
Distracted Driver
Detection: A Safer

Reinforcement Learning
Approach.

Master Thesis by

Pieter El Sharouni

5930499

Department of Natural Sciences
Artificial Intelligence
Utrecht University
The Netherlands
October 2023

Supervisors:
First: Shihan Wang

Second: Mihaela Mitici

Abstract

Both driver inattention and driver distraction present significant chal-
lenges in road safety, leading to an increasing number of accidents and
fatalities every year. As drivers periodically become distracted, driv-
ing performance declines, and accidents become more likely. A coopera-
tive lane-keeping assistance system could enhance safety while retaining
most of the driver’s autonomy. To train this system, Safe Reinforcement
Learning with a memory component will be utilized. Safe Reinforcement
Learning involves learning policies that maximize rewards in scenarios
where maintaining reasonable system performance and safety is crucial
during the learning or deployment stages. Adding memory-based Deep
Reinforcement Learning improves performance in partially observable en-
vironments. Since the driver’s psychological state is unknown to the sys-
tem, the problem will be formulated as a Partially Observable Markov
Decision Process (POMDP). However, during experimentation, memory-
based DRL did not show any improvement compared to regular DRL.
Therefore the problem was later reformalized as a Block Markov Deci-
sion Process (BMDP). We will use First Order Constrained Optimization
in Policy Space (FOCOPS) extended with a Long Short-Term Memory
(LSTM) layer, to address the distracted driver issue. The problem will
be divided into three subsections: first, exploring the advantage of using
memory-based Deep Reinforcement Learning in BMDPs; second, exam-
ining the benefit of using Safe Reinforcement Learning for the distracted
driver problem; and finally, comparing FOCOPS with an LSTM layer to
state-of-the-art reinforcement learning methods. We chose Recurrent Safe
Reinforcement Learning to increase the learning rate and policy safety,
making it more suitable for real-world applications.

Keywords— Distracted Driver, Safe Reinforcement Learning, Memory-based,
Lane-keeping

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Current Lane Assistance . 4
1.3 Task Delegation . 5
1.4 Improved Lane Assistance . 5
1.5 Cooperative control . 6
1.6 Outline . 6

2 Theoretical background 7
2.1 Reinforcement Learning . 7

2.1.1 Markov Decision Process . 7
2.1.2 Constrained Markov Decision Process 11
2.1.3 Partially Observable Markov Decision Process 12

2.2 Reformalization . 13
2.2.1 Preliminary Results . 14
2.2.2 Block MDP . 14

2.3 Safe Reinforcement Learning . 16
2.3.1 Gracia and Fernández . 17
2.3.2 Zhu and Zhao . 19

3 Related Work 20
3.1 Current Lane Assistance . 20
3.2 Lane Assistance Research . 20
3.3 Solving BMDPs . 21
3.4 Distracted Driver as BMDP . 21

3.4.1 Recurrent Deep Reinforcement Learning for BMDP 22
3.4.2 Safe Reinforcement Learning for BMDPs 23

3.5 Algorithmic Approaches . 24
3.5.1 Algorithmic Approaches: TD3 24
3.5.2 Algorithmic Approaches: FOCOPS 26

3.6 Problem Overview and Research Questions 28
3.6.1 Problem Overview . 28
3.6.2 Research Question . 29

4 Methodology 30
4.1 Overview . 30
4.2 TORCS . 30

4.2.1 Driver Model . 31
4.3 Problem Formulation . 32

4.3.1 State Space: S . 32
4.3.2 Action Space: A . 33
4.3.3 Transition Function: T : S ×A −→ ∆(S) 33
4.3.4 Reward Function: R . 33
4.3.5 Cost Function . 34
4.3.6 Observations: Ω . 35
4.3.7 Observation Function: O : S ×A −→ Π(Ω) 35

4.4 Block MDP Formulation . 35
4.5 Solution approach . 36

2

4.5.1 Processing Observations . 36
4.5.2 Flicker condition . 37
4.5.3 Memory-based DRL . 37

4.6 Experimental Setup . 40
4.6.1 Performance Metrics . 40
4.6.2 FOCOPS-LSTM as Solution 41
4.6.3 TD3 vs TD3-LSTM . 41
4.6.4 FOCOPS vs TD3 . 41
4.6.5 FOCOPS-LSTM vs TD3-LSTM 41

5 Results 43
5.1 Preliminary Results . 43

5.1.1 Distracted driver as MDP . 43
5.1.2 Flicker condition . 44
5.1.3 Additional BMDP proof . 45

5.2 Parameter Optimization . 45
5.2.1 Timesteps . 45
5.2.2 Cost and Rewards . 45
5.2.3 Cost Boundary . 46

5.3 Analysis of Parameter Optimization 49
5.3.1 Driving behaviour . 50

5.4 Research Question 1 . 50
5.4.1 Analysis of Research Question 1 51

5.5 Research Question 2 . 52
5.5.1 Analysis of Research Question 2 52
5.5.2 Learning Methodologies . 54

5.6 Research Question 3 . 55
5.6.1 Analysis of Research Question 3 55
5.6.2 Valuable Insights . 55

5.7 Additional Experiments . 58

6 Discussion and Future Work 59
6.1 Driver Model . 59

6.1.1 Personalized Assistant . 59
6.2 Other Algorithmic Approaches . 59

6.2.1 TD3-ASA . 60
6.2.2 BMDP Solvers . 60

6.3 Hardware and Software limitations . 61
6.4 Different Driving Environments . 62
6.5 Different Software Environments . 62

7 Conclusion 63

8 Appendix 73
8.1 2D and 3D plots . 73
8.2 Additional Experiments . 76

8.2.1 Data Augmentation . 76
8.2.2 History Length . 76
8.2.3 Unsupervised Clustering . 78

3

1 Introduction

1.1 Motivation

Both driver inattention and distraction present significant challenges in road safety,
leading to a rising number of accidents and fatalities each year (Kashevnik, Shchedrin,
Kaiser, & Stocker, 2021; Regan, Lee, & Young, 2008; Young, Regan, & Hammer,
2007). In 2020, 38,824 individuals were killed in motor vehicle traffic accidents on
US roadways. Of these fatalities, 3,142 or 8.1% involved at least one distracted driver
(Stewart, 2023). Other sources suggest that approximately a quarter of vehicle crashes
result from driver distraction (Young et al., 2007). Addressing the distracted driver
problem is of paramount importance.

One potential solution to these driving accidents is autonomous driving. Au-
tonomous driving offers numerous benefits, such as fewer traffic accidents and reliev-
ing vehicle occupants of driving and navigation tasks (Ondruš, Kolla, Vertal’, & Šarić,
2020). If cars could operate entirely autonomously, driver attentiveness would be-
come irrelevant. However, achieving full autonomy faces several challenges, including
multi-sensory data synchronisation, failure detection, cyberattack protection, and in-
teracting with human drivers (L. Liu et al., 2020). It may be some time before fully
autonomous vehicles become a reality (Palade & Deo, 2022; Rajasekhar & Jaswal,
2015). By 2040, members of the Institute of Electrical and Electronics Engineers
(IEEE) estimate that 75% of all vehicles will be autonomous (Ondruš et al., 2020).
Until such vehicles are available, driving assistance systems with increasing autonomy
will be employed transitionally (Stewart, 2023). Minor tasks like lane-keeping or cruise
control are delegated to these systems, while the driver retains responsibility for other
tasks in a supervisory capacity. This paper focuses on the lane-keeping task.

By developing a lane-keeping assistance system that adapts to the drivers’ at-
tentiveness, a major contribution to road accidents and fatalities can be tackled.
Moreover, Improved lane-keeping assistance systems can contribute to the overall
development of autonomous driving technology by serving as a stepping stone, en-
abling researchers to build on these advancements to create more sophisticated systems
(Nidamanuri, Nibhanupudi, Assfalg, & Venkataraman, 2021). Although driver fatigue
is not the focus of this thesis, it also impairs driving behaviour and is a major contribu-
tor to traffic accidents (Philip et al., 2005). Improved lane-keeping assistance systems
could help mitigate the risks associated with driver fatigue by providing additional
support during long journeys.

1.2 Current Lane Assistance

Presently, lane assist systems employ a basic rule-based approach that detects when
the driver is nearing the edge of the road, providing a warning or correcting the steering
(Kashevnik et al., 2021; Zakaria et al., 2023). However, issues arise when the vehicle
encounters a situation that does not fit any of the predefined rules. In such cases, the
vehicle may function properly most of the time but struggles with edge-cases for which
no rules exist. Consequently, these systems have limited utility, or drivers may rely too
heavily on them, leading to potential malfunction or inattentiveness when supervision
is needed (Beckers, Siebert, Bruijnes, Jonker, & Abbink, 2022; van de Merwe, Mallam,
& Nazir, 2022). Therefore, to combat the issues with a rule-based approach such as
these edge-cases, a policy-based approach could be utilized.

Another limitation of current lane-keeping assistance systems is the lack of adapta-

4

tion to the driver’s behaviour. Research has shown that continuous assistance based on
the distance from the centerline enhances lane-keeping performance and is the most
preferred style of lane-keeping assistance, even for drivers with better lane-keeping
skills while engaged in secondary distracting tasks (Blaschke, Breyer, Färber, Freyer,
& Limbacher, 2009; Pohl, Birk, & Westervall, 2007; Roozendaal, Johansson, Winter,
Abbink, & Petermeijer, 2021).

1.3 Task Delegation

While assigning tasks to an assistance system could enhance driving performance,
it may also limit the driver’s autonomy (Zahabi, Razak, Shortz, Mehta, & Manser,
2020). This loss of autonomy could turn driving from an engaging and enjoyable task
into a monotonous and tedious supervisory chore. Consequently, drivers may be more
prone to distraction (Shahini & Zahabi, 2022), have slower reaction times (Capallera,
Angelini, Meteier, Abou Khaled, & Mugellini, 2022), be more likely to speed (Monfort
et al., 2022), experience reduced situational awareness (O’Neill, McNeese, Barron, &
Schelble, 2022) or place excessive trust in the assistance system (Detjen, Faltaous,
Pfleging, Geisler, & Schneegass, 2021). Furthermore, it may take drivers too long to
react and regain control from the assistance system in critical situations (Beckers et
al., 2022; van de Merwe et al., 2022).

Adaptive lane-keeping, based on the driver’s attention level, can help keep drivers
engaged throughout the driving process. For example, the assistance system would
become more sensitive when the driver is inattentive and increase torque if the driver
takes incorrect actions. Previous studies have shown that human-machine cooperation
improves driving performance (Q. Li et al., 2021; C. Liu et al., 2022) and that online
adaptation of assistance according to the driver’s state enhances driving performance
while reducing workload during distracted phases (Benloucif, Sentouh, Floris, Simon,
& Popieul, 2019).

1.4 Improved Lane Assistance

To address these issues, an improved lane assist system should be capable of han-
dling all situations, including unexpected ones, rather than relying on a rule-based
approach while the majority of autonomy remains with the driver. A more advanced
system should learn a policy that can manage cases it has not encountered before.
Furthermore, given the preference for continuous cooperative lane control, we propose
a cooperative policy-based continuous lane-keeping system.

However, a problem with a policy-based system is that it has to learn said policy.
A way for such a lane assistance system to learn a policy is reinforcement learning,
a method where an agent is placed in an environment and either rewarded or pun-
ished for taking certain actions (Kaelbling, Littman, & Moore, 1996). This way the
agent learns which actions are considered beneficial in certain situations and which
are considered detrimental. However, to learn which action to take in which situa-
tion, a lot of exploration in necessary. In the case of a lane assistance system this
exploration will involve taking actions that may result better driving, but may also
involve taking actions that may result in crashing. As crashing is the absolute worse
result for a lane assistance system, some safety measures need to be taken. These
safety measures can be implemented by incorporating them in the reward function.
However, as the agent only gets a single reward based on its action and this reward
often consists of many parts, it may be difficult for the agent to distinguish the rewards

5

and punishments from a single reward. Therefore having the safety measures part of
a separate cost function the agent can more easily learn which actions will maximise
the reward and minimise the costs. This sub-field or reinforcement learning is called
Safe Reinforcement Learning (Garcıa & Fernández, 2015).

1.5 Cooperative control

Combining these issues, we propose a cooperative control scheme in which the driver
and the assistance system share control over the car. The assistance system adapts to
the driver’s behaviour, exerting minimal to no influence on the vehicle when the driver
is attentive and on the centerline, while increasing its influence when the driver is at-
tentive and further from the centerline. This approach allows the system to support
the driver when they are distracted or unable to drive safely, while still maintain-
ing the majority of control with the driver, thereby enhancing autonomy, situational
awareness, and driver safety. As safety is a crucial part of a functional lane-keeping
assistant, the proposed lane-keeping system will utilized a safe reinforcement learning
algorithm to ensure safety.

1.6 Outline

The remaining content of the thesis is organized as follows:

• Chapter 2: Introduces the main concepts of the theoretical background related
to POMDPs and Safe Reinforcement Learning.

• Chapter 3: Shows the related work and research questions.

• Chapter 4: Presents the methodology, defining the POMDP and BMDP used
in our problem statement and the methods how we will answer the research
questions.

• Chapter 5: Presents the results to the research questions

• Chapter 6: Analyses the results and discussed the limitations to the experimen-
tal setup and several possible adaptations for further research

• Chapter 7: Conclusion to the thesis and summarizes the findings

6

2 Theoretical background

This chapter focuses on the theoretical background of the problem and introduces the
basic concepts that serve as a foundation of the problem and solution approaches in
this thesis. The problem is assisted lane-keeping with shared control by a potentially
distracted human driver and assistant agent. In Section 2.1 introduces MDPs and
shows how Reinforcement Learning (RL) can be used to solve them. However, as the
driver’s attention is unknown to the agent but does effect driving performance, the
agent observes only partial information. Therefore an extension of MDPs, Partially
Observable Markov Decision Processes (POMDP) are explained to deal with the par-
tially observable information. Notation and information is gathered from fundamental
research papers and books by Kaelbling, Littman, and Cassandra (1998); Kaelbling et
al. (1996) and Sutton and Barto (2018). Section 2.2 introduces the different methods
of incorporating safety in Reinforcement Learning. In Section 2.3 the challenges and
possible solutions for POMDP problems are introduced with reinforcement learning
algorithms and memory-components to solve POMDP’s.

2.1 Reinforcement Learning

2.1.1 Markov Decision Process

Lane-keeping of a car is a sequential decision making task as every driving action
directly influences the choice of the best following driving actions. Such a sequential
decision problem is typically modelled as a Markov Decision Process (MDP) (Kaelbling
et al., 1996). In such an environment it is assumed that the agent does not know the
parameters of this process, but has to learn how to act directly from experience.
At every time step, t, the environment is in a certain state, st, fully observable by
the agent. The agent interacts with the environment by taking an action at, which
determines in which state, st+1, the agent comes next. The underlying assumption
of MDPs is that the next state of the agent is only determined by the current state
and the action of the agent. To account for the randomness of the environment the
transition can be probabilistic. After taking some action, at, and arriving at some
state, st+1, the agent receives a reward rt. Thus a MDP problem, illustrated in Figure
1, can be formalizes as a tuple < S,A, T,R > where:

• S is the set of states called the state space.

• A is the set of actions called the action space.

• T : S × A −→ ∆(S) is the transition dynamics. For each action a and state s,
T (s, a) is the probability distribution over states that the system may transition
into when taking action a in state s

• R : S × A× S −→ R is the reward function. The value r(s, a, s′) is the reward
associated with transitioning from state s to s′ by taking action a.

The agent’s goal is to maximize this reward, also called the return. The difficulty
of taking the action with the highest immediate reward in each state is that it may
not result in the highest cumulative return over a longer sequence of actions. Thus
the agent needs to find the optimal policy that decides the best action in each state
with respect to the cumulative reward of time. If the state transitions are known,
the optimal policy can be found using model-based techniques such as value or policy
iteration. If the transition model is unknown, model-free reinforcement learning can
be applied to learn an optimal policy.

7

Figure 1: A decision network representing part of an MDP.
Source: https://artint.info/html/ArtInt 224.html

Reinforcement learning has been used to solve MDP’s in a wide variety of complex
tasks with excellent success rate such as playing games like DOTA 2 or Atari (Berner
et al., 2019; Mnih et al., 2013), autonomous driving (Chen, Yuan, & Tomizuka, 2019)
and robotics (Singh, Kumar, & Singh, 2022). In the standard reinforcement-learning
model, an agent is connected to its environment via perception and action, as seen
in Figure 2. On each step of interaction the agent receives the current state of the
environment as input, st. The output created by the agent is some action, a, deter-
mined by the policy of the agent. The action changes the state of the environment,
and the agent learns the value of this state transition the reward, rt. The agent’s
policy, π, dictates which actions to take based on the current state. The agent learns
which actions increase the long-run sum of values through systematic trial and error.
There are a wide variety of algorithms associated with optimizing how the agent learns
(Bertsekas & Tsitsiklis, 1996; Kaelbling et al., 1996; Kearns & Singh, 2002; Sutton &
Barto, 2018).

Figure 2: A simple Reinforcement Learning model.
Source: Georgeon et al. (2015)

In order to learn which actions increase the long-run sum of values the most, the
agent has to take the future into account in the decisions it makes about how to
behave now. The simplest way to model this is the finite-horizon model, where the
agent optimizes its expected reward for the next h steps:

8

https://artint.info/html/ArtInt_224.html

E

(
h∑

t=0

rt

)
(1)

Here the agent only needs to attend to the next h amount of steps and does not
concern itself with what happens after. A more realistic model is the infinite horizon
discounted model. Here the model takes into account the long-run reward of the agent,
but rewards that are received in the future are discounted according to some discount
factor γ, where (0 ≤ γ ≤ 1):

E

(
∞∑
t=0

γtrt

)
(2)

Each state will have an optimal value, the expected infinite discounted sum of
reward that the agent will receive if it starts in that state and executes the optimal
policy:

V ∗(s) = max
π

E

(
∞∑
t=0

γtrt

)
(3)

This optimal value function is unique and can be defined as the solution to the
equation:

V ∗(s) = argmax
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
(4)

This function states that the optimal value of a state is the immediate reward
the agent receives from taking the best available action a in state s plus the expected
discounted value of the next state. With this optimal policy can be denoted as:

π∗(s) = argmax
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
(5)

Reinforcement learning can be split up into two sections, model-based and model-
free methods. In model-based methods the model is already to know and we can use
this to find the optimal policy. The model consists of the state transition probability
function T (s, a, s′) and the reward function R(s, a). Reinforcement learning and this
thesis are mainly concerned with how to obtain the optimal policy when such a model
is not available. The agent must interact with the environment to learn the state
transitions and the reward function. These are the model-free methods, which can be
split up into two sections, value iteration and policy iteration.

One way to find the optimal policy is to find the optimal value function. Value
iteration algorithms known as Q-learning learn the optimal policy by looping through
all the actions of all the states, updating the state-action value, until the policy is
good enough based on some criteria:

Q(s, a) = R(s, a)γ
∑
s′∈S

T (s, a, s′)V ∗(s′) (6)

Methods of this family learn an approximator, QΘ(s, a), for the optimal action-
value function, Q∗(s, a). This optimization is almost always performed off-policy,
which means that each update can use data collected at any point during training,

9

regardless of how the agent was choosing to explore the environment when the data
was obtained.

From all these Q-values, the agent needs to choose the optimal action to get the
optimal reward. This can be difficult as the Q-function is a value based function with
high variability. In order to reduce this variability, the advantage function can be
used. The advantage function is the difference between the Q-value and the average
of actions which it would have taken in that state:

A(s, a) = Q(s, a)− V (s) (7)

Instead of finding the optimal policy indirectly through optimal value function,
policy iteration algorithms manipulate the policy directly. First the value function of
some policy π is computed, after which the policy is improved at each state:

Vπ(s) = R (s, π(s)) + γ
∑
s′∈S

T
(
s, π(s), s′

)
Vπ(s

′) (8)

π′(s) = argmax
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)Vπ(s
′)

)
(9)

Methods in this family represent a policy explicitly as πΘ(a|s). They optimize
the parameters Θ either directly by gradient descent on the performance function
J(πΘ), or indirectly by maximizing local approximations of J(πΘ). This optimization
is almost always done on-policy, which means that each update only uses data collected
while acting according to the most recent version of the policy. Policy optimization
also usually involves learning an approximator VΘ(s) for the on-policy value function
V π(s), which gets used in figuring out how to update the policy. The value function
of a policy is the expected infinite discounted reward that will be gained, at each
state, by executing that policy. Once the value of each state under a certain policy
is known, this value can be improve by changing the first action taken. If it can, the
policy is updated to take the new action whenever in that situation. Figure 3 shows
a taxonomy of algorithms of modern reinforcement learning.

Figure 3: A taxonomy of modern RL algorithms.
Source: https://spinningup.openai.com

10

https://spinningup.openai.com

In the example of a lane-keeping assistance agent, the agent will be rewarded for
choosing the correct actions based on the vehicles sensors. The reward will be based
driving performance such as lane-centeredness and speed, which are the most common
parameters for the reward function (Zhu & Zhao, 2021). If the driver model is not
distracted, the vehicle will remain in the centre of the lane. Therefore, if the agent
takes any action, it will indirectly be punished for acting when the driver is attentive,
thus adapting to the driver’s model distraction level. The agent will have to learn
when to take which actions.

In some situations, such as expensive robots in real environments, safety of the
agent is particularly important. In such scenarios researchers have to pay attention
not only to optimizing long term rewards, but also to damage avoidance (Garcia &
Fernández, 2012; Koppejan & Whiteson, 2011; Mart́ın H & de Lope, 2009). Naturally,
safety is of vital importance in a lane-keeping assistance agent. By limiting the actions
during the exploration process or by constraining the optimization function, safety can
be achieved.

2.1.2 Constrained Markov Decision Process

A Constrained Markov Decision Process (CMDP) is an MDP with an additional set
of constraints C which restrict the set of allowable policies (Y. Zhang, Vuong, & Ross,
2020). Specifically, the MDP is augmented with a set C of auxiliary cost functions,
C1, . . . , Cm, with each one a function Ci : S × A × S → R mapping transition tuples
to costs, and limits d1, . . . , dm. Let JCi(π) denote the expected discounted return of
policy π with respect to cost function:

Ci : JCi(π) = Eτ∼π

[
∞∑
t=0

γtCi(st, at, st+1)

]
(10)

The set of feasible stationary policies for a CMDP is then:

ΠC = {π ∈ Π : ∀i, JCi(π) ≤ di} (11)

and the reinforcement learning problem in a CMDP is:

π∗ = arg max
π∈ΠC

J(π) (12)

In Constrained Markov Decision Processes (CMDP) the objective is to maximize
the agents’ reward while making the agents satisfy safety constraints (Achiam, Held,
Tamar, & Abbeel, 2017). Similar to the standard V π, Qπ and Aπ for reward in un-
constrained reinforcement learning, the cost value function, cost action-value function
and cost advantage function are defined by replacing the reward R with cost C.

While updating the policy in unconstrained policy space can lead to more stable
behaviour and better sample efficiency, solving CMDPs directly within the context
of local policy search can be challenging and sample inefficient since after each policy
update, additional samples need to be collected from the new policy in order to evaluate
whether the constraints are satisfied. A surrogate cost function which evaluates the
constraint JCπθ using samples collected from the current policy πθk is shown to be
a good approximation (Achiam et al., 2017) when πθ and πθk are close w.r.t the
KL divergence DKL(πθ||πθk). A new policy in a CMDP is obtained by solving the
optimization problem:

11

max
πθk

∈Πθ

E(s,a)∼πθk
[A

πθ
C (s, a)] (13)

subject to:

JC(πθk +
1

1− γ
E(s,a)∼πθk

[A
πθk
C (s, a)] ≤ b (14)

DKL(πθ||πθk) ≤ d (15)

2.1.3 Partially Observable Markov Decision Process

For MDP’s the optimal policy can be computed and executed by simply executing the
policy in every state s. However, what would happen if the agent would no longer be
able to accurately determine the state it was in with complete reliability? In order
to effectively behave in a partially observable world, it is necessary to use memory of
the previous actions and observations to aid in the disambiguation of the states of the
world.

The Partially Observable Markov Decision Process (POMDP) is a mathematically
principled framework to model decision-making problems in the non-deterministic and
partially observable scenarios. According to Kaelbling et al. (1998), a POMDP can be
describes as the tuple < S,A, T,R,Ω, O >, illustrated in Figure 4, where:

• S,A, T and R describe a Markov Decision Process.

• Ω is the finite set of observations the agent can experience of its world.

• O : S × A −→ Π(Ω) is the observation function which gives, for each resulting
state and action, a probability distribution over possible observations.

Figure 4: A POMDP framework.
Source: https://artint.info/html/ArtInt 230.html

A POMDP is an MDP in which the agent is unable to observe the current state.
Instead, it takes actions based on observations, which are part of the true state of
the environment. In the distracted driver problem the unobservable is the level of

12

https://artint.info/html/ArtInt_230.html

distraction of the driver. The agent cannot know if the driver model is distracted,
but has to infer this from parameters that can be measured, such as distance sensors
and steering input from the driver. The agent utilizes the observations over time to
estimate the true state of the environment and choose the correct actions. At time t,
it takes into account the complete history ht of actions and observations until t:

ht = {a0, o1, ..., ot−1, at−1, ot} (16)

However, keeping a memory of all the past actions and observations will become
immensely expensive memory wise. Therefore a probability distribution over the states
is kept, called belief b. the probability of being in state s, given history h is given by
b(s, h).

bt(s, h) = Pr(st = s|ht = h) (17)

Thus only the belief needs to be kept and recursively updated as the agent performs
actions and receives new observations. The agent starts with an initial belief b0 about
the initial state of the environment. At each subsequent step, the new belief b’ is
updated using the previous belief b, the last action a and the current observation
o. The agent chooses an action based on the policy and the current belief. Solving
a POMDP consists of finding the optimal policy π∗ that maximizes the cumulative
reward obtained over some time horizon N with initial belief b0 using a discount factor
0 ≤ γ ≤ 1 according to the following equation:

π∗ = argmax
π

E

[
N∑
t=0

∑
s∈S=0

bt(s)
∑
a∈A

λtR(s, a)π(bt, a)|b0

]
(18)

The return received by following a policy π with a certain belief b can be calculated
with the value function V π(b):

V π(b) =
∑
a∈A

π(b, a)

[∑
s∈S

b(s)R(s, a) + λ
∑
o∈P

Pr(o|b, a)V ∗ π(b′)

]
(19)

The optimal policy π∗ maximizes V π(b), which can also be written as:

π∗(bt0) = argmax
π

Eπ

[
T∑
t0

γt−t0rt|bt0

]
(20)

For any POMDP there exists at least one optimal policy. However, due to the
unobservable nature of POMDPs, finding the optimal policy is notoriously difficult.
The goal of the agent remains to maximize the expected discounted future reward.
As the internal state of the driver is unknown to our lane-keeping system, this will
result in a POMDP problem. Deep Reinforcement Learning and more specifically
Safe Reinforcement learning has been used before to solve POMDP’s (Andriotis & Pa-
pakonstantinou, 2021; Carr, Jansen, Junges, & Topcu, 2023; Shen, Ausin, Mostafavi,
& Chi, 2018; Simão, Suilen, & Jansen, 2023).

2.2 Reformalization

While the distracted driver problem conforms to the characteristics of a POMDP,
it is plausible to reframe the problem to enhance tractability for the algorithms. A
potential approach involves leveraging the observations, which may reveal sufficient

13

information to the agent, enabling effective policy learning without explicitly consid-
ering the underlying belief. In theory, given the car’s position on the track, the car’s
angle, and the previous driver’s steering and acceleration inputs at each time step, a
sufficiently sample efficient algorithm should be capable of making correct decisions,
regardless of the latent state of the driver.

2.2.1 Preliminary Results

While a POMDP formalization seems to fit due to the unknown state of the driver,
there are other formalizations that may be more appropriate. This subsection critically
examines the assumption that the distracted driver problem can be formulated as a
Partially Observable Markov Decision Process (POMDP). As this thesis builds upon
the work of J. Jansen (2021), we have adopted similar assumptions, primarily that due
to the unknown attentive state of the driver, leading to partial observability, which may
impede conventional reinforcement learning methods from approximating an optimal
solution. Nevertheless, we hypothesize that the car’s position, angle, and past driver
actions could provide sufficient information for the algorithm, rendering the attentive
state of the driver irrelevant.

To challenge the POMDP assumption, we conduct a comprehensive analysis using
preliminary results by comparing two variants of the Twin Delayed Deep Deterministic
Policy Gradient (TD3) algorithm. One variant includes a Long Short-Term Memory
(LSTM) layer, intended to better handle a POMDP environment. In Section 5, the
obtained results are presented, indicating that the problem may not be a true POMDP
environment. Subsequently, in Section 2.2.2, we propose an alternative problem for-
malization, considering the promising outcomes of the experiments.

2.2.2 Block MDP

Given the preliminary results, we will now re-formalize our problem from a POMDP
to a Block Markov Decision Problem (BMDP). In a BMDP, the environment is char-
acterized by a finite, yet unobservable latent state space S, a finite action space A, and
a potentially infinite, but observable context space X. Although this model has been
implicitly assumed in previous works (Azizzadenesheli, Lazaric, & Anandkumar, 2016;
Dann et al., 2018; Krishnamurthy, Agarwal, & Langford, 2016), it was first formally
introduced by Du et al. (2019).

The dynamics of a BMDP are described by an initial state s1 ∈ S and two
conditional probability functions: the state-transition function p, and the context-
emission function q, which define conditional probabilities p(s′|s, a) and q(x|s) for all
s, s′ ∈ S, a ∈ A, x ∈ X. In each episode, the environment initiates in state s1. During
step h ∈ H of an episode, the environment generates a context xh ∼ q(·|sh), and the
agent observes this context xh, while the underlying state sh remains unobserved. The
agent then takes an action ah, causing the environment to transition to a new state
sh+1 ∼ p(·|sh, ah). A BMDP can be describes as the tuple < S,A,R,X, p, q >, where:

• S,A,R describe a Markov Decision Process.

• p is the state-transition function, similar to T in a MDP or POMDP

• X is the context space, observed by the agent, generated by the unknown true
state s. In the distracted driver problem, the context space is the observed
inputs, while the unknown true state s is the vehicle state plus the driver’s
inputs and the driver’s attentive state.

14

• q is the context-emission function, which maps each context x ∈ X to their
generated state s. For our problem this means that each observed input is
generated from a single state and can be this state can be backtracked through
the context x.

Though the initial description might resemble that of a POMDP, we differentiate
the BMDP by making the following general assumption:

Assumption 1 Each context x is uniquely generated by each state s. That is, the
context space X can be partitioned into disjoint blocks Xs, each containing the support
of the conditional distribution q(·|s). The block structure implies the existence of a
perfect decoding function f : X −→ S, which maps contexts into their generating
states (Du et al., 2019).

Adapting this assumption to our distracted driver problem formulates the following
assumption:

Assumption 2 Each generated input to the agent x is uniquely determined by the
true state s, which include the driver’s attentive state. That is, each input X can be
partitioned into disjoint blocks Xs, supporting the conditional distribution q(·|s). The
block structure implies the existence of a perfect decoding function f : X −→ S, which
maps inputs to the driver’s attentive state.

In the context of the distracted driver problem, the observable context space X
comprises essential inputs to the algorithm, namely the track position, track angle, and
the previous driver actions. The action space A consists of the algorithm’s steering and
acceleration outputs. On the other hand, the unobservable latent state S encompasses
both the car’s state and the unobservable state of the driver. For state transitions, we
utilize a state transition function p that quantifies the likelihood of transitioning to
another state given the current state and actions. Additionally, the context-emission
function q characterizes how the observable context space x corresponds to the unob-
servable true state s.

Notably, the context space x is influenced by the actual state and will exhibit
variation between a distracted driver and an attentive driver. A distracted driver’s
steering and acceleration inputs will consistently differ from those of an attentive
driver. Thus, in theory, we can partition the context space X into two distinct blocks:
one representing inputs resulting from a distracted driver, and the other representing
inputs arising from an attentive driver. This separation allows for the fulfillment of the
assumption that each context x uniquely determines its generating state s, enabling us
to formally address our problem as a Block Markov Decision Problem (Block MDP).
Since a Block MDP is essentially a POMDP where the observational space can be
separated into disjoint blocks, no alterations are required in the environmental setup
or code for implementing this formalization.

For visual clarity, Figure 5 provides an illustrative representation of the BMDP
framework within the context of the distracted driver problem. The framework oper-
ates through an iterative process:

• True State (S0): The actual state of the environment at a given time step is
represented as S0. This state encapsulates all relevant information about the
vehicle’s position, speed, and other critical factors.

15

• Observed Context (X0): The agent observes the context X0, which provides
insight into the prevailing environmental factors and potential distractions in-
fluencing the driver. This observed context serves as essential input for the
agent’s decision-making process and is generated the context-emission function
q and the previous state.

• Driver Model: Instead of directly determining the agent’s action based on the
observed context, a driver model intervenes. This driver model determines the
driver’s attentiveness or distracted state and influences the action to be taken.
The action taken by a distracted driver will be different from the action taken
by an attentive driver.

• Action (A0): The driver model influences the action A0 chosen by the agent.
This action involves decisions related to acceleration, braking and steering.

• Next State (S1): After executing the chosen action A0, the environment transi-
tions to a new state, denoted as S1. This state results from the combination of
the previous state S0 and the action taken A0.

• Reward (R0): The reward R0 is computed based on the previous state S0, the
current state S1, and the action taken A0. This reward serves as feedback for
the agent, indicating the quality of its decision and behavior.

Figure 5: A BMDP framework.

2.3 Safe Reinforcement Learning

As maximizing the long-term reward does not necessarily avoid negative outcomes,
another criteria is necessary to evaluate risk. This sub-field within Reinforcement
Learning is called Safe Reinforcement Learning (SRL). According to an extensive sur-
vey by Garcıa and Fernández (2015), Safe RL algorithms can be separated into two
fundamental tendencies and can be defined as the process of learning policies that
maximize the expectation of the return in problems. An additional important factor
in Safe RL is to ensure reasonable system performance by employing safety constraints
during learning and execution. While Garcıa and Fernández (2015) explores the ways
that SRL algorithms can be changed to ensure safety, Zhu and Zhao (2021) talks about
how methods or regular reinforcement learning methods are modified to ensure safety.

16

2.3.1 Gracia and Fernández

The Safe Reinforcement learning categories of Garcıa and Fernández (2015) are more
oriented towards reward and tasks and are separated into two tendencies. The first
tendency consists of transforming the optimization criterion, the second consists of
modifying the exploration process in two ways: i) through the incorporation of external
knowledge and ii) through the use of a risk metric. Deep Safe RL for high dimensional
and continuous MDP optimization problems is a relatively new area that has emerged
in recent years, where safe states or actions are represented using neural networks (Gu
et al., 2022).

Optimization Criterion The object of traditional RL algorithms is to find a
function which specifies an action or a strategy for some state of the system to optimize
a criterion. However, this optimization criterion is not always the most suitable one
in dangerous or risky tasks (Geibel & Wysotzki, 2005; Mihatsch & Neuneier, 2002).
There are several alternatives to this optimization criterion in order to consider risk
and thus employ Safe Reinforcement Learning. These criteria can be categorized in
four groups:

• Worst-Case Criterion: In the Worst-Case Criterion, a policy is considered to
be optimal if it has a maximum worst-case return (Gaskett, 2003; Nilim &
El Ghaoui, 2005; Tamar, Xu, & Mannor, 2013). This criterion is useful when
avoiding rare occurrences of large negative return is imperative, but it can be
overly pessimistic. Additionally the true long term utility of the actions are lost
and does not detect risky situations from the early steps.

• Risk-sensitive Criterion: In other approaches the optimization criterion is trans-
formed so as to reflect a subjective measure balancing the return and the risk.
It can be transformed into an exponential utility function, a linear combination
of return and risk or the probability of entering into an error state (Geibel &
Wysotzki, 2005; Howard & Matheson, 1972; Sato, Kimura, & Kobayashi, 2001).
The advantages of this criterion is that it is easier to switch between risk-averse
and risk-seeking behaviour and long-term risk situations are detected. However,
the policy may also be overly pessimistic and it does not detect risky situations
from the early steps.

• Constrained Criterion: The objective of these methods is to maximize the re-
turn subject to one or more constraints resulting in a constrained optimization
criterion. In these cases the objective is to maximize the return while keep-
ing other types of expected measures higher than some given bound (Kadota,
Kurano, & Yasuda, 2006; Moldovan & Abbeel, 2012). This is an intuitively
solution as the exploration is carried out only in a region of space considered
safe. The total policy space is constrained to those policies that are considered
safe. A representation of this can be see in Figure 6. However, these constraints
may be difficult to formulate in RL algorithms and may therefore be difficult to
correctly select the parameter constraints.

• Other Optimization Criteria. Other approaches are based on the use of optimiza-
tion criteria falling into the area of financial engineering, such as the r-squared,
value at risk or the density of return (Kashima, 2007; Morimura, Sugiyama,
Kashima, Hachiya, & Tanaka, 2012).

17

Figure 6: A representation of constraining the total policy space.
Source: Garcıa and Fernández (2015)

Exploration Process During the learning process, the agent makes decisions
about which action to choose, either to explore more about the environment or ex-
ploit what the agent knows results in a high reward. Part of the goal is therefore to
explore the state space efficiently. However, most of these exploration methods do not
consider the risk of actions. To avoid risky situations, the exploration process can be
modified by including prior knowledge of the task, which can be some through several
approaches. As most RL algorithms begin learning with no external knowledge, ran-
dom exploration of the environment is necessary to gain knowledge. While the agent
does learn more about the environment, this random exploration leads the agent to
undesirable or irrelevant states, which wastes a significant amount of time. There are
two methods of modifying the exploration process to ensure safety: i) through the
incorporation of external knowledge and, ii) through the use of risk-direct exploration.
Prior external knowledge can be incorporated into the exploration process by:

• Providing Initial Knowledge, which can be used to bootstrap the algorithm,
so it is exposed to the most relevant regions of the state and action spaces,
eliminating random and risky exploration (Driessens & Džeroski, 2004). The
value function approximation is bootstrapped and leads the agent through the
more relevant regions of the space from the earliest steps of the learning process.
The disadvantage of providing initial knowledge is that the bias introduced
may produce sub-optimal policies and the exploration phase following the initial
training phase may result in visiting catastrophic states.

• Deriving a policy from a set of Demonstrations, where the external knowledge is
not used to bootstrap the learning algorithm, but to derive a policy in an offline,
safe manner (Abbeel, Coates, & Ng, 2010; Tang, Singh, Goehausen, & Abbeel,
2010). While this seems like a safe and decent option, the performance is heavily
limited by the quality of the demonstrations. It is also unknown how the agent
will act if it encounters a state which did not exist in the demonstrations.

• Teacher Advice. The teacher provides actions or information to the agent, which
can be requested by the agent (Garcia & Fernández, 2012), or provided but
the teacher whenever it feels it is necessary (Quint́ıa Vidal, Iglesias Rodŕıguez,
Rodŕıguez González, & Vázquez Regueiro, 2013; Thomaz & Breazeal, 2008).
The advantages of the teacher advice methods is that the agent is guided through
the exploration process by being kept far from catastrophic states from the
earliest steps of the learning process. However, approaches where the agent
requests advice, only short term risk situations are detected. In approaches

18

where the teacher provides actions, constant monitoring of the agent by the
teacher is needed, which can be time intensive. An example of how a teacher
would interact with the agent can be viewed in Figure 7.

Figure 7: General Teacher-Learner Agent Interaction Scheme.
Source: Garcıa and Fernández (2015)

In Risk-direct Exploration approaches prior knowledge is not incorporated and
the classic optimization criterion remains the same. However risk measure is used to
determine the probability of selecting different actions during the exploration process
(Law, 2005). In these approaches long term risk-situations are detected but it does
not detect risky situations from the earlier steps.

2.3.2 Zhu and Zhao

Instead of focusing or task and rewards, the summarizing of Safe Reinforcement Learn-
ing by Zhu and Zhao (2021) is more oriented towards how regular RL methods can
be modified to ensure safety. According to Zhu and Zhao (2021), autonomous driv-
ing applications have high requirements for safety. As Deep Reinforcement Learning
methods lack interpretability compared to traditional rule based methods, it becomes
difficult to predict if the agent will produce a safe policy. A general strategy to solve
this problem is to combine traditional methods to ensure safety in Deep Reinforcement
Learning. This can be done in three way:

• Modified Methods: The most common way to enhance safety in the standard
DRL algorithms is to modify them, typically by constraining the exploration
space. A safety model checker is introduced to identify the set of actions that
satisfy the safety constraints at each state through probabilistic prediction, prior
knowledge and constraints. Examples of such modified methods are shown in
N. Jansen, Könighofer, Junges, and Bloem (2018) and Fulton and Platzer (2018).

• Combined Methods: Combining traditional rule-based methods to enhance safety,
but without modifying the learning process. In these methods, a rule-based
tracking and safe set controller ensures safety control. These combined meth-
ods are used particularly often in autonomous driving, such as in Xiong, Wang,
Zhang, and Li (2016) and Shalev-Shwartz, Shammah, and Shashua (2016).

• Hybrid Methods: Here Deep Reinforcement learning is integrated into tradi-
tional heuristic search or POMDP planning methods, such as combining DRL
and approximate POMDP planning. Studies using these hybrid methods are
Bernhard, Gieselmann, Esterle, and Knol (2018) and Pusse and Klusch (2019).

19

3 Related Work

This chapter gives an overview of the current work related to the subject of the thesis
such as driving assistance systems and related research, modelling the drivers’ atten-
tion as a POMDP and solving such problems using Safe Reinforcement Learning and
Recurrent Neural Networks. After this the suggested solution to the distracted driver
problem and research questions are given.

3.1 Current Lane Assistance

Driving assistance systems has been a topic of strong scientific interest, research and
development (Ayyasamy, 2022; Khan & Lee, 2019). Most car companies already em-
ploy some level of driving assistance such as cruise control or lane-keeping (Greenwood,
Lenneman, & Baldwin, 2022; Oviedo-Trespalacios, Tichon, & Briant, 2021). As an in-
depth research into all the possible possibilities of such driving assistance systems is
out of the scope of this research, it will only focus on lane-keeping assistance. To
the best of our knowledge, none of the currently commercially available lane-keeping
assistants adapt to the driver’s attentiveness.

While none of the commercially available lane-keeping assistance systems adapt to
the driver’s attentiveness, the effect of adapting the intensity of lane-keeping assistance
based on the driver’s distraction is the subject of recent studies. Examples of this are
through haptic lane-keeping assistance, which suggest that continuous lane-keeping
assistance is both the preferred style of assistance and improves lane-keeping perfor-
mance (Benloucif et al., 2019; Roozendaal et al., 2021). These methods, prove to be
effective at keeping the driver engaged when attentive while keeping a distracted driver
safe at the same time. Therefore we propose a continuous cooperative lane-keeping
agent based on the driver’s level of attention.

3.2 Lane Assistance Research

For such an lane-keeping assistance system we would need to be able to detect when
the driver is distracted. Several studies have utilized continuous video recordings or
analysis of the driver to detect distraction using in-vehicle monitoring systems such as
head-tracking (S. Zhang & Abdel-Aty, 2022), eye-tracking data (Liang, Reyes, & Lee,
2007; Sri Mounika, Phanindra, Sai Charan, Kranthi Kumar Reddy, & Govindu, 2022)
or analysis of the driver using heart rate (Seenivasan, 2023) and even brain activity
(Kashevnik et al., 2021; Perera, Wang, Lin, Nguyen, & Chai, 2022). Such data has
been processed using Machine Learning methods such as Support Vector Machines
(Liang et al., 2007) and Long Short-Term Memory (Wollmer et al., 2011). While these
methods have seen success, constant in-vehicle monitoring can be seen as invasive and
unpractical as this will require vehicle modifications and extensive data processing.
Research suggests that driver distraction can lead to a change in driving performance.
Distracted drivers show certain behaviours, such as lane position deviations, infrequent
steering wheel movements, and reduced reaction times (Kashevnik et al., 2021; Qin,
Li, Chen, Bill, & Noyce, 2019).

Tango and Botta (2013) show that monitoring driving performance measures such
as steering wheel angle, heading angle and lateral deviation can be sufficient to detect
driver distraction accurately. Other papers have used these metrics, such as speed,
longitudinal and lateral acceleration, yaw rate and throttle position in a supervised
learning method to detect driver distraction (Chai, Lu, Jiang, Shi, & Zeng, 2021;

20

Ye, Osman, Ishak, & Hashemi, 2017). Instead of a supervised learning methods a
reinforcement learning method will be used in this research. Reinforcement learning
had the benefit of learning from its own action and the environment, giving it the
ability to continuously increase performance and adapt to each driver individually
(Sutton & Barto, 2018).

A driving assistance system that adapts to each individual driver would increase
acceptability and trust in the system, which would result in more frequent use of the
system (Yi et al., 2019). Therefore, we propose training the lane-keeping assistant
system using reinforcement learning with only the car’s own metrics as input.

3.3 Solving BMDPs

This section focuses on modeling the unknown latent states in the distracted driver
problem and addressing them using either recurrent reinforcement learning or safe re-
inforcement learning techniques. While the problem has been reformulated as a Block
Markov Decision Process (BMDP) based on preliminary results, it’s important to note
that there is significantly more research on Partially Observable Markov Decision Pro-
cesses (POMDPs) compared to BMDPs. POMDPs have been the primary framework
for modeling problems with latent states, including driver behaviour. Given the simi-
larities in the formalization and the presence of latent driver states in both POMDPs
and BMDPs, it’s reasonable to assume that solutions developed for POMDPs can be
adapted and applied to BMDPs.

To illustrate this, we will draw examples from research on modeling driver prob-
lems with unknown states in POMDPs. These examples demonstrate how recurrent
reinforcement learning and safe reinforcement learning methods have been utilized in
similar contexts. The underlying assumption is that insights and techniques developed
for POMDPs can be valuable for addressing similar challenges in BMDPs.

3.4 Distracted Driver as BMDP

As the physiological state of the driver has to be taken into account by the algorithm,
we have some unobservable influence on the problem, resulting in a Block Markov
Decision Process (BMDP). While BMDPs are relatively less researched compared to
POMDPs in terms of unobservable influence on the problem, POMDPs are well suited
to model driving problems in which the internal psychological state of a human is
important but unknown such as her intend, goals, drowsiness, or attentiveness. How-
ever, as both formalizations are similar and involve latent states, we will use POMDP
research as an example for modelling driver problems with unknown states.

By employing a POMDP to model the uncertainty about humans’ internal states,
L. Li, Zhao, and Wang (2022) improved driving policies by taking into account the
unknown driving intentions of surrounding vehicles. Using a memory-based Actor-
Critic framework called Recurrent Deterministic Policy Gradient, they were able to
solve the optimal driving policy under partial observability and generate the optimal
trajectory, showing improved performance compared to state-of-the-art algorithms.

Pant et al. (2022) designed a POMDP model that captures the latent cognitive
state of the driver. Learning the drivers’ level of attention, the driver can be brought
into the decision making loop, ensuring timely and safe decision making.

Danesh, Cai, and Hsu (2023) also use a POMDP to model for the uncertainty
of human intentions and behaviour. In order to compensate for some of the errors
in Monte Carlo sampling, such as missing rare but crucial events that could lead to

21

potential safety concerns, they propose their own algorithm, LEADER, a critic and
generator network. LEADER learns to attend to critical human behaviours during
planning, thereby lowering the collision rate while keeping the efficiency and smooth-
ness of driving compared to other state-of-the-art algorithms such as DESPOT and
Soft-Actor-Critic (SAC).

As the previous studies show, a POMDP can be used to model driving intentions,
latent cognitive state of the driver and to model the uncertainty of human behaviour.
However, as our version of the distracted driver problem is a BMDP, we propose
modelling the distracted driver problem as a BMDP, which to our knowledge has not
been done yet. The following section will introduce methods of solving POMDPs and
due to the similarity of BMDPs and POMDPs, these methods will be applied to the
BMDP distracted driver problem.

3.4.1 Recurrent Deep Reinforcement Learning for BMDP

In Recurrent Deep Reinforcement Learning methods, an additional memory-component
is added to reinforcement learning methods in order to integrate information across
time steps. This implementation has shown much success in recent studies in order to
solve POMDPs. The following paragraphs show how a memory-component can aid in
solving POMDPs.

Meng, Gorbet, and Kulić (2021) test their proposed algorithm Long-Short-Term-
Memory-based Twin Delayed Deep Deterministic Policy Gradient (LSTM-TD3) by in-
troducing a memory component to TD3. Using OpenAI Gym environments they com-
pare its performance with other state-of-the-art DRL algorithms such as SAC, Deep
Deterministic Policy Gradient (DDPG) and TD3 without a LSTM component. The
results show significant advantages of the memory component in addressing POMDPs,
including the ability to handle missing and noisy observation data.

Hausknecht and Stone (2015) replaced the first post-convolutional fully-connected
layer of a Deep Q-Network with a recurrent LSTM and compared it to resulting
Deep Recurrent Q-Network. The two algorithms are compared on Atari games with
a flicker condition with a probability of receiving observations. If the probability
of receiving observations was one, the Atari game was effectively a MDP and there
was no significant difference between the DQN and DQRN. However, by lowering the
probability of receiving inputs, creating a POMDP, the harder it becomes for the
algorithm to play the game without a recurrent layer, resulting in rapidly declining
performance for the DQN network and less dramatic decline for the DQRN due to the
LSTM layer.

Ni, Eysenbach, and Salakhutdinov (2022) show that Recurrent Reinforcement
Learning can be a strong baseline for solving POMDPs. By comparing six specialized
models and their own model in 21 environments, they show through careful hyperpa-
rameter tuning and architecture decisions, that augmenting model-free reinforcement
learning with a memory-based architectures, such as LSTMs, provides a general ap-
proach to solving all many types of POMDPs.

Another study uses a recurrent version of Proximal Policy Optimization (Schul-
man, Wolski, Dhariwal, Radford, & Klimov, 2017) called GRU-PPO in order to solve
POMDPs in the OpenAI benchmark for Deep Reinforcement Learning algorithms
called Memory Gym. By comparing the memory-less PPO with a memory-compenent
enhanced version, GRU-PPO, training and generalization performances show a strong
dependence on memory (Pleines, Pallasch, Zimmer, & Preuss, 2023). According to a
recent survey conducted by Ni et al. (2022), it is apparent that most studies utilize an

22

LSTM as their memory component. Although both GRU and LSTM have their re-
spective advantages and disadvantages, we have decided to utilize LSTM in our study
since it has been extensively investigated in recent studies.

As these studies show, the addition of a memory-component to existing Deep Re-
inforcement Learning algorithms aids in solving POMDPs. Therefore, we hypothesize
that adding such a memory-component will aid in solving the potentially distracted
driver problem by compensating for the unobservable state of the driver.

3.4.2 Safe Reinforcement Learning for BMDPs

For the solution to the distracted driver problem to be viable in a real-world scenario,
safety during training needs to be considered. For this Safe Reinforcement Learning
(SRL) can be utilized. SRL is a sub-field of Reinforcement Learning where policies
are learned that maximize the expectation of the return in problems as well as ensure
reasonable system performance and safety constraints. SRL is a development in the
reinforcement learning domain by either adapting the optimization criterion to make it
more suitable for risky situations or modify the exploration process, often through prior
knowledge (Garcıa & Fernández, 2015). While SRL has been utilized in autonomous
driving, it has been under-utilized in the distracted driver problem. The following
paragraphs are examples of SRL used in autonomous driving that can be potential
solutions for the distracted driver problem.

Examples of recent studies that utilize Safe Reinforcement Learning are by Lin et
al. (2023). Here the authors suggest to use the learning from demonstrations paradigm
to tackle the problem of sample inefficiency in regular reinforcement learning. How-
ever, instead of providing an extensive number of demonstrations, they propose using
a teacher-advice with Gaussian process (TAG) mechanism. The teacher provides both
an advice action and its associated confidence value, guiding the agent through the
environment. Both TAG-PPO and TAG-DDPG algorithms, show improved perfor-
mance compared to their counterparts lacking the Teacher Advice on several delayed
reward and complicated continuous control environments.

Wen, Duan, Li, Xu, and Peng (2020) explores Parallel Constrained Policy Opti-
mization (PCPO), an extension of the Constrained Policy Optimization (CPO) algo-
rithm by Achiam et al. (2017) in two autonomous driving tasks through the addition
of a risk function bounded above by risk limit to guarantee policy safety. PCPO and
CPO both show improved performance for both the single vehicle lane-keeping task
and multi-vehicles at a crossing compared to PPO.

Kong, Zhang, and Xu (2021a, 2021b) shows that CPO outperforms a simple Actor-
Critic algorithm in the lane-keeping task. The constraints in CPO are the safety
constraints, which is the distance from the center-line of the lane. CPO explores
the environment without going out of the lane while the non-constrained Actor-Critic
algorithm has to in order to discover the optimal policy. As shown by these studies,
the addition of a safety mechanism such as constraints or Teacher Advice can improve
performance as well as safety during exploration. Such methods are an important
aspect to add to the solution of the distracted driver problem in order to remain
viable as a real-world solution. In this study we will use First Order Constrained
Optimization in Policy Space (FOCOPS) Y. Zhang et al. (2020) for the constrained
optimization criterion. FOCOPS is an improvement upon CPO, where the policy
update is project unto an optimal one in terms of the minimum KL divergences, a
measure of how much one probability distribution is different from another one.

23

3.5 Algorithmic Approaches

The choice of TD3 and FOCOPS as the algorithms utilized in this study was motivated
by their applicability and success in addressing Partially Observable Markov Decision
Problems (POMDPs). Given the structural similarities between POMDPs and Block
Markov Decision Problems (BMDPs), it was hypothesized that techniques proven
effective in POMDPs could also be relevant for solving BMDPs.

While providing a detailed explanation of these algorithms is beyond the scope of
this document, the key aspects of TD3 and FOCOPS are highlighted below.

3.5.1 Algorithmic Approaches: TD3

TD3 was chosen as the algorithm for unconstrained policy optimization due to its
widespread use and extensive study in the field of autonomous driving and reinforce-
ment learning (Okuyama, Gonsalves, & Upadhay, 2018; Zhu & Zhao, 2021). TD3 is an
extension of the Deep Deterministic Policy Gradient (DDPG) algorithm, which com-
bines elements of Deep Q-Networks (DQN) and Deterministic Policy Gradient (DPG)
methods.

DQN, rooted in Q-learning, is designed to handle problems with high-dimensional
observation spaces (Mnih et al., 2015). However, it is limited to discrete and low-
dimensional action spaces, which is insufficient for solving the distracted driver prob-
lem. On the other hand, DPG can handle continuous action spaces but is known to be
less stable, especially in challenging problem domains. To address these limitations,
DDPG combines the strengths of DPG and DQN in a unified actor-critic architecture
and learning algorithm TD3 (Lillicrap et al., 2015).

A common issue with DDPG is the overestimation of Q-values, which can lead
to policy instability. TD3 mitigates this problem by concurrently training two Q-
functions, denoted as Qϕ1 and Qϕ2 , using mean square Bellman error minimization.
This involves minimizing the expected difference between the Q-value of a state-action
pair and the advantage with respect to the action a. The Bellman equation describes
the optimal action-value function:

Q∗(s, a) = Es′∼π[R(s, a) + γmax
a′

Q∗(s′, a′)] (21)

The actions used to create the Q-learning target in TD3 are derived from the target
policy µθtarg , but with clipped noise added to each dimension of the action. Following
the addition of this clipped noise, the target action is further clipped to ensure it falls
within the valid action range, which satisfies aLow ≤ a ≤ aHigh. The resulting target
actions are represented as follows:

a′(s′) = clip(µθtarg (s
′) + clip(ϵ,−c, c), aLow, aHigh), ϵ ∼ N(0, σ) (22)

This aspect of TD3, known as target policy smoothing, functions as a regularizer
within the algorithm. Its purpose is to prevent the Q-function approximator from
exploiting a sharp, incorrect peak for certain actions. Instead, it smoothes out the
Q-function over similar actions to improve stability.

Moreover, both Q-functions in TD3 share a single target value, determined by
whichever of the two Q-functions produces the smaller target value:

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕi,targ (s
′, a′(s′)) (23)

and then both are learned by regression to this target:

24

L(ϕi, D) = Es,a,r,s′,d)∼D[(Qϕi(s, a)− y(r, s′, d)2], i = 1, 2 (24)

Algorithm 1 Pseudocode of TD3

Require: initial policy parameter θ, Q-function parameters ϕ1, ϕ2,

empty replay buffer D.

Require: Target parameters equal to main parameters:

θtarg ← θ, ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

1: repeat
2: Observe state s and select action a according to

a =clip(µθ(s) + ϵ, aLow, aHigh) where ϵ ∼ N
3: Execute a in the environment

4: Observe next state s′, reward r, and done signal d to

indicate whether s′ is terminal

5: Store (st, at, rt+1, st+1) in buffer D
6: If st+1 is terminal, reset environment

7: if it’s time to update then
8: for j in range(however many updates) do
9: Randomly sample a batch of transitions:

B = (s, a, r, s′, d) from D
10: Compute target actions:

a′(s′) = clip(µθtarg (s
′)+ clip(ϵ,−c, c)aLow, aHigh), ϵ ∼ N(0, σ)

11: Compute targets:

y(r, s′, d) = r + γ(1− d)mini=1,2 Qϕtarg,i
(s′, a′(s′))

12: Update Q-functions by one step of gradient descent:

∇ϕi

1
|B|

∑
(s,a,r,s′,d)∈B(Qϕi

(s, a)− y(r, s′, d))2 for i = 1,2

13: if j mod policy delay = 0 then
14: Update policy by one step of gradient ascent using:

∇θ 1
|B|

∑
s∈B Qϕ1

(s, µθ(s))
15: Update target networks with:

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1,2
θtarg ← ρθtarg + (1− ρ)θ

16: end if
17: end for
18: end if
19: until convergence

Using the smaller Q-value for the target and performing regression towards it helps
mitigate the issue of overestimation in the Q-function. This helps stabilize the learning
process and leads to better policy optimization.

Lastly the policy the policy is optimized by maximizing Qϕ1 :

max
θ

Es∼D[Qϕ1(s, µθ(s)] (25)

In TD3, the policy is updated less frequently than the Q-functions, which helps
dampen the volatility that can arise in DDPG due to the way a policy update affects the

25

target. The introduction of a memory component to TD3, as demonstrated by Meng
et al. (2021), provides significant advantages compared to other deep reinforcement
learning methods in PODMPs. The pseudocode of TD3 can be viewed in Algortihm
1. The author’s PyTorch implementation used and adapted for this thesis has been
taken from https://github.com/sfujim/TD3. The hyperparameter settings for TD3
can be seen in Table 5.

3.5.2 Algorithmic Approaches: FOCOPS

There are many examples of algorithms to solve a Constrained Markov Decision Pro-
cess, both model-based (Paternain, Chamon, Calvo-Fullana, & Ribeiro, 2019; Yu,
Yang, Kolar, & Wang, 2019) and model-free RL (Achiam et al., 2017; Y. Liu, Halev,
& Liu, 2021) both with Actor-Critic and Policy Gradient methods (Gu et al., 2022).
As far as we know no Safe Reinforcement Learning algorithm has been applied to
the distracted driver problem. First Order Constrained Optimization in Policy Space
(FOCOPS) is chosen because it both guarantees constraint satisfaction throughout
training, works for arbitrary policy classes such as neural networks and because of
its ease of implementation. The pseudo-code of FOCOPS can be viewed in Algo-
rithm 2. The authors implementation used and adapted for this thesis was taken from
https://github.com/ymzhang01/focops. The hyperparameter settings for FOCOPS
can be seen in Table 5.

FOCOPS is designed to maximize an agent’s overall reward while simultaneously
ensuring that the agent satisfies a set of cost constraints. This involves solving a
Constrained Markov Decision Process (CMDP), as described by Equation 13. Instead
of directly solving this equation, FOCOPS adopts a two-step approach:

• Policy Update in Nonparameterized Space: FOCOPS first employs data gener-
ated by the current policy to find the optimal update policy. This is achieved by
solving a constrained optimization problem within the nonparameterized policy
space.

• Projection into Parametric Space: Once the optimal update policy is deter-
mined, FOCOPS then projects this policy back into the parametric policy space.

The key advantage of this approach is that it provides an approximate upper bound
for worst-case constraint violation throughout the training process. Additionally, it is
relatively simple to implement because it relies on first-order gradient information for
training iterations, as opposed to second-order Hessian methods (Tan & Lim, 2019;
Y. Zhang et al., 2020).

Policy Update in Nonparameterized Space In the first step of solving equa-
tion 13, a slightly different optimization problem is considered, where the parameter
of interest is the non-parameterized policy π and not the policy parameter. Say some
policy πθk is a feasible solution. Then the optimal policy takes the form of:

π∗(a|s) = πθk (a|s)
Zλ,υ(s)

exp(
1

λ
(Aπθk (s, a)− υA

πθk
C (s, a))) (26)

Where Zλ,υ(s) is the partition function that insures that the equation is a valid
probability distribution and λ and υ are solutions to the optimization problem where
we minimize λ, as to maximise reward-advantage parameter and minimize υ, as to
minimise the cost-advantage parameter.

26

https://github.com/sfujim/TD3
https://github.com/ymzhang01/focops

In the process of solving for the optimal policy in the CMDP, it’s important to note
that this optimal policy, denoted as π∗, tends to assign high probabilities to areas of
the state-action space that yield high returns. However, this preference for high returns
must be balanced with a penalty term that accounts for the cost advantage.

Projection into Parametric Space After solving the CMDP equations, π∗ is
not necessarily restricted to the parameterized policy space. Consequently, it becomes
impractical to sample directly from this policy. To address this, an important step
is to project the optimal policy back into the parameterized policy space. This is
accomplished by minimizing a loss function, which helps align the optimal policy
with the parameterized policy. The specific form of this loss function is given by the
equation:

L(θ) = Es∼πθk
[DKL(πθ||π∗)[s]] (27)

In the context of projecting the optimal policy π∗ back into the parameterized
policy space, a projected policy πθ is employed to approximate this optimal update
policy. To achieve this, first-order methods are utilized to minimize the loss function.

The gradient of the loss function, which represents the direction and magnitude
of change needed to minimize the loss, is a crucial component in this optimization
process. The gradient for the loss function is expressed as:

∇θL(θ) = Es∼πθk
∇θ[DKL(πθ||π∗)[s]] (28)

Where:

∇θ[DKL(πθ||π∗)[s] = ∇θ[DKL(πθ||πθk)[s]−
1

λ
Ea∼πθk

[
∇θπθ(a|s)
πθk (a|s)

(Aπθk (s, a)−υA
πθk
C (s, a))]

(29)
As this method employs first-order optimization, its accuracy is mainly guaranteed

in the vicinity of the initial condition, where πθ = πθk . To enforce this constraint, an
indicator function is added.

I(sj) := 1DKL(πθ||πθk
[sj]≥δ (30)

Consequently, states that are sampled with KL-divergence values that are too large
are rejected from the gradient update. The resulting sample gradient update term is
thus:

∇̃θL(θ) ≈
1

N

N∑
j=1

[∇θDKL(πθ||πθk)[sj]−
1

λ

∇θπθ(aj |sj)
πθk (aj |sj)

(Ã(sj , aj)− υÃC(sj , aj))]I(sj)

(31)
During training an early stopping criteria is used to prevent trust region constraint

violations for the new updated policy:

1

N

N∑
i=1

DKL(πtheta||πθk)[si] < δ (32)

The constraints in the lane-keeping problem will be set at a certain distance from
the centerline to ensure that the vehicle never comes near the edge of the road. It’s

27

worth noting that FOCOPS has not been used in combination with an LSTM layer
before to solve a POMDP or BMDP problem. This combination of FOCOPS and
LSTM represents a novel approach to addressing the lane-keeping problem in a BMDP
framework.

Algorithm 2 Pseudocode of FOCOPS

1: Initialize: Initial policy πθ0, Value networks Vϕ0 , V
C
ψ0
.

2: while stopping criteria not met do
3: Generate trajectories τ ∼ πθk
4: Estimate value and action-value functions V and Q using:

V π(s) := Eτ∼π[
∑∞
t=0 γ

tR(st, at)|s0 = s]
Qπ(s, a) := τ ∼ π[

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a]
5: Estimate cost value and cost action-value functions:

V π
C (s) := Eτ∼π[

∑∞
t=0 γ

tC(st, at)|s0 = s]
Qπ
C(s, a) := τ ∼ π[

∑∞
t=0 γ

tC(st, at)|s0 = s, a0 = a]
6: Estimate C-returns, advantage and cost advantage functions:

JCi
(π) := Eτ∼π[

∑∞
t=0 γ

tCi(s, a)]
Aπ(s, a) := Qπ(s, a)− V π(s)
AπC(s, a) := Qπ

C(s, a)− V π
C (s)

7: Update cost penalty term ν using:

ν ←proj [ν − α(b− JC(πθk))]
8: for K epochs do
9: for each minibatch do

10: Update value networks by minimizing MSE of Vϕk
, V target
ϕk

and V C
ψk

, V C,target
ψk

using 1
N

∑N
i=1(Vi − V target

i)2

11: Update policy network using:

∇̃θL(θ) ≈ 1
N

∑N
j=1∇θDKL(πθ||πθk)[sj]−

1
λ

∇θπθ(aj |sj)
πθk

aj |sj) (Ã(sj , aj)− νÃC(sj , aj))]I(sj)

12: if 1
N

∑N
j=1 DKL(πθ||πθk)[sj] > δ then

13: Break out of inner loop

3.6 Problem Overview and Research Questions

3.6.1 Problem Overview

The problem in this thesis is assisted lane-keeping for a potentially distracted driver
in a shared control scheme. The agent acts as an assistant to the human driver by
keeping the car centred in the lane. The driver is simulated using a driver model
that periodically becomes distracted. During such periods of inattentiveness, driving
performance will decline. The state of the driver is unknown to the agent, which is has
to be inferred from the driver’s steering actions and the car’s metrics. The dynamics
of the car are simulated using The Open Racing Car Simulator (TORCS). A BMDP
model is employed to account for the uncertainty about the driver’s attentiveness.

28

3.6.2 Research Question

The main research aim to be answered in this thesis is finding an optimal solution
to the distracted driver problem. Solutions to the problem will be compared by their
lane-keeping ability on the highway. As both safety and the unobservable state of the
driver pose distinct problems to the algorithm, our proposed solution is extending the
safe reinforcement learning algorithm FOCOPS with a LSTM layer, called FOCOPS-
LSTM. Our main research question is therefore formulated as follows:

• Can the recurrent safe reinforcement learning in the form of FOCOPS-LSTM
be considered a viable solution to the distracted driver problem modelled as a
Block Markov Decision Process?

Our implementation will be compared to an off-policy, state-of-the-art, commonly
used algorithm, TD3 and its extension TD3-LSTM. The main research aim is split
into three sub-questions:

• What are the advantages of using a memory-based DRL method compared to a
memory-less method in the distracted driver problem?

• How do different safe and unsafe reinforcement learning methods compare to
each other in the distracted driver problem?

• How does our proposed method solution FOCOPS-LSTM compare to another
comparable state-of-the-art algorithm, TD3-LSTM?

29

4 Methodology

This chapter formally defines the POMDP that is used to model the shared-control
lane-keeping problem that is considered in this thesis. Furthermore, the methods used
to solve the problem are explained in detail. First Section 3.1 gives an overview of
the simulation The Open Racing Car Simulator (TORCS) that is used to simulate the
dynamics of a car driving on a highway and the driver model used. To answer the
research questions, several algorithms will be utilized which are explained in Section
3.2.

4.1 Overview

The issue addressed in this thesis pertains to a shared control lane-keeping task in
which both the driver and the assisting agent collaborate to maintain the vehicle
centred within the lane. As the driver model becomes periodically distracted, the
agent must adapt to the driver’s latent state. It is assumed that the driver model
demonstrates near-optimal driving behaviour; hence, the agent need not intervene as
long as the driver remains attentive. Nevertheless, when the driver becomes distracted,
both horizontal and lateral driving will alter, necessitating the agent’s intervention
to achieve the desired driving behaviour. Since the agent is unaware of the driver’s
attentive state, it must infer this from the driving behaviour to keep the vehicle centred.
This inference can be made based on the information gathered over time. Using this
estimation, the agent determines the actions the driver is likely to take and selects the
appropriate actions itself.

Rather than conducting experiments with actual humans and cars, which can
be both time-consuming and costly, simulation models are employed for both the
human and the vehicle in the experiments. Three components collaborate in these
simulations. Firstly, there is the simulation software TORCS (Wymann et al., 2000),
which simulates the car’s dynamics. Secondly, there is the driver model, simulating a
human driver who becomes periodically distracted. Finally, there is the agent, which
receives inputs from TORCS, such as sensor data, car metrics, and driver inputs, and
returns the actions it believes will maximise the reward.

An important note to the Methodology and thesis as a whole is that much inspi-
ration has been taken from another Master Thesis by Jokke Jansen J. Jansen (2021).
There are many similarities between the two thesis such as using the TORCS en-
vrionment, the driver model, the highway settings and the POMDP formalization.
However, we improve upon it by employing the more natural continuous instead of
discrete sensory information and steering actions. Additionally we compared several
distinct algorithms and as such, test the assumption that the environment is truly a
POMDP environment.

4.2 TORCS

The Open Racing Car Simulator is a modern, modular and highly portable multi-
agent car simulator. Its high degree of modularity and portability renders it ideal for
artificial intelligence research. Over 300 research papers have been written employing
TORCS as a basis, primarily for testing AI algorithms, including driver attention and
stress (Wymann et al., 2000). The simulator is relatively simple, but it handles all
basic elements of vehicle dynamics. This includes basic properties of vehicle systems
such as mass, rotational inertia of the car, wheels, and other components, mechanical

30

details such as suspension types and links as well as dynamic and static friction profiles
of tires for different road types.

In TORCS, the participating players are referred to as ‘robots’. They are loaded
as external modules in TORCS. This means that new artificially intelligent agents can
be developed independently and they only have to satisfy the basic API requirements.
The robots have the opportunity to interact with the simulation every 0.02s. The
default interface is through a low-level API which can provide detailed information
about the race status to the robot, exact position, distance from the edge of the
track, etc. However, there are many parts of the simulation state to which the robots
have no direct access. With only a single car on the track, the overall problem can
be formalised as a partially observable Markov decision processes. An adaptation
to OpenAI gym named gym-TORCS was utilized which enables Python usage taken
from https://github.com/ugo-nama-kun/gym torcs. Gym-TORCS has been used in
many reinforcement learning papers for autonomous driving Ly and Akhloufi (2020);
Santara et al. (2021).

As TORCS is based on racing tracks, for the cooperative lane-keeping problem we
will have to implement our own custom track. To simulate a highway track we will
have a single lane with constant width of 3m with only moderate bends. There are no
other cars and the track is completely flat. An example of a highway track is given in
Figure 8. If this proves too easy for the algorithm, we can implement sharper bends
or a more narrow track.

In order to have our code interact with the TORCS environment a python wrapper
for RL experiment with the simple, similar interface compatible with OpenAI-gym
environments called Gym-TORCS was used.

Figure 8: An example of the custom highway used in TORCS.

4.2.1 Driver Model

To emulate a human driver experiencing periodic distractions, a driver model is con-
structed to interface with the TORCS simulator. The model governs the driver’s
actions, the onset of distractions, and their duration. Figure 9 provides a schematic
representation of the interaction between the driver model, the agent, and TORCS.

The driver’s state comprises three variables: current attentiveness (attentive or
distracted), time until the driver regains attention after being distracted, and driving
behaviour, which consists of two action inputs – steering input and speed regulation in-
put. The time until an attentive driver becomes distracted is randomly chosen between
15-20 seconds, while the duration of distraction ranges from 5-15 seconds. Each time

31

https://github.com/ugo-nama-kun/gym_torcs

the driver becomes distracted or attentive, the duration is randomly selected. While
this seems unrealistic compared to a human driver, a more realistic driver model in
terms of attention span would also mean that our algorithm will have less training
data on the distracted driver state and will also be tested much less often. When
the driver becomes distracted, the last executed steering action is repeated, and the
speed input is steadily decreased until the driver regains attention, simulating realistic
driving behaviour.

If the task of finding the optimal solution was too easy, it would not be possible
to clearly see which algorithm works better. Therefore, to make it more difficult for
the algorithms some noise is added by multiplying the previous steering with a factor
randomly chosen from a range of 0.85 to 0.95 if the steering action was to the left. If
the previous steering action was to the right side of the road, it is multiplied by factor
randomly chosen from a range of 1.05 and 1.15.

4.3 Problem Formulation

In this section, the cooperative lane-keeping control is formulated as a POMDP. The
subsequent subsections will define the state space, state transition probabilities, action
space, rewards, and observation space.

4.3.1 State Space: S

The overall state space comprises all possible states in which the agent can exist within
its environment. Given that the vehicle and driver are distinct entities, the state space
can be partitioned into the possible states of the vehicle and the possible states of the
driver. Consequently, the POMDP’s state space consists of all potential combinations
of the driver’s and vehicle’s states. The state transition probabilities are not provided
but are implicitly defined by the car dynamics determined by TORCS and must be
learned by the agent.

As TORCS encompasses fundamental properties of vehicle systems, including
mass, inertia, suspension types, and tyre profiles, enumerating them all would be
excessively exhaustive. The car states that the agent can measure and modify its
driving behaviour according to include the car’s position on the track, velocity, yaw
angle, and acceleration. Although other attributes, such as wheel friction, drag, and
engine pressure, affect the vehicle, the agent cannot measure these. The state values
are continuous.

The lane position of the vehicle spans a continuous interval between -1.5 (left lane
border) and +1.5 (right lane border), with zero indicating that the car is perfectly
in the lane’s centre, as desired. The car’s yaw angle, defined over an interval of [-90,
+90] degrees with respect to the track’s direction, implies that at -90 degrees, the
car is heading directly towards the left lane border, and at +90 degrees, it is heading
straight for the right lane border. A value of zero indicates that the car is moving
in the exact same direction as the track, as desired. The vehicle’s speed, which falls
within a continuous interval of [-100, +100] km/h, signifies that a value of zero means
the vehicle is travelling at the desired 100 km/h.

The total state space is therefore a combination of the vehicle’s state, determined
by TORCS and the driver’s state, determined by the driver model.

32

4.3.2 Action Space: A

The action space encompasses the actions that the agent can execute to maximise
the vehicle’s lane centredness. The human driver and the agent share control of the
vehicle, which is why the combined action is influenced by both the agent and the
driver model. Since the driver should remain active during driving to ensure timely
reaction to dangerous situations if necessary, the lane-assistant system should exert
reduced control as long as the driver is not distracted. However, the system must also
intervene when the vehicle is too far from the lane’s centre to ensure safety. Therefore,
both steering inputs from the agent and driver model will be averaged. The turn input
of the driver tdriver ∈ [−45,+45] and the turn input of the agent tagent ∈ [−45,+45] are
added to the car tcar ∈ [−45,+45] and averaged according to the following equations:

tcar = (tdriver + tagent)/2

s.t.tcar[−45,+45]
(33)

A maximum steering angle of 45 degrees is set, where a steering action of -45
means steering fully to the left and a steering action of +45 means steering fully to
the right. In addition to the steering input, the agent and driver will also control the
vehicle’s speed. The desired speed is set at 100 km/h. Once more, the agent’s input
will depend on how far off the driver is from the desired speed. The speed input of
the driver sdriver ∈ [0, 100] and the speed input of the agent sagent ∈ [0100] are added
to the car scar ∈ [0, 100] and averaged according to the following equations:

scar = (sdriver + sagent)/2

s.t.scar[0, 100],
(34)

All the actions taken by the agent are shown in Table 1

Actions Description Unit Range Symbol
Steering The steering output by the agent Degrees -90, 90 a
Velocity The velocity output by the agent Km/h 0, 100 s

Table 1: Actions taken by the agent

4.3.3 Transition Function: T : S ×A −→ ∆(S)

The transition function states that for each action a and state s, T (s, a) is the proba-
bility distribution over states that the system may transition into when taking action
a in state s. The transition function is not explicitly given to the agent but are defined
by TORCS’ dynamics and the driver model. The agent will have in implicitly learn
the transition function in order to take the action with the highest return value.

4.3.4 Reward Function: R

The agent must learn optimal actions based on the reward function R. This reward
function is derived from the car’s distance to the centre of the lane, the vehicle’s speed,
and its yaw angle. The driver’s attentiveness is not considered in the reward func-
tion, as the agent must infer this from the driver’s behaviour alone. However, the
attentiveness of the driver influences driving performance, so the quality of the agent’s

33

Figure 9: A diagram showing the interactions between the driver, agent and
TORCS environment

estimate correlates with the rewards received. When the driver is attentive and drives
optimally, any action taken by the agent results in sub-optimal driving and a penalised
reward. Consequently, the agent learns when not to intervene with the driver, grant-
ing them more autonomy. However, if the driver is inattentive, driving performance
deteriorates, and the agent must act to receive the highest possible reward. To further
discourage the agent from taking unnecessary actions, a small penalty is applied for
each action taken. According to a meta-study by Zhu and Zhao (2021), these are
all common parameters for the reward function in autonomous driving systems. The
reward is calculated according to the following equation:

R = scar(cosΘ− |d| − sin |Θ|)− 0.1(sagent + tagent) (35)

Here, d represents the distance from the centre of the lane, Θ is the vehicle’s yaw
angle, and scar is the car’s speed. The agent is rewarded for the speed it travels
parallel to the lane and the agent is penalised if the vehicle is to the left or right of the
lane’s centre, the speed it travels perpendicular to the lane. To stimulate the agent
to only interact when it is necessary and if it does interact, to do so minimally, the
total reward of the agent is also decreased by a small amount relative to the size of the
actions taken by the agent. The maximum reward is achieved by being in the lane’s
centre, parallel to the sides, maintaining the desired speed, and minimising the inputs
from the agent.

4.3.5 Cost Function

In addition to the reward function, some safe reinforcement learning algorithms, such
as CPO and FOCOPS, utilise a cost function that restricts the set of allowable poli-
cies. For the distracted driver problem, two constraints will be added to the POMDP
problem. The cost function will limit policies that permit the vehicle to cross a specific
distance from the centre-line by setting a cost boundary. The constraints also appear
in the reward function as penalties; satisfying these constraints results in a higher re-
ward. The agent’s task is to maximise the reward function while minimising the cost

34

functions. Optimising the reward and cost functions will be part of the experiments.
The cost function for crossing the cost boundary distance ∆, is calculated according
to the following equations:

C(s) =

{
1, if ∆ ≥ δ

0, ∆ < δ
(36)

An important note for setting the parameter for cost boundary δ is that the dis-
tance from the centerline in TORCS is measured from the center of the car. At the
same time, the vehicle crashes is the edge of the vehicle hits the side of the road.
Therefore, in order to find the optimal distance for the cost boundary parameter δ,
several experiments have been conducted as can be seen in Section 5.

4.3.6 Observations: Ω

The observation space Ω encompasses all the observations made by the agent. The
agent receives sensory information about the car’s current lane centredness and yaw
angle. Additionally, the driver’s last actions are observed. The agent must estimate
the driver’s most likely next action by considering the history of past observations
and learn which action to take to maximise the reward. While more observations are
available using the TORCS environment, in order to make it difficult enough for the
algorithm, only a few have been chosen. All the observations made by the agent are
given in Table 2. In order to conform to a POMDP, the driver’s attentive state is
unknown to the agent.

Observation Description Unit Range Symbol
Lane Centeredness The distance that the vehicle is from the centerline Meters -1.5, 1.5 d
Yaw Angle The angle that the vehicle is compared to the centerline Degrees -90, 90 θ
Steering Angle The steering input from the driver Degrees -1, 1 a
Velocity The velocity input from the driver km/h 0, 100 s

Table 2: Observations for the agent

4.3.7 Observation Function: O : S ×A −→ Π(Ω)

The observation function gives a probability distribution over possible observations for
each resulting state and action. Each input given to the agent is therefore based on
the state of the driver model, the vehicle and the action taken by the agent. As the
true state is unknown to the agent, the next observation will also be unknown to the
agent due to the latent states. The observation function is unknown to the agent.

4.4 Block MDP Formulation

While the official tuples describing a BMDP uses different notations, the POMDP
and BMDP tuples are essentially the same. Obviously the state space S, action space
A and reward function R are the same for both formulations. While POMDP uses
observation space Ω and observation function O to describe the transition from the
true state to the observations of the agent, BMDP describes this using context X and
emission function q. Also similar to how transition function T determines how the
current state and action determine the next state in POMDPs, the latent transition
distribution p does this for BMDP. The major difference between the two formulations

35

is Assumption 1, which states there exists an implicit decoding function f : X −→ S.
As this decoding function is implicit no changes need to be applied to the experimental
setup or models to adapt the BMDP model.

4.5 Solution approach

To solve the distracted driver problem, it is divided into two sub-problems. The first
sub-problem concerns the driver’s unobservable state. A distracted driver will have
worse performance than an attentive one, but the agent cannot directly detect this.
The agent can only partially observe the real state and must infer the unobservable
from what it can detect. To tackle this issue, Recurrent Neural Networks (RNNs)
are employed, as they can identify dependencies of inputs over arbitrary time periods,
aiding in dealing with unobservable environments.

The second sub-problem relates to safety. As the agent explores possible actions,
it should avoid actions that could lead to disastrous states, such as the vehicle going
off-lane. To tackle this issue, safe reinforcement learning will be employed. Finally,
by combining these two approaches, the agent can effectively handle the distracted
driver problem. It can estimate the driver’s attentiveness based on their behaviour
and learn to intervene when necessary while prioritising safety. This ensures that the
vehicle maintains optimal driving performance and safety, even when the driver be-
comes periodically distracted. For the algorithmic choices Deep Reinforcement Learn-
ing methods First Order Constrained Optimization in Policy Space (FOCOPS) and
Twin Delayed Deep Deterministic Policy Gradient (TD3) have been chosen.

4.5.1 Processing Observations

The process of handling observations involves interactions between the TORCS envi-
ronment, the LSTM network, and the reinforcement learning agent. There are several
steps to this process, which are visually represented in Figure 10

• TORCS Environment: Within the TORCS environment, the agent operates
and receives observations. These observations encompass various aspects of
the current state, such as the car’s position, speed, and relevant environmental
information. These observations serve as essential input for the agent’s decision-
making.

• LSTM Network: The observations from the TORCS environment undergo pro-
cessing through an LSTM network, well-suited for handling sequential data. In
this context, it serves to process both known states of the environment and
the unknown attentive state of the driver. The LSTM’s key function is to cap-
ture temporal dependencies in the data, enabling the agent to retain and utilize
historical information to inform its present decisions.

• Reinforcement Learning Agent: The output of the LSTM network consists of
encoded observations, which are subsequently fed into the reinforcement learning
agent. The primary role of the RL agent is to select actions that maximize the
expected cumulative reward. To do so, it relies on the encoded observations,
which encapsulate information from the LSTM regarding the current state as
well as past states and contexts.

• Action Execution: Based on its policy, representing a strategic approach to
action selection, the agent makes a decision on the next action to take. This
chosen action is then executed within the TORCS environment.

36

• Observation Processing Loop: The described sequence forms a continuous loop.
The RL agent continually interacts with the environment, receiving new obser-
vations, selecting actions, and observing rewards. This iterative process enables
the agent to learn and adapt its policy over time, aiming for improved perfor-
mance.

• Replay Buffer: As the agent engages in interactions with the environment, it
accumulates data, including observations, actions, and corresponding rewards.
These data points are systematically stored within a replay buffer, which func-
tions as a memory reservoir for the agent. Subsequently, this replay buffer is
employed during the neural network training phase.

Figure 10: The process of handling observations between the TORCS environ-
ment, LSTM network and the reinforcement learning agent.

4.5.2 Flicker condition

As Meng et al. (2021) and Hausknecht and Stone (2015) have shown that a recurrent
Deep Reinforcement Learning method shows significant improved performance in a
POMDP compared to a MDP, the same method of introducing a flicker condition will
be implemented to show that the distracted driver environment is not a POMDP, but
and BMDP. As Figure 11 shows the performance declines rapidly for the non-recurrent
neural network while performance for the recurrent neural network declines linearly
with the probability of receiving inputs. A similar method is used to prove that the
distracted driver problem is not a POMDP.

4.5.3 Memory-based DRL

Recurrent Neural networks are capable of learning features and long term dependencies
from sequential and time-series data. RNNs are made of high dimensional hidden
states with non-linear dynamics with one or more feedback loops. The structure of
the hidden states work as a memory of the network and the state of the hidden layer at
a time is conditioned on its previous state. This structure enables the RNN to store,
remember and process complex past signals for long time periods. RNNs can map an
input sequence to the output sequence at the current timestep and predict the sequence
in the next timestep. However, the memory produced from the recurrent connections

37

Figure 11: Performance of DRQN compared to DQN on flicker condition.
Source: Hausknecht and Stone (2015)

can severely be limited by the algorithms employed. The network can fail to learn long-
term sequential decencies in the data due to exploding or vanishing gradients during
training. The Long-Short Term Memory (LSTM) RNNs were designed to tackle this
problem (Salehinejad, Sankar, Barfett, Colak, & Valaee, 2017) and an example of such
a LSTM can be seen in Figure 12. The hyperparameter settings for TD3 can be seen
in the Appendix in Table 5.

Figure 12: Example of a LSTM cell.
Source: Van Houdt et al. (2020)

38

LSTM changes the structure of hidden units to memory cells, in which their inputs
and outputs are controlled by gates. These gates control the flow of information to
hidden neurons and preserve extracted features from previous timesteps. A typical
LSTM cell is made of input gates, forget gates, output gates and a cell activation
component, which can be seen in Figure 12. These units receive the activation signals
from different sources and control the activation of the cell. The LSTM gates can
prevent the rest of the network from modifying the contents of the memory cells. This
allows LSTM networks to process data with complex and separated interdependencies
and excel in a range of sequence learning domains. The input gate of LSTM is defined
as

git = σ(WIgixt +WHgiht−1 +Wgcgig
c
t−1 + bgi) (37)

Where WIgi is the weight matrix from the input layer to the input gate, WHgi

is the weight matrix from hidden state to the input gate, Wgcgi is the weight matrix
from cell activation to the input gate and bgi is the bias of the input gate. The forget
gate is defined as:

gft = σ(WIgf xt +WHgfht−1 +Wgcgf g
c
t−1 + bgf) (38)

Where WIgf is the weight matrix from the input layer to the forget gate,WHgf is
the weight matrix from hidden state to the forget gate, Wgcgf is the weight matrix
from cell activation to the forget gate and bgf is the bias of the forget gate. The cell
gate is defined as:

gct = git tanh(WIgcxt +WHgcht−1 + bgc) + gft g
c
t−1 (39)

Where WIgc is the weight matrix from the input layer to the cell gate, WHgc is
the weight matrix from hidden state to the cell gate and bgc is the bias of the forget
gate. The output gate is defined as:

got = σ(WIgoxt +WHgoht−1 +Wgcgog
c
t−1 + bgo) (40)

Where WIgo is the weight matrix from the input layer to the output gate, WHgo

is the weight matrix from hidden state to the output gate, Wgcgo is the weight matrix
from cell activation to the output gate and bgo is the bias of the forget gate. Finally
the hidden state is computed as:

ht = got tanh g
c
t (41)

LSTMs have been implemented in many solutions for various POMDPs such as
flickering Atari games (Hausknecht & Stone, 2015), online driver distraction detection,
and various other POMDP environments (Meng et al., 2021; Ni et al., 2022; Wierstra,
Foerster, Peters, & Schmidhuber, 2007). In the distracted driver problem the agent
has to learn when the driver is distracted or not based on past experiences which
are arbitrarily long in the past. Therefore it stand to reason that the addition of a
memory unit in the network should be helpful in a BMDP as well. In order to discover
the advantages of using memory components such as LSTMs in the distracted driver
problem, memory-based Deep Reinforcement Learning methods will be compared to
their base methods. Figure 13 visualizes how the LSTM layer is added to TD3 and
FOCOPS.

39

Figure 13: Network structure of the Actor and Critic Networks. Arrows show
how the layers are connected with a loop on the LSTM layers to indicate recur-
rence.

4.6 Experimental Setup

To address the research questions, a comparative analysis will be conducted among
the algorithms to evaluate their lane-keeping performance in the highway environment.
As the driver model becomes periodically distracted, the lane-keeping ability declines,
requiring the agent to learn appropriate actions to keep the vehicle centered. The
primary focus will be on comparing the algorithms based on their learning capabilities
to adapt to the changing conditions and maintain proper vehicle control during dis-
tracted periods. By assessing their lane-keeping performance, we can gain insights into
the effectiveness of each algorithm and their potential for assisting distracted drivers
in real-world scenarios.

4.6.1 Performance Metrics

Two metrics will be used to determine the performance of the algorithms: the average
reward over all episodes and the average reward in a 100 episode window. The average
reward over all episodes is calculated by dividing the cumulative reward by the number
of episodes in order to compare the learning rate. If two algorithms have the same end
performance but one has a much slower learning rate, this will show in the average
reward over all episodes as this will be lower in the algorithm with the lower learning

40

rate. The average reward of a 100 episode window is calculated by taking the average
reward of the current episode and the next 100 episodes. This metric is used to compare
the final performance of the algorithms. As a another metric of driving performance
and costs the average distance from the centerline over all episodes will be used.

4.6.2 FOCOPS-LSTM as Solution

As both a memory-component and safety are important for the solution to the dis-
tracted driver problem, we propose a combination of the two, called Long Short-Term
Memory First Order Constrained Optimization in Policy Space (FOCOPS-LSTM) to
train our lane-keeping assistance system. While CPO has been used before as a solu-
tion for autonomous driving (Kong et al., 2021a, 2021b), FOCOPS has not yet been
used for the distracted driver problem.

By extending FOCOPS with a LSTM layer the unobservable state of the driver
can be accounted for. Our system will only use the car’s metrics so it does not require
labelled data and minimizes the intrusiveness of the system. The system will be able to
learn from previous experiences how the car’s metrics change over time and therefore
will be able to determine if the driver is attentive or not. The driving dynamics are
simulated using a realistic driving simulator. As far as we know, this is the first work to
use a Recurrent Safe Reinforcement Learning algorithm to solve the distracted driver
problem and account for uncertainty about a driver’s distraction in a shared-control,
lane-keeping scenario while relying only on commonly available driving performance
metrics as observations.

4.6.3 TD3 vs TD3-LSTM

To address the first sub-question regarding the advantages of using a memory-based
Deep Reinforcement Learning method in the distracted driver problem, we will ex-
tend the TD3 algorithm by incorporating a Long Short-Term Memory (LSTM) layer,
resulting in TD3-LSTM. The objective is to assess the impact of adding a memory
component to the algorithm in the context of the distracted driver problem, which
involves partial observability due to the driver’s distracted state. We hypothesize
that the inclusion of the LSTM layer will enhance the algorithm’s performance and
contribute to better handling of the partial observability challenge.

4.6.4 FOCOPS vs TD3

In order to address the second sub-question concerning the efficacy of safe reinforce-
ment learning methods in preventing unsafe actions, we will compare the performance
of FOCOPS with TD3. The hypothesis is that FOCOPS, incorporating a cost-critic,
will result in fewer violations compared to TD3, which primarily focuses on maximizing
the reward without considering the associated costs. By evaluating the violation rates
and overall safety of both algorithms, we aim to gain insights into the effectiveness of
FOCOPS in promoting safer actions during the distracted driver problem.

4.6.5 FOCOPS-LSTM vs TD3-LSTM

To evaluate the effectiveness of our proposed solution FOCOPS-LSTM for the dis-
tracted driver problem, we will conduct a comparative analysis against TD3. To
ensure a fair comparison, we will also extend TD3 with a LSTM layer, leading to

41

TD3-LSTM. Building upon the insights from the previous research questions, our hy-
pothesis suggests that the inclusion of a recurrent layer in FOCOPS will leverage the
safety aspects of FOCOPS and its capacity to handle the partial observability inherent
in the distracted driver problem. Consequently, we anticipate that FOCOPS-LSTM
will outperform TD3-LSTM in terms of overall performance and safety. This inves-
tigation will provide valuable insights into the potential advantages of our proposed
FOCOPS-LSTM solution for addressing the challenges of cooperative lane-keeping in
the presence of a distracted driver.

Answering these three sub-questions will result in the answer to the main question
whether recurrent safe reinforcement learning can be considered a viable solution to the
distracted driver problem. The adapted code can be viewed at https://github.com/
PieterES/Master-Thesis

42

https://github.com/PieterES/Master-Thesis
https://github.com/PieterES/Master-Thesis

5 Results

To tackle the research inquiries at hand, we initiate a comprehensive comparative
analysis involving TD3 and FOCOPS, serving as our unconstrained and constrained
Reinforcement Learning methodologies, respectively. Furthermore, we delve into their
LSTM-augmented variants as integral components of our evaluative framework. Pre-
ceding the actual experiments designed to address the primary research questions, we
executed a series of preliminary investigations aimed at optimizing the parameters
governing TD3 and FOCOPS.

5.1 Preliminary Results

A comparison was conducted to assess whether the driver’s hidden state truly influ-
ences the algorithm, potentially aligning with a genuine POMDP. In this evaluation,
inputs were limited to include solely the car’s position, angle, and previous driver ac-
tions. In a standard POMDP scenario, the expectation was for the LSTM component
to provide advantages in handling partial observability, potentially resulting in higher
average rewards. Figure 14 presents the results, showcasing both the average reward
across all episodes and the average reward in a 100-episode window. This setup allowed
for a fair comparison of learning rates and the final algorithm performance.

5.1.1 Distracted driver as MDP

Figure 14 presents a comparison of average rewards between TD3, utilizing solely track
position, angle, and previous driver actions as inputs, and TD3 with the additional
inclusion of the driver’s distracted state as inputs. Surprisingly, the performance
disparity between these two setups is minimal. This observation challenges our initial
hypothesis, which anticipated a substantial performance improvement if the distracted
driver problem were indeed a POMDP owing to the driver’s undisclosed distracted
state.

(a) (b)

Figure 14: (a) Average reward of TD3, TD3-LSTM and TD3 with the distracted
state over all episodes (b) Average reward of TD3, TD3-LSTM and TD3 with
the distracted state over 100 episode window

43

5.1.2 Flicker condition

The results reveal that TD3-LSTM does not exhibit a significant increase in average
rewards across all episodes or within a 100-episode window, contrary to what one might
expect in a POMDP environment. To delve deeper into this matter, we conducted
a flicker condition experiment, akin to those conducted by Meng et al. (2021) and
Hausknecht and Stone (2015). In this experiment, we compared the performance of
TD3-LSTM and TD3 in a true POMDP environment created by introducing a flicker
condition.

In this flicker condition, the algorithm is subjected to receiving only 0’s with a
certain probability, as opposed to the regular input. This condition simulates the
presence of faulty sensors. In scenarios where the algorithm receives only 0’s, it has no
information about the vehicle’s position or the driver’s inputs. Consequently, choosing
the correct actions becomes an arduous task unless there is a memory component such
as an LSTM layer.

Hence, within the experiments involving the flicker conditions, there exists a prob-
ability that the algorithm will receive only 0’s, effectively creating a genuine POMDP
environment where the position and driver actions remain entirely unknown. The
outcomes of these experiments are visually depicted in Figure 15.

Figure 15: Relative Reward of TD3 and TD3-LSTM compared to original score

In this analysis, it becomes evident that as the probability of receiving accurate
inputs diminishes, TD3-LSTM consistently outperforms TD3 relative to their respec-
tive baseline scores. This observation highlights that our implementation of TD3-
LSTM excels in an environment that can be unambiguously categorized as a POMDP.
In contrast, TD3-LSTM’s performance remains similar to TD3 in the original dis-
tracted driver problem setting. This observation challenges the initial premise that
the distracted driver problem inherently aligns with the characteristics of a POMDP,
primarily rooted in the uncertainty surrounding the driver’s distracted state.

Given that the act of revealing the driver’s distracted state did not yield the
substantial performance improvement anticipated, it is evident that our assumption
characterizing the problem as a POMDP is not well-founded. Therefore, the re-
formalization of the distracted driver problem from a POMDP problem to a BMDP
is imperative.

44

5.1.3 Additional BMDP proof

The fundamental distinction between a Block MDP (BMDP) and a Partially Observ-
able MDP (POMDP) pivots on the notion that the inputs can be readily organized
into discrete blocks. To substantiate this critical distinction, a comprehensive demon-
stration of the feasibility of transforming observed contexts into distinct blocks is
imperative. In essence, this entails establishing the existence of a decoding function
capable of mapping observed contexts to their respective underlying true states. To
this end, a neural network was trained, employing the identical architectural frame-
work as deployed in our experimental setup. Remarkably, this neural network attained
a commendable accuracy rate of 83.8% in predicting the attentive state of the driver
based on historical data.

Consequently, a compelling inference can be drawn: there indeed exists a decoding
mechanism inherently capable of mapping contextual inputs to their originating states.
This inference, in turn, implies that the agent, when navigating the original distracted
driver problem, implicitly performs this decoding operation while seeking to optimize
its policy. To facilitate a visual comprehension of the data segregation achieved, the
Appendix includes Figure 28, illustrating a 2D data plot, along with Figures 29, 30,
31 and 32, presenting 3D data plots, as elaborated in Section 8.1.

5.2 Parameter Optimization

Before conducting the experiments, several parameters were optimized. Some param-
eters, like neural network size and the reward function, were based on similar papers
(Meng et al., 2021). However, other parameters, such as cost, cost boundary, and
experimental length, are more specific to this research and were fine-tuned before
proceeding with the experiments.

5.2.1 Timesteps

In the context of resource constraints and time limitations, a critical parameter in the
experimentation process is the total runtime allocated for each trial. To determine
this parameter, FOCOPS was employed due to its relatively lower sample efficiency
compared to TD3, making it an appropriate benchmark for defining the minimum
requisite timesteps. The findings presented in Figure 16 illustrate the average reward
computed over a 100-episode window, revealing that the algorithm achieves conver-
gence after approximately 100,000 timesteps. Subsequently, although some degree of
variance persists in the average reward, further improvement is not observed.

Consequently, the decision was made to establish a maximum timesteps threshold
of 150,000. This choice provides the algorithm with an extended duration to converge,
if such a prolonged period proves necessary.

5.2.2 Cost and Rewards

To ascertain the most suitable balance between reward and costs in the FOCOPS
algorithm, the original reward function is subjected to division by factors of 1, 10,
100, and 1000. Similarly, the agent’s costs are manipulated, assuming values of 1, 10,
100, and 1000 for transgressing the cost threshold. The outcomes of these experiments
are presented in Table 3. It is noteworthy that the configurations where the reward is
divided by 1000 while maintaining a cost value of 1 yield the highest average reward

45

Figure 16: Average reward of FOCOPS over a 100 episode window

over the last 100 episodes. Consequently, these parameter settings have been selected
as the optimal configuration.

Cost/Reward /1 /10 /100 /1000 Average
1 16779 16267 15544 15284 15968,5
10 14838 16104 13271 16996 15302,25
100 16221 13689 15722 15873 15376,25
1000 14520 15682 14621 16125 15237
Average 15589,5 15435,5 14789,5 16069,5

Table 3: Average reward of the last 100 episodes for different reward and cost
ratios.

5.2.3 Cost Boundary

The costs assigned to the FOCOPS agent are contingent on the vehicle’s deviation
from the centerline, prompting an exploration of different cost boundaries set at 0.25m,
0.5m, 0.75m, and 1m. The outcomes of these variations are detailed in Table 4. More-
over, the distinct driving behaviours of the FOCOPS agent are depicted in Figure 17
and Figure 18, while Figure 19 showcases the driving actions of the TD3 agent, includ-
ing the steering maneuvers executed by both the driver and agent for a specific episode.
Notably, a cost boundary of 0.5m exhibits the most promising results, aligning with
the rewarding behaviour observed with a 0.25m cost boundary. Details of the driving
actions of the FOCOPS agent, including the steering behaviours of both the driver
and the agent are viewed in Figure 20. Consequently, the 0.5m cost boundary has
been designated as the optimal configuration. Further insights into these parameters,

46

alongside other hyperparameters, are enumerated in Table 5.

Distance
0.25 0.5 0.75 1.00

Reward 16570,12317 17098,19059 15032,30416 13691,12792
Cost 16782,17822 5831,683168 4940,594059 3356,435644

Table 4: Average reward and costs of the last 100 episodes for different cost
distances.

(a) (b)

Figure 17: (a) Driving behaviour of FOCOPS agent with cost boundary of
0.25m (b) Driving behaviour of FOCOPS agent with cost boundary of 0.50m

47

(a) (b)

Figure 18: (a) Driving behaviour of FOCOPS agent with cost boundary of
0.75m (b) Driving behaviour of FOCOPS agent with cost boundary of 1.00m

(a) (b) (c)

Figure 19: (a) Combined driving behaviour of TD3 agent (b) Steering actions
of the driver (c) Steering actions of the agent

48

(a) (b) (c)

Figure 20: (a) Combined driving behaviour of FOCOPS agent and driver (b)
Steering actions of the driver (c) Steering actions of the agent

Hyperparameter TD3 FOCOPS
No. of hidden layers 4 4
No. of hidden nodes 128 128
LSTM Layer 128 (2nd Layer) 128 (2nd Layer)
Activation tanh tanh
Maximum timesteps 150.000 150.000
Std of Gaussian exploration noise 0.25 -0.5
Batch size 100 2048
Mini-batch size NA 64
Memory size 1e6 NA
Number of Epochs NA 10
Learning Rate (λ) 3e-4 3e-4
Nu (Cost coefficient) (ν) NA 1
Nu-learning rate (λν) NA 0.01
Max Nu (νmax) NA 2.0
Rho (ρ) 0.005 NA
Gamma (γ) NA 0.99
Inverse lambda NA 1.5
KL bound (DKL) NA 0.02
Noise added to target policy during critic update (ϵ) 0.25 NA
Range to clip target policy noise (c) 0.5 NA

Table 5: Hyperparameters for both algortihms

5.3 Analysis of Parameter Optimization

The outcomes of the initial optimization experiment, as documented in Table 3, un-
derscore that the maximum reward is achieved when the reward remains unaltered,
coupled with a cost factor of 1. Nevertheless, it is crucial to acknowledge that the
learning process is inherently influenced by stochastic elements. Consequently, the

49

parameter settings for reward and costs have been determined based on the high-
est average rewards within their respective domains. Specifically, the configuration
yielding the highest average reward involves setting the cost to 1 and dividing the
reward by 1000. These designated settings are uniformly employed for FOCOPS in
all subsequent comparative analyses.

Table 4 provides a comprehensive overview of the distances in meters from the
centerline at which point costs are imposed. Naturally, as the constraint distances
become more stringent, the associated costs escalate, in line with the expectation
that the vehicle will transgress these boundaries more frequently. Nevertheless, it
is noteworthy that the configuration yielding the highest average reward over the
last 100 episodes corresponds to a constraint distance of 0.5 meters. Consequently,
this particular parameter setting is consistently employed in all subsequent analyses
involving FOCOPS and FOCOPS-LSTM.

5.3.1 Driving behaviour

Furthermore, a detailed analysis of cooperative driving performance can be gleaned
from Figure 17 and 18. Notably, these figures offer a comparative view of the agent’s
interaction with the distracted driver. In all comparisons, a randomly selected com-
pleted episode from the last 100 episodes is used for assessment. While marginal
disparities in driving performance are evident in Figure 17, a more pronounced dis-
tinction becomes apparent when contrasting the 0.25m and 0.5m constraint settings
against the 0.75m and 1.00m settings, particularly in terms of proximity to the cen-
terline. Consequently, it is evident that the chosen constraint setting significantly
impacts driving performance.

Intriguingly, Figure 19 underscores that the driving behaviour of TD3 closely re-
sembles the suboptimal performance observed in the worst-performing FOCOPS con-
figuration. However, as shown in the results of Research Question 3, TD3 consistently
outperforms FOCOPS in terms of average reward. This dichotomy implies that TD3
places a higher emphasis on optimizing reward attainment, often at the expense of
safety, whereas FOCOPS, with its constraints, prioritizes safer driving practices.

5.4 Research Question 1

The initial research question, which pertains to the advantages associated with the
utilization of a memory-based Deep Reinforcement Learning approach within the dis-
tracted driver problem, has been systematically examined and substantiated by our
preliminary findings. These preliminary results indicate that the incorporation of
an LSTM layer did not yield a substantial improvement in TD3’s performance con-
cerning the distracted driver problem. This outcome is primarily attributable to the
erroneous presumption that our problem was characterized as a POMDP when, in re-
ality, it aligns more closely with a Block MDP. Within this Block MDP framework, the
observations provided to the agent are sufficiently informative to approximate an op-
timal policy. Consequently, the original findings derived from the preliminary results
remain both robust and substantiated. Furthermore, these findings are reinforced by
the supplementary evidence presented in Figure 21. This additional data underscores
the notion that the LSTM variant either performs equivalently or less effectively than
its non-LSTM counterpart in the context of a Block MDP environment

50

(a)

(b)

Figure 21: (a) Average reward of TD3 and TD3-LSTM over all episodes (b)
Reward of FOCOPS and FOCOPS-LSTM over all episodes

5.4.1 Analysis of Research Question 1

The outcomes of Research Question 1 have unveiled a discernible decrease in perfor-
mance associated with TD3-LSTM and FOCOPS-LSTM when contrasted with TD3
and FOCOPS lacking a LSTM layer. This decline in performance can be ascribed to
several underlying factors.

First and foremost, it is crucial to acknowledge that the LSTM layer significantly

51

amplifies the computational complexity in comparison to a conventional dense layer.
Consequently, the training process with a LSTM layer necessitates a substantially
prolonged duration to grasp and enhance performance when measured against the
swifter progress achievable with a simpler dense layer. While a LSTM layer holds
merit in a POMDP environment where the maintenance of a belief regarding the true
state remains pivotal, this elongated training period invariably leads to a reduction in
the recorded average reward per episode.

The secondary reason for the lesser performance witnessed in the LSTM-enabled
counterparts pertains to the inherent nature of the MDP or Block MDP environment.
In such environments, the quality of observations provide the algorithm with an ample
information, sufficient for approximating an optimal solution. Consequently, the in-
clusion of a LSTM layer yields no advantageous leverage in steering towards a solution
and, paradoxically, might encumber the training process. Furthermore, saturating the
algorithm with excess or irrelevant data inputs has the potential to obstruct its learn-
ing trajectory. Hence, the selection of inputs bearing the most pertinent information
becomes paramount. In our conducted experiments, the designated inputs, encom-
passing car position, car angle, and the driver’s antecedent steering and acceleration
inputs, ensure the requisite information essential for fostering effective learning.

5.5 Research Question 2

The second research question delves into the capacity of safe reinforcement learning
methods to prevent unsafe actions, with a particular focus on comparing the per-
formance of FOCOPS and TD3. The outcomes of this investigation are depicted in
Figure 22 and Figure 23. For validation, experiments pertaining to research questions
2 and 3 were independently conducted five times. The shaded regions in the figures
portray the upper and lower bounds of results from these five experiments, while the
solid line traces the average performance across these repetitions for each algorithm.

Figure 22 illustrates the average rewards garnered by TD3 and FOCOPS over
all episodes, as well as the rolling average reward across 100-episode windows. Ev-
idently, TD3 achieves higher rewards per episode. Nevertheless, when assessing the
average costs per episode, TD3’s performance mirrors that of FOCOPS, as depicted
in Figure 23. This pattern persists when considering their respective LSTM-based
variants, showcased in Figure 24. Despite TD3 showcasing analogous average costs in
the long run, it does not exhibit an inherent inclination to prioritize cost minimization
while simultaneously maximizing rewards. Consequently, TD3 might opt for actions
that yield substantial rewards, even if they incur costs. In contrast, while FOCOPS
records a lower average reward, it maintains comparable costs. Therefore, FOCOPS
endeavors to limit costs, resulting in a comparable maximum cost, despite its lower
maximum reward. The disparity in reward outcomes between the two algorithms can
be predominantly attributed to differences in sample efficiency.

5.5.1 Analysis of Research Question 2

The findings from Research Question 2 reveal that FOCOPS achieves a lower aver-
age reward when compared to TD3. However, in terms of costs, TD3 and FOCOPS
demonstrate a similar outcome, largely owing to the incorporation of a cost critic in
FOCOPS. Given that TD3 primarily prioritizes maximizing rewards, it may indeed
attain higher reward levels, but this often comes at the expense of incurring greater
costs. In contrast, FOCOPS must not only optimize rewards but also adhere to the

52

(a)

(b)

Figure 22: (a) Average reward of TD3 and FOCOPS over all episodes (b)
Reward of TD3 and FOCOPS over 100 episode window

constraints defined by the cost critic, which necessitate the vehicle’s position to be
within 0.5 meters from the centerline. By staying within these specified bounds, the
vehicle operates within the safer regions of the road, thereby satisfying the cost critic’s
requirements. Consequently, although FOCOPS registers a lower average reward com-
pared to TD3, the costs incurred by both algorithms remain at similar levels. This
implies that while the overall algorithm performance in terms of reward is diminished,
the incorporation of a cost critic contributes to a reduction in undesirable driving

53

Figure 23: Average distance from the centerline for TD3 and FOCOPS

Figure 24: Average distance from the centerline for TD3-LSTM and FOCOPS-
LSTM

behaviours, albeit at the expense of total reward.

5.5.2 Learning Methodologies

The observed difference in reward between the two algorithms can be ascribed to
their distinctive learning methodologies, with a focus on sample efficiency being par-
ticularly pivotal in the context of BMDP environments. This distinction underscores
the relevance of the offline and online learning paradigms. TD3 represents an offline

54

reinforcement learning approach that leverages a replay buffer to store state-action-
reward tuples, possibly inclusive of hidden states. During training, random samples
are drawn from this buffer to facilitate the algorithm’s learning process. Although
the replay buffer is of finite size and older tuples are eventually replaced, steps from
prior episodes can still contribute to learning. Conversely, FOCOPS adopts an online
reinforcement learning framework, where training solely relies on the tuples generated
within the current episode. Consequently, FOCOPS exhibits lower sample efficiency.
While online learning proves advantageous in scenarios characterized by evolving data
patterns, as older and therefore irrelevant tuples are discarded. However, our specific
environment does not exhibit new data pattern emergence during training. Conse-
quently, the advantages of online learning diminish, thereby resulting in a sample-
inefficient algorithm.

To further underscore this point, a different online algorithm, Proximal Policy
Optimization (PPO) (Schulman et al., 2017), is compared to another offline algorithm,
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), in Figure 25. A
similar graphical trend as observed in Figure 22 is evident, reinforcing the conclusion
that the difference in performance between TD3 and FOCOPS is primarily attributable
to sample efficiency, a crucial consideration in the context of BMDP environments.

5.6 Research Question 3

The outcomes pertaining to the third research question, which investigates the poten-
tial advantages of the proposed FOCOPS-LSTM solution relative to TD3-LSTM, are
presented in Figure 26.

Unfortunately, the empirical results do not corroborate our initial hypothesis, as
FOCOPS-LSTM does not demonstrate superior performance in comparison to TD3-
LSTM. While FOCOPS-LSTM does exhibit lower costs in terms of maintaining prox-
imity to the centerline when contrasted with TD3-LSTM, it concurrently attains a
significantly reduced average reward.

5.6.1 Analysis of Research Question 3

The findings from Research Question 3 have yielded disappointing results, as the
envisioned solution of FOCOPS-LSTM failed to align with our initial hypotheses.
Given that this proposed solution stemmed from the amalgamation of conclusions
drawn from the first two research questions, it is imperative to acknowledge that the
limitations encountered also stem from a confluence of these conclusions.

Primarily, the limitations are twofold. Firstly, owing to the inherently online na-
ture of FOCOPS as a reinforcement learning method, its LSTM-equipped counterpart,
FOCOPS-LSTM, grapples with analogous difficulties in navigating the Block MDP en-
vironment. Secondly, given that the environment conforms to a Block MDP paradigm
rather than a POMDP, the inclusion of an LSTM layer does not yield the expected
benefits, consequently resulting in a further decline in performance. These combined
limitations underscore the challenges encountered in devising an effective solution for
the distracted driver problem within this context.

5.6.2 Valuable Insights

Nevertheless, these results provide us with valuable insights. Most notably, they
highlight the fundamental distinction between solving POMDPs (Partially Observ-

55

(a)

(b)

Figure 25: (a) Average reward of DDPG and PPO over all episodes (b) Reward
of DDPG and PPO over 100 episode window

able Markov Decision Processes) and BMDPs (Block MDPs), despite the similarity
in their formalizations. Both can be represented as tuples involving states, actions,
rewards, hidden states, and state-transition functions, along with functions describing
how states and actions can result from possible observations. However, the methods
employed to tackle these problems differ significantly.

As demonstrated in the preceding experiments, in a POMDP environment, the

56

(a)

(b)

Figure 26: (a) Average reward of TD3-LSTM and FOCOPS-LSTM over all
episodes (b) Reward of TD3-LSTM and FOCOPS-LSTM over 100 episode win-
dow

inclusion of an LSTM layer can be advantageous in solving the problem by aiding
in handling the partial observability. Conversely, this approach does not yield the
same benefits when dealing with a BMDP problem. This delineation underscores
the importance of selecting the appropriate problem formalization and corresponding
solution methodology based on the underlying characteristics of the environment.

57

5.7 Additional Experiments

Additionally, a series of supplementary experiments were conducted throughout this
thesis, exploring various avenues that, while not directly related to the primary re-
search questions, offer intriguing insights. These experiments encompassed diverse
approaches, including data augmentation based on the vehicle crossing cost bound-
aries, adjustments to input length to simulate a pseudo-memory component, and the
incorporation of an unsupervised clustering algorithm into the inputs. The compre-
hensive results of these supplementary experiments, while not integral to the core
thesis, are available in the Section 8.2 of the Appendix for the sake of completeness.

58

6 Discussion and Future Work

This chapter is dedicated to the discussion of the results presented in the preceding
section. While the experiments conducted in this study have yielded valuable insights,
it’s essential to acknowledge certain limitations inherent in these investigations. Subse-
quent subsections will delve into these limitations in detail. Moreover, this chapter will
outline potential directions for future research, suggesting adaptations and approaches
that could be pursued to mitigate the identified limitations and further enhance the
understanding of the distracted driver problem in the context of reinforcement learning

6.1 Driver Model

It is important to acknowledge that the driver model used in this study, while serving
its purpose, is a simplified representation and does not aim to perfectly mimic a real
human driver. While the primary focus of this thesis was not centered on creating
a highly realistic driver model, it is a crucial element in comprehensively addressing
the distracted driver problem. One notable limitation is that in reality, human drivers
are not frequently distracted while driving. If the driver model was more realistic
and would only become distracted sparingly, then the agent may not have had ample
opportunities to train on the distracted state.

To address this limitation, a more realistic driver model could be developed. This
could involve human subjects participating in a highway simulation while engaging in
secondary tasks over an extended period. Analyzing their driving behaviour during
these simulations could lead to the creation of a more precise and realistic driver model.
However, it is worth noting that such an approach would require substantial resources,
as it would involve multiple subjects to obtain an average driver model. This presents
an intriguing avenue for future research inquiries.

6.1.1 Personalized Assistant

Additionally, it’s worth noting that the current agent model is not personalized to each
driver’s unique behaviour. An interesting adaptation for future research could involve
the development of personalized lane-keeping assistants for individual human drivers,
based on their driving behaviour data acquired from the simulation. Personalization
could be particularly valuable in the context of continuous cooperative lane-keeping
assistance.

For example, older drivers might prefer a more defensive driving style, while oth-
ers may lean towards a more aggressive approach (Sagberg, Selpi, Bianchi Piccinini,
& Engström, 2015). By customizing each assistant to align with the specific prefer-
ences and driving patterns of the individual human driver, a higher level of trust and
satisfaction with the assistant could potentially be achieved.

However, it is essential to acknowledge that these personalized approaches extend
beyond the scope of this thesis, primarily due to constraints in resources and complex-
ity. Nevertheless, they represent intriguing avenues for future research and practical
implementations in the field.

6.2 Other Algorithmic Approaches

While the proposed solution of FOCOPS-LSTM did not fully align with the initial
hypothesis, it did reveal valuable insights. Specifically, it became evident that the

59

sample efficiency of an offline reinforcement learning algorithm played a significant
role in performance, while the constraints imposed by FOCOPS effectively reduced
the maximum costs across all episodes. Consequently, a logical and promising direc-
tion for future research involves delving deeper into the domain of offline constrained
reinforcement learning algorithms. This approach holds the potential to enhance both
safety and performance in cooperative driving scenarios, marking a significant step
toward the goal of safer autonomous driving.

6.2.1 TD3-ASA

In this context, a recent study by Wang, Zhang, Hou, and Cheng (2023) introduced an
algorithm known as Twin Delayed Deep Deterministic Policy Gradient based on Ap-
proximate Safe Action (TD3-ASA). TD3-ASA was first developed in an autonomous
driving simulation during this thesis. Notably, TD3-ASA alters the policy’s action
output during the exploration process to approximate a safe action. This safe action
is then employed to train a safe policy for deployment. The results of this experi-
ment indicated that TD3-ASA exhibited lower episodic costs compared to TD3 and
other safe reinforcement learning methods. It’s important to highlight that TD3 still
achieved the highest average reward among the tested algorithms.

Considering the promising outcomes observed with TD3-ASA, it suggests that safe,
offline reinforcement learning algorithms have the potential to effectively leverage sam-
ple efficiency and constraints in autonomous driving scenarios. This finding raises the
possibility that such offline constrained reinforcement learning algorithms could be
valuable when applied to the distracted driver problem. In future research endeavors,
it would be intriguing to conduct a comparative analysis pitting these offline con-
strained reinforcement learning algorithms against other safe or unsafe reinforcement
learning approaches within the distracted driver problem domain. Such a compar-
ison could provide valuable insights into the relative advantages and limitations of
different algorithms, contributing to the development of safe and efficient lane-keeping
assistants for distracted drivers on highway

6.2.2 BMDP Solvers

The study outcomes indicate that the distracted driver problem in this environment
exhibits characteristics more in line with a Block MDP rather than a POMDP. This
discovery presents several promising directions for future research, particularly in the
exploration of BMDP solvers that could enhance the effectiveness and efficiency of
lane-keeping assistants for distracted drivers on highways.

In this context, several noteworthy BMDP solvers warrant further investigation.
These algorithms include:

• Block-structured Representation learning with Interleaved Explore Exploit (BRIEE)
(X. Zhang et al., 2022): BRIEE is designed to efficiently handle complex envi-
ronments by leveraging block-structured representations and interleaving explo-
ration and exploitation.

• Upper Confidence Bound driven REPresentation (REP-UCB) (Uehara, Zhang,
& Sun, 2021): REP-UCB focuses on scaling function approximation to more
intricate environments and strives to achieve a balance between efficient repre-
sentation learning, exploration, and exploitation.

60

• Model-Free Feature Learning and Exploration (MOFFLE) (Modi, Chen, Krish-
namurthy, Jiang, & Agarwal, 2021): MOFFLE specializes in sample-efficient
learning by combining model-free feature learning with exploration strategies.

Comparing the performance of these BMDP solvers with that of constrained re-
inforcement learning methods, such as TD3-ASA, presents an intriguing and valuable
research avenue. Such a comparative analysis would offer insights into the strengths
and limitations of various algorithms within the context of the distracted driver prob-
lem. Furthermore, it could assist in identifying the most effective approach to de-
veloping adaptive and safe lane-keeping assistants. This research could also provide
critical insights into optimizing the trade-off between exploration and exploitation
while efficiently managing the complexities of real-world driving scenarios.

6.3 Hardware and Software limitations

During the experiments, unexpected errors occurred. To illustrate this, an attentive
driver operated the vehicle independently, without any algorithmic assistance or dis-
tractions. The driver remained focused throughout the experiment. The expected
outcome would have been flawless driving, which was generally observed in most
episodes. However, certain episodes exhibited minor discrepancies between TORCS
and the script controlling the driver model. As depicted in Figure 27, three episodes
are presented. Two of these episodes are identical, while the third episode depicts
the vehicle crashing. The precise cause of these anomalies, whether stemming from
software or hardware issues, remains unclear. Nonetheless, such errors underscore the
importance of conducting multiple runs of experiments to ensure robust and reliable
conclusions.

Figure 27: Driving behaviour of TD3

Another constraint in the experimental setup was the availability of resources.
Given the inherent randomness in the setup, including factors like neural network ini-
tialization and the timing and duration of driver distractions, conducting a substantial

61

number of experiments was essential for obtaining robust results. However, due to the
limitation of having only a single laptop for experimentation, and considering that each
complete experiment spanned approximately 9 hours, the capacity to run a large num-
ber of experiments was severely restricted. Consequently, not all experiments could
be repeated as extensively as desired, thereby constraining the depth and breadth of
conclusions that could be drawn from the experiments.

6.4 Different Driving Environments

This thesis predominantly concentrated on the highway environment; however, there
exists an intriguing avenue for further exploration, involving the training and testing
of the agent in diverse environments. The gym-TORCS wrapper offers the flexibility
to select from a range of tracks for the agent’s training. Extending the agent’s training
to encompass various tracks would impart versatility and adaptability to the agent.
Although the primary objective centered on lane-keeping on highways, diversifying
the training environments would provide a more comprehensive assessment of the
solution’s potential. Ideally, the agent should demonstrate competence in lane-keeping
across diverse scenarios, not solely limited to highways. Otherwise, deploying multiple
agents to address each distinct environment would prove impractical. Thorough testing
across all types of roadways, including urban, residential, and rural roads, is imperative
for the effective deployment of the agent.

6.5 Different Software Environments

Moreover, exploring diverse training environments in the realm of software can be
advantageous. While this thesis leveraged TORCS, a widely-adopted driving simulator
for AI research, alternative environments present distinct challenges and prospects.
Some recommended environments for reinforcement learning encompass Speed Dreams
(http://www.speed-dreams.org/), MetaDriver (Q. Li et al., 2022), or the creation of
custom environments using Bullet-Safety-Gym (Gronauer, 2022). Contrasting results
across various road types and software engines would furnish valuable insights into
algorithm robustness and generalization. Additionally, varying training environments
in terms of software would serve as a safeguard against software bugs, as previously
discussed.

In summary, expanding the agent’s training to encompass diverse environments
and software engines would bolster its adaptability and relevance in real-world driving
contexts, rendering it a more comprehensive and dependable lane-keeping assistant.

62

http://www.speed-dreams.org/

7 Conclusion

This thesis set out to train an agent for cooperative car control in a highway simulation
with a distracted driver, utilizing the TORCS driving simulator. The agent’s task
was to deduce the driver’s distracted state from driving performance data, including
position information and driver inputs. Initially, the problem was framed as a POMDP
to address the uncertainty surrounding the driver’s distraction state. However, it was
subsequently revealed that this assumption was incorrect. Both the TD3 and FOCOPS
algorithms were employed, along with an LSTM layer, to handle the latent driver state.
Surprisingly, the addition of the LSTM layer did not yield the anticipated performance
improvement in what was thought to be a POMDP environment. Consequently, the
problem was redefined as a Block MDP, indicating that the detailed observations
provided to the algorithm revealed enough information about the driver’s distracted
state to approximate an effective policy.

To the best of our knowledge, this work represents the first attempt to apply offline
TD3-LSTM and online FOCOPS-LSTM to the distracted driver problem within a
cooperative control framework.

While fully autonomous driving is a long-term goal aimed at enhancing driving
safety, the progression toward its achievement is pivotal. Cooperative driving repre-
sents a logical intermediate step in this trajectory. Although our proposed solution
did not produce the anticipated results, significant insights can still be derived from
the findings. The key conclusions are as follows:

• The distracted driver problem was best formalized as a Block MDP, rather than
a POMDP.

• The agent and the distracted driver cooperatively controlled a vehicle on a
highway in the TORCS driving simulator. The agent acted as a lane-keeping
assistant, inferring the driver’s distracted state from driving performance.

• TD3 outperformed FOCOPS due to its sample efficiency, while FOCOPS achieved
lower costs thanks to its cost critic.

• The inclusion of LSTM extensions to these algorithms did not result in per-
formance improvements in the Block MDP environment. However, they did
enhance performance under flicker conditions.

• Future research directions involve exploring algorithms like TD3-ASA and var-
ious BMDP solvers to address the distracted driver problem.

• Despite not achieving the expected lane-keeping performance, our approach pro-
vided valuable insights into problem formalization.

In conclusion, this thesis tackled the complex task of training a lane-keeping as-
sistant for a distracted driver on a highway using reinforcement learning techniques.
Through comprehensive experimentation and analysis, valuable insights were gained
into problem formalization and the influence of various algorithms in this domain

In the journey towards safer autonomous driving, each step taken in the develop-
ment of cooperative driving systems is of paramount importance. While our proposed
solution did not achieve the intended level of lane-keeping performance, this study
has furnished critical insights into problem formalization and potential pathways for
future research.

In essence, this work contributes to the expanding knowledge base within the realm
of safe reinforcement learning for cooperative driving scenarios. The outcomes advo-
cate for further exploration of alternative algorithms, such as TD3-ASA and various

63

BMDP solvers. Additionally, they underscore the significance of precisely defining
problem environments to craft more effective and secure lane-keeping systems. As the
quest for autonomous driving progresses, these findings assume greater relevance in
shaping forthcoming advancements in road safety and driver assistance systems.

64

References

Abbeel, P., Coates, A., & Ng, A. Y. (2010). Autonomous helicopter aerobatics
through apprenticeship learning. The International Journal of Robotics
Research, 29 (13), 1608–1639.

Achiam, J., Held, D., Tamar, A., & Abbeel, P. (2017). Constrained policy
optimization. In International conference on machine learning (pp. 22–
31).

Andriotis, C., & Papakonstantinou, K. (2021). Deep reinforcement learning
driven inspection and maintenance planning under incomplete information
and constraints. Reliability Engineering & System Safety , 212 , 107551.

Ayyasamy, S. (2022). A comprehensive review on advanced driver assistance
system. Journal of Soft Computing Paradigm, 4 (2), 69–81.

Azizzadenesheli, K., Lazaric, A., & Anandkumar, A. (2016). Reinforcement
learning in rich-observation mdps using spectral methods. arXiv preprint
arXiv:1611.03907 .

Beckers, N., Siebert, L. C., Bruijnes, M., Jonker, C., & Abbink, D. (2022).
Drivers of partially automated vehicles are blamed for crashes that they
cannot reasonably avoid. Scientific Reports, 12 (1), 16193.

Benloucif, M. A., Sentouh, C., Floris, J., Simon, P., & Popieul, J.-C. (2019).
Online adaptation of the level of haptic authority in a lane keeping sys-
tem considering the driver’s state. Transportation research part F: traffic
psychology and behaviour , 61 , 107–119.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., . . .
others (2019). Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 .

Bernhard, J., Gieselmann, R., Esterle, K., & Knol, A. (2018). Experience-based
heuristic search: Robust motion planning with deep q-learning. In 2018
21st international conference on intelligent transportation systems (itsc)
(pp. 3175–3182).

Bertsekas, D., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena
Scientific.

Blaschke, C., Breyer, F., Färber, B., Freyer, J., & Limbacher, R. (2009). Driver
distraction based lane-keeping assistance. Transportation research part F:
traffic psychology and behaviour , 12 (4), 288–299.

Capallera, M., Angelini, L., Meteier, Q., Abou Khaled, O., & Mugellini, E.
(2022). Human-vehicle interaction to support driver’s situation aware-
ness in automated vehicles: A systematic review. IEEE Transactions on
Intelligent Vehicles.

Carr, S., Jansen, N., Junges, S., & Topcu, U. (2023). Safe reinforcement learning
via shielding under partial observability..

Chai, C., Lu, J., Jiang, X., Shi, X., & Zeng, Z. (2021). An automated machine
learning (automl) method for driving distraction detection based on lane-
keeping performance. arXiv preprint arXiv:2103.08311 .

Chen, J., Yuan, B., & Tomizuka, M. (2019). Model-free deep reinforcement
learning for urban autonomous driving. In 2019 ieee intelligent trans-

65

portation systems conference (itsc) (pp. 2765–2771).
Danesh, M. H., Cai, P., & Hsu, D. (2023). Leader: Learning attention over

driving behaviors for planning under uncertainty. In Conference on robot
learning (pp. 199–211).

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., & Schapire,
R. E. (2018). On oracle-efficient pac rl with rich observations. Advances
in neural information processing systems, 31 .

Detjen, H., Faltaous, S., Pfleging, B., Geisler, S., & Schneegass, S. (2021). How
to increase automated vehicles’ acceptance through in-vehicle interaction
design: A review. International Journal of Human–Computer Interaction,
37 (4), 308–330.

Driessens, K., & Džeroski, S. (2004). Integrating guidance into relational rein-
forcement learning. Machine Learning , 57 , 271–304.

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik, M., & Langford,
J. (2019). Provably efficient rl with rich observations via latent state
decoding. In International conference on machine learning (pp. 1665–
1674).

Fulton, N., & Platzer, A. (2018). Safe reinforcement learning via formal meth-
ods: Toward safe control through proof and learning. In Proceedings of
the aaai conference on artificial intelligence (Vol. 32).

Garcia, J., & Fernández, F. (2012). Safe exploration of state and action spaces
in reinforcement learning. Journal of Artificial Intelligence Research, 45 ,
515–564.

Garcıa, J., & Fernández, F. (2015). A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research, 16 (1), 1437–1480.

Gaskett, C. (2003). Reinforcement learning under circumstances beyond its
control.

Geibel, P., & Wysotzki, F. (2005). Risk-sensitive reinforcement learning applied
to control under constraints. Journal of Artificial Intelligence Research,
24 , 81–108.

Georgeon, O. L., Casado, R. C., & Matignon, L. A. (2015). Modeling biological
agents beyond the reinforcement-learning paradigm. Procedia Computer
Science, 71 , 17–22.

Greenwood, P. M., Lenneman, J. K., & Baldwin, C. L. (2022). Advanced driver
assistance systems (adas): demographics, preferred sources of information,
and accuracy of adas knowledge. Transportation research part F: traffic
psychology and behaviour , 86 , 131–150.

Gronauer, S. (2022). Bullet-safety-gym: A framework for constrained reinforce-
ment learning.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J., . . . Knoll, A. (2022). A
review of safe reinforcement learning: Methods, theory and applications.
arXiv preprint arXiv:2205.10330 .

Hausknecht, M., & Stone, P. (2015). Deep recurrent q-learning for partially
observable mdps. In 2015 aaai fall symposium series.

Howard, R. A., & Matheson, J. E. (1972). Risk-sensitive markov decision
processes. Management science, 18 (7), 356–369.

66

Jansen, J. (2021). Shared control lane-keeping assistance with a potentially
distracted human in the loop-a pomdp approach (Unpublished master’s
thesis).

Jansen, N., Könighofer, B., Junges, S., & Bloem, R. (2018). Shielded decision-
making in mdps. arXiv preprint arXiv:1807.06096 .

Kadota, Y., Kurano, M., & Yasuda, M. (2006). Discounted markov decision
processes with utility constraints. Computers & Mathematics with Appli-
cations, 51 (2), 279–284.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artificial intelligence,
101 (1-2), 99–134.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement
learning: A survey. Journal of artificial intelligence research, 4 , 237–285.

Kashevnik, A., Shchedrin, R., Kaiser, C., & Stocker, A. (2021). Driver distrac-
tion detection methods: A literature review and framework. IEEE Access,
9 , 60063–60076.

Kashima, H. (2007). Risk-sensitive learning via minimization of empirical con-
ditional value-at-risk. IEICE TRANSACTIONS on Information and Sys-
tems, 90 (12), 2043–2052.

Kearns, M., & Singh, S. (2002). Near-optimal reinforcement learning in poly-
nomial time. Machine learning , 49 , 209–232.

Khan, M. Q., & Lee, S. (2019). A comprehensive survey of driving monitoring
and assistance systems. Sensors, 19 (11), 2574.

Kong, Q., Zhang, L., & Xu, X. (2021a). Constrained policy optimization
algorithm for autonomous driving via reinforcement learning. In 2021
6th international conference on image, vision and computing (icivc) (pp.
378–383).

Kong, Q., Zhang, L., & Xu, X. (2021b). Lane keeping algorithm for autonomous
driving via safe reinforcement learning. In Knowledge science, engineering
and management: 14th international conference, ksem 2021, tokyo, japan,
august 14–16, 2021, proceedings, part iii 14 (pp. 439–450).

Koppejan, R., & Whiteson, S. (2011). Neuroevolutionary reinforcement learning
for generalized control of simulated helicopters. Evolutionary intelligence,
4 , 219–241.

Krishnamurthy, A., Agarwal, A., & Langford, J. (2016). Pac reinforcement
learning with rich observations. Advances in Neural Information Process-
ing Systems, 29 .

Law, E. L. (2005). Risk-directed exploration in reinforcement learning.
Li, L., Zhao, W., & Wang, C. (2022). Pomdp motion planning algorithm

based on multi-modal driving intention. IEEE Transactions on Intelligent
Vehicles, 8 (2), 1777–1786.

Li, Q., Hou, L., Wang, Z., Wang, W., Zeng, C., Yuan, Q., & Cheng, B. (2021).
Drivers’ visual-distracted take-over performance model and its application
on adaptive adjustment of time budget. Accident Analysis & Prevention,
154 , 106099.

Li, Q., Peng, Z., Feng, L., Zhang, Q., Xue, Z., & Zhou, B. (2022). Metadrive:

67

Composing diverse driving scenarios for generalizable reinforcement learn-
ing. IEEE transactions on pattern analysis and machine intelligence,
45 (3), 3461–3475.

Liang, Y., Reyes, M. L., & Lee, J. D. (2007). Real-time detection of driver
cognitive distraction using support vector machines. IEEE transactions
on intelligent transportation systems, 8 (2), 340–350.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . .
Wierstra, D. (2015). Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971 .

Lin, K., Li, D., Li, Y., Chen, S., Liu, Q., Gao, J., . . . Gong, L. (2023). Tag:
Teacher-advice mechanism with gaussian process for reinforcement learn-
ing. IEEE Transactions on Neural Networks and Learning Systems.

Liu, C., Chu, X., Wu, W., Li, S., He, Z., Zheng, M., . . . Li, Z. (2022). Human–
machine cooperation research for navigation of maritime autonomous sur-
face ships: A review and consideration. Ocean Engineering , 246 , 110555.

Liu, L., Lu, S., Zhong, R., Wu, B., Yao, Y., Zhang, Q., & Shi, W. (2020). Com-
puting systems for autonomous driving: State of the art and challenges.
IEEE Internet of Things Journal , 8 (8), 6469–6486.

Liu, Y., Halev, A., & Liu, X. (2021). Policy learning with constraints in model-
free reinforcement learning: A survey. In The 30th international joint
conference on artificial intelligence (ijcai).

Ly, A. O., & Akhloufi, M. (2020). Learning to drive by imitation: An overview
of deep behavior cloning methods. IEEE Transactions on Intelligent Ve-
hicles, 6 (2), 195–209.

Mart́ın H, J. A., & de Lope, J. (2009). Learning autonomous helicopter flight
with evolutionary reinforcement learning. In Computer aided systems
theory-eurocast 2009: 12th international conference, las palmas de gran
canaria, spain, february 15-20, 2009, revised selected papers 12 (pp. 75–
82).

Meng, L., Gorbet, R., & Kulić, D. (2021). Memory-based deep reinforcement
learning for pomdps. In 2021 ieee/rsj international conference on intelli-
gent robots and systems (iros) (pp. 5619–5626).

Mihatsch, O., & Neuneier, R. (2002). Risk-sensitive reinforcement learning.
Machine learning , 49 , 267–290.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
& Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602 .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., . . . others (2015). Human-level control through deep reinforcement
learning. nature, 518 (7540), 529–533.

Modi, A., Chen, J., Krishnamurthy, A., Jiang, N., & Agarwal, A. (2021). Model-
free representation learning and exploration in low-rank mdps. arXiv
preprint arXiv:2102.07035 .

Moldovan, T. M., & Abbeel, P. (2012). Safe exploration in markov decision
processes. arXiv preprint arXiv:1205.4810 .

Monfort, S. S., Reagan, I. J., Cicchino, J. B., Hu, W., Gershon, P., Mehler,

68

B., & Reimer, B. (2022). Speeding behavior while using adaptive cruise
control and lane centering in free flow traffic. Traffic injury prevention,
23 (2), 85–90.

Morimura, T., Sugiyama, M., Kashima, H., Hachiya, H., & Tanaka, T. (2012).
Parametric return density estimation for reinforcement learning. arXiv
preprint arXiv:1203.3497 .

Ni, T., Eysenbach, B., & Salakhutdinov, R. (2022). Recurrent model-free rl
can be a strong baseline for many pomdps. In International conference on
machine learning (pp. 16691–16723).

Nidamanuri, J., Nibhanupudi, C., Assfalg, R., & Venkataraman, H. (2021). A
progressive review: Emerging technologies for adas driven solutions. IEEE
Transactions on Intelligent Vehicles, 7 (2), 326–341.

Nilim, A., & El Ghaoui, L. (2005). Robust control of markov decision processes
with uncertain transition matrices. Operations Research, 53 (5), 780–798.

Okuyama, T., Gonsalves, T., & Upadhay, J. (2018). Autonomous driving system
based on deep q learnig. In 2018 international conference on intelligent
autonomous systems (icoias) (pp. 201–205).

Ondruš, J., Kolla, E., Vertal’, P., & Šarić, Ž. (2020). How do autonomous cars
work? Transportation Research Procedia, 44 , 226–233.

Oviedo-Trespalacios, O., Tichon, J., & Briant, O. (2021). Is a flick-through
enough? a content analysis of advanced driver assistance systems (adas)
user manuals. Plos one, 16 (6), e0252688.

O’Neill, T., McNeese, N., Barron, A., & Schelble, B. (2022). Human–autonomy
teaming: A review and analysis of the empirical literature. Human factors,
64 (5), 904–938.

Palade, V., & Deo, A. (2022). Artificial intelligence in cars: How close yet far are
we from fully autonomous vehicles? International Journal on Artificial
Intelligence Tools, 31 (3), 2241005.

Pant, Y. V., Kumaravel, B. T., Shah, A., Kraemer, E., Vazquez-Chanlatte, M.,
Kulkarni, K., . . . Seshia, S. A. (2022). Modeling and influencing human
attentiveness in autonomy-to-human perception hand-offs. In 2022 ieee
25th international conference on intelligent transportation systems (itsc)
(pp. 2585–2592).

Paternain, S., Chamon, L., Calvo-Fullana, M., & Ribeiro, A. (2019). Con-
strained reinforcement learning has zero duality gap. Advances in Neural
Information Processing Systems, 32 .

Perera, D., Wang, Y.-K., Lin, C.-T., Nguyen, H., & Chai, R. (2022). Improving
eeg-based driver distraction classification using brain connectivity estima-
tors. Sensors, 22 (16), 6230.

Philip, P., Sagaspe, P., Moore, N., Taillard, J., Charles, A., Guilleminault, C.,
& Bioulac, B. (2005). Fatigue, sleep restriction and driving performance.
Accident Analysis & Prevention, 37 (3), 473–478.

Pleines, M., Pallasch, M., Zimmer, F., & Preuss, M. (2023). Memory gym:
Partially observable challenges to memory-based agents. In The eleventh
international conference on learning representations.

Pohl, J., Birk, W., & Westervall, L. (2007). A driver-distraction-based lane-

69

keeping assistance system. Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering , 221 (4),
541–552.

Pusse, F., & Klusch, M. (2019). Hybrid online pomdp planning and deep
reinforcement learning for safer self-driving cars. In 2019 ieee intelligent
vehicles symposium (iv) (pp. 1013–1020).

Qin, L., Li, Z. R., Chen, Z., Bill, M. A., & Noyce, D. A. (2019). Understanding
driver distractions in fatal crashes: An exploratory empirical analysis.
Journal of Safety Research, 69 , 23–31.

Quint́ıa Vidal, P., Iglesias Rodŕıguez, R., Rodŕıguez González, M. Á., &
Vázquez Regueiro, C. (2013). Learning on real robots from experience
and simple user feedback.

Rajasekhar, M., & Jaswal, A. K. (2015). Autonomous vehicles: The future
of automobiles. In 2015 ieee international transportation electrification
conference (itec) (pp. 1–6).

Regan, M. A., Lee, J. D., & Young, K. (2008). Driver distraction: Theory,
effects, and mitigation. CRC press.

Roozendaal, J., Johansson, E., Winter, J. d., Abbink, D., & Petermeijer, S.
(2021). Haptic lane-keeping assistance for truck driving: a test track
study. Human factors, 63 (8), 1380–1395.

Sagberg, F., Selpi, Bianchi Piccinini, G. F., & Engström, J. (2015). A review of
research on driving styles and road safety. Human factors, 57 (7), 1248–
1275.

Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017). Recent
advances in recurrent neural networks. arXiv preprint arXiv:1801.01078 .

Santara, A., Rudra, S., Buridi, S. A., Kaushik, M., Naik, A., Kaul, B., &
Ravindran, B. (2021). Madras: Multi agent driving simulator. Journal of
Artificial Intelligence Research, 70 , 1517–1555.

Sato, M., Kimura, H., & Kobayashi, S. (2001). Td algorithm for the variance
of return and mean-variance reinforcement learning. Transactions of the
Japanese Society for Artificial Intelligence, 16 (3), 353–362.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

Seenivasan, R. D. (2023). Trends in electrodermal activity, heart rate and
temperature during distracted driving among young novice drivers. (Un-
published master’s thesis). University of Waterloo.

Shahini, F., & Zahabi, M. (2022). Effects of levels of automation and non-
driving related tasks on driver performance and workload: A review of
literature and meta-analysis. Applied Ergonomics, 104 , 103824.

Shalev-Shwartz, S., Shammah, S., & Shashua, A. (2016). Safe, multi-
agent, reinforcement learning for autonomous driving. arXiv preprint
arXiv:1610.03295 .

Shen, S., Ausin, M. S., Mostafavi, B., & Chi, M. (2018). Improving learning
& reducing time: A constrained action-based reinforcement learning ap-
proach. In Proceedings of the 26th conference on user modeling, adaptation
and personalization (pp. 43–51).

70

Simão, T. D., Suilen, M., & Jansen, N. (2023). Safe policy improvement for
pomdps via finite-state controllers. arXiv preprint arXiv:2301.04939 .

Singh, B., Kumar, R., & Singh, V. P. (2022). Reinforcement learning in robotic
applications: a comprehensive survey. Artificial Intelligence Review , 1–
46.

Sri Mounika, T., Phanindra, P., Sai Charan, N., Kranthi Kumar Reddy, Y., &
Govindu, S. (2022). Driver drowsiness detection using eye aspect ratio
(ear), mouth aspect ratio (mar), and driver distraction using head pose
estimation. In Ict systems and sustainability: Proceedings of ict4sd 2021,
volume 1 (pp. 619–627).

Stewart, T. (2023). Overview of motor vehicle traffic crashes in 2021 (Tech.
Rep.).

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

Tamar, A., Xu, H., & Mannor, S. (2013). Scaling up robust mdps by reinforce-
ment learning. arXiv preprint arXiv:1306.6189 .

Tan, H. H., & Lim, K. H. (2019). Review of second-order optimization tech-
niques in artificial neural networks backpropagation. In Iop conference
series: materials science and engineering (Vol. 495, p. 012003).

Tang, J., Singh, A., Goehausen, N., & Abbeel, P. (2010). Parameterized maneu-
ver learning for autonomous helicopter flight. In 2010 ieee international
conference on robotics and automation (pp. 1142–1148).

Tango, F., & Botta, M. (2013). Real-time detection system of driver distraction
using machine learning. IEEE Transactions on Intelligent Transportation
Systems, 14 (2), 894–905.

Thomaz, A. L., & Breazeal, C. (2008). Teachable robots: Understanding hu-
man teaching behavior to build more effective robot learners. Artificial
Intelligence, 172 (6-7), 716–737.

Uehara, M., Zhang, X., & Sun, W. (2021). Representation learning for online
and offline rl in low-rank mdps. arXiv preprint arXiv:2110.04652 .

van de Merwe, K., Mallam, S., & Nazir, S. (2022). Agent transparency, situa-
tion awareness, mental workload, and operator performance: A systematic
literature review. Human Factors, 00187208221077804.

Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long
short-term memory model. Artificial Intelligence Review , 53 , 5929–5955.

Wang, X., Zhang, J., Hou, D., & Cheng, Y. (2023). Autonomous driving based
on approximate safe action. IEEE Transactions on Intelligent Transporta-
tion Systems.

Wen, L., Duan, J., Li, S. E., Xu, S., & Peng, H. (2020). Safe reinforcement
learning for autonomous vehicles through parallel constrained policy opti-
mization. In 2020 ieee 23rd international conference on intelligent trans-
portation systems (itsc) (pp. 1–7).

Wierstra, D., Foerster, A., Peters, J., & Schmidhuber, J. (2007). Solving
deep memory pomdps with recurrent policy gradients. In Artificial neu-
ral networks–icann 2007: 17th international conference, porto, portugal,
september 9-13, 2007, proceedings, part i 17 (pp. 697–706).

71

Wollmer, M., Blaschke, C., Schindl, T., Schuller, B., Farber, B., Mayer, S., &
Trefflich, B. (2011). Online driver distraction detection using long short-
term memory. IEEE Transactions on Intelligent Transportation Systems,
12 (2), 574–582.

Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., & Sum-
ner, A. (2000). Torcs, the open racing car simulator. Software available
at http://torcs. sourceforge. net , 4 (6), 2.

Xiong, X., Wang, J., Zhang, F., & Li, K. (2016). Combining deep reinforcement
learning and safety based control for autonomous driving. arXiv preprint
arXiv:1612.00147 .

Ye, M., Osman, O. A., Ishak, S., & Hashemi, B. (2017). Detection of driver en-
gagement in secondary tasks from observed naturalistic driving behavior.
Accident Analysis & Prevention, 106 , 385–391.

Yi, D., Su, J., Hu, L., Liu, C., Quddus, M., Dianati, M., & Chen, W.-H. (2019).
Implicit personalization in driving assistance: State-of-the-art and open
issues. IEEE Transactions on Intelligent Vehicles, 5 (3), 397–413.

Young, K., Regan, M., & Hammer, M. (2007). Driver distraction: A review of
the literature. Distracted driving , 2007 , 379–405.

Yu, M., Yang, Z., Kolar, M., & Wang, Z. (2019). Convergent policy opti-
mization for safe reinforcement learning. Advances in Neural Information
Processing Systems, 32 .

Zahabi, M., Razak, A. M. A., Shortz, A. E., Mehta, R. K., & Manser, M. (2020).
Evaluating advanced driver-assistance system trainings using driver per-
formance, attention allocation, and neural efficiency measures. Applied
ergonomics, 84 , 103036.

Zakaria, N., Shapiai, M., Ghani, R., Yasin, M., Ibrahim, M., & Wahid, N.
(2023). Lane detection in autonomous vehicles: A systematic review.
IEEE Access.

Zhang, S., & Abdel-Aty, M. (2022). Drivers’ visual distraction detection using
facial landmarks and head pose. Transportation research record , 2676 (9),
491–501.

Zhang, X., Song, Y., Uehara, M., Wang, M., Agarwal, A., & Sun, W. (2022).
Efficient reinforcement learning in block mdps: A model-free representa-
tion learning approach. In International conference on machine learning
(pp. 26517–26547).

Zhang, Y., Vuong, Q., & Ross, K. (2020). First order constrained optimization
in policy space. Advances in Neural Information Processing Systems, 33 ,
15338–15349.

Zhu, Z., & Zhao, H. (2021). A survey of deep rl and il for autonomous driving
policy learning. IEEE Transactions on Intelligent Transportation Systems,
23 (9), 14043–14065.

72

8 Appendix

8.1 2D and 3D plots

In Figure 28 and Figures 29, 30, 31, and 32, the data received by the algorithms is
visually presented in both 2D and 3D plots. These plots aim to illustrate the potential
for data separation within the provided input space. Specifically, these visualizations
showcase the distribution of data points in relation to the variables being considered.

In these plots, the x and y axes represent different input variables, such as track
position, angle, driver steering, and driver acceleration. Each point on the plot corre-
sponds to a data sample, and the distribution of these points offers insights into the
separability of data based on these variables.

For instance, Figure 28 provides a 2D representation of the data distribution, while
Figures 29, 30, 31, and 32 present 3D plots that incorporate additional dimensions for
a more comprehensive view of the data.

The specified ranges for each variable help define the boundaries within which the
data points are distributed. Analyzing these visualizations can aid in understanding
how the algorithms can leverage the provided input data to make informed decisions
and navigate the driving environment effectively.

Figure 28: 2D-plots of the inputs

73

Figure 29: 3D-plots of the inputs angle, track position and driver steering

Figure 30: 3D-plots of the inputs angle, track position and driver acceleration

74

Figure 31: 3D-plots of the inputs angle, driver steering and driver acceleration

Figure 32: 3D-plots of the inputs track position, driver steering and driver
acceleration

75

8.2 Additional Experiments

In these additional experiments, efforts were made to enhance safety within the un-
constrained TD3 algorithm.

8.2.1 Data Augmentation

Data augmentation was implemented as a means of achieving this objective. Instead
of uniformly adding each state-action-reward tuple to the memory used for agent
training, the data was divided into two categories:

Safe States Augmentation: In this experiment, tuples corresponding to states
where the vehicle was closer to the centerline than the 0.7m boundary were added
an additional time to the memory. The rationale behind this approach was to increase
the likelihood of the agent learning how to act when in a safe state. Improved learning
in safe states should, in turn, lead to the agent more effectively remaining in these safe
states during operation.

Unsafe States Augmentation: In this experiment, tuples representing states where
the vehicle was close to crashing were added an additional time to the memory. The
aim here was to boost the chances of the agent learning effective recovery actions
when it finds itself in a perilous situation. This increased the likelihood of the agent
successfully recovering to a safe state after encountering an unsafe state.

The results presented in Figure 33 demonstrate that the agent trained on the
memory with an additional emphasis on safe states exhibits slightly better performance
compared to the other scenarios. This outcome suggests that by providing the agent
with a better understanding of safe states and effective actions within them, it can
achieve higher rewards and, crucially, maintain a safer driving behaviour.

These experiments highlight the potential benefits of tailored data augmentation
strategies to reinforce safety in the reinforcement learning process. By selectively
emphasizing safe states, agents can be better equipped to navigate challenging driving
scenarios and maintain safety during operation.

8.2.2 History Length

An additional experiment was conducted to investigate the impact of increasing the
length of input history on the agent’s learning capabilities. In this experiment, the ob-
jective was to create a memory of past states that the agent could learn from, allowing
it to discern correlations between previous inputs and the current reward. Specifically,
TD3 and TD3-LSTM were trained using three different input configurations:

• Single Timestep: In this setting, the agent received inputs from a single timestep,
which provided information only about the current state.

• Previous 5 Timesteps: Here, the agent’s inputs consisted of data from the pre-
vious 5 timesteps, allowing it to consider a short history of past states and
actions.

• Previous 10 Timesteps: In this configuration, the agent’s inputs encompassed
data from the previous 10 timesteps, affording it a more extended history of
past states and actions to learn from.

This experiment aimed to determine whether an extended input history would
improve the agent’s ability to understand the relationship between past actions and
current rewards. The results of this experiment can provide insights into the benefits

76

(a)

(b)

Figure 33: (a) Average reward of TD3 and TD3 with either safe or unsafe
states added an additional time over all episodes (b) Average reward of TD3
and TD3 with either safe or unsafe states added an additional time over 100
episode window

of incorporating longer historical information into the learning process, potentially
aiding the agent in making more informed decisions.

77

(a)

(b)

Figure 34: (a) Average reward of TD3, TD3(5) and TD3(10) over all episodes,
the number between parentheses indicates the number of previous inputs given
to the algorithm (b) Average reward of TD3, TD3(5) and TD3(10) over 100
episode window

8.2.3 Unsupervised Clustering

In an attempt to further improve the agent’s learning process, an experiment was
conducted involving the use of unsupervised clustering. The underlying idea was

78

(a)

(b)

Figure 35: (a) Average reward of TD3-LSTM, TD3-LSTM(5) and TD3-
LSTM(10) over all episodes (b) Average reward of TD3-LSTM, TD3-LSTM(5)
and TD3-LSTM(10) over 100 episode window

to leverage an unsupervised clustering algorithm, specifically Mini-Batch K-Means,
to separate and cluster the input data online. This clustered data would then be
incorporated as additional information provided to the agent, effectively transforming
the Block MDP (BMDP) into a standard Markov Decision Process (MDP).

The rationale behind this experiment was based on the premise that if there is a

79

natural separation within the input data, clustering could highlight this separation and
potentially enhance the agent’s decision-making process. However, the results of this
experiment, as illustrated in Figure 36, did not demonstrate any improvement in the
agent’s performance when using the clustering method. Consequently, this approach
was considered non-viable and was not pursued further in the study.

(a)

(b)

Figure 36: (a) Average reward of TD3 and TD3 with a Mini-Batch K-Means
clustering method over all episodes (b) Average reward of TD3 and TD3 with
a Mini-Batch K-Means clustering method over 100 episode window

80

