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Abstract

The Hubbard model is the prototypical model to describe strongly-correlated elec-
trons hopping in a lattice, with hopping parameter t and on-site interactions U. It
captures the rich physics ofmetal-insulator transition, high-Tc superconductors, and
spin liquids. Despite being ”simple”, the Hubbard Hamiltonian does not have an
analytical solution in more than one dimension. It has been studied numerically in
several dimensions, but not in fractal dimensions. In this project, we investigate the
fractal-lattice Hubbard model using various numerical simulations: exact diagonal-
ization, the self-consistent diagonalization of a (mean-field) Hartree-Fock Hamilto-
nian and state-of-the-artAuxiliary-FieldQuantumMonteCarlo. In the tight-binding
limit, we found compact localised states, that we understood in terms of symmetry
and linked to the formation of a ferrimagnetic phase at weak interaction. Moreover,
simulations at half-filling revealed the persistence of this type of magnetic order for
every value of interaction strength and a Mott transition for U/t ∼ 4.5 . Finally, we
found a remarkable dependence on the Hausdorff dimension regarding i) the num-
ber of compact localised states in different generations, ii) the scaling of the total
many-body ground-state energy in the tight-binding limit, and iii) the density of
the states at the corners for specific values of electronic filling.
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1 | Introduction

The Hubbard model is one of the simplest and most fundamental models for describing the
movement and interactions of electrons on a lattice. In Solid-State physics, a widely employed
approach to describe electron motion within a lattice is the tight-binding method. This method
assumes that electrons are tightly bound to lattice sites, with a non-negligible probability of
tunneling to neighboring sites, characterized by a parameter denoted as t. While this approach
allows for the independent treatment of electrons, it fails to account for correlations originated
from the Coulomb interaction. The Hubbard model effectively addresses this by introducing
an interaction term, parameterized by U , enabling the study of various phases of the system.
Notably, the Hubbard model describes Mott transitions, which are transitions between metallic
and insulating behaviors driven by electron-electron interaction. These transitions cannot be
predicted by the tight-binding approach. Furthermore, the Hubbard model can capture exotic
phases of matter, such as spin and density waves, quantum spin liquids, and high-temperature
superconductivity. Despite its simplicity, the Hubbard model remains unsolved analytically in
dimensions higher than one, requiring the use of numerical methods. Examples of numerical
methods employed to implement the Hubbard Hamiltonian include Density Matrix Renormal-
ization Group (DMRG) [1], Variational Monte Carlo [2], and Quantum Monte Carlo [3]. The
latter is the one that will be applied in this work.

This thesis delves into a crucial question: How do electrons behave in a non-integer dimen-
sion when described by the Hubbard model? The focus of our investigation revolves around
exploring this intriguing phenomenon. Fractals offer a way to explore lattice configurations
with non-integer dimensions. These geometrical structures are characterized by their intricate
and self-replicating geometric patterns, which are obtained through iterative processes, where
a basic shape is repeatedly transformed or replicated. In our study, we construct the lattice
configuration using a specific type of fractal, the Sierpinski triangle. This fractal emerges by
dividing an initial equilateral triangle into smaller triangles, removing the central portion, and
continuing the process iteratively. This iterative removal of portions of the geometry leads to
a lattice dimension that lies between 1 and 2. Indeed, the fractal or Hausdorff dimension of
the Sierpinski trinagle in 1.58. By utilizing this fractal to build a lattice, we can delve into the
unique properties and behaviors that emerge from the interplay between the Hubbard model
and fractal geometry.
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8 CHAPTER 1. INTRODUCTION

The outilne of the thesis is the following. In the opening chapter, we provide a concise introduc-
tion to fractal geometries and the selected fractal lattice. We highlight significant properties of
the lattice, including non-periodicity, diverse connectivity between lattice sites, and bipartite-
ness. These characteristics establish a solid foundation for studying quantum systems. Impor-
tantly, these properties challenge conventional approaches, such as band theory, requiring the
exploration of alternative methods to comprehend and analyze particle behavior on this types
of lattices. We conclude this chapter by presenting some experimental results in fractal, that out
in evidence their applicability in the real world.

In the second chapter, we discuss the Hubbard Model, initially providing an introduction to
some preliminary concepts of Many-Body and Solid-State Physics. These notions lay the foun-
dation for the framework within which our work operates. Building upon the fundamental
notions of Solid-State Physics, we derive the Hubbard Hamiltonian. Subsequently, we describe
the terms comprising the Hamiltonian, offering physical interpretations for each term. Finally,
we provide a concise summary of the current state of research on the HubbardModel, focusing
on the relevant results that contribute to our study.

We initiate our study by examining the tight-binding limit, as we anticipate that the lattice con-
nectivity will predominantly influence the electron dynamics on the lattice. The implementa-
tion method employed in this limit is based on the tight-binding approach, enabling the inde-
pendent treatment of electrons. We solve the Hamiltonian in the single-electron basis and con-
struct the many-body wave function by taking anti-symmetrized linear combination of single-
electron orbitals. In the ground state, we investigate the distribution of the average density per
site and analyze the many-body ground-state energy as a function of electronic filling. Fur-
thermore, we focus on analyzing the energy spectrum of the Hamiltonian in the single-electron
basis and explore relevant scaling behaviors. In fact, the property of self-similarity exhibited
by fractals suggests potential scaling properties of quantities on the lattice, which we aim to
investigate in our study.

In the final chapter, we introduce the crucial aspect of electron-electron interaction and employ
three distinct numerical methods to implement it: exact diagonalization, mean-field Hartree-
Fock approximation, andConstrained-PathAuxiliary-FieldQuantumMonteCarlo (CP-AFQMC).
Among these methods, we predominantly utilize CP-AFQMC due to its numerically exact na-
ture. We provide a comprehensive explanation of the underlying theory behind each numerical
approach, followed by a comparative analysis to discern their respective strengths and limita-
tions. Subsequently, we investigate the implications of electron-electron interaction on the re-
sults obtained from the tight-binding model. Finally, we study the different phases exhibited
by the system under the influence of interaction.



2 | Fractals

In this chapter, we introduce fractal geometries and the fractal lattice, which is the chosen lattice
configuration for ourmodel. We begin by discussing themotivations behind the choice of work-
ing on fractal geometries, highlighting some of their notable properties. Specifically, we focus
on the Sierpinski triangle, from which we explain how to build the fractal lattice. We mention
some of the remarkable properties that these lattice possesses, as they have implications on the
behavior of the implemented Hubbard model. Finally, we highlight the practical applicability
of fractals by presenting experimental results that underscore their relevance in the real world.

2.1 Fractal Geometries

The realm of fractal geometries offers a captivating and unconventional viewpoint on the na-
ture of shape and structure. Diverging from traditional Euclidean geometries, which deal with
smooth curves and regular shapes, fractals explore the domain of intricate patterns, self-replication,
and infinite complexity.

Figure 2.1: Benoit Mandelbrot [4].

Fractals are geometrical constructs that possess the fascinating property of self-similarity, mean-
ing they exhibit similar structures at varying scales. Coined by Benoit Mandelbrot, Figure(2.1),
in 1975, the term fractal originates from the Latin word fractus, signifying broken or irregular.
Natural and artificial phenomena often showcase fractal characteristics, such as the branching
patterns of trees, leaf veins, coastlines’ intricate outlines, and even the convoluted shapes of
clouds. Figure (2.2) shows some of these fractal configurations in nature.

What sets fractals apart from conventional geometric forms is their ability to maintain intricate
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10 CHAPTER 2. FRACTALS

Figure 2.2: Fractal geometries in nature [4]. (a) A tree, (b) a coastline, (c) circulatory
casts.

patterns, regardless of the level of magnification. This recursive property creates an infinite
level of detail and complexity, making fractals captivating subjects of exploration.

Fractals can be generated through iterative mathematical processes involving repeated geomet-
ric transformations. With each iteration, the fractal pattern evolves and becomes increasingly
intricate. Additionally, mathematical equations and algorithms can describe fractals, offering
avenues for creation and exploration of these geometric forms.

The utility of fractal geometries spans across various fields apart from Physics, such as Math-
ematics, Computer Graphics, and Art. Fractals provide insights into the structures of natural
phenomena, offer tools for data analysis and compression, and inspire artistic creations that
capture the mesmerizing beauty of complexity.

2.2 Dimension of Fractals

This section begins by introducing the Sierpinski triangle, which serves as the fractal geometry
for the construction of the fractal lattice studied throughout the thesis. The dimension of the
Sierpinski triangle is calculated using an intuitive formula. Additionally, we introduce another
type of fractal, the Sierpinski carpet, and apply a similar dimension calculation. The inclusion
of this second fractal enables the discussion of an experiment, in the final section of this chapter,
that utilizes this geometry.

The Sierpinski triangle is constructed through an iterative process that starts with a single equi-
lateral triangle, see Figure 2.3(a). In the first iteration, we divide each side of the triangle into
two equal segments and select the downward looking equilateral triangle in the center, as shown
in Figure 2.3(b). We then remove this triangle to obtain the first generation of the Sierpinski tri-
angle, see Figure 2.3(c). We repeat this process for each newly formed triangle in the subsequent
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Figure 2.3: One step of the process to build the Sierpinski triangle. (a) An equilateral
triangle, (b) the original triangle with inner downward triangle selected, (c) the first
generation of the Sierpinski triangle.

iterations. In Figure 2.4(a) we show the second generation. As the iterations continue indef-
initely, the Sierpinski triangle emerges, revealing its intricate self-similar structure composed
of smaller triangles within larger ones. This recursive construction results in a fractal pattern,
Figure 2.4(b), that exhibits remarkable complexity and detail.

Figure 2.4: (a) Second generation of the Sierpinski triangle, (b) the Sierpinski triangle.

There are various methods that allow to compute the dimension of an object. In this work, we
adopt a specific approach that has the advantage of being intuitively understandable. To begin
with, we outline the general concept before applying it to the specific shapes. In this method,
we utilize the scaling factor, α, and the formula

2d = α. (2.1)

which allows us to determine the dimension, represented by the variable d. The scaling factor
represents the ratio of the size of an object or structure at a particular iteration to its size in the
previous iteration. By applying logarithms to both sides of the equation, we can solve for the
fractal dimension.
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Let us start by applying the formula to a square with edges of length L. When we double the
length of the edge to 2L, we findNcopies = 4 copies of the original square, as illustrated in Figure
(2.5).

Figure 2.5: Pictorial representation of the procedure used to compute the dimension
of an object, applied to a square.

The scaling factor is defined as the ratio

α =
Ncopies

N

where N is the number of original squares, in our case N = 1. Solving equation (2.1) with this
value of α, we obtain that the dimension of a square is d = 2.

Regarding the dimension of the Sierpinski triangle, we consider the first generation of the tri-
angle, with basis of length L. Once again, we double the size of the base to 2L, but now we get
Ncopies = 3 copies of the original geometry, as we can see in Figure (2.6). Equation (2.1), with

Figure 2.6: In (a) second generation of the Sierpinski triangle, in (b) the Sierpinski
triangle.
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this value of scaling α, suggests that the dimension of the fractal geometry we consider is not
integer. It is in fact given by

d =
log 3

log 2
≃ 1.58.

This remarkable property is one of the reasons whywe are interested in a fractal geometry. One
of our motivations is indeed to study Physics in a non-integer dimension.

The formula we just introduced only holds when we double the external perimeter of the object
and the area scales α times. We adopt this choice to make the formula intuitive. However,
it can be generalized to the case where we triplicate the external perimeter. Let us consider
another fractal geometry, the Sierpinski carpet. Figure (2.7) illustrates the first four generations

Figure 2.7: (a) First, (b) second, (c) third, (d) fourth generation of the Siepinski carpet.

of the fractal. To determine the dimension of this geometry, we can apply the same formula
as before, but now we need to scale the length of the original geometry by a factor of 3. By
comparing Figure 2.7(a) and Figure 2.7(b), we observe that this process generates eight copies
of the system. Consequently, the dimension of this fractal structure is given by:

d =
log 8

log 3
≃ 1.89.
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2.3 The Fractal Lattice

Now that we have constructed the geometrical structure, we proceed building the lattice con-
figuration. This involves placing lattice sites at the center and corners of every triangle in the
Sierpinski structure. These sites are then linked together, ensuring that all the links have the
same length. In Figure 2.8(a), we can observe the resulting lattice configuration for the second
generation.

Figure 2.8: (a) Fractal lattice built from the second generation of the Sierpinski trian-
gle. (b) Shows the division in two sub-lattices in the second generation: sites with a
black dot belong to sub-lattice B, sites with a white dot belong to sub-lattice A.

A characteristic feature of the resulting lattice geometry is that sites in the lattice have different
connectivity. In fact, there are sites linked to their neighbours through three connections, sites
that are connected by two links and the sites, in the corners, that are connected by just one link
to the rest of the lattice.

It is important to highlight a significant property of this lattice configuration for future consider-
ations: it is bipartite. This means that it can be divided into two sub-lattices, such that each site
in one sub-lattice has neighboring sites in the other sub-lattice. In Figure 2.8(b), we can observe
that the second generation of the lattice can be effectively partitioned into two sub-lattices: sub-
lattice A, consisting of NA = 15 sites, and sub-lattice B, consisting of NB = 9 sites. It is worth
noting that this property carries substantial implications for the physics of the model, as will be
elaborated in the following chapters.
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2.4 Fractals in experiments

Fractal geometries, not only confined to theoretical investigations, have also been successfully
realized in experimental settings, offering empirical validation of theoretical concepts. A recent
study [5] exemplifies this by demonstrating the controlled construction and characterization of
a fractal lattice with electrons. The experiment involved confining electrons on a Cu(111) sur-
face within a self-similar 35 Sierpinski geometry. This intricate lattice structure was achieved
through precise atomic manipulation of CO molecules on the Cu(111) surface. By strategically
arranging these molecules, the researchers successfully created a fractal lattice configuration
with electrons, providing a platform for experimentally investigating the interplay between frac-
tal geometry and electronic properties. In Figure (2.9), the experimental realization of the first
three generations of the Sierpinksi triangle.

Figure 2.9: Experimental realization of the first three generations of the Sierpinski
triangle G(1), G(2) and G(3) [5]. These images where generated using a constant-
current scanning tunneling microscopy technique. In the figures, the dots indicate
lattice sites and are a guide to the eye.

Another important experimental result on fractal geometries regards quantum transport in frac-
tal photonic lattices [6]. These experiments explored various fractal geometries, including the
Sierpinski triangle and Sierpinski carpet. Intriguingly, quantum transport in fractals exhibits
anomalous behavior, deviating from the expected patterns observed in infinite regular lattices.
Notably, the mean square displacement (MSD), a measure of particle spread, exhibits different
regimes in fractals. Of particular interest is the fractal regime, where the behavior of the MSD
is solely determined by the fractal dimension.
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Finally, we would like to present a recent research that regards Higher Order Topological In-
sulators (HOTI) in the Sierpinski carpet [7]. A topological insulator is a quantum material
that behaves as an insulator in the d−dimensional bulk but possesses conducting states on its
(d − 1)−dimensional surfaces or edges, protected by topological properties against impurities
or disorder. A HOTI is a specialized class of topological insulators where protected bound-
ary states exist at dimensions 2 − d or lower. Hence, a 2d HOTI would have 0d corner modes,
and a 3d HOTI would have a 1d hinges or 0d corner state. Through applying the Benalcazar,
Bernevig, and Hughes model [8] into a Sierpinski carpet fractal lattice, a recent study revealed
the presence of zero-dimensional inner corner states and 1.89-dimensional outer corner states.
Remarkably, the dimension of these states coincides with the dimension of the fractal [7]. The
experimental realization of these states is shown in Figure (2.10). They also found these states

Figure 2.10: Spatial distribution of outer and inner corner states [7].

to be topologically non trivial. These counter-intuitive results indicate that the HOTIs in the
fractal model are significantly different from the conventional HOTIs. These results were also
observed experimentally with acoustic measurements [7].



3 | The Hubbard Model

The Hubbard model is one of the cornerstone models in Condensed Matter Physics, due to its
ability to describe many properties and phases of matter while being simple in its formulation.
It was introduced simultaneously, but independently, in 1963 by Martin Gutzwiller[9], Jun-
jiro Kanamori[10] and John Hubbard[11] to study the physics of correlated electrons in solids,
when a great effort was made to understand magnetism in transition metals. After 60 years of
its introduction, its applicability and relevance goes surprisingly far beyond that initial context.

Explained in a simple way, which reflects the simplicity of the model itself, the Hubbard Model
introduces interaction to a tight-binding description of electrons in a solid. In Solid-State Physics
(SSP), a tight-binding model assumes the electron to be tightly bounded to the atoms of the
solid. This, in turn, can be considered as a lattice of sites where the electrons are allowed to
move. The Hubbard model introduces an on-site interaction between electrons on the same lat-
tice sites, accounting for their Coulomb interaction.

The additional interaction term allowed the model to explain and predict the existence of a type
of insulators, called Mott insulators, which are expected to be conductors by conventional band
theory. As explained inmore detailed in the next sections, the insulating nature of thesemateri-
als originates from correlations between electrons, which are not taken into account by ordinary
band theory. The Mott transition is just the first important achievement of the Hubbard model,
the discovery of many interesting effects followed.

The versatility of the model is demonstrated by its applicability to a wide range of lattice struc-
tures, leading to the exploration of numerous phases. For example, when applied to square
lattices, the model unveils the interesting physics of antiferromagnetism [12], charge and spin
density waves [13] and superconductivity [14]. The model’s extension to other lattice geome-
tries, such as triangular lattices, has enabled the discovery of new exotic phases, such as spin
liquids [15], which originate from magnetic frustration. These diverse applications showcase
the significance of the model in elucidating new phases and understanding complex materi-
als. Finally, a boost of activity regarding the Hubbard model followed the discovery of high-
temperature superconductivity, since an adaptation of the model constitutes a candidate for
hosting such a behaviour [16].

While significant progress has been made, the full understanding of the Hubbard model and

17



18 CHAPTER 3. THE HUBBARDMODEL

its intricate phases remains a challenging task. Despite its deceptive simple form, the Hubbard
model is not analytically solvable in more than one dimension. For this reason, the study of the
model usually requires the implementation of numerical techniques, DMRG (Density Matrix
Renormalization Group) and QMC (Quantum Monte Carlo) methods being some of them. In
this thesis, we apply the later.

In this chapter, after revising some concepts fromMany-Body Quantum Physics and Sold-State
Physics, we derive the Hubbard Hamiltonian. Subsequently, we provide a brief discussion on
the current state of research on theHubbardModel, focusing on the significant findings relevant
to our study and without claiming to be exhaustive.

3.1 Preliminary notions

In order to derive the Hubbard Hamiltonian and become familiarized with the concepts and
methods developed in this work, we dedicate the following two sections to some preliminary
notions.

The first sub-section regards second quantization in Many-Body Quantum Physics. First, we
extend the principles of single-particle states in quantum mechanics to many-particle systems.
Then, we introduce the concept of second quantization, which better suits the model we con-
sider. This approach allows us to effectively capture the dynamics and characteristics of these
complex systems.

In the second sub-section, we delve into basic concepts in SSP in order to provide a framework
for understanding the formulation of the Hubbard Hamiltonian.

3.1.1 Second Quantization in Many-Body Systems

In quantum mechanics, a single-particle state is represented by a vector in the Hilbert space
H of general dimension n. We denote by {|χi⟩}ni=1 an orthonormal basis of the space and by
χi(r) = ⟨r|χi⟩ the orbitals of H, with r the space coordinates of the particle. A general wave-
function ϕ(r) can be written as a linear combination of such orbitals,

ϕ(r) = ⟨r|ϕ⟩ =
n∑

i=1

ϕiχi(r),

where we used the completeness of the basis. Quantum mechanics postulates that the proba-
bility to find a particle associated to this wave-function ϕ(r) in an infinitesimal volume element
dr around r is given by |ϕ(r)|2dr.

Our goal is to generalize the one-particle formalism to a systemwithN particles and obtain the
corresponding many-body wave-function Φ(R), which can be interpreted as [17]:

|Φ(R)|2
N∏
j=1

drj =

{
Probability of finding the N particles in the

volume∏N
j=1 drj surrounding R

}
,
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withR = (r1, r2, · · · , rN ) the configuration of the system containing the coordinates rj of each
particle. The Hilbert space describingN non-interacting particles is the tensor product between
the N single-particle spaces

H = H1 ⊗H2 ⊗ · · · ⊗ HN ,

and a general state as the tensor product of single-particle states

|ϕ1⟩ ⊗ |ϕ2⟩ ⊗ . . . |ϕN ⟩ . (3.1)

We are now going to show that an orthonormal basis of this space can be constructed by taking
the tensor product of single particle basis states:

{|χi1⟩}
n1
i1

⊗ {|χi2⟩}
n2
i2

⊗ · · · ⊗ {|χiN ⟩}
nN
iN

,

where |χij ⟩ stands for the set of orthonormal basis of the j-th particle and nj the dimension of
its Hilbert space. Since the single-particle states are orthonormal themselves, it is trivial to see
that the set is orthonormal. To show that it is complete, we use the fact that in Equation (3.1)
the single particle wave-functions themselves can be decomposed on their basis,

|Φ⟩ =
∑

i1,i2,...,iN

ϕi1ϕi2 . . . ϕiN |χi1⟩ ⊗ |χi2⟩ ⊗ · · · ⊗ |χiN ⟩ ,

proving that any general state can be written as a linear combination of the {|χ⟩} set, which is
thus a basis. We are now able to write the N -particle wave function in the space configuration

Φ(R) =
∑

i1,i2,...,iN

ϕi1ϕi2 . . . ϕiNχi1(r1)χi2(r2) . . . χiN (rN ). (3.2)

However, in systems of identical particles, interchanging two spacial should lead to the same
physical result. Thus, the wave-function differs by at most a phase λ = eiθ and, in two dimen-
sions it describes particles called anyons. For three or more dimensions, the phase can take
values λ = ±1 and the wave-function will be, respectively, symmetric or anti-symmetric with
respect to the exchange of coordinates. Since we are dealing with fermions, the latter case will
be considered. Because of this requirement, the meaningful sector in the N -particle space is
made of properly antisymmetrized wave-functions that we can write as

Π(R) =
1√

N !
∏

i ni

∑
P

(−1)Pχi1(rP1) . . . χiN (rPN
),

where we sum over all possible permutations P of particles. The sum in the RHS term can also
be written as a determinant, known as Slater determinant:∣∣∣∣∣∣∣∣∣∣

χi1(r1) χi2(r1) . . . χiN (r1)

χi1(r2) χi2(r2) . . . χiN (r2)
... ... ...

χi1(rN ) χi2(rN ) . . . χiN (rN )

∣∣∣∣∣∣∣∣∣∣
.
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Therefore, using this basis we can find the proper antisymmetrized wave function:

Φ(R) =
∑

i1,i2,...,iN

ϕi1ϕi2 . . . ϕiNΠ(R). (3.3)

At this point we can see that even in the best case scenario when only a single combination of
states is occupied, such that the string i1, . . . , iN is fixed, there are still N ! terms coming from
the permutations to be considered. Things get even worse when we try to compute averages
of operators, which will be our final goal. The origin of this complication is that we are taking
into account useless information, namely, the position of each particle in a certain state, while
what we need to know is just the number of occupied states. This is where second quantization
becomes very useful.

It is more convenient to express the state of a many-body system by specifying the occupation
number ni for every i-th possible state, namely, the number of particles occupying that state.
The many-body state is defined by the occupation numbers for each possible state,

|N⟩ = |n1, n2, . . .⟩

and it represents an anti-symmetrized state with n1 particles in state |χ1⟩, n2 particles in state
|χ2⟩ and so on. For a fixed number of particles,∑i ni = N is a constraint in the Fock space. The
set {|N⟩} is an orthonormal basis for a subspace of the Fock space which, relaxing the condition
of the total number of particles, is defined as

F = H0 ⊕H1 ⊕H2 . . . ,

and contains all the possible anti-symmetrized many-body states [18].
We now define the creation and annihilation operators c†i and ci that, for fermions, satisfy the
following anti-commutation relations:

{ci, cj} = {c†i , c
†
j} = 0,

{ci, c†j} = δi,j .

They can be used to verify that the Pauli exclusion principle holds. We also define the number
operator ni = c†ici which, given the above relations, can have eigenvalues 0 or 1when acting on
the one-body i-th orbital that is either empty |0⟩ or occupied by a single fermion |1⟩. It follows
that the creation and annihilation operators act on the states in this way

c†i |0⟩ = 1 ci |0⟩ = 0

c†i |1⟩ = 0 ci |1⟩ = 0.

Finally, we can write a general basis state in terms of creation operators

|N⟩ = (c1)
n1

√
n1!

(c2)
n2

√
n2!

. . .
(cN )nN

√
nN !

|∅⟩ ,

where |∅⟩ = |0, 0, · · · , 0⟩ is the vacuum and nj = 0 or 1, j = 1, 2, · · ·N . The general many-body
state is written as a combination of these basis states

|Φ⟩ =
∑
N

cN |N⟩ .
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3.1.2 Solid-State Physics

A proper beginning of the study of SSP can be set with the discovery of X-ray diffraction in
crystals in 1912 by Laue and his coworkers. At that point, the importance of crystal structures
was understood: since electrons have short wavelength compared with the order of the regular
periodic crystal structure that hosts them, they are dramatically subject to it and their properties
can be understood in such a framework [19].

Crystals are defined as structures built by repeating identical groups of atoms, called basis, and
attaching them on a set of points called lattice. More rigorously, a lattice is a mathematical
set of points r which, in three dimensions, are constructed by taking the combination of some
translation vectors a1,a2,a3,

r = u1a1 + u2a2 + u3a3,

where u1, u2 and u3 are arbitrary integers. This set of vectors is said to be primitive if any point
r of the lattice is reachable by constructing combinations of these vectors by integer coefficients.
Moreover, they define a parallelepiped called primitive cell, which is the minimum volume unit
cell that fills the space with a repetition of suitable crystal translation operations. The lattice is
said to be transationally invariant in the sense that any translation T

T = u1a1 + u2a2 + u3a3

maps the lattice into itself. The basis attached to the lattice can be an atom or a group of atoms,
see Figure (3.1). The overall cohesion of atoms in the crystal is guaranteed by the interaction
between the negative electronic charges of the atomand the positive charges of the neighbouring
nuclei.

Figure 3.1: Representative example of a crystal: to each site on a lattice, a generic and
purely illustrative basis is attached to form a crystal structure.

The periodicity of lattice structures allows the application of Fourier analysis. Let us consider a
periodic function in one dimension, for example the electron number density,

n(x) = n(x+ a),

where a is the unit cell in one dimension, and expand it in a Fourier series

n(x) =
∑
p

npe
i2πpx/a,
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where the sum runs over all integers p, and the coefficient 2π/a ensures the periodicity of the
function. The points 2πp/a, coefficients of the expansion, depict allowed terms in the Fourier
series, i.e. terms consistent with the periodicity of the lattice, and form a lattice called reciprocal
lattice. Generalizing to three dimensions, the electron density is expanded in series as:

n(r) =
∑
G

nGe(iG·r)

where the vectors in the reciprocal space G are to be found such that n(r) = n(r + T ). This
condition leads to the restriction eiG·T = 1, which does not uniquely define theG vectors in the
reciprocal space. An important concept in the reciprocal space is the so called Brillouin zone, de-
fined as theWigner-Seitz (WS) cell in reciprocal space. This WS is a particular type of primitive
cell.

The quantumdescription of particles in a solid (electrons andnuclei) is given by the Schrödinger
equation,

HΦ = EΦ,

where H = K + U is a Hamiltonian that models the system, Φ is an eigenstate of this Hamil-
tonian and E is the eigenenergy. This model takes into account multiple terms: kinetic contri-
butions from both electrons and nuclei contained in K, potential interactions between nuclei,
between electrons and between nuclei-electrons pairs contained in U .

Because of the complexity of this framework, some approximations are adopted. One of them
considers the electrons in the inner core to be part of the nuclei, forming an ion. This approxi-
mation is referred to as valence approximation and allows to only take into account valence elec-
trons in the Hamiltonian. Another important approximation concerns the movement of the
nuclei: due to the fact that the mass of the nuclei is much larger than the mass of electrons,
electrons move faster than nuclei. We can thus consider the ions as fixed in the positions of
the lattice. This approximation is called Born-Oppenheimer approximation. Finally, to simplify
the many-body problem that stems from considering both one-electron potentials, describing
nuclei-electrons interactions, and pair potentials, describing interactions between electrons, the
independent electron approximation is usually made. In this context, the electrons are considered
to be moving in an effective one-electron potential [20].

With these approximations, the Hamiltonian of the system becomes the sum of one-electron
Hamiltonians hi,

H =
∑
i

hi =
∑
i

(
− ℏ2

2m
∇2

i + Ûi(r)

)
, (3.4)

each of which contains a kinetic term related to the motion of electrons and a potential term
Û(r) inwhich an effective potential for both electron-nucleus and electron-electron interaction is
considered. The complex problem of solving the Hamiltonian of a solid has been reduced to the
study of single electrons in a period potential. In fact, since the ions in the crystal are arranged
in a regular fashion, the potential felt by the electrons is taken to have the same periodicity of
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the underlying lattice,
Û(r) = Ûi(r + T ).

The solution to the many-electrons Hamiltonian H can be written as the product of single-
electron wave-functions,

Φ = ϕ1(r1)ϕ2(r2) . . . ϕN (rN ),

with N being the number of electrons.

We are now left with finding the solution to the motion of a single-electron in a periodic po-
tential. To this aim, there is an important theorem in SSP which goes under the name of Bloch’s
Theorem, the statement of which is the following:

Theorem 3.1.1 (Bloch’s theorem) The solutions ϕ to the one-electron Schrödinger equation with pe-
riodic potential must be of a special form:

ϕk(r) = eik·ruk(r).

They are the product of a plane-wave eik·r times a function uk(r) which has the same periodicity of the
crystal lattice.

The theorem is a consequence of the translational symmetry: since the Hamiltonian and the
generator of the translational group T̂ commute, they can be simultaneously diagonalized, en-
forcing the appearance of a quantumnumber k, which can be associated to a quantity ℏk named
crystal momentum. An important consequence of Bloch’s theorem is that the functions ϕk(r) are
periodic in the reciprocal space, meaning that ϕk(r) = ϕk+G(r) for any translation G in the
reciprocal space. This allows to restrict the study of the wave-functions ϕk to the vectors k be-
longing to the first Brillouin zone.

Due to the periodicity of Bloch’s functions in k, they can be expanded in Fourier series in the
direct space

ϕk(r) =
∑
j

WRj (r)e
ik·Rj

by introducing a set of functions WR(r) called Wannier functions, here R is any lattice vector
in the direct space. These functions have the important property of being localized on lattice
vectors R [21].

It is convenient to simplify thismodel even further, bymaking use of the tight-binding approxima-
tion. As illustrated in Figure (3.2), in a tight-binding approach, valence electron wave-functions
are localized on the atoms and, thus, on lattice sites. This model is considered to be appropriate
to describe the low-energy physics that we are interested in. Moreover, we assume that all the
orbitals except for the lowest in energy, the s-band, are energetically unavailable. The localiza-
tion property of Wainner functions makes them a good candidate to be used in this context: we
introduce creation and annihilation operators, such that the former, c†iσ, creates an electronwith
spin σ in a Wannier state localized at site i and the latter, ciσ, destroys it.
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a)

b)

c)

d)

Figure 3.2: Schematic represenation of tight-binding approach [22]. (a) A single atom
with its energy levels. (b) When atoms of this kind are put on a lattice structure, it
can happen that external atomic orbitals overlap and hybridize, forming conducting
bands (for example the black band if the figure) where electrons become itinerant.
Electrons on these bands are not considered in a tight-binding approach. Rather, it
focuses on electrons that aremostly localized on atomic sites, but have a non-negligible
probability of tunnelling to neighbouring atoms, as depicted by the dark-gray energy
level in (c). Schematically, this approach reduces to electrons positioned on lattice
sites, shown in (d), with the ability of hopping to other sites.

At this point, we introduce a term in the Hamiltonian that reflects the essence of the Hubbard
model: a pair-wise interaction V between electrons. With the addition of this interaction term,
the Hamiltonian in equation (3.4) becomes

H =
∑
i

(
− ℏ2

2m
∇2

i + Ûi(r)

)
+
∑
i,j

V (ri, rj).

It is possible [23] to rewrite the Hamiltonian in terms of the Wannier creation and annihilation
operators that we introduced, obtaining the Hamiltonian in second quantization

H =
∑
ij

∑
σ

tijc
†
iσcjσ +

∑
ijmn

∑
σσ′

vijmnc
†
iσc

†
jσ′cnσ′cmσ,

where i, j,m, n label sites and σ, σ′ indicate the spin of the operators. The coefficients in the
above expression are given by

tij =

∫
drW ∗

Ri
(r)

[
− ℏ2

2m
∇2

i + Ûi(r)

]
WRj (r)

vijmn =

∫
dr

∫
dr′W ∗

Ri
(r)W ∗

Rj
(r′)V (r, r′)WRm(r

′)WRn(r)
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The Wannier states are mostly localised on atomic sites, it is thus reasonable to assume only
nearest neighbor interaction and, furthermore, we consider the parameter ti, = t to be site-
independent. If the interaction parameters vijmn are negligible compared to the hopping pa-
rameter t, we obtain the tight-binding limit and the model can be treated with conventional
band theory. The Hubbard Hamiltonian introduces non-negligible interaction to the picture.
In particular, we will focus on on-site interactions vijmn = viiii. The parameter viiii = U is
assumed to be site independent. Hubbard made an estimate of the order of magnitude of the
various matrix elements present in the Hamiltonian, which lead to the possibility of neglecting
all the terms except for the on-site interaction U and the nearest neighbour hopping t. These
final approximation leads to the Hubbard Hamiltonian in its simplest form:

H = −t
∑

⟨i,j⟩
∑

σ

(
c†iσcjσ + h.c.

)
+ U

∑
i c

†
i↑ci↑c

†
i↓ci↓ . (3.5)

It is important to notice that the some of the arguments used to derive theHubbardHamiltonian
are based on the periodicity of the lattice. As introduced in Section (2), the lattices we consider
in this thesis are not periodic and, even if this feature enables the emergence of new interesting
properties, Bloch theorem is not applicable. This problem was tackled in a recent study [24] in
the context of quasicrystals. In a quasicrystal, the atoms are arranged in a pattern not regularly
repeated, they are not periodic but have long-range order. In the study, a numerical method
is introduced to generate the Wannier orbitals, required by the Hubbard Hamiltonian, without
making use of the Bloch theorem. The authors argue that the external potential induced by
such structure still has minima on the lattice sites, the depth of which is not the same for all
sites. The resulting Hamiltonian has parameters t and U which are site dependent. However,
for our lattice configurations, the distance between the nearest-neighbor sites is always the same,
and there is no apparent reason for the potential, and thus the parameters, to be site dependent.
Therefore, we are going to consider the Hamiltonian as originally derived in the context of SSP.

3.2 The Hubbard Hamiltonian

In this section, wedescribe theHubbardHamiltonian of equation (3.5) fromamore phenomeno-
logical point of view. In the tight-binding approximation andwith the s-orbital choice, each site
can host four different type of states: one electron with spin-up, one electron with spin-down,
no electrons or one spin-up and one spin-down electron,

The behaviour of these electrons is governed by the Hamiltonian, which contains two terms: a
kinetic term (gray box in Equation (3.5)) and a potential term (black box in Equation (3.5)).

The kinetic term describes the hopping of electrons to neighbouring sites ⟨i, j⟩, it destroys the
electron on one site and creates it on the other. The energy scale of hopping is moderated by
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the parameter t, sometimes referred to as hopping parameter, which, in turn, quantifies the over-
lap of the wave-functions of the pair of atoms. We approximate the electrons to only jump to
neighbouring site and justify this assumption by considering that the wave-functions decay ex-
ponentially from the center of the atom, i.e. from the lattice site.

The potential term describes on site interaction between electrons with opposite spin on the
same site. It originates from Coulomb interaction between electrons. Since this type of interac-
tion is inversely proportional to the distance between electrons, we assume it to be 0 if the site
is empty or has only one electron, while it equals U if the site has double occupancy. These two
terms are schematically represented in the following picture:

t
U

The Hubbard Hamiltonian is meaningful because it captures the interplay between two be-
haviours:

• electron hopping, consequence of the kinetic term, tends to delocalize the electrons, lead-
ing to a metallic behaviour,

• on-site electron interaction, which stems from the potential term, and favours the local-
ization of electrons on sites. This term leads to insulating behaviour.

Finally, we list some symmetry properties of the system, which will play a determinant role
in the next sections. The Hamiltonian is invariant under global U(2) symmetry, which can be
written as the direct product of the U(1)×SU(2) groups. The U(1) element of this product sat-
isfies the missing degree of freedom of the SU(2) element by introducing a phase. The Gauge
U(1) symmetry leads to conservation of the charge and, hence, of the total number of particles.
Moreover, we can also claim that the total number of particles with spin-up and spin-down is
separately conserved, and it is immediate to see that this holds for both the kinetic and poten-
tial term in the Hamiltonian. In fact, the former simply moves electrons in the lattice without
changing their number, while the latter commutes with the number operators ni,σ = c†i,σci,σ.
The SU(2) symmetry implies thatH , S and Sz can be simultaneously diagonalized, and makes
the system spin-rotational invariant C. Under specific conditions of the lattice, the system
presents particle-hole symmetry (Appendix A) which will be useful to interpret some of our
result in the next sections.

3.3 Quantum Phases of the Hubbard Model

Despite extensive analytical and numerical explorations, there are still unresolved questions
regarding the properties of the Hubbard model, which is considered one of the fundamental
models in quantum physics. Even at the mean-field level, the complete determination of its
phase diagram and the comprehensive understanding of its ground state magnetic properties



3.3. QUANTUM PHASES OF THE HUBBARDMODEL 27

are yet to be achieved. The scope of this section is to present some of themostmeaningful results
discovered after the introduction of the model, with a focus on systems related to the studies
performed in this thesis.

One of the first achievements of the Hubbard model [25] was to explain the insulating nature
of certain types of materials called Mott insulators, such as NiO, which are predicted to be con-
ductors by band theory. In band theory, within the independent electron description, a material
is considered metallic if the density of states at the Fermi level (defined as the thermodynamic
work necessary to add one electron to the system) is non vanishing [26]. On the other hand, if
the density of electrons in the Fermi level is null, the material must be an insulator. The insu-
lating nature of Mott insulators derives instead from the strong Coulomb interaction between
electrons. Tomake this concept clear, let us consider a half-filled band, a bandwith one electron
per lattice site. The electrons are allowed to move on sites populated by another electron with
opposite spin and the probability of this process depends on the strength of the interaction be-
tween electrons. In fact, if the interaction is small, electrons hop around the lattice leading to
a metallic behaviour, while if the interaction is strong, they avoid moving from their positions,
leading to an insulating behaviour [27].

Another established result regards the strong-interaction limit, where the Hubbard model can
be mapped to the spin-1/2 antiferromagnetic Heisenberg Hamiltonian [28]. This result was ob-
tained by perturbatively expanding the Hamiltonian in t/U , the first order of which vanishes,
leading to the aforementioned result in second-order of perturbation. It is also known that in
the translationally invariant case, there is long-range spin order for d ≥ 3, d being the dimension
of the lattice [29].

A great result was achieved in 1968 by Lieb and Wu, who solved the model exactly in one di-
mension (1d), using the extension of the ”Bethe ansatz” technique [30]. However, even if the
model in 1d is exactly solvable, the two dimensional (2d) Hubbard model has become a focal
point of research in condensed matter and quantummany-body physics, soon after the discov-
ery of high-Tc cuprate superconductors. In fact, it was pointed out that the 2D Hubbard model
might be an appropriate minimal model for high-Tc cuprates [31]. Moreover, 2d allows the
choice of different lattice geometries, which can lead to the existence of new types of phases.
One of such geometries is the triangular lattice, where geometrical frustration could lead to ex-
otic phases. The model at U = 0 is exactly solvable. At half-filling it forms a metal, while at
U → ∞ it tends to the Heisenberg model with long-range antiferromagnetic spin order. There
is a phase transition between the metallic andMott-insulating regime, which has been found to
be a non-magnetic insulating phase [15][3].

The studies on honeycomb types of lattices are also meaningful for our investigation, due to the
similarity to the unfrustrated Sierpinski lattice that we consider. In contrast to the square lattice
at half-filling, where the ground state of the system is found to be an antiferromagnetic insula-
tor for every value of interaction strength U > 0 due to perfect nesting, the half-filled Hubbard
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Figure 3.3: Figures from a recent study of the Hubbard model on the hexagonal
golden-mean tiling [33]. In (a) the lattice, in (b) one of the confined states found
in the tight-binding regime. 1 and −1 represent the amplitude of the wave-function
on a particular site.

model on the honeycomb lattice undergoes a transition to the antiferromagnetic phase at a finite
value of interaction. Using QMC simulations[32], it was found the ground-state of the system
on this lattice was found to behave as a paramagnetic semi-metal in the small-U regime and
antiferromagnetic at strong-U , identifying the transition at a critical value of Uc/t ≃ 4.5.

Since more has been established theoretically and numerically on the Hubbard Hamiltonian
at half-filling, studies tend to focus on this particular regime. However, investigation of the
model away from half-filling also revealed interesting physics. For example, doping the anti-
ferromagnetic phase of the Hubbard Model on the square lattice revealed the presence of spin
and density waves with different characters, at a mean-field level [13].

Finally, a study very relevant for this thesis, due to the aperiodicity of the related lattice, is
related to the Hubbard model on an hexagonal golden-mean tiling [33], shown in Figure (3.3).
The implementation of the Hubbard Hamiltonian reveled, at a tight-binding level, the existence
of degenerate states with interesting spatial patterns. These states were found to be responsible
for a ferrimagnetically ordered regime for weak-interaction. Stronger Coulomb interaction lifts
this degeneracy, giving rise to a finite staggered and uniform magnetization.



4 | Tight-bindingModel on a Fractal Lat-
tice

As a first approach to the system, we consider the non-interacting Hubbard Hamiltonian, since
we expect the connections among the sites on a fractal to affect mainly the hopping term of the
Hamiltonian. After setting U = 0 in equation (3.5), we get the Hamiltonian in the tight-binding
limit

HTB = −t
∑

⟨i,j⟩∈Λ

∑
σ

(
c†iσcjσ + h.c.

)
, (4.1)

which physically represents electrons freely hopping around the lattice, without any energy cost
for double occupation of lattice sites. Here, and for the rest of the work, we set open boundary
conditions. Our aim is to find the ground-state energy and wave-function of this Hamiltonian,
and study their properties.

Naively and driven by the simplicity of the form of the Hamiltonian, one could think of diago-
nalizing the Hamiltonian exactly and identifying the ground-state energy as the lowest energy
eigenvalue and the ground-state wave-function as its corresponding eigenvector. To diagonal-
ize the Hamiltonian, we first need to choose a basis and our convention for the basis choice is, in
the Fock space, stringswith 2×M entries that can take values of either 0 or 1 (1means that there
is an electron, 0 that there is not) and that identify the positions of the electrons on the lattice
[34]. We also need to define an order: the first half of the entries represents spin up particles
populating the numbered lattice sites, while the second represents spin down particles with the
same lattice site ordering. For example, some basis vectors can have the form:

|1, 0, . . . , 0︸ ︷︷ ︸
N↑

, 0, . . . , 0︸ ︷︷ ︸
N↓

⟩ −→ One spin-up particle on site one

|1, 0, . . . , 0︸ ︷︷ ︸
N↑

, 1, . . . , 0︸ ︷︷ ︸
N↓

⟩ −→ One spin-up and one spin-down particle on site one.

For now, it is not important to have inmind a specific ordering of the lattice sites, wewill specify
it later in this section.

The number of such basis states depends on the number of particles we consider: if we choose
N↑ spin-up particles and N↓ spin-down particles, the number of basis states coincides with the

29
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number of possible ways we can distribute N↑ indistinguishable spin-up electrons on M sites
and, similarly for the spin-down electrons, obtaining a number of

(
M

N↑

)(
M

N↓

)

basis states for a specific configuration of N↑ and N↓ electrons. Summing over the possible
number of spin-up and -down electrons, which goes from zero to the number of sites, we get
the total number of basis states

M∑
N↑=0

M∑
N↓=0

(
M

N↑

)(
M

N↓

)
= 4M .

Since this number grows exponentially with the number of sites, exact diagonalization is a com-
putationally demanding method to solve the Hamiltonian and we need to follow a different ap-
proach in order to be able to study large-size systems.

As better detailed in the next section, we are going to make use of some properties of the many-
body Salter Determinant to compute interesting expectation values of the ground-state, such as
ground-state energy and average electron density per lattice site.

4.1 Slater Determinant space

In this section, we are going to develop the formalism behind the implementation of our model
[35]. The idea behind themethod is that, in the framework of the second quantization and tight-
binding approach, one builds the possible single-particle orbitals as superpositions of single-site
wave-functions. These orbitals, in turn, are used as basis of theN -particle Fock space where we
are able to construct anti-symmetrized many-body wave-functions making use of Slater deter-
minants.

Let us consider a single particle withM possible states, which can be seen as theM lattice sites
in the context of the Hubbard model. The basis in the Fock space with N = 1 is made of states
denoted by |χi⟩, which represent the single particle in the i−th state with i = 1, . . . ,M . These
states can also be written in terms of their relative creation operators c†i acting on the null vector
as χi = c†i |0⟩.

A general-single particle state |ϕ⟩ can be written as a linear combination of the single-particle
basis states

|ϕ⟩ =
M∑
i=1

ϕi |χi⟩ ,

from which it is clear that, given the chosen basis, the single-particle state is uniquely deter-
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mined by the coefficients 
ϕ1

ϕ2

...
ϕM

 .

We are going to denote by ϕ̂† the creation operator that, acting on the null vector, generates |ϕ⟩.

In order to find the totalN -particle state, we need to take anti-symmetrised linear combinations
of the single-particle states

|Φ⟩ = ϕ̂†
1ϕ̂

†
2 . . . ϕ̂

†
N |0⟩ ,

which is referred to as a Slater determinant since its first-quantized counterpart (??) involves
the computation of a determinant. This many-body is represented by the following matrix:

Φ =


ϕ1,1 ϕ2,1 . . . ϕN,1

ϕ1,2 ϕ2,2 . . . ϕN,1

... ... ...
ϕ1,M ϕ2,M . . . ϕN,M

 .

and we will refer to this also, for brevity, as a Slater determinant. In fact, the determinant of this
matrix corresponds to the Slater determinant introduced in first quatization where, instead of
considering the coefficients as entries of the matrix we considered the orbitals.

The Slater determinants we introduced satisfy some useful properties:

• The product of two Slater determinants |Φ⟩ and |Φ′⟩ satisfies ⟨Φ|Φ′⟩ = det(Φ†Φ′).

• The action of an operator of the form B̂ = exp
(∑M

i,j c
†
iUi,jcj

)
on a Slater determinant |Φ⟩

yields another Slater determinant

B̂ |Φ⟩ = |Φ′⟩ with ϕ̂′†
m =

∑
j

c†jΦ
′
jm and |Φ′⟩ = eU |Φ⟩ .

This is also known as the Thouless Theorem.

• We can write the total state |Φ⟩ as the tensor product of the states in the spin up and spin
down sector

|ϕ⟩ = |ϕ↑⟩ ⊗ |ϕ↓⟩

or, in matrix representation:
Φ = Φ↑ ⊗ Φ↓.

Using these properties, we can relate the Slater Determinant to physical quantities through the
following identity

⟨c†j,σci,σ⟩ =
⟨Φ|c†j,σci,σ|Φ⟩

⟨Φ|Φ⟩
=
[
Φσ[(Φσ)†Φσ]−1(Φσ)†

]
i,j

= Gσ
ij , (4.2)
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the validity of which is shown in Appendix (B).

The average density of electrons per lattice site ⟨ni⟩ is given by the sum of the density of spin-up
⟨c†i,↑ci,↑⟩ = ⟨ni,↑⟩ and spin-down ⟨c†i,↓ci,↓⟩ = ⟨ni,↓⟩ electrons

⟨ni⟩ = ⟨ni,↑⟩+ ⟨ni,↓⟩ = ⟨c†i,↑ci,↑⟩+ ⟨c†i,↓ci,↓⟩ = G↑
ii +G↓

ii. (4.3)

The total energy corresponds to the expectation value of the Hamiltonian in the many-body
wave-function

ET = ⟨HF ⟩ = −t
∑

⟨i,j⟩∈Λ

∑
σ

(
⟨c†iσcjσ⟩+ ⟨c†jσciσ⟩

)
= −t

∑
⟨i,j⟩∈Λ

∑
σ

(
Gσ

ji +Gσ
ij

)
. (4.4)

4.1.1 Implementation

We implemented the tight-bindingHubbardHamiltonian (4.1) inMatlabwith the aimof study-
ing its ground-state properties. The implementation method is based on the idea of relating
physical properties to the matrices G that we introduced in the previous section: the first part
of the code deals with generating the matrices and the second with using them to compute in-
teresting quantities. In this section, we are going to give more details on the implementation
method.

Looking at equation (4.2), we realize that generating the desired matrix G requires the compu-
tation of the Slater determinants Φ. These are matrices built by vertically casting single-particle
solutions of the tight-binding Hubbard Hamiltonian, which can be divided into the sum of the
Hamiltonian that describes the hopping of up and down electrons: these two Hamiltonians
are identical and independent of each other. Therefore, we can simplify the problem and di-
agonalize the Hamiltonian as if we had only spin-up or down, this is a N × N matrix. After
obtaining the single-particle eignevalues and eigenvectors, we build the Slater determinant Φ↑

by casting the N↑ eigenvectors corresponding to the lowest N↑ eigenvalues. The same is done
for Φ↓. These Slater determinants can be used to compute G↑ and G↓ which, in turn, yield the
desired expectation values when plugged in the expressions in equations (4.3) and (4.4). By
employing this method, we are able to reduce the computational demand when considering
large systems: exact-diagonalization scales exponentially with the size of the system while the
implementation just introduced scales algebraically.

In the next sections, we study the density of electrons per lattice site and themany-body ground-
state energy, computed as in equation (4.3) and (4.4), for different values of electronic filling
and for different generation of the fractal lattice. We do this with the aim of understanding how
the geometry of the lattices influences theway the electrons distribute and the energy spectrum.
In fact, the kinetic part of the Hubbard Hamiltonian contains information about the structure
of the lattice: each element of the Hamiltonian matrix corresponds to a link between two sites
and its value determines the possibility and the amplitude of the hopping between them.
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4.2 First generation of the fractal lattice

Let us start considering the first generation of the fractal lattice, which has 9 lattice sites and
is shown in Figure 4.1(a). Figure 4.1(b) shows the ground-state energy for different values of
electron filling, keeping them balanced N↑ = N↓ = Nσ.
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Figure 4.1: (a) First generation of the fractal lattice and (b) its corresponding many-
body ground-state energy for different values of Nσ. The x axis in (b) indicates the
number of electrons of one kind σ, the total number of electrons in the system is 2Nσ.

We consider the average density per lattice site, which is found by computing the quantity de-
rived in equation (4.3) for each lattice site. Then, we examine the configurations as we increase
the number of electrons that populate the system, again keeping the total number of up and
down electrons equal.

In Figure 4.2(a), we show the density distribution when the system is populated with one spin-
up and one spin-down electron Nσ = 1. Notice that the sites with higher connectivity, i.e. the
three sites with three neighbours at the centre of the triangles, have a higher density. We can un-
derstand this behaviour by taking into account the fact that hopping is energetically favourable,
so in the ground-state it is preferable to store electrons in sites where they havemore probability
to hop. Along this logic, the sites with connectivity 2 are less populated, followed by the sites at
the corners, which are connected to the lattice just through one link. If we increase the number
of electrons and placeNσ = 3 electrons, the Pauli exclusion principle starts to play a role, mean-
ing that two electrons with same spin can not occupy the same lattice site. The electrons do
not have a choice but to be placed on sites kinetically less favourable, if the most favourable are
already occupied. In Figure 4.2(b) we observe that, for example, the corner sites are populated.

Whenwe exceed half-filling, i.e. the case where the total number of electrons coincides with the
number of sites, the pattern is inverted: the three corners are then more populated, followed by
the sites with connectivity 2 and finally the sites with connectivity 3, as shown in Figure 4.2(c).
It seems energetically more favourable to store electrons in the corners and let the ones in the
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Figure 4.2: Average density configuration of the tight-binding ground-state on the first
generation of the fractal lattice with filling (a) Nσ = 1, (b) Nσ = 3, (c) Nσ = 8 and
(d) Nσ = 6.

bulk hop. Configurations above half filling follow this patter, as we can see if we look at the
configuration with Nσ = 8 in Figure 4.2(c).

The behaviour of the system can be explained in terms of particle-hole symmetry. In fact, the
tight-binding Hubbard Hamiltonian on the fractal lattice is particle-hole symmetric, as we can
see by setting U = 0 in equation (A.2). This explains the symmetry of the energy spectrum
around half-filling in Figure (4.1). Regarding the average density per site, from the equality of
the Hamiltonians, it follows that the density configuration obtained by placingNσ = 1 particles
in an empty lattice is the same density configuration obtained by placing Nσ = 1 holes in a
fully-filled lattice, which corresponds to Nσ = 8. Therefore, recalling that

ni = 2− ni

we get the density configuration of particles in Nσ = 8 by subtracting the density correspond-
ing to Nσ = 1 from 2. The same reasoning applies to configurations Nσ = 3 and Nσ = 6. We
also notice that the symmetry is manifest in the dependence of the total many-body energy as
a function of electronic filling, Figure 4.1(b). Moreover, in this figure we observe the presence
of a degenerate level around half-filling.

The sites on the lattice can be categorized and grouped depending on their connectivity and
position in the lattice. We expect sites belonging to the same group to have the same density. In
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the density configurations shown in Figure (4.2), this property holds. Let us look, for example,
the configuration with Nσ = 1: the first group of sites with identical geometrical property is
constituted by sites 2, 5 and 7, the second group ismade of sites 4, 8 and 3, finally the third group
has sites 1, 6 and 9. This behaviour can be seen as a consequence of the rotational symmetry
of 120 degrees and, therefore, we expect it to be satisfied for any value of Nσ. However, we
observed that some of the configurations from our implementation do not respect this property,
as it is shown in Figure (4.4) for the case Nσ = 2. The reason behind this behaviour is that the
filling does not close the degenerate energy level to which the higher-energy single-particle
wave-functions belong to. In the next section, we study the single-particle problem and we will
be able to make this statement clearer.

N =2
ET=-7.3

0.2

0.4

0.6

0.8

Figure 4.3: Average density configuration of the tight-binding ground-state on the first
generation of the fractal lattice with filling Nσ = 2.

4.2.1 Spectral Analysis

In order to understand more in detail the behaviour of the system, we must determine the
eigenvalues and eigenvectors of the single-particle Hamiltonian which, in turn, are used in the
Slater determinant to construct the many-body wave-function and, therefore, responsible for
the many-body properties. The first generation of the Sierpinski lattice has 9 sites. Recalling
that spin-up and down are decoupled and can be treated independently, the Hamiltonian is a
9× 9 symmetric matrix, has 9 real eigenvalues and corresponding eigenvectors.

Before proceeding with the study of the degeneracies, it is convenient to give an interpretation
to the tight-binding Hamiltonian as the adjacency matrix of a graph. In graph theory, a graph
is a set of vertices {u1, . . . un} linked between each other. It can also be characterised by a n× n

matrixA, called adjacency matrix, whose elementsAij describe the connection between the sites
ui and uj : if the element is zero the vertices are not connected; if it is different than zero, the
vertices are connected and its value quantifies the weight of the connection. In our case, the
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Figure 4.4: Spectrum of the single-particle tight-binding Hamiltonian for the first gen-
eration of the Sierpinski lattice. The spectrum showsdifferent energy levels: three-fold
degenerate level that we call CLS type-1 (the reason will be explained in this section)
at zero energy, two two-fold degenerate levels at E = ±

√
2 and two non-degenerate

levels.

tight-binding Hamiltonian in equation (4.1) can be seen as the adjacency matrix of the graph in
Figure 4.1(a), where the weight of the links between connected sites is −t,



0 −t 0 0 0 0 0 0 0

−t 0 −t −t 0 0 0 0 0

0 −t 0 0 −t 0 0 0 0

0 −t 0 0 0 0 −t 0 0

0 0 −t 0 0 −t 0 −t 0

0 0 0 0 −t 0 0 0 0

0 0 0 −t 0 0 0 −t −t

0 0 0 0 −t 0 −t 0 0

0 0 0 0 0 0 −t 0 0


.

Moreover, we can interpret the action of the Hamiltonian on a state as walks on the graph. For
instance, let us consider a particular state χ, which in our formalism is a 9-elements vector. The
ith element can be associated to the probability amplitude for the state to be on the ith site. The
state we choose has an amplitude 1 of being on site 1. Acting with the Hamiltonian on the state
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generates another state χ′

|χ⟩ =



1

0

0

0

0

0

0

0

0


−→ |χ′⟩ = −t



0

1

0

0

0

0

0

0

0,


which has been moved to site 2 with amplitude −t. The Hamiltonian walks the states on the
graph according to its links and its weights.

With these insights from graph theory, we are now ready to investigate the spectrum of the
Hamiltonian looking at the eigenstates and starting from the three-fold degenerate level at zero
energy. In this analysis, we set the hopping parameter to be t = 1. In Figure (4.5), we show a
pictorial representation of the states on the lattice with their amplitude and parity.
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+ 1

+ 1
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E5=0

+ 2
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Figure 4.5: Amplitude scaled to unity of the three eigenvectors in the the zero-energy
level of the tight-binding Hamiltonian, in (a) χ4, in (b) χ5 and in (c) χ6. Dark-green
and purple dots on the lattice represent, respectively, negative and positive amplitude
of the wave-function on the sites. On sites where there are white dots, the amplitude
is zero.

An interesting behaviour becomes evident: the amplitudes on sites that belong to the sub-lattice
in the center of the triangles are zero. This is a consequence of the fact that the amplitudes of
their neighbouring sites sum up to zero. We are going to refer to this type of behaviour as de-
structive interference. It is not possible to walk these +1 and −1 states on the lattice applying the
Hamiltonian because these sites are connected to sites on the lattice where destructive interfer-
ence takes place. Therefore, these states are referred to as compact-localized states (CLS), since
they are localized on a specific set of sites in the lattice and their amplitude on the rest of the
sites is exactly zero.
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Moreover, from these eigenvectors we can deduce the emergence of corner modes after half-
filling. First, we are going to select, in the degenerate space of eigenvectors, three convenient
linearly-independent eigenvectors that are generators in the degenerate space. This means that
from the linear combination of these eignevectors, we should be able to construct every state in
the degenerate space. Being aware that these zero-energy states occupy the sub-lattice in the
corners of the triangle, and inspired by the three-fold rotational symmetry of 120 degrees, we
can substitute eigenvector χ6 with a new eigenvector χ′

6, obtained by rotating χ5 and χ4 of 120
degrees, the former clockwise and the latter counterclockwise. We obtain the set of eigenvectors
shown in Figure (4.6) which, even-though non-orthogonal, span the degenerate space.

+ 1

+ 1

-1

(a) 4
E4=0

+ 1

+ 1

-1

(b) 5
E5=0

+ 1 + 1-1

(c) ′
6

E′6=0

Figure 4.6: Amplitude scaled to unity of the three basis eigenvectors in the zero-energy
level of the tight-binding Hamiltonian, in (a) χ4, in (b) χ5 and in (c) χ′

6 obtained
by rotating one of the other eigenvectors. Dark-green and purple dots on the lattice
represent, respectively, negative and positive amplitude of the wave-function on the
sites. On sites where there are no dots, the amplitude is zero.

Since the eigenstates in the zero-energy degenerate space are linear combinations of these three
basis states, we can understandwhy these states contributemore to the amplitude in the corners:
they share the corners, where amplitudes can add up. We can see this happening in eigenstate
χ6 in the first set of eigenstates in Figure (4.6). This can be written as

|χ6⟩ = |χ4⟩+ |χ′
6⟩ − |χ5⟩

and we notice that the site in the corner number 1 has at least double the modulus of the ampli-
tude of the rest of the lattice sites. A possible final configuration is then obtained by summing
up χ4 + χ5 + χ′

6, leading to the wave-function shown in Figure (4.7).

We are now going to consider the states in the two-fold degenerate energy levels. Unlike the
degeneracies corresponding to the zero level, which are due to destructive interference, these
states originate from symmetries of the system. It is quite straightforward to understand how
symmetries and degeneracies are connected. Consider a transformation T that is a symmetry
of the system, and thus commutes with the Hamiltonian. If |χ⟩ is an eigenvector of the Hamil-
tonian,

H |χ⟩ = χ |χ⟩ ,
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Figure 4.7: Wave-function with great contribution to the corners, obtained by sum-
ming the basis of the zero-energy degenerate eigenvectors χ4 + χ5 + χ′

6.

all the states obtained by applying a transformation T are eigenvectors corresponding to the
same eigenvalue

H (T |χ⟩) = TH |χ⟩ = χ (T |χ⟩) .

If there is a finite number of such transformations, i.e. the transformations form a group with
finite order, then we can argue that there are possibly as many degenerate states. Actually, the
number of degenerate states coincides with the dimension of the irreducible representation of
the group [36].

The symmetries of our system belong to the C3v point-symmetry group, which has order 6 and
the symmetries operations are:

• E identity: leaves the coordinates unchanged,

• C3 and C2
3 rotations: rotates the coordinates by an angle of 2π/3 counter-clockwise,

• σ1, σ2 and σ3 reflections: reflection of the coordinated with respect to the planes 1, 2 and
3 in Figure (4.8).

The dimension of the irreducible representations of C3v is 2 and this explains the two-fold de-
generacy of these states. In Figure (4.9), we can see the eigenvectors corresponding to the two-
fold negative energy level. Theymake evident the symmetry with respect to two of the possible
reflection axis. In order to intuitively check that this is an eigenstate of the Hamiltonian with
energy −

√
2, we observe that computing each element of the vector H |χ⟩ simply consists in

summing the amplitudes of neighbouring sites and multiplying by −1. Following this logic, it
is plausible that in the ground-state larger amplitudes are placed in siteswithmore connectivity,
explainingwhy the sites in center of the triangles aremore populated in these degenerate levels.
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symmetry axis

Figure 4.8: Pictorial representation of the three reflection-symmetry axis (lines in
green) of the Sierpinski triangle σ1, σ2 and σ3.

In Figure 4.9(b) and Figure 4.9(c), we observe the eigenvectors corresponding to the positive en-
ergy level. The pattern is similar to the negative energy states, and the opposite energy derives
from casting amplitudes with opposite parity in the centre and in the corners of the populated
sub-triangles.

From the study of the eigenvectors, we can conclude that it is in accordance with what we ob-
served in the behaviour of the density configurations for increasing number of electrons: when
considering lower energy eigenvalues, the sites in the center get populated, followed by the cor-
ners and finally again by the sites in the centre until filling up the whole lattice. The energy
spectrum of the many-body configurations can be reconnected to the energy levels: the con-
figurations have negative many-body energy below half-filling, followed by a region where the
energy does not change (we are filling the systemwith zero-energy degenerate CLS), and finally
the positive-energy eigenstates arise when increasing the filling, bringing the final many-body
energy back to the initial value. Moreover, it is now possible to explain the wrong behaviour of
the density configurations for certain values of electronic filling: if the filling corresponds to an
eigenstate that does not close a degenerate energy-level, the code could select states found by
taking arbitrary combinations of the eigenvector basis, spoiling the symmetry properties that
we observe in other configurations. We indeed find that the issue emerges in configurations
with fillingNσ = 2, 4, 5, 7. This random choice of eigenvectors in the level disappears when the
filling closes the degenerate energy level.
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Figure 4.9: Eigenvectors (a) χ3 and (b) χ4 corresponding to the two-fold degenerate
eigenvalues with energy E = −

√
2, eigenvectors (c) χ7 and (b) χ8 belonging to the

two-fold degenerate level with energy E =
√
2.

4.3 Second generation of the fractal lattice

Given the self-similarity of the fractal structure that we consider, we expect to observe a similar
behaviour for higher generations of the Sierpinski triangle. Let us consider, for example, the
second generation. We represent in Figure (4.10) both the lattice with our enumeration conven-
tion and the energy dependence of the many-body ground-state on the electronic fillings. Now,
there are 24 sites in the system. As expected, we observe a similar behaviour in the energy level
distribution: it is symmetric around half-filling, where the energy is zero and other degenerate
states are present. What changes is the number of such degenerate states, that will be explained
in this section again through spectral analysis.
Before considering the single-particle contributions, let us observe some density configurations.
In Figure 4.11(a) and Figure 4.11(b), we show the average density for withNσ = 3 andNσ = 21.
First, notice that the particle-hole symmetry is still present, as expected: one places particles in
a lattice of holes the same way as one places holes in a lattice of particles. From the behaviour
in Figure 4.11(a), one can argue that it is energetically favourable for the electrons to not only
be on sites with more connectivity, as we saw for the first generation, but also on sites placed
in the inner part of the structure. The reason for this to happen is that hopping is energetically
convenient; hence it is natural that positions where this is more probable are preferred.
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Figure 4.10: (a) Second generation of the fractal lattice and (b) its corresponding
many-body ground-state energy for different values ofNσ. The x axis in (b) indicates
the number of electrons of one kind σ, the total number of electrons in the system is
2Nσ.

In order to investigate what happens in the zero-energy band around half-filling, we present
the first and last density configuration states in the band, which are the configurations with
Nσ = 9 and Nσ = 15 in Figure 4.11(c) and Figure 4.11(d) respectively. Comparing configura-
tion Nσ = 9with configuration Nσ = 3, we see that as the number of electrons is increased, the
sites with more connectivity in the outer regions become populated, as a consequence of the
Pauli exclusion principle.

We now compare configuration Nσ = 9 with Nσ = 15 to understand the consequence of the
zero-energy states populating the system. In order to do so, we divide the lattice sites in groups
of sites that undergo the same change: we will call corners the sites 1, 14, 24 at the three corners
of the lattice, center refers to the sites at the center of the triangles, connection stands for the sites
6, 9, 21 that connect the three 1st generation triangles and inner connection labels the remaining
sites that connect the three smallest triangles in each of the 1st generation triangles, for example
sites 3, 4, 8. Figure (4.12) shows how the density changes from configurationNσ = 9 toNσ = 15

and compares their rate of increase. First, we notice that all curves intercept at unity the density
in the centre sites, which is consistent with the fact that at half-filling Nσ = 12, we expect the
average density to be one on every site. Since the density on the centre sites does not change
from configuration Nσ = 9 and Nσ = 15, we expect the destructive interference to take place at
a single-particle level on those sites also in this generation. Then, we notice that the corners are
the sites where the density increases the most, followed by the inner connections and finally by
the connection between the smallest triangles. In order to be able to explain this behaviour, as
well as the number of zero-energy degenerate states, we are nowgoing to solve the tight-binding
Hamiltonian at a single-particle level, as we did for the first generation.
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Figure 4.11: Average density configuration of the tight-binding ground-state on the
second generation of the fractal lattice with filling (a) Nσ = 3, (b) Nσ = 21, (c) Nσ =

15 and (d) Nσ = 9.
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Figure 4.12: Increase in average density on the sites belonging to the 4 sub-set of lattices
we identified in the configuration with Nσ = 9 and Nσ = 15. This representation
doesn’t contain information about the density in the fillings between 9 and 15, but
only compares the values at these two fillings.
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4.3.1 Spectral Analysis

Following the same method used for the first generation, we obtain the energy spectrum of the
Hamiltonian at the single-particle level. The results are shown in Figure 4.13(a), where we can
count the number of zero-energy degenerate states to be 6 for this generation. This number
corresponds to the dimension of the degenerate space of energy zero, i.e. to the number of
linearly independent basis states. In the first generation, we selected the eigenstate χ4 of Figure
4.6(a) and by a rotation of 120 degrees clockwise and counterclockwise, we found the other
two eigenstates. In order to explain the existence of 6 degenerate states, the idea is to find two
prototypical states, the rotation ofwhich gives 6 basis of the degenerate sub-space, meaning that
they need to be linearly independent and generate the possible states in the space. We proceed
by constructing these eigenstates manually, since numerically wewould obtain combinations of
the building-blocks states thatwe are looking for. On the other hand, the numerical solutions are
useful to detect that indeed destructive interference still takes place and that the states belonging
to the zero-energy band are CLS. An example is shown in Figure 4.13(b).
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(a)CLS type-1
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Figure 4.13: (a) Energy spectrum of the single-particle tight-binding Hamiltonian of
the second generation of the fractal lattice. (b) An eigenvector belonging to the zero-
energy band CLS type-1. Dark-green and purple dots on the lattice represent, respec-
tively, negative and positive amplitude of the wave-function on the sites. On sites
where there are no dots, the amplitude is zero.

Figure (4.14) shows the two basis-state prototypes that we found for the second generation. On
sites in the centre of the triangles, the sum of the amplitudes of neighbouring sites must be zero
due to destructive interference. Hence, we claim that these two states and their respective rota-
tions of 120 degrees span the zero-energy degenerate space, giving in total 6 eigenstates. Once
again, we see the origin of the corner states: these eigenstates share states on the corners, the
amplitude of which gets amplified when taking linear combinations.

Moreover, we see that also some of inner connection sites are shared between multiple basis
states. For example, site 4 is populated in both state in Figure 4.14(a) and in Figure 4.14(b),
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Figure 4.14: Prototype basis states in the zero-energy degenerate space of the second
generation of the fractal lattice.

and this is the reason why the density on these states gets notably amplified. Comparing with
the case of the corners, we can explain the reduced rise in density by noticing that corners are
shared between three different basis states and one of themwith double amplitude, while some
of inner connection stated are shared by only two basis states. Regarding the connections be-
tween the three 1st generation triangles, they are not shared by different basis states. Hence,
their amplitude grows, but does not get amplified, and this is why the growth of the density is
smaller in Figure (4.12).

Studying non-zero energy levels also revealed the presence of CLS. Figure 4.15(a) shows the
energy spectrum of the second generation and puts in evidence eigenstates where compact lo-
calization takes place: aside from the zero-energy level also found in the first generation CLS
type-1, we observe the formation of a new type of CLS, one at energy level ET = 1 and one at
ET = −1, referred to as CLS type-2. The amplitudes of the wave-functions of the new class of
eigenvectors are shown in Figure (4.15), together with their parity on the lattice sites. Here and
in the remaining of the work, the type of a CLS identifies where destructive interference takes
place: states belonging to the same type have zero amplitude on the same sites.

In this new type of CLS, destructive interference is not restricted to only one of the sub-lattices
and takes place along the three reflection symmetry axis. This is the reason why this state is
not present in the first generation, where all the sites belong to the symmetry axis. Moreover,
it is already possible to predict that the property of compact localization will persist in the next
generations with the same energy: the corners are empty, so the entire configuration will not be
perturbed by adding compact localized configurations with same energy to the corners.
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Figure 4.15: Eigenstates corresponding to the eigenvalues of the two-fold unitary de-
generate level CLS type-2. (a) One of the eigenvectors with energy E = −1. (b) One
of the eigenvectors with energy E = 1. They are the second type of CLS found by
spectral analysis.

4.4 Higher Generations

With the aim of understanding how the states in the unitary energy level behave in higher gen-
erations and, perhaps, find new CLS, let us consider the spectrum of the tight-binding Hamil-
tonian for a next generation, shown in Figure (4.16).

0 10 20 30 40 50 60 70
Eigenvector

2

1

0

1

2

E

CLS type-1
CLS type-2
CLS type-3
CLS type-4
CLS type-5
Not CLS

Figure 4.16: Energy spectrumof the tight-bindingHamiltonian on the third generation
of the fractal lattice. Energies of eigenvectors where compact localization takes place
are identified by dots of different colors. Each color corresponds to a type of CLS.
The light-gray dots identify eigenvalues corresponding to eigenvector that do not have
property of compact localization.
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In the third generation, CLS with unitary energy become four-fold degenerate and other three
types of CLS appear at different energy levels. Figure (4.17) represents the different types of
CLS on the third generation, without considering the type−1, which has destructive interference
in the centre sites, since it doe not add new information.

(a) 24
E24=1

(b) 17
E17=-1.414

(c) 9
E9=-2.149

(d) 12
E12=-1.732

Figure 4.17: Four types of CLS on the third generation of the fractal lattice. (a) One of
the CLS type−2 with energy E = 1, (b) one of the CLS type−3 with energy E =

√
2,

(c) CLS type−4 with energy E = −2.149, (d) one of the CLS type−5 with energy
E =

√
3. The dark-green (purple) dots indicate sites with negative (positive) parity,

the size of the dots is indicative of the value of the amplitude: the bigger the dot the
higher the amplitude.

In Figure 4.17(a), it is possible to observe how the CLS with unitary energy evolves in the next
generation: destructive interference happens on sites along the symmetry axis of the three 2nd
generation triangles. These sites are obtained by adding CLS of unitary energy of the second
generation to the base-corners of another CLS of the same kind. Figure 4.17(b) shows an exam-
ple of CLS type−3, which appears on four different energy levels, with energy E = ±

√
2 and

E = ±
√
5. A possible CLS of type−4 is represented in Figure 4.17(c). It corresponds to the

eigenvector of the non-degenerate energy level E = −2.149. This type of CLS, also present at
non-degenerate energy levels E = 2.149 and E = ±1.543, present destructive interference on
the symmetry axis of the 3rd generation triangle. Finally, in Figure 4.17(d) we observe one of
the CLS of type−5. They appear at the three-fold degenerate levels E = ±

√
3.
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We studied how the number of CLS states within the CLS energy levels that appear in the third
generation changes when increasing the generation of the lattice. The scaling behaviour is pre-
sented in Figure (4.18) and shows that the number of CLS states of types 1, 2, 4 and 5 tends to
scale as the Hausdorff dimension when the generation number increases. We notice that CLS
states of type-4 share the same scaling, even if they belong to different energy levels, see Figure
(4.16). Regarding CLS of type 3, we found that the number of states in the corresponding en-
ergy levels ±

√
2 and ±

√
5 does not increase but remains the same for odd generations, and is

zero for even generations, see Table (4.1).

E g1 g2 g3 g4 g5 g6 g7 g8

±
√
2 0 0 2 0 2 0 2 0

±
√
5 0 0 1 0 1 0 1 0

Table 4.1: The number of CLS of type-3 in energy levelsE = ±
√
2 andE = ±

√
5, from

the first generation g1 to generation g8.
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CLS type-4/type-5
CLS type-2
CLS type-1
Hausdroff dimension

Figure 4.18: Scaling of the number N of CLS of different types when increasing the
generation of the fractal triangle, from first generation g1 to generation g8.

Motivated by these scaling behaviours, we also studied how the many-body ground-state en-
ergy ET at half-filling changes when increase the generation. As shown in Figure (4.19), this
values also scales as the Hausdorff dimension. It is therefore possible to derive it by recursively
computing it upon increasing the generation without, the need of diagonalizing the Hamilto-
nian. This also holds for the number of CLS in the energy levels shown in Figure (4.18), and
constitutes a great advantage because the computational cost increases rapidly as we increase
the generation.
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Figure 4.19: Scaling of the ground-state many-body energy at half-filling ET,1/2 when
increasing the generation of the fractal triangle, from first generation g1 to generation
g8.

As a last addition to the analysis of the zero-energy level, we looked at the average density on
the corners in the last configuration of the half-filling energy level of the many-body spectrum.
This means, for example, filling Nσ = 6 for the first generation, Nσ = 15 for the second and so
on. We noticed that its value is ⟨n⟩ ≃ 1.5909 for every generation we implemented, very close
to the Hausdorff dimension.
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5 | QuantumMonte Carlo

5.1 Introduction to Monte Carlo methods

Monte Carlo (MC) methods represent a class of algorithms that use (pseudo-) random num-
bers to estimate quantities of interest. It has applications in the most diverse fields of science,
ranging from economics to quantum physics.

In Quantum Physics, where those methods are dubbed as Quantum Monte Carlo (QMC), no-
table applications include the solution of differential equations and the computation of expected
values. The latter case gives good intuition on how QMC methods work, therefore let us con-
sider the computation of an expected value of the form:

⟨E⟩ =
∫ ξF

ξ0

p(ξ)E(ξ)dξ (5.1)

whereE is the observable we want to study and ξi is some variable distributed according to the
probability distribution function (pdf) p(ξ). When an analytical solution to Eq. (5.1) is not pos-
sible, one can appeal to numerical integration. For integration of multi-dimensional variables,
numerical algorithms, such as the trapezium rule, will certainly fail due to long computational
time. In these cases, MCmethods are often the optimal solution since the simulation time scales
algebraicallywith the number of variables. For simplicity, wewill consider the one-dimensional
case; the generalization to higher dimensions is straightforward.

The most intuitive way of proceeding to numerically perform the calculation in Eq. (5.1) is by
randomly sampling the variables’ interval [ξ0, ξF ] a number N of times and compute

⟨EN ⟩ = 1

N

N∑
i=1

p(ξi)E(ξi). (5.2)

This estimate is more accurate the bigger isN . However, this method can be very inefficient: we
are sampling less probable variables in the same way as we are sampling variables with high
probability which, in turn, are the ones contributing the most to the sum in equation (5.2).

A smarter way of tackling the problem is by adapting amore efficient samplingmethod. In fact,
we would like to be able to select the variables in a way that reflects their probability distribu-
tion, this means that we select with higher frequency more probable and meaningful values for

51
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the variables ξ. There are different possible algorithms that can be used to achieve this goal,
Metropolis and heat bath algorithms being two of them. If the random variables ξ are sampled
according to their probability distribution, the MC estimate of Eq. (5.2) becomes

⟨EN ⟩ = 1

N

N∑
i=1

E(ξi), (5.3)

where the role played by the multiplication by the factor p(ξ) is now replaced by the number of
times a variable ξ is chosen. In other words,

p(ξ) →
Nξ

N

where Nξ is the number of times ξi = ξ.

In the next section, we pedagogically use MC methods together with Metropolis sampling to
solve the problem of a quantum particle in a box in order to become familiar with the methods.
After that, we will have the right tools to adapt this method to our complex system, for which
we will need to introduce more advanced concepts and implementation strategies.

5.1.1 Metropolis Algorithm and Particle in a Box

As briefly introduced in the previous section, in order to compute Eq. (5.2) we need to sample
random numbers ξ in a way that resemble their pdf p. For certain specific probabilities distri-
butions, this can be achieved through formulas, such as de Box-Muller formula for Gaussian
distributions. These types of formulas map uniformly distributed random numbers to random
numbers that sample the desired distribution. When dealing with arbitrary distributions, the
Metropolis algorithm is usually the optimal choice [37].

Starting from a randomly generated variable ξ0, a chain of variables is generated via some tran-
sition probability w(ξi → ξj) of going from the variable ξi to ξj in one step of the process. To
ensure that the set of variables asymptotically reaches the probability distribution p, the transi-
tion probabilities need to satisfy two conditions: ergodicity and principle of detailed balance. The
former states that it is possible to reach any realization ξi from any other realization ξj in a finite
number of steps, while the latter imposes a condition on the fluxes of configurations,

p(ξi)w(ξi → ξj) = p(ξj)w(ξj → ξi),

that symmetrizes the transition between two states. We can further write the transition proba-
bility as the product of the probability of performing the move α(ξi → ξj) and the probability
of accepting it acc(ξi → ξj)

w(ξi → ξj) = acc(ξi → ξj)α(ξi → ξj).

Choosing the probability α to be symmetric, α(ξi → ξj) = α(ξj → ξi), we get that the acceptance
rule has to satisfy this condition

acc(ξi → ξj)

acc(ξj → ξi)
=

p(ξj)

p(ξ)
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in order for the detailed balance principle to be satisfied.

In practice, the sampling algorithm proceeds in moves, each of which results in the generation
of a value for ξ. Starting from a randomly chosen ξ0, the first move consists in randomly gener-
ating a new possible outcome ξT and deciding to accept or reject this value basing the decision
on the acceptance rule. If the move is accepted, the new value of ξ in the series is ξ1 = ξT , oth-
erwise the previous value is repeated ξ1 = ξ0. Iteratively implementing the move on the new
generated value of ξ generates the desired set of variables.

The acceptance rule commonly used in Metropolis algorithm can be written as

acc(ξi → ξT ) = min
(
1,

p(ξT )

p(ξi)

)
(5.4)

and considers the ratio r between the probability associated to the variable ξi the move is acting
on and to the new generated variable ξT ,

r =
p(ξT )

p(ξi)
.

The way it is implemented in practice is by performing the following checks:

• r ≥ 1: the variable ξT is more probable than ξi, so it is selected to be the next element
ξi+1 = ξT ,

• r ≤ 1 but r ≥ ϵ where ϵ is a uniform random number in the interval [0, 1]: the variable ξT
is not more probable than ξi, but it is still probable enough to be accepted,

• both the previous conditions are not satisfied: the move is rejected and ξi+1 = ξi.

The second point in the list is there to avoid the generation of a sequence of variables with
increasing probability and to make sure that the simulation does not get stuck in configurations
of local minima. It is easy to see that the rule in Equation (5.4) satisfies detailed balance, which,
for the transition between states ξi and ξT , can be written as

p(ξi)acc(ξi → ξT ) = p(ξT )acc(ξT → ξi)

assuming α symmetric. Substituting 5.4 in this equation we find the identity

min [p(ξi), p(ξT )] = min [p(ξT ), p(ξi)]

which confirms that detailed balance is satisfied.

To get a pedagogical intuition of a practical application of this method, let us consider a particle
in one dimension confined in an infinite square-well potential located at equal distance L/2

away from the origin along the x axis. The Hamiltonian reads

H = −1

2

d2

dx2
+ V (x)
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where, for simplicity, we set to unity the ratio ℏ2/m with m being the mass of the particle. The
potential is described by the function

V (x) =

{
0 −L/2 < x < L/2

∞ otherwise.

In a variational sense, our goal is to compute an upper-bound to the ground-state energy E0

using a parabola as a trial wave-function, which reads

ΨT (x) = A

(
− 4

L2
x2 + 1

)
,

where A is a normalization factor. The expectation value of the Hamiltonian on this trial func-
tion can be computed using the definition of the expectation value of an observable

ET = ⟨ΨT |H|ΨT ⟩

which can be written in position coordinates using the completeness of the coordinates basis

ET =

∫ L/2

−L/2
dxΨ∗

T (x)HΨT (x) =

∫ L/2

−L/2
dx |ΨT (x)|2

HΨT (x)

ΨT (x)
(5.5)

where we multiplied and divided by ΨT (x) in order to get an expression similar to Eq. (5.1).
We can interpret the modulus squared as a probability function,

p(x) = |ΨT |2 = A2

(
− 4

L2
x2 + 1

)2

and the remaining term in the integral as a quantity that we will call local energy

EL(x) =
HΨT (x)

ΨT (x)
=

4

L2

1

(− 4
L2x2 + 1)

,

so that now we are able to tackle the problem of solving the integral with the Monte Carlo ap-
proach.

The problem we are considering and numerically solving is analytical easy to solve. It just
consists in performing the integral in equation (5.5), the result of which is

ET =
8A2

3L

but the whole point of this example is to give a first approach to Monte Carlo methods, being
able to compare its output with the exact solution.

In our simulation, we divide the total number of moves, or steps, NS in a number NB of blocks
withNSB = NS/NB steps per block. We do this to take care of the fact that successive measures
of local energies are not independent of each other (the value of the local energy at a certain time
step is found by adding a new contribution to the energy of the previous step). At each step, we
use Metropolis sampling to update the position x and we compute the associated local energy
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EL(x). Every block consists in NSB measures of local energy EL,1, . . . , EL,NSB
, the expectation

value is given by

EB =
1

NSB

NSB∑
i=1

EL,i

following the MC scheme as in equation (5.3).

At the end of the simulation, we have a set of NB block energies, which are variables we can
consider to be independent and that constitute our statistical population. Each block energy
has they same probability 1/NB , so the expectation value coincides with the average

E =
1

NB

NB∑
i=1

EB,i. (5.6)

while the variance relative to the set of block energy variables EB is given by

σ2
EB

=
1

NB

NB∑
i=1

(EB,i − E)2.

We are not interested in the distribution of the block energies but rather in their mean and in
the distribution of the mean. For this reason, at each block step, we consider the set of block en-
ergies computed until then to be samples of the entire population of block energies. Their mean
value, that we can call sample mean, is a random variable itself and follows its own probability
distribution, also known as sample mean distribution. For the central limit theorem, we know
that this distribution tends to the normal distribution N(E, σEB

/
√
NB) for large NB and finite

variance. Therefore, the variance associated to the mean of the block energies is the following:

σ2
E =

σ2
EB

NB
=

1

NB − 1

1

NB

NB∑
i=1

(EB,i − E)2 =
⟨E2

B⟩ − E2

NB − 1
.

Finally, to get a better approximation of the output, we divide the set of blocks in two types:
equilibration and accumulation blocks. In the equilibration blocks, we perform Monte Carlo
steps and measure the energies, but we do not count themwhen we perform the block energies
average because only the accumulation blocks contribute to it. This is because we want to let
the system first equilibrate to a region where the position outcomes are meaningfully probable,
and then accumulating the values of block energies for the final average. Moreover, having an
equilibration regime allows to get rid of the bias introduced by the random initial choice for the
position and to achieve detailed balance.

We are now ready to start implementing the simulation and study the parameters of the model
to get the best result. The first parameter that we want to investigate is the number of equilib-
rium blocks given the number of steps per block, that we will set to NSB = 500. Figure (5.1)
shows the behaviour of the block energy in block-step time and suggests that a number of equi-
librium blocks NEQ = 15 is sufficient to reach equilibrium, since the system at that point is
already fluctuating around the exact value.
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Figure 5.1: Plot representing the value of block energy (the average of local energies
computed at each step) as a function on block step in the equilibration pahse. The
purple horizontal line indicates the analytical value of energy found by analytically
integrating equation (5.5). The dark-pink line indicates the value of the final average
energy, so the result of our simulation.

Having set the equilibration blocks, we choose the number of accumulation blocks high enough,
so that the result of the simulation (the average energy over the blocks in equation (5.6)) is in
accordance with the exact result within the error interval. Recalling that the distribution of the
sample mean tends to a normal distribution, we are 95% sure that the average we compute lays
in the interval [E−2σE , E+2σE]. In Figure (5.2)we show the behaviour of the block energies in

Figure 5.2: Plots representing block energy in block-step time for different values of
NSB . (a) NSB = 1, (b) NSB = 15. The vertical blue line delimits the equilibration
region (to the left) to the accumulation region (to the right). The light-blue shaded
region in (b) indicates the confidence interval of 2σ around the average E. In (a) the
error is smaller than numerical accuracy.

block-step time before and after the equilibration period for a number of NAC = 30 accumula-
tion blocks and we also indicate the confidence interval. Since the agreement of the simulation
with the expected value Figure 5.2(a) is not optimal, we decided not to measure at each time-
step in each block, but to introduce a number, NME , that indicates how many steps we make
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before measuring the energy. The result for a value of NME = 15 is shown in Figure 5.2(b).
This procedure is made to avoid considering local energies that are still correlated, which can
bias the numerical result.

Thismethod of proposing a trial wave-function to describe the system in a variational sense, and
computing the integrals withMC is known in literature as the Variational Monte Carlo method.
It is applied nowadays in the simulation of complex many-body systems, the Hubbard Model
being one of them [2].

5.2 Constrained-Path Auxiliary-Field QuantumMonte Carlo

In this section, we are going to formulate the theoretical background behind the QMC method
used to solve the Hubbard Model on the fractal lattice. The method is called Constrained-Path
Auxiliary-Field QuantumMonte Carlo (CP-AFQMC). Themeaning of this terminology and the
reasons for its need will be clarified in the following paragraphs.

5.2.1 Ground-State Projection

We start considering the imaginary-time dependence of some wave-function |Ψ(τ)⟩. This is
found by applying the imaginary-time evolution operator to a wave-function at a certain initial
time τ = 0, called trial wave-function ΨT

|Ψ(τ)⟩ = e−τ(H−ET ) |ΨT ⟩ , (5.7)

where H is the Hamiltonian of the system and ET is the energy of the trial wave-function. We
take a complete basis made of eigenstates of the Hamiltonian, denoted by {Φn} which satisfy

H |Φn⟩ = En |Φn⟩ ,

withEn the energy eigenvalue associatedwith the n−th eigenvector. It is possible to decompose
the wave-function at τ = 0 on this basis

|ΨT ⟩ =
∑
n

cn(0) |Φn⟩ (5.8)

introducing some time-dependent coefficients cn(τ). Using this expansion and the fact that Φn

are eigenvectors of the Hamiltonian, equation (5.7) becomes

|Ψ(τ)⟩ =
∑
n

cn(0)e
−τ(H−ET ) |Φn⟩ =

∑
n

cn(0)e
−τ(En−ET ) |Φn⟩ .

In the limit of large τ , the contributions from exited eigenstates decay exponentially faster than
the contribution of the ground state Φ0. Therefore, for large τ ,

|Ψ(τ)⟩ ∝ |Φ0⟩ .

This yields an approach to find the eigenstate of the Hamiltonian: we start from a certain wave-
function |Ψ(0)⟩ = |ΨT ⟩, not orthogonal to |Φ0⟩, and we evolve it in imaginary-time long enough
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for it to be proportional to the desired ground-state wave-function. The energy ET is updated
in a self-consistent way during the simulation in order to be an approximation to E0 and slow
the exponential decay of the exponential coefficient.

We are then left with the task of evolving the initial wave-function in time, as in equation (5.7).
The exponential of the kinetic part of the Hamiltonian simply involves a matrix multiplication:
suppose we have an M ×M matrix U , where is the number of single-electron basis states. Its
exponential B = eU is an M × M matrix itself. Hence, applying it to the Slater determinant
Ψ(τ), which has dimensions M × N , only involves a matrix multiplication. The challenging
part comes from the two-body operator in the interaction, which we cannot write as a M ×M

matrix. Moreover, the kinetic and interacting parts of the Hamiltonian, that we indicate withK

and V , do not commute. Therefore, we have that

e−τH ̸= eτKeτV .

We can use the Trotter approximation to the second order to separate the terms in the exponential

e−τH ∼ e−
τ
2
Ke−τV e−

τ
2
K ,

which only this holds for sufficiently small values of τ . Thus, we can divide τ into a sufficiently
large number N of intervals

e−τH =

N∏
i=1

e−δτH

and apply the Trotter decomposition to the exponent in the product

e−δτH = e−
δτ
2
Ke−δτV e−

δτ
2
K +O(δτ2). (5.9)

By choosing a sufficiently large number of steps, we can make the error associated to the Trot-
ter decomposition smaller than the statistical uncertainty associated to the MC methods. The
procedure remains numerically exact.
We are essentially projecting an initial wave-function on the ground-state by evolving it in time.
For this reason, we will call the operator

Pgs = e−δτ(H−ET )

ground-state projector. From this we are able to single out the contribution of the interaction
term. In the next section, we show a method to deal with this term and make it numerically
implementable in our basis of one-body orbitals.

5.2.2 Hubbard-Stratonovich Transformation

In this section, we focus on the exponential factor in Equation (5.9) that contains the problematic
interaction term

e−δτV = e−δτ
∑M

i=1 Uni↑ni↓ =
M∏
i=1

e−δτUni↑ni↓ . (5.10)
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We proceed by rewriting the product in the argument of the exponential using the following
identity

ni↑ni↓ = −1

2
(ni↑ − ni↓)

2 +
1

2
(ni↑ + ni↓).

The validity of this equation is promptly verified recalling that n2
iσ = niσ for both σ =↑, ↓.

Considering the contribution to an individual i−th site, the exponential becomes

eδτUni↑ni↓ = e−δτU(ni↑+ni↓)/2eδτU(ni↑−ni↓)
2/2. (5.11)

The way we tackle the problem of having the two-body operator in the rightmost term in equa-
tion (5.11) is by performing a Hubbard-Stratonovich (HS) transformation, which allows to de-
couple quadratic exponential dependences. It makes use of a Gaussian integration property
applied to the exponential of a certain operator Â

eÂ
2
=

1√
2π

∫ ∞

−∞
dxe−x2/2e

√
2xÂ

by introducing the variable x, called auxiliary-field. The variable x is continuous and, in order
for this method to be useful numerically, we use a discrete version of the HS [38], where the
variable x can assume only two possible values xi = ±1. The auxiliary variable is introduced
to decouple the operators in the following way:

eδτU(ni↑−ni↓)
2/2 = w

∑
xi=±1

exiγ(ni↑−ni↓),

with w and γ to be determined by solving the equation for the possible values of the number
operators (ni↑, ni↓). With the cases (0, 0) and (1, 1), we get

1 = 2w ⇒ w =
1

2
,

while with the cases (0, 1) and (1, 0), we get a condition for the other free variable

eδτU/2 = w cosh (γ).

We interpret the factor w = 1/2 as the probability for the auxiliary field to assume one of the
two possible values p(xi) = 1/2, so the system with on-site interaction

e−δτUni↑ni↓ = e−δτU(ni↑+ni↓)/2
∑

xi=±1

p(xi)e
xiγ(ni↑−ni↓)

has been converted into a non-interacting system living in a space of fluctuating auxiliary fields,
the summation of which restores the many-body interaction.

By applying the HS transformation to every site, which means introducing an auxiliary-field
per lattice site, the interaction factor of equation (5.10) becomes

e−δτV =
M∏
i=1

e−δτUni↑ni↓ =
M∏
i=1

p(xi)
∑

xi=±1

exiγ(ni↑−ni↓),
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which can be rewritten as
e−δτV =

∑
x⃗

P (x⃗)BV (x⃗),

where we introduced the operators

P (x⃗) =
∏
i

p(xi) =

(
1

2

)M

and BV (x⃗) =
M∏
i=1

e−δτU(ni↑+ni↓)/2exiγ(ni↑−ni↓).

Therefore, by using a Trotter decomposition and a Hubbard-Stratonovich transformation, the
ground-state projector can now be expressed only in terms of one-body operators

Pgs ∼ eδτET
∑
x⃗

P (x⃗)BK/2BV (x⃗)BK/2,

where we introduced the kinetic operator BK/2 = e−δτK/2.

5.2.3 Random walk in Slater Determinant Space

In the previous section, we discretized the imaginary-time, we now write the wave-function at
a certain time-step n as |Ψ(n)⟩. In the method we use, these wave-functions are represented by
a finite ensemble of Slater determinants

|Ψ(n)⟩ ∝
∑
k

|ϕn
k⟩

called random walkers and labelled by k. Here we omit a normalizing constant. Applying the
ground-state projection to |Ψ(n)⟩ means applying it to each individual random walker, so that

|ϕ(n+1)
k ⟩ = Pgs |ϕn

k⟩

or, in an explicit form

|ϕ(n+1)
k ⟩ = eδτET

∑
x⃗

P (x⃗)
[
BK/2BV (x⃗)BK/2

]
|ϕn

k⟩ , (5.12)

where x⃗ = (x1, x2, . . . , xM ) is a configuration of auxiliary fields. Implementing this expression
implies generating all the possible configurations of these fields which, since we have M sites
and in each of them the field can assume 2 values, are 2M for each walker. The iteration of equa-
tion (5.12) is achieved stochastically using the idea of the MC integration scheme introduced
in the first section: for each random walker we choose a configuration of fields x⃗ according to
the probability distribution P (x⃗) instead of sampling the whole space of configurations. The
walkers evolved in time represent the wave-function at the next time-step

|Ψ(n+1)⟩ ∝
∑
k

|ϕ(n+1)
k ⟩ .
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5.2.4 Importance Sampling

To make the algorithm more efficient, we introduce a scheme called importance sampling, in
which we change the way how we sample the random walkers at each time step. The main
idea is to make the sampling method reflect the importance of the walker relative to certain
conditions. In fact, when we iterate

|ϕ(n)
k ⟩ −→ |ϕ(n+1)

k ⟩ =
∑
x⃗

P (x⃗)B(x⃗) |ϕ(n)
k ⟩ , (5.13)

we are sampling the auxiliary fields considering a probability distribution P (x⃗) that is a con-
stant, making it equally probable for any walker to be sampled. Our goal in this section is to
introduce a sampling method that biases in a positive way our sampling procedure.

We start by introducing a function, called importance function, that computes the overlap between
a certain walker and the trial wave-function OT (ϕk) = ⟨ϕT |ϕk⟩. This function is used to assign
a weight wk = OT (ϕk) to each walker

|Ψ(n)⟩ ∝
∑
k

wn
k

|ϕ(n)
k ⟩

OT (ϕn
k)

=
∑
k

wn
k |ϕ̃

(n)
k ⟩ ,

so that now the ground state is represented by the ensemble ofwalkers {ϕ̃k} that contributewith
their respectiveweights. The individualwalkers evolvewith amodified probability distribution

|ϕ̃(n)
k ⟩ −→ |ϕ̃(n+1)

k ⟩ =
∑
x⃗

P̃ (x⃗)B(x⃗) |ϕ̃(n)
k ⟩ (5.14)

defined as
P̃ (x⃗) =

M∏
i=1

p̃(xi),

where p̃(xi) is the probability of choosing a value for the auxiliary field xi on the i−th site and
it is normalized using the normalization factor

Ni = p̃(xi = +1) + p̃(xi = −1),

which is incorporated in the weights at each evolution of the potential operator

w
(n)
k,i = Niw

(n)
k,i−1.

For each walker and each lattice site, we need to update the auxiliary filed xi, which can only
assume two values. The Metropolis algorithm introduced in the second section of this chapter
is not efficient, since the ratio between probabilities would be constant half of the time. There-
fore, a heat-bath like algorithm is implemented: the value for the auxiliary field is chosen using
as acceptance rule the pdf p̃(xi)/Ni. In practice, a random number in [0, 1] is generated. If the
ratio of the acceptance rule for a field value xi is larger than this value, the field xi is accepted.
Otherwise, the other possible value for the field is selected.
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The newprobability distribution P̃ is chosen so that it favours auxiliary-filed configurations that
have a bigger overlap with the trial wave-function, in this sense we are guiding the simulation
sampling taking into account the importance of the resulting wave-functions in representing
the ground-state. It is important to mention that, even with this bias in the sampling of the
x⃗, Equation (5.13) and Equation (5.14) are formally the same and the overall simulation gives
unbiased estimates of ground-state properties. That said, a bad importance function can spoil
the ground-state projection.

5.2.5 Computation of observables

In analogy to what was discussed in the example of the particle in the box, we divide the total
number of steps (now imaginary-time steps) into blocks and, within each block, we perform
measurements of the energy after each certain number of steps. The statistical analysis is equiv-
alent.

At a given imaginary time-step, the total ground-state energy is defined as:

E(n) =
⟨Ψ(n)|H|Ψ(n)⟩
⟨Ψ(n)|Ψ(n)⟩

,

which, however, is computationally demanding to implement since eachwave-function contains
a sum of many Slater-determinants, the walkers. Therefore, we compute the so called mixed
estimator

E
(n)
mixed =

⟨ΨT |H|Ψ(n)⟩
⟨ΨT |Ψ(n)⟩

.

SinceH |Φ0⟩ = E0 |Φ0⟩, themixed estimator on the ground-state equals the ground-state energy

⟨ΨT |H|Φ0⟩
⟨ΨT |Φ0⟩

= E0.

As |Ψ(n)⟩ → |Φ0⟩, the mixed estimator tends to the ground-state energy E
(n)
mixed → E0. Clearly,

this estimator only provides unbiased average values of operators that commutewith theHamil-
tonian. The estimator we just introduced can be rewritten as a weighted average

E
(n)
mixed =

∑
k wkE

n
k [ΨT ,Ψ

(n)]∑
k wk

where Ek[ΨT ,Ψ
(n)] =

⟨ΨT |H|Ψ(n)⟩
⟨ΨT |Ψ(n)⟩

. (5.15)

The identity that we derived in the Appendix (B) can be applied in this context, enabling the
computation of expressions of the form

⟨c†iσcjσ⟩ =
[
Ψσ[(Ψσ

T )
†Ψσ]−1(Ψσ

T )
†
]
ji

This identity can be used for the computation of both kinetic and potential terms. The latter
requires also the application of Wick’s theorem, which enables to decouple the four-point ex-
pectation value into two-point expectation values, as already computed in the previous sections.
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The computational method that we just introduced for the total energy is a valid procedure, but
only works for observables that commute with the Hamiltonian. For the computation of quan-
tities such as kinetic energy, potential energy and average density per site, namely in general,
we need to propagate both sides of the product

⟨A⟩ = ⟨Ψ(n)|A|Ψ(n)⟩
⟨Ψ(n)|Ψ(n)⟩

.

A useful methodology, called back propagation [39], can be applied in these cases. It makes used
of the relation

⟨A⟩ = ⟨ΨT |e−τbpHA|Ψ(n)⟩
⟨ΨT |e−τbpHΨ(n)⟩

,

which tends to the exact expectation value as the time τbp is increased. The idea behind the
method is to represent the evolution e−τbpH as a stochastic path, as we did for the e−τH term,
expressing it as a product of operators B(x⃗). For the number of imaginary time steps corre-
sponding to τbp, the information of the generated auxiliary fields at each time step is stored, and
used to propagate in reverse order the ansatz wave-function to the left of the sandwich.

5.2.6 Sign Problem

Since we are dealing with electrons, the wave-functions |Ψ(n)⟩ that we consider are fermionic.
This has the consequence that for each ensemble of walkers {|ϕ⟩}, there is another ensemble
{− |ϕ⟩} which represents the same |Ψ(n)⟩. The problem that can arise is that, along the sam-
pling of auxiliary fields, the walkers go from one ensemble to the other, causing a fluctuation
in the sign of the weighs wk. The sum of weighs that fluctuates in sign is a computationally
expensive task. Since we consider the sum in our calculations, see for example Equation (5.15),
this method loses its efficiency.

The way we deal with the so called sign problem in this work, is by performing a constrained path
approximation. The latter consists in imposing the overlap between the trial wave-function and
the walker to be positive

⟨ΨT |ϕ(n)
k ⟩ > 0.

In practice, this condition is implemented in the importance sampling by imposing OT (ϕk) =

max{⟨ϕT |ϕk⟩ , 0}, which means that we are preventing the negative walkers to be sampled and
not discarding them. Finally, we observe that this approximation becomes exact when the trial
wave-function |ΨT ⟩ coincides with the true ground-state. In auxiliary-field space, the two en-
sembles {|ϕ⟩} and {− |ϕ⟩} are divided by a node where ⟨ϕ0|ϕ⟩ = 0. The two ensembles are
equivalent, thuswe could only consider one of them and knowwhat happens in the other. How-
ever, since |ϕ0⟩ is unknown, we can not locate the node and divide the two ensembles properly.
We approximate the node to be ⟨ΦT |ϕ⟩, which eliminates the sign problem, but introduces an
error. We measure the size of this error in section (5.4.1).
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5.3 Mean-Field Hartree-Fock Approximation

Before looking at the results of the implementation of the CP-AFQMC method introduced, we
explain in this section the theory behind one of the other methods we used to tackle the in-
teraction term in the Hamiltonian. To this aim, let us consider the Hubbard Hamiltonian, as
introduced in Chapter (3)

H = −t
∑

⟨i,j⟩∈Λ

∑
σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i∈Λ

ni↑ni↓ (5.16)

In this section, we tackle the issue coming from the two-body term by performing a mean-field
Hartree-Fock approximation and we present the iterative scheme we apply to implement it.
The mean field approximation consists in writing the number operator as

niσ = ⟨niσ⟩+ δniσ

the sum of a bulk part ⟨niσ⟩, that accounts for the major observable physics, and a term δniσ,
which accounts for fluctuations around the mean value and are assumed to be small. The prod-
uct of number operators in the Hubbard Hamiltonian for a single site becomes

ni↑ni↓ ≃ ⟨ni↑⟩ ⟨ni↓⟩+ ⟨ni↑⟩ δni↓ + ⟨ni↓⟩ δni↑

= ⟨ni↑⟩ni↓ + ⟨ni↓⟩ni↑ − ⟨ni↑⟩ ⟨ni↓⟩

when approximated to the first order in fluctuations. Replacing this term, themean-fieldHamil-
tonian can be written as the sum of independent spin-up and spin-down mean-field Hamilto-
nians

HMF = H↑
MF +H↓

MF (5.17)
where

Hσ
MF = −t

∑
⟨i,j⟩∈Λ,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

niσ ⟨niσ⟩ −
U

2

∑
i

⟨ni↑⟩ ⟨ni↓⟩ .

After performing this approximation, only one-body operators remain, and we can solve the
model by using the same techniques we adopted in the tight-binding limit, section (sec on tb).
However, the term ⟨ni⟩ is still unknown since computing expectation values requires the knowl-
edge of the eigenfunctions, which are still unknown. To tackle this problem, we make use of a
self-consinsten approach (Hartree-Fock method) together with the variational theory.

The idea behind the Hartree-Fock implementation is to start with a random Slater determinant
|ΦT ⟩. Introduction the functional

E[ΦT ] =
⟨ΦT |H|ΦT ⟩
⟨ΦT |ΦT ⟩

we are allowed to state that, for the variational principle, the function ΦT that minimizes this
functional is an eigenfunction of the Hamiltonian

H |Φ⟩ = E[Φ] |Φ⟩

and the best approximation to the ground state Φ0 with energy E0 < E[Φ]. In order to find the
minimum of the functional, we proceed with an iterative scheme that consists in:
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• Generate a random Hamiltonian HT and a random Salter determinant |ΦT ⟩ and use it to
compute ⟨ni⟩T using (4.2). Diagonalizing HT we find the energy ET .

• Diagonalize the mean-field Hamiltonian

Hσ
MF = Hσ

Free + U
∑
i

niσ ⟨niσ⟩T − U

2

∑
i

⟨ni↑⟩T ⟨ni↓⟩T (5.18)

• Find new Slater determinant |ΦN ⟩ and the energy of the systemEN from the diagonaliza-
tion of Hσ

MF .

• Compare the energies EN and ET . If the difference is small enough, we have found the
ground state (it was built taking the lowest energy single particle states) eigenfunction of
themean-fieldHamiltonian. If it is not small enough, useΦN as a newΦT and diagonalize
the HMF again. Iterate this process until the difference in energy is small enough.

• Calculate the energy of the original Hamiltonian in this state using the mean-field ground
state obtained at the end of the iterating process

⟨H⟩N = ⟨ϕN |H|ϕN ⟩ = ⟨HFree⟩N + U
∑
i

⟨ni↑⟩ ⟨ni↓⟩ . (5.19)

To show the last equation in the list, wemake use ofWick’s Theorem, which allows us to decouple
the mean of the two-body operator in the interaction term as a product of means of one body
operators

⟨ni↑ni↓⟩ = ⟨c†i↑ci↑c
†
i↓ci↓⟩ = ⟨c†i↑ci↑⟩ ⟨c

†
i↓ci↓⟩ − ⟨c†i↑c

†
i↓⟩ ⟨ci↑ci↓⟩+ ⟨c†i↑ci↓⟩ ⟨ci↑c

†
i↓⟩ . (5.20)

The last two terms in theWick’s expansion vanish, the rightmost termdue to the fact that spin up
and down sectors are decoupled while the other due to conservation of the number of particles.
Therefore we get:

⟨ni↑ni↓⟩ = ⟨ni↑⟩ ⟨ni↓⟩ .

Essentially, we applied the variational principle stated above to the mean-field Hamiltonian
HMF and used a self-consistently iterated approach to find the ground-state of the system.

However, if we look at equation (5.17) more carefully (Appendix C), we notice that the spin
rotational invariance has been broken because it assumes Sz as the quantization axis. A more
appropriate Hamiltonian that conserves this symmetry is found in Appendix C by usingWick’s
theorem to expand the product of operators in the interaction term. Using this expansion,
shown in equation (C.2), we can write the full mean-fileld Hartree-Fock Hamiltonian

HHF = −t
∑

⟨i,j⟩∈Λ,σ

(
c†iσcjσ + h.c.

)
+ U

∑
i∈Λ

(
⟨ni↑⟩ni↓ + ⟨ni↓⟩ni↑ + ⟨ni↑⟩ ⟨ni↓⟩

− ⟨c†i↑ci↓⟩ c
†
i↓ci↑ − ⟨c†i↓ci↑⟩ c

†
i↑ci↓ − ⟨c†i↑ci↓⟩ ⟨c

†
i↓ci↑⟩

)
(5.21)
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which will be used instead of the previous mean-field Hamiltonian (5.18) in the implementa-
tion.

Finally, also the energy of the ground state we compute using equation (5.19) needs to be re-
vised because the up and down sectors are not decoupled anymore (the Hamiltonian can not
be separated in the separate contribution of a up and down Hamiltonian) and the rightmost
term in equation (5.20) does not vanish. Therefore, we get the following:

⟨H⟩N = ⟨ϕN |H|ϕN ⟩ = ⟨HFree⟩N + U
∑
i

(
⟨ni↑⟩ ⟨ni↓⟩+ ⟨c†i↑ci↓⟩ ⟨ci↑c

†
i↓⟩
)
.

5.4 Results

In this final section, wemainly present the results obtained from the implementation of theQMC
method introduced in the previous sections. We start by validating the method by comparing it
to exact diagonalization, thus considering a small lattice size and low electronic filling. This also
allows to make a comparison with MF methods and find the reagion of interaction in which it
can be considered a valid approximation. Then, we study how some of density configurations
and many-body ground-state energies behave when interaction is added to the tight-binding
model, we pay particular attention to the configurations that present larger density in the cor-
ners. Finally, we study the phases of the system in the second generation of the fractal-lattice.

5.4.1 Validity of the Method

The starting point of the implementation was the validation of the QMCmethod by comparing
its results with exact ones, i.e. with results found by performing exact diagonalization (ED).
We also compared these two methods with the MF approach to understand to what extent this
approximation is appropriate. Since the simulation time required by ED scales exponentially
with the system size and electron number, we considered a small system (the first generation
of the Sierpinski triangle), with a couple of electrons (Nσ = 1). The quantities we considered
were the total, kinetic and potential energy of the many-body ground-state, for values of the
ratio U/t ∈ [0.1, 9]. For the rest of this chapter, we set the hopping parameter t = 1, and we label
the interaction parameter U/t as simply U .

Recalling what was discussed in Chapter (4) about ED, computing the ground-state energy of
such system involves the digonalization of a 81 × 81 matrix. The extrapolation of its eigenval-
ues with lowest energy gives the total ground-state many-body energy EED. The kinetic KED

and potential VED energy are found by considering the eigenvector |ΦED⟩ corresponding to the
lowest eigenvalue and computing the following quantities:

KED =
⟨ΦED|K̂|ΦED⟩
⟨ΦED|ΦED⟩

, VED =
⟨ΦED|V̂ |ΦED⟩
⟨ΦED|ΦED⟩

.

The computation of these energies in the context of QMC is performed using back-propagation
technique, introduced in Section (5.2.5).
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Regarding the MF approach, in section (5.3) we showed the iterative procedure used to gener-
ate the variational ground-state wave-function, from which we derived the total EMF , kinetic
KMF and kinetic VMF energies.

In Figure (5.3), we present the behaviour of the energies computed using these three different
methods, as the interaction strength increases. We see that for these parameters, theMF approx-
imation can be considered valid only for small values of interaction, while the QMC approach
follows very accurately the exact behaviour. We also notice that in the value of the kinetic en-
ergy computed by QMC for interaction U = 6 deviates from the exact solution and coincides
with the MF solution. This fact could be a consequence of the fact that the MF ansatz is biasing
the QMC.
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Figure 5.3: Comparison of the ground-state many-body energies as a function of in-
teraction. We consider the first generation of the unfrustrated Sierpinksi triangle with
Nσ = 1. These energies are computed with three different implementation methods:
ED, MF, and QMC. (a) The total energy E, (b) the kinetic energy K and (c) the po-
tential energy V .

At this stage, we recall that, in an importance sampling scheme, the QMCwalkers are guided by
a trial wave-function |ΨT ⟩ throughout their evolution in imaginary time, and this wave-function
is taken to be the MF ground-state wave-function. Therefore, a bad MF ansatz influences neg-
atively the QMC simulation. To understand the extent of this influence, we performed simula-
tions of the first generation withNσ = 6. We studied the behaviour of the QMC energies as the
interaction strength is increased, with the simulation being guided by different MF ansätze. In
particular, we performed simulations where the MF ansatz is generated using Ueff = U , where
Ueff is the interaction strength used in the MF simulation, referred to as effevtive potential. This
behaviour is indicated by the green curves in Figure (5.4). Then performed a simulation where
we used a MF ansatz generated by fixing Ueff = 0.1 for every value of interaction strength. The
simulation that provides the smallest total energy is the best approximation of the ground state,
due to the variational principle. Figure 5.4(a) shows the ground-state energy. It is possible to
observe that the latter ansatz gives better results for every value of interaction. The variational
principle only applies to the total energy but, for completeness, we also show the behaviour of
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kinetic and potential energies.
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Figure 5.4: Comparison of the ground-state many-body energies as a function of in-
teraction in the first generation of the unfrustrated Sierpinksi triangle with Nσ = 6.
These energies are computedwith three different implementationmethods: MF, QMC
(Ueff = U) and QMC (Ueff = 0.1). Different MF ansätze are considered in the QMC
simulations. (a) Total energy E, (b) kinetic energyK and (c) potential energy V .

From this analysis, we can conclude that a preliminary study on the influence of the MF ansatz
on the QMC simulation has to be performed before proceeding with the implementation. In
fact, since the path of the walkers is influenced by the MF trial wave-function, a bad ansatz af-
fects negatively the paths, making them deviate from the exact solution. Moreover, to handle
the sign problem, we introduce a constrained-path approximation that renders systematic er-
rors. However, those errors are small, as shown in Figure (5.3).

Moreover, we observe that QMC simulations are reliable for every value of interaction strength,
while MF solutions can be considered to be valid for a value of approximately U ≃ 1. For this
reason, we will focus on results performed using QMC simulations, MF remains useful to make
the QMC more efficient.

5.4.2 Energy and Density in the many-body ground-state

In this section, we study the total energy and average density configurations of the ground-state
when interaction is introduced in themodel. This allows to understand the effects of interaction
by comparing with the results obtained within the tight-binding limit discussed in Chapter (4).

Let us start considering the first generation of the fractal lattice. For different values of inter-
action U , we computed the ground-state energy as a function of electronic filling, the result is
shown in Figure (5.5). When the interaction is close to zero, in Figure 5.5(a), the energy depen-
dence on the filling is very similar to the tight-binding one. But now, the level around half-filling
has a small slope. However, as we increase the value of interaction, we observe that the degen-
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eracy at the lowest energy level is effectively broken, and that the energy for values of electronic
filling that exceed half-filling increases, becoming more positive as U increases. Looking at the
particle-hole transformed Hamiltonian in Equation (A.2), we can see that for the case of U = 0,
the symmetry implies equal energies after the transformation: a state with Np particles has the
same energy as a state withN−Np holes. When the interaction is not null, there is an extra term
U(Λ−N) coming from the PHT, as shown in equation (A.2), that influences the behaviour and
makes the energy dependence on the filling not symmetric around half-filling anymore. For
example, we can see that in Figure 5.5(b) for U = 1 the value of energy corresponding to filling
Nσ = 9 is ET (9) = 9, obtained by summing to the PH symmetric value atNσ = 0 the extra term
coming from the transformation:

ET (9) = ET (0) + U(Λ−N) = 0 + 9 = 9.

As the strength of the interaction increases, the contribution from this term increases as well.
This is shown in Figure 5.5(c) and Figure 5.5(d).

0 2 4 6 8
Number of electrons

10

8

6

4

2

0

E T

(a)

0 2 4 6 8
Number of electrons

7.5

5.0

2.5

0.0

2.5

5.0

7.5

E T

(b)

0 2 4 6 8
Number of electrons

0

10

20

30

E T

(c)

0 2 4 6 8
Number of electrons

10

0

10

20

30

40

50

60

70

E T

(d)

Figure 5.5: Many-body ground-state energy in the first generation of the unfrustrated
Sierpinski lattice computed using MC. (a) U = 0.1, (b) U = 1, (c) U = 4 and (d)
U = 8. The x axis in indicates the number of electrons of one kind σ, the total number
of electrons in the system is 2Nσ.

Then, we looked at the average density per site ni = ⟨ni↑⟩+ ⟨ni↓⟩ and, in particular, we consid-
ered the configuration whereNσ = 6, which corresponds to the last energy state in the degener-
ate energy-level found at U = 0. In the tight-binding studies, we understood that this state is a
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consequence of the CLS, with destructive interference happening in the sites at the centre of the
triangles. We also observed that the density in the corners has a value close to the Hausdorff
dimension. Studying this configuration allows us to tackle the consequences of interaction in
this type of states.

First, for small interaction (U = 0.1), we compare the density distributions obtained with the
QMC and the MF methods. The results are shown in Figure (5.6). Comparing the results from
the two methods, we observe that not only the QMC gives a smaller energy, but the density
configuration is symmetrically distributed on the lattice. In fact, looking at the result from MF,
Figure 5.6(a), we observe a small asymmetry in the distribution of the density on the pink and
red sites. See, for example, the density on site 4 and 8 in Figure 5.6(a). We can divide the lattice
in three groups of sites: sites 1, 6, 9 called corners, sites 2, 5, 7 called center and sites 3, 4, 8 called
connections. We expect the density to be the same in each of these groups, since there is no reason
for an imbalance. We see this behaviour in the QMC simulation, while the MF simulation gives
small discrepancies. We found these discrepancies to increase when we increase the interaction
strength. This is another reason why we choose to focus on QMC results.

Figure 5.6: Average density per site forNσ = 6 on the first generation of the Sierpinski
triangle. (a) Configuration computed with MF and interaction U = 0.1, (b) config-
uration computed with QMC and interaction U = 0.1, (c) configuration computed
with QMC and interaction U = 2.

Performing QMC simulations on the system with Nσ = 6 for different values of interactions
revealed how the density configuration behaves when the spin-up and spin-down electrons in-
teract. Figure 5.6(b) and Figure 5.6(c) show the result when we increase the interaction from
U = 0.1 to U = 2. We set the color bar of the two figures to the same limits in order to be able
to visually compare them. We observe that when the interaction is increased, the overall colors
in the figures become more pale which, in the color bar representation chosen, means that the
values of density in all groups of states get closer to the center value of the color bar: the den-
sity on corners and connections decreases, while the density in the centre sites increases. When
there is no interaction, it seems energetically favourable to stuck electrons in the corners and let
the ones in the bulk, where the sites have more connectivity, hop with higher probability. In the
presence of interaction, positioning electrons in the corners is energetically expensive and, thus,
the electrons move to the bulk. Finally, it is interesting to notice that the density on connection
sites does not vary as much as it varies on other types of sites. This could be due to the fact that
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those sites have on intermediate number of nearest neighbours.

With the aim of studying how the density configurations change when the interaction is in-
creased even more, we took advantage of the fact that the values of density on the lattice can
be divided in three groups, and we restricted the study to their behaviour instead of consider-
ing the configurations as a whole. The result of this investigation is shown in Figure (5.7). We
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Figure 5.7: Average density per site ni as a function of interaction strength U in the
three different groups of states.

observe that at small interaction both corners and connections sites are more populated than
the center sites. As the interaction increases, their density decreases, while it grows in the sites
at the center. The electrons start spreading on the lattice, and they keep spreading until the
density is approximately homogeneous on every site, at a value of approximately ni ∼ 1.35 and
U ∼ 8. Thereafter, the density in the center sites continues to increase, while decreasing slowly
on the rest of the lattice sites, meaning that electrons start to accumulate in the center sites. Ap-
parently, for very strong interaction values it becomesmore favourable to stuck electrons in sites
with more connectivity where hopping is more probable.

Relating this study to the tight-binding considerations and the CLS type-1, discussed in section
(4.2.1), we expect that those type of states with destructive interference on center sites get de-
stroyed as soon as the interaction is turned on, since the density on those sites increases.

Finally, we want to check if the QMC solves the problem of computing average density con-
figurations in states belonging to a degenerate level of eigenstates. To this end, let us consider
the second generation of the unfrustrated lattice at half-filling. The 12th eigenstate in order of
increasing energy belongs to the degenerate zero-energy level and the corresponding average
density configuration does not have the expected symmetry properties in MF results. We ob-
serve, as shown in Figure (5.8), that QMC solves this issue and correctly calculates a unitary
average density per site, as expected form PHT, see Appendix (A).
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Figure 5.8: Average density configuration in the second generation of the Sierpinski
lattice with interaction strength U = 0.1, computed in the QMC method.

5.4.3 Quantum Phases in the second generation

Before analysing the phases of themodel on the fractal lattice, we recall some known results for a
similar lattice structure: the honeycomb lattice. As discussed in the introduction to theHubbard
Model in section (3.3), QMC simulations [32] revealed a phase transition from a nonmagnetic
semi-metal to an antiferromagnetic (AF) insulator for a critical value of Uc/t = 4.5 ± 0.5. The
existence of this transition was extensively corroborated by many studies, including a recent
paper [40] that compares different numerical methods to describe the transition. In the latter
study, inwas found that the staggeredmagnetization is null in the semi-metallic phase but finite
in the AF phase.

We consider a configuration at half-filling since, as discussed in the introductory section on
the Hubbard Model, we know that the system in this condition has antiferromagnetic order at
strong interaction. Previous to the implementation of the results that will follow in this section,
we performed various simulations for different values of effective interaction for theMF ansatz.
We found that choosingUeff = U forU < 5 andUeff = 5 forU ≥ 5 gives better approximations
to the ground state energy. From now on, we consider Ueff = min(U, 5t).

Let us start studying the behaviour of the magnetisation. To do so, it is convenient to divide the
lattice structure in two sub-lattices. This is possible in this case because the lattice is bipartite,
the two sub-lattices latticesA and B are shown in the introductory chapter on fractals (2.3). We
define the local magnetizationmi and the total magnetizationmα per sub-lattice as

mi = (ni↑ − ni↓) ,

mα =
1

Nα

∑
i∈α

mi,
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where the index α refers to sublattice. Figure (5.9) shows the magnitude of the local magneti-
zation for weak interaction on the lattice structure. We see that the magnetization on different
sublattices has opposite sign, and the magnitude of one is larger than the magnitude of the
other. This type of phase is called ferrimagnetic.

QMC, U=0.1
N =15, N =9

(a)

QMC, U=0.1
N =15

(b)

n QMC, U=0.1
N =9

(c)

n

Figure 5.9: Behaviour of average densities and local magnetization of the ground-state
at half-filling and weak interaction strength (U = 0.1). (a) Local magnetization per
sitemi. The size of the dots represents its magnitude and the color its sign: dark-red is
positive, blue is negative. (b) Average density of spin-up electrons per lattice site, (c)
average density of spin-down electrons per lattice site. The size of the dots represents
the magnitude of the density, the color does not represent the sign but spin of the
electrons populating the lattice.

We also notice that the values of the spins on the lattice does not sum to zero. This means that
the ground state of the system at half filling has an imnbalance in the number of electrons with
spin-up and spin-down. In particular, we found that these numbers correspond to the number
of sites in the two sublattices. Indeed, for the case of the second generation of the Sierpinski
triangle, we have NA = 15 and NB = 9. Without loss of generality, we investigate the case with
N↑ = NA and N↓ = NB. The opposite case is obtained by inverting the positive direction along
the axis where the spin is projected. In Figure 5.9(b) and Figure 5.9(c) we show the distribution
of the 15 spin-up and the 9 spin-down electrons on the lattice, in the weak interacting regime.
We can interpret Figure 5.9(b) by considering that the 9 spin-up and spin-down electrons fill
the single-particle energy levels with negative energy, Figure 4.13(a). The remaining 6 spin-up
electrons are placed in the degenerate zero-energy level. In this level, the CLS have destructive
interference on the sites in the centre and sites on sublattice A get more densely populated.
Therefore, the origin of imbalanced magnetic properties at half-filling and weak interaction can
be reconnected to the zero-energy CLS that we found at a tight-binding level.

Now,wewant to investigate the behaviour of the systemwhen increasing the interaction strength.
First, we noticed that the imbalance between spin-up and spin-down electrons remains when
increasing the interaction strength. Regarding the localmagnetization, in Figure (5.10)we show
the total magnetization in the two sublattices as a function of interaction strength. We observe
that the sum of the magnetization in two sublattices almost does not change. This quantity rep-
resents the total magnetization along a projection axis and, since the ratio of number of spin-up
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and spin-down electrons remains unchanged, we expect a constant behaviour. However, we
need to take into account the fact that the number of spin-up and spin-down electrons is an
output of the QMC simulation and, thus, subject to subtle fluctuations. The thoery predicts
antiferromagnetic behaviour in the strong coupling regime, where the average local magnetiza-
tion per site, in both sublattices, ismα = 1. The reasonwhywe are not able to see this behaviour
is due to the imbalance in the number of electrons that populated the system which, in turn, is
a consequence of the geometry of the lattice.
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Figure 5.10: Average magnetization over the two different sublattices A and B as a
function of interaction strenght.

We then consider the average of the squared magnetization

⟨m2⟩ = 1

N

∑
i

⟨mi
2⟩ , (5.22)

where we can expand the terms in the sum performing the square

⟨m2
i ⟩ = ⟨(ni↑ − ni↓)

2⟩ = ⟨n2
i↑⟩+ ⟨n2

i↓⟩ − 2 ⟨ni↑ni↓⟩

The first term on the right-hand side can be simplified using Wick’s theorem and the commu-
tation relations between creation and annihilation operators

⟨n2
i↑⟩ = ⟨c†i↑ci↑c

†
i↑ci↑⟩ = ⟨c†i↑ci↑⟩ ⟨c

†
i↑ci↑⟩+ ⟨c†i↑ci↑⟩ ⟨ci↑c

†
i↑⟩ = ⟨ni↑⟩ ,

where, in the last step, we used the commutation relations between creation and annihilation
operators. The same holds for ⟨ni↓⟩. In Appendix (A), we showed that at half-filling the average
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density per site is unitary. Since in this section we restrict our study to half-filling, we can set
⟨ni⟩ = 1. Therefore, the average of the magnetization squared can be written as

⟨m2⟩ = 2 (1−D) ,

where we defined the quantity
D =

1

N

∑
i

⟨ni↑ni↓⟩

known as doublon density. The latter is easily computed from the potential energy, and quantifies
the density of doubly occupied states. In Figure (5.11), we show the result of QMC simulations
that compute both these quantities on the second generation at half-filling. While being easy

Figure 5.11: In (a) average of magnetization squared ⟨m2⟩ and in (b) doublon density
D for increasing values of interaction strength. A linear fit is preformed for values of
doublon density in the region U ∈ [0.1, 4].

to compute, the double occupancy has the advantage of being related to the metallic behaviour
of the system. Moreover, studies on periodic lattices suggest that its behaviour should differen-
tiate metallic and insulating phases. In particular, Brinkman and Rice [41] derived, through a
variational calculation, that the doublon density behaves linearly in the metallic phase. Even if
this result was derived in the context of conventional band theory, we observe in Figure 5.11(b)
a linear behaviour of D until a critical value of approximately Uc/t ∼ 4.5, where the metal-
lic to insulating transition is expected in the honeycomb lattice. After this value of interaction
strength, the behaviour deviates from the linear one.

In order to further analyze the magnetic nature of the system at different values of interaction,
and to have more insights on possible phase transitions, we consider the magnetic correlation
function,

cm(i, j) = ⟨mimj⟩ ,

which quantifies the correlation between the local magnetization of a pair of electrons, one
placed at site i and one at site j. From this quantity, we can define the radial magnetic correlation,

cm(r) =
1

nr

∑
{i,j}∈nr

cm(i, j),
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where nr is the number of pairs {i, j} that have the same distance r. This quantity averages the
magntic correlation functions of pairs of electrons located at sites r far from each other. The
set of possible distances r is discrete, and it is important to notice that, for a given distance,
all the pairs connect sites belonging either to the same sublattice or to different sublattices. In
Figure 5.12(a) we show the dependence of this correlation on the radial distance r. The be-

Figure 5.12: (a) Radial magnetic correlation, (b) staggered radial magnetic correla-
tion. These plots were generated for U = 6.

haviour shows positive and negative correlations, which indeed can indicate antiferromagnetic
or ferrimagnetic order. One of the properties of anti and ferrimagnetism is to have spin orien-
tations that alternate in the lattice. This means that electrons on sites belonging to the same
sublattice should have spins oriented to the same direction (the correlation is positive) while
electrons on sites belonging to different sublattices should have spins pointing in opposite di-
rection (the correlation is negative). To check this, we multiply the spin radial correlation by
a factor (−1)α, where α is even (odd) if sites i, j belong to the same (different) sublattice. The
quantity obtained will be referred to as radial staggered magnetization,

msg(r) =
1

nr

∑
{i,j}∈nr

(−1)αcm(i, j).

In Figure 5.12(b), we see the result of this multiplication. We can conclude that the property
of opposite spins in different sublattices is satisfied, as expected from the analysis on the local
magnetization for the different lattice sites.

In order to study the magnetic order at different values of interaction, we investigate the total
staggered magnetization,

Msg =
1

Nr

∑
ir

msg(r),

where the sum is over the number of possible distancesNr. This quantity represents the average
staggered magnetization over different values of radial distances. The resulting behaviour is
shown in Figure (5.13), where we see that the value increases with the interaction before the
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critical interaction around Uc ∼ 4.5. After it seems to oscillate without an overall growth or
decrement for larger U .
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Figure 5.13: Total staggered magnetization as a function of interaction strength.

From the magnetic correlation, one can compute the magnetic structure factor, defined as

S(k) =
1

N2

∑
i,j

eik·rijcm(i, j),

where rij = ri−rj . It is possible to define a similar quantity, where instead of consideringmag-
netic correlations, one considers density correlations. The computation ofmagnetic and density
structure factors is a common method used to investigate both the metallic and spin phases of
the system. In particular, the behaviour of the density structure factor around the origin k = 0

enables to differentiate between metallic and insulating phases. The former follows from a lin-
ear behaviour, whereas the latter from a quadratic one [42]. However, in order to investigate
this behaviour, one should be able to compute the allowed momenta in the reciprocal space. In
the case of our finite and non-periodic lattice, the reciprocal space and, thus, the allowed mo-
menta, are not defined. The magnetic structure factor is used to detect magnetic order. Aside
from getting information from its behaviour around the origin in the reciprocal space, it shows
peaks on the K points of the Brillouin zone [3] and the analysis of the intensity of these peaks
as a function of the interactions strength could reveal the formation or not of a magnetic order.
This method can be followed in our context because it does not require knowledge of allowed
momenta in the reciprocal space.

In Figure 5.14(a), we show themagnetic structure factor in the strong interaction regime, where
we see the formation of peaks, which are a signature of magnetic order. We observed that these
peaks do not form in theKhon points of the honeycomb lattice, which are positioned at

Khon =
4π

3a
√
3
.
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Figure 5.14: (a) Structure factor in the k space and U = 1. (b) Maximum value of
structure factor for increasing interaction strength.

We then computed the spin-spin structure factor for various values of interaction and we found
a similar structure for each value. This seems to suggest that the system has spin order for any
value of interaction strength. For each of these configuration, we singled out the maximum
value, i.e. the value in the peaks, and studied its behaviour, shown in Figure 5.14(b).

Overall, we observe the formation of a ferrimagnetic order, which can be related, at weak in-
teraction, to the zero-energy CLS states studied at a tight-binding level and, more in general, to
the imbalance in the number of spin-up and spin-down electrons. The latter, is a consequence
of the geometry of the lattice. We observe a phase transition from metallic to insulating phase,
suggested by the change in behaviour of the doublon density, the total staggeredmagnetization
and the maximum of the magnetic correlation function in k space. Since this phase transition is
driven by interaction between electrons, it is aMott transition. Our results agreewith the picture
in the ordinary honeycomb lattice regarding the Mott transition for a very similar critical value
Uc ≃ 4.5[32]. The difference is in the magnetic order, that we find to be ferrimagnetic for every
value of interaction strength. The latter result, in turn, agrees with studies of Hubbard model
on non-periodic lattices, such as the two-dimensional hexagonal golden-mean tiling [40].
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In this thesis, we have successfully solved the Hubbard Model, for fermions on a fractal lattice,
using various methodologies. Initially, we examined the non-interacting case of the model, em-
ploying a tight-binding approach. Subsequently, we numerically implemented the full model,
including the interaction term, utilizing three distinct numerical simulations. The first approach
involved exact diagonalization, which is an exact method but limited in computational scala-
bility. Therefore, we employed it primarily for validating the results obtained from the other
two numerical methods, specifically for smaller system sizes and lower electronic fillings. The
second approach entailed employing a mean-field Hartree-Fock approximation, which offers
analytical insights but is observed to be valid only for relatively weak interaction strengths.

The primary method, extensively employed in this study, is CP-AFQMC. This method utilizes
the mean-field solution as a starting point and evolves it in imaginary time. As the imaginary
time becomes large, the solution converges to the ground state of the system. The evolution in
imaginary time is implemented by employing a Hubbard-Stratonovich transformation, which
decouples the two-body interaction term into one-body terms coupled to auxiliary external
fields. To overcome the sign problem, arising from the fermionic nature of the wave function,
we employ a constrained-path technique, restricting the sampling of auxiliary fields. This ap-
proach enables the computation of various observables. For observables that do not commute
with the Hamiltonian, we utilized a back-propagation technique. It is important to notice that
the CP approximation introduces a systematic error. Nevertheless, a comparison with exact di-
agonalization substantiates its validity for all interaction strengths considered.

Regarding the results obtained at the tight-binding level, we successfully confirmed the pres-
ence of particle-hole symmetry through the examination of the average density distribution on
the lattice and the symmetry of the total many-body energy. Additionally, by analyzing the en-
ergy spectrum of the Hamiltonian at the single-electron level, we identified the emergence of
CLS at various energy levels. In the first generation, we observed the formation of a specific
type of CLS, characterized by zero energy and destructive interference on sites with a connec-
tivity of 3. Moving to the second generation, wewitnessed the appearance of an additional type
of CLS, manifesting at energy levels of t and −t, and displaying destructive interference along
the reflection axes. Progressing to the third generation, we observed the emergence of even
more diverse types of CLS, forming at new energy values and exhibiting destructive interfer-
ence on other sub-lattices within the lattice configuration. Remarkably, the number of CLS at
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each energy level increased in higher generations of the fractal, scaling with the dimension of
the fractal d ≃ 1.58. This result resembles the analysis of the study of HOTI on the Sierpinksi
carpet[7], where outer corner modes with the same dimension of the fractal were found. Un-
like their framework, in our system there is no need for an external magnetic flux to give rise
to this interesting connection between outer modes and fractal dimension. Furthermore, we
established a connection between the number of CLS and the symmetries of the lattice. Finally,
we discovered that the density at the corners, for configurations with a number of electrons that
fills the degenerate level at zero energy, closely approximates the dimension of the fractal across
all generations of the lattice.

When examining the effects of interaction, the application of CP-AFQMC enabled a comprehen-
sive exploration of the density configurations. By concentrating on the electronic filling value
that displayed density patterns closely aligned with the dimension of the fractal at the corners,
we observed notable changes in the density distribution upon introducing interaction. Notably,
we demonstrated that under strong interaction, sites with higher connectivity, where destruc-
tive interference occurred underweak interaction, becamemore populated as a countermeasure
against the effects of interaction. We observe a decrease in the density at the corners as soon as
interaction is introduced, leading us to the conclusion that the CLS of type-1 are not robust in
the presence of interaction.

We further employed CP-AFQMC to investigate the quantum phases of the system within the
second generation of the lattice at half filling, considering non-zero interaction strengths. Ini-
tially, we observed that the simulation reached an equilibrium state characterized by an unequal
number of spin-up and spin-down electrons, corresponding to the sizes of the two sub-lattices.
Our subsequent focus shifted towards studying the magnetic order within the system. To ac-
complish this, we computed the local magnetization per site and discovered that neighboring
sites exhibited opposingte signs and varyingmagnitudes. Thiswas consistently observed across
all interaction strengths and indicated the presence of a ferrimagnetic phase. We were able to
establish a connection between the imbalance in local magnetization and the Type-1 CLS under
weak interaction. Subsequently, we verified the magnetic order by observing prominent peaks
in the magnetic structure factor. Lastly, we detected aMott transition by analyzing the behavior
of the peak values in the structure factor and the doublon density. This transition occurred at
an approximate value of U/t ≃ 4.5, which intriguingly aligns with the critical value detected
through QMC methods for a Mott transition on a honeycomb lattice [32], the periodic lattice
configuration most similar to our chosen lattice structure.

As we conclude this thesis, there remain several intriguing open questions for further explo-
ration. It would be interesting to investigate other fractal lattices with dimensions between 1
and 2, to determine whether the results we obtained can be generalized to different types of
fractal configurations. An advantage of the CP-AFQMC simulations, employed in this study,
is their versatility, as they could be applied to analyze quantum systems on any lattice config-
uration. From the Sierpinski triangle, we could, for example, place only sites in the center of
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the configuration. This lattice geometry, could not only confirm our findings but also give rise
to intriguing phases of matter, including spin liquids, due to its inherent magnetic frustration.
Additionally, a prospect involves validating our findings by extending the study to fractal lat-
tices with dimension between 2 and 3. Although computationally demanding, such a study
would provide a robust foundation for our results. Finally, a valuable validation of our findings
could stem from the analytical generalization of methods employed in one dimension, such as
the Bethe ansatz, which could be generalized to analytically solve the model [30]. These poten-
tial avenues for future research would further corroborate our understanding of the behavior
of particles on fractal lattices and strengthen the significance of our findings.
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A | Particle-Hole Symmetry

In this section, we want to show how the Hubbard Hamiltonian transforms under a particle-
hole transformation on the unfrustrated lattice. We consider this lattice because of its property
of being bipartite: it can be divided into two sub-lattices A and B where each element of A is
only connected to elements of B and vice-versa. In Figure (2.8) we can see that this is possible.
A particle-hole transformation (PHT) consists in the redefinition of the creation and annihila-
tion operators as follows:

ciσ = ηid
†
iσ and c†iσ = ηidiσ,

where ηi = ±1 depending on which sub-lattice the i−th site belongs to. This means that when
c destroys a particle d† creates a hole, with a pre-factor η.
The kinetic term the Hamiltonian contains terms that are invariant under this transformation,
in fact:

c†iσcjσ = ηiηjdiσd
†
jσ.

The pre-factor containing η contributes with a minus sing since the sum in the Hamliltonian is
over nearest-neighbours, which belong to different sub-lattices. This is also the reason why the
operators diσ and d†jσ anti-commute, cancelling the negative sign of the pre-factor and leaving
the kinetic term as

c†iσcjσ = d†jσdiσ.

Regarding the interaction term, it can be written in the same form using hole creation and anni-
hilation operators with an additional term in theHamiltonian that accounts for a shift in energy.
Let us start transforming the particle number operator:

niσ = c†iσciσ = (ηi)
2diσd

†
iσ = 1− d†iσdiσ, (A.1)

where we used {d†iσ, diσ} = 1, that follows from the anti-commutation relations of the particle
operators and from the fact that (ηi)2 = 1. Now we consider the contribution of the single sites
to the sum in the interacting term and we rewrite it using the relation just derived,

ni↑ni↓ = (1− d†i↑di↑)(1− d†i↓di↓) = 1− d†i↑di↑ − d†i↓di↓ + d†i↑di↑d
†
i↓di↓,

so that we can identify a term similar to the original product of particle number operators, but
written as a product of hole number operators hiσ = d†iσdiσ. Summing over the lattice sites, we
can obtain how the interaction term transforms under PHT,

U
∑
i

hi↑hi↓ + U (|Λ| −N) ,
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where |Λ| is the number of sites and N the number of particles.
The total Hubbard Hamilton after PHT reads as:

H ′ = −t
∑

⟨i,j⟩∈Λ

∑
σ

(
d†iσdjσ + h.c.

)
+ U

∑
i

hi↑hi↓ + U (|Λ| −N) , (A.2)

from which can deduce that for half-filling the system is left invariant by this transformation
since |Λ| = N . Moreover, in such a condition, since the Hamiltonian is the same, we should
have that the density of particles equals the density of holes,

⟨niσ⟩ = ⟨hiσ⟩ ,

but equation (A.1) suggests that ⟨hiσ⟩ = 1 − ⟨niσ⟩, therefore we obtain that the total average
density of particles per site is

⟨ni⟩ = ⟨ni↑⟩+ ⟨ni↓⟩ = 1. (A.3)



B | Slater determinant identity

We are going to prove that, given two Slater determinants |Φ⟩ and |Ψ⟩, the expectation value of
the operators c†jci, satisfies the following identity:

⟨c†jci⟩ =
⟨Ψ|c†jci|Φ⟩
⟨Ψ|Φ⟩

=
[
Φ[(Ψ)†Φ]−1(Ψ)†

]
ij
.

The key step of this proof is realizing that the product of operators c†jci in the expectation value
can be substituted by the operator Ô, defined by its matrix elements Omn = δjmδni in the fol-
lowing way:

c†jci =
∑
m,n

δmjδnic
†
mcn =

∑
m,n

Omnc
†
mcn = Ô,

where the last step is motivated by

⟨m|O|n⟩ = δmjδni using
∑
m,n

Omnc
†
mcn = Ô.

Therefore, our goal now is to compute the following quantity:

Gij =
⟨Φ|Ô|Ψ⟩
⟨Φ|Ψ⟩

and we will do it by writing the left term in a convenient way,

⟨Φ|Ô|Ψ⟩
⟨Φ|Ψ⟩

=
∂

∂η
ln ⟨Φ|eηÔ|Ψ⟩

∣∣∣∣
η=0

.

Hence, we can apply the Thouless theorem to identify eηÔ |Ψ⟩ as a Slater determinant and use
the property of the product of Slater determinants:

⟨Φ|eηÔ|Ψ⟩ = det[Φ†eηOΨ].

Since the determinant of a diagonalizable matrixM can be written as the trace of its logarithm,
we can evaluate the desired expectation value:

Gij =
∂

∂η
ln det[Φ†eηOΨ]

∣∣∣∣
η=0

=
∂

∂η
Tr ln[Φ†eηOΨ]

∣∣∣∣
η=0

= Tr
∂

∂η
ln[Φ†eηOΨ]

∣∣∣∣
η=0

,

where we also used the fact that trace and derivative operations commute. We now compute
the derivative inside the trace and use its cyclic property to simplify the expression,

Gij = Tr

[
Φ†OeηOΨ

Φ†eηOΨ

] ∣∣∣∣
η=0

= Tr

[
Φ†OΨ

Φ†Ψ

]
= Tr[(Φ†Ψ)−1Φ†OΨ] = Tr[Ψ(Φ†Ψ)−1Φ†O],
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Finally, we call the matrix Ψ(Φ†Ψ)−1Φ† = N to realize that:

Tr[NO] =
∑
m

(NO)mm =
∑
m,n

NmnOnm =
∑
m,n

Nmnδjnδmi = Nij ,

which leads to the desired identity:

Gij =
⟨Ψ|c†jci|Φ⟩
⟨Ψ|Φ⟩

= [Ψ(Φ†Ψ)−1Φ†]ij .



C | SU(2) Symmetry

The SU(2) group is a special unitary group of complex matrices with unit determinant. The
”S” stands for ”special” because the determinant of the matrices in the group is required to be
1. The ”U” stands for ”unitary” because the matrices are required to be unitary, meaning their
conjugate transpose is equal to their inverse. The number 2 in the round brackets indicates
the lowest non-trivial Lie algebra is realized in a 2 dimensional Hilbert space [43]. Due to the
constrained imposed by unitary determinant and unitarity of the matrices, the generators are
specified by 3 real parameters. It follows that the group has 3 generators, Sx, Sy and Sz . These
generators satisfy the algebra:

[Si, Sj ] = iℏϵijkSk,

so they do not commute with each other.
In the fundamental representation of the SU(2) group, the spins operators are 2 × 2 matrices
and can be written in terms of creation and annihilation operators as

Si =
1

2

∑
µν

c†iµσµνciν

or, developing the Pauli matrices,

Sx
i =

1

2
[c†i↑ci↓ + c†i↓ci↑], Sy

i =
1

2i
[c†i↓ci↑ − c†i↑ci↓], Sz

i =
1

2
[c†i↑ci↑ + c†i↓ci↓].

If we introduce the ladder operators S+
i = c†i↑ci↓ and S−

i = c†i↓ci↑, we can rewrite the three
operators as:

Sx
i =

1

2
[S+

i + S−
i ], Sy

i =
1

2i
[S−

i − S+
i ], Sz

i =
1

2
[ni↑ + ni↓].

The Hubbard Hamiltonian commutes with the three generators of the SU(2) symmetry, from
this spin isotropy follows. However, the mean-field approximation in equation (5.17) we mod-
ified the interaction term, on which we focus in this appendix. This term can be written using
only the z component of the generators of the SU(2) group,

n↑n↓ ≃ ⟨ni↑⟩ni↓ + ⟨ni↓⟩ni↑ − ⟨ni↑⟩ ⟨ni↓⟩

=
1

2

[
n ⟨n⟩ − 4Sz ⟨Sz⟩ −

(
⟨n⟩2

2
− 2 ⟨Sz⟩2

)]
,

(C.1)

wherewe introduced n = n↑+n↓. Therefore, it does not commutewith the other two generators
of the group, breaking the spin rotational invariance.
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In order to find a rotational invariant Hamiltonian, we expand the interaction term usingWick’s
theorem [44],

ni↑ni↓ = c†i↑ci↑c
†
i↓ci↓

≃ ⟨ni↑⟩ni↓ + ⟨ni↓⟩ni↑ + ⟨ni↑⟩ ⟨ni↓⟩ − ⟨S+
i ⟩S

−
i − ⟨S−

i ⟩S
+
i − ⟨S+

i ⟩ ⟨S
−
i ⟩ ,

(C.2)

where we omitted the contractions that involve two creation or annihilation operators since the
total number of particles is conserved. We can rewrite the ladder operators using the the x and
y components of the generators of the symmetry in the following way:

S+ ⟨S−⟩+ S− ⟨S+⟩ = 2Sx ⟨Sx⟩+ 2Sy ⟨Sy⟩

⟨S+⟩ ⟨S−⟩ = ⟨Sx⟩2 + ⟨Sy⟩2 .

These expressions, together with equation (C.1), allow us to write the interaction term as

n↑n↓ ≃
1

2

(
n ⟨n⟩ − 4Si ⟨Si⟩ −

⟨n⟩2

2
− 2 ⟨S⟩2

)
,

which is now written in terms of all the generators of SU(2), restoring the spin-rotational sym-
metry [45].


