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Abstract

In this master thesis, we investigate a ride-sharing problem within the Dutch

Ministry of Defence, characterized by multiple heterogeneous vehicles and depots,

strict time constraints, consideration of user preferences, limitations on vehicle ca-

pacity, and flexible roles of drivers and riders. With a fleet of thousands of pool

vehicles spread across multiple pool locations, optimizing vehicle usage becomes

crucial due to emissions concerns and limited vehicle availability.

One possibility to achieve this is by introducing ride-sharing, wherein individuals

are permitted to take a brief detour for the purpose of dropping off and picking up

others. We propose a static simulated annealing algorithm to generate schedules

that facilitate this ride-sharing and apply it in an iterated local search. Besides,

we introduce the concept of decoupling vehicles from their original pool locations,

resulting in the possibility of returning vehicles to different pool locations than their

point of origin. The multi-objective function aims to minimize the number of non-

served users, the ratio of the total distance travelled to that without ride-sharing,

the number of non-empty vehicles, and the deviation from the desirable occupation

of vehicles at pool locations.

Comparing our algorithm to the current manual approach, we observe significant

improvements: increased number of planned users and reduced mileage through

ride-sharing, while utilizing fewer vehicles and maintaining minimal deviation from

the desired vehicle occupation at pool locations. Furthermore, combining ride-

sharing and vehicle decoupling results in superior solutions, outperforming either

approach alone. Secondly, we show the successful incorporation of single rides,

which are rides from one pool location to another pool location without a return,

and show that these increase the degree of ride-sharing. Lastly, our work presents

a robustness analysis which demonstrates that rides can be effectively added to the

generated schedules in a dynamic context. Moreover, although cancellations and

delays cause a notable number of routes to become infeasible, a substantial portion

remains feasible.
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List of Definitions

Driver and rider: A driver is defined as the one who drives the vehicle, while a

rider is defined as one who is a passenger to the vehicle.

Node and arc: A ride request consists of two events: a pickup and a dropoff. Both

can be represented as nodes in a graph. In this graph, an arc is established

from node A to node B if it is potentially feasible, within the given time

windows, for a vehicle to handle event A first, and event B subsequently.

Outbound and inbound rides: Returns have an outbound and inbound ride. In

the return with locations A and B, the outbound ride is A → B, while the

inbound ride is B → A. So these are respectively the outgoing ride from the

starting point to the destination, and the ingoing ride from the destination to

the end point - which corresponds to the starting point.

Mandatory and non-mandatory return rides: Outbound rides of non-mandatory

returns are going to a pool location, and the inbound is not guaranteed to be

scheduled if the outbound is. On the other hand, mandatory returns have a

guaranteed inbound if the outbound is scheduled, as the outbounds are going

to non-pool locations and the vehicles can not be left there.

Single ride: A single ride is a ride from one pool location to another pool loca-

tion, which does not require a ride back. Single rides trivially only have an

outbound ride.

Route: A route corresponds to the ride plan for a particular vehicle. Rides are

placed in routes, and a route can fall into one of two types: original or

additional. The original routes refer to the routes that form part of the final

schedule, representing the actual routes to be driven by real vehicles. In

contrast, the additional routes are scheduled for dummy vehicles and trips

placed in these routes are not actually driven. Furthermore, it is possible for

a route to be empty. If an original route is empty, it means the corresponding

vehicle does not have any rides planned, and is thus unused.

Event time: The event time is the actual time an event, i.e. a pickup or dropoff,

occurs at. Event times are scheduled as early as possible.

x





Chapter 1

Introduction

The Defensie Verkeers- en Vervoersorganisatie (DVVO) is, as a logistics service

provider, responsible for all Dutch Ministry of Defence transport around the world.

Centraal wagenpark beheer (CWB) is one of the four units of the DVVO. This

unit possesses a few thousand passenger cars, encompassing petrol, hybrid, and

diesel vehicles. A number of these vehicles are linked to individuals, but most of

them are so-called pool vehicles. Ministry of Defence employees can use these pool

vehicles for work-related appointments. In an app, they request a car at one of

54 pool locations. These pool locations are on military terrain, such as a military

base. Employees are assigned a car from the pool location. They return it to the

same pool location after their appointment. Defence’s plans state that, as part of

sustainability efforts, these cars must be replaced by electric cars or hydrogen cars

by 2030 at the latest. The efficient utilization of cars has become an increasingly

important issue in this context. A significant proportion of requests for car usage go

unfulfilled due to a lack of available vehicles. In an effort to address this problem,

one potential solution approach is the implementation of ride-sharing. This allows

multiple individuals to share their ride, increasing overall utilization of the cars.

Additionally, decoupling cars from their pool locations may further enhance the

efficiency of car usage.

1.1 Research Objective

This thesis aims to investigate the potential of a simulated annealing algorithm

used in an iterated local search for the static one-to-many ride-sharing problem,

which incorporates decoupling cars from pool locations. This decoupling leads to

the possibility of single rides, which are rides from one pool location to another

pool location without a return. The ride-sharing problem being addressed is char-

acterized by multiple heterogeneous vehicles and depots, strict time constraints,
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consideration of user preferences, limitations on vehicle capacity, and flexible roles

of drivers and riders. A driver is defined as the one who drives the vehicle, while

a rider is defined as one who is a passenger to the vehicle. The multi-objective

function aims to minimize the number of non-served users, the ratio of the total

distance travelled to that without ride-sharing, the number of non-empty vehicles,

and the deviation from the desirable occupation of vehicles at pool locations. Fur-

thermore, our work presents a robustness analysis to evaluate the applicability of

the generated schedules within a dynamic context, which involves adding new rides,

removing rides, and including delays.

1.2 Shared Mobility Service

In recent years, there has been a noticeable change in attitudes towards consump-

tion, with increasing attention given to the environmental, social, and developmen-

tal effects of consumption patterns. People are increasingly interested in finding

sustainable and socially responsible ways of consuming. An example of this is the

emergence of the sharing economy [11]. The sharing economy refers to the peer-

to-peer-based activity of obtaining, giving, or sharing access to goods and services,

coordinated through community-based online services. This sharing economy is

expected to reduce societal problems such as hyper-consumption, pollution, and

poverty [29]. Therefore, it is a rapidly expanding field and commercially attractive,

as shown by several corporate researches [56] [65]. A growing body of academic

research is being conducted in recent years as well, also indicating it is an area of

increasing interest and significance [16] [35]. Mobility services that are based on

the sharing economy represent a crucial aspect of this economic model and serve

as an ideal example of the impact of the sharing economy on traditional industries.

There are different types of shared mobility such as bike-sharing, scooter-sharing,

on-demand ride-sharing and car-sharing [6]. It is important to note that there is

a lack of consensus in the terminology and definitions associated with the shared

mobility types and methods. In Figure 1.1, an overview of shared mobility service

types is given.

As can be seen in this figure, there are two kinds of shared mobility service

types. One is ride-sharing, while the other is car-sharing. The difference between

these, is that in car-sharing individuals or organizations have access to a vehicle on

an as-needed basis, without the cost and commitment of owning one. Ride-sharing,

on the other hand, refers to the practice of multiple people sharing a ride in a single

vehicle to reach a common destination. Thus, ride-sharing is different from the

other shared-use mobility systems, in that not only the vehicle is shared, but the

ride as well [67]. There are several types of car-sharing as shown in Figure 1.1.
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Figure 1.1: Shared Mobility Service Types

Peer-to-peer (P2P) car-sharing is a type of car-sharing service that utilizes web or

mobile technologies to connect individuals who are willing to share their personal

vehicles for short-term usage [25]. This form of car-sharing encourages the sharing of

privately-owned vehicles among individuals and offers car owners the potential for

generating additional income during periods of non-utilization [6]. Furthermore,

Alarçin and Kirçova [6] (2020) make a distinction between round-trip based and

free-floating car-sharing systems in car-sharing services. Round-trip based car-

sharing refers to sharing services where cars are bound to depots or stations; cars

are available at the stations of the service provider and brought back to the point

where they are taken. Free-floating car-sharing refers to sharing services where cars

are not bound to depots or stations; cars are parked in a suitable place within a

designated area at the end of the ride, and trips are generally one-way [25].

Just like car-sharing, there are also several types of ride-sharing, as depicted in

Figure 1.1. Ting, Lee, Pickl, and Seow [69] (2021) categorize ride-sharing systems

into profitable and non-profitable. Taxi-sharing and ride-splitting are under the

categories of profit-based ride-sharing. In taxi-sharing systems, a predetermined

number of taxis are dispatched from a single depot or multiple depots to satisfy

on-demand requests [39]. Sharing occurs if the taxi-driver allows other riders to

get in the car while on a trip to the destination of the initial riders in the car [69].

In ride-splitting, riders are matched with similar origins and destination in real-

time, and the cost is shared among riders [63]. The driver plays a role as a service

provider, and the driver’s intention is financial gain.

P2P ride-sharing and carpooling are classified as non-profitable ride-sharing sys-

tems. P2P ride-sharing is different from ride-splitting in that it is non-profitable,

and the payment only covers the cost of the driver. A P2P ride-sharing system in-

volves an online platform where users pre-register their trips, and a system operator

matches riders and drivers and arranges their trips. Unlike traditional taxi-sharing

systems, the drivers in P2P ride-sharing are also passengers who are willing to share

their vehicle while carrying out their own trips. Thus, they generally have limited

time windows and may not be available throughout the entire time horizon [67].
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Traditional carpooling requires a long-term commitment among two or more people

to travel together on recurring trips for a particular purpose, often for travelling

to work [2]. Only travellers with a common origin to a common destination can

be matched and served [69]. Therefore, carpooling is seen as a less flexible form of

ride-sharing.

1.3 Ride-sharing Variants

All above examples of ride-sharing systems could be either dynamic or static. When

decisions are made a priori, and all knowledge is known, the system is static. Con-

versely, in a dynamic system, the decision maker has the ability to modify existing

plans in response to new information received during execution. Agatz, Erera,

Savelsbergh, and Wang [2] (2012) describe dynamic ride-sharing systems as sys-

tems aiming to bring together travellers with similar itineraries and time schedules

on a very short notice or even en route.

Furthermore, there are four basic ride-sharing variants, shown in Table 1.1,

obtained from Agatz, Erera, Savelsbergh, and Wang [2] (2012). As shown in this

table, drivers might take only single riders, or might take multiple riders. Similarly,

riders might want a single driver, or may be willing to ride with multiple drivers

and transfer from one to another en route. This leads to four variants: top left

in Table 1.1 represents the one-to-one variant, top right represents one-to-many,

bottom left depicts many-to-one, and bottom right represents the many-to-many

variant.

Single Rider Multiple Riders

Single Driver
Matching of pairs
of riders and
drivers

Routing of drivers
to pickup and deliver
riders

Multiple Drivers
Routing of riders
to transfer between
drivers

Routing of riders
and drivers

Table 1.1: Ride-sharing variants

The core of a ride-sharing system is a ride-matching problem that determines

ride-sharing plans for users. One-to-one matching offers convenience for both drivers

and riders, and is computationally efficient, making it a widely researched topic in

the literature [67]. The other versions are computationally more complex. In the

one-to-many variant, drivers can serve multiple passengers, but passengers cannot

transfer between vehicles [8]. In the many-to-one scheme, drivers are limited to two

stops; only one pickup and one dropoff, but passengers can transfer between vehicles

[42]. The many-to-many variant is the most general, allowing for multiple vehicle
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stops and passenger transfers [41]. The two variants, where multiple transfers are

possible, are known as multi-hop [67].

Matching can occur under different system configurations, including fixed role,

flexible role, and guaranteed ride back [3]. In fixed role matching, individuals

register their trips with predefined roles as either riders or drivers. In flexible role

matching, some individuals have the option to take on either role. A guaranteed

ride back system ensures that riders have the ability to return home after their trip,

making it an attractive option for commuters.

1.4 Related Problems

The planning problem we are solving in this thesis, briefly introduced in this section

and further elaborated upon in Section 3, is a problem containing both aspects

of car-sharing and ride-sharing. It has similarities with P2P ride-sharing in that

participants register their trips ahead of time, a system operator matches riders and

drivers and devises their itineraries, in that P2P ride-sharing system drivers are also

customers who are willing to share their rides while completing their own trips, and

that it is non-profitable. However, unlike typical P2P ride-sharing problems, in

our case cars are not owned by drivers and riders, but are owned by a company.

Therefore, the problem is also related to car-sharing.

Closely related to ride-sharing problems and our problem is the Dial-A-Ride

Problem (DARP). In the DARP, individuals make requests for transportation from

their starting locations to destinations. The service provider then uses their fleet of

vehicles to arrange transportation for these requests, allowing multiple users with

different requests to be transported in the same vehicle at the same time, thus

sharing the service [34]. The DARP has many variants, such as using a single or

multiple depots, using a homogeneous or heterogeneous fleet, and taking vehicle

capacity, time windows, ride time, and route duration into consideration or not

[34]. The most important difference between the DARP and our problem, is that

there is no service provider who drives the customers. Instead, rides are conducted

by employees themselves. In Section 2, we will look more closely at these related

problems.

1.5 Contributions and Significance

This study aims to address a problem in the field of ride-sharing that has not

been previously described in academic literature. The problem being studied is

a unique combination of ride-sharing and car-sharing, where cars are owned by

a company but shared between users. This research will contribute to the field

5



by providing new insights into the potential benefits and challenges of this type

of service. Furthermore, the study extends the conventional ride-sharing problem

by incorporating heterogeneous vehicles, multiple depots, strict time constraints,

user preferences, and multi-objective optimization. This combination of extensions

surpasses most studies in literature where problems are often less complex. Besides,

other studies often deal with smaller-scale scenarios.

Moreover, this research will help the Ministry of Defence to make informed de-

cisions about how to best develop and implement such a service. Besides, potential

cost savings arise from two main aspects. Firstly, by automating the planning pro-

cess, the need for manual labour in scheduling is minimized. Secondly, the efficient

utilization of vehicles can lead to a reduced fleet size and a significant decrease in

fuel consumption. This not only contributes to financial savings but also aligns

with sustainability goals by reducing emissions.

1.6 Outline

The remainder of this thesis is outlined as follows. In Section 2, a literature review

is given to provide an understanding of the current state of knowledge on related

problems and solution methods. This will be followed by the problem description

described in Section 3. In Section 4 we present the objective and constraints. After

that, we elaborate on the used data in Section 5. In Section 6, we delve into the

solution method, and Section 7 presents the methodology. Next, the experiments

are explained in Section 8 and the corresponding results are presented in Section

9. In these experiments, we evaluate the performance of the developed algorithm,

and analyse how it handles single rides, which are rides from one pool location

to another pool location without a return. Additionally, we conduct a robustness

analysis to evaluate the applicability of the generated schedules within a dynamic

context. Lastly, in Section 10, we provide a discussion which elaborates on limita-

tions, implications, and future research directions, while Section 11 concludes our

work.
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Chapter 2

Literature Review

The core of a ride-sharing system is a ride-matching problem that determines ride-

sharing plans for users. The ride-matching problem is a generalization of the DARP

[67]. The DARP generalizes a number of vehicle routing problems such as the

Pickup and Delivery Vehicle Routing Problem (PDVRP) and the Vehicle Routing

Problem with Time Windows (VRPTW) [20], which are variations of the Vehicle

Routing Problem (VRP). Therefore, we will work top-bottom and start reviewing

the VRP, and working our way down to the P2P ride-matching problem in Section

2.1. After this, we will look in Section 2.2 at solution methods to solve the DARP,

P2P ride-matching, and some of their variants.

2.1 Related Problems in Literature

Vehicle Routing Problem In 1959, Dantzig and Ramser [23] introduced the

Truck Dispatching Problem, modelling how a fleet of homogeneous trucks could

serve the demand for oil of a number of gas stations from a central hub with min-

imum travelled distance. Clarke and Wright [17] (1964) generalized this problem:

find the least-cost set of routes to serve a set of customers using a fleet of trucks

with varying capacities. This became known as the Vehicle Routing Problem.

The classical VRP is static, and all data is obtained a priori. In real-world

operations, data might be dynamic and not known in advance. Therefore, in the

late 1970s, a more practical extension emerged: the Dynamic VRP (DVRP) [64] [71]

[55]. For a long time, this area of research was not attractive, because of the lack of

technological support, computational power, and business models. However, with

new technology and techniques, innovative services, and business, new opportunities

emerged. A number of papers on the DVRP have been published in the last decades,

making it an active area of research [1] [61] [59]. The VRP typically deals with either

pure delivery or pickup scenarios, where simultaneous presence of both deliveries
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and pickups is not possible. However, in practical situations, it is common for

customers to require both delivery and pickup services simultaneously. A variation

of the VRP that deals with this is the Vehicle Routing Problem with Simultaneous

Pickup and Delivery (VRPSPD) [44]. This, in combination with the transport of

persons, leads to the core of ride-sharing problems.

Dial A Ride Problem The DARP generalizes a number of vehicle routing prob-

lems. In the DARP, all vehicles share the same origin and destination depot, and

the loads to be transported are people [41]. These vehicles provide a shared ser-

vice, allowing multiple users to be transported simultaneously. The objective is

to minimize the cost of the routes while satisfying certain constraints. A common

application of the DARP arises in door-to-door transportation services for the el-

derly and the disabled [20]. The DARP was initially designed to model paratransit

systems [30], but has evolved over time to model the operations of ride-sourcing

systems [18] [67].

What sets the DARP apart from most routing problems is the consideration

from human perspective. When transporting passengers, reducing user inconve-

nience must be balanced against minimizing operating costs. Additionally, vehicle

capacity is often a constraint in the DARP, whereas it is frequently redundant in

other PDVRPs, particularly those related to the collection and delivery of letters

and small parcels [20]. Passenger service quality may be measured, for example,

in terms of the ratio of actual drive time and direct drive time, the waiting time,

the number of stops while on board, and the difference between actual and desired

delivery times [49]. These criteria may be treated as constraints or may be incor-

porated into the objective function [2]. Several surveys are provided on the DARP

[34] [26].

P2P Ride-Matching Problem The P2P ride-matching problem is a general-

ization of the DARP [67]. The P2P ride-matching problem is distinct from the

DARP, in that drivers in a P2P ride-sharing system are also considered customers.

As a result, they possess unique origins, destinations, and time constraints, and

are willing to share their rides while completing their own trips. This results in

drivers having tight time windows and being unavailable for the entire time horizon

[42]. Most studies on ride-sharing consider one, or a combination, of the following

specific objectives when determining ride-share matches [2]: minimize system-wide

vehicle miles, minimize the system-wide travel time, or maximize the number of

served requests.
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2.2 Solution Methods

Because our problem is closely related to P2P ride-matching and the DARP, we

will review existing solutions to variations of these problems in the literature and

look at both exact methods and heuristics and metaheuristics. Those problems are

typically solved in two stages: preprocessing and matching. In the preprocessing

stage, time windows are constructed, and the search space is limited by pruning.

In the matching stage, the objective is to find an optimal match of requests.

2.2.1 Preprocessing Stage

Time Windows The discussed problems can be presented in a directed graph.

Nodes present pickups and dropoffs of users. Nodes typically include time windows.

Typically, an arc is present from node A to node B if it is potentially feasible, within

the given time windows, for a vehicle to visit node B after it has visited node A. Arcs

have values that represent the travel distance and travel time. Cordeau [18] (2006)

provides a clear description of how time windows can be constructed. Cordeau

notes that a user specifies either a desired arrival time at the destination, in the

case of an outbound request, or a desired departure time from the origin, in the

case of an inbound request. In the case of an outbound user, the time window at

the origin node can be constructed using the arrival time window and in the case

of an inbound user, the time window at the destination node can be constructed

using the departure time window.

Pruning Often, initially these problems are presented as a complete directed

graph. Because of time windows, pairing and ride time constraints, several arcs

between nodes can be removed from the complete graph as their corresponding

nodes cannot belong to feasible orders of node visiting. These arcs include arcs

from dropoff nodes to their corresponding pickup nodes, and arcs between nodes

which are infeasible regarding time windows and ride time limits [18].

Existing multi-hop algorithms mostly model the problem using time-expanded

graphs (TEG) [42] [32]. In a TEG, nodes contain both location and time information

representing the possible arrival times of a vehicle at each location. The nodes are

connected by transfer and waiting edges to track the various routes a vehicle can

take between locations and times [73]. Based on the key observation that the time

constraints of the committed requests limit the area that a vehicle can reach, several

authors prune by computing whether their reachable areas, which are presented as

ellipses, cover the new request [73] [42].

9



Decomposition Furthermore, decomposing large-scale problems by dividing them

into smaller subproblems, with for example clustering based on pickup and dropoff

locations, may be beneficial. Subproblems which fall in the clusters are independent

and can be solved in parallel. Ketabi, Alipour, and Helmy [38] (2018) developed a

clustering algorithm based on a similarity score that accounts for both spatial and

temporal similarities. Tafreshian and Masoud [66] (2020) proposed a polynomial-

time graph partitioning technique that clusters trips based on a proximity measure

and imposes uniformity between subproblem sizes to minimize solution time in a

parallelized setting.

2.2.2 Matching Stage

Exact Methods for Ride-matching Problems One-to-one ride-matching prob-

lems, described previously in Section 1.3, can be represented in graphs, formulated

as ILP’s, and solved with known optimization methods. The maximum weighted

bipartite matching problem can be used to determine how riders and drivers should

be matched in the case of fixed roles, flexible roles, and guaranteed ride-back. There

are many algorithms available for solving this problem with polynomial-time run-

ning time bounds [67].

The one-to-many ride-sharing problem, which involves assigning a single driver

to multiple passengers, has been well-researched in the literature. Tamannaei and

Irandoost [68] (2019) proposed a carpooling variant where the driver roles are as-

signed through optimization and not known in advance. They formulated this

problem as a mixed-integer programming (MIP) and developed a branch-and-bound

algorithm, as well as a beam search algorithm, to find near-optimal solutions for

large-scale networks. Additionally, Armant and Brown [7] (2014) developed an MIP

formulation with flexible roles, and solved it with constraints to avoid symmetrical

solutions. In 2017, Masoud and Jayakrishnan [41] published a paper describing a

MIP formulation for the many-to-many problem based on a time-expanded net-

work. Besides, in 2017, they proposed an exact method for a dynamic many-to-one

ride-sharing system [42].

Exact Methods for DARP Exact algorithms for DARPs are based mainly upon

the concept of branch-and-bound; see for example Cordeau [18] (2006), Cortés,

Matamala, and Contardo [21] (2010), and Hu and Chang [36] (2015). The develop-

ment of exact methods for DARPs is focused on deterministic and static problems.

The main reason is that exact methods may not be capable of providing timely

solutions for dynamic DARPs. Important to note is that, to our knowledge, the

largest instances that have been solved to optimality by exact methods for the basic

DARP are up to 8 vehicles and 96 requests by Gschwind and Irnich [28] (2015).
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For other variants, the largest instances are smaller because the variants are more

complicated [34].

Neighbourhood Operators An important aspect of metaheuristics are neigh-

bourhood operators. In literature, several operators are presented to solve the

problem. Cordeau and Laporte [19] (2003) consider three types of simple moves,

based on Nanry and Barnes [48] (2000). The first operation involves removing a

pair of nodes from its current route and inserting it into a different one. The second

involves exchanging two pairs of nodes between two separate paths, and the third

consists of shifting a node within its current route. However, more advanced oper-

ators have been developed, such as the chain operator and the zero-split operator

[50].

While a number of studies do not allow infeasible routes during the search,

Cordeau and Laporte [19] (2003) allow solutions that violate time window and

vehicle capacity constraints. Furthermore, as their problem includes ride time con-

straints and route duration constraints, the evaluation of the neighbourhood is

complicated. They provide pseudocode to determine the arrival times in locations,

the departure times, and so on, while minimizing violations in time windows, route

durations, and ride times. The concept of slack, introduced by Savelsbergh [62]

(1992), is used to achieve this. Slack indicates for each node how far the depar-

ture time of this node can be shifted forward in time without causing the route

to become infeasible. This is an important component in scheduling problems, as

it increases robustness in solutions, as for example shown by van Twist, van den

Akker, and Hoogeveen [70] (2021).

Metaheuristics for Ride-matching Heuristic approaches are needed for large

instances to provide timely, high-quality solutions for the ride-matching problem.

Agatz, Erera, Savelsbergh, and Wang [4] (2011) represent the one-to-one ride-share

problem with flexible roles using a general graph matching model and solve large

instances with an iterative LP rounding heuristic to obtain a high-quality solution.

Herbawi and Weber [33] (2012) formulated the dynamic one-to-many ride-matching

problem as a Pickup and Delivery Problem with Time Windows (PDPTW), and

they used a genetic algorithm (GA) to solve the problem for each time period, and an

insertion heuristic to modify the solution in real time when a new request arrives.

Furthermore, Herbawi and Weber [32] (2011) considered a variant of the multi-

hop ride-sharing problem in which drivers have fixed routes and schedules. They

formulated this problem as finding the shortest paths to earlier described TEGs with

a multi-objective of minimizing costs, waiting times, and the number of transfers.

They solved it using a multi-objective ant colony algorithm and combined it with a
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local search yielding good results [31]. Ben Cheikh, Tahon, and Hammadi [9] (2017)

propose a real-time multi-objective GA that uses fixed points along drivers’ routes

to enable transfers. Chen, Mes, Schutten, and Quint [15] (2019) solved a dynamic

many-to-many ride-sharing system with a ride-back guarantee. For instances with

more than 80 participants, they developed a greedy heuristic which obtains high-

quality solutions.

Metaheuristics for DARP Since DARP is NP-hard, the focus of much research

has been on developing efficient and effective heuristic techniques. Metaheuristics

as Tabu Search (TS), Simulated Annealing (SA), Variable Neighbourhood Search

(VNS), and Large Neighbourhood Search (LNS) have been widely applied to solve

DARP-variants [34].

VNS is a metaheuristic that alternates neighbourhoods systematically in a local

search to prevent being stuck in local optima by switching between multiple oper-

ators [45]. Parragh, Doerner, Hartl, and Gandibleux [51] (2009) proposed the first

VNS for the DARP using an SA-acceptance criterion, where four different neigh-

bourhood operators were used. This served as a foundation for other research on

using VNS to solve the DARP, including solving more complex DARPs and using

additional operators [24] [47] [46].

LNS involves removing requests from the current solution, and then trying to

insert them in a better way. The changes that are made to the solution are rela-

tively large. In LNS, typical destroy operators are random removal, worst removal,

sequential removal, route removal and related removal, while common repair oper-

ators are random insertion, greedy insertion, k-regret insertion, most-constrained-

first insertion and space-time-related insertion [45]. The Adaptive LNS (ALNS)

is an extension of LNS that adaptively chooses among a number of insertion and

removal heuristics, to intensify and diversify the search [53]. Ropke and Pisinger

[60] (2006) developed an ALNS algorithm for the PDPTW, using simple and fast

removal and insertion heuristics, and an SA-acceptance criterion. This method is

effective and efficient, and has served as groundwork for subsequent studies on LNS

for DARPs [27] [40]. LNS is beneficial for variants where transfers are possible,

since operators can be developed which take these transfers into consideration [43]

[13].

Cordeau and Laporte [19] presented in 2003 a TS-algorithm for the DARP. In

this algorithm, infeasible solutions are temporarily accepted. This algorithm has

been found to be effective and efficient, and many recent studies on TS for the

DARP followed this work [24].

Although SA has not been used as frequently as other metaheuristic approaches

to solve the DARP, it has been used with basic operators obtaining satisfactory
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results [57] [74]. Braekers, Caris, and Janssens [12] (2014) proposed a highly efficient

and effective variant of SA, called Deterministic Annealing (DA). In DA, worse

solutions than the current one are accepted if the difference in the objective value

is smaller than a gradually lowered threshold value. The consequence of this is that

the search is more structured and controlled than SA, which involves randomness

in accepting worse solutions. They used complex neighbourhood operators and

a restart strategy when the search became stuck. This combination of methods

provided excellent results for various DARP variants. Masmoudi, Hosny, Braekers,

and Dammak [40] (2016) integrated a population-based component into DA and SA

by developing a hybrid bee algorithm, which outperforms the results of Braekers,

Caris, and Janssens [12] (2014) for the multi-depot DARP.

Insertion Heuristics Simple insertion methods have been developed to solve the

standard DARP and its variations. These heuristics are often based on the idea

of the greedy insertion heuristic introduced by Jaw, Odoni, Psaraftis, and Wilson

[37] in 1986. In context of the DARP, a pickup and corresponding dropoff of a

customer are inserted by considering all possible insertion points in existing routes

and evaluating these with respect to the objective function. Insertion heuristics

serve as a good starting point for further optimization, as demonstrated by Braekers,

Caris, and Janssens [12] (2014). Furthermore, these construction heuristics are

effective in providing fast solutions for dynamic DARPs, as demonstrated by Wong,

Han, and Yuen [72] (2014). The reason for this is insertion heuristics can add new

requests without requiring re-computation of the complete solution, as also shown

by Coslovich, Pesenti, and Ukovich [22] (2006). Furthermore, van Twist, van den

Akker, and Hoogeveen [70] (2021) combine an insertion heuristic with a small-scale

local search, to handle new passengers with reduced mobility in existing schedules

for assistance from airport employees.

Moreover, in context of adding new requests to existing solutions, a number of

other methods have been proposed. For instance, Pouls, Meyer, and Glock [54]

(2021) combine a dispatching algorithm with a local search. Riley, van Hentenryck,

and Yuan [58] (2020) present a real-time dispatching solution for a ride-sharing

service with a rolling horizon that utilizes a column-generation approach. A com-

putational study shows that their approach scales very well in practice.
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Chapter 3

Problem Description

We provide an overview of the current status, presenting the current state of the

fleet and depots, the current planning process, and the user interaction with the

system in Section 3.1. Subsequently, in Section 3.2, we discuss the changes resulting

from the implementation of a planning algorithm that complies with the desires of

the Ministry of Defence. Moreover, we will discuss the specific modifications within

the system and the consequences for the users.

3.1 Current Situation

In this section, we will look at the situation with the current planning system in

use. More specifically, we will look at the depots, fleet, rides, users, reservations,

and planning.

3.1.1 Depots

There are 54 pool locations distributed across the Netherlands which are located on

military terrain, such as military bases. These pool locations are shown in Figure

3.1. These pool locations are the depots from which vehicles depart and return to.

Vehicles are linked to depots; a vehicle should always return to its depot. Thus,

only returning trips are possible.

3.1.2 Fleet

According to our data, the Ministry of Defence currently has a heterogeneous fleet

existing of approximately 2200 petrol, hybrid and diesel vehicles. The fleet consists

of different types of vehicles: cars with a capacity of 2, 4, 5, or 8. Present vehicles

are passenger cars, delivery vans with a small cargo bed, bigger vans with a large
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Figure 3.1: Pool locations across the Netherlands

load capacity, and 5-door passenger cars with ample baggage space. In Section 5.1

more information on the number of vehicles per type in the fleet is given.

3.1.3 Rides

It is important to note that during the period when an employee has the car re-

served, they have the freedom to utilize the vehicle as they see fit. While rides

are monitored, the employee retains the flexibility to choose the route, arrival, and

departure times to a particular location. The only restrictions are that vehicles

always have to return to their pool location, that the car is accessed at most one

hour after the start of the reservation, and that the car is returned before the end

of the reservation slot. Thus, an employee has the car for a certain time slot - which

can be multiple days, and can do whatever he likes in this time slot, as long as it

is accountable and responsible. The cost of gas is covered by Defence. Rides are

not shared in the current situation, meaning that two employees, who have similar

departure and arrival times and locations, will be assigned separate cars.

3.1.4 Users and Reservation

Defence employees can use the pool vehicles for work-related appointments. In an

app, they request a car at one of 54 pool locations. Employees are assigned a car

from the pool location. In this app, the employee can specify among others the

following:
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• Time window of reservation. This indicates the specific time period during

which the employee wants to reserve a vehicle.

• Departure location. Note that this has to be a pool location.

• Arrival location. Note that this does not have to be a pool location per se.

Many requests have as arrival location for example Schiphol, although this is

not a pool location. Since the car will always be returned to the departure

location, this is not a problem.

• Number of passengers. Although ride-sharing is not implemented in the

current planning system, employees can decide themselves to share a ride. If

so, they can indicate with how many they do.

• Type of car. If users decide themselves to share their rides with colleagues

or have lots of luggage, they can for example choose to specify they want

a passenger van. If they travel alone, they can indicate they want a small

passenger car.

More on the input of users is described in Section 5.2.1. Immediately after the

reservation is made, the employee receives an email. In this email, the location of

the car, the type of car, and the license plate are given. The employee accesses the

car with a smart card.

3.1.5 Planning

Planners manually assign cars to employees. In a planning software, planners are

notified when a new request comes in. Per pool location, they have an overview

on which cars are used for which time slot and which cars are available. They look

at the request specifications, and assign an available car. It could be the case that

the required type of car is already occupied. In this case, an alternative type of car

is given. If all cars at a depot are taken, an option for a car at a nearby depot is

given. Normally, one or two days in advance, most requests have come in. They

work with a first come first serve strategy. Employees, who hand in their request

early, are more certain of a car. Cancellations and changes in requests are taken

care of by the planners manually. They might call employees to report changes in

the planning if needed.
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3.2 New Situation

As described in Section 1.1, we will develop an algorithm for generating schedules,

which incorporates ride-sharing and decouples cars from pool locations. These im-

plementations change some of the aspects described in Section 3.1. In this section,

these and the preferences of Defence that come with these modifications are de-

scribed.

3.2.1 Depots

Depot locations do not change. However, as some pool locations are very closely

located, these are bundled into one. More information on this is provided in Section

5.1. Furthermore, in the new situation, vehicles are no longer restricted to return to

their designated depot. However, it is desirable that cars remain evenly distributed

across pool locations to avoid clustering at a single location; it is not preferable for

a pool location to have no vehicles available due to users only departing from it

and not returning to it. Nevertheless, small variations in the end occupation are

allowed. More on this is described in Section 4.1.

3.2.2 Fleet

Apart from the fact that the planning algorithm does not take into account the

type of fuel the vehicle runs on, there are no changes occurring in the fleet. At each

pool location, the actual types and quantities of vehicles are utilized. However, in

the experiments conducted in this thesis, the number of vehicles is reduced. More

details regarding this can be found in Section 7.2.

3.2.3 Rides

In the context of rides, many changes take place for employees. For oversight, the

changes are listed and discussed below.

• No vehicle possession. Users no longer possess a vehicle for a specified

period of time, which they can utilize as they see fit, but instead receive a

schedule to which they must adhere. This may require them to extend their

ride time, transport other individuals, or occasionally wait.

• Flexible roles. Roles are flexible, and it may be possible for individuals to

shift from being a driver to a passenger and vice versa.

• Returning at end of the day. It is no longer possible to have the vehicle

for multiple days. Each vehicle must be returned to one of the pool locations

by the end of the day. As can be read in Section 5.2.3, a number of reservation
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are made for multiple days. This decreases the efficiency and utilization of

vehicles drastically. Therefore, vehicles should be returned to a pool location

by the end of the day.

Although users surrender some autonomy and privilege, there is an increased effi-

ciency in utilizing the vehicles and a reduced mileage because of these limitations.

Besides, single trips to other pool locations are possible which ensures that employ-

ees do not necessarily have to return the car to the pool location from which they

came, which can be advantageous for them.

As can be further read in Sections 4.2.1 and 5.2.2, there are different types of

request available. The first type corresponds to the single ride, which involves a

trip from one pool location to another pool location without a return. Additionally,

there are returns, which can be classified as mandatory or non-mandatory returns.

Returns have an outbound and inbound ride. In the return with locations A and

B, the outbound ride is A → B, while the inbound ride is B → A. So these are

respectively the outgoing ride from the starting point to the destination, and the

ingoing ride from the destination to the end point - which corresponds to the starting

point. Single rides trivially only have an outbound ride. Although a return’s

outbound and inbound are dependent of each other, as can be further read in

Section 4.2, they could be seen as two single rides. Non-mandatory returns do not

have a guaranteed ride back, as they are going to a pool location and the vehicle

can be left there. On the other hand, mandatory returns have a guaranteed ride

back as they are going to non-pool locations, and the vehicle needs to return to a

pool location. Although it is not possible to reserve a vehicle multiple days, it is

possible for users to plan their inbound and outbound on different days. More on

this specific case is explained in Section 4.2.1.

3.2.4 Users and Reservations

The user base remains unchanged. However, the introduction of ride-sharing and

decoupling vehicles from their pool location, brings several modifications for them.

Initially, all employees hold the role of drivers; they may now also serve as riders,

so roles are flexible. Additionally, the process of making reservations undergoes

modifications, with employees now having other options to specify their preferences.

Through the use of an app, an employee can specify the following details:

• Request type. As explained before, different request types are possible. It is

possible to request a single ride, mandatory return, or non-mandatory return.

Outbounds and inbounds of returns might occur on different days.

• Departure and arrival location. In single rides, there is only one departure

and one arrival location, and both are pool locations. In return trips, there
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are two departure and two arrival locations, one each for the outbound and

inbound ride. It is important to note that the departure location of the

outbound ride corresponds to the arrival location of the inbound ride, and

vice versa. As previously explained, in a non-mandatory return, the arrival

location of the outbound ride is a pool location, whereas in a mandatory

return, it is not a pool location.

• Maximum ride time. An employee indicates its maximum ride time in its

reservation. In the experiments in this thesis, we will account 1.2 times the

actual ride time for this, as further explained in Section 5.2.2.

• Departure and arrival time windows. Time windows correspond to a

user’s nominal travel time and maximum travel time. More information on

this can be found in Section 5.2.2. Time windows must be satisfied, as further

explained in Section 4.2.3; cases where employees are too late for appointments

because they had to drop off someone else, are not desirable.

3.2.5 Planning

In this thesis, we design a planning algorithm for the one-to-many ride-sharing. By

considering requests that are known a few days in advance, the algorithm is able

to solve the problem as a static problem. Nevertheless, in Sections 8.3 and 9.3

we will also evaluate the applicability of the generated schedules within a dynamic

context, which involves adding new rides, removing rides, and including delays. In

the following sections, we will delve further into this planning algorithm.
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Chapter 4

Objective and Constraints

In the planning algorithm, two important aspects are the objective function and the

constraints. The objective function evaluates solutions by assigning them a fitness

score. This function comprises various components, making it multi-objective in

nature. On the other hand, the constraints ensure that the found solutions are

feasible. Both the objective and constraints are discussed in Sections 4.1 and 4.2,

respectively. Before elaborating on the multi-objective function, it is crucial to

discuss an essential aspect of the problem representation, which is further discussed

in Section 6.2.2. A route corresponds to the ride plan for a particular vehicle.

Requests are placed in routes, and a route can fall into one of two types: original

or additional.

Original and Additional Routes: The original routes refer to the routes that

form part of the final schedule, representing the actual routes to be driven

by real vehicles. In contrast, the additional routes are scheduled for dummy

vehicles and trips placed in these routes are not actually driven. Furthermore,

it is possible for a route to be empty. If an original route is empty, it means

the corresponding vehicle does not have any rides planned, and is thus unused.

4.1 Objective

The objective function comprises four components: the ratio of the total distance

travelled to the total distance travelled without ride-sharing, the number of non-

empty vehicles, the number of users that cannot be accommodated within existing

vehicles, and the deviation between the actual and desirable numbers of vehicles

remaining at the pool locations by the end of the day. All of these components

should be minimized. Note that in the first two components, i.e. the distance

component and non-empty route component, only original routes are considered

as these are the routes actually driven. Also note that the number of users that
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cannot be accommodated within existing vehicles is equal to the number of users

that are placed in additional routes. Furthermore, minimizing the number of non-

empty vehicles is not a direct goal in itself. However, incorporating this component

is crucial in order to avoid requests that could have been accommodated serially in

the same vehicle ending up being assigned to separate vehicles. Further details on

this matter can be found in Section 7.3. Moreover, adhering to the requirements

of Defence, small deviations in vehicle occupation at pool locations are considered

insignificant, while larger deviations carry greater significance. To capture this

behaviour, an exponential function is used to represent the deviation between the

actual and desirable numbers of vehicles. By raising the exponential function to

the power of the absolute difference between these values, the objective function

is designed to place more emphasis on larger deviations compared to smaller ones.

All components are multiplied by a hyperparameter, enabling the decision maker to

assign weights to each component based on their relative importance. Consequently,

the multi-objective function is formulated as follows:

min

 I∑
i=1

[
xi

(
α
di
vi

+ βzi

)
+ γli (1− xi)

]
+

J∑
j=1

K∑
k=1

[
δe |ojk|

]
In this formulation, the hyperparameters and variables present the following:

α : Hyperparameter for total travel distance with ride-sharing ratio component.

β : Hyperparameter for the number of non-empty vehicles component.

γ : Hyperparameter for non-served users component.

δ : Hyperparameter for occupation deviation at pool locations component.

I : Number of routes (both original and additional).

J : Number of pool locations.

K : Number of vehicle types.

xi :

1, if route i is original.

0, if route i is additional.

di : Actual travel distance of route i.

vi : Travel distance of route i without ride-sharing.

zi :

−1, if route i is empty.

0, otherwise.

li : Total number of users in all rides in route i.

ojk : Difference between actual and desired occupation of type k at pool location j.

21



4.2 Constraints

To ensure feasibility, a number of constraints should be satisfied by all routes in the

solution. As discussed before, a route corresponds to the ride plan for a particular

vehicle. In the subsequent subsections, these constraints are listed and discussed.

Note that all these constraints should be satisfied by both additional and original

routes. The only exception is Constraint 1., which does not have to be satisfied in

additional routes.

4.2.1 Routing Constraints

1. Start and end point

All non-empty original routes should originate and end at a pool location.

The departure pool location and arrival pool location of a vehicle should not

necessarily be the same. As explained in Section 4.1, an even distribution of

vehicles over the pool locations is maintained by the objective function. Note

that this constraint does not have to be satisfied for additional routes. As

these routes are not driven, it is not a problem if no vehicles are available

at the departure time of the first user or if the vehicle is left at a non pool

location.

2. Exactly one route per corresponding pickup and dropoff

The pickup and corresponding dropoff must be assigned to exactly one and

the same route. Note that this route could be either additional or original.

This constraint ensures that each customer is placed in at most one vehicle,

and that a pickup and dropoff can not be split between multiple routes.

3. Pickup before dropoff

Pickup must occur before dropoff for each customer. This requirement ensures

that ride plans are formed in a logical and sequential manner.

4. Inbound and outbound rides

As can be further read in Section 5.2.2 and is already shortly described in

Section 3.2.3, a distinction is made between single rides, non-mandatory re-

turns, and mandatory returns. Returns are, as described in Section 3.2.3,

further divided into an outbound ride and an inbound ride. In the case of

non-mandatory returns, unlike the mandatory ones, it is possible for the out-

bound ride to be scheduled without the inbound ride. However, for both it

is not permissible for the inbound ride to be scheduled without the outbound

ride being scheduled, as the inbound ride cannot be executed independently.

A summary of this information is presented in Table 4.1. Note that ’original’
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Inbound
Return Type Outbound

Present Absent
Present Feasible Feasible

Non-mandatory
Absent Infeasible Feasible
Present Feasible Infeasible

Mandatory
Absent Infeasible Feasible

Table 4.1: Feasibility for present and absent in- and outbound rides in mandatory
and non-mandatory returns

and ’additional’ correspond to the terms ’present’ and ’absent’ in Table 4.1,

respectively.

As described in Section 3.2.3, it is no longer possible for individuals to possess

a vehicle for multiple days. Vehicles are returned to a pool location by the end

of the day. However, inbound and outbound rides of returns can occur on dif-

ferent days. For returns with bounds on different days, specific arrangements

must be specified. The outbound of a mandatory return, occurring on a day

different from the inbound, will never be placed at the end of an original route.

Such a placement would violate Constraint 1., as the car would end up at a

non-pool location by the end of the day. Consequently, these users can only

reach their destination by being dropped off in a ride-sharing arrangement.

This means that the concept of a guaranteed ride back no longer applies in

this situation, as there is no car stationed at this location to provide the user

with a return trip on the day of the inbound. The only way to return is by

sharing a ride with another user, which is not always guaranteed. Therefore,

when a mandatory return has an outbound present, the inbound cannot be

guaranteed. Thus, when the outbound and inbound of a mandatory return

are requested on different days, the ride back, unlike the normal situation, is

no longer assured.

5. Outbound before inbound

Outbound rides should always occur before the corresponding inbound ride.

4.2.2 Vehicle Occupation Constraints

6. Maximum occupation

The number of users in a vehicle must not exceed the maximum capacity of

that vehicle, which is not constant but varies per vehicle type.

4.2.3 Time Constraints

7. Event time in time window

Each event, whether it is a pickup or dropoff, is assigned a time window within
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which it can take place. The time windows are consistent with the nominal

ride time from the pickup to the dropoff location and the maximum ride time.

The maximum ride time is the time the user is willing to travel. More on these

time windows and ride times can be read in Section 5.2.2. The actual time the

event occurs at, is referred to as the event time. The event time for departure

must fall within the departure time window, while the event time for arrival

must fall within the arrival time window.

Earliest Possible Event Time All event times are scheduled as early as

possible, aiming to increase slack and robustness, which is important when

dealing with delays and changes in the schedule. More on this can be read in

Sections 8.3 and 9.3. For the starting point in a route, the event time is set as

early as possible within its time window. The event time of the next event is

calculated by adding two components to the previous event time: the service

time, which is always two as explained in Section 5.2.2, and the ride time of

the previous event to the next event.

There are three possibilities regarding this newly calculated event time, as

shown in Figure 4.1. The first possibility is that the event time occurs before

the time window begins. In this case, the event time is dragged forward to

the earliest possible moment of the time window. The second possibility is

that the event time occurs within the time window. In this case, nothing

happens as it is feasible. The third possibility is that the event time occurs

later than the end of the time window, making it infeasible. By scheduling

events as early as possible, we aim to make the solution more robust. By

doing this, the effects of delays and real-time changes are minimized. More

on this robustness is discussed in Sections 8.3 and 9.3.

Figure 4.1: Calculating event times
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8. Maximum ride time

In addition to the requirement of the event time falling within the time win-

dow, the difference in event time of the pickup and dropoff should not exceed

the maximum ride time. More on the maximum ride time is elaborated in

Section 5.2.2. As we will also observe in this section, it might be possible that

Constraint 7. is satisfied, while the maximum ride time is exceeded.

4.2.4 Depot Constraints

9. Availability of vehicles

As illustrated in Section 5.1, the pool locations are equipped with various

types of vehicles. As explained earlier in Section 4, routes are associated

with the ride plan of a specific vehicle. Therefore, each route corresponds to

a particular vehicle type. A route is considered feasible only if, at the event

time of the first pickup location on that route, i.e., the location from which the

vehicle departs, there is still a vehicle of this specific type available. Further

details on this aspect can be found in Section 6.5.3.
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Chapter 5

Data

In this section, we provide an overview of the data available for the pool locations

and requests. Specifically, we describe the data for the pool locations in Section

5.1 and the data for the requests in Section 5.2.1. Subsequently, we explain the

data preprocessing techniques employed in Section 5.2.2 to make the data suitable

for conducting experiments in Section 8. Following that, we present a concise data

analysis of the request data in Section 5.2.3. In Section 5.3, we elaborate on the

process of creating a distance matrix.
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Figure 5.1: Total number of vehicles per type

5.1 Pool Locations

An important database used, provides an overview of the pool locations. In this

Dutch-language xlsx -file, all pool locations are presented with their official abbrevi-

ations, their location, and the number of vehicles of each type per pool location. As
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described earlier in Section 3.1.2, there are four different types of vehicles: vehicles

with capacity 2, 4, 5 or 8. In Figure 5.1, the total number of vehicles per type is

given. We can observe that the most occurring type is the one with a capacity of 4.

Following that, the larger vehicles with a capacity of 8 are the next most common,

followed by vehicles with capacities of 5 and 2.

Some pool locations are very closely located. In Den Helder, there are five

different pool locations, in Darp two, in Gilze Rijen two, and in Doorn two. These

very closely located pool locations are clustered and seen as one single location

with their coordinates being the middle point of the others. In Figure 5.2, the

number of vehicles per type per pool location is presented. As can be seen, some

pool locations as the combined pools of Den Helder have up to 143 vehicles, while

other pool locations have as few as six vehicles, as for instance Willem Lodewijk

van Nassaukazerne, with abbreviation ’MARNE’.
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Figure 5.2: Number of vehicles per type per pool location

5.2 Requests

For developing and evaluating the planning algorithm in Section 8, which can be

applied in the new situation described in Section 3.2, historic request data is used.

We will describe this raw data in Section 5.2.1, and in Section 5.2.2 explain how we

prepare it to be usable for the planning algorithm. In Section 5.2.3 we analyse the

data.
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5.2.1 Data Description

Request data is obtained from a file granted by Defence, containing all anonymized

ride requests for the period from January 1, 2022, to January 31, 2022, including

additional information about the nature of the requests. It was provided in a

Dutch-language xlsx -file with 25,161 rows and 55 columns. Each row represents a

single request for reserving a car, including both accepted and rejected requests.

All requests in this database correspond to return rides, as described in Section

3.1.3. So for the return trip with outbound A → B and inbound B → A, a single

row is used, indicating the departure location as A and the arrival location as B.

So the database provides the departure and arrival locations for the outbound ride.

Columns we will use are listed below and are briefly described.

• Request ID is a unique combination of digits for representing the request.

• Request date represents the specific date and time, accurate to the minute,

when a request is submitted.

• Departure date represents the specific date and time, accurate to the minute,

when a reservation starts.

• Return date represents the specific date and time, accurate to the minute,

when a reservation ends.

• Request status represents the status of the request. Examples of possible

values are ’planned’, ’in progress’, ’cancelled by planner’, ’cancelled by user’,

and ’vehicle not picked up’. A request is cancelled by a planner if for example

no cars are available for that specific time slot.

• Cancelled is a column with binary values, representing whether the request

is cancelled or not. This column corresponds with the request status-column.

• Number of passengers represents the number of passengers. As described

earlier in Section 3.1.4, although ride-sharing is not implemented in the cur-

rent planning system, employees can decide themselves to share a ride. If so,

this column represents with how many they do.

• Departure location represents the location from which the vehicle is picked

up and returned to. Note that this is always a pool location.

• Arrival location represents the destination of the user of the outbound ride.

Note that this is not always a pool location.
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5.2.2 Data Preparation

In this subsection, the steps taken in the data preparation process to make the data

suitable for the experiments described in Section 8, which are consistent with the

new situation as described in Section 3.2, are described. We will explain which un-

usable rows and columns are removed, how a string similarity algorithm is applied,

how ride types are determined, and how time windows are formed.

Removal of Unusable Rows and Columns Several rows contained empty

fields in the departure location column. These rows are deleted as they are unusable.

Similarly, a number of rows have departure locations which are not pool locations.

These corresponding rows are deleted as well. In Section 7.2 is explained how we

compensate for these removed requests. Additionally, requests that are directly or

indirectly cancelled by the user are also removed. This includes requests cancelled

by the user themselves, requests cancelled due to the user’s non-confirmation, or

cases where the vehicles were not picked up. Furthermore, all columns are removed

except for those described above, such as the column representing the reason for

the request and the column indicating whether the ride is function-related or not.

String Similarity A main issue with the request dataset is that users man-

ually type their destination, which is recorded in the departure location-column.

As a result, there is an inconsistency in the destinations. For instance, the lo-

cation ’Kromhoutkazerne’ in Utrecht is indicated not only as ’Kromhoutkazerne’

but also as ’Kromhoutkazerne Utrecht’, ’Kromhout’, ’KHK’, or simply ’Utrecht’.

To deal with this problem, two string similarity methods from the Python mod-

ule Fuzzywuzzy are used; fuzz.ratio and fuzz.partial ratio. Both methods

calculate the edit distance between token orderings in the input strings using the

difflib.ratio function. This function returns a similarity score between 0 and

1, where 1 represents identical sequences and 0 indicates no similarity. The first

method, fuzz.ratio, directly calls difflib.ratio on the two input strings. On

the other hand, fuzz.partial ratio aims to handle partial string matches more

effectively. It uses the shortest string and compares it against all substrings of the

same length of the longer string, returning the highest score. The manually written

destination is compared using these two methods against the actual names of all

pool locations, the official abbreviations, and the places they are located in. Subse-

quently, the maximum score from these comparisons is chosen, and if it surpasses

0.82, which is a threshold determined through trial and error, the destination is

assigned the name of the corresponding pool location. Furthermore, the remaining

destinations are compared with each other, and clustered together and given the

same name, if they achieve a score higher than 0.90 on either of the two methods,
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again determined through trial and error.

After the majority of the locations have been automatically cleaned, the remain-

ing portion is addressed manually. In the database is searched for destinations with

values as ’Local’, ’Hospital’, ’Diverse’, ’XXX’, or ’Regional’, as these destinations

lack a specific destination. These requests are all deleted as they are unusable. Cer-

tain locations appeared more frequently, but could not be linked to a geographic

location. Often, these were unofficial abbreviations that occur within the jargon of

the personnel. An example of this is the use of ’ISK’ instead of ’Generaal Winkel-

mankazerne’. These locations have been replaced with the official names of the

corresponding pool location.

As explained, we substitute place names with a pool location if one is located

in that place, so for example ’Utrecht’ will be substituted by ’Kromhoutkazerne’.

When the departure location is also ’Kromhoutkazerne’, the departure and arrival

locations become identical. This is a problem because, as described, the database

only provides the departure and arrival locations for the outbound ride. When the

locations are identical, the outbound of the return trip would appear as A → A,

and the inbound would also be A → A. To address this issue, arrival locations

in rows with the same locations in the specified columns are replaced with the

place name where the pool locations are located. Thus, in the case of a departure

location of ’Kromhoutkazerne’ and an arrival location of ’Kromhoutkazerne’, the

arrival location is replaced with ’Utrecht’.

Ride Type Subsequently, a column called ’ride type’ is added. Values in this col-

umn are ’mandatory return’, ’non-mandatory return’, or ’single ride’. As described

in Section 3.2.3, a request is classified as ’mandatory return’ when the ride is going

to a non-pool location. This type of ride is mandatory because the vehicle needs to

return; it cannot be left there. Rides going to pool locations are labelled as ’non-

mandatory return’. Then, from the ’non-mandatory return’ rides, a random 10% of

the rides are selected and labelled as ’single ride.’ This percentage was determined

through discussions with Defence, as it is expected to represent the proportion of

rides that would be one-way if given the option. Lastly, the rows labelled ’manda-

tory return’ or ’non-mandatory return’ are duplicated. The originals are assigned

the value ’Out’ in an added column called ’Bound’, while the duplicates are assigned

the value ’In’ to represent respectively out- and inbound rides. In these duplicates,

the departure location and arrival location are swapped, resulting in outbounds and

inbounds of the form A → B and B → A. Ultimately, after deleting unusable rows

and duplicating and editing returns, for the month of January a total of 46,111

rows, corresponding to ride requests, are present in the database.
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Time Windows Another issue with this dataset is the absence of time windows.

To evaluate the algorithm for the new situation described in Section 3.2, these

time windows need to be established. There should be departure and arrival time

windows within which a user can depart and arrive, as specified by Constraint

7.. These time windows need to be created based on the values in the columns

’Departure date’ and ’Return date’, as this is the only time-related data we have.

To establish time windows for outbound rides, the departure date is utilized, while

the arrival date is used for inbound rides. It was decided, again through discussion

with the decision-maker, that departure time windows for outbounds and arrival

time windows for inbounds should be 20 minutes for realistic results. Besides, it is

discussed that service-time, such as getting in and out of vehicles and denoted as

di at departure or arrival i, takes two minutes. The maximum travel time, L, is

determined by increasing the nominal travel time, ti,n+i by 20%. The time windows

for departure i and its arrival n+ i are established as follows:

• Departure time window for outbound rides. The time recorded in

the departure date-column is considered the latest departure time, li, for the

outbound ride. This is because it represents the time users have specified for

their departure in their reservations. It cannot be later than this, as it may

already be the deadline for users to leave and arrive on time. The earliest

departure time, ei, for the outbound ride is determined by subtracting 20

minutes from this time as shown in Figure 5.3.

• Arrival time window for outbound rides. The earliest arrival time for

the outbound ride, en+i, is calculated by adding the nominal travel time and

service-time to the earliest departure time. The latest arrival time, ln+i,

is determined by adding the maximum travel time and service-time to the

latest departure time. By doing this, we have created an arrival time-window

from the departure time-window, which perfectly fits the feasible arrival time

window. If a person departs at the earliest moment possible and drives the

nominal ride time, and accounts for the service-time, the user will get there

at the earliest arrival time. Besides, if a user departs at the latest possible

departure time and the trip takes as long as the maximum ride time, the user

will arrive at the latest possible arrival.

• Arrival time window for inbound rides. For inbound rides, the value in

the return date-column is used to establish time windows. The latest arrival

time is set to this value since it represents the time when users must return the

vehicle at the latest. The earliest arrival time for inbound rides is determined

by subtracting 20 minutes from this time, as shown in Figure 5.4.
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Figure 5.3: Setting time windows for outbound rides

• Departure time window for inbound rides. The earliest departure time

for inbound rides is determined by subtracting the maximum ride time and

service-time from the earliest arrival time. The latest departure time is cal-

culated by subtracting the nominal ride time and service time from the latest

arrival time.

Figure 5.4: Setting time windows for inbound rides

If a user departs at the earliest possible time and the trip is performed with

nominal ride time, the person will arrive before the arrival time window begins,

as shown in Figure 5.5. Conversely, if a user departs at the latest possible

departure time and the trip takes longer than the nominal ride time, the user

will arrive later than the latest possible arrival, as also shown in Figure 5.5.

This figure shows we have a bigger reachable arrival time window that does

not perfectly match the smaller feasible arrival time window but includes all

points of this feasible time window. Rides that arrive before the start of the

arrival time window must wait until the arrival time window begins, and rides

that arrive later than the arrival time window are declared infeasible. This

concept is discussed in Section 4.2.3. It is worth noting that waiting-time

provides more robust solutions that better handle cancellations and other

changes. More on robustness can be read in Sections 8.3 and 9.3.

Note that for both inbound and outbound rides, it is possible for the maximum ride

time to be exceeded even if the event times of pickup and dropoff fall within their

corresponding time windows. This is the reason why satisfying solely Constraint 7.

is not sufficient, but Constraint 8. must also be fulfilled.

32



Figure 5.5: Feasible and infeasible part of reachable arrival time window, from the
constructed departure time window

5.2.3 Data Analysis

To get insight in the edited request data, a visualization is provided in this sub-

section. We will look at the number of requests per day, reservation durations,

departure and arrival locations, time windows, and maximum ride times.

Requests per Day As described in Section 5.2.2, the utilized request data cor-

responds to the period of January 2022. Figure 5.6 presents a bar plot depicting

the number of requested departures per day for both outbounds and inbounds. It

is evident that there are fewer requests during weekends compared to weekdays.

Additionally, a noticeable decrease in requests is observed during the first week

following New Year’s Day, which is often a holiday week. The number of requests

appears to increase in the second week and stabilizes in weeks 3 and 4, providing a

more accurate representation of the daily request count.
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Figure 5.6: Number of requested departures per day in January 2022
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Reservation Duration As previously discussed in Section 3.2.3, it is possible for

the inbound and outbound events to occur on different days. Figure 5.7 illustrates

the distribution of the time differences between these bounds for all requests. If

the request is for a single ride, the difference is counted for as 0 in this plot. It is

evident that the majority of rides occur on the same day, but a significant portion

has a one-day difference. This distribution gradually decreases as the time difference

increases. Further examination shows that rides with their corresponding bound on

a different day occur relatively often around the weekend days.
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Figure 5.7: Difference in days outbound and inbound

Departure and Arrival Locations Furthermore, Figure 5.8 displays both the

outbound and inbound request counts per departure location for pool locations and

the ten most frequently occurring non-pool locations. The reason for the presence

of non-pool locations within the departure locations is, as can be read in Sections

3.2.3 and 5.2.2, that in mandatory returns the outbound ride goes to a non-pool

location, while the inbound ride arrives at a pool location. Therefore, the inbound

ride departure locations include non-pool locations.

Plotting the request counts per arrival location, would give a very similar plot

as the majority of the trips are returns, as shown in Figure 5.9. If all trips were

returns, the plots of request counts per departure location and request counts per

arrival location would be identical, as each departure location would always be an

arrival location and vice versa. However, due to a number of single rides, there is a

slight variation.
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Figure 5.8: Request counts per departure location in Janaury ’22
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Figure 5.9: Ride type counts

An interesting observation is the relationship between the request counts per

departure location and the number of available cars per pool location, the former

in Figure 5.8 and the latter in Figure 5.2. By plotting these values against each

other in a scatter plot with a trend line, shown in Figure 5.10, it is evident that a

clear correlation exists. The number of vehicles per pool location is proportionate

to the number of departure requests per pool location in January ’22.
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Figure 5.10: Correlation between departures and available vehicles

Time windows and Maximum Ride times Figure 5.11 presents the earliest

departure and latest arrival times for outbound rides, categorized into hourly bins,

encompassing all hours of a day for all requests in the month of January. It can be

observed that outbound rides start as early as 4:00 AM, with a significant increase

from 5:00 AM onwards. This trend continues to rise, and a clear peak is visible in

the morning around 7:00 AM for both departures and arrivals of outbound rides.

This pattern aligns with the rush hour when employees leave for appointments. At

8:00 AM, there is a peak in arrivals, indicating that most individuals have reached

their appointments. Outbound rides decrease significantly after 10:00 AM, remain-

ing relatively low throughout the day. Furthermore, it can be noted that, in general,

there are more outbound departures than arrivals before 7:00 AM, which switches

after 7:00 AM. Figure 5.12 displays a mirrored plot, representing the earliest de-

parture and latest arrival times for inbound rides. In this figure, inbound rides

increase throughout the day, reaching a peak around 4:00 PM and 5:00 PM for

the earliest departure time, and a peak around 6:00 PM for the latest arrival time.

Again, these findings align with the rush hour when people return home from their

appointments. When combining these two figures in Figure 5.13 for both inbound

and outbound rides, the distribution clearly illustrates the morning and evening

rush hour peaks.

Figure 5.14 showcases a histogram representing maximum ride times for the

requests placed in January, grouped into 5-minute bins. There are a few requests

from the Netherlands to Norway, which resulted in a peak in the graph at a ride

time of approximately 1200 minutes. These have been omitted from this plot for
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Figure 5.11: Earliest departure and lat-
est arrival times for outbound rides
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Figure 5.12: Earliest departure and lat-
est arrival times for inbound rides
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Figure 5.13: Earliest departure and lat-
est arrival times for all trips
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Figure 5.14: Max Ride Time Distribu-
tion in 5-minute bins

a clearer illustration. From this figure, it can be observed that there is a peak

at approximately 20 minute-rides. After this peak, it increases steadily with a

peak around 40 minute-rides and starts decreasing after. One more sudden peak

happens at approximately 70-minute rides. The decrease continues steadily until

approximately 200 minutes, indicating that rides might take more than 3 hours.
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5.3 Distance Matrix

In the revised database, we are left with 676 unique locations. For algorithmic

purposes, it is necessary to determine all pairwise distances and nominal travel

times and store these in a distance matrix. This results in a total of 6762 = 456, 976

distances and travel times. To handle such a large volume of data, a suitable

software option is the Google Distance Matrix API, which provides up to 40,000

requests for free. However, this number is insufficient to fill our distance matrix

completely. To address this issue, we utilize a portion of the available requests to

directly populate the distance matrix, and for the remaining entries, we will employ

estimation techniques as further described in this section.

5.3.1 Filling frequent entries

The entries being filled via API-requests, are the most frequently occurring lo-

cations, which include both pool locations and the most common non-pool loca-

tions. In this process, we can exploit the symmetry of the distance matrix. As

the distances and travel times are symmetric along the diagonal and are zero on

the diagonal, we do not need to make a request for each entry. For a total of 234

locations, comprising all 41 pool locations and the 193 most common locations, we

only need 54,756−234
2 = 27, 261 requests to fill the entries in the matrix, instead of

2342 = 54, 756. After doing this, we are left with 12,739 requests.

5.3.2 Filling remaining entries

To complete the remaining entries in the distance matrix, we utilize the geographic

coordinates of all locations and the remaining API-requests. A regression analysis is

performed between the straight-line distances calculated from the coordinates and

the actual distances obtained from API-requests. Besides, a second regression is

performed between the actual distance and the actual travel time. From the Python

library Geopy, the geocoding provider Nominatim is used to retrieve the coordinates

of all locations. These coordinates enable the calculation of straight-line distances

using the Geodesic-module also provided by the Geopy-library, which accounts for

the Earth’s curvature. We randomly select 5,000 pairs of locations and calculate

their straight-line distances. Subsequently, we query the API for the corresponding

distance and travel time. This process gives us the straight-line distance, and the

exact travel distance and time provided by the API, for these 5,000 location pairs.

Of these 5,000 data points, 80% are used for training a linear regression model,

while the remaining 20% are used for testing. Note that a number of locations were

not recognized by the API and are omitted from the regression.
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Figure 5.17: Training data, test data,

and the regression line

Regression 1 The first regression is the regression between the straight-line dis-

tances calculated from the coordinates and the actual distances obtained from API-

requests. In Figure 5.15, all data points are shown. In this figure, it is immediately

apparent that there is a cloud of data points where a regression can be found. How-

ever, it is also noticeable that some points deviate from this cloud. The reason

behind this discrepancy lies in the fact that location names are not always unique.

For instance, there is a place called ’Bergen’ in both the Netherlands and Germany.

It is possible that when retrieving coordinates, ’Bergen’ in the Netherlands is used,

while the API considers ’Bergen’ in Germany. To address this issue, API distances

that are greater than 1.8 times the straight-line distance are omitted. Additionally,

points where the API distances are smaller than the straight-line distance are also

omitted. This results in a usable set of data points, which is depicted in Figure

5.16. Now, only the cloud remains, which data points are used in the regression.

In this regression analysis, 80% of the data points are used as training data, while
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Intercept 4440.834
Slope 1.260
R-squared 0.988

Table 5.1: Intercept, slope and R-squared of regression 1

the remaining 20% serve as test data. Figure 5.17 illustrates the training data, test

data, and the regression line. Table 5.1 presents the obtained regression coefficients

and the corresponding R-squared score. With all coordinates known, the straight-

line distance can be calculated for all remaining pairs of the distance matrix, and an

accurate estimation of the actual distance can be made using the following formula,

with all distances in meters:

Travel distance = 4440.834 + 1.260× straight-line distance

This formula obtains an exceptionally high R-squared score of 0.988, indicating that

approximately 98.8% of the variability in the API travel distance can be explained

by the linear relationship with the straight-line distance.

Regression 2 In the second regression, we examine the actual driving distance

and the actual travel time. In this case, we do not use the coordinates, and thus

it is a regression between the two values directly provided by the Google Distance

Matrix API. In this analysis, we once again focus on the 5,000 randomly selected

location pairs that were queried with the API to obtain actual travel time and travel

distance. As before, the pairs in which a location is not recognized by the API,

are excluded. Figure 5.18 displays all the data points of distance against travel

time. As before, we observe a distinct cluster of points where a regression can be

identified. However, there are also data points that appear to deviate from the

cluster, lying outside of it. These points correspond to pairs involving at least one

of the following locations: ’Deil’, ’Bergen’, and ’Norway’. It is possible that the

API utilizes different routing algorithms or data sources for calculating distances

and travel times, which can account for these variations. To address this, we omit

these points, resulting in the data points shown in Figure 5.19. With the filtered

data points, we proceed to perform regression analysis on the remaining cluster.

Once again, we allocate 80% of the data as training data and 20% as test data.

Figure 5.20 shows the training data, test data, and regression line. In Table 5.2,

the intercept, slope and R-squared are shown of this regression.
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Intercept 702.494
Slope 0.0369
R-squared 0.998

Table 5.2: Intercept, slope and R-squared of regression 2
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Figure 5.20: Training data, test data

and the regression line

This results in the following formula for determining the actual travel time from

the actual distance, with travel time in meters and travel distance in seconds:

Travel time = 702.494 + 0.0369× travel distance

Again, in this regression, an exceptionally high R-sqaured score is obtained. The

score indicates that approximately 99.8% of the variability in the API travel time

can be explained by the linear relationship with the API distance, providing a

reliable formula for calculating the travel time from the obtained travel distance.
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5.4 Recap on Data Preparation and Distance Matrix

In this section, we present a recap of the data preparation process and the formation

of the distance matrix, along with its intended application.

Data Preparation In Section 5.2.2, we discussed the processing of request data

to make it usable for developing and evaluating the planning algorithm in Section 8,

in the context of the new situation described in Section 3.2. Historic request data of

January ’22 was employed for this purpose. The initial step involved the removal of

unusable rows and columns. Subsequently, string similarity algorithms were utilized

to group similar manually entered locations. Furthermore, the different ride types

were introduced, and returns were split into two separate requests in the database.

Finally, we explained the procedure for establishing time windows for these requests.

Distance Matrix In Section 5.3, we discussed the process of forming the distance

matrix. We employed the Google Distance Matrix API to retrieve distances and

ride times. Due to the limited number of requests allowed by the API, the distance

matrix entries corresponding to important locations were directly obtained through

requests to the API, and estimations were made for the remaining entries. To

accomplish these estimations, two regression models were developed: Regression

1 for travel distance and Regression 2 for travel time. For each regression, a

dataset comprising 5,000 random location pairs was used, with 80% serving as

training data and 20% as test data. The API was employed to obtain the travel

time and distance for all these location pairs. Additionally, the coordinates of all

locations present in the distance matrix were obtained.

Regression 1 yields a formula to estimate travel distance based on the straight-

line distance derived from the coordinates. On the other hand, Regression 2 provides

a formula to estimate travel time based on travel distance. Both regression models

demonstrate an exceptionally high R-squared score. Consequently, the missing en-

tries in the distance matrix are reliably estimated using the formula from Regression

1 to estimate travel distance based on coordinates, and then employing the formula

from Regression 2 to estimate travel time using the obtained travel distance.
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Chapter 6

Solution Method

In this section, we present the solution method for addressing the ride-sharing prob-

lem for the situation discussed in Section 3.2. The algorithm employed to solve this

problem is referred to as CombinedApproach, named so because it considers both

ride-sharing possibilities and the option of vehicles operating independently of their

pool location. In Section 6.1, we present the assumptions and simplifications the

model makes. Moreover, Section 6.2 illustrates how the problem is represented and

implemented. The preprocessing steps involved in this algorithm will be examined

in Section 6.3. Solving the problem encompasses two distinct aspects: the initial

solution heuristic, described in Section 6.4, and an iterated local search (ILS) which

uses a simulated annealing (SA) approach, described in Section 6.5. Additionally,

we will elaborate on the neighbourhood operators and demonstrate how the con-

straints, discussed in Section 4.2, are checked.

6.1 Assumptions and Simplifications

Due to the complexity of the real-world situation, CombinedApproach relies on

certain assumptions and simplifications to facilitate the analysis. These are outlined

below:

• There are no uncertainties and disturbances. However, we revise this assump-

tion in Sections 8.3 and 9.3.

• The nominal travel time and distance between locations are realistic, but

constant, pre-known, and do not change. In Section 5.3, we described how we

got this data.

• The need for vehicle charging is not considered.

• Time windows and maximum ride times are artificially established due to

absence of this data, as discussed in Section 5.2.2.
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6.2 Representations and Implementations

In Section 6.2.1, we will discuss the representation and implementation of the prob-

lem. In Section 6.2.2, we specify how routes are presented.

6.2.1 Graph

The problem is represented as a weighted directed graph. We will discuss the nodes

and arcs and what they present.

Nodes A request consists of two events: a pickup and a dropoff. Both are rep-

resented as nodes in the graph. It should be noted that in Section 5.2.2, it was

described that return requests are split into two separate requests with reversed lo-

cations. Therefore, a user’s return would be presented as four nodes in the graph: a

pickup and dropoff for the outbound ride, and a pickup and dropoff for the inbound

ride. Nodes have properties, i.e. attributes, which are listed and shortly explained

below:

• Node ID is a unique combination of strings and digits to represent the re-

quest ID, whether it is a pickup or dropoff node, whether it is a node that

corresponds to an inbound or outbound ride, and whether it is a node that

corresponds to a single, mandatory or non-mandatory return.

• Location represents the specific location of the node.

• Type represents whether the node is a pickup or a dropoff.

• Neighbours represents a list of neighbours its arcs are directed to. Shortly,

we will elaborate on the arcs and explain why they are important.

• Time window represents the time window of the corresponding activity

of the node. This could be a departure time window for pickups and an

arrival time window for dropoffs. Construction of time windows is explained

in Section 5.2.2.

• Event time is a moment in time that corresponds to the actual time the

corresponding event would occur. The event time of a node is determined

based on the event time of the previous node and the travel time from the

previous node to the current node, as explained in Section 4.2.3.

• Maximum ride time presents the maximum ride time of the corresponding

user. This concept is explained in Section 5.2.2.
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Arcs An arc is established from node A to node B if it is potentially feasible,

within the given time windows, for a vehicle to handle event A first, and event B

subsequently. All nodes are initially connected to each other, forming a complete

graph. However, to adequately form the graph, the arc from a starting node to an

ending node is pruned in the following cases, as described by Cordeau [18] (2006):

• The starting node represents a dropoff, and the ending node represents the

corresponding pickup.

• The starting node represents a node from the inbound ride, and the ending

node represents a node from the corresponding outbound ride.

• The earliest departure time of the starting node, plus the travel time to the

ending node and the service time, exceeds the latest departure time of the

ending node.

Note that we will elaborate on an additional pruning rule, which is based on

detours and maximum ride times, in Section 6.3

Figure 6.1: Example of a graph for pickups and dropoffs of single rides of person 1,

2, and 3, and locations A, B, and C

In Figure 6.1, we present an example of a graph illustrating the pickup and

dropoff nodes associated with three single-ride requests from individuals 1, 2, and 3.

The nodes in this graph represent three locations: A, B, and C. Notably, each pickup

node is connected to its corresponding dropoff node, indicating the possibility of a

vehicle handling the dropoff event right after the pickup. Furthermore, the figure

demonstrates the presence of arcs between events that are not linked to the same

individual, for instance, the two events occurring at location A: the pickup of person

1 and the pickup of person 2. This implies the potential feasibility of executing both

events in sequence using a single vehicle. An example of a potentially feasible route

in this graph is:

A 1 p → A 2 p → B 1 d → C 2 d → C 3 p → B 3 d

Initially, the vehicle is located at pool location A, and person 1 takes the vehicle

for their single trip. At location A, person 2 also boards the vehicle. They then
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travel together to location B, where person 1 is dropped off. Person 2 continues

alone to location C, where their trip ends. At location C, the vehicle is taken by

person 3, who drives their trip to pool location B. Thus, a total of three trips are

completed. Notice how ride-sharing occurs between individuals 1 and 2 in this

route, and how the vehicle is not bound to a specific pool location, as the route

starts at location A and ends at B.

Furthermore, it is important to note that every feasible route is present as a path

in the graph, but that not every route found in the graph is necessarily feasible,

as we will explain shortly. This is why we previously used the term ’potentially

feasible’. As this is an important observation, we will state it here:

Graph Paths: A route can only be considered feasible if it exists as a path in the

graph. However, it is important to note that not every path present in the

graph is a feasible route. For a route to be feasible, it must also adhere to all

the constraints outlined in Section 4.2.

We explain this concept in Figure 6.2. We see that the earliest departure time

from the starting node i, added to the travel time to the ending node j and the

service time, does not exceed the latest departure time of node j. Therefore, in

the corresponding graph, an arc would be present from node i to node j. However,

the event time, discussed earlier in Section 4.2.3, may not align precisely with ei,

but rather with ei + δ, as shown in the figure. In this scenario, the departure time

plus the travel time to the ending node and the service time, exceeds the latest

departure time of the ending node. Consequently, it is not possible to handle event

j after event i with an event time like this at node i, despite the presence of an arc

in the graph connecting the two nodes.

Figure 6.2: Unfeasible event handling

Moreover, the weight of an arc is a tuple representing the travel distance and

travel time from the location that corresponds with the pickup to the location that

corresponds with the dropoff. These values can be derived from the distance matrix,

which is described in Section 5.3. Note that these weights are not present in Figure

6.1 for oversight.
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6.2.2 Routes

As described before, in Section 4, a route denotes the ride plan for a single vehicle.

A route is represented as a list of nodes. Furthermore, a route has the following

properties, i.e. attributes:

• Route ID is a unique number to identify each route, and thus vehicle.

• Route type represents the type of a route. As described before, in Section 4,

a route can have either type original or additional. The original routes refer

to the routes that constitute the final solution, representing the actual routes

to be driven. Additional routes, on the other hand, are scheduled for dummy

vehicles. Similar to the original routes, these routes adhere to all constraints,

except Constraint 1., which states that a route should start and end at a pool

location. These additional routes have a maximum capacity of eight.

6.3 Preprocessing

In the initial complete graph, arcs between nodes are pruned based on the criteria

described before in Section 6.2.1. Additionally, further pruning can be conducted

following another rule proposed by Cordeau [18] (2006). Specifically, consider a

pickup node, denoted as i and its corresponding dropoff node, denoted as n + i.

Arcs (i, j) and (j, n + i) with any other node j are both pruned if the travel time

from i to j, plus the service time at j and travel time from j to n+ i, exceeds the

maximum ride time specified by the person associated with node i. In Section 5.2.2

is explained how the maximum ride time is determined.

In Figure 6.3 and Figure 6.4, histograms are presented that show respectively

the distribution of the number of neighbours per node before and after applying

this pruning rule, for the typical day of January 18th. The number of neighbours is

categorized into bins of size 100. Before pruning, the histogram seemingly exhibits

two peaks. The first peak occurs around 1500 neighbours, followed by a decrease

and then a subsequent peak around 5500 neighbours. The distribution does not

display a clear pattern but rather a mixture of various values. However, after prun-

ing, a significant reduction in the number of neighbours per node is observed. The

distribution is no longer scattered, but rather a peak is formed in the range of 0 to

100 neighbours, gradually decreasing until reaching a single node with 4000 neigh-

bours. This contrast with the situation before pruning, where certain nodes had as

many as 7000 neighbours. Nodes with such a high number of neighbours typically

correspond to those with an extremely early earliest departure time, ensuring that

the earliest departure time of the starting node, plus the travel time to the ending
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node and the service time, does not exceed the latest departure time of the ending

node, as discussed in Section 6.2.1.

The time complexity of this graph pruning rule is quadratic in the number of

nodes, as for each node, every other node is examined. This relationship is shown

in Figure 6.5, where the time required for the pruning is plotted against the number

of nodes in the graph. A quadratic polynomial curve has been fitted to the data

points, highlighting the quadratic behaviour of this pruning process.

6.4 Initial Solution Heuristic

After the preprocessing stage, the matching stage begins, wherein the first step in-

volves searching for an initial solution. The insertion heuristic used for this purpose

is described in this section. Subsequently, Section 6.5 elaborates on the subsequent

local search, focusing on the exploration of neighbourhood operators and constraint

checks. Before delving further into these concepts, it is important to highlight the

following statement:
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Only Feasible Routes: The solution exclusively contains feasible routes, i.e., routes

that adhere to all the constraints outlined in Section 4.2.

The initial solution heuristic for CombinedApproach is based on the construction

insertion heuristics provided by Braekers, Caris, and Janssens [12] (2014), and Mas-

moudi, Hosny, Braekers, and Dammak [40] (2016). The pseudocode presented in

Algorithm 1 describes this heuristic. In this algorithm, all positions in all routes are

considered, and nodes corresponding to requests are inserted at their best feasible

positions. Their best position is determined using the objective function described

in Section 4.1, and a feasible route adheres to all constraints described in Section

4.2. Note that returns can be divided into an outbound and inbound ride, and that

in the case of a return request therefore four nodes need to be placed. For single

ride requests, two nodes need to be placed. In the following paragraphs, we will

discuss the different components of Algorithm 1.

Algorithm 1 Initial Solution Heuristic for CombinedApproach

1: Initialize empty routes
2: for mandatory in requests do
3: PossiblePlacements = GetPossiblePlacements(outbound, inbound)
4: if not PlacedInBestPosition(PossiblePlacements) then
5: AddAdditional(outbound, inbound)
6: end if
7: end for
8:

9: for non-mandatory in requests do
10: PossiblePlacements = GetPossiblePlacements(outbound)
11: if not PlacedInBestPosition(PossiblePlacements) then
12: AddAdditional(outbound, inbound)
13: else
14: PossiblePlacements = GetPossiblePlacements(inbound)
15: if not PlacedInBestPosition(PossiblePlacements) then
16: AddAdditional(inbound)
17: end if
18: end if
19: end for
20:

21: for single rides in requests do
22: PossiblePlacements = GetPossiblePlacements(outbound)
23: if not PlacedInBestPosition(PossiblePlacements) then
24: AddAdditional(outbound)
25: end if
26: end for
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6.4.1 Initialization

As can be seen in Algorithm 1, first the initialization of empty routes for available

vehicles per pool location takes place. After doing this, the solution exists of empty

original routes only, which all correspond to a real vehicle. After that, the requests

are divided into three categories, described in Sections 3.2.3, 4.2.1, and 5.2.2, cor-

responding to their ride types: mandatory return requests, non-mandatory return

requests and single ride requests. All requests in these three categories are placed

in routes in the respective order.

6.4.2 Order of Placement

This placement order is based on the difficulty of combining the request type in

a ride-sharing arrangement. Mandatory return requests are the greatest challenge

due to their limited variability and are thus handled first. Firstly, the inbound ride

must always occur when the outbound ride takes place. Secondly, the likelihood of

ride-sharing is lower for these requests since they involve non-pool locations often

scattered across the country. After the mandatory return requests, non-mandatory

return requests and single rides are addressed, which allow for more variability. In

non-mandatory cases, the return can be split into two single rides, as we will discuss

soon, making it easier to place them in a route.

6.4.3 Function Explanations

Algorithm 1 makes use of various functions for different procedures. This paragraph

introduces and discusses these functions.

Get possible placements Algorithm 1 frequently utilizes the function

GetPossiblePlacements(), which can be called with only an outbound, only an

inbound, or both. This function is shown in Algorithm 2. Depending on the input

it receives, the function behaves differently.

In the case of only an outbound or inbound, i.e. when two nodes need to

be placed, the function operates as follows: all possible placement positions are

considered for the pickup and dropoff within each route. Next, it is checked in

PathInGraph() if the resulting placements lead to a route which corresponds to a

valid path in the graph, as a route is only potentially feasible if it occurs as a path

in the graph, as described in Section 6.2.1. More on this function is described in

the next paragraph. Furthermore, it is crucial to note that the actual placement of

nodes does not occur during this verification process. If the path is present in the

graph, the placement option is added to a list named PossiblePlacements.

50



In the case where both outbound and inbound nodes are provided, the func-

tion examines whether all four nodes can be placed together either before or af-

ter a route. This is checked separately in the functions PlacementBefore() and

PlacementAfter(), which take the two pickups and two dropoffs as inputs. The

possible placements resulting from these checks are also added to the list.

Finally, the function returns the list with possible placements. These potential

placement options may be feasible as the paths occur in the graph, but it is not

checked yet whether they adhere to the constraints discussed in Section 4.2. The

constraint checks will be discussed in detail in Sections 6.5.2 and 6.5.3. Furthermore,

note that the function also takes into account empty routes during this evaluation

process.

Algorithm 2 Function to Get Possible Placements

1: function GetPossiblePlacements(outbound, inbound)
2: possiblePlacements = []
3: if outbound xor inbound then
4: for route in routes do
5: for i in range(0, length(route) - 1) do
6: for j in range(i, length(route)) do
7: if PathInGraph(i, j, pickup, dropoff, route) then
8: possiblePlacements.append((route, i, j))
9: end if

10: end for
11: end for
12: end for
13: else if outbound and inbound then
14: for route in routes do
15: if PlacementBefore(pickups, dropoffs, route) then
16: PossiblePlacements.append((route, 0))
17: end if
18: if PlacementAfter(pickups, dropoffs, route) then
19: PossiblePlacements.append((route, length(route)))
20: end if
21: end for
22: end if
23: return PossiblePlacements
24: end function

Path in Graph A route is only potentially feasible if it occurs as a path in the

graph, as described in Section 6.2.1. Therefore, we will only consider placements

for which the resulting route occurs as a path in the graph. We know that all

routes in the solution are present in the graph, as only feasible routes are accepted.

Therefore, it is necessary to validate only the part of the path that is affected when
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a node is added to the route. These affected nodes are the ones directly linked

to the placement position, i.e., the preceding and succeeding nodes. Consequently,

to check the placement of a pickup at position i and a dropoff at position j, it

is essential to verify whether the node at position i is a neighbour of the node at

position i− 1, and the node at position i+1 is a neighbour of the node at position

i. Similarly, it must be confirmed whether the node at position j is a neighbour

of the node at position j − 1, and the node at position j + 1 is a neighbour of the

node at position j. Here, the node attribute representing neighbours, discussed in

Section 6.2.1, comes into play.

Placed in Best Position The returned list by GetPossiblePlacements(), is

used as input for PlacedInBestPosition(), as shown in Algorithm 1. This function

is shown in Algorithm 3. Here, feasibility checks and actual placement of nodes are

performed. More specifically, the best placement option is popped from the list of

possible placements and inserted, as long as the best is not feasible. The function

returns a boolean indicating whether a feasible placement has occurred or not.

Algorithm 3 Function to place nodes in best position in existing route

1: function PlacedInBestPosition([PossiblePlacements])
2: Placement = False
3: while [PossiblePlacements] do
4: [PossiblePlacements].pop(Best)
5: if Best is feasible then
6: Execute best placement
7: Placement = True
8: break
9: end if

10: end while
11: return Placement
12: end function

Add Additional Vehicle Another function frequently used in Algorithm 1 is

AddAdditional(), which can also be called with only an inbound, only an out-

bound, or both. This function creates a new additional route in which the nodes

corresponding to the provided bounds are placed.

6.4.4 Placement

This paragraph discusses the placement of the three types of requests. We will

address them in the order in which they are placed.
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Placement of Mandatory Returns As explained and shown in Algorithm 1,

after categorization, first the mandatory return requests are considered for place-

ment. In handling these, GetPossiblePlacements() is called with both outbound

and inbound. As previously described, the four corresponding nodes are always

placed consecutively in a route, following the order of pickup outbound, dropoff

outbound, pickup inbound, and dropoff inbound. If no placement is possible, an

additional route is created to accommodate the four nodes. Placing the four nodes

of a mandatory return together in one route, facilitates their relocation during a

local search process. Separating the outbound and inbound legs and placing them

both in additional routes makes it highly unlikely for them to be reassigned to

original routes because of the used operators, as we will shortly see in Section 6.5.1.

Placement of Non-mandatory Returns Next, nodes of non-mandatory re-

quests are considered. We split the outbound and inbound and look at both inde-

pendently. Initially, only the outbound is considered when calling GetPossiblePlace-

ments(). If no feasible placements are found, both the outbound and corresponding

inbound nodes are placed in a new additional route. If the outbound is placed in an

original route, both additional and original routes are considered for the inbound.

However, when the best position for an outbound is an additional route, the in-

bound can only be placed in an additional route as well. If no feasible location is

found for the inbound, it is added to a new ’additional’ route. This approach let us

satisfy Constraint 4..

Placement of Single Rides Single rides are placed similarly as the outbound

ride of non-mandatory returns. Placements are considered, and if no feasible place-

ment is found, the nodes are placed in a new additional route. Note that, the

category of single rides also includes outbound and inbound rides where the corre-

sponding inbound or outbound ride is planned on a different day. These rides can

be processed as single rides as long as they adhere to Constraint 4.. The reason for

this is only two nodes are handled instead of four.

6.4.5 Constraint Checks

All routes for which constraints need to be examined are potentially feasible, as we

are sure the path is present in the graph. However, to ensure feasibility, the route

must also adhere to the constraints outlined in Section 4.2. In this paragraph, we

explain how we ensure routes adhere to these constraints.

• Constraint 1. If four nodes are placed in a route together, the first and last

node of four always correspond to pool locations. This remains true even in
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the case of a mandatory return, where the second and third node are non-

pool locations. In case of a single ride and non-mandatory return, all nodes

correspond to pool locations, so it does not matter where the nodes are placed

in the route. As a result, Constraint 1. is always satisfied in this heuristic.

• Constraint 2. As all pickups and corresponding dropoffs are always placed

together, Constraint 2. is satisfied.

• Constraints 3. and 5. It can either be the case that two nodes or four

nodes are placed, depending on the request corresponding to a single ride,

a mandatory, or a non-mandatory return. When two nodes are placed, the

pickup node is always placed first, followed by the dropoff node in the route.

When four nodes are placed in the same route, the relative order is always as

follows: outbound pickup, outbound dropoff, inbound pickup, and inbound

dropoff. This satisfies both Constraints 3. and 5.. Note that there is a

possibility of outbound and inbound nodes being placed in different routes.

By adhering to the designated time windows, Constraint 5. is also satisfied

in such cases.

• Constraint 4. As described before, in Algorithm 1 first the outbound nodes

are placed when handling non-mandatory returns. Depending on the type of

route these are placed in, the type of the route the inbound nodes can be

placed in is determined. Mandatory returns involve placing all nodes within

the same route. Because of these approaches in both mandatory and non-

mandatory returns, Constraint 4. is satisfied.

• Constraints 6., 7., 8. and 9. The more complex constraint checks, i.e.

Constraints 6., 7., 8., and 9., which require updates of data structures, are

discussed in Section 6.5.3.

6.5 Local Search

The local search method used for improving the initial solution is simulated anneal-

ing (SA). In the experiments in Section 8, we will use SA in an iterated local search

(ILS). More on ILS is discussed in Section 7.6. The SA pseudocode is presented in

Algorithm 4. Note that both original and additional routes are considered in the

search process. The first step involves initializing the hyperparameters: starting

temperature T0, stopping temperature Tstop, current temperature T , the number

of iterations per temperature N , the cooling scheduler c, the current solution S,

and the best solution Sbest. Temperature T controls the probability of accepting
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a worse solution during the optimization process, and it gradually decreases dur-

ing the annealing process by multiplying it with c. The number of iterations per

temperature N determines how many iterations are performed at each temperature

stage before decreasing T further. In each iteration, the solution space is explored

through the use of neighbourhood operators. Each solution is evaluated using the

objective function, presented in Section 4.1. Better solutions are always accepted,

while worse solutions are accepted with a decreasing probability, thereby reducing

the likelihood of accepting worse solutions. Four distinct neighbourhood opera-

tors are utilized, denoted as I1, I2, I3, and I4, which will be explained in Section

6.5.1. Additionally, the process of verifying feasibility constraints will be discussed

in Sections 6.5.2 and 6.5.3.

Algorithm 4 Simulated Annealing CombinedApproach

1: Initialize T0, Tstop, c
2: Initialize temperature T=T0

3: Initialize number of iterations per temperature N
4: Initialize current solution S using Initial Solution Heuristic
5: Initialize best solution Sbest = S
6: i = 0
7: while T > Tstop do
8: while i < N do
9: I = random.choice({I1, I2, I3, I4})

10: Snew = ApplyOperator(I, S)
11: if Feasible(Snew) then
12: δ = objective(Snew) - objective(S)

13: if δ < 0 or random.uniform(0, 1) < e
−δ
T then

14: S = Snew

15: if S is better than Sbest then
16: Sbest = S
17: end if
18: end if
19: elseUndoChanges(Snew)
20: end if
21: i++
22: end while
23: T = T × c
24: end while
25: return Sbest
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6.5.1 Neighbourhood Operators

In this section, we will discuss the neighbourhood operators. The constraint checks

that verify the feasibility of a resulting route after applying an operator will be cov-

ered in Sections 6.5.2 and 6.5.3. However, it is worth noting that a check that occurs

during the execution of the operators is the validation of the path in the graph, as

described in Sections 6.2.1 and 6.4.3. Only if this check is successful, indicating

that a route is potentially feasible, the other constraint checks will be performed.

Although we will not explicitly mention this path check in the descriptions of the

search operators, it does take place as a crucial preliminary step.

Swap I1 The first and simplest operator is the swap-operator, denoted as I1. The

Swap-operator performs a straightforward operation that swaps the positions of two

nodes within a single route. These nodes can be either pickup or dropoff nodes.

Figure 6.6 provides a visual example of the swap operation. Specifically, node vn+i

and node vj are swapped, resulting in the dropoff of i occurring after the pickup

of j, rather than the original order. It is essential to note that a dropoff node may

never precede its corresponding pickup node. Hence, it would for example not be

possible for vi and vn+j to undergo a swap, as that would for both rides violate the

constraint where the dropoff occurs before the pickup. Furthermore, although it is

the case in Figure 6.6, it is important to note that it is not strictly required for the

two nodes to be adjacent to be swapped. The swap operation allows for nodes to

be interchanged regardless of their positions in the route, as long as all constraints

are satisfied.

Figure 6.6: Swap-operator

Route exchange I2 The next operator is the Route Exchange-operator, referred

to as I2. This operator selects a pickup node and its corresponding dropoff node

from one route and relocates them to another route at the optimal position. The

optimal solution is determined through evaluation with the objective function. The

pickup is always placed before the dropoff, and all possible positions are checked

and evaluated. Figure 6.7 provides an illustrative example. In this example, pickup
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node vj and its corresponding dropoff node vn+j are removed from Route 1 and

placed in Route 2 at their optimal positions. As a result, Route 1 is left with nodes

vi and vn+i.

Figure 6.7: Route exchange-operator

Subroute Transfer I3 The Subroute Transfer-operator, denoted as I3, is a more

complex operation compared to the Route Exchange-operator. Instead of removing

a single pickup and dropoff from one route and placing them in another, the Sub-

route Transfer-operator involves transferring an entire subroute, which may consist

of multiple pickups and dropoffs. It is important to note that the subroute must be

independent, for the operation to be performed. As independency is an important

definition, we will state it here.

Independent subroute: An independent subroute is a one-to-one mapping be-

tween pickups and their corresponding dropoffs within a subroute, ensuring

that each pickup has its respective dropoff and there are no dropoffs without

a corresponding pickup. Independent subroutes are always feasible routes on

their own.

The property of independency plays an important role in feasibility checks, as

we will see in Section 6.5.2. When this operator places a subroute in another route,

the order of the nodes remains unchanged. The nodes within the subroute are not

separated but rather kept intact, preserving their original sequence. Figure 6.8

provides a visualization of this process. In this example, the subroute consisting of

nodes vl, vj , vn+l, and vn+j is removed from Route 1 and placed as a whole in Route

2, following the dropoff node vn+k. It is important to note that this operation is

only possible in this specific example if vn+k and vl occur at the same location, as

there is no driver present in the vehicle to drive the vehicle from the location of

vn+k to vl.
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Figure 6.8: Subroute Transfer-operator

Tail-swap I4 The last operator is the Tail Swap-operator, referred to as I4. In

this operator, the tails of two routes are exchanged. Both tails must be independent

subroutes. This observation has important implications, as enlightened in Section

6.5.2. One of these implications is that it is guaranteed that at the breaking point

of a head and an independent tail, no users are present in the vehicle, and the two

points around the breaking point correspond to the same location. An extension to

this observation is that if a tail swap can occur between two routes, all four nodes,

including the last node before the tail and the first node of the tail for both routes,

correspond to the same location. Figure 6.9 illustrates an example of the Tail Swap-

operator in which both tails are a single pickup en dropoff pair. However, note that

the tail could consist of multiple dropoffs and pickups. The independent subroute

consisting of nodes vj and vn+j is swapped with the independent tail consisting

of nodes vl and vn+l from Route 2. In this case, nodes vn+i, vl, vn+k, and vj all

correspond to the same location.

Additional Routes Considering additional routes in the local search is crucial

because it ensures that all requests are considered, even if they were not initially

assigned to an original route. In the additional routes, feasible combinations in

ride-sharing can also be explored using this approach, potentially placing them as a

whole with operators I3 or I4 into an original route at a later stage. These additional

routes also act as ’reserve bench’, where requests can be placed during the search

to help escape local optima and improve the optimization process.

Furthermore, in Section 6.4, we showed that when creating the initial solution,

nodes from mandatory returns are always grouped together in a single route rather

than being distributed across separate routes. Operators I3 and I4 clearly demon-

strate why it is essential to have inbound and outbound nodes together within an
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Figure 6.9: Tail Swap-operator

additional route at the initial solution: the grouping allows these operators to move

these nodes as a whole. This can be useful when relocating the nodes to a route

with another route type. If the outbound and inbound of a mandatory return were

in separate additional routes, it would not be possible to move them back to an

original route without violating Constraint 4.. This constraint requires both the

outbound and inbound nodes of mandatory returns to be in either an original route

or an additional route. It would not be possible to move the outbound nodes to

an original route first and then the inbound nodes separately, while adhering to

this constraint. Both the outbound and inbound nodes must therefore be moved

simultaneously.

6.5.2 Simple Constraint Checks

This subsection focuses on feasibility checks to ensure the routes remain feasible

after the operators modify either one route, i.e. I1, or two routes, i.e. I2, I3, and

I4. As described before, the feasibility of routes is assessed by verifying all the

constraints mentioned in Section 4.2. Infeasible routes are not accepted as part of

the solution. If a constraint is violated, and the route is thus found infeasible, the

operator is terminated, the changes are undone, and the next iteration is started, as

shown in Algorithm 4. Rather than executing all the checks at once after performing

all the route updates, an approach that improves efficiency is adopted. Initially,

simple constraint checks are performed. Updates that are needed for more complex

constraint checks are executed only when all the preceding constraints are satisfied,

and subsequently, the feasibility with these updates is assessed.

In this section, the simple checks that do not require updates are discussed.

Those include most checks for the routing constraints, described in Section 4.2.1.
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In Table 6.1, a scheme is presented to give insight in which constraints need to be

checked for which operator. A green plane means the constraint does not need to

be checked, while a red plane means it needs to be checked. It should be noted that

in operators I2 and I3, two processes occur sequentially. First, nodes are extracted

from one route, and then they are inserted into another route. Constraints need

to be checked for both processes. Initially, all the checks related to the route from

which the nodes are extracted are conducted, followed by checks for the route where

the nodes are inserted.

• Constraint 1. When an operator modifies the first or last node of a route,

it is necessary to verify if it corresponds to a pool location. If it does not,

it is found infeasible. This ensures Constraint 1. is satisfied. Note in Table

6.1 that this constraint needs to be checked for all operators, except for I4.

The reason for this is that in the tail swap, no start point will change, so this

does not to be checked. Besides, both tails are already in the solution and

therefore both end locations are known to be feasible.

• Constraint 2. Constraint 2. cannot be violated by any of the operators, and

therefore does not need to be checked in any operator. For operator I1, this

constraint is always satisfied, since nodes are not removed from a route. In

operator I2, corresponding pickups and dropoffs are always grouped together,

ensuring they remain together. As feasible subroutes are independent in I3

and I4, it is guaranteed the pickup and dropoff always occur together when

replacing subroutes.

• Constraint 3. It is straightforward to enforce Constraint 3.. The check in

I1 is discussed in Section 6.5.3, as it requires an update. In operator I2, the

dropoff is always placed after the pickup during the insertion phase, so no

check is performed. In I3 and I4, the subroutes remain intact. As the order

of nodes is not changed, it is guaranteed that the pickup is always positioned

before the dropoff. Hence, this check is not necessary for I3 and I4.

• Constraint 4. Constraint 4. requires a simple check for operators I2, I3,

and I4. In I1, this check is not required since nodes are not moved to other

routes. In the other operators, the feasibility table presented in Table 4.1 is

utilized to determine if moving the nodes is feasible for all considered nodes.

• Constraint 5. Constraint 5. does not require additional checks, as it is

implicitly taken care of, with the earliest departure of the inbound always

being later than the latest arrival of the outbound.
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Operator
Constraint

I1 I2 I3 I4

1

2

3

4

5

Table 6.1: Easy constraints to be checked per operator

Checks for Constraint 3. in I1, and checks for Constraints 6., 7., 8., and 9. in all

operators are discussed in the next section.

6.5.3 Updates and More Complex Constraint Checks

This section addresses the checks that require updates and discusses these updates.

These include the checks for time window constraints, capacity constraints, and

depot constraints as discussed in Sections 4.2.3, 4.2.2, and 4.2.4. Unlike the simple

checks discussed in Section 6.5.2, the more complex constraints need to be checked

for all operators. Similarly to the previous section, checks are performed for both

the extraction and insertion phase when applying I2 or I3. Furthermore, note that

insertion in the initial solution heuristic, shown in Algorithm 1 and discussed in

Section 6.4, is rather similar to insertion in I2 and I3. Therefore, the complex

constraint checks for inserting in this heuristic are discussed here as well.

Updating Order of Nodes The first update involves updating the order of

nodes in the route. Once the node order is adjusted, the feasibility of Constraint

3. in operator I1 can be evaluated by looping through the route. Simultaneously,

Constraints 6. is verified. The for loop that iterates through the route checks if

the vehicle’s capacity is not exceeded. Constraint 6. is verified in I2 and I3 in this

manner as well for both the extract and the insert part. These constraints are also

satisfied for the insertion in the initial solution heuristic in this manner. Although

in I4 the tail is independent and thus feasible in the old route, it could be the case

that the other route has a smaller capacity. As a result, there is a possibility that

the tail can not be placed in the other route. Therefore, I4 also requires a check for

Constraint 6..

Updating Event Times The next update involves updating the event times.

As discussed in Section 4.2.3, a route can only be feasible if all event times of the

route fall within their time windows. We also showed in Figure 4.1 in this section

how event times are calculated. Once all the event times are updated, each node
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in the route is checked to ensure that its event time falls within the corresponding

time window. If this condition is violated for any node, the route is considered

infeasible, thus addressing Constraint 7.. It also checked if the event time of the

dropoff node minus the event time of the corresponding pick node does not exceed

its maximum ride time, addressing Constraint 8.. This process is similar for all

operators, including the insertion in the initial solution.

Updating Current Occupation Matrix For evaluating Constraint 9., it is

important to keep track of how many vehicles of each type are available at pool

locations and when these numbers change. This information is recorded in the

Current Occupation Matrix (COM). For each original route, the first and last nodes

are presented in the COM. The first node indicates when a vehicle’s schedule begins

and, therefore, signifies a reduction of one available vehicle of this type at its pool

location. The last node indicates when the vehicle completes its schedule and,

therefore, signifies an increase of one available vehicle of this type at its ending

pool location. The COM maintains a chronological record of event times of the

first pickup and last dropoff events per type at each pool location, along with the

current number of available vehicles at these locations per type.

The final constraint check, which is computationally expensive, involves updat-

ing this COM. When an operator modifies the first or last node of a route, the COM

needs to be updated at the corresponding pool location and vehicle type entry, and

its feasibility is checked. The event corresponding to the node that was previously

the first or last in the route is removed from the COM. If a pickup is removed, all

subsequent events in the COM, which occur later in time because of the chronolog-

ical ordering, are increased by 1 - as there is an increase in available vehicles of the

corresponding type at the corresponding pool location. If a dropoff is removed, all

subsequent events are decreased by 1. The reverse is performed for the new first

or last node. If a pickup is inserted at the start of a route, all subsequent events

in the COM are decreased with 1, while for a dropoff at the end position, they are

increased by 1. Subsequently, it is checked if the occupation at any point in time

becomes less than 0. If this condition is the case, Constraint 9. is violated, making

the route infeasible.

It is also possible that the modification of routes changes the event time of the

last node, which could have influence on the COM as well. It could for example be

the case that the event in the COM that corresponds to the last node should be

shifted forward, such that it is not feasible because a pickup that would use this

vehicle is now earlier in time than the dropoff of the vehicle. Therefore, this should

be checked as well for all operators, including I4.
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Chapter 7

Methodology

In this section, we present the methodology. To begin with, we introduce three ad-

ditional algorithms alongside CombinedApproach. The purpose of these algorithms

is to facilitate the evaluation of CombinedApproach in Section 8. Subsequently, in

Section 7.2, we discuss the reduction of available vehicles during the experiments.

Furthermore, in Sections 7.3, 7.4, 7.5, and 7.6, we discuss choices made for values

of hyperparameters in the objective function, neighbourhood operators, SA, and

Iterated Local Search, respectively.

7.1 Three Comparative Algorithms

To assess the performance of the CombinedApproach algorithm described in Section

6, it is important to compare it with other approaches. Specifically, we compare

the algorithm with three other algorithms, presented in Table 7.1, to observe the

effects of ride-sharing, unbound vehicles, and their combination. The first compar-

ative algorithm we examine, NaiveApproach, mimics the naive manual scheduling

approach currently in use. This approach does neither implement ride-sharing nor

independence of vehicles. The second comparative algorithm, UnboundVehicles,

does not allow ride-sharing but allows vehicles to be not returned to their pool

location. On the other hand, the third comparative algorithm, RideSharingOnly,

incorporates ride-sharing while restricting vehicles to their pool location. Note that

only in UnboundVehicles and CombinedApproach single rides are possible. We de-

scribe these three algorithms in more detail in Sections 7.1.1, 7.1.2, and 7.1.3. These

algorithms are similar to CombinedApproach, but have some minor changes in their

constraints, as we will shortly discuss. Due to their distinct constraints and objec-

tives, modifications to the initial solution heuristic of CombinedApproach, shown in

Algorithm 1 in Section 6.4, are discussed as well.
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Ride-sharing

Unbound vehicles No Yes

No NaiveApproach RideSharingOnly

Yes UnboundVehicles CombinedApproach

Table 7.1: Overview of the four algorithms used in the experiments, indicating

their binary values for ride-sharing capability and whether vehicles are constrained

to pool locations.

7.1.1 Naive Approach

In the NaiveApproach we mimic the current manual planning process, as described

in Section 3.1. The pseudocode is shown in Algorithm 5. In this algorithm, indi-

viduals can utilize the same vehicle, but serially rather than through ride-sharing.

Additionally, the pool location that the vehicle belongs to is bound, and single rides

are not possible. Inbound rides are always scheduled immediately after outbound

rides, and outbound rides cannot occur independently or in a different vehicle. Ve-

hicles can be assigned to a user for multiple days. Unlike CombinedApproach, where

the total number of deviations per vehicle type per pool location always adds up to

0 at the end of the day, it is not necessary for that to be the case here. It is possible

for someone to reserve a car for 2 or 3 days, and therefore that the total deviation

is smaller than 0 as vehicles are ’missing’.

As described in Section 3.1, a first come first serve strategy is maintained.

Therefore, we schedule requests according to their request date, described in Sec-

tion 5.2.1. During the placement process, all routes are examined to determine

suitable positions for all four nodes that correspond to the outbound and inbound

events. These nodes can be placed either in an empty route or within a non-empty

route where the new route remains feasible with respect to all earlier discussed

constraints in Section 4.2. Besides, as ride-sharing is not allowed, Constraint 6. is

extended as follows:

10. Maximum occupation

To make sure that no rides are shared, the occupation of a vehicle should

not only be smaller than the capacity of the vehicle, but also be equal to the

number of users in the request. By doing this, it can be ensured that there are

never multiple users from different requests present in a vehicle at the same

time.

Furthermore, there is a transitive relation between the scores assigned to placing

the nodes in an original empty route, placing the nodes in a non-empty original
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route and placing the nodes in an additional route. Placing nodes in an original

non-empty route is better than placing nodes in an original empty route to optimize

vehicle utilization and obtain a more accurate assessment of the number of empty

vehicles. Besides, placement in an original empty route is better than placement in

an additional route. If no feasible option is available, the request is not planned.

After this placement, unlike the other three algorithms, no local search is performed.

Algorithm 5 NaiveApproach

1: Initialize empty routes
2: for request in requests do
3: PossiblePlacements = GetPossiblePlacements(outbound, inbound)
4: if not PlacedInBestPosition(PossiblePlacements) then
5: AddAdditional(outbound, inbound)
6: end if
7: end for

7.1.2 Unbound Vehicles without Ride-sharing

In the following comparative algorithm, UnboundVehicles, ride-sharing is not im-

plemented, but vehicles are not restricted to pool locations. As a result, when using

this algorithm, users are not bound to their own reserved vehicle, as it is possible to

separate the outbound and inbound rides and have them placed in separate routes.

This means that for non-mandatory routes, the outbound ride can be scheduled

without the inbound ride taking place. Besides, single rides are possible. To make

sure no ride-sharing is performed, we use Constraint 10., which is an extension of

Constraint 6., as previously described in Section 7.1.1. As an initial solution heuris-

tic, we use Algorithm 1 from Section 6.4 with Constraint 10.. The subsequent local

search is the same as the one used in CombinedApproach, with the only difference

using this extension.

7.1.3 Ride-sharing with Bound Vehicles

In the third comparative algorithm, RideSharingOnly, ride-sharing is allowed, but

vehicles must always return to their pool locations. In this scenario, it is also

possible to separate outbound and inbound rides and place them in different routes.

For non-mandatory return requests, the outbound ride can be scheduled without

requiring the inbound ride to be scheduled. Note that this is possible as the vehicle

can be returned to its own pool location by another user. Although in fact it would

be possible to include single rides in this algorithm, as they could be scheduled

through ride-sharing, we do not consider them because single rides without ride-

sharing are not possible in this approach. For generating an initial solution, a similar
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heuristic to CombinedApproach is used. The pseudocode is provided in Algorithm

6. Furthermore, to ensure that vehicles always return to their pool locations, an

Algorithm 6 RideSharingOnly Initial Heuristic

1: Initialize empty routes
2: for mandatory in requests do
3: PossiblePlacements = GetPossiblePlacements(outbound, inbound)
4: if not PlacedInBestPosition(PossiblePlacements) then
5: AddAdditional(outbound, inbound)
6: end if
7: end for
8:

9: for non-mandatory in requests do
10: PossiblePlacements = GetPossiblePlacements(outbound, inbound)
11: if not PlacedInBestPosition(PossiblePlacements) then
12: PossiblePlacements = GetPossiblePlacements(outbound)
13: if not PlacedInBestPosition(PossiblePlacements) then
14: AddAdditional(outbound, inbound)
15: else
16: PossiblePlacements = GetPossiblePlacements(inbound)
17: if not PlacedInBestPosition(PossiblePlacements) then
18: AddAdditional(inbound)
19: end if
20: end if
21: end if
22: end for

additional constraint is introduced in Algorithm 6, given in Section 6.4, and the

subsequent local search:

11. First node’s location is equal to last node’s location

To make sure that vehicles are indeed bound to pool locations, and thus that

all vehicles return to their pool location, the location that corresponds to the

first node should always be the same as the location that corresponds to the

last node. After each neighbourhood operation, this constraint is checked for

in RideSharingOnly.

Note the similarity with the initial solution heuristic for CombinedApproach,

but with the difference that in Algorithm 6 single ride requests are not handled as

they can not occur. In both heuristics, first the mandatory-cases are handled, in

exactly the same way. For non-mandatory return requests, a similar but slightly

different approach is followed. We first assess if these nodes can be placed as

a whole either before or after an existing route. This is a difference with the

initial solution heuristic for CombinedApproach. The reason for not immediately

separating the outbound and inbound rides, but first looking at the possibility of
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placing it as a whole before or after an existing route, is due to Constraint 11..

Placing the outbound ride first after or before a route, followed by the inbound ride

in the next step, would often result in a violation due to the change in the vehicle’s

final or respectively start pool location, making it not possible to be chosen as

best placement. Even if the inbound ride could be placed there in the next step,

returning the vehicle to the actual pool location, the violation would still occur,

preventing it from happening. By placing all four nodes together at once, this issue

is avoided. If this is not feasible, we separate the inbound and outbound rides.

First, we examine if the outbound ride can be inserted at any position. If it cannot,

all four nodes are placed in a new additional route. If it is possible, the inbound ride

is also placed in the best possible position within an existing route, or alternatively

in a new additional route if not feasible.

The subsequent local search is identical to the local search used in the

CombinedApproach, with the only difference being the addition of Constraint 11.

which ensures that vehicles are bound to their pool location.

7.1.4 Returns with Bounds on Different Days

As previously mentioned, there are requests in which the outbound and inbound

rides occur on different days. As described in Section 6.4, these can be treated as

single rides which have to adhere to Constraint 4.. The four algorithms handle

these requests in different ways, which are outlined below:

• In NaiveApproach, users can reserve a car for multiple days, allowing the

vehicle to be absent from its pool location as it is being used by a user.

• In the other algorithms, users cannot reserve a car for multiple days, and all

vehicles must return to their pool location at the end of each day. There-

fore, in both UnboundVehicles and CombinedApproach, the rules described

in Constraint 4. apply. The inbound of mandatory returns is not guaranteed

because both the outbound and inbound can only occur through a ride-sharing

arrangement, and it cannot be guaranteed this is feasible.

• In RideSharingOnly, requests with bounds on different days are never sched-

uled. The reason for this is they are treated as two separate single rides, and

single rides are not considered in this algorithm.
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Figure 7.1: Percentage in decimal form of requests cancelled with Naive Approach
and real-life scenario

7.2 Reducing Number of Vehicles

In this section, we will elaborate on the reduction of number of available vehicles

used in the experiments in Section 8. This reduction aims to create a scenario

that aligns more closely with real-world conditions. We will also elaborate on how

we determine the percentage by which the reduction will be implemented. Figure

7.1 presents the percentage in decimal form of rejected requests for each day from

Monday January 17, to Friday January 28 in real-life, and when NaiveApproach

is run. It is evident that the naive approach, which mimics the manual planning

process, yields significantly higher acceptance rates, as the cancelled percentages

are lower. There are several possible reasons for this outcome, which are listed

below.

• One possibility for this outcome, as described in Section 5.2.2, is the removal

of irrelevant rows in the dataset.

• Another reason could be uncertainties such as traffic congestion and disrup-

tions in reality, leading to fewer scheduled rides.

• Furthermore, a number of vehicles will be absent each day due to repair

reasons.

• Besides, it is possible that in practice, they do not immediately schedule a

ride when a vehicle should become available but instead wait for a few hours

to ensure the vehicle’s return.

• Another reason is that a number of rides are left out, as they are transformed

to single rides and these can not be planned by NaiveApproach, as only

returns are possible.

68



Jan 17 Jan 18 Jan 19 Jan 20 Jan 21 Jan 22 Jan 23 Jan 24 Jan 25 Jan 26 Jan 27 Jan 28
Days

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge

Cancelled Percentages with Different Multipliers and Real-Life Percentages
Multiplier 1
Multiplier 0.9
Multiplier 0.8
Multiplier 0.7
Multiplier 0.6
Multiplier 0.5
Real Life

Figure 7.2: Percentage in decimal form of requests cancelled with Naive Approach
with different percentages of vehicles, and real-life scenario

• One final reason is that there could be vehicles that are away from the pool

location for an extended period, which is not accounted for in this analysis.

We are considering data from January 17, as described earlier, and any trips

that departed before that date and have not returned on the specific day are

not included.

To make our model better align with reality, the number of available vehicles is

reduced. Figure 7.2 illustrates a similar plot to Figure 7.1, displaying the number

of rejected requests per day but with using respectively 90%, 80%, 70%, 60%, and

50% of the available cars. As expected, this figure demonstrates that as the number

of available vehicles decreases, a higher percentage of requests are cancelled.

We will examine the different scenarios to determine the closest approximation

to the real situation. We can already exclude the situation where 50% of the

vehicles are available, as in this situation the percentage of cancelled vehicles is on

some days higher than the percentage of planned vehicles as can be seen in Figure

7.2, which is not similar to the real life situation. Visually, the situation where only

60% of the vehicles are available seems to provide the closest approximation to the

real life situation. To quantify this, the Euclidean distance is computed between

the list of actual scheduled percentages and the list of scheduled percentages using

the NaiveApproach with the aforementioned available percentages of vehicles. The

results are presented in Table 7.2. As shown in this table, the Euclidean distance is

indeed the smallest for the situation where only 60% of the vehicles are available.

Therefore, from now on, the available number of all types of vehicles at all pool

locations are multiplied by 0.6 and rounded to whole integers.
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Percentage available vehicles Euclidean Distance
100% 0.879
90% 0.766
80% 0.653
70% 0.538
60% 0.480

Table 7.2: Euclidean distance between the list of actual scheduled percentages and
the list of scheduled percentages using NaiveApproach with different percentages
of available vehicles

7.3 Objective Hyperparameters

As discussed in Section 4.1, the objective function comprises four components: the

ratio of the total distance travelled to the total distance travelled without ride-

sharing, the number of non-empty vehicles, the number of persons that cannot be

accommodated within existing vehicles, and the deviation between the actual and

desirable numbers of vehicles remaining at the pool locations by the end of the day.

The hyperparameters α, β, γ, and δ represent the weights assigned to the respective

components of the objective function. In this section, we demonstrate the influence

of these hyperparameters on the quality of the solution and the importance of

achieving a balanced composition of values.

Influence of α and γ To determine balanced values for α and γ, it is important

to consider the trade-off between the objective component that represents the ratio

of actual distance travelled to distance without ride-sharing and the number of

scheduled users. This trade-off is evident in Figure 7.3. In this figure, δ is set to 2,

β is set to 1, γ is set to 20, and α is varied. In the figure, the x-axis represents the

value of α, while the y-axis represents the percentage of scheduled rides and the

ratio of total distance travelled to distance travelled without ride-sharing. The ratio

should be minimized, whereas the number of planned users should be maximized.

It can be observed that when α is set to 0, the ratio is 0.93. As α increases, this

ratio decreases. The percentage of scheduled users also decreases after a value of

50,000, indicating the trade-off point. However, before reaching this trade-off point,

the percentage of scheduled users actually increases. This suggests that these two

components support each other until a value of α is reached, where they start to

impede each other. This observation is not surprising as increased ride-sharing leads

to more users getting a ride, until it becomes unbalanced and the focus is overly

placed on the ratio. Higher values than α = 50, 000 would prioritize ride-sharing

excessively, whereas the priority lies in the number of scheduled users.

Thus, a value for α of 50,000 seems suitable in combination with δ = 2, β = 1,

and γ = 20 - note that we will also consider the influence of β and δ in the following
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Figure 7.3: Tradeoff between the percentage of users planned and the ratio of the
total distance travelled to the total distance travelled without ride-sharing

paragraphs. Therefore, we will use a value of α = 50, 000 and γ = 20 in the following

sections. However, as January 18th represents the busiest day, as depicted in Figure

5.6 in Section 5.2.3, this choice might not be optimal for other days; when there are

fewer departures, rides have a greater impact on the ratio. Nevertheless, further

experimentation indicates that a value of 50,000 yields the desired effect consistently

across all days.

Influence of β The component related to empty vehicles, with hyperparameter

β, does not necessarily need to be minimized. It is not crucial to have many empty

vehicles, particularly considering the trade-off with the priority of accommodating

requests. However, without this component, many requests that could have been

placed serially in the same vehicle are placed in separate vehicles. It is interesting

to examine the number of redundant vehicles. Therefore, it is prioritized to use the

same vehicle for separate requests rather than using different vehicles. Since this

is a matter of priority rather than a specific goal, β does not need to be large, and

a suitable value is 1. In Figure 7.4 and Figure 7.5, we observe the difference in

percentages of empty and non-empty vehicles when setting β respectively to 1 and

0 while keeping the other hyperparameters constant. These results were obtained

by applying a relatively small number of iterations, i.e. 6,560,000, of SA on January

18th. In this case, the percentage of empty routes was 36%, whereas with the value

set to 0, it is only 8%. This clearly demonstrates the relevance of hyperparameter

β even at a low value of 1.
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Figure 7.5: Percentage of empty vehicles
(β = 0)
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Figure 7.6: Distribution of occupation
deviation for all pool locations (δ = 2)
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Figure 7.7: Distribution of occupation
deviation for all pool locations (δ = 0)

Influence of δ Defence has indicated that occupation deviation is allowed to

’breathe’, meaning deviations around 1, 2, or 3 are acceptable. It has been found

that a good value for δ is 2. Although this may seem small, the exponential function

results in significant penalties for larger deviations. To show this, its value is set

to 0 while keeping the other hyperparameter values unchanged and analyse the

differences in results when running the same data and settings as before. When

we examine Figure 7.6 in which δ = 2, significant differences are evident compared

to when its value is set to 0, shown in Figure 7.7. With a value of 2, the most

common deviation is 0 with a frequency of over 75, but with a value of 0 it occurs

only about 50 times. Moreover, larger deviations are observed. With δ = 2, the

maximum deviation was 2, occurring rarely, whereas with the value set to 0, we

observe deviations as large as 9. It is evident a small value for hyperparameter δ is

sufficient to prevent these deviations due to the nature of the exponential function.

72



I1 I2 I3 I4
Operator

0

20000

40000

60000

80000

100000

Co
un

ts

Feasible Changes per Operator

Figure 7.8: Average counts of feasible changes per operator for 5 runs

7.4 Operator Hyperparameters

To determine the probabilities at which operators I1, I2, I3, and I4 should be

applied, three aspects are considered: the number of times a feasible solution is

obtained after applying an operator, the number of times a new best solution is

found after applying an operator, and the degree of improvement per operator.

Operators and Feasible Changes First, we examine the operators in terms of

how often they create feasible changes. Figure 7.8 displays the average respective

counts and standard deviations for 5 runs, with hyperparameter settings on the

typical day of January 18th with values α = 50, 000, β = 1, γ = 20, δ = 2 and

6,560,000 iterations with SA. Furthermore, all operators are applied with a chance

of 25%. As observed in this figure, operator I2 creates on average the most feasible

changes: 95826. I3 and I1 obtain a relatively lower but substantial number of

feasible changes: respectively 63,690 and 49,630. Operator I4, on the other hand,

leads to a very small number of feasible changes, with a count of only 1834. As we

can see from the error-bars, the counts for all runs were rather close.

Operators and Improvements Next, we consider the number of improvements

of the best found fitness achieved by the operators. Figure 7.9 illustrates that

the majority of improvements are caused by I2, which is not surprising given its

high number of feasible changes observed in Figure 7.8. Following I2, I3 exhibits

a smaller number of improvements. Similarly, the low improvement count of I4 is
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Figure 7.9: Average counts of improvements of the best found fitness per operator
for 5 runs

expected due to its low feasible change count. However, if we look at I1, we see the

improvement count is very low, while the feasible change count, presented in Figure

7.8 is rather high. To show the relation between the number of feasible changes and

improvements, Figure 7.10 is presented. This plot is formed based on the averages

of feasible change counts and improvement counts for each operator of the 5 runs.

In this bar plot, each bar represents the ratio of improvement counts to feasible

change counts for each operator. A higher ratio suggests a higher proportion of im-

provements relative to feasible changes. Based on this figure, it can be observed that

I3 has the highest ratio of improvements to feasible changes among the operators.

This indicates that a relatively larger percentage of the feasible changes made by

I3 result in improvements. I2 follows I3 in terms of this ratio. Additionally, despite

having a small absolute count of feasible changes and improvements, I4 still shows a

considerable percentage of feasible changes leading to improvements. As discussed

earlier, we can see that I1 has a significantly low ratio. This suggests that only a

very small portion of the feasible changes made by I1 result in an improvement in

the solution.

Degree of Improvement In Figure 7.11, the difference in fitness for feasible

changes are depicted in a histogram. As we are minimizing, the positive side repre-

sents worsening in fitness. Note that the majority of feasible changes does not result

in an improvement, as indicated by the higher frequencies on the positive x-axis,

but results in a worse solution. In this paragraph, our focus is on the negative x-axis

of the histogram to examine the degree of improvement per operator. We see that
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Figure 7.10: Ratio of improvement counts to feasible change counts for each operator
per operator for 5 runs

only a very small portion of the changes result in improvements. Note that this

number is bigger than the total number of improvements of the best found fitness,

depicted in Figure 7.9. The reason for this is that in Figure 7.9 we look at improve-

ments of the best found fitness, while in Figure 7.11 we look at improvements of

the current solution’s fitness. Trivially, the current solution’s fitness is more often

improved than the best found fitness.
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Figure 7.11: Changes in fitness for feasible changes

To evaluate the extent of improvement of the best found fitness achieved by each
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Operator Mean Std. Median Maximum
I1 2.11 2.89 0.069 6.19
I2 7.04 14.61 1.00 163.37
I3 5.24 12.96 1.00 141.42
I4 5.99 0.17 5.90 6.34

Table 7.3: Summary statistics of the performance of I1, I2, I3, and I4. The statis-
tics include the mean, standard deviation, median, and maximum values for each
operator’s improvement in fitness.

operator, Table 7.3 presents key statistical measures, including the mean improve-

ment, standard deviation, median, and maximum values. Note that the improve-

ments have been multiplied by -1, as the aim is to minimize the fitness function.

From this table, it is evident that Operator I1 exhibits the lowest mean improve-

ment of 2.11, while Operator I2 demonstrates the highest mean improvement of

7.04. Notably, also the standard deviation for Operator I2 is the biggest, indicating

that it has an inconsistent performance. The median, a more robust measure less

affected by outliers, provides more representative insights in improvement values

for each operator. In our analysis, Operator I1 has a median improvement value

of 0.069, while Operators I2, I3, and I4 have median values of 1.00, 1.00, and 5.90

respectively. Lastly, the maximum improvement values represent the highest level

of fitness improvement obtained by each operator. Operator I1 and I4 achieve rel-

atively low maximum improvement of respectively 6.19 and 6.34, while Operators

I2, I3, attain maximum values of 163.37 and 141.34 respectively.

Operator Hyperparameter Values In summary, the following key points can

be stated regarding the operators: Operator I2 consistently leads to feasible changes

more frequently than the other operators, followed by I3 and I1. In contrast, I4 has a

relatively lower occurrence of feasible changes. Analysing the ratio of improvement

counts to feasible change counts reveals that I1 performs poorly in this regard,

while both I2 and I3 exhibit good ratios. Additionally, although I4 does not often

result in feasible changes, when it does, it often improves the solution. From the

key statistical measures of the operators, it is evident that I1 has the lowest mean

improvement of the best found fitness, but is consistent. On the other hand, I4

exhibits a high consistency with a high mean and median. I2 and I3 stand out

particularly in terms of maximum improvements.

Based on these findings, the following decisions are made: I1 does not need

to be applied very frequently since it does not significantly improve the solution.

However, it can be utilized with a low probability to expand the search space by

generating feasible changes. I2 and I3 lead to the most substantial improvements
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overall, and also score highest in terms of the ratio of improvement counts to fea-

sible change counts. Hence, they should be applied relatively often. Despite its

infrequent occurrence of feasible changes, I4 leads to relatively good improvements

on average when a change is feasible, making it worth occurring with a low prob-

ability. Therefore, the choice is made to apply the operators with the following

probabilities: I1: 15%, I2: 35%, I3: 35%, I4: 15%.

7.5 SA Hyperparameters

Various hyperparameters need to be considered for SA, as depicted in Algorithm 4

in Section 6.5. The hyperparameters to be determined are the starting temperature

T0, the number of iterations per temperature N , the cooling scheduler c, and the

stopping temperature Tstop. Suiting values for T0 and Tstop can be found by consid-

ering the range within which the fitness of solutions varies. Figure 7.11 illustrates

the difference in fitness displayed in a histogram. As observed, the majority of

fitness worsening lie between values of 0 and 100. In the following paragraph, we

start with setting the value of T0 to the relatively high value of 200 and proceed to

determine an appropriate value for N to see how the algorithm performs with these

values. We will also consider a lower value for T0. Furthermore, an appropriate

value for Tstop is 0.01 and for the starting cooling scheduler c, a value of 0.975.

0 25 50 75 100 125 150 175 200
N (*1000)

50000

52000

54000

56000

58000

60000

62000

64000

66000

Fit
ne

ss

Best Found Optima with Different Values of N

Figure 7.12: Fitness convergence with different N -values, T0 = 200

Hyperparameter N We are interested in finding the value N at which the best

found optimum converges, meaning the point where increasing N no longer has a

significant effect. We run the SA algorithm with different values of N , fixing T0
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at 200, and using the previously discussed hyperparameter values for probabilities

of operators and hyperparameter in the objective on the typical busy day January

18th. Figure 7.12 presents best found fitness values with different values of N , for

T0 = 200. As this figure shows, the best-found fitness improves in general as N

increases. However, at a value of 200,000, the best-found optimum becomes worse,

suggesting that higher values of N than 175,000 do not contribute to finding better

solutions.

Hyperparameter T0 and More Additional Vehicles To check if a lower value

for T0 would result in the same observed pattern, a starting temperature of 50 is also

employed, presented with the orange line in Figure 7.13. This starting temperature

demonstrates earlier convergence, but at a lower fitness. Therefore, a value of

T0 = 50 would not be appropriate.

Additionally, to make sure that the search space is not too limited due to insuf-

ficient additional vehicles for temporarily accommodating requests, we analyse the

effect of adding 25% of the total number of original vehicles as additional vehicles

with T0 = 200. The green line in Figure 7.13 represents the best found fitnesses

for different N -values with this setting. Again, a convergence is shown at a lower

fitness, indicating that adding 300 additional vehicles does not lead to finding better

solutions.
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Figure 7.13: Fitness convergence with T0 = 200, T0 = 50, and T0 = 200 with 300
extra additional vehicles
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7.6 ILS Hyperparameters

To disrupt the convergence shown in Figure 7.12, an Iterated Local Search (ILS)

is performed. In ILS, multiple consecutive local searches are performed, with the

best-found solution from the previous local searches used as the starting point for

the next one. Before each local search begins, a series of perturbations is applied

to the solution. These perturbations are always accepted, even if they result in

worse solutions. This process aims to let the solution escape from local optima

before starting the next round of local search. It should be noted that the initial

temperature hyperparameter, T0, is reduced with each local search. As the ILS

process progresses, we want less randomness as we are focussing on a smaller search

space.

We perform ILS on January 17th to January 21st, with N = 175, 000. We

perform four local searches, initiating each round with 200 random perturbations

and gradually decreasing the initial temperature. The first iteration begins with an

initial value of 200, followed by reductions to 20, 10, and finally 5. The convergence

of fitness using these settings from January 17th to January 21st is illustrated in

Figure 7.14. Each blue line in the figure represents the fitness convergence for one

day. In this figure, it is evident that the best-found fitness significantly decreases

after the initial solution. Furthermore, the fitness for each instance continues to

decrease slightly with each iteration, indicating a convergent trend. This figure

demonstrates the appropriateness of the discussed ILS settings.
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Chapter 8

Experiments

We perform a total of three experiments in this thesis. In the first experiment we

compare the quality of the four algorithms, i.e., NaiveApproach, RideSharingOnly,

UnboundVehicles, and CombinedApproach. We will elaborate more on this in Sec-

tion 8.1. In the second experiment, presented in Section 8.2, we look at the effect

on solutions when incorporating single rides, and how well these single rides are

handled. In the third experiment, we perform a robustness analysis on the ob-

tained solutions in Experiment 2. This experiment will be further explained in

Section 8.3. All experiments are conducted using a Lenovo IdeaPad 5 Pro 16ACH6

82L500VLMH laptop. The hardware specifications of the laptop are as follows:

• Processor AMD Ryzen 7 5800H with Radeon Graphics, operating at a base

frequency of 3.20 GHz.

• Installed RAM 16.0 GB, with 13.9 GB usable.

• System Type 64-bit operating system, x64-based processor.

8.1 Experiment 1: Comparing four Approaches

In the first experiment, we compare the quality of the four algorithms, i.e.,

NaiveApproach, RideSharingOnly, UnboundVehicles, and CombinedApproach. We

examine the ride requests from January 17 to January 28, aiming to find the best

possible solution each day. The distribution of vehicle types across pool locations

is based on the previous day’s end state and is used for the following day. Thus,

we simulate the planning of these days. Note that in this experiment, we exclude

single ride requests. The reason for this exclusion is that in NaiveApproach and

RideSharingOnly, single rides are not possible since vehicles are bound to their pool

location. However, in Experiment 2, described in Section 8.2, we include single ride

requests.
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Performance Metrics To evaluate solutions and compare the algorithms, we

assess for CombinedApproach various aspects for each day, which are listed below:

• Number of users in additional vehicles: This metric represents the num-

ber of users assigned to additional vehicles. Since these additional vehicles

do not correspond to real vehicles, they are not included in the scheduling.

It is important to note that we consider individual users, not the number

of requests, as a single request may consist of multiple users, as discussed

in Section 5.2.1. This metric corresponds to the objective component with

hyperparameter γ, as discussed in Section 4.1.

• Number of users in original vehicles: This metric represents the number

of users assigned to original vehicles, i.e., the number of users that are actually

scheduled. This is equal to the total number of users minus the number of

users in additional vehicles.

• Ratio of driven distance to naive distance: This metric represents the

ratio between the total distance actually driven and the distance that would

be travelled without ride-sharing. It corresponds to the objective-component

with hyperparameter α.

• Average of absolute deviation: This metric represents the average devia-

tion per vehicle type per pool location. This measure is not in the objective,

but it is closely related to the objective-component with hyperparameter δ,

and is therefore insightful.

• Empty route count: This metric indicates the number of vehicles that are

not used. This corresponds to the component in the objective with hyperpa-

rameter β.

• Average number of rides per non-empty vehicle: This metric represents

the average number of rides assigned to a non-empty vehicle.

• Average travel time ratio This metric represents the average ratio of the

direct travel time to the actual travel time. The actual travel time is computed

as the difference between the dropoff event time and the pickup event time,

minus the service time. The service time is always equal to two, as discussed

in Section 5.2.2. Thus, the actual travel time encompasses waiting time, which

may arise due to various reasons, such as waiting for the pickup of another

person or having to take a detour to pick up someone else. Additionally,

individuals can also cause waiting time for themselves. This concept becomes

clear in Figure 5.5 in Section 5.2.2, where an individual departs at their earliest

departure time and arrives before the start of the arrival time window.
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Note that the last two metrics only consider original vehicles.

Additional Marks per Algorithm When evaluating the performance of the

NaiveApproach algorithm, there is no need to consider the ratio between the total

distance actually driven and the distance that would be travelled without ride-

sharing, since this ratio is always 1.0. Additionally, we do not consider the ratio

between the actual travel time and the time it would take without ride-sharing, as

this ratio would also always be 1.0. Instead of focusing on the average of absolute

deviation, our analysis shifts to the absence of vehicles on the following day, as

some vehicles may be unavailable due to requests that exceed a duration of 1 day.

Additionally, we exclude fitness evaluations from the results due to their potential

to yield large values caused by the exponential component present in the objective.

Moreover, the run time is fast, always requiring less than a minute to complete,

and hence, it has also been excluded from the results.

When using UnboundVehicles, no ride-sharing takes place. Therefore, in the

results, the ride-sharing ratio and travel time ratio will not be mentioned, as they

will always be 1.0.

In the case of RideSharingOnly, the average absolute deviation of vehicles from

pool locations will always be 0 because vehicles always return to their pool location.

Hence, this metric will be excluded from the results for this algorithm.

Experiment Settings For each day, we first look for an initial solution, using

the heuristic in Algorithm 1. Then, we perform a search with SA which is the

first round of the ILS. Three more rounds of SA are performed in this ILS, using

the hyperparameter settings mentioned in Table 8.1, with choices following from

Sections 7.3, 7.4, 7.5, and 7.6. To monitor the progress of ILS, we also track the

time taken for the total search and the optimal fitness found in each search. If

the best found fitness is not improved with respect to the best found fitness in the

previous round, the search is terminated.
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P(I1) 15%

P(I2) 35%

P(I3) 35%

P(I4) 15%

α 50,000

β 1

γ 20

δ 2

Number of ILS rounds 4

Number of perturbations 200

T0 {200, 20, 10, 5}
Tstop 0.01

N 175,000

Cooling Scheduler 0.975

Table 8.1: Parameter settings

Furthermore, the quality of the initial solution varies per run. As illustrated

in the initial solution heuristic, presented in Algorithm 1 in Section 6.4, the order

in which ride types are scheduled is fixed. However, within a ride type, the order

of placement of requests may differ. Three strategies are considered for placing

requests. Strategy 1 involves randomly shuffling the requests, Strategy 2 entails

sorting based on earliest departure time from smallest to largest, and Strategy 3

involves sorting based on the number of passengers from largest to smallest. In each

ILS, a total of 20 initial solutions will be formed using Strategy 1, followed by an

additional run of Strategies 2 and 3. The best-performing strategy will be selected

as starting point for the subsequent ILS.

8.2 Experiment 2: Incorporating Single Rides

Since single rides are only possible with the UnboundVehicles and CombinedApproach

algorithms, as described in Section 7.1, we focus solely on these two approaches in

this experiment. The goal of this experiment is to compare the performance of

these algorithms when single rides are included in the planning process, and ad-

ditionally, to observe how the performance of both algorithms is affected by the

inclusion of single rides in the planning. To achieve this goal, we utilize the same

performance metrics as in Experiment 1 in Section 8.1, along with two additional

metrics: Number of single ride users in original vehicles and Number of

single ride users in additional vehicles. Furthermore, we maintain the identical

experiment settings as in Experiment 1.
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8.3 Experiment 3: Robustness Analysis

In this experiment, we analyse the robustness of solutions generated by the

CombinedApproach. Slack holds a significant role within the context of robustness.

As described in Section 2, Savelsbergh [62] (1992) introduce the notion of forward

time slack for each node, indicating the extent to which the departure time of that

node can be shifted forward without making the route infeasible. By scheduling

the departure event time as early as feasible, as described in Section 4.2.3, we

amplify this slack. The presence of slack ideally ensures that modifications in the

route plan have minimal or no consequences for the feasibility of the schedule,

thereby enhancing robustness. In this experiment, our focus is on investigating

whether planning the departure as early as possible yields solutions robust enough

to accommodate changes in a dynamic setting. More specifically, we will examine

ride additions, cancellations, and uncertainty in ride times, respectively discussed

in Sections 8.3.1, 8.3.2, and 8.3.3.

8.3.1 Adding Rides

In the first part of this experiment, we analyse the process of adding new rides to the

solution in a dynamic setting. To achieve this, we consider the solutions obtained

in Experiment 2 with the CombinedApproach for the days Monday, January 17th,

through Friday, January 21st. Subsequently, we iteratively try to insert new ride

requests to routes in the solution for five runs. These requests are actual requests

originally intended for other days, and are therefore not included in the solutions.

The number of rides that will be added constitutes 5% of the total number of rides

for that day, while maintaining the ride type distribution outlined in Section 5.2.3

and illustrated in Figure 5.9 within this section. We assume each additional request

is submitted prior to its earliest possible departure. When adding rides, we employ

an insertion heuristic. This heuristic is the same as the initial solution heuristic,

as presented before in Algorithm 1, except that no empty routes are initialized.

Additionally, it is not only possible for mandatory returns to place their two rides

as a whole either before or after a route, but also for non-mandatory returns.

It is important to note that there is no subsequent local search performed.

Furthermore, note that the rides which will be added throughout the day do not

influence rides that have already occurred on that day, as we assume each additional

request is submitted prior to its earliest possible departure. In the results of this

experiment, described in Section 9.3.1, we will provide insights in the number of

rides that can be added and rides that cannot be added.
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8.3.2 Removing Rides

In the second part of the experiment, we analyse removing ride requests from orig-

inal routes in the same solutions as before. In five runs, a random proportion of

5% of the original ride count for that day is removed, thereby again preserving the

distribution depicted in Figure 5.9 in Section 5.2.2. For removal, we employ a sim-

ple removal heuristic, shown in Algorithm 7. As before, we assume that requests

for ride removal occur before the earliest possible departure. As described before,

requests can exist of either two rides in the case of a return, or a single ride for

a single-ride request. In either scenario, the rides are individually considered for

removal. In this heuristic, we initially evaluate whether removing both nodes of a

ride is feasible. If it is infeasible, we explore the potential replacement of nodes in

the route to other routes. We take the pickup and dropoff to remove from the route,

and subsequently all pickups that occur after this pickup and their corresponding

dropoffs. This remaining route is called the ’removal route’ in Algorithm 7. If the

removal route is feasible, we proceed to check if the removed nodes can be replaced

in other original routes in the solution using the same insertion heuristic as when

adding rides to the solution, described in Section 8.3.1. If the removal route is in-

feasible, or if not all nodes can be replaced, the removal is infeasible. As before, this

approach does not affect rides that have already taken place, as these replaced rides

all occur after the removed pickup, which has also not yet begun as our assumption

states. Note that the only kind of return rides considered for removal, are those

with their outbound segment in the original route. For returns, both rides must

be feasibly removed to achieve a successful removal. However, if the inbound ride

is placed in an additional route, this ride is not removed as it is not planned to

be driven anyway. In the results in Section 9.3.2, we will analyse the potential of

removing rides.

8.3.3 Delays

In the final part of this experiment, we will delve into the effect of introducing delays.

As discussed earlier in Section 6.1, our previous analyses have been based on the

assumption of fixed travel times between locations. However, in this experiment,

we aim to assess the feasibility of original routes under conditions of delay, where

rides are executed at a slower pace than their nominal time. To achieve this, we

will examine whether original routes remain feasible when delays occur. We must

verify Constraints 7., 8., and 9. after updating event times. The reason Constraint

9. requires a check is that the COM might be updated due to a new event time for

the last node of the route, as detailed in Section 6.5.3.

We will again utilize the solutions obtained from Experiment 2 for the same set
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Algorithm 7 Removal Heuristic

1: removal count = 0.05× total number of rides
2: for in range(removal count) do
3: Pick a random request
4: for ride in range(len(request)) do
5: if removal of nodes is feasible then
6: continue
7: else
8: Try to replace nodes
9: if All nodes replaced and feasible removal route then

10: continue
11: else
12: infeasible removal
13: break
14: end if
15: end if
16: end for
17: feasible removal
18: end for

of days as previously analysed. Subsequently, we will modify the travel times of rides

that occur during the morning and evening rush hours, namely those with pickup

event times between 6 AM and 9 AM, or between 4 PM and 7 PM, as shown in

Figure 5.13 in Section 5.2.3. This adjustment will involve multiplying the nominal

ride time by a multiplier. The multiplier will be determined based on a normal

distribution with an average of 1.0 and a standard deviation of 0.06. However, only

values within the range of 1.0 to 1.2 will be considered. If the multiplier lies outside

this range, it is given a new value based on the distribution, until it lies inside the

range. In Section 9.3.3, we will analyse the effects of these delays in 5 runs for each

of the five days and assess their implications.

86



Chapter 9

Results

In this section, we present the results of Experiments 1, 2, and 3, as described

respectively in Sections 8.1, 8.2, and 8.3.

9.1 Results Experiment 1: Comparing four Approaches

In this section, we present the results for Experiment 1, in which the four approaches

are compared as described in Section 8.1. The results are displayed in Tables A.1,

A.2, A.3, A.4, A.5, A.6, A.7, and A.8 in Appendix A, respectively for the first

and second week of NaiveApproach, UnboundVehicles, RideSharingOnly, and

CombinedApproach. Below, we will discuss these results per metric.

Fitness Convergence To visualize the convergence of fitness for each algo-

rithm, we plot the fitness convergence in Figure 9.1 for all ten weekdays, start-

ing from the fitness of the initial solution, along with the ILS rounds. Simi-

larly as before, each line represents the fitness convergence for one day. Red

lines represent UnboundVehicles, orange lines RideSharingOnly, and green lines

CombinedApproach. Several significant observations can be made from this fig-

ure. Firstly, we notice that convergence occurs for all algorithms and instances.

Moreover, it is important to observe that CombinedApproach exhibits a notably

larger improvement after the first ILS round compared to UnboundVehicles and

RideSharingOnly. However, there is still a more substantial decrease for

UnboundVehicles than for RideSharingOnly. This observation indicates that the

search spaces of UnboundVehicles, and especially CombinedApproach, are larger

than that of RideSharingOnly. This is further supported by the fact that in

UnboundVehicles, and particularly seen in CombinedApproach, substantial fitness

improvements often occur in later rounds. On the other hand, RideSharingOnly

generally tends to reach complete convergence. The fact that in RideSharingOnly

87



Initial 1 2 3 4
IILS Round

45000

50000

55000

60000

65000

70000

75000

80000

Fit
ne

ss
 V

al
ue

Fitness Convergence per Algorithm

UnboundVehicles
RideSharingOnly
CombinedApproach

Figure 9.1: Fitness convergence per algorithm for all weekdays

a number of rides are not considered because their bounds occur on different days,

as discussed in Section 7.1.4, may contribute to this.

Planned Number of Users As discussed earlier, the most important component

of the objective for the Ministry of Defence is to schedule as many users as possible.

Figure 9.2 illustrates, for each day and each of the four algorithms, the number

of users that have been scheduled within original routes. Additionally, the total

number of users on each day is also depicted.
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Figure 9.2: Planned number of users for all algorithms

The key observation from this figure is that, on the busy days - Tuesday, Wednes-

day, and Thursday — NaiveApproach schedules the least number of users. This is
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followed, respectively, by the RideSharingOnly and UnboundVehicles algorithms.

Our proposed CombinedApproach, on the other hand, schedules the highest number

of users on all the busy days. Often, the number of scheduled users on these days

falls approximately between 85% and 90%. This marks a significant improvement

compared to the NaiveApproach, which schedules between 55% and 65% of the

users on busy days.

When examining the less busy days — Monday, Friday, Saturday, and particu-

larly Sunday — it can be observed that the difference in the number of scheduled

users among the different algorithms is considerably smaller. Notably, on Sunday

January 23rd, NaiveApproach schedules more users than all other algorithms. The

reason for this phenomenon is twofold. Firstly, with fewer requests, the advantages

of ride-sharing and unbound vehicles become less pronounced. This highlights that

the benefits become more prominent when dealing with a larger number of requests,

allowing for more combinations. Secondly, around the weekends, there are relatively

more returns from which the bounds fall on different days, as discussed in Section

5.2.2. As discussed earlier, NaiveApproach may assign a vehicle for multiple days

to a user, which is not the case for the other three algorithms. As mentioned in

Section 7.1.4, RideSharingOnly never schedules requests with bounds on differ-

ent days - which is also the reason of its bad performance on the Mondays and

Fridays. For the other two algorithms, they can only be accommodated through

ride-sharing. However, with few other rides available, the likelihood of finding a

feasible ride-sharing arrangement is diminished.

Ratio of Driven Distance to Naive Distance Another important compo-

nent of the objective is the ratio of driven distance compared to the distance that

would be covered without ride-sharing. Figure 9.3 presents these ratios for the four

algorithms.

For both NaiveApproach and UnboundVehicles, where ride-sharing cannot oc-

cur, the ratio is trivially always 1.0. In the case of RideSharingOnly, the ratio

consistently falls between 0.95 and 1.0. While this signifies an advancement over

the other two algorithms, it is not a huge improvement. However, upon examination

of the CombinedApproach, a noteworthy enhancement in this ratio becomes evident.

On weekdays, this ratio ranges approximately between 0.70 and 0.75. To put this

into perspective, a ride-sharing ratio of 0.715 on Tuesday, January 18th, corresponds

to a reduction of nearly 50,000 kilometres. Therefore, it becomes evident that the

combination of ride-sharing and unbound vehicles within CombinedApproach not

only elevates the number of planned users, as demonstrated earlier, but also ampli-

fies the potential for ride-sharing compared to the two extensions employed indepen-

dently. This phenomenon is attributed to the fact that the decoupling of vehicles
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Figure 9.3: Ratio of driven distance to naive distance for all algorithms
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Figure 9.4: Average absolute occupation deviation for two algorithms

from pool locations leads to a substantially greater number of feasible ride-sharing

arrangements.

Occupation Deviation To ensure that the number of available vehicles at the

end of the day does not deviate too much from the desirable number, the occupation

deviation component is, as discussed before, incorporated into the objective. Fig-

ure 9.4 presents the average absolute occupation deviation along with its standard

deviation for different days, focusing on UnboundVehicles and CombinedApproach.

Note that the occupation deviation is always 0 for both NaiveApproach and

RideSharingOnly, and thus is not represented in the figure.

Observing the results for both algorithms, it is evident that the average absolute

deviation remains notably low, never exceeding 1.12 for UnboundVehicles and 0.60
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for CombinedApproach. Nevertheless, the standard deviations are relatively large,

occasionally resulting in errorbars reaching 2.0, indicating that a number of absolute

deviations are 2 or higher. As anticipated and discussed in Section 7.3, this figure

confirms that the exponential nature of the objective component can ensure that

small values for δ are sufficient to mitigate substantial deviations.

Empty Routes As discussed in Section 7.3, the inclusion of the empty routes

component in the objective is not a primary goal; rather, it serves to indicate a

preference for utilizing the same vehicle whenever possible, as opposed to employing

a new vehicle. This approach enables us to objectively analyse, across all algorithms,

the extent to which vehicles remain unused on each day. The number of empty

rides for each day is depicted in Figure 9.5, alongside the total number of available

vehicles.
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Figure 9.5: Number of empty routes for all algorithms

As evident from this figure, it is clear that a greater number of vehicles are

deployed on busy days. Moreover, a notable observation is that vehicles remain

unutilized on every day for all algorithms, even though not all users are scheduled,

as depicted in Figure 9.2. This observation suggests that many requests originate

from the same location, leading to a shortage of vehicles at that pool location while

causing a surplus at other locations. However, it might also be possible that a

number of mandatory return rides with bounds occurring on a different day are

not able to be scheduled, as no ride-sharing arrangement can be formed. Addi-

tionally, it is noteworthy that the three more complex algorithms, particularly the

CombinedApproach, consistently employ fewer vehicles than the NaiveApproach,

even though in general a higher number of rides are scheduled. This implies that,
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on average, the advanced algorithms accommodate more rides per vehicle than the

NaiveApproach. In the following paragraph, we will substantiate this observation.

Number of Rides per Vehicle In Figure 9.6, the average number of rides per

vehicle along with their standard deviations are depicted for the four algorithms.

With NaiveApproach, an average of around two rides are scheduled on busy days,

often corresponding to a single inbound and outbound segment of a return route.

As anticipated, the three more complex algorithms indeed schedule a greater num-

ber of rides per vehicle compared to NaiveApproach. Specifically, it is evident

that UnboundVehicles schedules, on average, more rides per route on all days

than RideSharingOnly. Furthermore, CombinedApproach achieves an average of

around four rides per route on busy days. However, the presence of substantial

standard deviations indicates that routes with two rides as well as those with six

rides or even more are likely to exist on busy days. This figure shows again that

CombinedApproach results in a significantly more efficient utilization of vehicles

compared to NaiveApproach.
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Figure 9.6: Average number of rides per vehicle for all algorithms

Travel time Ratio Finally, we examine the average ratio of direct travel time

to actual travel time. Given that the maximum ride time is 1.2 times the nom-

inal ride time, as discussed in Section 5.2.2, this value will always fall between

1.0 and 1.2. Figure 9.7 displays the travel time ratios for RideSharingOnly and

CombinedApproach, as these algorithms can experience delays due to ride-sharing.

As observed in this figure, the standard deviations for both algorithms do indeed

lie within the range of approximately 1.0 to 1.2. Furthermore, the average ratios
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exhibit minimal disparities amongst themselves, roughly hovering around 1.1.
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Figure 9.7: Average travel time ratio for all algorithms

9.2 Results Experiment 2: Incorporating Single Rides

In this section, we will examine the effects of incorporating single rides into the plan-

ning, as described in Section 8.2. The results are shown in Tables B.1, B.2, B.3, and

B.4 in Appendix B, respectively for the first and second week of UnboundVehicles

and CombinedApproach. Upon investigating the inclusion of single rides, we observe

that there are no significant differences within the algorithms in the performance

metrics of average absolute deviation and average number of rides per vehicle. These

comparisons are illustrated in Figure C.1 and Figure C.2 in Appendix C respectively.

However, we do notice a slight reduction in the counts of empty routes on busy days

for both algorithms when single rides are introduced, as depicted in Figure C.3 in

Appendix C. This is unsurprising given the increased number of requests.

Examining Figure 9.8, we can observe the number of scheduled single ride users

for the two algorithms. Here, it becomes evident that CombinedApproach better

handles the scheduling of single rides, and is able to schedule almost all single

ride request on all days. Furthermore, Figure 9.9 compares the number of non-

planned users for UnboundVehicles and CombinedApproach when single rides are

allowed and when they are not. While we see an increase of non-planned users for

UnboundVehicles on all days when single rides are included, except for January

27th, we see a decrease on multiple days for CombinedApproach. A reason for this

is that single rides allow for a more complex search space with better solutions,

in which more ride-sharing occurs. As single rides exclusively travel between pool

locations, these rides are favourable for ride-sharing. Figure 9.10 supports this, as

it indicates on many days a small decrease in the ratio of travel distance.
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Figure 9.8: Number of single ride users planned for two algorithms
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Figure 9.9: Difference in number of non-planned users with and without single rides
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Figure 9.10: Difference in travel time ratio with and without single rides
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9.3 Results Experiment 3: Robustness Analysis

In this section, we analyse the robustness of the ride-schedules, obtained in Experi-

ment 2. More specifically, in Sections 9.3.1 and 9.3.2 we will analyse the process of

respectively adding rides and removing rides from existing solutions. Furthermore,

in Section 9.3.3 we will look at the effect delays have on existing schedules.
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Figure 9.11: Average number of rides that can be placed and that can not be placed

9.3.1 Results Adding Rides

In this section, we observe the process of adding rides to existing solutions of Exper-

iment 2, as described in Section 8.3.1. In Figure 9.11, the average number of rides

that can be added to the existing schedule on each of the first five working days is

depicted, along with the count of rides that cannot be accommodated. Among the

scheduled rides, a distinction is made between placing rides in empty routes and

non-empty routes. As evident from this figure, the majority of rides can be sched-

uled. On Tuesday 18th, which is the busiest day and therefore the most challenging

for scheduling, approximately 78% of the rides are still accommodated on average.

The majority of the scheduled rides are placed in empty routes. As discussed in

Section 9.1, many vehicles remain unused in the schedules. As shown, these vehicles

can now be efficiently employed for scheduling of new rides. Examining the removal

of rides from non-empty routes and the introduction of delays to rides in non-empty

routes in respectively Sections 9.3.2 and 9.3.3 will tell us more about robustness of

non-empty routes.
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Figure 9.12: Average number of rides that can be removed and that can not be

removed

9.3.2 Results Removing Rides

In this section, we will analyse the removal of rides from existing schedules, as

described in Section 8.3.2. In Figure 9.12, we present the average number of rides

per day that cannot be removed, can be directly removed, or can be removed using

the heuristic outlined in Algorithm 7. As observed in the results of Experiment

2, detailed in Section 9.2, busy days exhibit a low distance ratio, a high average

number of rides per vehicle, and a majority of users scheduled. These findings

suggest complex solutions where rides are interdependent. From Figure 9.12 it

becomes apparent that indeed, on busy days, the removal of rides proves to be

challenging. While the majority of rides cannot be removed on average for Monday

and Tuesday, nearly half of the rides on Wednesday and Thursday can be removed.

On Friday, more than half of the rides can on average be removed. Additionally,

the figure highlights the value of the introduced heuristic. Across all days, it is

consistently able to remove a notable number of rides on average.

9.3.3 Results Delays

In this section, we will look at the consequence delays have, as described in Section

8.3.3. Figure 9.13 illustrates, for each day, the average number of feasible and

infeasible routes following the introduction of delays. From this figure, it is evident

that the percentage of infeasible routes lies around 23% on each day. While the

majority of rides remain feasible, it is crucial to acknowledge that a portion of the

routes does become infeasible due to the introduction of delays. Once again, the

results show that the complex schedules leave not much room for modifications.
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Figure 9.13: Average number of feasible and infeasible routes after delays

In Figure 9.14, we present per constraint the average number of rides with vio-

lations across five runs. Specifically, we focus only on Constraints 7. and 8., as the

constraint for availability of vehicles, Constraint 9., did not once cause infeasibility.

Notably, this figure clearly illustrates that the majority of infeasibilities are caused

by excessive ride times. This observation is important, as it indicates that simply

increasing slack would not alleviate the issue of routes becoming unfeasible with

delays. While enhanced slack could mitigate violations of Constraint 7., it would

not address the underlying problem of excessive ride times.
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9.4 Conclusion of Results

The results discussed in Sections 9.1, 9.2, and 9.3 provide insights into the perfor-

mances of the algorithms, their handling of single rides, and the robustness of the

solutions. In this section, we will summarize these findings.

Firstly, we observed that convergence occurs for all algorithms after multiple

ILS rounds. Although the convergence of CombinedApproach is not complete, the

improvements diminish over time. This suggests that CombinedApproach navi-

gates a more complex search space compared to other algorithms. Furthermore,

CombinedApproach is the most efficient algorithm in scheduling users, and its dis-

tance ratio is significantly better than that of RideSharingOnly. Combining ride-

sharing and vehicle decoupling results in superior solutions, outperforming either

approach alone. Interestingly, CombinedApproach also tends to use fewer vehicles

than the other algorithms, while achieving a higher average number of rides per

vehicle. These advancements come with the minimal cost of a small average occu-

pation deviation and a moderate increase in average ride time.

The handling of single rides by CombinedApproach is also efficient. It success-

fully incorporates nearly all single rides into the schedule. This is likely due to the

inherent nature of single rides, which often facilitate ride-sharing arrangements. As

a result, the inclusion of single rides contributes to a reduction in the distance ratio

on many days, enhancing the overall efficiency of the solution.

Lastly, the addition of rides to solutions formed by CombinedApproach generally

poses no significant issue. The presence of numerous empty routes allows for the

accommodation of these rides. However, removing rides proved to be more chal-

lenging, particularly on busy days. This implies complex interdependencies among

rides. Nevertheless, a portion of rides could be removed on all observed days, and

the removal heuristic contributed to this process. Additionally, even though the

introduction of delays during peak hours maintained the feasibility of the majority

of routes, a consistent proportion of routes did become infeasible on all days. The

primary reason for this infeasibility is the exceeding of maximum ride time due to

ride-sharing arrangements.
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Chapter 10

Discussion

In this section, we will discuss our work. We begin by addressing the limitations

of our study in Section 10.1, followed by an exploration of the implications of our

findings in Section 10.2. Furthermore, we provide suggestions for future research

directions in Section 10.3.

10.1 Limitations

Our work is subject to several limitations due to constraints in resources and time.

It is important to examine these limitations and reflect on their effects. In this

section, we explore limitations across different aspects of our research. Note that

some of these limitations will be further discussed in Section 10.3, when discussing

future research directions.

Objective One of the areas where our research encounters limitations is in the

formulation of the objective function. As outlined in Section 4.1, the objective com-

prises four components: the non-served users, total travel distance ratio, occupation

deviation at pool locations, and the number of non-empty vehicles. In Section 9.3,

we have observed a significant level of robustness in the generated schedules. How-

ever, on busy days, the removal of rides and the introduction of delays often lead

to infeasibilities. Despite implementing the earliest possible departure times to in-

crease slack, it appears insufficient to handle these changes well. As discussed in

Section 9.3.3, the addition of slack does not address the issue of exceeding maximum

ride times, particularly in scenarios with consecutive delays. This problem is likely

caused by ride-sharing arrangements that become problematic when combined with

successive delays. To further enhance the robustness, we could incorporate compo-

nents in the objective that increase robustness. More details about future work in

this regard can be found in Section 10.3.
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Another limitation within the objective is associated with the occupation de-

viation component. Ideally, the absence of a vehicle should be penalized inversely

proportional to the desirable vehicle count. For example, if there are only three

vehicles of a particular type at a pool location, a deviation of 1 should incur a

greater penalty compared to a scenario where fifty vehicles of that type are present.

However, given the minor deviations in vehicle occupation for all types, as indicated

in Sections 8.1 and 8.2, this limitation does not significantly impact the outcomes.

Data A big challenge in this work is the inconsistency between the available

data and the input data we need for our algorithm. Consequently, preprocessing

and adaptations on the data are performed, making it more uncertain how the

algorithms would perform in a real-life scenario without unedited data. A first

example of this data editing is the removal of rides, as discussed in Section 6.3, due

to missing information. Besides, as the ride request data only provides the start

and end times of reservations, time windows were formed, assuming a maximum

travel time of 1.2 times the nominal travel time for each user, which might not be

realistic.

Furthermore, to cluster locations, we used a string similarity algorithm, as also

discussed in Section 6.3. This also brings multiple limitations with it. To start with,

the algorithm may have erroneously clustered locations that should have remained

separate. Instances of such locations include ’Brunssum’ and ’Bussum’. Besides, a

substantial number of former mandatory returns are edited and labelled and pro-

cessed as non-mandatory returns. This occurs for example if rides to the non-pool

location ’Utrecht’ are clustered with rides to the pool location ’Kromhout Kazerne’.

Consequently, the improvements our algorithm yields, shown in the results in Sec-

tions 9.1 and 9.2, might be exaggerated as there are more non-mandatory returns,

therefore greater vehicle availability at pool location, facilitating easier accommo-

dation of other rides. Clustering locations as ’Brunssum’ and ’Bussum’ would also

contribute to this exaggeration.

The distance matrix employed for distance and travel time retrieval, as described

in Section 5.3, also has its limitations. While the Google Distance Matrix API was

used for a number of entries, estimations through regressions were adopted for others

due to API request limitations. Despite the regression models being highly accurate,

inconsistencies are likely to exist between actual values and our estimations.

Solution Method Our solution method is limited by a number of simplifications

and assumptions. Apart from the assumption of maximum ride times, as previously

discussed, other assumptions are also made that do not fully align with real-world

conditions. For instance, we assume the absence of uncertainties and disturbances,
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leading to each ride precisely following the duration provided by the distance matrix.

In reality, peak hours and traffic conditions could impact travel times. Addition-

ally, we do not account for fuelling, which potentially leads to delays and detours.

However, results of Experiment 3, outlined in Section 9.3.3, demonstrate that small

delays have limited influence on route feasibility. Furthermore, it is important to

highlight that the NaiveApproach, mimicking the current planning system in use,

managed to accommodate more requests than are planned in reality, as discussed in

Section 7.2. To address this concern, we reduced the number of available vehicles,

as shown in the same section. This adjustment is also inconsistent with the real-life

scenario.

Another limitation in the solution method is the use of relatively restrictive

neighbourhood operators within the solution method. As demonstrated in Section

7.4, operators I2 and I3 prove particularly useful and are predominantly employed.

More complex operators could expand the search space, potentially leading to im-

proved solutions, as elaborated on in Section 10.3.

Another aspect to consider is the runtime of the CombinedApproach. As evident

in the results presented in Sections 9.1 and 9.2, the algorithm’s execution time is

notably slow, with a typical ILS run of four rounds potentially lasting up to four

hours. While our constraint checking methods, as described in Sections 6.5.2 and

6.5.3, enhance efficiency, the algorithm’s runtime is moderate. This runtime con-

cern, however, is not a significant issue for Defence’s applications, as the majority

of ride requests are known a day in advance, allowing overnight algorithm execu-

tion. Besides, our instances are relative large, which also accounts for the moderate

runtime, as further elaborated on in Section 10.2.

Experiments A notable limitation in our experiments, as highlighted by the

results in Sections 9.1 and 9.2, is that after four ILS rounds, the best found fitness

is not always completely converged, indicating that the search is not extensive

enough. An example of this can be observed in the results of CombinedApproach

on January 19th, as outlined in Section 9.1. In this case, the third round yielded a

fitness of 44251, followed by 43872 in the final round, indicating a potential ongoing

decline in fitness in additional rounds. It is noteworthy, however, that convergence

is most of the time observed, especially on calmer days and when the comparative

algorithms with narrower search spaces are employed.

Besides, it is important to note that we chose RideSharingOnly to not consider

returns with bounds on different days, as discussed in Section 7.1.4. The reason

for this is that RideSharingOnly does not handle single rides, and the two bounds

on different days could be considered single rides. However, because a number of

returns have their bound on different days, as shown in Figure 5.7 in Section 5.2.3,
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corresponding users can not be planned. This might lead to worse prestation of

RideSharingOnly in terms of users being planned, than would be the case if we

did consider these returns, especially around weekend days when these type of rides

occur relatively often. Future research could point out if this is indeed the case.

A final significant limitation is the absence of a global optimum for us to compare

the solutions, shown in Sections 9.1 and 9.2. Despite frequently observing conver-

gence and being able to compare our solutions to the initial solutions obtained

through the simple insertion heuristic and the solution from the NaiveApproach,

we cannot confidently assess how well the found optima are compared to the global

optimum. More on how to deal with this in future research can be read in Section

10.3.

10.2 Implications

In this section, we explore the broader significance and practical implications of our

research. First, we will discuss its contributions to the field, and next we discuss

the real-world impact of our work.

Theoretical implications To our knowledge, this study is the first to address

and solve a unique combination of the ride-sharing and car-sharing problem, in

which cars are owned by a company and stationed at pool locations, and both rides

and cars are shared between users. As described in Section 2, SA and variants

have yielded satisfactory results in ride-sharing problems [57] [74] [12] [40]. The

outcomes of this research support these findings and demonstrate that SA is effective

in yielding good solutions for this variant of the ride-sharing problem. Moreover,

the identified superior results when combining ride-sharing and the detachment of

vehicles from their pool locations, outperforming either approach alone, constitutes

a valuable contribution to the field.

Besides, the ride-sharing problem being addressed in this thesis is characterized

as a broad extension of the original ride-sharing problem. Whereas most studies in

literature limit their work to one or two additions, we include multiple heterogeneous

vehicles and depots, strict time constraints, consideration of user preferences, limi-

tations on vehicle capacity, and flexible roles of drivers and riders. Besides, unlike

other work which often considers one component in the objective such as minimizing

cost, our multi-objective function aims to minimize the number of non-served users,

the ratio of the total distance travelled to that without ride-sharing, the deviation

from the desirable occupation of vehicles at pool locations, and the number of used

vehicles.

Lastly, it is worth noting that existing literature commonly deals with problems
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on a significantly smaller scale, involving fewer requests, depots, and vehicles than

our problem statement. For instance, Masmoudi, Hosny, Braekers, and Dammak

[40] (2016) classify instances as large when the number of requests fall within a

range of 24 to 144 requests, the number of vehicles varies from 3 to 13, while using

a single depot. Furthermore, Chen, Mes, Schutten, and Quint [15] (2019) define

large instances as those involving 500 to 1,000 participants. In contrast, our problem

entails a higher complexity, featuring instances with over 1200 vehicles, more than

50 depots, and in excess of 3,000 requests during peak days.

Practical implications The practical impact of our research is significant, espe-

cially in guiding future planning system development for the Ministry of Defence.

Despite the acknowledged limitations highlighted in Section 10.1, our study provides

clear directions for improvement and quantifies potential benefits. Our approach

does not only allow for more ride requests to be accommodated, but also reduces

overall travel distance and the number of required vehicles. These outcomes lead

to cost savings on different components. Firstly, automating the planning process

minimizes the need for manual scheduling work, reducing labour costs. Secondly,

fewer vehicles and less fuel are needed. These advantages not only save money

but also contribute to Defence’s environmental goals by decreasing greenhouse gas

emissions.

10.3 Future work

In this section, we explore potential directions for further research and development,

building upon the findings and discussions presented in the previous sections. First,

we will look at how we can address discussed limitations. Then, we will discuss

future work on more enhanced local search methods, and discuss research directions

for dynamic environments. Finally, we will consider research possibilities that are

relevant to the Ministry of Defence.

Solving limitations To start, many of the limitations discussed in Section 10.1

could trivially be addressed through future work. First, it would be valuable to

investigate how the algorithm performs with more realistic and consistent data,

which for example eliminates the need for data editing and estimating travel times

and distances. Second, enhancing the robustness could be achieved by adding a

component to the objective function that quantifies robustness based on slack time,

similar to van Twist, van den Akker, and Hoogeveen [70] (2021). However, this

would probably not solve the problem with exceeding maximum ride times when

delays are added, as discussed in Section 9.3.3. A simple solution to deal with this,
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would be decreasing the value α, to decrease the degree of ride-sharing. Further

experimentation could show if this would indeed let us better handle delays. Since

solutions including ride-sharing are preferred, it might also be worthwhile to in-

vestigate the more intricate approach of handling stochasticity in the local search;

see for example van den Akker, van Blokland, and Hoogeveen [5] (2013), Passage

[52] (2016), and van den Broek, Hoogeveen, and van den Akker [14] (2018). Lastly,

the issue of missing a ground truth to compare the quality of our solution, can be

solved by applying column generation and local search with recombination through

ILP, where the routes obtained through our algorithm function as columns; see for

example ten Bosch, Hoogeveen, and van Kooten Niekerk [10] (2021).

Enhanced Local Search As discussed in Section 10.1, operators I2 and I3 have

proven effective, but introducing more complex operators could expand the range of

options and potentially lead to better solutions. For instance, exploring a more ad-

vanced version of I3 that allows the removal of multiple non-consecutive nodes from

a route could be worth investigating. Additionally, considering the use of infeasible

solutions temporarily in the optimization process could increase the possibilities

for finding better solutions. Furthermore, combining simulated annealing with a

genetic algorithm, as demonstrated by Masmoudi, Hosny, Braekers, and Dammak

[40] (2016) discussed in Section 2, could be a promising avenue for improving the

optimization process.

Dynamic Environment Considerations Although we looked at the addition,

removal, and delays of rides in existing solutions in Section 8.3, there is room for fur-

ther exploration in the context of dynamic route adjustments. Future research could

examine more sophisticated techniques for modifying established routes. This could

involve studying more advanced insertion heuristics and applying smaller-scale local

search strategies, similar to what van Twist, van den Akker, and Hoogeveen [70]

(2021) and Pouls, Meyer, and Glock [54] (2021) do.

Defence-specific Enhancements With a focus on the Ministry of Defence’s

specific needs, there are interesting possibilities for expanding this work. First,

Defence would be interested in considering additional user preferences, such as a

maximum number of ride-sharing arrangements. Second, investigating refuelling

constraints would make the model more realistic. Additionally, as the shift to-

ward electric charging takes place, exploring optimal charging station placement

across pool locations could be valuable. Simulation studies could help identify the

best charging strategies. Moreover, it could be worthwhile to explore the potential

of establishing central charging hubs across the Netherlands, independent of pool
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locations, for frequently travelled routes.

Furthermore, although we showed in Figure 5.10 in Section 5.2.3 a clear cor-

relation between available vehicles and departures per pool location, the findings

in Section 9.1 indicate the potential occurrence of vehicle shortages at certain pool

locations, while others might be experiencing a surplus. An interesting area for fu-

ture research involves examining an improved overall distribution of vehicles among

these pool locations. This investigation could be extended by optimizing distribu-

tions on a daily basis, using predictive methods such as machine learning to predict

for future days the nature of ride requests.
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Chapter 11

Conclusion

In this thesis, we solved a unique ride-sharing problem for the Dutch Ministry

of Defence. The ministry manages a fleet of pool vehicles distributed strategically

across different locations in the Netherlands. Ministry of Defence employees can use

these pool vehicles for work-related appointments. With an increasing emphasis on

decreasing greenhouse gas emissions and the limitations on vehicle availability, the

optimization of vehicle utilization is important. Therefore, we have developed an

ILS-algorithm that uses SA and generates schedules that allow for ride-sharing.

Additionally, we have introduced the concept of decoupling vehicles from their

original pool locations, thereby enabling the option of returning vehicles to different

pool locations, and additionally the option of single rides. The ride-sharing problem

we have addressed is an extension of the original ride-sharing problem, considering

different vehicle types, multiple depots, strict time constraints, user preferences,

capacity limitations, and flexible roles of drivers and riders. The multi-objective

function is designed to minimize the number of non-planned users, the ratio of

total travel distance with and without ride-sharing, the deviation from the desirable

vehicle distribution at pool locations, and the number of non-empty vehicles.

An important aspect handled in this thesis is the preprocessing of data. We have

shown how we employed a string similarity algorithm, categorized ride types, and es-

tablished time windows. Additionally, we have discussed forming a distance matrix

with estimated ride times and distances derived from a regression analysis in which

we used geographic coordinates. Furthermore, we have introduced an initial solu-

tion heuristic, an SA-algorithm called CombinedApproach, along with explanation

of its underlying assumptions, neighbourhood operators, and constraint validation.

We have also introduced three comparative algorithms, namely NaiveApproach,

RideSharingOnly, and UnboundVehicles. Notably, NaiveApproach mimics the

current naive approach of planning, while RideSharingOnly and UnboundVehicles

respectively implement exclusively ride-sharing and the decoupling of pool vehicles
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from their designated locations.

In the first experiment, we compared the performance of these four algorithms.

We found that the CombinedApproach outperforms the other algorithms in terms of

planned users, with a significantly better distance ratio compared to RideSharingOnly.

This indicates that decoupling vehicles from pool locations and enabling ride-

sharing lead to substantial improvements when combined. Also, when compar-

ing CombinedApproach with RideSharingOnly, the combined approach has the

advantage of being able to plan users who have a bound on a different day. No-

tably, CombinedApproach employs fewer vehicles than the other algorithms in gen-

eral and subsequently obtains a higher rides-per-vehicle average. These advance-

ments come at the moderate cost of a small average occupation deviation and a

slight increase in average ride time. In the second experiment, we showed that

CombinedApproach effectively handles single rides by scheduling nearly all of them

on all days. Furthermore, on many days CombinedApproach reduced both the num-

ber of non-planned users and the distance ratio compared to the situation where

single rides are not included. This is likely attributed to the fact that single rides

are suitable for ride-sharing. Lastly, in Experiment 3, we showed that adding rides

to CombinedApproach-derived solutions in a dynamic context was generally not a

problem because of available empty routes. However, we showed removal of rides

proved to be more challenging, particularly on busy days with complex ride inter-

dependencies. Nevertheless, a portion of rides could be removed on all observed

days, in which the proposed removal heuristic helped. Moreover, even though the

introduction of delays during peak hours maintained the feasibility of the majority

of routes, a consistent proportion of routes did become infeasible on all days. This

is primarily due to exceeding maximum ride time caused by ride-sharing arrange-

ments. To potentially increase robustness, future research could focus on incorpo-

rating a slack component in the objective, experimenting with a lower α-value, or

applying more intricate approaches.

The ride-sharing problem addressed in this research is an extension of the orig-

inal problem, and broader in scope than most literature. Besides, literature pre-

dominantly deals with smaller instances in terms of requests, depots, and vehicles

compared to this study. Moreover, the results could contribute to the development

of Ministry of Defence’s future planning systems. The proposed algorithm offers

the potential to minimize manual scheduling efforts, thereby reducing labour costs.

Additionally, this approach leads to a reduction in vehicle utilization and fuel con-

sumption. These outcomes not only translate to cost savings, but also align with

the ministry’s environmental objectives by decreasing greenhouse gas emissions.
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Experiment 1 Tables
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Appendix C

Experiment 2 Additional

Figures
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Figure C.1: Difference in average absolute occupation deviation with single rides

and without single rides
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Figure C.2: Difference in average number of rides per vehicle with single rides and

without single rides
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Figure C.3: Difference in number of empty routes with single rides and without

single rides
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