioral qualities?
To answer this question the following research questions have been identified:

RQ1: How can behavioral qualities of an event log sample be used to describe the sample?

Understanding how an event log sample can be described in terms of properties based on the
behavior of the sample is the first step toward a better understanding of event log samples. Once
these properties are made explicit, they can form the basis of the comparative qualities that can
be used to compare event log samples among each other. Hence this research question aims to
explore abstractions, and techniques to describe the behavior present in event log samples. When
an understanding of this has been created it can be used for practitioners to describe the behavior
present within an event log.

RQ2: How can behavioral qualities be used to measure and compare event log sample behavioral quality?

After finding various ways to describe an event log sample using the behavioral data present within
the sample, the next step is to explore how these measures and properties can be used to create
metrics that describe the quality of the sample. As this research question will be broad, it forms
the basis to perform a comparative evaluation of multiple samples to determine and highlight the
differences among them. Existing comparative methods will be evaluated and adopted in the context
of process mining.

RQ3: What is the link between resulting measurements and known model quality measures?

After exploring comparative analysis, we will assess the feasibility and implications of implementing
these methods. Specifically, we aim to investigate the relationship between the measurement values,
which denote differences between event log samples, and the associated model quality measures,
namely recall and precision. To achieve this understanding, an experiment involving numerous
comparisons between event logs will be conducted. The relation between these constructs will
subsequently be evaluated using statistical methods.

It is apparent that the three research questions are strongly linked in order to answer the main research
question. This interconnectedness is vital for a well-structured research project. First, ways to describe
behavior on a data level will be explored which in turn will be the foundation of the comparisons that
will later be investigated. Lastly, the discovered comparative techniques will be compared to existing
model quality measures in order to draw conclusions about the quality of event logs.

1.4 Research Approach, Context & Method

This research project is exploratory in nature. Exploratory research is often conducted to investigate
and deepen the understanding of a topic that has not yet been thoroughly studied in existing literature
[19]. Exploratory research is often open-ended and flexible, allowing the project to adjust its direction to
pursue new ideas as they emerge during the project. The research questions reflect this exploratory nature,
because during the investigation of metrics new directions can be freely pursued using the underlying
basis uncovered in the first research question. The next sections will delve deeper into the context in
which this research is positioned.

3

1.4.1 Process Discovery Engineering

Algorithm Engineering (AE) [45] focuses on the context of developing algorithms in an academic setting.
This method has been transformed to be of use within the context of process discovery, called Process
Discovery Engineering (PDE) [40]. Even though this project does not solely focus on process discovery, this
method does provide justification for this research project, as it identifies the importance of experimentation
and the surrounding standardization. Just as within AE, PDE allows for both theoretical and practical
activities to take place. PDE places the artifacts to be designed within the right context.

In Figure 1.2 the method is shown. The theoretical side is presented in orange, whilst the practical side
is depicted in blue. The method contains four distinct phases, which will now be highlighted and placed
within a possible context of this research project.

Figure 1.2: Process Discovery Engineering from [40].

The design phase takes into account realistic contexts in which the boundaries and assumptions for the
usage of the artifacts are established. In this project, this phase will be mainly filled with an evaluation
of related material in the form of scientific publications, theses, dissertations, and articles. Some topics
that will be evaluated are the following: process mining, process discovery, sampling for process discovery,
and existing sample and model quality measures within the process mining context. The analysis phase
is used to determine any formal guarantees that should come forward from the designed artifact.

The next phase will be implementation and is situated on the practical side. During this project, several
metrics will be implemented to evaluate and compare event log samples. This implementation phase
is present in the method since implementing process discovery algorithms is often computationally
challenging, churning through a lot of data requires a lot of thought to stay efficient. In the context
of this research, some issues surrounding complexity will also be encountered, it is however not a core
requirement that an incredibly efficient comparison is created. The focus of this project is to derive
knowledge about the applicability of the uncovered principles. During this project, a lot of focus will be
put on ensuring that the designed artifacts function within the context of this research project. This
ensures that more angles are covered, instead of one being highly optimized.

The final phase present within the method is that of experimentation. During this project, experimentation
will be key, as the goal is to have the artifacts validated and measured in quality based on the findings
that will be uncovered during experimentation. These experiments should produce a better understanding
of the artifacts produced, and might even uncover additional directions that could be pursued during the
project, or future projects. The experimentation will take place “in vitro”, on synthetic samples drawn
from real-life event logs.

4

Apart from the PDE method, there is a growing emphasis on experimentation as a means to evaluate and
validate process mining methods and techniques, as highlighted in [40]. This approach involves the use of
checklists that are designed to ensure rigor, correctness, and reproducibility of experiments conducted.
These checklists and practices will be considered throughout this project to increase the quality and
reliability of the findings. The results of this project are situated within the experimentation phase of
PDE. The uncovered metrics can be used to establish relationships among event logs, which should be
reflected in the discovered process model produced by a discovery algorithm that is being experimented
with.

1.4.2 Design Science

Throughout this thesis, Wieringa’s design method [68] will be employed as the guiding framework to ensure
a comprehensive and systematic approach toward addressing the research objectives. The associated
design cycles will iterate in a continuous manner. Due to the position of this research as an exploratory
study, no real assurances can be made about any artifacts that will be designed. As there are few to no
comparable artifacts present within the context of process mining, a lot of experimentation will be done
to attain knowledge about the workings of the artifacts.

Placing the designed artifact within a real context will be impossible due to the low amount of usage
of process mining as a whole within the organization sponsor Ordina. However, within the evaluation
phase, real-life event logs will be used to replicate a realistic setting. This setting might help validate our
artifacts against a more realistic setting. The project will start out with an initial evaluation of relevant
related material surrounding the area of process mining, uncovering guiding principles that can be used
to design treatments (metrics). The evaluation phase will be shaped using experimentation on real-life
event logs. An overview of Wieringa’s design cycle is shown in Figure 1.3.

Figure 1.3: The design cycle purposed by Wieringa [68].

1.4.3 Literature Research

The selected research method is highly iterative, which accommodates the chosen exploratory approach,
especially for RQ1 and RQ2. The final research question is experiment-driven but requires insight
into process discovery and existing model quality measures. A solid understanding of the other topics
mentioned in section 1.4.1 is also required. However, with the exploratory nature of this project, an overly
structured literature review would not fit the project’s nature. Additionally, some of the topics under
investigation are not yet widely explored, which therefore complicates a structured review approach.

To address the need to position the project and elaborate on related material, scientific search engines
will be scoured to uncover material that will be used to produce a semi-structured review of the current
body of knowledge related to process mining. Additional material will be identified using snowballing.
By using this strategy, a solid understanding of process mining can be achieved.

5

1.4.4 Experimentation Approach

As mentioned previously, experimentation is central to this project. Aside from the evaluation that will
take place in answering the final research question, small testing experiments will also be conducted
throughout the implementation of abstractions or metrics. In this section, a sketch will be provided of
the organization and set-up of these experiments. The data used throughout the smaller experiments will
be generated using the sampling framework [58]. This framework produces 11 unique models, which are
subsequently used to generate a collection of event logs. These logs are then sampled using simple random
sampling (with various sampling ratios), providing a total of over 50 event log samples that can be used.

Once a more solid understanding has been reached, different real-life event logs will be used in a similar
setting as provided in the sampling framework. These event logs will come from the Business Process
Intelligence Challenge (BPIC). Two different event logs should be employed, to handle the inherent
challenges that come from generalizing research in the realm of process discovery [40]. Most implementation
will be done using Python, due to existing familiarity and numerous libraries such as pandas [34] being
able to facilitate the data side of the experimentation.

The general approach used throughout experimentation can be seen in Figure 1.4. Here, three possible
types of comparison could in essence be performed. The first is a comparison between the original event
log and an event log sample. The second is a potential comparison between a single event log sample and
itself (which is useful to establish baselines), and the final possibility is that of comparing two event log
samples among each other. This sort of experimentation will be employed for the previously described
small experiments throughout the project and eventually will be adapted and extended for the final
experiment to answer RQ3.

Figure 1.4: Experimentation contexts present within the project

1.5 Contribution

The contribution of this project is twofold. The practical value of these principles could improve the
overall certainty of practitioners regarding the completeness of their collected data, preventing potential
rework. Scientifically, the comparative principles that will be studied could create a relationship between
two event logs. This relationship can be used to predict potential outcomes when the event logs are
employed in process discovery. In turn, this could increase understanding, reliability, and validity of
experiments that are conducted within this context.

6

Chapter 2

Process Mining

Process mining is an interdisciplinary field that is positioned as a bridge between data science and
process science as shown in Figure 2.1. It draws heavily from techniques present within data mining,
process modeling, and process analysis to extract insight from existing event data that originates from
a process [52, 53]. Using data about the operation of a process is not new, and throughout the years
numerous techniques that aim to increase the performance of a process have been employed. Where
process mining differs from these techniques is its aim to construct insights from factual evidence in
the form of collections of event data originating from a process itself. Process mining often combines
knowledge present in the data with process models (either constructed or automatically discovered) to
provide insight. Some examples of possible insights are: identifying bottlenecks within a process, provide
insight about performance-based data within the process, and highlighting any deviations between the
actual execution and the desired execution of a process. This chapter will explore core concepts related
to process mining.

Figure 2.1: Illustrating the bridge between data science and process science by van der Aalst [53]

Three main types of process mining exist; discovery, conformance and enhancement [53]:

• Discovery: Given an event log, process discovery aims to uncover a process model from this
log without any a priori knowledge of the process. The uncovered process model can be seen as
fact-based, as it is based only on the recorded behavior from the event log.

• Conformance: This type of process mining aims to compare a process model (discovered or
predefined), which outlines the intended behavior, with an event log that records the actual behavior
that takes place. The goal is to highlight discrepancies between the two.

• Enhancement: The enhancement activity refers to the process of improving or expanding a current

7

process model using information from an event log that records the actual process. An example of
this is incorporating performance information related to time or cost within the process model.

2.1 Event Logs

At the basis of process mining lies the concept of an event log. An event log can be seen as a collection of
historical data, with its source being the process under study within the process mining project. The
core difference between an event log and a more traditional data set is its interrelatedness. An event is
related to other events in regard to time, and they are grouped based on the underlying process instance.
In literature, the event log is usually pre-existing, and no clear origin or way that the event log has been
created is provided. Several process mining methods do however mention the data extraction phase, albeit
often not really providing a clear answer as to how this extraction is achieved [9, 23, 43, 53, 61]. Rojas
et al. [43] explain that extracting data can be difficult to standardize due to the varied architectures of
systems, which may include outdated legacy systems created specifically for the unique requirements of
individual organizations. Thus data extraction requires a unique approach for each situation.

Once data has been extracted, the combined data can be seen as an event log. Prior to using this event
log as input within a process mining project, the log is often cleaned and filtered to ensure that the
information present is relevant to the goals of the initiative [52]. An event log must contain the following
information for each event logged to ensure the possibility of analysis using process mining techniques:

1. Case identifier - Every event recorded should be associated with a case. This identifier is used to
bundle together numerous events associated with the same case (or process instance).

2. Activity name - Each step or activity executed during the process should have a unique name.
This ensures that all behavior is captured within an event log, and no activities are incorrectly
merged into the same activity concept.

3. Timestamp - Each step or activity should have an associated timestamp to ensure that the data
can be ordered so that insights can be derived from the actual execution of the process.

In addition to these hard requirements to discover a control flow, additional attributes can be added to
the event log to extend the data present. In Figure 2.2 three of these additional properties are present:
Boat type, Cox, and Team. These values can remain constant, as is the case within the example, or can
evolve over time. An example of an attribute that can change within the context of our example would be
the total training time that has elapsed. The additional attributes can be used to filter cases to allow for
a more specific analysis to take place. Some attributes could provide additional knowledge surrounding
the subject under study. The availability of these additional attributes might allow more specific types of
analysis such as decision mining [44].

2.1.1 Sources of Event Data

Event data has become increasingly available over the past few years [53]. In many application domains
(spanning from direct service to manufacturing), data is collected in numerous information systems. In
this subsection, several popular data sources for bulk historical data will be addressed.

• Enterprise Resource Planning (ERP)
An ERP system such as SAP is widely used within multiple domains. These systems support the
core functionality of business processes. ERP systems often store data surrounding the execution of
the processes they support, making it an ideal source of event data, although some pre-processing
might be required. Several large process mining applications such as Celonis have started to
support direct integration of data from SAP, making process mining even more accessible to more
organizations.

• Case Management Tools
Most case management tools will have native support for logging interactions with a case (including
timestamps). They often focus on changes present within the context of a case, requiring some
pre-processing to transform these context notations into activities that adhere to the requirements
of an event log.

8

Figure 2.2: An example of an event log containing information surrounding rowing.

• Databases
Some organizations employ traditional databases to support their business processes. If historical
data is logged here, it might be worthwhile to explore whether this data can be translated into data
usable for process mining. In addition to this, other forms of large-scale data storage such as data
warehouses and data lakes could be great sources for event data.

• Business Process Management Systems
Systems that focus on the support of the direct execution of business processes are ideal sources of
event data. Often they already support many of the notions present within the requirements for
event logs, asking for little pre-processing to be usable within the context of process mining.

There can be numerous contexts in which it is impossible to find a source for bulk historical data; it
might not even exist. This forces the focus to shift from data extraction to data collection. Furthermore,
when process mining functionality is integrated into existing software systems, all data remains within
that system, emphasizing the importance of how it is collected.

2.1.2 Common Mathematical Notations

Usually whilst discussing an event log, (mathematical) notations are used to summarize the event log in
a textual form. For this, several constructs need to be defined. Let S be a (possibly infinite) set. A bag
or multiset over S is a function m : S −→ N, where N = 0, 1, 2, ... denotes the set of natural numbers. For
s ∈ S,m(s) denotes the number of occurrences of s in m. The length of bag m, denoted as ||m||, is defined
as the sum of the counts of its elements, i.e., ||m|| =

∑
s∈S m(s). ∅ is used to denote the empty bag, and

∈ denotes the element inclusion operation over bags. The set of all bags over S is denoted as B(S). In
addition to this, the following related to addition is defined as well: (m1 +m2)(S) = m1(s) +m2(s),
s ∈ m|m(s) > 0. The support of m is defined as supp(m) = {s|m(s) > 0}. Finally, simple comparisons of
a multiset exist (i.e. greater than, smaller than, or equality) m1 ≤ m2 ⇐⇒ ∀s ∈ S : m1(s) ≤ m2(s).

A sequence over S of length n ∈ N is a function σ : {1, ..., n} −→ S. If n > 0 and σ(i) = ai for i ∈ {1, .., n},
written as σ = ⟨a1, ..., an⟩. The length of the sequence σ is denoted by ||σ||. The sequence of length 0 is
called the empty sequence, and is denoted by ϵ. The set of all finite sequences over S is denoted by S∗.
We write a ∈ σ if some 1 ≤ i ≤ ||σ|| exists such that σ(i) = a.

Definition 2.1.2.1 (Event log, trace). Given a set of activities A, an Event Log L is defined as a bag
over finite sequences of A, i.e., L ⊆ B(A∗). An element σ ∈ L is called a trace.

Using Definition 2.1.2.1, an event log is defined as a multiset of traces. An example of this sort of
representation being used in a minimal example can be found in Figure 2.3.

9

Figure 2.3: Abstracting an event log into a multiset of traces.

2.1.3 Event Log Data Quality

Over recent years, process mining has evolved rapidly, introducing new tools and methods to extract
valuable insights from event logs [52]. Despite this innovation, the results of a process mining initiative
are still heavily determined by the underlying quality of the input data, the event log [54]. The notion
of “garbage in, garbage out” is often used to describe the principle that poor input inevitably leads to
poor quality output. This appears to apply to process mining as well as other forms of computerized
data analysis. Applying process mining principles to low-quality data can produce unrepresentative,
incoherent, and potentially even dangerous effects depending on the setting. Within the context of this
study these effects might potentially affect: client satisfaction, and increase the amount of rework due to
wasted development hours. Since event log quality plays such a central role within the process mining
context, existing taxonomies, tools, and definitions that might help shape the to-be-designed artifacts
will be explored.

Generic Data Quality Taxonomy

Before delving into taxonomies specific to process mining, it is worthwhile to explore general data quality
taxonomies that exist, as some concepts may still be relevant in the context of process mining.

When identifying data quality issues, the concept of “fit for use” is often employed. This means that
the data used should possess sufficient quality to address the specific question being investigated [3].
In the case of process mining, if the goal is to answer questions regarding process performance during
holidays, it is crucial to have data captured during that period. This highlights the fact that quality
assessments are defined at a high level based on the objectives of the analysis. Expanding on this notion,
Wang and Strong [66] categorized data quality into four types: intrinsic, contextual, representational,
and accessibility. In [35], these categories were further explorer, and concrete definitions of the associated
dimensions were provided. A detailed overview of these data quality dimensions can be found in Table
2.1.

• Intrinsic data quality pertains to characteristics such as believability, accuracy, objectivity, and the
reputation of the data source. In the context of this study, some of these qualities are affected by
the constraints present within a process mining project. Often, a singular subject is under study,
and the data is generated automatically in for example an information system. As a consequence,
certain aspects pertaining to intrinsic data quality are less present.

• Contextual data quality relates to the relevance of the data, its completeness, the adequacy of the
available data volume, and its recency. Applying this to process mining, it becomes challenging
to make definitive statements about the completeness or the volume of available data. An event
log represents only a segment of the possible behavior contained within, and it is impossible to

10

determine its completeness as some behaviors may remain unsampled. Quality surrounding the
adequacy of the volume of the data is also heavily influenced, as an analyst will always strive to
create a representative model, but will never know if this is truly the case.

• Representational data quality encompasses characteristics that affect the interpretability of the
data. An example of this is the consistency of data format. In the context of process mining,
issues surrounding representational data quality might heavily influence the ease with which data is
extracted and combined within a singular event log.

• Accessibility data quality includes any statements made surrounding how readily accessible the data
is. Within the context of process mining, this once again pertains to the data extraction phases
that are present within a traditional process mining initiative. In addition to this, relevant security
measures are taken to ensure that the data stored does not contain personal information and that
the data is not accessible to any unauthorized party.

Table 2.1: An overview of data quality dimensions adapted from [35]

2.1.4 Data Quality in Process Mining

The taxonomies discussed earlier may not directly apply to process mining. The need for specific
taxonomies in process mining arises from the unique characteristics of the data used in this field. Process
mining relies on event logs, which introduce specific challenges not encountered in other types of data.
These challenges include issues such as missing case identifiers or mismatched timestamps. For example,
mismatched timestamps can disrupt the sequence of events, leading to inaccuracies in derived process
models. Therefore, it is essential to develop taxonomies that address the complexities of process mining
data. This section will explore more specialized taxonomies closely aligned with the context of process
mining.

11

Event Log Maturity Levels

In the process mining manifesto [54], the IEEE task force on process mining outlined several opportunities,
challenges, and guiding principles. One of the guiding principles discussed is a maturity assessment
(mainly regarding how the behavior is captured). The maturity levels are defined on a scale from 1 to 5
as follows:

• Maturity Level 1:
Event log is not recorded in an automated fashion. Due to this fact, events might be missing or the
occurrence of an event cannot be related to reality. These event logs often originate through the
usage of paper-based processes such as the collection of medical records.

• Maturity Level 2:
Event log in which event are recorded in an automated fashion as the by-product of some existing
information system running. No systematic approach is employed regarding the collection of the
data, and it is possible to bypass the recording procedure as a whole. Events present could thus
still be missing, or are not recorded properly.

• Maturity Level 3:
Event log in which events are recorded in an automated fashion, but there still is no systematic
approach present. To some degree, the log can be trusted to represent reality, (additional intrinsic
data qualities are met) this does however not imply completeness.

• Maturity Level 4:
Event log in which events are recorded in both an automated and systematic fashion. This would
indicate that the log is both trustworthy and complete. The completeness does not imply that
all behavior of a process is captured, just that all the data present within a timeframe has been
recorded. In addition to this, basic notations such as a case identifier and activity labels should be
supported in an explicit manner.

• Maturity Level 5:
Event log in which events are recorded in both an automated and systematic fashion. The data
present in these logs should be well-defined. During the capture of data, privacy and security
considerations are met. The data present in these event logs should bring forward a clear ontology.
This maturity level seems to also include accessibility data qualities.

Even though it is possible to perform process mining techniques on event logs of any maturity level. It is
highly recommended to perform these techniques upon event logs starting at a maturity level of 3. This
is due to the fact that the lower two maturity levels might increase the chance of producing inaccurate
and unreliable results [54].

Data Quality Issues by Bose et al.

While the previously discussed maturity levels offer a high-level overview of event logs, they mainly
address issues influenced by the data capture environment. Bose et al. [7] offer a more data-centric
perspective on process mining quality issues. In total, 27 issues related to event log data quality are
presented, which fall into one of four categories:

• Missing data:
This refers to a situation where certain mandatory information may be absent from an event log.
For instance, an event, event attribute/value, or relation within the log may be missing. Missing
data often indicates a problem with the logging framework or process.

• Incorrect data:
This pertains to a scenario where data is present in an event log but is found to be logged incorrectly
based on contextual information. For example, an entity, relation, or value provided in the log is
inaccurate or wrong.

• Imprecise data:
This describes a situation where the logged entries are too coarse or lacking in detail, resulting
in a loss of precision. Such imprecise data hampers certain types of analysis that require more
precise values and can lead to unreliable results. For instance, timestamps logged with a low level
of granularity, such as daily intervals, make the order of entries unreliable.

12

• Irrelevant data:
This corresponds to a scenario where the logged entries may be irrelevant for analysis, but another
relevant entity needs to be derived or obtained through filtering or aggregation of the logged entities.
However, in many cases, filtering or transforming irrelevant entries is not a straightforward task,
presenting a challenge for process mining analysis.

Semantic Inconsistency

Thus far, both generic and process mining-specific data quality issues are covered. Additionally, maturity
levels concerning the context in which event data is collected have been discussed. In [64] it became
evident that there is no standardized way to address data quality issues. The decision has been made to
use the same notations present within [64], which defines four distinct classes of behavior present within
an event log:

• Hidden: Valid behavior that is not recorded within the event log.

• Incomplete: Sequences of events where events are missing within any point of the execution.

• Incorrect: Behavior recorded in the event log that did not occur in reality.

• Rare: Events or sequences of events that occur in an infrequent manner, but do occur in reality.
This term is closely related to the term “outlier” used in descriptive statistics [37].

To further illustrate these definitions see Figure 2.4. While filtering out rare behavior might seem intuitive,
such behavior often reveals insightful information about the studied process or system [2]. Several methods
exist to detect this sort of behavior, ranging from simplistic frequency measures to deep learning [25]. All
these methods ensure that an event log is of adequate quality before any form of analysis takes place.

Figure 2.4: A graphical depiction of the behavior captured within an event log.

2.1.5 Data Quality Handling

In the previous section, numerous types of data quality issues have been discussed. With the pivotal
role that data plays within process mining, it is important that these quality issues are addressed in
one way or another. Depending on the analyst’s objective, different quality domains might influence the
conclusions drawn. It is however crucial that a practitioner evaluates the quality of an event log prior to
the analysis taking place.

Suriandi et al [50] provide a fine-grained description of 11 patterns that were observed in practice that
relate to data quality. These patterns are in turn used as the basis for the detection and eventual repair of
quality issues that are present within an event log [14]. Numerous techniques, frameworks, and tools exist
to help practitioners deal with these quality issues [5, 17, 42]. Most of these, however, focus solely on the
inherent data quality issues that would arise from either error originating from extracting or incorrect
data transformation. Little to no research is available relating to the detection of data quality whilst
data collection takes place.

13

2.1.6 Event Logs as Streaming Data

As time passes and systems continue to operate, event logs can quickly grow in size, potentially becoming
very large. In this context, event logs can be seen as a subset or sample of an infinite stream of events
generated by the system over time [24]. Data mining utilizes the term “data stream” to refer to a dataset
that consists of elements with timestamps and a particular order or sequence. The concept of a data
stream as used in data mining can be applied directly to process mining, where the event log serves as
the dataset containing activities ordered by their timestamps. In this sense, information system events
and their corresponding event logs can be viewed as a continuous stream of data [64]. When analyzing an
existing system that has been operational for a long time, it may not be possible to obtain all historical
event data. Even if such data is available, it may be undesirable to include all past events in the analysis
because processes can change significantly over time. This phenomenon is commonly referred to as
“concept drift” [8].

As noted in the previous section, numerous assumptions about the event log are made prior to analysis.
In addition to these assumptions, it is often presumed that the process being evaluated does not undergo
significant changes during the period over which events are being logged. This prevents the occurrence
of concept drift. It is impossible to predict how many events will occur in the future, as a system may
continue to operate indefinitely after the decision has been made to stop logging and begin analyzing the
event log. As a result, the event log only represents a specific period of system execution and can be seen
as a sample of a potentially never-ending stream of events [64]. An illustration of the concept of an event
log as a sample of an infinite stream of events is provided in Figure 2.5.

Figure 2.5: An event log is an infinite stream of events adapted from [64].

2.2 Process Models

A process model is a representation of a process, usually in the form of a diagram or flowchart, that outlines
the steps and decisions involved in the process. It provides a visual representation of the process inputs,
tasks, and outputs, and the relationships and dependencies between them [18]. The purpose of a process
model is to provide an understanding of a process and facilitate process analysis and communication.
Given their central role in process discovery and conformance analysis using event logs, this subsection
will explore the most common model notations.

14

Transition Systems

Transition systems form the foundation of most modeling notations, their language consists of states and
transitions. In Figure 2.6 a simple transition system is depicted containing 11 states, modeling a system
in which transitions a, b, c, d, e, f, and g are present. In this model, a form of concurrency exists within
the activities a,b, and c which all need to be executed within this process in any order. A form of choice
is present within the process as well, with the choice between the execution of activity d or e. A self-loop
also occurs in state N9 with the activity f. The process ends after the execution of activity g.

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

a

b

c

b

c

a

c

b

a

c

b

a

d

e

f

g

g

Figure 2.6: An graphical representation of an example transition system

Definition 2.2.0.1 (Transition Systems). A transition system is defined as a tuple (S,A, −→, s0, Ω)
where S is the set of states, A is the set of activities (often referred to as transitions or actions), and
→⊆ S ×A× S forms the set of transitions and τ denotes the silent steps [62], a. s0 ∈ S denotes the set
of initial states, and Ω ⊆ S denotes the set of final states (often referred to as accepting states).

The example in Figure 2.6 can thus be described as the following tuple (S,A,) where S = {N1, N2, ..., N11},
A = {a, b, c} and → = {(N1, a, N2), (N1, b, N3), (N1, c, N3), (N2, b, N5), (N2, c, N6), (N3, a, N5),
(N3, c, N7), (N4, a, N6), (N4, b, N7), (N5, c, N8), (N6, b, N8), (N7, a, N8), (N8, d, N9), (N8, e, N10),
(N9, f, N9), (N9, g, N11), (N10, g, N11)}. s0 = N1 and Ω = N11.

A system S can be referred to as a Finite State Machine (FSM) when its set of reachable states is finite.
The behavior of a transition system can be analyzed by considering its initial state as a starting point
[57]. An interesting problem occurs with a notation that focuses on modeling the state of a process: the
state explosion problem. This problem notes that as the number of possible states in a system increases,
the state space grows in an exponential manner [11]. In practice, that makes the transition system less
desirable to be used to model the complexity of a business process.

Business Process Model and Notation

Business Process Model and Notation (BPMN) is one of the most used languages to model a business
process. BPMN models allow all sorts of notation that can be used to create diverse and complex models
[18, 57]. However, the focus will be on the control flow of such a model. Unlike transition systems and
direct-follows graphs, BPMN models allow for explicit concurrency through the use of parallel gateways,
denoted by a diamond symbol with a +. Choice is modeled through the usage of an exclusive or gateway
modeled as a diamond symbol with an x. To provide an illustration of a BPMN model, the same behavior
as that in the example of transition systems in Figure 2.7 will be modeled.
In this model, it should become clear that the focus within a BPMN model is on actions and their related
order instead of states as is the case within a transition system.

Petri Nets

The core idea behind Petri nets was initially introduced by Carl Adam Petri in the early 1960s as a
mathematical tool for modeling and analyzing the behavior of concurrent systems [38]. Petri wanted to
create a mathematical representation of concurrent systems that could be used to model their behavior,
study the system’s properties, and predict how the system would behave under different conditions. Petri
nets were specifically designed to model and analyze concurrent systems, where multiple processes are

15

Figure 2.7: An example BPMN model.

executed in parallel, and the order in which these processes occur is not predetermined. The graphical
and mathematical representation provided by Petri nets made it possible to study the behavior of these
systems, including the order in which processes occur and the relationship between processes.

start

P1

P2

P3

A

B

C

P4

P5

P6

D

E

P7

P8

F

G’

G

P9

Figure 2.8: A graphical representation of an example marked Petri net

Within a Petri net places exist depicted as a circle, which acts as a distributed state instead of a global one
compared to the labeled transition system. In addition to these places, tokens exist which can represent
anything of interest. Within the context of process mining, this would be the current state of the process.
A marking indicates the number of tokens present in each state. Each place can function as an input- and
output place for a transition (shown as a square). A transition is enabled when all connected input places
have a token present. When a transition “fires”, the tokens present in the input places are consumed,
and a token is produced in all output places that are connected to the transition [36]. An example of a
Petri net is provided in Figure 2.8. Once again, the same behavior as described in the previous examples
can be achieved using this Petri net. It is worth noting that an additional transition G’ must be added to
ensure that all labels on transitions are unique.

Definition 2.2.0.2 (Petri nets). A Petri net can be described as the tuple PN = (P,T,F) where: P is a
(finite) set of places, T is a (finite) set of transitions, P ∩ T = ∅, F is the flow relation that defines the
arcs: F ⊆ (P × T) ∪ (T × P)

Definition 2.2.0.3 (Marked Petri nets). A marked Petri net is a pair (N, m) with N = (P, T, F) a Petri
net, and m ∈ B(P) a marking, which denotes a configuration of tokens over the places in N

The behavior of a Petri net is defined by the firing rule, which prescribes how a Petri net moves from one
marking to the next marking. The interleaving semantics firing rule is a way to determine how Petri nets
behave when multiple transitions are enabled at the same time. It allows each enabled transition to fire

16

one after the other, in an arbitrary order, removing tokens from its input places and adding tokens to its
output places.

The Petri net example can thus be referred to as the tuple ((P,T,F), m0) where P = {P1, P2, ...P9}, T =
{A,B,C,D,E,F,G,G’,}, F = {(P1, A), (P2, B), (P3, C), (A, P4), (B, P5), (C, P6), (P4, D), (P4, E), (P5,
D), (P5, E), (P6, D), (P6, E), (D, P7), (P7, F), (F, P7), (P7, G’), (G’, P8), (E, P8), (P8, G’), (G, P9),
(G’, P9)} For simplicity reasons the start place and transition have been omitted.

Directly Follows Graph

A Directly Follows Graph (DFG) is a graphical representation of a business process, used to analyze and
optimize the flow of activities. In a DFG, each node represents an activity and directed arrows between
nodes indicate the sequential dependencies between activities [27]. The notation for a DFG typically
involves using circles or boxes to represent activities and arrows to represent the relationships between
them. The arrows indicate the direction of the process flow and show which activities must be completed
before others can begin. The DFG differs from a BPMN model in several ways. While a BPMN model
provides a comprehensive visual representation of a process, including the different types of activities, flow
of events, and participants involved, a DFG focuses specifically on the relationships between activities.
An example of a DFG is provided in Figure 2.9. The DFG in the example can be described using the
tuple (A,E). Where A is the set of activities {Start, A, B, C, D, E, F, G, End}. And E is the set of
(directional) connections: {(Start, A), (Start, B), (Start, C), (A, B), (A, C), (A, D), (A, E), (B, A), (B,
C), (B, D), (C, A), (C, B), (C, D), (C, E), (D, F), (D, G), (E, G), (F, D), (G, End)}. For example (A,B)
∈ E when there exists a σ ∈ L such that a <σ b. Here, this σ would be 1, for direct following activities.

Start

A

B

C

D

E

F

G End

Figure 2.9: An example of a directly follows graph

All representations given allow the same behavior pattern as described in the initial example, however,
some also describe additional behavior. The syntax and semantics of each modeling notation allow for
different behavior. Therefore even the choice of modeling notation can have effects on a discovered model.
A brief summary of the advantages and disadvantages of each modeling notation is presented in Table 2.2.

17

2.3 Process Discovery

Now that an understanding of the context of a process mining initiative and representations used for
process models is achieved, the most explored aspect of process mining, process discovery, can be examined.
Within process discovery, a process model is uncovered by using the historical execution data (the behavior)
present within the event log [53]. The strength of this aspect of process mining is that the resulting model
is only based on historical data, and should therefore not contain any form of bias that could be present
if a human had manually created the model [52].

Many process discovery techniques exist, and multiple adaptations of existing algorithms have been
brought to light. Numerous studies have explored the existing process mining techniques such as in
[13, 60, 64]. For the scope of this project, it is not vital to create an understanding of the internal
workings of these algorithms, it is however interesting to understand the underlying assumptions that are
made regarding the input (event log) of these algorithms. These assumptions can place direct constraints
on the organization of the data present within the event log, in the next subsection several of these
assumptions will be highlighted.

2.3.1 Data Quality Principles and their Effects

In accordance with the definitions provided in section 2.1.3, process discovery algorithms will have to
deal with hidden, incorrect, incomplete, and rare behavior logged within the event log. Most discovery
algorithms have problems dealing with hidden behavior. This is due to the fact that only behavior present
within the event log will be employed to deduce a process model [64]. Effectively most process discovery
algorithms focus on discovering an imperative model, in which the steps that need to be conducted within
the process take center stage. This makes dealing with hidden behavior a challenging problem for this
type of algorithm.

Achieving a harmonious balance between flexibility and control poses a longstanding challenge in work
process management [41]. The issue surrounding hidden behavior is indicative that this issue also exists
in the context of process discovery. Another class of algorithms favors creating declarative specifications.
These modeling approaches go to the extreme by letting practitioners specify the constraints on how a
process should evolve over time, without explicitly declaring how to route process instances to meet those
constraints [16]. Hidden behavior can thus still be adequately modeled within a declarative approach
as the behavior is not made impossible, the solution space in which the model resides just gets limited
as much as possible in the form of constraints. An illustration highlighting the differences between
these imperative models and declarative specifications can be seen in Figure 2.10, depicting the behavior
possible in either the specification or the model is highlighted in the grey squared area.

Figure 2.10: The differences between an imperative model and a declarative specification [16]

Incomplete, incorrect, and rare behavior can also pose problems for process discovery algorithms. Often
thresholds are employed to determine whether or not to include these types of behavior outright, filtering
them out prior to discovery being performed to negate the negative influences these behaviors might have
on the resulting process model. Often the only way to detect incorrect behavior is when this behavior is
also infrequent. Rare behavior is usually filtered out due to the usage of thresholds, posing a threat to the
completeness of a resulting model as this behavior should be possible within the model. The completeness
of the event log plays a vital role in influencing the quality of process mining results.

18

2.3.2 Assumptions on Completeness of Logged Behavior

Several discovery algorithms also make assumptions regarding the completeness of the behavior captured
within the event log. Certain discovery algorithms rely on the assumption of existential completeness in
behavior, expecting that every possible behavior present in the process should occur at least once in the
event log. Another assumption often made is about the frequency representativeness of behavior present
within an event log (sample). This assumption states that the behavior logged should adhere to the same
relative frequency of the behavior present within the underlying process (or original event log).

The same assumptions are not only made on a behavior level but also on a trace level. Trace existential
completeness states that all possible traces are logged within the event log that are present within the
underlying process under study. Trace frequency representativeness assumes that the relative frequency
of traces should again adhere to some degree to the relative frequency of the traces in the underlying
process under study. In short, successful process discovery can only be achieved if the log contains a
representative and adequately large subset of potential behaviors [67].

2.3.3 Challenges within Process Discovery

Even though a significant portion of the body of knowledge on process mining focuses on process discovery,
there are still numerous challenges present within this subfield. In this subsection, numerous problems will
be explored and evaluated. with relation to the previously mentioned assumptions on the completeness of
logged behavior.

The first challenge in process discovery to discuss relates to the chosen model representation. Some
behaviors that can be present within the event log might be unable to be (adequately) modeled within a
discovered process model. For example, event log: L = [⟨a, b, c⟩]100, ⟨a, c, b⟩100]. When representing this
event log using a direct follows graph a loop between activities b and c will be introduced. This will in
turn result in a lot of allowed behavior that was not observed within the event log. However, when a
representation is chosen such as a Petri net these problems will not occur. Using the direct followers graph
in this context will allow for behavior that is not specified within the event log such as ⟨a, b, c, b, c, b, c⟩.
This behavior can be observed in the DFG illustrated in Figure 2.11. Depending on the context of the
process mining project, this sort of issue can be harmful for the generalizability of the results.

Start

A

B

C End

Figure 2.11: An example of possible unwanted behavior within a DFG

The second challenge in process discovery to discuss relates to the notion of completeness. An event log
is a record of events that have occurred in a process. Most event logs exhibit a Pareto distribution, where
a few trace variants are frequent while many trace variants are infrequent. This means that there may be
unique trace variants that only occur once, and new variants may appear if the process is observed for a
longer period of time. Conversely, some variants may no longer appear if the process is observed in a
different period. It is important to treat an event log as a sample and use it to make inferences about the
whole population (i.e., the process), not assume that it is the population itself [56]. This concept directly
clashes with any notion of completeness discussed within the section 2.3.2.

Another significant challenge within this context is that some discovery algorithms are quite complex,
and might have significant computational costs associated with them. Process mining is often seen as an
exploratory process [52], and having to wait an incredibly long time on a resulting model might hamper
this property. This list is not exhaustive, as other issues are also present.

19

Table 2.2: An overview of the pros and cons of each modeling notation discussed.

Notation Pros Cons

Transition Systems

• Simple and easy to under-
stand, suitable for small
and straightforward pro-
cesses.

• Useful for modeling dy-
namic behavior of a system.

• Limited in expressiveness,
unable to capture complex
relationships between pro-
cesses and events.

• Not widely used for process
modeling in industry.

DFG

• Simple representation of se-
quential relationships be-
tween activities.

• Easy to visualize and under-
stand process flow.

• Limited in expressiveness,
cannot capture more com-
plex process flows.

• Does not provide informa-
tion about the types of ac-
tivities, resources or partic-
ipants involved.

BPMN

• Widely used in industry,
providing a standard for
process modeling.

• Provides a comprehensive
representation of a pro-
cess, including the different
types of activities, flow of
events, and participants in-
volved.

• Allows for clear communi-
cation and collaboration be-
tween stakeholders.

• Can be complex and diffi-
cult to understand for non-
experts.

• Some BPMN elements can
be difficult to implement in
practice.

Petri nets

• Can represent complex pro-
cess flows with parallel exe-
cution paths.

• Can model concurrent and
synchronized behavior.

• Formal and mathematical
basis makes it suitable for
analysis and verification of
processes.

• Complex representation
may be difficult for non-
experts to understand.

• May not be suitable for
modeling processes with
many states and transi-
tions.

• Not widely used in indus-
try.

20

Chapter 3

Event Log Sampling

As systems continue to operate, event logs rapidly grow in size. Each event log captures only a portion
of the overall event stream, representing a sample of the infinite stream of events produced by the
system, as illustrated in Figure 2.5. For instance, weekly event logs created in an ERP system may
overrepresent certain activities, such as generating payslips, in one week while underrepresenting them
in others [24]. Such fluctuations can introduce biases linked to the time window. However, given the
continuous expansion of event logs, sampling becomes inevitable. For example, a study of a large parcel
distribution company had to take samples for analysis due to the vast number of parcels being handled
by the company, despite the relative simplicity of the process itself (with an average of just 10 events per
parcel) [63].

The size of these logs can be detrimental to the possibility of effectively analyzing or even filtering these
logs [22, 24]. Often a small percentage of the recorded behavior is enough to describe the entirety of the
event log [24, 53, 57]. A straightforward way to both harness the information density in an event log,
and overcome problems surrounding its size can be achieved by sampling from an event log. A simplified
illustration of event log sampling is shown in Figure 3.1

Figure 3.1: A depiction of event log sampling.

3.1 Probability Sampling Approaches

In the context of event logs, probability sampling methods refer to techniques used to select a subset of
events from the event log for analysis. These methods rely on probability theory to ensure that every event
in the event log has an equal chance of being selected for the sample [20]. The goal of using probability
sampling methods is to reduce the time required for process discovery algorithms to function while still

21

producing accurate results. Common probability sampling methods used include simple random sampling,
stratified sampling, and cluster sampling. Through the use of these methods, a more manageable sample
of events that still offers valuable insights into the underlying process can be obtained. In this section,
detailed explanations of some of these sampling methods will be provided.

3.1.1 Simple Random Sampling

Simple random sampling is a method of creating a sample by randomly selecting traces (although it can
also be used to sample behavior). Most methods that fall under this category use randomness to select
which traces are to be sampled and which are not. One simple random sampling technique is assigning a
probability to each trace in the original event log, i.e. 10%. Then each trace has a 10% chance to be
included within the sample. This however might produce samples that vary in size due to its usage of
randomness.

Another way to achieve simple random sampling is to directly aim for a sample ratio, i.e. 10%. This
will ensure that the sample has the desired size. This does however require additional knowledge of the
original event log to count the amount of traces present. If this information is not present it could require
an initial iteration over the original event log. The quality of such samples has been studied, albeit in
a small amount, and the (behavioral) quality of such samples varies [24]. If those samples are used in
combination with a discovery algorithm they tend to produce models of lower quality than their original
event logs [22]. These methods however are not computationally expensive, making the sampling process
itself quick.

3.1.2 Not Completely Random Sampling

Not all sampling techniques are entirely based on randomness. There are several methods that incorporate
some initial processing before drawing a random sample. Although these methods are more computationally
intensive than those that rely solely on randomness, they may produce higher-quality samples. Two
well-known methods falling under this category are cluster sampling and stratified sampling, which will
be discussed in more detail within this subsection.

Stratified Sampling

In stratified sampling, the population is first divided into unique groups, called strata, based on specific
characteristics. For example, the groups may be based on unique sequences or behavior. From each group,
a random sample is then taken, with the sample size determined by the proportion of the population
in each stratum. The benefit of stratified sampling is that it can create a more representative sample,
with a more balanced representation of the different characteristics of the population. However, it can be
slower than simple random sampling since the groups need to be created first. A visual representation of
this type of sampling is provided in Figure 3.2

Figure 3.2: A visual representation of the process of stratified sampling.

Cluster Sampling

In cluster sampling, the events contained within the original event log are clustered based on certain
criteria, such as the process instance, the business unit, or the geographical location where these events
are executed. Once this clustering is complete, a random sample can be selected from each cluster. One
benefit of using cluster sampling is that it can help ensure that the sample of events is more representative
of the overall process, for example, if the process involves multiple resources, each with its own set of

22

practices, then clustering on geographical location can help ensure that the sample includes events from
all resources.

After these groups are formed, you can either select whole clusters to be sampled or randomly sample
within clusters. This method can have a significant effect on the behavior sampled, and thus also on the
perceived quality of the sample or the quality of the model discovered from the sample log. A visual
representation of cluster-based sampling is provided in Figure 3.3.

Figure 3.3: A visual representation of the process of clustering sampling.

Information Saturation

Bauer et al. [4] proposed a statistical method to decrease the size of an event log by sampling traces until
no new information is found. This is achieved by randomly sampling from the original event log until
the probability of observing a case and adding new information falls below a predetermined probability.
This method seems to be comparable to the notion of compression, although one of the strengths is that
this method does not require a full initial pass over the original event log, so not all information present
within the original event log has to be considered.

This approach selects a trace and extracts the relevant information using an abstraction function and an
accompanying relaxation parameter. The trace is then evaluated using a simple boolean predicate to see
if the trace contains new information. If this trace contains new information, it is added to the sample. If
the trace does not contain new information an internal counting mechanism is triggered. If this counter
reaches a predetermined value (determined by the confidence interval required and the probability of
finding new information within the remainder of the event log) the process is halted, and the sampled log
is returned.

This approach was then evaluated using the inductive miner [26], on two real event logs. Leemans et al.
concluded that there was a significant decrease in the time required to discover a process model, whilst
the model discovered only had a minimal drop in fitness.

3.2 Non-probability Sampling Approaches

Non-probability sampling methods do not rely on a fixed probability to select cases. Instead, they use
certain criteria to influence the selected traces. Non-probability sampling methods are often slower
because they typically require at least one full iteration over the event log, as well as metric computations
on the observed information. If discovery techniques make an assumption about the frequencies of directly-
follows relations being representative, then non-probability sampling methods can pose a challenge as the
frequencies in the sample might not be representative of the original event log.

3.2.1 Biased Sampling

Fani Sani et al. [22] propose four non-probability sampling methods as biased sampling techniques. These
methods use specific criteria, rather than predetermined probabilities, to select cases from the original
event log.

23

Frequency-based Selection

The first technique proposed is frequency-based selection, which involves selecting the most frequent
behavior present within the event log. This method requires an initial iteration over the original event
log to determine the frequency of each trace present. Then the n-most frequent behavior is sampled,
in accordance with the desired sampling ratio. The resulting sample can often be a simplified log, as
behavior that was not frequently present in the original event log has a low chance of being sampled.
This can also be seen as a major downside, as some information present within rare traces might be lost.

Length-based Selection

The second technique that is proposed is length-based selection. This method requires information about
the length of each trace in the original event log. If this information is not available, an initial iteration
over the log is necessary. This information is then used to either select the longer or shorter traces
present within the original event log, in accordance with the desired sampling ratio. If the shortest traces
are chosen, this could result in a more simplified log. However, there’s a risk of selecting incomplete
traces. These incomplete traces can produce inaccurate process models, especially when used with certain
discovery algorithms. Opting to sample longer behavior with a higher probability may lead to the selection
of traces that include many loops more frequently. These traces might not be present in a high frequency
in the original event log, which could further harm a discovered model from such a sample.

Similarity-based Selection

The third proposed technique is similarity-based selection. This method relies on the normalized frequency
of the direct-follows relations in each trace. Combined with a predetermined threshold, it ranks the
traces. When a trace contains a lot of probable behavior, its ranking gets increased. Conversely, if a trace
contains a lot of improbable behavior, its ranking decreases. After the ranking is established, a number of
behavior in accordance with the desired sampling ratio is selected to be sampled. Once again this results
in a simplified sampled log, that prioritizes behavior that is frequently observed in the original event log.
The rare behavior might be undersampled using this selection technique.

Structure-based Selection

Lastly, structure-based selection is proposed. This approach is similar to similarity-based selection in the
sense that it also uses a ranking mechanism to rank traces and then selects traces based on their rank in
the amount corresponding to the desired sampling ratio. This approach uses sub-sequences present within
traces to determine its ranking. For example, for the trace ⟨a, b, c, d⟩, the sub-sequence ⟨b, c⟩ is identified.
The leading activity to this sub-sequence is ⟨a⟩, and its tailing activity ⟨d⟩. Using this information, it is
calculated how often in the original event log this sub-sequence is enclosed between its leading and tailing
activities. If this proportion is below a predetermined threshold, all traces containing this behavioral
pattern will have their ranking decreased. Then n traces in accordance with the desired sampling ratio
are selected to be sampled. Once again, this results in rare behavior being omitted from the sample.

The authors of [22] evaluated these sampling approaches using six real-life logs and three discovery
techniques and found that the best technique varied for different logs and discovery techniques. However,
they reported that similarity-based sampling and structure-based selection generally performed better
on the F-measure, while length-based selection did not perform well. These non-probability sampling
techniques are usually slower than random sampling because they require traversing the log and calculating
metrics on the sample or cases. Moreover, directly-follows relations in the sample may not reflect those in
the original log, which could cause problems for discovery techniques that rely on the frequency of these
relations.

3.3 Quality of Samples

Knols et al.[24] conducted a study to assess the quality of event log samples, using a notion of behavior as
the backbone. Here behavior is defined as a sequence of two consecutive events that occurred within the
same case. The study introduces two distinct classes of discovery algorithms: one based on the existential
properties of behavior called “plain algorithms” and another class that is driven by the frequency of
behavior.

24

Within the context of plain algorithms, samples are evaluated based on the total number of unique
behaviors present within them, compared to those present within the original event log. The ratio between
these two should be as low as possible, indicating the quality of the sample in terms of the original event
log. The frequency-based algorithms dive deeper, not merely using the existence of behavior, but the
relative frequency. The study suggests that for a sample to be of good quality, behavior should occur in
the same normalized frequency as it did in the original event log. Using these principles, statements can
be made regarding the fact if behavior is under- or oversampled.

While these measures offer some insight, the usage of the original event log once again poses a risk.
For example, when this event log is not representative to begin with, any sample drawn might still not
properly encapsulate the process under study. The aforementioned maturity levels and other data quality
frameworks might be able to shed some light on this issue, but they often require a significant amount of
knowledge about the environment in which the data was captured. Without this knowledge, it might
even be impossible to properly conclude that this issue is present.

3.4 Convenience Samples

In a process mining initiative, having access to an event log that fully represents the process under study
is incredibly valuable. If this were the case, practitioners could place greater trust in the conclusions
drawn from the initiative. Yet, this ideal situation is often not a reality. A pressing question arises: how
can a practitioner ascertain the completeness of their collected data? Current practices in process mining
seldom address this dilemma.

Up to now the discussion within this chapter has revolved around samples derived using either probability
or non-probability methods. However, another form of sampling emerges when considering the nature
of data collection in the context of process mining. In the realm of statistics, this ad-hoc practice is
recognized as convenience sampling, which is also referred to as haphazard or accidental sampling. This
sampling technique is influenced by practical factors like ease of access, geographical closeness, or mere
availability [21]. In simple terms, one would use that data that just happens to be easily available.

This does indicate some relationship with the data collection that is often present within process mining.
Whilst to some degree the collected data at least originates from the process under study, the completeness
and thus generalizability remains questionable. In general, the practice of convenience sampling can
introduce biases, skewing the representation of what is tried to be approximated [30].

Neglecting the importance of data completeness and representativeness during a process mining project
can weaken the reliability of the resulting conclusions. Given these constraints, it is ambitious to believe
that the outcomes can perfectly mirror the intricate dynamics of the studied process. Therefore, it is
important to deepen the grasp of the data integral to process mining. This holds even greater significance
when the primary data source is a single, large convenience sample like an event log. Integrating strategies
that compare previously acquired data with newer samples might offer a solution to, or at least make
practitioners more aware of, these challenges.

25

Chapter 4

Comparing Event Log Behavior

In the realm of process mining, comparison plays a vital role in understanding and enhancing business
processes. Through comparison, a practitioner can identify discrepancies, commonalities, and trends
among various process instances or models. Such insights can pave the way for future enhancements
in the process under study. Comparison within process mining can be categorized into log-to-model,
model-to-model, and log-to-log analysis. Each of these comparisons offers a unique perspective and
modality in which the data and behavior present within event logs or process models can be compared.
In this chapter, the initial focus will be on extracting behavior from event logs and comparing two event
logs with each other.

4.1 Comparison Within Process Mining

Comparing an event log to a process model is a pivotal activity in process mining, functioning as a bridge
between the theoretical design and practical execution of a process. This technique, known as conformance
checking, enables practitioners to validate whether the recorded process execution (captured in event
logs) aligns with the intended design (depicted by the process model). The log-to-model comparison
can help identify deviations, inefficiencies, or bottlenecks that might otherwise remain hidden. Such
comparisons help verify adherence to compliance rules, standards, and best practices. Moreover, they
enable continuous process improvement by highlighting areas of discrepancy and providing data-driven
insights for refinement and optimization.

However, comparison is not trivial. It requires navigating the complexities of event logs and process
models, both of which often harbor considerable variability and concurrency. Several techniques, such as
conformance checking [53], model enhancement [52], and replay techniques [55], are available to facilitate
this comparison, each offering distinct advantages. In essence, conformance checking is a cornerstone of
process mining. It ensures that process performance aligns with organizational goals and expectations,
serving as a foundation for informed process redesign and enhancement.

4.2 Definition of Behavior & Extraction

Within this project, the focus is on the concept of log-to-log comparison. With this, the differences related
to event logs are made explicit in terms of the behavior recorded. Before any further statements are
made, it is vital to understand what definition of behavior is used within the context of this project:

Definition 4.2.0.1 (direct behavior). Given an event log L, its behavior , denoted by B1(L), is defined
as all pairs of activities that occur consecutively, i.e., B(L) = {(x, y)|x <1

l y} An element (a, b) ∈ B(L) is
called a behavior.

In process mining, Definition 4.2.0.1 is often used to describe behavior. However, solely analyzing this
form of behavior leaves out any other temporal relation besides events that directly follow each other.
Additional details present within the data can thus be lost. In this project, it is hypothesized that
highlighting the full temporal relations among behavior paints a more complete picture of the process
under study. This sort of behavior is called eventual behavior and is defined in Definition 4.2.0.2.

26

Definition 4.2.0.2 (eventual behavior). Given an event log L, its eventual behavior, denoted by Be(L),
is defined as all pairs of activities that occur in a specific temporal order, i.e., B+(L) = {(x, y)|x ≤ y}
An element (a, b) ∈ Be(L) is called an eventual behavior. Note that ≤ indicates the distance between two
events occurring, and this can be any natural number. This definition makes the temporal relation (what
behavior occurred prior) explicit.

4.2.1 Extracting Traces

As discussed in section 2.1, the main granularity in an event log is on the event level. For the analysis
to be conducted, the behavior associated with each process instance needs to be extracted. Numerous
ways exist to achieve this extraction, and for this project, the decision was made to use the tools and
standards that are frequently employed in practice, such as XES [65] and PM4PY [6]. The approach
that was employed can be found in Appendix A.1. Each trace with its associated behavior can now be
extracted from the event log.

4.2.2 Extracting Behavior

In order to compare the behavior present within two event logs, first the behavior needs to be extracted
from the traces that are present within the event logs. This data lies central to the analysis that will
be conducted within this project. Extracting this data is achieved by drawing the causal relationships
among the events (i.e., what event occurred before the next event was executed). One common method
for extracting causal relationships is the direct follows relation, which identifies the immediate successor
of each behavior in the log. This type of behavior is specified in Definition 4.2.0.1. For example, a trace
X in the form: ⟨a, b, c, d, e⟩ would be transformed into the form: B(X) = {(a, b), (b, c), (c, d), (d, e)}. This
behavioral abstraction is frequently used within the context of process mining [53].

Yet, the process of extracting the direct follows relation can be complex and computationally intensive.
A more simplistic method is employed to facilitate this process within the project context. This method
is shown in detail in Appendix A.2. While this approach may not capture all the nuances of the causal
relationships present in the event log, it is a helpful starting point before any analysis can take place.

4.2.3 Extracting Eventual Behavior

The next behavioral abstraction that will be used during the analysis focuses on the underlying temporal
relation between events as described in Definition 4.2.0.2. In essence, this abstraction approaches the
behavioral footprint of an event log, making it explicit when an event occurred prior to another event
(not just directly ascendant). This comes very close to the notion of both the footprint of the event
log and the transitive closure of events. A direct trade-off with this abstraction exists, as a trace
containing behavior is “expanded” into additional data points making the end evaluation computationally
more demanding. For example, trace X in the form: ⟨a, b, c, d, e⟩ would be transformed into the form:
B+(X) = {(a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e)}.

Extracting this abstraction seems to be a little more complex than the causal behavior defined previously.
Appendix A.3 shows the method used to facilitate this extraction. An illustration of the process of
behavior extraction is provided in Figure 4.1.

4.2.4 Transformation into Analyzable Data

Now that several abstractions to represent the behavior in event logs have been established, the data
can be transformed into a format that is fit for analysis. For this purpose, a data frame is created, in
which each column represents a possible behavior that can occur in the event log. In addition to this, the
unique traceid is also stored. Each row represents a trace that has been observed, and the frequency of
each behavior that is associated is recorded in the corresponding column. The result is a table referred to
as the behavior frequency table (BFT). The method used to facilitate this transformation is detailed in
Appendix A.4. In Table 4.1 an example is illustrated using the behavior example shown in Figure 4.1.

Some questions might arise surrounding the decision to denote behavior that does not occur. The reason
for this will become clearer when comparing event logs; for now, even absent behavior should be viewed
as information about the event log itself. When comparing behavior, if it is not present in both logs, then

27

Figure 4.1: The extraction of both types of behavior illustrated.

the behavior occurs with the same frequency, potentially offering insights into the differences between
the event logs. From this point, there is complete freedom to manipulate the data and explore potential
metrics for comparing the relative behavior in event logs, thereby making the observed differences in their
associated probability distributions explicit.

4.3 Existential Completeness Metric

Existential completeness makes explicit if two event logs share the same behavior. The frequency of the
behavior does not matter. Earlier studies [6, 24, 64] used this idea to measure the quality of a sample
from an event log compared to the whole log. This was achieved by counting all the unique behaviors
present in the sample and dividing this by the number of unique behaviors present in the original event
log. This is only possible in the context of comparing a sample against the original event log. In the
context of comparing two event logs, it is possible that behavior might not be present in one or the other
event log under analysis, causing errors.

This can be described using two sets, L1 and L2. They are termed existentially equivalent in relation
to each other if all behaviors in L1 are also found in L2. In other words, if a behavior b ∈ L1, it means
b ∈ L2. The rule for existential completeness will be defined as follows:

∀b(b ∈ B(L1) ∩ b ∈ B(L2)) (4.1)

In addition to this, it is also possible to measure how much of L1’s behavior is found in L2. If L1 ∩ L2 is
the set of all behaviors in L1 that are also in L2, this can be measured by the formula:

B(L1) ∩ B(L2)

B(L1)
(4.2)

28

This measure yields a value between 0 and 1, where 1 signifies that all behaviors of L1 are found in L2,
while a value of 0 indicates the total absence of L1 behaviors in L2. Existential completeness is interesting,
but it lacks the power to truly compare two event logs in terms of their behavior. This is because the
(relative) frequency of the behavior is not used, making two event logs that differ significantly in the
amount of behavior recorded to be evaluated as similar. Thus, the focus will be put on measures that use
the underlying notion of frequency representativeness at its core.

Table 4.1: A visual representation of a BFT.

4.4 Requirements & Notation

In this section several requirements and the associated notation will be discussed related to the context
of comparing two event logs using the principle of frequency representativeness [6]. Frequency representa-
tiveness is defined as the relative extent to which the frequency of the occurrence of behavior in one event
log is related to another event log. With this notion as the basis, several requirements and notations used
throughout this chapter can now be discussed.

4.4.1 Identified Requirements

While analyzing event logs, one important aspect is understanding the behavior present within an event
log. When a practitioner wants to compare two event logs a lot of possibilities exist. The choice of
metric to use to make the difference explicit is crucial. It influences the effectiveness of the analysis and
ensures that the results are both interpretable and meaningful. Several underlying requirements have
been identified that might influence the choice of metric:

1. Non-negativity:
The distance between two elements within the comparison must always be non-negative. The
distance should never be a negative number, as this does not logically represent any form of distance,
similarity, or divergence.

2. Identity Property:
Any measure should yield a value of zero when an element is compared against itself (or an identical
element). This represents that there are no differences among the compared elements.

3. Symmetry:
The measure should adhere to symmetry principles, i.e. the measurement value between element A
and element B should be the same as the resulting value between element B and element A.

29

4. Triangle Inequality:
The resulting measurement value from element A to element B, plus the distance from element B
to element C should always be equal to or greater than the measurement value between element A
and element B.

5. Interpretability:
The metric should be meaningful and easy to interpret. It should be clear what a larger or smaller
value of the metric indicates about the relationship between the two logs that are compared. A mea-
surement that is difficult to understand might hinder the analysis, especially whilst communicating
with a stakeholder.

6. Proportionality:
The metrics resulting measurement value should adequately keep in mind the relative proportional
difference between two behaviors. In other words, behaviors that are frequently observed in one
log but rarely in the other will have a more significant impact on the metric’s value compared to
behaviors that have similar relative frequencies in both logs.

The first four requirements are those to satisfy to be deemed a metric [1], while the last two focus on the
practicality of the metrics. When selecting the most suitable metric for event log analysis, an analyst
should consider the unique context of their analysis. The selection for a comparison metric is not trivial.
The previously discussed requirements can serve as a compass, guiding analysts toward the most suitable
choice for their specific context. It is also crucial to understand that not all these requirements may be
equally feasible or relevant in every scenario.

Consequently, choosing the most appropriate metric is not as straightforward as ticking off boxes related
to the aforementioned requirements. It should be a nuanced process that takes into account the setting
and limitations of the data and the goals of the analysis. The end goal is always to select a measure that
provides accurate, insightful, and interpretable analysis of the behaviors present within your event logs,
within the constraints of your specific context.

The decision to focus on frequency representativeness steers the designs toward a certain modality that is
often described through requirements in other works, such as in [64]. Since this choice is already made
explicit, no additional requirements surrounding this exist.

4.4.2 Notation

Throughout this section, the following notation will be used:

• n denotes the total amount of unique behavior present in the comparison.

• Rf(L,i) denotes the relative frequency of behavior i (i.e. A < B) in event log L.

• Count(bi, L) denotes the frequency of behavior bi in L.

For an event log L, with a set of n distinct behaviors, a vector L = (Rfb1 , Rfb2 , . . . , Rfbn) is defined,
where each RfLi is the relative frequency of the ith behavior in the log. This relative frequency is
calculated as the count of the ith behavior in the log divided by the total count of all behaviors in the log.
Specifically, the relative frequency RfL,i is defined as:

Rf(L,i) =
Count(L, bi)∑n

j=1 Count(L, bk)
(4.3)

In this equation, Count(bi, L) is the count of the ith behavior in the event log L, and the denominator
represents the total count of all behaviors in the log. This representation as a vector of normalized
frequencies allows us to meaningfully compare different-sized event logs, even if they have different total
counts of traces. It is this vector of the underlying probability distribution it represents, that is used
when comparing event logs.

30

4.5 Distance Metrics

Distance metrics (or distance functions) are a staple tool within the area of data analysis and machine
learning. They are employed to quantify the distance or dissimilarity between pairs of data points. These
functions take two objects as inputs and provide a single value that represents the difference between
the objects within a multidimensional space. In the context of process mining and event logs, distance
metrics can provide a comparison between two event logs, making the distance between them explicit.
These measures can be useful for anomaly detection, clustering, classification, or simply understanding
how one event varies from another. Several of these metrics exist, each with its own set of strengths and
weaknesses. The most frequently employed metrics of this category will be discussed in this section.

4.5.1 Euclidean Distance

The Euclidean distance [1] is perhaps the most straightforward and widely recognized distance metric.
The metric defines the straight-line distance between two points in a multi-dimensional space. In the
simplest form, this metric is closely related to the well-known Pythagorean theorem. It adheres to all
requirements to be called a metric, as it sticks to the requirements of non-negativity, identity, symmetry,
and triangle inequality. Given its basis in straight-line distance, this metric is intuitively understood by
most.

Euclidean distance is frequently used within the context of statistics and machine learning to, for example,
measure the distance between two data points or clusters. This is often done by using it within the
context of k-nearest neighbor or k-means clustering. One should note that if this metric is applied without
caution it is very susceptive to the scales of the different dimensions used within the comparison. If in
this context the raw frequency of behaviors is used, and one behavior occurs exceptionally much, it could
contribute in a disproportional way to the distance that is calculated. Therefore, within the context of
this project, it will be wise to employ this metric using the relative frequency of behavior to prevent this
from occurring.

In the context being researched within this project, the logs selected as input are represented as a
high-dimensional vector, where each behavior corresponds to a unique behavior present within the event
log. Thus, for two event logs, L1 and L2, the euclidean distance can be defined as follows:

dEuclidean(L1,L2) =

√√√√ n∑
i=1

(Rf(L1,i) −Rf(L2,i))2 (4.4)

The resulting value can be interpreted as the measure of similarity between the two logs: the smaller
the Euclidean distance, the more similar the behavior distributions are of the two logs being compared.
This metric is bounded within [0,

√
2], where 0 indicates that the two logs are identical, and

√
2 would

indicate the maximum possible distance between two event logs.

4.5.2 Manhattan Distance

The Manhattan distance [15], which is often referred to as taxicab distance is another way to measure
the distance between two multidimensional points. Instead of providing the straight-line distance, like
Euclidean distance does, it measures the sum of the absolute differences present within each dimension.
It can be seen as the distance a cab would have to travel through a car-oriented city such as Manhattan,
hence the name and its associated nickname of taxicab distance.

Similar to Euclidean distance it adheres to all requirements to be deemed a metric. And it is once again
frequently used within the context of statistics and machine learning. It also has the same flaw of being
susceptible to large deviations within the scale of dimensions, which is why a relative frequency should
be employed. In the context of process mining, a log will be transformed into a vector in which each
dimension is a unique behavior, with its associated value being the relative frequency in which it occurred
in the event log. For two logs, L1 and L2, the Manhattan distance can be defined as follows:

dManhattan(L1,L2) =

n∑
i=1

|Rf(L1,i) −Rf(L2,i)| (4.5)

31

The Manhattan distance provides an alternate measure of distance between the two logs: the smaller the
Manhattan distance, the more similar the behavior distribution in the two logs. Using the normalization
of behavior, this metric is bounded within [0, 2], a value of 0 would indicate that the two event logs are
identical in their behavioral distribution. A value of 2 would indicate the maximum possible distance
between two event logs.

4.5.3 Chebyshev Distance

Chebyshev Distance [15], often referred to as the maximum distance, is another way to measure the
similarity between two points in a multi-dimensional space. However, it is significantly different in its
approach compared to the previously mentioned metrics. Chebyshev distance does not evaluate the total
difference across all the dimensions instead, it focuses on the largest distance within one of the dimensions.
Despite this, it can still be employed as a distance metric.

Like the previously mentioned metrics, it does adhere to all the requirements to be deemed a metric. It
is also applied within similar contexts. For two event logs, L1 and L2, each represented as a vector of
relative behavior frequencies, the Chebyshev distance is defined as:

dChebyshev(L1,L2) =
n

max
i=1

|Rf(L1,i) −Rf(L2,i)| (4.6)

The Chebyshev distance offers a unique perspective on the similarity between the two logs. The smaller
the Chebyshev distance, the more closely the behavior distributions in the two logs align. This distance
metric is particularly useful when one is interested in highlighting the behavior that causes the most
divergence between the two behavior distributions. This could, for example, be used to help prioritize
the gathering of additional domain knowledge. In turn could help the efficient allocation of time, during
co-creation. This metric is bound within [0, 1] where 0 indicates that the two event logs contain identical
behavioral distributions, whilst 1 indicates the maximum possible distance.

4.5.4 Canberra Distance

The Canberra distance [15] is another metric used to determine the distance between two points in a
multi-dimensional space. It is defined by the sum of the absolute differences between the points in each
dimension, similar to Manhattan distance. However, it does include some normalization by default, as
it divides this difference by the sum of the absolute values associated with the points. This inherent
normalization allows this metric to be more useful in a context where the data might contain widely
different relative frequencies.

Normalization introduces certain additional requirements to be set in place for the general implementation
of this metric to work. One can for example run into an issue within the context of process mining when a
specific behavior does not occur in both event logs that are compared. This would result in a division by
zero issues to occur. To solve this, the concept of safe division, where the division operation is conditioned
to return a zero if both the numerator and denominator are zero can be employed. This practice interprets
the non-occurrence of a particular behavior in both logs as a non-difference, contributing zero to the
Canberra distance. The Canberra distance for two event logs L1 and L2 can be defined as:

dCanberra(L1,L2) =

n∑
i=1

|Rf(L1,i) −Rf(L2,i)|
|Rf(L1,i)|+ |Rf(L2,i)|

(4.7)

One thing to note is that the Canberra distance allows for one dimension to have a significant effect on
the overall distance calculated if it occurs in one vector, but not in the other. This sensitivity to small
values in the data can be an advantage or disadvantage depending on the context in which it is applied.
As the Canberra distance increases, the dissimilarity between the event logs also increases. So, a higher
Canberra distance implies a greater degree of dissimilarity between the distribution of the behaviors of
the logs. This measurement is bounded within [0, n] in which 0 indicates that the event logs are identical,
and n indicates the maximum distance between two event logs.

32

4.6 Entropy & Divergence Measures

Entropy is a concept used in various disciplines and is defined in different manners throughout these fields.
It is often employed to describe the randomness present within a system. Within the field of information
science, it has been adopted and used as a fundamental concept. In the context of information entropy,
entropy is used to quantify the amount of “surprise” present within a set of data. It represents the
amount of information required to discern a data point from a set of possibilities.

When this concept is applied to the context of process mining, entropy would provide insight into the
underlying complexity present within an event log. If an event log has a high amount of entropy associated
with it, this would indicate that the behavior present is more complex. Inherently, more choice and
parallelism would be present. If these notions occur rarely, and the process under study tends to follow a
linear predictable path its entropy would be considered low.

Classically, when an information scientist thinks of entropy Shannon’s entropy directly comes to mind,
introduced in his work on the mathematical theory of communication [48]. Here entropy is applied
to a set of (discrete) possibilities (such as events within an event log) and it is computed using the
relative frequency of each unique possibility. It is thus important to be aware that entropy often relies on
probabilities. This requires the data to be transformed into a format that represents that data as such,
ensuring that all possibilities total into a value of 1.

Divergence measures are measures that focus on quantifying the differences present between probability
distributions. This comparison can be valuable within the context of process mining to gain more insight
into the differences among event logs contained behavior. Whilst some measures rely on the previously
discussed notion of entropy, others such as the Chi-Squared divergence follow a different approach. Just
like the approach differs from metric to metric, so does the perspective and what properties are held by
the measure selected (such as its bounds). In this section, numerous metrics that are built on the concept
of divergence will be discussed.

4.6.1 Shannon’s Entropy

Shannon’s Entropy [49] will serve as an introduction to the concept of entropy. As previously discussed, it
makes the amount of “surprise” found in an event log explicit. Shannon’s entropy is calculated as follows
for a log L with n unique behaviors:

H(L) = −
n∑

i=1

Rf(L,i) log(Rf(L,i)) (4.8)

Unlike some of the distance measures and divergence measures that are discussed in this chapter, Shannon’s
entropy is not designed with comparison in mind. It instead provides a single value associated with
a single event log. This does not mean it cannot be used to compare two event logs, as the entropy
associated can be calculated independently and compared. This approach does bring forward a major
caveat: the interpretation of the resulting value depends on the context in which it is applied. If for
example two event logs from distinct processes are compared in this fashion, the resulting value might
not provide any worthwhile insight due to the inherent differences present in these processes. However,
when the event logs are from the same process, but from an independent timeframe, they could be used
to see how the complexity of an event log has changed over time.

4.6.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) Divergence, also known as relative entropy, measures how one probability
distribution diverges from a second (expected) probability distribution [15, 29]. Within the context of
comparing event logs, the KL Divergence could be used to quantify how the distribution of behavior in
L1 diverges from that in L2. However, it is worth noting several of its distinctive characteristics. First
and foremost is its asymmetry; the KL divergence from L1 to L2 (denoted as KL(L1||L2)) is not equal
to KL divergence from L2 to L1 (denoted as KL(L2||L1)). At first glance, this characteristic might seem
problematic, but it can offer useful insights, depending on the context.

33

Consider a simple scenario: a person living in Utrecht contemplates moving to Amsterdam. There are two
probability distributions, U (Utrecht) and A (Amsterdam), representing the salary distributions in the
respective cities. By performing KL(U ||A), the divergence in salaries is measured from the perspective
of someone living in Utrecht, evaluating the potential benefits of moving to Amsterdam. Conversely,
KL(A||U) provides the inverse perspective. These distinct views might yield different results. This allows
for a perspective-based comparison. In process mining, this approach enables comparison between current
and newly observed data. The discrete form of the KL Divergence between two logs is calculated as
follows:

KL(L1||L2) =

n∑
i=1

Rf(L1,i) log

(
Rf(L1,i)

Rf(L2,i)

)
(4.9)

Another critical characteristic of KL Divergence is the weight distribution in the equation. The final
value is strongly influenced by the probability of a behavior occurring in log L1. If a specific behavior
is predominantly present in that log, a large deviation in the second log will significantly impact the
divergence. It highlights differences most relevant within the current context.

However, it is essential to consider potential undefined values resulting from taking the logarithm of
frequency ratios, which may lead to division by zero if the behavior is present in L1 but not in L2. A
common solution is to add a small constant to all frequencies to ensure none of them are zero. Importantly,
the KL divergence requires the inputs to be probability distributions, so the sum of all elements should be
1. If the above smoothing is applied, it should be added to the underlying frequency of behavior occurrence
(i.e., behavior not previously recorded should now be observed once), The size of this smoothing constant
has effects on the resulting measurement value, and should thus be evaluated by a practitioner within
their context. This measure has no associated upper bound, whilst 0 indicates that the two event logs
compared contain identical behavioral distributions. A visual example of KL divergence is shown in
Figure 4.2 in which the following probability mass functions are compared:

P (X = 1) = 0.40, P (X ∈ {2, 3, 7, 8, 9, 10}) = 0.05, P (X ∈ {4, 5, 6}) = 0.10 (4.10)

Q(X ∈ {1, 2, 3, 4, 5, 6}) = 0.05, Q(X ∈ {7, 8, 9, 10}) = 0.10 (4.11)

4.6.3 Jensen-Shannon Divergence

The Jensen-Shannon divergence (JSD) expands upon the concepts that were discussed in regard to KL
divergence [15, 28]. It extends KL through the usage of another distribution M , which represents the
“average log” in relation to the two logs that are being compared. The JSD between L1 and L2 is defined
as the average between the KL divergence between L1 and M and the KL divergence between L2 and M .
This creates a clear advantage over KL in regard to the symmetry principle being adhered to. This allows
the JSD to bring forward a balanced perspective between both L1 and L2 that could not be reached with
KL divergence.

In the context of process mining, this ability implies that the resulting measurement value is thus the
same from both the perspective of L1 to L2 as from L2 to L1. The JSD can be seen as a “fair” approach,
treating both logs with equal importance. This could for example be highly interesting to use within
the context of comparing the present complexity of the same process, being performed by two separate
entities, where neither of the two behavior distributions can be seen as the expected distribution. JSD
divergence can be defined as follows:

JSD(L1, L2) =
1

2
KL(L1||M) +

1

2
KL(L2||M) (4.12)

The average log M is defined as follows:

Mi =
1

2
(Rf(L1,i) +Rf(L2,i)) (4.13)

for each possible behavior i present in L1 and L2.

34

Figure 4.2: An example of KL divergence

As KL divergence is employed here, it falls prone to the same pitfalls associated with KL divergence
related to the possibility of behavior not being present within both L1 and L2. The same solution applied
within the context of KL can also be applied here: adding a small constant to every frequency present.
This divergence measure is bounded within [0, log(2)], where 0 indicates that the two event logs are
identical, whilst log(2) is indicative of the maximum divergence that could occur. A visual example of
JSD divergence is shown in figure 4.3, where the same distributions are used that were employed in the
previous example.

4.6.4 Chi-Squared Divergence

The final divergence measure that will be discussed in this chapter is the Chi-Squared divergence (χ2) [15].
Originating from the chi-squared test prominent in statistics, this divergence is particularly interesting
when a practitioner would like to emphasize significant differences between elements of the compared
distributions. While this measure shares some properties with the previously discussed metrics, it also has
several unique properties. Most notably, it does not rely on the concept of entropy within its definition.
Instead, it computes the squared difference between corresponding elements of the two distributions under
study and normalizes them in terms of the second distribution. This can provide insight into where these
two distributions differ the most. χ2 divergence can be defined as follows:

χ2(L1||L2) =

n∑
i=1

(Rf(L1,i) −Rf(L2,i))
2

Rf(L2,i)
(4.14)

However, this definition has one critical flaw: when a particular behavior in L2 does not occur, its
associated relative frequency will be zero, leading to a division by zero error taking place. As with the
other metrics that have been explored this can be solved by adding a small constant to the raw frequency
of all behaviors present in both L1 and L2. This divergence measure returns a value of 0 when the
two distributions are identical, whilst the upper bounds are theoretically infinite. This requires careful
interpretation by practitioners when this measure is employed. Another property that is worthwhile

35

Figure 4.3: An example of JSD divergence

to mention is the asymmetry of this metric, which can be an advantage or a disadvantage depending
on the context in which it is applied. This places additional focus on significant differences that are
found between L1 and L2, which might not always be the best choice. Especially when a practitioner is
interested in the inverse, small differences across many dimensions, in this case, another metric might be
more suited to be applied in that context. A visual example of χ2 divergence is shown in Figure 4.4, once
again the same exemplar distributions are used as previously stated.

4.7 Similarity Metrics

The final class of metrics discussed in this chapter is similarity metrics. Unlike distance and divergence
metrics which make the differences between elements explicit, similarity metrics emphasize the likeness or
common features shared by two event logs. This is often made explicit on a range between 0 and 1. Here
0 represents zero similarity, while 1 represents that the two elements are identical. It is vital to keep this
in mind whilst you interpret the results of the measures in any context. In this section, two frequently
used similarity metrics are discussed and placed within the context of process mining.

4.7.1 Cosine Similarity

The cosine similarity [15] focuses on the direction of two vectors, rather than the value present in those
vectors. This makes such a measure less sensitive to the scale of the vectors that are evaluated against
each other. In the context of event logs, a high similarity value would imply that the event logs contain
similar distributions of behavior. This is the same property that makes this measure popular within the
field of text analysis, as it is often more interesting to evaluate the direction (theme) than the absolute
frequency of words within a text. The Cosine similarity between two event logs L1 and L2 is defined as:

Cosine similarity(L1, L2) =

∑
i Rf(L1,i)Rf(L2,i)√∑

i Rf2
(L1,i)

√∑
i Rf2

(L2,i)

(4.15)

36

Figure 4.4: An example of χ2 divergence

Here, the numerator represents the dot product of the normalized frequency of behavior encapsulated
within vectors, and the denominator represents the product of their magnitudes. As the dot product is
used this might raise some questions regarding the dimensionality of the vectors of behavior used. This
forms no issues for this metric as the data representation always consists of the same dimensionality, as
the dot product of the activities is used to determine the columns in the associated data frame. The
resulting, Cosine similarity ranges between 0 and 1, where a value close to 1 indicates a high similarity
in the direction of the vectors, and thus a high similarity in the distribution of behaviors. A Cosine
similarity of 0 would indicate that the vectors are orthogonal, which indicates that there is no overlap in
the behavior distributions represented in the vector.

4.7.2 Jaccard Similarity

The Jaccard similarity [15] coefficient, often referred to as the Jaccard index, quantifies the similarity
between two sets. This method has been adapted to event logs, making it useful for comparing behaviors
present in two event logs, L1 and L2, based on the relative frequency of the present behaviors. The
principle behind Jaccard similarity calculates the ratio of the sum of the minimum relative frequency for
each behavior present in both logs to the sum of the maximum relative frequency for each behavior in
the logs. This ratio ensures the measure is interpretable, producing values within the 0 to 1 range, where
0 indicates no similarity and 1 indicates complete similarity. The equation for this measure is as follows:

Jaccard similarity(L1, L2) =

∑
min(Rf(L1,i), Rf(L2,i))∑
max(Rf(L1,i), Rf(L2,i))

(4.16)

The metric is effective when logs have similar behavior, even with variations in frequencies or minor
behavioral changes. However, it is essential to understand that the classical definition of Jaccard similarity
focuses on dimensions shared by both compared elements. Default behavior unique to one event log is
not evaluated.

Regarding the distance or divergence metrics previously discussed, Jaccard similarity is symmetric and

37

suitable for non-directional comparisons. It scales with log size, making it applicable for comparing large
event logs. However, it may oversimplify differences between logs with significant variations in existential
properties. In summary, Jaccard similarity provides an efficient way to compare event logs, emphasizing
shared behavior. It is especially useful when a straightforward yet informative measure is needed, focusing
on the similarities between two logs rather than differences. The next chapter will see the defined metrics
implemented, and put within a realistic context to evaluate their working.

38

Chapter 5

Evaluation

This chapter aims to evaluate the metrics and the underlying behavioral representations that have been
uncovered in Chapter 4. To serve this goal, experimentation will take place by applying these techniques
to real-life event logs. This allows evaluation of the implementation and gaining more understanding of
the working of these metrics. This information can then be used to further answer the first two research
questions. In addition to this, the drawn samples on which the comparisons are performed will be used
as input for a discovery algorithm. The associated models will also be compared, using existing model
quality measures. In the end, the correlation between the discovered and existing model measures metrics
will be explored, to evaluate the relationship between these two concepts.

Figure 5.1: A graphical depiction of the core experiment design.

39

5.1 Real-Life Event Logs

This section describes the two event logs used during the evaluation. It starts with a general overview of
the data’s context, followed by a general description of the event logs. Next, any (data) pre-processing
undertaken is discussed. Two event logs were selected to ensure the findings were not confined to a single
specific log. The choice of these event logs highlights their significant differences in context and the
uniqueness of the recorded traces.

5.1.1 Data Description

The first event log that was chosen to be used during this evaluation is the “sepsis” event log [31]. This
event log originates from the context of 1050 patients who were admitted to the emergency ward of a
Dutch hospital with symptoms of sepsis. Sepsis is a medical condition that requires urgent care, as it
can cause organ failure and thus can be fatal [32]. The second event log is that of the “road fines” [12]
(hereafter fines), which originates from the Italian police. In this event log numerous steps are recorded
that are related to the management and handling of road traffic fines by the local police force [33].

Aside from the clear contextual differences present between these logs, the logs also are wildly different in
their organization. Due to the underlying context being studied, the process is either highly adaptive
(sepsis) or structured (fines). To make these differences explicit descriptive statistics about both logs
are present in Table 5.1. In this table, numerous differences are made explicit: the size of both logs
are different with the fines log being significantly larger, but this log contains a lot fewer unique traces
compared to the sepsis log. These differences make it interesting to evaluate the uncovered metrics against
both logs to increase the rigor of this project.

Table 5.1: Summary of properties for Sepsis and Fines

Sepsis Fines
Unique Activities 16 11
Traces 1050 150370
Unique Traces 846 231
Uniqueness Ratio 0.806 0.002

5.1.2 Pre-processsing

The amount of pre-processing on the actual logs is minimal, as most of the data present did not require
any additional cleaning. The data however experiences significant transformation due to the research
subject. Most of these steps have already been discussed in detail in section 4.2. For the second part
of the experimentation, in which model quality metrics are employed, these values are obtained using
Entropia [39]. Some additional pre-processing of the discovered Petri nets was required, as the present
silent steps were given unique labels during the process discovery. However, Entropia requires those silent
steps to be labelless, in Appendix A.5 a small helper method is shared that removes those labels.

5.2 Generation of Data

For the evaluation section of this project, the approach was to first generate a substantial amount of
comparison data, and filter on that information to validate the researched artifacts. The framework that
was previously used to experiment with the discovered metrics and is depicted in Figure1.4 was extended
to include a comparison between the process models that are associated with the event log samples. The
extended design is depicted in Figure 5.1. This figure depicts the “high-level” steps taken to generate the
data. The remainder of this section will provide a more detailed textual description of this process. First,
the traces from the selected event log were extracted. This collection of traces was then sampled using
random sampling without replacement for various sampling ratios (0.01, 0.05, 0.10, 0.25, 0.50). Each
ratio was applied 10 times, for a total of 50 unique samples. These samples were then transformed into
BFTs, using both underlying behavioral representations discussed in Chapter 4.

40

Subsequently, these BFTs were used as input for comparison using the techniques that have been discussed
to quantify the underlying distance, divergence, and similarity. This is performed on a one-to-many basis,
in which self-comparison is also involved. In addition to this, the event log samples were used as input
for a process discovery algorithm. The associated discovered models were then compared (in the same
fashion as the event log samples) using Entropia. Entropia quantifies two measures, the first being recall
[51, 53], which quantifies how much of the actual observed behavior in model M1 is allowed by the other
model M2. If all observed behaviors are allowed, perfect recall is observed and a score of 1 is given. If
some behavior is missing, the recall will be less than 1.

The second value that comes forth from Entropia is that of precision [51, 53]. This measure quantifies how
much of the behavior allowed by model M2, was actually observed in the model M1. If the M2 only allows
behavior that is observed within model M1, and no “extra” behavior that was not originally observed is
present a precision of 1 is associated with the comparison. If M2 does allow for behavior that was not
observed in the other, the precision will be less than 1. The outcome consists of two datasets, each using
its own behavioral abstraction as a basis of comparison, with a total of 2500 comparisons. In full, 5000
comparisons are made using 9 different metrics for a grand total of 45000 data points. Each of these data
points will thus also have the associated process models evaluated using recall and precision, in the same
direction as the comparison. This data will be explored through several experiments to evaluate these
concepts. The concept of Shannon’s Entropy is not evaluated, as it lacks a real comparative element.

5.3 Evaluation of Requirements

For this part of the evaluation, the previously discussed requirements associated with the explored
metrics will be evaluated in terms of the data that has been generated. For each metric, the following
requirements will be empirically evaluated: non-negativity, identity, symmetry, and triangle inequality.
The requirements will be cross-referenced with information on these metrics from existing literature
[1, 10, 15, 46]. This is done to ensure that the implementation of these measurements is correct and is
achieved by creating an algorithmic evaluation that cycles through the data to evaluate which properties
hold for which metric. The code for this approach is shown in A.6. The following actions are performed:
For non-negativity, the data is filtered to see whether any resulting value of a measurement is smaller
than zero. For the principle of identity, self-comparisons were filtered out of the datasets to see if they
result in a value of 0 for divergence and distance metrics, whilst they should return 1 in the context
of the similarity metrics. Symmetry can be evaluated by filtering to see whether the same resulting
measurement value is produced when comparing sample A with sample B and its inverse. Lastly, to
evaluate the triangle inequality (for the metrics that should adhere to this property due to its design),
three samples, A, B, and C, are selected. This notion states that: d(A,C) ≤ d(A,B) + d(B,C) where d
defines the distance between the samples.

Table 5.2: Results of the empirical evaluation of the requirements.

Metric

N
on

-n
eg
.

Id
en
t.

S
y
m
m
.

T
ri
an

g.

In
te
rp
re
t.

P
ro
p
or
t.

Euclidean ✓ ✓ ✓ ✓ ✓ ×
Manhattan ✓ ✓ ✓ ✓ ✓ ×
Chebyshev ✓ ✓ ✓ ✓ × ×
Canberra ✓ ✓ ✓ ✓ × ✓
KL ✓ ✓ × × ✓ ✓
JSD ✓ ✓ ✓ × ✓ ✓
Chi Div. ✓ ✓ × × × ✓
Cosine Sim. ✓ ✓ ✓ × × ×
Jaccard Sim. ✓ ✓ ✓ × × ×

For the interpretability requirement, the bounds of the metrics were evaluated. If they are unbounded, the
interpretation of these metrics might be hindered in a real practical setting. Lowering the understanding of
the difference between two event logs, and thus not adhering to this requirement. For the proportionality
requirement, the definitions in the previous chapter were evaluated and checked if any weighting was

41

present within the metrics. This implies that if for example, a behavior that is particularly present within
one event log, this should be held into account. The findings from this evaluation are presented in Table
5.2, offering insights into the accuracy of the metric implementations and their properties. A checkmark
is present if a metric adheres to a requirement, whilst a cross indicates that it does not hold for that
particular metric.

5.4 Evaluating the Metrics

In this part of the evaluation, the focus is on how the metrics perform within the context of real-life event
logs. For this purpose, several comparisons were grouped based on the underlying sampling ratio of the
samples being compared. Self-comparisons have been excluded from this evaluation. The assumption
is made that, within the bundle of small(er) sampling ratios, the underlying variance in their behavior
distribution should be larger. As the sampling ratio increases, this variation should converge to a more
stable distribution. Consequently, the divergence and distance metrics should produce larger measurement
values, which should decrease as the sampling ratio increases. The inverse should hold for the similarity
metrics, it should be smaller and increase as the sampling ratio becomes larger.

For this evaluation, the comparisons conducted in both contexts are assessed, along with the underlying
behavioral abstraction used. The behavior definitions present in Section 4.2 are used as a basis for these
abstractions. The one based on behavior will be referenced as the direct-follows relation (DFR) and
the one based on eventual behavior as eventual-follows behavior. In subsequent sections, the average
measurement value for bundled comparisons, categorized by their event log of origin and sampling ratio,
will be plotted, accompanied by a textual overview of the observed data trends.

5.4.1 Conclusions

In this section, a series of figures are presented that illustrate the relationship between the average
measurement value within groups based on their sampling ratio. First, it is essential to note that each
metric has a distinct y-axis scale in both Figure 5.2 and Figure 5.3. These metrics typically function
on different scales, though some overlap exists. In general, the earlier assumption appears consistent:
the distance and divergence metric values decrease, while the similarity metrics increase as the sampling
ratio becomes larger. Another observation is that, even if the sepsis log is considered to exhibit varied
behavioral patterns, the overall resulting measurement values imply a relatively close relationship between
the samples. Furthermore, when comparing the two contexts of application, the EFR relationship’s
behavior in the sepsis log context seems anomalous. Initially, the behavior aligns with expectations,
but as the sampling ratio approaches 0.25, an unexpected decrease or increase is noticed (a, b, c, d, g,
h). Further data exploration revealed that this anomaly is attributable to the “expansion” inherent in
the EFR abstraction, combined with the infrequent behavior observed within the sepsis context. This
rare behavior extends into dimensions that, in these metrics, result in significant differences, since these
expanded dimensions are also considered infrequent.

Observing the EFR abstraction in the context of the fines event log reveals a shift in the overall
measurement values. This shift does not produce the aforementioned bumps observed in the sepsis log,
further substantiating the previously provided explanation. Within the Manhattan distance (b) for the
fines log, the EFR and DFR abstractions closely align, producing nearly identical average distances
between samples. Moreover, despite the sepsis log’s high trace uniqueness rate, samples with even a low
sampling ratio of 0.01 show significant similarity in all metrics except Jaccard similarity (i). However, a
significant difference between the two contexts is evident in the resulting measurement values. These
metrics highlight that the behavioral distributions in the fines log are more homogeneous compared to
the sepsis log.

Another noteworthy observation is the evident bump in the Canberra distance (d) across both contexts.
As the sampling ratio surpasses 0.10, a distinct bump becomes apparent. This fluctuation can be ascribed
to the inherent properties of the metric, particularly the fact that the absence of a feature in one of the
two distributions can significantly influence the resulting measurement value. The final observation of
this evaluation phase entails that the Jaccard similarity (i) stands out as the strictest metric among those
assessed. Its calculated scores appear moderate when juxtaposed with the outcomes of the other metrics.
In summary, the metrics effectively capture the differences (or similarities) in the behavioral distributions
of the event log samples.

42

(a) Euclidean Distance (b) Manhattan Distance (c) Chebyshev Distance

(d) Canberra Distance (e) Kullback-Leiber Divergence (f) Jensen-Shannon Divergence

(g) Chi Divergence (h) Cosine Similarity (i) Jaccard Similarity

Figure 5.2: Metric Evaluation in action within the sepsis log

5.5 Behavioral Comparison and Model Quality Measures

In this final section of the evaluation, the relationship between measurement values and established
model quality metrics, such as precision and recall, is examined. To achieve this, the various samples
are converted back into their .XES formats and are subsequently used as input for the process discovery
algorithm (Inductive Miner - Infrequent, with a threshold of 0.2) [26]. The resulting models are then
loaded into the Entropia tool. The data is further augmented by calculating the precision and recall for
the corresponding process models, consistent with the direction of the prior comparison. This process
is illustrated in Figure 5.1. The augmentation is depicted on the right-hand side. The central aim of
this experiment is to evaluate correlations between the resulting measurement values and the established
model quality metrics.

The comprehensive results for both the EFR and DFR are presented in Appendix B. For each metric,
a visualization is provided in the form of a scatter plot where the y-axis represents the model quality
measure and the x-axis depicts the metric value. In the remainder of this evaluation, the same filtering
as previously applied is maintained. Only comparisons between similarly sized samples are retained
to prevent any distribution from scoring high in similarity merely by chance, thereby obscuring the
relationship between the measurement and model quality metrics.

43

(a) Euclidean Distance (b) Manhattan Distance (c) Chebyshev Distance

(d) Canberra Distance (e) Kullback-Leiber Divergence (f) Jensen-Shannon Divergence

(g) Chi Divergence (h) Cosine Similarity (i) Jaccard Similarity

Figure 5.3: Metric Evaluation in action within the fines log

5.5.1 Visual Exploration

In this subsection, the visual representation provided in the referenced Appendix B is assessed. Within
the scatter plots, it is evident that the context appears to greatly influence the overall positioning of the
present data points. Within the fines context, the overall position appears to be more closely clustered,
reflecting the previously made statements about the context’s effect on the behavior of the uncovered
metrics. In addition to this, there does not appear to be a clear sign of linearity, eliminating the potential
usage of linear regression to evaluate the relationship.

Another observation is the presence of several data points in the sepsis context that align with the x-axis.
This suggests that certain comparisons indicate relationships not reflected in the model quality metrics.
Further data investigation reveals that these points represent comparisons with a 0.01 sampling ratio.
While relationships might be discerned at the data level, strict model quality metrics do not generalize
these findings. Naturally, when sampling from an event log in which a high degree of trace uniqueness
occurs, the likelihood of capturing similar traces is less prominent. As mentioned earlier, the data points
appear clustered. This clustering can be attributed to the samples being evaluated as similar, even amidst
the highly heterogeneous behavior observed, such as in the sepsis context. This observation holds true for
the data points in the fines log, where the differences between samples are even more subtle.

44

5.5.2 Correlation Analysis

One of the central objectives of this study is to evaluate whether a relation exists between the measurement
values obtained from comparisons and the associated model quality metrics. To this end, Spearman’s
rank correlation is employed. The decision to utilize Spearman’s rank correlation was driven by the
characteristics of the dataset. Specifically, the data does not necessarily adhere to certain foundational
assumptions, such as normal distribution. Furthermore, in the visual analysis, the presence of several
outliers was identified. Spearman’s rank correlation, as the name suggests, operates on ranks and is
generally more robust to outliers, making it a good choice for the analysis. These correlation tests will
produce correlation coefficients (ρ), which provide insight into the strength and direction of any discovered
monotonic relationships between two variables. The two variables that are evaluated against each other
are the resulting measurement values from a comparison between two event log samples, and the resulting
model quality measures that originate from the comparison between their corresponding process models.
For each correlation test, two hypotheses were composed:

• Null Hypothesis (H0 : ρ = 0): There is no monotonic association between the explored metric
(e.g., Euclidean distance) and the corresponding process mining model quality measure (precision
or recall). Any observed association in the sample is due to chance.

• Alternative Hypothesis (H1 : ρ ̸= 0): There is a monotonic association between the explored
metric and the process mining model quality measure. The observed association in the sample is
not solely due to random variation.

To ensure that the findings are statistically significant, we employ significance testing. Here, a p-value is
provided. In essence, a low p-value indicates that the correlations observed are not due to pure chance.
Within the research context, caution should be applied, as multiple tests are performed simultaneously,
which could increase the risk of encountering a false positive error. To counteract this risk, the Bonferroni
correction method is employed. This correction method divides the significance level by the total number
of tests performed, providing some protection against false positives. Within Table 5.3 and Table 5.4 the
results of the correlation test are shown. These correlation coefficients should be interpreted as follows:

• A coefficient of 1 indicates a perfect positive monotonic relationship, where as one variable increases,
the other variable also tends to increase.

• A coefficient of -1 signifies a perfect negative monotonic relationship, where as one variable increases,
the other variable tends to decrease.

• A coefficient of 0 represents no monotonic relationship, indicating that there is no consistent
relationship in the direction of the variables.

• Values between -1 and 1 indicate the degree of monotonic relationship. Values closer to 1 or -1
suggest stronger positive or negative relationships, respectively. Values closer to 0 indicate a weaker
monotonic relationship.

This subsection will contain a short textual description of the findings within both contexts. First of all,
all metrics adhere to the previously mentioned directions. Distance and divergence metrics all indicate a
negative correlation, showing that as these measurement values increase both precision and recall appear
to decrease. The inverse is true for similarity metrics. Overall, the correlations are consistent across
both DFR and EFR-based approaches, although some small deviations are observed. For example, the
Canberra distance appears to have a correlation smaller in absolute value compared to other metrics
(across both contexts and behavioral abstractions). In the fines context, using the EFR abstraction
a significant rise in correlation is observed, suggesting that the underlying representation can have
an impact on the relationship among metrics. Another interesting observation is that the correlation
coefficients across precision and recall are often close in value (or sometimes even identical), the explored
metrics might capture aspects of the data that equally impact both precision and recall. This reflects the
intertwined relationship that is present between recall and precision in the field of process mining.

The sepsis context, with its more varied and complex nature, presents another interesting finding. While
in general, the directions of the correlations are consistent across behavioral abstraction and context,
the strength among the contexts does vary. The fines context exhibits a more homogeneous behavioral

45

distribution and tends to have slightly stronger correlations. This emphasizes the significant impact of
behavioral variability on the effectiveness of the metrics used. It is crucial to consider the underlying
characteristics of the process under study when interpreting the discovered correlations, and especially
when applying them in other real-world scenarios. Do note, that just because these two variables appear
to correlate does not imply causation.

Table 5.3: Spearman Correlations for DFR and EFR in the sepsis context. All values are statistically
significant (p < 0.001)

DFR EFR
Metric Precision Recall Precision Recall
Euclidean Distance -0.354 -0.354 -0.323 -0.323
Manhattan Distance -0.345 -0.345 -0.337 -0.337
Chebyshev Distance -0.357 -0.357 -0.318 -0.318
Canberra Distance -0.167 -0.167 -0.279 -0.279
KL Divergence -0.337 -0.359 -0.363 -0.367
Jensen-Shannon Divergence -0.346 -0.346 -0.361 -0.361
Chi-Squared Divergence -0.335 -0.368 -0.370 -0.371
Cosine Similarity 0.357 0.357 0.311 0.311
Jaccard Similarity 0.337 0.337 0.374 0.374

Table 5.4: Spearman Correlations for DFR and EFR in the fines context. All values are statistically
significant (p < 0.001)

DFR EFR
Metric Precision Recall Precision Recall
Euclidean Distance -0.423 -0.421 -0.426 -0.426
Manhattan Distance -0.432 -0.431 -0.440 -0.440
Chebyshev Distance -0.407 -0.405 -0.396 -0.396
Canberra Distance -0.272 -0.267 -0.448 -0.448
KL Divergence -0.431 -0.459 -0.446 -0.461
Jensen-Shannon Divergence -0.448 -0.445 -0.453 -0.453
Chi-Squared Divergence -0.416 -0.442 -0.404 -0.461
Cosine Similarity 0.423 0.421 0.420 0.420
Jaccard Similarity 0.453 0.450 0.461 0.461

5.5.3 Conclusions

This section derives conclusions from the performed correlation analysis. Additional interpretation of
the correlation scores to evaluate the strength of the monotonic relationships is performed in line with
the standards proposed by Schober et al. [47]. Most correlation values uncovered in the sepsis context
are classified as weak (0.19 - 0.39). Within the fines context, almost all correlations are of moderate
strength (0.40 - 0.69), albeit they often just fall within this bracket. The correlation analysis explores
whether behavioral data quality metrics are indicative of whether two event logs that are similar in their
behavioral distribution, produce similar process models. The results indicate that there might be some
relationship, albeit not a complete one. Not all observed variation within the generated data can be
explained using the explored metrics. Other factors might also play a significant role in determining the
resulting model quality. It is thus not necessarily the case that small distance and divergence (and high
similarity) are a good sole indicator of model quality.

Given the moderate and weak strength of these correlations, context-specific factors could influence the
strength of these relationships. This was also observed in the differences present among the correlation
coefficients across both contexts. This means that when these principles are applied in different scenarios
with different data the indicative properties of these metrics on the discovered model quality may vary.
This also shows a potential basis for further research, perhaps different comparative principles or additional
data aspects (such as sub-patterns present in the behavior) could create a more solid relationship between
the two explored variables. Potential practitioners looking to apply these principles should be mindful

46

of these findings. Solely applying these comparisons is not enough to determine an indication of model
quality. It can, however, be used in conjunction with other techniques (or extracted domain knowledge)
to limit these shortcomings. In summary, all metrics showed correlation across contexts and model quality
measures, even if moderately This enables us to deduce the alternative hypothesis that was posed prior.

As most metrics appear to perform similarly within their context, it is hard to pick a metric based on
the correlation analysis that is preferred to be used, especially due to the aforementioned differences
between contexts. Practitioners should evaluate the setting of their analysis before picking one metric
to apply. In combination with the earlier evaluation of the working of the metrics in Section 5.4, and
knowledge surrounding the complexity of the implementation of the metrics, more simplistic metrics
such as Euclidean distance might be preferred. What can, however, be deduced is that the behavior
abstractions (DFR or EFR) do not appear to have an effect on the observed correlation within the
generated data, so the more simple abstraction DFR is preferred.

47

Chapter 6

Conclusion, Limitations, Discussion,
and Future Work

This project delved into the exploration of behavior representations at the event log level. Utilizing these
representations, behavioral distributions describing the data of an event log were constructed. These
distributions were then subjected to various distance, divergence, and similarity metrics to perform a
comparative evaluation between two event logs, quantifying their degree of (dis)similarity. To achieve
this objective, existing literature was examined, focusing on process mining, data quality, and sampling,
which led to the exploration of the aforementioned metrics. The project culminated in an evaluation of
the relationship between the resulting measurement values and existing model quality measures.

This chapter aims to draw conclusions from the project, providing concise answers to the posed research
questions. Following this, inherent limitations encountered during the study will be elaborated upon.
Lastly, several potential avenues for future investigations in this domain will be outlined.

6.1 Conclusion

In order to derive conclusions surrounding the main research goal, the research questions that were posed
are addressed first.

RQ1: How can behavioral qualities of an event log sample be used to describe the sample?

The first research question was tackled by examining existing literature on topics intrinsic to process
mining. Initially, attention was given to foundational aspects, with a particular emphasis on the data
integral to process mining: event logs. The characteristics of event logs and their origins effectively
captured the core of process mining. Subsequently, (mathematical) notations were investigated, alongside
potential data quality concerns and their impact on artifacts, such as those derived from process discovery.
This exploration created a deeper understanding of the notion of behavior and representations of behavior.
Using this knowledge, two abstractions were developed: one based on the commonly used direct-followers
relation (DFR) and another that considered the temporal relationships among events (EFR). The EFR
representation aligns more closely with the traditional concept of a trace. These insights led to the
creation of Behavior Frequency Tables (BFTs) that encapsulate the behaviors documented in event logs.
The first research question can thus be answered as follows: through the usage of behavioral abstractions
(DFR or EFR), behavioral qualities of an event log can be extracted, and placed within a BFT to provide
an overview of these qualities on the event log level.

RQ2: How can behavioral qualities be used to measure and compare event log sample behavioral quality?

To answer this research question, further literature related to sampling and methods to quantify the quality
of these samples was reviewed. This laid the groundwork for preliminary exploratory experimentation,
where various tools and methods, commonly utilized in the realm of process mining, were employed. With
a comprehensive understanding of the data context inherent to process mining, sampling was executed on
two distinct event logs. This was done to capture the intricacies and effects within the diverse applications
of process mining. Subsequently, existing metrics associated with distance (Euclidean, Manhattan,

48

Chebyshev, Canberra) divergence (KL, JSD, Chi), and similarity (Cosine and Jaccard) were adapted to
function within the context of event logs. Each metric has its own way of condensing the (dis)similarity
between two event logs into a singular number (i.e. some employ proportionality related to behavioral
dimensions whilst others do not). The explored metrics were then evaluated and found to effectively
capture the similarities and dissimilarities between event logs and associated behavioral distributions.
The research question can thus be answered as follows: using the earlier described behavioral abstractions,
the associated values for each behavior are extracted from an event log. This is then transformed into a
behavioral distribution, which closely resembles the notion of “frequency representativeness of behavior”,
and forms the basis of comparison between two event logs. This information is fed into comparative
metrics associated with distance, divergence, and similarity to condensed into one singular number
representing the present differences.

RQ3: What is the link between resulting measurements and known model quality measures?

The final research question pertained to whether or not an established relationship between the defined
metrics and existing model quality measures exists. In the ideal scenario, a linear relationship between
the two would exist, where two samples that are concluded to be similar by the metrics produce similar
process models. This question was answered by exploring the data generated during experimentation
and employing methods such as visual- and correlation analysis. Within the experiment, numerous event
log samples were compared in a many-to-many form. In the end, the strongest observed correlations
between these two concepts were present within the fines context and this correlation was of moderate
strength. This implies that not all variation present within the generated data can be associated with the
behavioral properties that were compared among event logs. It thus does not imply that two event logs
that contain similar behavioral distributions generate the same process models. With behavior’s central
role within process mining, this finding challenges the often assumed relationship between data quality
(or completeness) and the quality of the discovered process models.

MRQ: How can event logs be compared using behavioral qualities?

By combining the knowledge that is derived from the previous research questions, the main research
question can be answered and positioned. A comparison of event logs based on the behavioral qualities
present can be achieved by extracting behavioral properties through a behavioral abstraction from an
event log. This data can then be transformed into a behavioral distribution, describing the event log
behavior on a log level. This information can then in turn be used by several comparative metrics, that
in a unique way, compare the event logs behavior to quantify their (dis)similarity. In the end, these
comparative metrics and existing model quality measures were evaluated using correlation analysis. The
resulting correlations showed that both behavioral abstraction (EFR and DFR) performed in a similar
fashion, and the underlying context did affect the overall observed correlations. The highest observed
correlation was of moderate strength, so not all variation present in the data can be explained through
the comparison of behavioral properties of event logs. This implies that tools relying solely on comparing
the behavioral distributions (either DFR or EFR) do not provide a guarantee that similar process models
will be discovered. In the big picture, this challenges natural assumptions related to the relation of the
input and output of process discovery algorithms.

6.2 Limitations

In this section, a reflection will take place surrounding the limitations encountered during the project. A
primary limitation was that the experimentation was not conducted in a controlled lab setting. Instead,
the decision was made to use real-life event logs. Ideally, a system should be designed that allows for
the generation or sampling of event logs where the underlying complexity can be adjusted and the true
process is known. This setup would simplify the generalization of the findings, and increase the rigor of
the project. Generalization is already an issue within the context of process mining, due to its diverse
areas of application.

Another limitation pertains to the scale of the experiment. Ideally, the experiment would involve a larger
amount of event log samples. However, due to the computational complexity associated with the Entropia
tool, conducting the experiment was time-consuming, even within just two distinct contexts using two
behavioral abstractions. Furthermore, the evaluation was limited to the workings of the inductive miner.
The use of other discovery algorithms might result in different relationships between the discovered models
and the comparative measurements.

49

A final limitation is related to the decision to use behavioral distributions within this project. While
the behavioral distribution of event logs facilitates the comparison of divergent sizes of event logs, this
can lead to problematic outcomes. There is a risk of information loss, particularly when converting a
small event log into a behavioral distribution. Such a transformation might make it seem as if it is closely
related to another event log when they are compared, even when this might not be the case on the data
level. Practitioners aiming to utilize these metrics should exercise caution. It is essential to apply the
metrics in contexts where similarly sized (and ideally representative) samples are used. This approach
minimizes the risk of drawing misleading conclusions.

6.3 Discussion & Future Work

This project introduced several comparative metrics to analyze event logs. These metrics work on
event logs that are of divergent size (although caution should be exercised when comparing two widely
different-sized event logs). Two potential representations of behavior were introduced and used as the
basis of this comparison. Initially, the sole motivation behind this project was to enhance the confidence in
conclusions drawn from process mining by assessing the input quality. However, as discussions progressed,
the significance of this approach to the academic side of process mining also became apparent. Within
the subfield of process discovery, mathematical proofs can establish relationships between properties of
the event log used as input, and the output of the discovered process model. For instance, the inductive
miner can rediscover process trees if activity completeness is achieved. Nonetheless, such conditions
are often challenging to validate in a real business context, where data is collected ad-hoc. Identifying
a link between the data input quality and the resulting output quality of models offers an avenue to
validate process discovery algorithms further. A framework in which assumptions are made based on the
comparison between two event logs, and the comparison between the discovered process models should
reflect these assumptions. This approach allows for evaluating these relationships through empirical
studies rather than just relying on mathematical proofs.

The findings from the evaluation align with prior studies that explored the relationship between sample
quality and the corresponding model quality [59, 64]. This reinforces the notion that the link between
these two aspects should not be taken for granted, and it presents an opportunity for further investigation
in future research projects. A difference in this project is that the event log samples used are directly
compared against each other, instead of comparing the samples against the original event log. Intriguingly,
while two event logs may seem dissimilar, the explored metrics might still categorize them as similar.
This phenomenon is attributed to the unique data characteristics inherent to process mining. As was
uncovered in the evaluation section of this project, not all variation observed in the generated data could
be explained by the behavioral comparisons that were performed. Additional research could focus on
establishing stronger correlations between the input and output of process discovery algorithms, possibly
by extending the basis of comparison beyond mere behavior.

The comparative principles discussed throughout this project can be adapted to function within several
contexts related to process mining. One idea is to produce a framework akin to that produced by Bauer
et al. [4], where instead of “compressing” an event log to a form in which most behavioral data is present,
comparative measures are employed during the data collection phase. This could in turn be used to guide
practitioners through the under-explored notion of data collection. This idea can take the shape of a
framework that implements k-fold validation techniques that iterative monitor the differences between k
sections of the data present within event logs. These ideas could also be applied for comparison between
the already collected data, and data that is uncovered in a new (independent) sample that originates
from the same underlying true process.

This research contributes to a deeper understanding of process mining, discovery algorithms should not
be black boxes, and establishing relationships between the difference observed between pairs of event logs,
and the associated pairs of discovered process models allows us to shed light on the inner workings of these
algorithms. This approach moves us closer to demystifying process discovery, enhancing transparency
and trust in the results they yield. The findings suggest that while there is a correlation between the
differences observed in input data and the process models generated, this relationship is complex and not
linear. This realization opens up new avenues for research, encouraging a more critical and informed
application of process mining techniques. Future investigations can build on this foundation, and refine
or extend these comparative techniques to gain more understanding of the intricate relationship between

50

the input and output within process mining. Ultimately, this research is a step toward making process
mining more reliable, guiding practitioners toward more informed decisions whilst applying process mining
techniques in practice.

51

Bibliography

[1] S. Agarwal. Data mining: Data mining concepts and techniques. In 2013 international conference
on machine intelligence and research advancement, pages 203–207. IEEE, 2013.

[2] V. Barnett, T. Lewis, et al. Outliers in statistical data, volume 3. Wiley New York, 1994.

[3] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino. Methodologies for data quality assessment
and improvement. ACM computing surveys (CSUR), 41(3):1–52, 2009.

[4] M. Bauer, A. Senderovich, A. Gal, L. Grunske, and M. Weidlich. How much event data is enough?
a statistical framework for process discovery. In Advanced Information Systems Engineering: 30th
International Conference, CAiSE 2018, Tallinn, Estonia, June 11-15, 2018, Proceedings 30, pages
239–256. Springer, 2018.

[5] D. Bayomie, I. M. Helal, A. Awad, E. Ezat, and A. ElBastawissi. Deducing case ids for unlabeled
event logs. In Business Process Management Workshops: BPM 2015, 13th International Workshops,
Innsbruck, Austria, August 31–September 3, 2015, Revised Papers 13, pages 242–254. Springer, 2016.

[6] A. Berti, S. J. Van Zelst, and W. van der Aalst. Process mining for python (pm4py): bridging the
gap between process-and data science. arXiv preprint arXiv:1905.06169, 2019.

[7] R. J. C. Bose, R. S. Mans, and W. M. Van Der Aalst. Wanna improve process mining results? In
2013 IEEE symposium on computational intelligence and data mining (CIDM), pages 127–134. IEEE,
2013.

[8] R. J. C. Bose, W. M. van der Aalst, I. Žliobaitė, and M. Pechenizkiy. Handling concept drift in
process mining. In Advanced Information Systems Engineering: 23rd International Conference,
CAiSE 2011, London, UK, June 20-24, 2011. Proceedings 23, pages 391–405. Springer, 2011.

[9] M. Bozkaya, J. Gabriels, and J. M. van der Werf. Process diagnostics: a method based on process
mining. In 2009 International Conference on Information, Process, and Knowledge Management,
pages 22–27. IEEE, 2009.

[10] S. Chen, B. Ma, and K. Zhang. On the similarity metric and the distance metric. Theoretical
Computer Science, 410(24-25):2365–2376, 2009.

[11] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model checking and the state explosion
problem. Tools for Practical Software Verification: LASER, International Summer School 2011,
Elba Island, Italy, Revised Tutorial Lectures, pages 1–30, 2012.

[12] M. de Leoni and F. Mannhardt. Road traffic fine management process, 2015.
doi: 10.4121/uuid: 270fd440-1057-4fb9-89a9-b699b47990f5. URL https://data. 4tu.
nl/articles/dataset/Road Traffic Fine Management Process/12683249/1, 2015.

[13] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A multi-dimensional quality assessment
of state-of-the-art process discovery algorithms using real-life event logs. Information systems,
37(7):654–676, 2012.

[14] J. De Weerdt and M. T. Wynn. Foundations of process event data. Process Mining Handbook.
LNBIP, 448:193–211, 2022.

[15] E. Deza, M. M. Deza, M. M. Deza, and E. Deza. Encyclopedia of distances. Springer, 2009.

52

[16] C. Di Ciccio and M. Montali. Declarative process specifications: reasoning, discovery, monitoring. In
Process Mining Handbook, pages 108–152. Springer International Publishing Cham, 2022.

[17] P. M. Dixit, S. Suriadi, R. Andrews, M. T. Wynn, A. H. ter Hofstede, J. C. Buijs, and W. M. van der
Aalst. Detection and interactive repair of event ordering imperfection in process logs. In Advanced
Information Systems Engineering: 30th International Conference, CAiSE 2018, Tallinn, Estonia,
June 11-15, 2018, Proceedings 30, pages 274–290. Springer, 2018.

[18] M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers, M. Dumas, M. La Rosa, J. Mendling, and
H. A. Reijers. Introduction to business process management. Fundamentals of business process
management, pages 1–33, 2018.

[19] C. Elman, J. Gerring, and J. Mahoney. The production of knowledge: Enhancing progress in social
science. Cambridge University Press, 2020.

[20] I. Etikan and K. Bala. Sampling and sampling methods. Biometrics & Biostatistics International
Journal, 5(6):00149, 2017.

[21] I. Etikan, S. A. Musa, R. S. Alkassim, et al. Comparison of convenience sampling and purposive
sampling. American journal of theoretical and applied statistics, 5(1):1–4, 2016.

[22] M. Fani Sani, S. J. van Zelst, and W. M. van der Aalst. The impact of biased sampling of event logs
on the performance of process discovery. Computing, 103:1085–1104, 2021.

[23] T. Gurgen Erdogan and A. Tarhan. A goal-driven evaluation method based on process mining for
healthcare processes. Applied Sciences, 8(6):894, 2018.

[24] B. Knols and J. M. E. van der Werf. Measuring the behavioral quality of log sampling. In 2019
International Conference on Process Mining (ICPM), pages 97–104. IEEE, 2019.

[25] A. Koschmider, K. Kaczmarek, M. Krause, and S. J. van Zelst. Demystifying noise and outliers
in event logs: review and future directions. In Business Process Management Workshops: BPM
2021 International Workshops, Rome, Italy, September 6–10, 2021, Revised Selected Papers, pages
123–135. Springer, 2022.

[26] S. J. Leemans, D. Fahland, and W. M. Van Der Aalst. Discovering block-structured process models
from event logs-a constructive approach. In Application and Theory of Petri Nets and Concurrency:
34th International Conference, PETRI NETS 2013, Milan, Italy, June 24-28, 2013. Proceedings 34,
pages 311–329. Springer, 2013.

[27] S. J. Leemans, D. Fahland, and W. M. Van der Aalst. Scalable process discovery and conformance
checking. Software & Systems Modeling, 17:599–631, 2018.

[28] J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151, 1991.

[29] D. J. MacKay. Information theory, inference and learning algorithms. Cambridge university press,
2003.

[30] A. Mackey and S. M. Gass. Second language research: Methodology and design. Routledge, 2021.

[31] F. Mannhardt. Sepsis cases-event log. DOI: https://doi. org/10.4121/UUID: 915D2BFB-7E84-
49AD-A286-DC35F063A460, 2016.

[32] F. Mannhardt and D. Blinde. Analyzing the trajectories of patients with sepsis using process mining.
In RADAR+ EMISA 2017, pages 72–80. CEUR-ws. org, 2017.

[33] F. Mannhardt, M. De Leoni, H. A. Reijers, and W. M. Van Der Aalst. Balanced multi-perspective
checking of process conformance. Computing, 98:407–437, 2016.

[34] W. McKinney et al. pandas: a foundational python library for data analysis and statistics. Python
for high performance and scientific computing, 14(9):1–9, 2011.

[35] H.-T. Moges, K. Dejaeger, W. Lemahieu, and B. Baesens. A multidimensional analysis of data quality
for credit risk management: New insights and challenges. Information & management, 50(1):43–58,
2013.

53

[36] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580,
1989.

[37] R. Peck, C. Olsen, and J. L. Devore. Introduction to statistics and data analysis. Cengage Learning,
2015.

[38] C. A. Petri. Kommunikation mit automaten, 1962.

[39] A. Polyvyanyy, H. Alkhammash, C. Di Ciccio, L. Garćıa-Bañuelos, A. Kalenkova, S. J. Leemans,
J. Mendling, A. Moffat, and M. Weidlich. Entropia: A family of entropy-based conformance checking
measures for process mining. arXiv preprint arXiv:2008.09558, 2020.

[40] J.-r. Rehse, S. Leemans, J. M. van der Werf, and P. Fettke. On process discovery experimentation.
Unpublished, Jan 2023.

[41] M. Reichert and B. Weber. Enabling flexibility in process-aware information systems: challenges,
methods, technologies, volume 54. Springer, 2012.

[42] A. Rogge-Solti, R. S. Mans, W. M. van der Aalst, and M. Weske. Repairing event logs using
timed process models. In On the Move to Meaningful Internet Systems: OTM 2013 Workshops:
Confederated International Workshops: OTM Academy, OTM Industry Case Studies Program,
ACM, EI2N, ISDE, META4eS, ORM, SeDeS, SINCOM, SMS, and SOMOCO 2013, Graz, Austria,
September 9-13, 2013, Proceedings, pages 705–708. Springer, 2013.

[43] E. Rojas, M. Sepúlveda, J. Munoz-Gama, D. Capurro, V. Traver, and C. Fernandez-Llatas. Question-
driven methodology for analyzing emergency room processes using process mining. Applied Sciences,
7(3):302, 2017.

[44] A. Rozinat and W. M. van der Aalst. Decision mining in prom. Business process management,
4102:420–425, 2006.

[45] P. Sanders. Algorithm engineering–an attempt at a definition. In Efficient algorithms, pages 321–340.
Springer, 2009.

[46] I. Sason. Divergence measures: Mathematical foundations and applications in information-theoretic
and statistical problems, 2022.

[47] P. Schober, C. Boer, and L. A. Schwarte. Correlation coefficients: appropriate use and interpretation.
Anesthesia & analgesia, 126(5):1763–1768, 2018.

[48] C. E. Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423, 1948.

[49] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile computing
and communications review, 5(1):3–55, 2001.

[50] S. Suriadi, R. Andrews, A. H. ter Hofstede, and M. T. Wynn. Event log imperfection patterns
for process mining: Towards a systematic approach to cleaning event logs. Information systems,
64:132–150, 2017.

[51] A. F. Syring, N. Tax, and W. M. van der Aalst. Evaluating conformance measures in process mining
using conformance propositions. Transactions on Petri Nets and Other Models of Concurrency XIV,
pages 192–221, 2019.

[52] W. Van Der Aalst. Process mining: Overview and opportunities. ACM Transactions on Management
Information Systems (TMIS), 3(2):1–17, 2012.

[53] W. Van Der Aalst. Process mining: data science in action, volume 2. Springer, 2016.

[54] W. Van Der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri, T. Baier, T. Blickle, J. C. Bose,
P. Van Den Brand, R. Brandtjen, J. Buijs, et al. Process mining manifesto. In Business Process
Management Workshops: BPM 2011 International Workshops, Clermont-Ferrand, France, August
29, 2011, Revised Selected Papers, Part I 9, pages 169–194. Springer, 2012.

54

[55] W. Van der Aalst, A. Adriansyah, and B. Van Dongen. Replaying history on process models for
conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(2):182–192, 2012.

[56] W. M. van der Aalst. Foundations of process discovery. In Process Mining Handbook, pages 37–75.
Springer, 2022.

[57] W. M. van der Aalst. Process mining: a 360 degree overview. In Process Mining Handbook, pages
3–34. Springer, 2022.

[58] J. M. van der Werf. Sampling framework. https://github.com/ArchitectureMining/

SamplingFramework, 2020.

[59] J. M. E. van der Werf, A. Polyvyanyy, B. R. van Wensveen, M. Brinkhuis, and H. A. Reijers. All
that glitters is not gold: Towards process discovery techniques with guarantees. arXiv preprint
arXiv:2012.12764, 2020.

[60] B. F. Van Dongen, A. Alves de Medeiros, and L. Wen. Process mining: Overview and outlook of
petri net discovery algorithms. Transactions on Petri Nets and Other Models of Concurrency II:
Special Issue on Concurrency in Process-Aware Information Systems, pages 225–242, 2009.

[61] M. L. Van Eck, X. Lu, S. J. Leemans, and W. M. Van Der Aalst. Pm: a process mining project
methodology. In Advanced Information Systems Engineering: 27th International Conference, CAiSE
2015, Stockholm, Sweden, June 8-12, 2015, Proceedings, pages 297–313. Springer, 2015.

[62] R. J. Van Glabbeek. The linear time-branching time spectrum i. the semantics of concrete, sequential
processes. In Handbook of process algebra, pages 3–99. Elsevier, 2001.

[63] R. van Langerak, J. M. E. van der Werf, and S. Brinkkemper. Uncovering the runtime enterprise
architecture of a large distributed organisation: A process mining-oriented approach. In Advanced
Information Systems Engineering: 29th International Conference, CAiSE 2017, Essen, Germany,
June 12-16, 2017, Proceedings 29, pages 247–263. Springer, 2017.

[64] B. R. van Wensveen. Estimation and analysis of the quality of event log samples for process discovery.
Master’s thesis, Utrecht University, Utrecht, 2020.

[65] H. Verbeek, J. C. Buijs, B. F. Van Dongen, and W. M. Van Der Aalst. Xes, xesame, and prom 6. In
Information Systems Evolution: CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Selected
Extended Papers 22, pages 60–75. Springer, 2011.

[66] R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality means to data consumers.
Journal of management information systems, 12(4):5–33, 1996.

[67] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros. Process mining with the heuristics
miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP, 166(July 2017):1–34, 2006.

[68] R. J. Wieringa. Design science methodology for information systems and software engineering.
Springer, 2014.

55

https://github.com/ArchitectureMining/SamplingFramework
https://github.com/ArchitectureMining/SamplingFramework

Appendix A

Code Snippets

1 def Extract_traces_from_df(df):

2 grouped = df.groupby('case:concept:name')['concept:name'].apply(list).reset_index()

3

4 # Convert the grouped data to a dictionary

5 grouped_dict = grouped.set_index('case:concept:name').to_dict()['concept:name']

6

7 return grouped_dict

Code Snippet A.1: Extract Traces from Log

1 def extract_direct_followers(traces_dict):

2 """

3 Create a dictionary where the list associated with each key is converted to a list

4 of adjacent pairs in the form of strings.

5

6 Args:

7 traces_dict (dict): A dictionary in the form of traceid : [events]

8

9 Returns:

10 dict: A new dictionary where the list associated with each key is converted

11 to a list of adjacent pairs in the form of strings.

12 """

13 adjacent_pairs_dict = {}

14 for key, value in traces_dict.items():

15 adjacent_pairs = [f"{value[i]} -> {value[i + 1]}"

16 for i in range(len(value) - 1)]

17 adjacent_pairs_dict[key] = adjacent_pairs

18 return adjacent_pairs_dict

Code Snippet A.2: Extract direct follows relation behavior from traces

i

1 def extract_eventual_behavior(dictionary):

2 """

3 Extracts the eventual behavior from a dictionary where each value is a list

4 of strings.

5

6 Args:

7 dictionary (dict): Input dictionary with case IDs as keys and lists of

8 strings as values.

9

10 Returns:

11 dict: A dictionary with case IDs as keys and lists of strings as values.

12 Each string represents an adjacent pair with an arrow indicating the order.

13 """

14 result = {}

15

16 for case_id, events in dictionary.items():

17 adjacent_pairs = [f"{events[i]} -> {events[i + 1]}"

18 for i in range(len(events) - 1)]

19 result[case_id] = adjacent_pairs

20

21 return result

Code Snippet A.3: Extract eventual behavior patterns from a log

1 def create_trace_freq_df(adj_pairs_dict, possible_activities):

2 # Create an empty dataframe with columns for trace id and each possible activity

3 df = pd.DataFrame(columns=['traceid'] + possible_activities)

4

5 for key, value in adj_pairs_dict.items():

6 # Create a dictionary with all activities initialized to 0

7 row_dict = {activity: 0 for activity in possible_activities}

8 for activity in value:

9 # Increment the activity count if it exists in possible_activities

10 if activity in possible_activities:

11 row_dict[activity] += 1

12 # Add the row to the dataframe with the traceid as the index

13 row_dict['traceid'] = key

14 df = df.append(row_dict, ignore_index=True)

15

16 # Fill NaN values with 0

17 df.fillna(0, inplace=True)

18

19 return df

Code Snippet A.4: Creating a data frame containing all behavior.

ii

1 import os

2

3 def remove_silent_steps_from_pnml(folder_path):

4 pnml_files = [os.path.join(folder_path, f)

5 for f in os.listdir(folder_path) if f.endswith('.pnml')]

6 silent_step_labels = ["tau from tree", "tau split", "tau join"]

7

8 for file_path in pnml_files:

9 with open(file_path, 'r') as file:

10 content = file.read()

11

12 # Remove specified text labels from the content

13 for label in silent_step_labels:

14 content = content.replace(label, "")

15

16 # Save the updated content back to the same file

17 with open(file_path, 'w') as file:

18 file.write(content)

19

20 return f"Adapted {len(pnml_files)} .pnml files :)"

Code Snippet A.5: Removing silent steps from .PNML files

iii

def evaluate_metrics_properties(csv_path):

Load the dataset from the given CSV path

data = pd.read_csv(csv_path)

Define lists for similarity and distance/divergence metrics

similarity_metrics = ['jaccard_similarity', 'cosine_similarity']

distance_divergence_metrics = [

'chi_divergence', 'euclidean_distance', 'manhattan_distance',

'chebyshev_distance', 'canberra_distance',

'kl_divergence_standalone', 'jsd'

]

Results dictionary to store results for each property and metric

results = {

"metric": [],

"non_zero": [],

"identity_principle": [],

"symmetry": [],

"triangle_inequality": []

}

Validate Non-zero property

for metric in similarity_metrics + distance_divergence_metrics:

non_self_comparisons = data[data["Sample1"] != data["Sample2"]][metric]

is_non_zero = all(non_self_comparisons != 0)

results["metric"].append(metric)

results["non_zero"].append(is_non_zero)

Validate Identity principle property

for metric in similarity_metrics:

self_comparisons = data[data["Sample1"] == data["Sample2"]][metric]

identity_satisfied = all(self_comparisons == 1)

results["identity_principle"].append(identity_satisfied)

for metric in distance_divergence_metrics:

self_comparisons = data[data["Sample1"] == data["Sample2"]][metric]

identity_satisfied = all(self_comparisons == 0)

results["identity_principle"].append(identity_satisfied)

Validate Symmetry property

for metric in similarity_metrics + distance_divergence_metrics:

merged_df = data[['Sample1', 'Sample2', metric]].merge(

data[['Sample1', 'Sample2', metric]],

left_on=['Sample1', 'Sample2'],

right_on=['Sample2', 'Sample1']

)

symmetry_satisfied = all(merged_df[metric + '_x'] == merged_df[metric + '_y'])

results["symmetry"].append(symmetry_satisfied)

Validate Triangle Inequality property (using a sampled approach for efficiency)

pivot_data = data.pivot(index="Sample1", columns="Sample2")

sampled_samples = data["Sample1"].unique()[:10]

for metric in distance_divergence_metrics:

satisfies_triangle_inequality = True

for sample1 in sampled_samples:

for sample2 in sampled_samples:

for sample3 in sampled_samples:

if sample1 != sample2 and sample2 != sample3 and sample1 != sample3:

A_B = pivot_data[metric][sample2][sample1]

B_C = pivot_data[metric][sample3][sample2]

A_C = pivot_data[metric][sample3][sample1]

if A_B + B_C < A_C:

satisfies_triangle_inequality = False

break

if not satisfies_triangle_inequality:

break

if not satisfies_triangle_inequality:

break

results["triangle_inequality"].append(satisfies_triangle_inequality)

for _ in similarity_metrics:

results["triangle_inequality"].append(None)

Convert results to DataFrame

results_df = pd.DataFrame(results)

return results_df

Code Snippet A.6: Evaluating Metric Properties on Process Mining Data

iv

Appendix B

Evaluation

Figure B.1: A scatter plot in the sepsis context, relating measurement values to recall.

v

Figure B.2: A scatter plot in the sepsis context, relating measurement values to precision.

vi

Figure B.3: A scatter plot in the fines context, relating measurement values to recall.

vii

Figure B.4: A scatter plot in the fines context, relating measurement values to precision.

viii

	Introduction
	Problem Identification
	Project Aim
	Research Questions
	Research Approach, Context & Method
	Process Discovery Engineering
	Design Science
	Literature Research
	Experimentation Approach

	Contribution

	Process Mining
	Event Logs
	Sources of Event Data
	Common Mathematical Notations
	Event Log Data Quality
	Data Quality in Process Mining
	Data Quality Handling
	Event Logs as Streaming Data

	Process Models
	Process Discovery
	Data Quality Principles and their Effects
	Assumptions on Completeness of Logged Behavior
	Challenges within Process Discovery

	Event Log Sampling
	Probability Sampling Approaches
	Simple Random Sampling
	Not Completely Random Sampling

	Non-probability Sampling Approaches
	Biased Sampling

	Quality of Samples
	Convenience Samples

	Comparing Event Log Behavior
	Comparison Within Process Mining
	Definition of Behavior & Extraction
	Extracting Traces
	Extracting Behavior
	Extracting Eventual Behavior
	Transformation into Analyzable Data

	Existential Completeness Metric
	Requirements & Notation
	Identified Requirements
	Notation

	Distance Metrics
	Euclidean Distance
	Manhattan Distance
	Chebyshev Distance
	Canberra Distance

	Entropy & Divergence Measures
	Shannon's Entropy
	Kullback-Leibler Divergence
	Jensen-Shannon Divergence
	Chi-Squared Divergence

	Similarity Metrics
	Cosine Similarity
	Jaccard Similarity

	Evaluation
	Real-Life Event Logs
	Data Description
	Pre-processsing

	Generation of Data
	Evaluation of Requirements
	Evaluating the Metrics
	Conclusions

	Behavioral Comparison and Model Quality Measures
	Visual Exploration
	Correlation Analysis
	Conclusions

	Conclusion, Limitations, Discussion, and Future Work
	Conclusion
	Limitations
	Discussion & Future Work

	Code Snippets
	Evaluation

