
Utrecht University

Master Thesis

Parallel Algorithms for Sliding Cubes

M.S. Wolters

supervised by
dr. Maarten Löffler
dr. Irene Parada
dr. Fabian Klute

second assessment
prof. dr. Marc van Kreveld

September 26, 2023

Abstract

In this thesis we formalise the Parallel Sliding Cubes model for modular
robots. This model describes a theoretical framework for several prototypes
of modular robots and the operations they can perform. The Sliding Cubes
model was introduced 20 years ago and it is the best studied model for mod-
ular robots. The model formalised in this thesis expands it, to allow modules
to move in parallel while keeping the configuration connected at all times.
Reconfiguration is the main goal of modular robots. The reconfiguration
problem asks for a schedule for the modules to transform from one shape to
another. A parallel reconfiguration schedule tries to minimize the makespan,
that is, the number of parallel moves. This thesis proposes two methods for
parallelising moves during reconfiguration: a graph-based approach, appli-
cable to a wide range of shapes; and a geometric approach which efficiently
reconfigures between xy-monotone shapes. This algorithm was experimen-
tally verified by comparing the number of moves it takes to reconfigure such
shapes to a state-of-the-art reconfiguration algorithm. There are still many
lines of open research and a number of suggestions are given at the end of
this work to explore this field further.

1

Contents

1 Introduction 4
1.1 A short overview of modular robots 5
1.2 Closely related work . 8

2 Parallel Sliding Cubes Model 9
2.1 Some preliminary definitions 9
2.2 Connectivity or the backbone property 10
2.3 Movement of a single block 11

2.3.1 Sliding over other blocks 11
2.3.2 Convex transition . 12

2.4 Coordinated movement . 12
2.4.1 Coordinated sliding move 13
2.4.2 Coordinated convex move 13

2.5 Avoiding collisions . 14

3 Algorithm 1: Graph-Based Approach 16
3.1 Important concepts . 16
3.2 Defining the path graph . 18
3.3 Finding the path . 22

4 Algorithm 2: Geometric Approach for xy-Monotone Config-
urations 24
4.1 Transforming one xy-monotone shape to another 25
4.2 Parallel reconfiguration of xy-monotone shapes 26

5 Results 31
5.1 Experiments . 31
5.2 Results . 32

2

6 Discussion 35
6.1 Errors in the parallel xy-monotone reconfiguration 35
6.2 Performance gains for parallel xy-monotone reconfiguration . 37
6.3 Improving the graph-based approach 38

3

Chapter 1

Introduction

This thesis focuses on designing new, state-of-the-art algorithms for the re-
configuration of modular robots. Modular robots have the potential of being
applied in many fields like space exploration and medical applications. Be-
cause the modular robots are small and can take many different shapes, they
could be used to build infrastructure and for nano bot applications within
a person’s body. Another potential advantage due to their modularity and
resilience due to redundancy is the ability to adapt to complex terrains, such
as penetrating collapsed buildings or other confined spaces.

Contemporary research is, however, not at the point that these applica-
tions can be realised. Much theoretical work focuses on the reconfiguration
problem, in order to change the shape of the configuration. More precisely,
the (connected) reconfiguration problem is about connected sets of modular
robots that make up a particular shape, attempting to change that shape,
by moving modules over each other while keeping the shape connected. This
problem has been studied for many models and prototypes and it is quite
complex. In some cases, reconfiguration between two shapes is not even pos-
sible and in some pivoting models in which the modules rotate around each
other the problem is PSPACE-complete [1]. For sliding squares, which is the
model studied in this thesis, reconfiguration is always possible. However,
minimising the number of moves in reconfiguration is NP-hard [2].

Looking at the reconfiguration problem from its geometric abstraction
in the different theoretical models allows to tackle it using tools from com-
putational geometry and combinatorics. By approaching the problem by
analysing the shapes and underlying graph structure, one can get guaran-
tees for the soundness of (reconfiguration) algorithms. These guarantees,
however, might come at a performance cost in practice. That is why this

4

thesis attempts to approach the problem from two different angles.
Firstly, we will discuss the more heuristic approach of mapping a config-

uration of modular robots to a graph. Using this graph we search for paths
that correspond to sets of modules that can be moved in parallel. This
approach has the potential for significant performance gains over sequen-
tial algorithms or in general approaches that make use of canonical shapes.
However, as we will discuss, this approach might get stuck as it does not
guarantee sound reconfiguration.

Secondly, we will discuss the parallelisation of one step used in different
reconfiguration algorithms like the sequential algorithm by Akitaya et al. [2]
and the parallel algorithm by Fekete et al. [11]. These algorithms do not
use a canonical shape in their reconfiguration, but a set of them, namely
xy-monotone shapes. The definition for this class of shapes can be found
in Chapter 4. This is an important class of shapes, as it is natural for
reconfiguration algorithms make use of it. Therefore, any performance gains
that can be realised in reconfiguring this class of shapes could be applied to
many different approaches to reconfiguration.

While physical prototypes for many of the models described in the next
section exist, it is important to mention that the modular robots we will be
working with are theoretical. The goal is to design algorithms that could be
applied by mechanical engineers, or even to inspire engineers to work within
this model of modular robots.

After defining two algorithms for reconfiguration, we experimentally ver-
ify the results of the geometric approach. Finally, we discuss some directions
for future research.

1.1 A short overview of modular robots

Modular robots are defined as a collection of independent robotic modules
that each have the ability to connect to and disconnect from each other,
and to move over the surface of adjacent modules. A collection of modular
robots have historically been called a metamorphic robotic system [4]. This
is to differentiate the modular robots we are discussing from industrial robots
that have a modular aspect, such as removable tools. In this thesis we will
be using the term modular robots rather than metamorphic systems, as that
is the norm today. Modular robots are a subset of the more general self-
reconfigurable or self-organising robotic systems. Modular robots have the
additional properties that each module is (largely) identical in structure,
motion and computation power. A modular robotic system can be viewed as

5

a swarm of interconnected robotic modules that collectively act as a single
entity [4, 5]. The modular robots studied in this thesis are lattice-based and
thus the modules can be viewed as regular polygons or polyhedra that form
either two- or three-dimensional lattices [25].

There are many different prototypes and models for modular robots in
research. The modules in each model can differ in many ways: size and
shape, but also in movement type (e.g. sliding or pivoting), in the communi-
cation between modules (e.g. centralised or distributed), in the connectivity
requirements (e.g. connected between moves or not), and in whether multi-
ple modules can move at once or not (parallel vs sequential reconfiguration).
In the following paragraphs we touch upon each of these differences.

The most common shapes for modules are: Square [2], Hexagonal [25],
Spherical [21, 20], and Expanding [3]. These types of shape have different
mechanisms, which are useful for different goals and applications.

There are two main abstractions for the movement of modules in modular
robotics: sliding [2, 22, 19] and pivoting [1, 13]. Sliding means that the
module slides over other modules and pivoting means that modules pivot
around their own axis to achieve locomotion. See Figure 1.1.

A

B

Figure 1.1: An example of a sliding (A) versus a pivoting model (B).

The last distinction to be made is whether the configuration is strictly
connected or not. This has implications during reconfiguration, which is
explained in the next section. Strictly connected means that when modules
are moving, the rest of the configuration must be fully connected. This
makes the configuration more robust during movement, but also restricts the
potential moves that modules can make. It allows for articulation points to
become real problems during the reconfiguration. These articulation points
are modules that, if removed, disconnect the configuration. This is akin to
the concept of cut nodes in a graph [24], see Figure 1.2. As such, the blocks
that coincide with these articulation points are known as cut-blocks.

6

Figure 1.2: An example configuration with its articulation points marked in
orange.

There is also a distinction to be made between centralised and distributed
reconfiguration algorithms. Reconfiguration, in short, is the act of changing
the shape of a configuration. Centralised algorithms refer to algorithms that
define an all-knowing entity that keeps track of the configuration (this could
be one of the modules or a separate computer). On the other hand, a dis-
tributed algorithm uses the distributed computing power of all the modules
to construct the reconfiguration schedule. In this scenario, modules commu-
nicate with their neighbours to construct the schedule for the reconfiguration
[19]. Programmable matter is a different distributed model in which the mod-
ules have very limited capabilities [15, 6, 10].

Finally, there is the difference between parallel and sequential algorithms.
For some models of modular robots the only provably-correct algorithms
for reconfiguration are sequential. Sequential algorithms for reconfiguration
make schedules that move each module sequentially, i.e. one by one [2]. Par-
allel algorithms, on the other hand, make schedules such that more than one
block can move at a time. It should be clear that this increases the com-
plexity considerably, as one has to deal with collisions, crossing paths, and
disconnecting the configuration. In previous work [11, 12] the connectivity
requirements are weaker than the ones that we consider in this thesis. This
allows them to use moves and strategies that do not translate to the sliding
cubes model.

For the interested reader we suggest the survey on this topic by Thalamy
et al. [23]. They give a comprehensive overview of the current state of
modular robotics.

It is important to mention most of the models mentioned in this section
have related physical prototypes. In this thesis we worked with a theoretical
abstraction of one such a model rather than with physical prototypes.

7

1.2 Closely related work

A number of works are closely related to this thesis. The first paper to design
a provably-correct algorithm for the sliding cubes model was by Dumitrescu
& Pach [8]. They presented a reconfiguration algorithm for the sliding cubes
model that achieved reconfiguration in O(n2) moves. After the work by
Dumitrescu & Pach, Akitaya et al. [2] showed a different sequential reconfig-
uration algorithm for the sliding cubes model, which achieves reconfiguration
in O(Pn) moves, where P is the maximum perimeter of the two bounding
boxes of the start and target configuration and n is the number of modules
in the modules in the configuration. Furthermore, they proved that it is NP-
hard to minimise the number of moves for a given pair of edge-connected
configurations. The paper by Fekete et al. [11] discusses the problem of con-
nected coordinated motion planning of a configuration. Their work focuses
on a parallel model similar to the sliding cubes model but does not require
the backbone property, defined in Chapter 2. This paper proves that it is
NP-hard to decide whether a configuration can be reached in a particular
number of parallel moves. Another recent paper presents a parameterised
version of coordinated motion planning [9].

8

Chapter 2

Parallel Sliding Cubes Model

This chapter goes in to explicit detail on the movement model used in this
research. It is based on the model used by Akitaya et al. [2], with some
additions to allow for parallel movements. This model is known as the Sliding
Cubes model, which was proposed by Fitch et al. [14]. In Chapter 1 we
discussed different types of modular robotic models. Here, we only discuss
the details of our model based on the work by Akitaya et al. [2] and Fitch
et al. [14] and the extensions we have made to this previous work.

2.1 Some preliminary definitions

As mentioned in the previous chapter, modular robots are a collection of
robots that move on a lattice. A connected collection and the particular
shape that this collection makes up is called the configuration of the system.
Reconfiguration, then, is the process of transforming one configuration into
another. From this it follows that reconfiguration algorithms are algorithms
designed to create a way for the modules to reconfigure. Usually, these algo-
rithms create a schedule of moves for the modules.

As originally proposed by Fitch et al. [14], a single module is a cube,
with connectors on each of the faces. They have some simple movement
rules. Cubes can only make lateral sliding moves and convex transitions
around other modules, which is explained inSection 2.3. It is relevant to
mention we worked with this model in two dimensions, as working in three
dimensions adds a layer of complexity which requires further research.

Single modules in a configuration are generally referred to as blocks
throughout this work (due to the cube-like nature of the modules). A cell
refers to a cell on the grid in the xy-plane, which can either be empty or

9

occupied by a block. Finally, a note on the types of connection that blocks
can have between each other: a block is vertex-connected to its neighbours
if they share a corner. Thus, blocks that are not orthogonal neighbours are
vertex-connected. Blocks that are orthogonal neighbours of a block are called
edge-connected. This is because these blocks share an edge in the grid on
the xy-plane. Furthermore, we define a configuration to be connected if and
only if a path can be traced from an arbitrary module to any other module
through only their edge-connected neighbours. In other words, a connected
configuration is a single set of modules and each module is edge-connected
to at least one other module, that is also connected to at least one other
module.

Figure 2.1: Left: The two blue modules are vertex-connected. Right: Edge-
connected modules.

A directional vector points from the centre of the moving block to the
centre of the target cell. There are eight distinct directional vectors possible,
that correspond to the directions on a compass. These directional vectors
can only point to cells that are either edge- or vertex-connected to a block.

Figure 2.2: All possible directional vectors for a single block.

2.2 Connectivity or the backbone property

One of the fundamental properties of this model is that the stationary blocks
in the configuration must stay connected at all times. More formally we can
define this as follows: if the moving blocks are removed from the config-
uration then the remaining configuration (the stationary blocks) must be

10

connected. This is known as the backbone property. Moreover, when parallel
moves are allowed, moving blocks cannot move over other moving blocks.
This implies that the speed at which blocks move remains constant in the
parallel model. It is important to note that all the moves defined in this
chapter, and algorithms defined in the next chapters, take this into account.

2.3 Movement of a single block

As mentioned in the introduction to this chapter, there are two types of
moves that blocks can make. The sliding move and the convex transition.
This section discusses the details of each of these moves for a single block.

2.3.1 Sliding over other blocks

The sliding move is a lateral move where a block slides over its neighbours
to reach a new position. In this section we are discussing the case of a single
block moving. Thus, a block can only move to an unoccupied location. The
one exception to this rule occurs when multiple blocks are moving. The so-
called chain-move allows blocks to form a chain. More details can be found
in Section 2.4. For now, the focus lies on a single moving block.

It should be noted that the moving block should have sufficient neigh-
bours to support its move. A move is defined to be supported if the neigh-
bours of the block allow it to make that particular move. Consequently, the
supporting neighbours of a block are the neighbours that support a particular
move. Supporting neighbours can only be direct neighbours of a block, that
is, any neighbour to which a directional vector can point.

A block can make a sliding move to and from a cell if and only if the
block is edge-connected to a (stationary) block in the cell it is leaving and
the cell it is going to. Additionally, these neighbours must be parallel to the
directional vector of the moving block.

In the example below (Figure 2.3) the block b with the blue center is
moving east. The blocks with a grey center show the rest of the configuration.
The movement direction is denoted by the vector v originating from the
centre of the block. It should be clear that the grey blocks under the vector
v are the supporting neighbours.

11

Figure 2.3: A sliding move.

2.3.2 Convex transition

Blocks can move around corners if and oly if both of the cells that the block
moves through are empty, not only the target cell but also the intermediate
cell. This move is know as a convex transition. Analogous to the sliding
move, the convex transition requires sufficient neighbours to complete the
move. The moving block must be edge-connected to the block it is moving
around. We can see this in action in Figure 2.4 in the example below. The
dark blue block is attempting to make a north-east convex transition. As in
Figure 2.3, the directional vector is denoted by the black arrow. The blue
arrow signifies the physical movement to be made by the block and, therefore,
also shows the cells that need to be empty for the convex transition to take
place.

Figure 2.4: A convex transition.

In contrast to the sliding move, the convex transition does not need
to transfer connection from the old neighbour to the new neighbour. This
means that, while the distance of a convex transition is twice as long, the full
timestep can be used to move the block. This allows the convex transition
to take as long as a sliding move, and allows for synchronised movement in
the parallel case. All moves take a single and full timestep.

2.4 Coordinated movement

The intention of this thesis is to do exploratory research into designing a par-
allel algorithm for the sliding cubes model. As such, it would be beneficial if

12

we can define rules for coordinated movement. The following section defines
some rules to allow coordinated movement in the sliding cubes model.

By the constraints set in the original model a set of blocks can make a
coordinated movement if and only if the whole set of blocks can move over
a stationary set of blocks. A set of blocks can only make a collectively non-
convex (sliding) move if the move is fully supported by the set of stationary
blocks. Each individual block has a vector vi that represents the direction of
movement. A block may only be part of a coordinated set C if and only if
the dot product of vi and vj is positive, where j ∈ C and j ̸= i. This means
that each block must be moving in the same direction as all the other blocks
in the same chain. The full movement of a coordinated set of blocks is called
a chain move.1

2.4.1 Coordinated sliding move

For an example of a coordinated sliding move one can look at Figure 2.5.
It shows the supporting set of blocks (grey) that are necessary for a chain
move (blue) to occur. This means that in the example below, the set of
blue blocks can make the coordinated sliding move in configuration A but
not in configuration B as the leading block in configuration B is no longer
supported by stationary blocks.

A. B.

Figure 2.5: An example of a coordinated sliding move.

2.4.2 Coordinated convex move

A convex coordinated move is defined as a coordinated move that happens
around some other (stationary) block. For a simple example see Figure 2.6
below.

1We remark that the term chain move was used in previous work [2] to refer to a
particular type or coordinated but sequential set of moves in the sliding cubes model.

13

Figure 2.6: Some example of coordinated convex transitions.

2.5 Avoiding collisions

To avoid collisions between blocks we use the definitions that have been
provided in the previous sections in this chapter. These definitions should
not allow for any collisions to occur if they are respected. Specifically, the
definition of moving blocks within a single timestep ensures that there is
no coordination necessary between blocks that might be half way through
a convex transition and a sliding move. That, coupled with the rule that
a block only being part of a chain if and only if the dot product of the
directional vectors is positive, means that collisions are avoided. A block
can only intend to move to an occupied cell if they are part of the same
chain move. As long as these rules are respected, collisions are avoided.

The main type of collision we would like to avoid is one where a block
tries to occupy a cell that is not (fully) empty at the time of movement. An
example where it is possible for a block to occupy a cell that is not empty at
the time of moving is the coordinated sliding move. Say, a block b1 wants to
occupy a cell currently occupied by block b2. As long as block b2 starts its
movement at the same time and in the same direction as block b1 then no
collision occurs. If block b2 moves orthogonal to or in the opposite direction
to block b1 then it should be obvious that a collision will occur during the
movement. Figure 2.7 clarifies the different possible cases.

14

A1 A2

B C

Figure 2.7: Two cases of block collision (B and C) and a successful transition
of occupied cells (A1 and A2). Block b1 is dark blue and block b2 is light
blue.

It should be clear that configuration A1 can transform into configuration
A2 using a coordinated sliding move. Because the blocks belong to the
same move iteration they start moving simultaneously and both move in the
same direction. It should also be clear that no movement can take place in
configuration C as both blocks are trying to move into each other. Finally in
configuration B it should be clear that block b1 (dark blue) can only start to
move once block b2 (light blue) has vacated the square it occupies at the start
of its movement. In essence, this is what the dot product of the directional
vectors captures. It is the alignment of the moves that allow or disallows the
moves to be made.

15

Chapter 3

Algorithm 1: Graph-Based
Approach

In this chapter we present a novel graph-based approach to reconfiguring
a set of sliding cubes, using parallel moves, from a starting configuration
to a target configuration. More precisely, we discuss a heuristic approach
to parallel reconfiguration, using a graph representation and path-planning.
This approach can also be integrated into existing sequential algorithms to
parallelise moves and thus reduce the makespan of the plan.

3.1 Important concepts

This algorithm requires there to be at least an overlap in the perimeter
of the start and target configuration. Whilst it is possible that there is
no overlap at all between the start and target configurations in space, in
practice this will not often be the case. One can also define intermediate
target configurations to achieve overlap between the desired start and target
configurations, if they do not have any overlap. It is also common to define
the reconfiguration problem between shapes without a specific position in
space. In such case, one can just define a position that produces an overlap.

The target locations for reconfiguration are found if one looks at the dif-
ference between the start configuration and the target configuration. Target
cells are defined to be cells that contain a block in the target configuration
but not in the start configuration. Source blocks, then, are cells or blocks
that are present in the start configuration but not in the target configuration.
Any other block is present in both the start and target configuration and
these are called shared blocks. The cells that contain the shared blocks are

16

called shared positions. Figure 3.1 shows an example. In A the shared and
source blocks are shown. B shows the same configuration with the target
locations marked. Finally, C shows the perimeter locations marked. Note
that the grid in the xy-plane has been included in this example for clarity.

A B C

= source block

= target cell

= shared block

= perimeter cell

Figure 3.1: A: Source blocks (grey blocks/green centre). B: Target cells
(empty blocks/red centre). C: Perimeter cells (empty blocks/grey centre).

From this definition it follows that all cells that contain a source block
must be emptied and all cells that are a target cell must be filled by a block.

Another important definition is the perimeter of the configuration. The
perimeter of the configuration is defined as the set of cells that do not contain
a block but are edge-connected to any block in the configuration. This set of
cells signify the set of locations that a block could move to using a sequential
path planning approach.

We can now give the basic premise of our algorithm. If we can find
a path through the configuration and/or around the perimeter, from any
source blocks to any target cell, we are able to move blocks towards target
cells and thus solve the reconfiguration problem. Issues could still arise if we
cannot find a path from a source block to a target cell, which, for example,
happens when the source block is a cut-block. Remember from the previous
chapter that a cut-block is an articulation point in the configuration.

Using this basic premise we must define a way to find paths through and

17

= source block

= target cell

= shared block

= perimeter cell

Figure 3.2: Relating the different nodes to the different types of blocks and
cells.

around the configuration. We have opted for capturing the configuration in
a graph because there are well defined path finding algorithms for graphs.
Furthermore, it is an intuitive mapping as graphs preserve the topology of
the configuration and we can use edges to define what moves could possibly
be made. One of the difficulties with defining such a graph is trying to
capture the possible chain moves that can be made. This is due to the fact
that the connectivity of the graph is dependent on the current state of the
graph and chain moves are dependent on the future state of the graph.

First, we define the graph and then we can discuss the potential problems
that could arise and possible solutions for these problems.

3.2 Defining the path graph

Given a start configuration Cs and a target configuration Ct, the goal is
to reconfigure Cs into Ct while not causing any collisions or disconnecting
the graph at any point during the reconfiguration. A configuration can be
represented by a graph G = (V,E), where V is the set of vertices that
represent the block, perimeter, and target locations on the xy-plane, and
where E is the set of edges that contain all the possible moves that could
take place. The set E is to be defined more precisely below.

The set V contains 2 classes of nodes, with each class having two distinct
types. The first class is the block class. This class represents the set of blocks
present in the configuration. Its distinct types are shared blocks and source

18

= source block

= target cell

= shared block

= perimeter cell

Figure 3.3: The adjacency graph

blocks. As defined above, the shared block’s locations must be filled in the
target configuration. However, during reconfiguration it might be necessary
to empty these locations temporarily to allow a source block to move. The
other type in the block class is the source block. Remember, this type of
block must move in order to reconfigure Cs to Ct. The next class of nodes
is the perimeter nodes. These nodes represent empty cells in the grid. They
are either target cells or perimeter cells, that are edge-adjacent to occupied
or target cells in the grid. The target cells are considered perimeter nodes
because at the time of generating the graph these locations are empty. Since
we are trying to find paths within this graph, perimeter nodes are considered
to be ghost blocks. This means that when defining legal moves through these
cells, they must adhere to all the rules a normal block would adhere to. This
is because, at some point, they might be filled with a block and the path
should not try to make moves in the future that would not be legal if that
location was actually a block.

To define the set of edges E we start with the adjacency graph of the
configuration. It should be noted that the edges of the graph we are defining
are analogous to the directional vectors, mentioned in the previous chapter,

19

Figure 3.4: Transforming the adjacency graph with the first rule. Some
interesting positions have been marked.

denoting the movement of a block. The edges of the adjacency graph are
defined as follows; a) there exists a directed edge in the adjacency graph
between each cell that contains either (i) a block, (ii) a target cell, or (iii)
is part of the perimeter and b) this cell is either vertex or edge connected to
another cell containing i, ii, or iii. Another way to define this is by looking
at the set of nodes we obtain from the definition in the previous paragraph.
If any two nodes are adjacent in the xy-plane then there is a directed edge
between them. From this adjacency graph we can identify and remove edges
that would either break movement rules or connectivity rules. Each of the
edges that does not break any of these rules is able to be used for the path
finding.

We now discuss each of the rules that affect the set of edges. The first
rule that we want keep in mind is the movement rules for a single block. For
a single block to move, it needs to have the correct neighbours to make this
move possible. Therefore, we remove any edges from the adjacency graph
that do not support the move. This rule holds for all types of nodes. This
is checked in the following way. For each outgoing edge of a node, check if
that edge has the supporting neighbours to allow the move. For the sliding
moves, if one is evaluating, for example, a move east, we need to check
that the original vertex has a neighbour to the north or south and then a
neighbour to the east of that neighbour. This is analogous to all the other
sliding moves (north, south and west). For convex transitions the process is
similar. We only check if the convex transition has the correct neighbour to
move around. So, for a north-west move, there needs to be either a block

20

to the west or to the north. It is important to note that in this step we are
not taking blocked locations into account. If we did, we would be creating
a graph that works in the sequential model, but would not allow us to find
most of the chain moves we are interested in.

We will now discuss how to deal with blocked positions. Because these
moves could be of potential interest for forming chain moves, we want to
remove only the edges that strictly do not allow a chain move to be per-
formed. One such a move that can never occur as a chain move is what we
call a captured convex-transition. This is defined as a block that has both
neighbours on either side of the convex transition and also has a neighbour
in the target of the convex transition. While this move could be legal when
looking at the movement vectors of each of the blocks, it is impossible in
practice to remove all of the blocks in time for the convex transition to take
place.

Any other blocked moves, could potentially form a chain move, thus we
will not remove the edges from the graph.

Figure 3.5: Transforming the adjacency graph with the second rule.

Finally, if a node is a cut-block, then it should have no outgoing edges,
because in the current time step it cannot move. Additionally, split-pairs,
which are pairs of nodes that disconnect the graph if they are both removed,
should not share an edge. The problem with cut-blocks (or cut-nodes, for
that matter) is that these nodes change based on the moves that are being
made. So ideally, while searching the graph for a path, we would dynamically
update the graph to reflect these changes. This approach is outside the scope
of this thesis. It will be discussed in Chapter 6 Section 6.3.

21

Figure 3.6: Transforming the adjacency graph with the third rule.

Figure 3.7 shows an example of the dynamic cut-block issue. It depicts
a configuration and a chain move in that configuration. It should be clear
that during the execution of the chain move, once the head of the chain
starts moving, that one of the blocks along in the chain becomes a cut-block
(marked with orange).

Figure 3.7: An example of the dynamic cut-block issue.

3.3 Finding the path

Now that the path graph has been sufficiently well defined, we can find
paths within it. While this problem appears easy on the surface, it has some
peculiarities that make it more difficult than one initially suspects. The foun-
dation of this algorithm uses Dijkstra’s algorithm [7] to find shortest paths
between nodes. In our case we aim to find the shortest path that connects a
source block to a target block. Because of the dynamic nature of cut-blocks,

22

Figure 3.8: An example of possible paths (orange edges) found by the algo-
rithm.

it is still entirely possible that we find a path that could disconnect the graph
during execution. Thus, for each path we check if that is the case. If so, we
split the path on the cut-block and turn the chain move into two or more
chain moves. This guarantees that the path will never disconnect the graph.

This approach can solve many general reconfiguration instances. There
are, however, two issues with this approach. Firstly, the final source block
could be a cut-block. This means, due to the definition of the set of edges that
no path from the source block to the final target cell can be found. Possible
solutions to this issue exist, such as moving any block into the target cell
until the source block is no longer a cut-block. Secondly, the algorithm could
get stuck in a loop, such that the solution cannot be found. One solution for
this problem could be similar to that of the previous issue, namely to move
shared blocks into target location, rather than source blocks.

When taking these issues into account it should be clear that the recon-
figuration problem is non-trivial. Taking a heuristic approach might lead to
performance gains, but it does not guarantee solutions.

23

Chapter 4

Algorithm 2: Geometric
Approach for xy-Monotone
Configurations

This chapter discusses another approach to reconfiguration. As mentioned in
previous chapters, the most common theoretical approach to reconfiguration
is based on geometry and combinatorics. This makes sense as, when using
this approach, we are more concerned with the actual properties of the shapes
that the configuration takes. We try to use the properties of the shapes to
give us guarantees that we do not have when using the heuristic graph-based
approach. The downside of this approach is that to achieve such guarantees
we might sacrifice performance. That, however, might not be of concern if
the guarantees are more important. As such, we have tried to parallelise
one of the steps of the sequential reconfiguration process, to increase its
performance. This ensures that one can make use of the guarantees provided
by the geometric approach, but can utilise (some) of the performance benefits
of the parallel steps.

For this section we chose to parallelise the reconfiguration of one xy-
monotone shape into another. First, let us define what an xy-monotone
shape is: an xy-monotone shape is defined as a shape that for each column
i, with 0 ≤ i < k, 0 being the first column and k being the final column,
each next column j, with i < j, may be no higher than the column i. This
creates tapered shapes such as the examples in Figure 4.1. The transforming
of one xy-monotone shape into another is an important step in Gather &
Compact [2], but also in the paper of Fekete et al. [11]. As mentioned in
Chapter 1, the authors of Gather & Compact proved that one can transform

24

any configuration with an equal number of blocks into an xy-monotone shape
and, as long as the algorithm is reversible, that it is possible to transform
any xy-monotone shape into any other configuration with an equal number of
blocks. The way they achieve this is by transforming the start configuration
into an xy-monotone shape, then virtually transforming the target into an
xy-monotone shape. Because of the reversibility of the algorithm one can
then transform the xy-monotone shape achieved from the start configuration
into the one achieved by transforming the target configuration and, finally,
reverse the reconfiguration such that the target configuration is reached.

Figure 4.1: Some examples of xy-monotone shapes.

4.1 Transforming one xy-monotone shape to an-
other

The advantage of using xy-monotone shapes is that they give us particular
guarantees about where (source) blocks and target cells can or cannot be
located. For example, if there is a source block at the end of a row of blocks,
this guarantees that there cannot be a target cell in the next column. Because
there is a source block in the preceding column, it means that that location
is empty in the target configuration, due to the definition of an xy-monotone
shape given in the previous paragraph.

In the paper by Akitaya et al. [2], transforming an xy-monotone shape
into another is achieved by iteratively moving blocks from source cells to
target cells. The order in which this is done is found by assigning a po-
tential to each source block and target cell, based on their location in the
xy-plane. The potential function being x + y, then the bottommost square

25

with maximum potential is matched (and moved) to the topmost target cell
with minimum potential.

Using this idea as a basis we decided to use a similar tactic to transform
xy-monotone shapes using parallel moves. The parallel move we decided
to use was inspired by a paper by Fekete et al. [11]. In this paper they
also transform xy-monotone shapes to other xy-monotone shapes during
reconfiguration. The way they do that is with so-called L-shaped moves.
These L-shaped moves consist of moving a linked row and column through
the middle of the shape. However, in contrast to our model, the model used
by Fekete et al. does not require the backbone property. As such, they
can make any L-shaped move, without regard for the connectivity of the
configuration. We need to add some additional constraints to make sure we
respect the backbone property.

In principle we want to achieve the same movement as Fekete et al. but
we need to make sure the shape does not disconnect. It should be clear
that if a full row and column would make an L-shaped move, all the mass
(i.e., the blocks) on the inside of the L-shaped move would be disconnected
from the mass on the outside of the L-shaped move. Furthermore, using our
definition of collision, the corner block would make a collision with either
the row or the column that follows it (remember configuration B in Figure
2.7). To stop this from happening we can split the L-shaped move into two
distinct moves. One for the column and one for the row. This ensures that
the configuration is never disconnected. Using this definition we present the
algorithm we defined.

4.2 Parallel reconfiguration of xy-monotone shapes

This section goes into detail on the algorithm for parallel reconfiguration of
xy-monotone shapes. The algorithm consists of three steps to achieve recon-
figuration. The first step is the filling of the boundary of the target shape.
This is done sequentially and such that the xy-monotonicity is preserved.
The next step is the parallel L-shaped moves to reconfigure the shape as
close to the target shape as possible. This step makes a matching between
source blocks and target cells, to ensure completion. Note, that in this step
the boundary of the start configuration is left untouched. The final step of
the algorithm is to sequentially empty the boundary of the shape to reach the
complete target configuration. The reason for taking these steps is that we
can guarantee connectivity and the appropriate neighbours for all L-shaped
moves. In the next sections we provide more detail on these considerations.

26

1. Filling the boundary

Due to the connectivity constraints of our model it is preferable to have a
completely filled boundary. The boundary of an xy-monotone shape is de-
fined as the first row and column of the shape. Due to the definition of
an xy-monotone shape we know that these sets of blocks (the first row and
column) are at least as long as every other column or row in the shape.
Therefore, if the boundary of the target configuration is (over) filled, we
have guaranteed that each L-shaped move has sufficient neighbours for re-
configuration. In Figure 4.3 we can see an example of this in action. The
orange box shows the maximal boundary column and the blue box shows the
maximal boundary row. After this step in the algorithm the boundary of the
target has at least been filled. Note that the boundary of the configuration
does not yet need to be emptied.

Figure 4.2: Maximal boundary of a configuration, given a start and target.

To fill the boundary such that the xy-monotonicity of the shape is pre-
served we must deal with three situations. Either the column boundary or
the row boundary need to be filled, or they both need to be filled. First, we
define excess blocks. Excess blocks are defined as blocks that make column
(row) 1 higher than the next column (row).

In all cases of filling the approach is similar. To fill the column (row)
boundary, we want to find the closest blocks that can be moved without
breaking the xy-monotonicity of the shape. Start at column (row) 0, the
boundary column (row). Then check the next column (row) 1 for excess
blocks. Remember from the definition of xy-monotone shapes that preceding
columns (rows) may not be lower than the current one. If the next column

27

Figure 4.3: The three different situations when filling the boundary.

does not contain any excess blocks, move to the column after that. We can
always fill the boundary column (row) because we can always remove the last
column (row) of a shape to preserve the monotonicity. Furthermore, we can
use the result by Akitaya et al. [2] to guarantee that this reconfiguration is
always possible, seeing as we never break monotonicity. This method solves
the cases where only the boundary column or row need to be filled. The
only addition necessary for the case in which both the boundary column and
row need to be filled is that, during the selection of candidate blocks to fill
either boundary, we need to make sure that no block is selected for both
operations.

2. Matching source and target blocks

To make parallel L-shaped moves possible, we need to define a way to allow
the L-shaped moves to take place such that the configuration is not discon-
nected during reconfiguration. Making a matching between source blocks
and target cells is a way to ensure that each source block is moved and each
target cell is filled. To make this matching we want to use the properties of
the xy-monotone shapes.

As mentioned previously, the reason for maximally filling the boundary is
to ensure that all the L-shaped moves have the appropriate neighbours. The
matching is made by assigning a source block to a target cell. The matching
also contains the order in which the L-shaped moves need to be completed
in order to reconfigure the shape correctly.

Firstly, we try and identify so-called islands. These are sections of an xy-
monotone shape that contain an equal number of source blocks and target
cells that all need to be moved in the same direction. We can identify these
islands as if we are matching brackets. We can traverse the shape top-left
(minimal x and maximal y in the xy-plane) to bottom-right (maximal x and
minimal y). The first target cell or source block we come across functions
as our opening bracket. Thus, for every cell of the same type (source block

28

or target cell) we come across we can add to the stack, and every cell of the
opposite type we come across, we can pop from the stack. Note that shared
blocks are not considered. As soon as the stack is empty, we have found an
island of activity. These islands function independently from one another,
as long as each island does not share any source blocks or target cells in the
same row or column. This means that (most of the time) we could make
L-shaped moves in islands simultaneously. However, we did not implement
this functionality in our algorithm and this is, therefore, left as future work.

A. B. C.

Figure 4.4: Different island types, showing left- and right-flow and mixed-
flow configurations.

It is also important to note that there are two different kinds of islands.
We have left flow islands and right flow islands. This denotes whether the
source blocks need to move in the positive or negative x direction. Islands
can only have one type of flow at any one time. This is because, for each
opening bracket, there will always be a closing bracket until the stack is
empty. Only then can the flow of blocks change direction.

Once we have found all of the islands, we can start matching. The match-
ing works as follows: we differentiate between left- and right-flow islands.
The matching for the left-flow islands works by assigning a potential (x+ y)
to each of the source blocks. Then we sort the source blocks based on this
potential. Furthermore, we subsort the source blocks on their negative row
number (i.e. their y value). Then we take the target cells sorted by their
row number first and their column number second. We match the source
blocks and target cells based on this sorting. Thus, the first source block
after sorting is matched to the first target cell after sorting. The right-flow
islands are matched in a similar manner. The source blocks are sorted by
their potential first and their positive row number. In this case the target
cells are sorted first by their column and secondly by their row values. This
gives us a matching such that we can reconfigure xy-monotone shapes using

29

0

1

2

3

4

5

6

7

8

9

10

11

12

012346

57

8

9

10

11

12

Figure 4.5: An example matching.

parallel moves.

3. Emptying the boundary

Emptying the boundary is the reverse process of filling the boundary. Even
more so, it is the same process as the original sequential reconfiguration
algorithm for xy-monotone shapes. The reason being that we never break
the xy-monotonicity once a step in our algorithm has been completed. Thus,
the source blocks can be moved to the target cells using the original algorithm
by Akitaya et al. [2].

This concludes the description of the algorithm.

30

Chapter 5

Results

This chapter presents the results from the experiments run on the matching
algorithm. The experiments were run on a laptop with an AMD Ryzen 7
4800H and 16 GB of RAM. The parallel sliding cubes model was imple-
mented using Python (version 3.10), using NumPy [17], Matplotlib [18] and
NetworkX [16] as additional packages for visualisation and additional fea-
tures. The source code can be found on GitHub.1

Due to time constraints no experiments could be run for the graph-based
approach. There is an implementation of the algorithm in the repository
on GitHub, which is freely accessible. This chapter focuses on the experi-
ments done to evaluate the geometric approach to transforming xy-monotone
shapes.

5.1 Experiments

We compared our implementation of the algorithm described in Chapter 4
with the implementation of Gather & Compact [2]. To facilitate the experi-
ments, a number of different xy-monotone shapes were randomly generated
for different numbers of blocks. We tested 1000 different configurations for
configurations with 10, 25, 50, and 100 blocks. Furthermore, we tested 100
different configurations with 200 blocks, 10 configurations with 500 blocks,
and 1 configuration with 1000 blocks.

31

10 25 50 100 200 500 1000
Number of blocks in the configuration

101

102

103

104

105

Av
er

ag
e

nu
m

be
r o

f m
ov

es

Average number of moves for both algorithms
Parallel
Sequential

Figure 5.1: The average number of moves for the parallel and sequential
algorithms.

5.2 Results

Figure 5.1 shows the main result. It plots the average number of moves in
each set of different block numbers for each algorithm. The y-axis in this
plot is logarithmic, because the number of moves increases so much that all
detail is lost in the linear axis plot. It should be noted that the sequential
model outperforms the parallel algorithm in the case with 10 blocks, the
average for the sequential moves (in the 10 block experiment) is 6.51 and for
the parallel algorithm it is 6.534. This is most likely the case because the
parallel algorithm focuses on filling the boundary first, with less considera-
tions for where the source blocks are. Whereas the sequential algorithm is
only focusing on moving source blocks to target locations.

The important trend, however, is to note the performance gains for larger
shapes. This makes sense, because the perimeter of the shape makes up less
of the volume of the shape the larger the shape gets. Consequently, the
second stage of the parallel algorithm can more significantly decrease the
number of total moves. Another important thing to note is that the parallel

1https://github.com/Saeden/parallel-squares

32

https://github.com/Saeden/parallel-squares

Figure 5.2: Different stages of the parallel algorithm

algorithm performs no better than the sequential algorithm in the worst case.
The worst case is transforming a single column (or row) of blocks to a single
row (column). In this case the parallel algorithm only ever makes sequential
moves, because the shape is its own boundary, and only the first stage of the
algorithm is performed. Using the proof for the sequential algorithm we can
see that it proves that the sequential algorithm performs its reconfiguration
in O(Pn) moves, with P the size of the perimeter of the shape. From this
it follows that in the worst case we perform O(n2) moves, as the size of the
perimeter is the number of blocks.

Figure 5.2, shows the difference in number of moves between the different
stages of the parallel algorithm. Once again the y-axis of this plot is loga-
rithmic to preserve the details. This figure should make clear that the low
number of L-shaped moves is the reason for the performance gain depicted in
Figure 5.1. Furthermore, it shows where the algorithm is constrained in its
performance. If we can find a way to parallelise the first and third stage (fill-
ing and emptying the boundary respectively), significant performance gains
should be possible. Possible areas of research related to this are discussed in
the next chapter.

Figure 5.3 shows the error rate for our algorithm. During the experi-
ments we discovered that every once in a while the parallel algorithm would
throw a collision error. The error rate stays under 1% for all different exper-

33

Figure 5.3: Percentage of configurations that threw an error

iments. The possible explanations for these errors will be discussed in the
next chapter. It should be noted that due to the discrepancy of the amount
of configurations tested per block amount there is some variance in the error
rate. That is why, for the sizes larger than 200, there is no error rate. The
sizes of these experiments were not sufficient to run into many configurations
that gave errors. Even the error rate for the configurations with 200 blocks
is influenced by the size of the experiment.

34

Chapter 6

Discussion

This chapter goes into more detail on a number of different aspects of this
research. First, we discuss the error rates in the parallel xy-monotone re-
configurations. Then, we discuss possible performance gains for the parallel
xy-monotone algorithm. Finally, we discuss potential areas of research for
the graph-based approach to general reconfiguration.

6.1 Errors in the parallel xy-monotone reconfigu-
ration

As was mentioned at the end of Chapter 5 it was discovered during the
experimental phase that our reconfiguration algorithm does not correctly
deal with some edge cases. There are particular cases that currently return
either a collision error (which means our algorithm tried to move a block
to an occupied location) or an invalid neighbours error (which means our
algorithm tried to move a block but the neighbours were not valid to make
the move).

Firstly, it should be mentioned that in a practical implementation setting
this should not create issues, as we can always fall back to the sequential
algorithm. As long as we make sure the shape is xy-monotone (by moving
all blocks without a left neighbour to the left, except the blocks in the first
column), we can reconfigure it using the sequential algorithm.

Below a number of examples of configurations that return an error can
be found. Using these examples we attempt to explain what the causes of
the errors are and what could be done to mitigate them in the future. Due
to the previously mentioned time constraints we were unable to implement
these changes. Hence, we are discussing them here.

35

(a) Error example 1: 25 blocks (b) Error example 2: 50 blocks

(c) Error example 3: 100 blocks

Figure 6.1: Three examples of configurations that threw an error. Once
again the source blocks are marked green and target cells marked red.

These examples depict the start configurations and include the target
cells and source blocks for clarity.

The astute reader might notice a pattern among these examples. They
all include more than one island. The islands have been marked with a cross
or a box. This is the source of the errors, as it turns out that in particular
cases islands are dependent upon each other for correct completion. The
figure with 25 blocks (Figure 6.1a gives us the clearest example). Following
the algorithm, we can see that filling the boundary is not necessary, so we find
ourselves in the second stage of the algorithm. There are two islands, with
one containing a boundary source block. This is the source of the issue. For
the island on the left to complete its L-shaped move, the island containing a
boundary block must first complete its reconfiguration. Our algorithm does
not deal with this case properly, thus an error is thrown.

The second example has the opposite problem. Due to the island on
the left completing its move first, there are not sufficient neighbours for the
island on the right to complete all its L-shaped moves.

The final example throws a collision error, because it tries to move a
block into an occupied location. The assumption is that due to the edge
cases above not being considered during the design of the algorithm, there is
an error in the islands retrieval and/or source block to target cell matching,
that causes this error.

36

To make this algorithm sound and complete, one would have to take a
look at islands that are dependent on each other. There should be some
ordering of these islands such that the L-shaped moves can be completed
without error. This is an intriguing area for future research.

6.2 Performance gains for parallel xy-monotone re-
configuration

As one can see from Figure 5.2 in Chapter 5, the second stage of our parallel
xy-monotone reconfiguration algorithm is where the real performance gains
occur. As such, if one wanted to increase the performance of this algorithm,
optimising those stages is one of the key places to look. This section discusses
two ideas that could be applied to making the performance better.

Firstly, one could attempt a completely geometric approach to this prob-
lem. This should give the best performance gains, coupled with the best
guarantees. The difficulty of such an approach is making the matching work
properly, and dealing with multiple islands. One important thing to note is
that an L-shaped move is possible on the boundary, using one extra move.
This is necessary due to the collision and connection rules defined for this
model. If one were to make an L-shaped move using one part of the bound-
ary, then the corner block needs to move separately. This is because the
configuration would disconnect if a whole row or column, including a bound-
ary block, makes a chain move.

To make this approach work, one could look into making a matching
for the first and third stages of the algorithm. This might be easier than
the second approach, which is to lose the idea of the three stages and make
a different matching altogether, that makes use of the boundary L-shaped
moves.

Secondly, one could combine the graph-based approach with the current
algorithm. Seeing as the graph-based approach makes use of parallel moves,
there should be performance gains in the general case, if it is applied to the
first and third stage. One of the drawbacks is the lack of guarantees, due to
the heuristic approach of the graph-based approach, but one could always
fall back to the sequential algorithm should one run into trouble. This should
be the simpler approach of the two.

37

6.3 Improving the graph-based approach

There is also much potential for performance gains and better guarantees
for the graph-based approach. In our algorithm, we focused on one aspect
of parallelisation, which was making the longest chain possible. We felt that
it was best to focus on one thing and later maybe expand to multiple chains
per iteration. One could obviously take the opposite approach. Make the
smallest chains possible, but move as many chains as possible during an
iteration. This could be done by focusing on a BFS approach to finding
legal moves. Rather than try and plot a path from a source block to a target
cell, one could try and plot a path from a target cell to a source block. This
approach might be beneficial as it focuses on filling the target cells, which
moves them after each iteration.

Another approach could be to dynamically update the graph. Because
the connectivity of the configuration is highly dependent on the local con-
nections in the configuration, it is not easy to plot a path through the con-
figuration, that adheres to our connectivity rules. One way to deal with this
is to dynamically update the graph, as one is plotting a path. This should
ensure that no illegal paths are ever found. One could even try to combine
this idea with the idea mentioned in the previous paragraph.

Furthermore, additional research is necessary to define better heuristics
for choosing a path. As we have noticed, making greedy choices works up
until a point. But it is necessary to be able to deal with paths that inadver-
tently make the algorithm get stuck in a loop or a local optima.

We conjecture that it is possible to create a graph-based algorithm that
is complete, if one can define a more detailed metric of completion and define
a way to break out of local optima.

38

Bibliography

[1] Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrick-
son, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch,
Irene Parada, and Vera Sacristán. Characterizing universal reconfig-
urability of modular pivoting robots. In Proc. of the 37th Interna-
tional Symposium on Computational Geometry (SoCG’21), volume 189
of LIPIcs, pages 10:1–10:20. LZI, 2021. doi:10.4230/LIPIcs.SoCG.
2021.10.

[2] Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna,
Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and
Jules Wulms. Compacting squares: Input-sensitive in-place reconfigu-
ration of sliding squares. In Proc. of the 18th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT’22), volume 227 of LIPIcs,
pages 4:1–4:19. LZI, 2022. doi:10.4230/LIPIcs.SWAT.2022.4.

[3] Lillian Chin, Max Burns, Gregory Xie, and Daniela Rus. Flipper-style
locomotion through strong expanding modular robots. IEEE Robotics
and Automation Letters, 8(2):528–535, 2023. doi:10.1109/LRA.2022.
3227872.

[4] Gregory S. Chirikjian. Kinematics of a metamorphic robotic system. In
Proc. of the 1994 International Conference on Robotics and Automation
(ICRA’94), pages 449–455. IEEE, 1994. doi:10.1109/ROBOT.1994.
351256.

[5] Gregory S. Chirikjian, Amit Pamecha, and Imme Ebert-Uphoff. Eval-
uating efficiency of self-reconfiguration in a class of modular robots.
Journal of Field Robotics, 13(5):317–338, 1996. doi:10.1002/(SICI)
1097-4563(199605)13:5<317::AID-ROB5>3.0.CO;2-T.

[6] Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa,
Christian Scheideler, and Thim Strothmann. Amoebot-a new model

39

https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPIcs.SWAT.2022.4
https://doi.org/10.1109/LRA.2022.3227872
https://doi.org/10.1109/LRA.2022.3227872
https://doi.org/10.1109/ROBOT.1994.351256
https://doi.org/10.1109/ROBOT.1994.351256
https://doi.org/10.1002/(SICI)1097-4563(199605)13:5<317::AID-ROB5>3.0.CO;2-T
https://doi.org/10.1002/(SICI)1097-4563(199605)13:5<317::AID-ROB5>3.0.CO;2-T

for programmable matter. In Proc. of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’14), pages 220–222,
2014. doi:10.1145/2612669.2612712.

[7] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959. doi:10.1007/BF01386390.

[8] Adrian Dumitrescu and János Pach. Pushing squares around. In Proc.
of the 20th ACM Symposium on Computational Geometry, (SoCG’04),
pages 116–123. ACM, 2004. doi:10.1145/997817.997838.

[9] Eduard Eiben, Robert Ganian, and Iyad Kanj. The parameterized com-
plexity of coordinated motion planning. In Proc. of the 39th Interna-
tional Symposium on Computational Geometry (SoCG’23), volume 258
of LIPIcs, pages 28:1–28:16. LZI, 2023. doi:10.4230/LIPIcs.SoCG.
2023.28.

[10] Sándor P Fekete, Robert Gmyr, Sabrina Hugo, Phillip Keldenich, Chris-
tian Scheffer, and Arne Schmidt. CADbots : Algorithmic Aspects of
Manipulating Programmable Matter with Finite Automata. Algorith-
mica, 83(1):387–412, 2021. doi:10.1007/s00453-020-00761-z.

[11] Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck,
and Christian Scheffer. Connected coordinated motion planning with
bounded stretch. In Proc. of the 32nd International Symposium on
Algorithms and Computation (ISAAC’21), volume 212 of LIPIcs, pages
9:1–9:16. LZI, 2021. doi:10.4230/LIPIcs.ISAAC.2021.9.

[12] Sándor P. Fekete, Eike Niehs, Christian Scheffer, and Arne Schmidt.
Connected reconfiguration of lattice-based cellular structures by finite-
memory robots. In Proc. of the 16th International Symposium on Al-
gorithmics of Wireless Networks (ALGOSENSORS’20), volume 12503
of Lecture Notes in Computer Science, pages 60–75. Springer, 2020.
doi:10.1007/978-3-030-62401-9_5.

[13] Daniel Feshbach and Cynthia Sung. Reconfiguring non-convex holes in
pivoting modular cube robots. IEEE Robotics and Automation Letters,
6(4):6701–6708, 2021. doi:10.1109/LRA.2021.3095030.

[14] Robert Fitch, Zack J. Butler, and Daniela Rus. Reconfiguration plan-
ning for heterogeneous self-reconfiguring robots. In Proc. of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems

40

https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/997817.997838
https://doi.org/10.4230/LIPIcs.SoCG.2023.28
https://doi.org/10.4230/LIPIcs.SoCG.2023.28
https://doi.org/10.1007/s00453-020-00761-z
https://doi.org/10.4230/LIPIcs.ISAAC.2021.9
https://doi.org/10.1007/978-3-030-62401-9_5
https://doi.org/10.1109/LRA.2021.3095030

(IROS’03), pages 2460–2467. IEEE, 2003. doi:10.1109/IROS.2003.
1249239.

[15] Seth Copen Goldstein, Jason D Campbell, and Todd C Mowry. Pro-
grammable matter. Computer, 38(6):99–101, 2005. doi:10.1109/MC.
2005.198.

[16] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In Proc. of
the 7th Python in Science Conference (SCIPY’08), pages 11 – 15, 2008.
URL: https://networkx.org/documentation/stable/.

[17] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Pi-
cus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Al-
lan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peter-
son, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–362, 2020.
doi:10.1038/s41586-020-2649-2.

[18] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007. URL: https://matplotlib.
org/stable/, doi:10.1109/MCSE.2007.55.

[19] Ferran Hurtado, Enrique Molina, Suneeta Ramaswami, and Vera Sac-
ristán Adinolfi. Distributed reconfiguration of 2d lattice-based modu-
lar robotic systems. Autonomous Robots, 38(4):383–413, 2015. doi:
10.1007/s10514-015-9421-8.

[20] Florian Pescher, Nils Napp, Benoît Piranda, and Julien Bourgeois.
Gapcod: A generic assembly planner by constrained disassembly. In
Proc. of the 19th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’20), pages 1028–1036. AAMAS, 2020.
doi:10.5555/3398761.3398881.

[21] Benoît Piranda and Julien Bourgeois. Designing a quasi-spherical
module for a huge modular robot to create programmable mat-
ter. Autonomous Robots, 42(8):1619–1633, 2018. doi:10.1007/
s10514-018-9710-0.

41

https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1109/MC.2005.198
https://doi.org/10.1109/MC.2005.198
https://networkx.org/documentation/stable/
https://doi.org/10.1038/s41586-020-2649-2
https://matplotlib.org/stable/
https://matplotlib.org/stable/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/s10514-015-9421-8
https://doi.org/10.1007/s10514-015-9421-8
https://doi.org/10.5555/3398761.3398881
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1007/s10514-018-9710-0

[22] Benoît Piranda, Guillaume J. Laurent, Julien Bourgeois, Cédric Clévy,
Sebastian Möbes, and Nadine Le Fort-Piat. A new concept of planar
self-reconfigurable modular robot for conveying microparts. Mechatron-
ics, 23(7):906–915, 2013. doi:10.1016/j.mechatronics.2013.08.009.

[23] Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. A survey of au-
tonomous self-reconfiguration methods for robot-based programmable
matter. Robotics and Autonomous Systems, 120, 2019. doi:10.1016/
j.robot.2019.07.012.

[24] Liang Tian, Amir Bashan, Da Ning Shi, and Yang Yu Liu. Articulation
points in complex networks. Nature Communications, 8:1–9, 2017. doi:
10.1038/ncomms14223.

[25] Jennifer E. Walter, Elizabeth M. Tsai, and Nancy M. Amato. Al-
gorithms for fast concurrent reconfiguration of hexagonal metamor-
phic robots. IEEE Transactions on Robotics, 21(4):621–631, 2005.
doi:10.1109/TRO.2004.842325.

42

https://doi.org/10.1016/j.mechatronics.2013.08.009
https://doi.org/10.1016/j.robot.2019.07.012
https://doi.org/10.1016/j.robot.2019.07.012
https://doi.org/10.1038/ncomms14223
https://doi.org/10.1038/ncomms14223
https://doi.org/10.1109/TRO.2004.842325

	Introduction
	A short overview of modular robots
	Closely related work

	Parallel Sliding Cubes Model
	Some preliminary definitions
	Connectivity or the backbone property
	Movement of a single block
	Sliding over other blocks
	Convex transition

	Coordinated movement
	Coordinated sliding move
	Coordinated convex move

	Avoiding collisions

	Algorithm 1: Graph-Based Approach
	Important concepts
	Defining the path graph
	Finding the path

	Algorithm 2: Geometric Approach for xy-Monotone Configurations
	Transforming one xy-monotone shape to another
	Parallel reconfiguration of xy-monotone shapes

	Results
	Experiments
	Results

	Discussion
	Errors in the parallel xy-monotone reconfiguration
	Performance gains for parallel xy-monotone reconfiguration
	Improving the graph-based approach

