

PROPOSAL FOR MASTER THESIS U.S.E

The effect of Monetary Policy tools of low-interest rate and Quantitative Easing on Inflation in the last decade in the Eurozone

 $Aya \ ElSayed, \ 5250080 \\ a.ayaayman samiribrahimel sayed @students.uu.nl$

Academic Supervisor Professor Bilge Karatas

External Supervisor Harry Geels

Co-reader Mohamed Kaakeh

1 Abstract

The past decade has seen unprecedented consequences due to low-interest rates and unconventional monetary policy tools, such as quantitative easing (QE). In the Eurozone, these policy tools have been accompanied by chronically low inflation. This paper attempts to test the relationship between inflation, low-interest rate, money supply, and core money growth through empirical research. Historical connections proved a positive relationship between money supply and inflation, but contemporary economics has challenged this. Is it the inflation shock from the supply and demand shocks of COVID-19, and the Ukrainian War costing in an Energy Crisis, or the loose monetary policy leading to high inflation and a need for central bankers to use extreme measures to tighten policy? This paper's findings indicate that the Ukraine war and its interaction terms with the monetary policy tools indeed had a positive effect on inflation, unlike COVID-19 and its interaction terms with the monetary policy tools which had a positive effect on inflation. Interest rate variables did partially support the inverse relationship with inflation. However, Money supply proved against the positive hypothesis of this paper and recorded a negative relationship with inflation.

Keywords: Low-Interest Rates, Unconventional Monetary Policy, Quantitative Easing, Eurozone, Money Supply, Inflation, COVID-19, Ukrainian War, Energy Crisis, Long-Term Effects.

Contents

1	Abstract	1
2	Introduction	3
	2.1 Background and Context	3
	2.2 Research problem and questions	3
	2.3 Significance of the study	4
3	Literature	5
	3.1 Definition and measurement of inflation	5
	3.2 Monetary policy tools and their effectiveness	5
	3.2.1 Low-interest rates	5
	3.2.2 Quantitative easing	6
	3.3 Relationship between the combined effect of low interest rates and historical	0
	excessive use of QE and inflation	0
	3.5 Provious research on the relationship between monetary policy tools and in	1
	fation	7
	3.5.1 Relationships mixed findings	7
	3.5.2 Need for further research	8
	3.6 Hypotheses	8
		10
4	Data and Methodology	10
	4.1 Data sources and sample selection	10
	4.2 Shock variables	12
	4.3 1 Model 1: Monetary factors affect on Inflation rate	12 12
	4.3.2 Model 2: Monetary policy effect on Inflation rate with Interaction	14
	terms (COVID-19 and Ukraine War)	13
5	Results	13
	5.1 Interpretation of Model 1 regression results	13
	5.2 Interpretation of Model 2 regression results	16
	5.3 Findings	19
6	Discussion and Robustness checks	19
	6.1 Shortfalls and Limitations	19
	6.2 Random Walk, Heteroskedasticity, and Multicollinearity	20
7	Conclusion	21
D.	oforongos	าา
10	elerences	
Α	Appendix A: Additional Tables	24
	A.1 Descriptive Data Tables	24
в	Appendix B: Robustness Checks tables	36
\mathbf{C}	Supplementary Materials	44
	C.1 .do file	44

2 Introduction

2.1 Background and Context

The Eurozone is facing a period of crisis, marked by the profound impact of the worst pandemic in recent history - the COVID-19 outbreak - as well as the pressing reality of an inflationary surge from the Ukraine War period and a looming recessionary phase. There is a rising realization of the negative economic effect of the use of a prolonged implementation of two main monetary policy tools - low-interest rates and historically excessive quantitative easing (QE) - which led to a drastic hike in inflation. The effectiveness of these two monetary policy tools as an effective measure in controlling inflation has been a subject of controversy and pressuring fiscal policymakers. Despite its popularity, it is still unclear whether this set of loose monetary policy tools can achieve their desired outcomes.

2.2 Research problem and questions

European Central Bank (ECB) has adopted an accommodative monetary policy approach of combining low-interest rates with historical excessive use of QE to enhance economic output, lower unemployment and stabilize levels of inflation. However, such monetary policies have induced serious implications, such as a lack of ability to respond effectively to further economic shocks due to exceptionally low yields resulting from bond buying activities, and deviation of asset prices from their true values due to the extended periods of low-interest rates. This paper investigates the influence of such a low-interest rate and QE approach on inflation in the Eurozone of the last decade. The primary objective is to gain an accurate understanding of the effectiveness of these monetary policy tools in controlling inflation levels, especially during a time of prolonged economic uncertainty due to shocks such as COVID-19 and the Ukraine War.

Empirical studies have found mixed results on the effectiveness of low-interest rates and QE in controlling inflation. Some studies have suggested that low-interest rates and QE are effective in reducing inflation, while others have found no significant impact on inflation. For example, a study by (Bernanke & Reinhart, 2004) found that QE had a significant impact on reducing long-term interest rates, but its effect on inflation was less clear. Similarly, a study by (Romer & Romer, 2010) found that interest rate changes had little effect on inflation in the short term but may have an impact in the long term.

On the other hand, there is evidence to suggest that low-interest rates and QE may have unintended consequences, such as asset price inflation and financial instability. For example, a study by (Adrian & Shin, 2010) found that QE may lead to increased financial risk-taking and asset price bubbles. Similarly, a study by (Rey, 2015) found that low-interest rates may lead to excessive risk-taking by investors and contribute to financial instability.

Several studies have investigated the relationship between money supply, inflation, and core money growth in the Eurozone. (Diermeier & Goecke, 2016) and (Rua, 2012) argue that there may not be a direct connection between money supply and inflation in Europe. (Gerlach & Svensson, 2003), on the other hand, suggest that monetary indicators could be used to control inflation. (Aßhoff, Belke, & Osowski, 2021) examine the effect of unconventional monetary policy on inflation expectations in the Eurozone. (Allen & Geels, 2021) question the assumption that the relationship between monetary easing and inflation is positive and lacks empirical evidence to support it. These studies have contributed to the debate on the effectiveness of monetary policy in controlling inflation.

In his interview on January 12, 2023, ECB Executive Board member Philip R. Lane¹ emphatically stated that the ultra-loose monetary policy and expansive monetary injection established during the early days of the pandemic did not contribute to an 'unrestrained

¹Lane, P. R. (2023, January 17). Interview with Philip R. Lane, Member of the Executive Board of the ECB, conducted by Martin Wolf on 12 January 2023. Financial Times.https://www.ecb.europa.eu/press/inter/date/2023/html/ecb.in230117~1ab0df6f3d.en.html

economy'. He acknowledged an abrupt compounding economic spike. For example, the sudden availability of the virus, an unbalanced demand due to sudden openings, and the energy shock were responsible for the current economic condition. On top of that, he highlighted that the Eurozone had already been subjected to low-interest rates for five years before the pandemic, and little to no inflationary pressure. Therefore, the psychology that global economies were creating an inflationary environment is unsupported by the evidence. These projections are backed by numerous studies highlighting that the inflationary pressure in global economies is ultimately instigated by supply chain failures, excessive fiscal policy, and geopolitical distress, rather than monetary policy adjustments.

In consequence, central banks can deploy a wide scope of macroprudential and regulatory plans to counter the foundational causes of inflation without having to apply monetary instruments. A vicious side-effect of the low-interest rates and voluminous QE implementations has been a decrease in encouragement for companies to improve their balance sheets and for governments to push for structural changes. Corroboration shows that enormous purchase plans have incited zombie banks and firms, inhibited the practice of creative destruction, and restrained the capability of economic growth. (Onaran, 2011) However, despite having expansive QE and reduced interest rates, the ECB still did not create an inflationary scenario, as demonstrated by the fact that inflation in the Eurozone continued to persevere at around 1-1.5 per cent, preventing deflation.

Given the mixed evidence on the effectiveness and potential drawbacks of low-interest rates and QE, it is important to examine their impact on inflation in the context of the last decade. This paper aims to contribute to the literature by analyzing the relationship between low-interest rates, QE, and inflation in the last decade.

This academic paper aims to address the following research question: What is the impact of the implementation of loose monetary policy, characterized by low-interest rates and the utilization of the unconventional monetary policy tool- quantitative easing (QE), by central banks in the Eurozone over the past decade on inflation rate? The objective is to examine whether the adoption of loose monetary policy tools such as low-interest rates and the historically excessive use of QE has resulted in a significant positive effect on inflation in the Eurozone during this period.

2.3 Significance of the study

Specifically, this paper will use panel data regression models to analyze the relationship between inflation and interest rate, QE, and gross domestic product (GDP). The data set dated 2010-2022 monthly for 19 countries in the Eurozone. The analysis will also incorporate dummy variables for the Ukraine war and the COVID-19 pandemic, which may have influenced inflation during the end of the last decade. The paper will explore the relationship between money supply, inflation, and monetary indicators in the Eurozone. The literature includes a mix of perspectives, ranging from the monetary perspective of (Kantor, 2022) to the views of (Ascari, Bonomolo, Hoeberichts, & Trezzi, 2023) who explore the Eurozone great inflation surge, to the perspective of (Grauwe & Polan, 2005) who question whether inflation is always and everywhere a monetary phenomenon. The main strategy of this paper is to test how the effect of monetary policy on inflation by exploring the effects of QE on inflation rates, such as the work of (Yue & Leung, 2011), and the changing nature of financial intermediation and the Global Financial Crisis- GFC of 2007-09, as examined by Adrian and Shin (2010). The review also includes studies of the effects of unconventional monetary policy on inflation expectations, as discussed by (Aßhoff et al., 2021). This paper aims to contribute to the ongoing policy debate surrounding the effectiveness of monetary policy tools in managing inflation in the Eurozone.

The paper is ordered as follows: Chapter 3 provides a literature review of the impact of low-interest rates and QE on inflation along with the proposed hypothesis. Chapter 4 discusses the methodology and data used. Chapter 5 presents the results, while Chapter 6 discusses the implications of the findings and provides recommendations for policymakers. Finally, Chapter 7 concludes the paper.

3 Literature

By reviewing the relevant literature, the aim is to provide the theoretical background and motivation for the model described in Section 3.

3.1 Definition and measurement of inflation

Inflation significantly impacts the economy. It is the rate of change in the overall price level of goods and services over time. Inflation is measured with a price index such as the consumer price index (CPI) or the producer price index (PPI). However, these are based on a set basket of goods and services and may not accurately describe changes in consumer preferences with time. ECB utilizes multiple monetary policy tools to control inflation in the Eurozone. The ECB formally adopted an inflation targeting (IT) framework in 1998, to preserve price stability in the Eurozone. According to this framework, it aimed to ensure inflation rates below, but near, 2 per cent over the medium term. The success of similar frameworks in other nations such as the Bank of England and the Reserve Bank of New Zealand, has prompted the significant adoption of the IT framework by the ECB.

As an aftermath of the GFC of 2007-09, central banks have increasingly utilized low rates of interest and QE to stimulate economic activity and curb inflation. Initially, central banks viewed themselves as having full jurisdiction over inflation targets, but there exist other forces that restrain their reign. Conforming to the conventional view, inflation is attributed to economics and thus full control of inflation ought to be vested in an autonomous central bank whose principal purpose is economic stabilization. Subsequently, a few countries followed this behavioural suggestion by authorizing central banks with enormous fiscal autonomy.

Nevertheless, critics have started to challenge this traditional approach; they claim that monetary policy is not adequate to assure price stability and fiscal policy is required to regulate inflation (Lyziak & Mackiewicz-Lyziak, 2020). (Woodford, 2012) later study analyses the relationship between IT and financial stability and argues that an optimally planned IT framework can help promote financial stability. (Vega & Winkelried, 2005) examine the impact of IT on inflation behaviour and find that it has been successful in lowering inflation volatility across many countries.

Notably, low-interest rates and QE were employed for stimulating economic activity and sustaining price balance; nonetheless, the efficacy of these tools in controlling inflation has been met with considerable debate among academics and policymakers.

3.2 Monetary policy tools and their effectiveness

3.2.1 Low-interest rates

The relationship between low-interest rates and inflation is still inconclusive. As (Bernanke & Reinhart, 2004) suggests that while low-interest rates can stimulate economic activity, their impact on inflation is not straightforward and can be influenced by other factors such as the output gap and inflation expectations. The empirical evidence on the connection between low-interest rates and inflation remains unsettled in academic literature. Whereby, studies have shown that a decrease in the real interest rate can lead to an increase in the money supply (Diermeier & Goecke, 2016). Additionally, a decrease in interest rates can stimulate borrowing and spending, which can increase demand (Grauwe & Polan, 2005). And more evidently, the paper by (Sargent, Wallace, et al., 1981) provides evidence that excessive monetary growth can lead to high inflation rates.

Furthermore, in a study of the Eurozone, (Aßhoff et al., 2021) results suggest that the implementation of these unconventional monetary policies such as QE has been effective in increasing inflation expectations, which is in line with the ECB's goal of achieving price stability. The study also highlights the importance of communication and transparency in central bank policy decisions.

However, there are also views that low-interest rates may not necessarily lead to higher inflation. For example, (Allen & Geels, 2021) argue that the assumption that the relationship between monetary easing and inflation is spurious and offered a theoretical framework to support their argument and suggest that policymakers should consider a broader range of factors when making decisions about monetary policy. They suggest that other factors can influence inflation, such as global competition, demographic and technological change.

Also (Cochrane, 2016) upon reviewing the empirical evidence, he found weak support for the standard theoretical view that raising interest rates lowers inflation. The evidence is often influenced by strong prior beliefs or assumptions. As a result, he suggested that a positive reaction of inflation to interest rate changes is a possibility that should be taken seriously by policymakers and central bankers. And in his paper, he attempts to explore alternative approaches to escape this prediction but finds that adding elements such as money, backwards-looking Phillips curves, multiple equilibria, or Taylor rules fails to produce a different outcome.

Lastly, the relationship between low-interest rates and inflation is complex and multifaceted. While there is evidence to suggest that low-interest rates can lead to higher inflation rates, other factors can also play a role. Policymakers need to consider these various factors when making decisions about monetary policy and managing inflation.

3.2.2 Quantitative easing

Recent studies have examined the effectiveness of unconventional monetary policy tools such as QE in achieving inflation targets. (Aßhoff et al., 2021) investigated the impact of unconventional monetary policy on inflation expectations in the Eurozone and found that it was effective in increasing inflation expectations. (Allen & Geels, 2021) challenged the notion that the relationship between monetary easing and inflation is positive.

Empirical studies have examined the relationship between monetary policy and inflation in the Eurozone, where inflation has persistently remained below the ECB's target rate of 2 per cent. (Diermeier & Goecke, 2016) analyzed the relationship between money supply and inflation in Europe and found that there was no significant connection between the two variables. Similarly, (Rua, 2012) used time-frequency analysis to investigate the relationship between money growth and inflation in the Eurozone and found that the connection was weak.

(Gerlach & Svensson, 2003) argued that monetary indicators such as $M3^2$, which includes broad money, could be useful in predicting inflation in the Eurozone. In contrast, (Grauwe & Polan, 2005) questioned the monetary view that inflation is always and everywhere a monetary phenomenon. (van Lerven, 2016) evaluates the effectiveness of QE in the Eurozone and finds that it has been successful in stimulating the economy but has not been as effective in raising inflation rates.

3.3 Relationship between the combined effect of low interest rates and historical excessive use of QE and inflation

One of the main debates in the field of monetary policy is the effect of low interest rates and QE on inflation. While some argue that low-interest rates and QE can lead to inflation, others argue that they can prevent deflation and stimulate economic growth. According to (Bernanke et al., 2002), low-interest rates can lead to an increase in borrowing and spending, which in turn can stimulate economic growth. However, if the economy overheats and inflation starts to rise, central banks may increase interest rates to slow down the economy and keep inflation in check. Similarly, QE can also stimulate economic growth by increasing the money supply and lowering borrowing costs. However, as argued by (Mishkin,

²Monetary aggregates background as defined by the ECB M1 is the sum of currency in circulation and overnight deposits; M2 is the sum of M1, deposits with an agreed maturity of up to two years and deposits redeemable at notice of up to three months; and M3 is the sum of M2, repurchase agreements, money market fund shares/units and debt securities with a maturity of up to two years. https://www.ecb.europa.eu/stats/money_credit_banking/monetary_aggregates/html/index.en.html

2006), if the money supply grows too quickly, it can lead to inflation. In the Eurozone, the ECB has been implementing low-interest rates and QE in response to the GFC of 2007-09 and the subsequent economic slowdown. However, the effectiveness of these policies in terms of inflation control is still a matter of debate. Recent research suggests that the relationship between low-interest rates, QE, and inflation may not be straightforward. For example, Cœuré, B. (2019) ³ argues that the effectiveness of low-interest rates and QE in stimulating economic growth depends on the transmission channels through which these policies affect the economy. Overall, the relationship between low-interest rates, historical excessive use of QE, and inflation is complex and depends on a variety of factors. While some studies suggest that these policies can help to prevent deflation and stimulate economic growth, others warn of the potential for inflation if these policies are not implemented carefully. Further research is needed to better understand the effectiveness of these policies in the Eurozone and other economies.

3.4 Explaining the recent shocks

Monetary policy has faced unprecedented pressure in the wake of two tail-risk events: the global pandemic and Russia's invasion of Ukraine. While a timeline of the last economic crisis due to the recent shocks can be found in the note by (Ascari et al., 2023) at the De Nederlandsche Bank n.v., By considering three phases of the pandemic (the COVID-19 shock (Phase I: the COVID-19 shock (roughly Q1 and Q2:2020)), the reopening of the economy (Phase II: the re-opening of the economy (roughly from Q3:2020 to Q3:2021)), and the post-re-opening (Phase III: the post-re-opening (from Q4:2021 onwards))), they conjecture how the contribution of demand and supply-side shocks evolved from one phase to the next. It appears that aggregate demand experienced a negative shock in the first phase, followed by a sequence of positive shocks in the second and third phases. Additionally, aggregate supply experienced a negative shock in the first phase, followed by a positive shock in the second phase and another negative shock in the third. Those pressures have led some to suggest that "running the economy hot" and "looking through" temporary shocks may be necessary, although the risks they pose to price stability must be weighed carefully. With inflation running near double digits, Central Banks across the Eurozone are thus confronted with a unique challenge.

Moreover, a study by (Attinasi, Balatti, Mancini, Metelli, et al., 2022) suggests that the pandemic has resulted in these unprecedented factors, which can potentially influence price dynamics and contribute to inflationary pressures. Therefore, it is hypothesized that the COVID-19 pandemic has had a significant impact on the inflation rate in the Eurozone.

3.5 Previous research on the relationship between monetary policy tools and inflation

3.5.1 Relationships mixed findings

Previous research has reported various findings on the relationship between monetary policy tools and inflation in the Eurozone. Some studies such as (Rua, 2012) and (Gerlach & Svensson, 2003) have shown a strong connection between money growth and inflation in the Eurozone, while others such as (Diermeier & Goecke, 2016) and (Grauwe & Polan, 2005) have questioned the existence of such a relationship. Furthermore, (Kantor, 2022) argues from a monetary perspective that the relationship between monetary easing and inflation is weak and that controlling the money supply should be the primary goal of monetary policy. (Woodford, 2012) emphasizes the importance of balancing IT with maintaining financial stability. In addition, (Vega & Winkelried, 2005) have examined the effectiveness of IT in the Eurozone and found that it has been successful in reducing inflation expectations.

³Cœuré, B. (2019). The ECB's monetary policy measures and inflation expectations. Speech at the 34th SURF Colloquium, Brussels, Belgium. Retrieved from.https://www.ecb.europa.eu/press/key/date/2019/html/ecb.sp190711~6dcaf97c01.en.html

Other studies have investigated the impact of unconventional monetary policy on inflation. (Aßhoff et al., 2021) find that unconventional monetary policy such as QE has led to a significant increase in inflation expectations in the Eurozone, while (Allen & Geels, 2021) argue that the assumption that the relationship between monetary easing and inflation is spurious. Similarly, (Akinci, Benigno, Del Negro, & Queralto, 2020) have examined the relationship between the real interest rate and financial stability, finding that lower real interest rates can contribute to financial instability. In conclusion, previous research has presented varied findings on the relationship between monetary policy tools and inflation in the Eurozone. While some studies have found a strong connection between monetary policy on inflation is also a topic of debate, with some studies finding a significant increase in inflation expectations, while others argue that the relationship between monetary easing and inflation is weak.

3.5.2 Need for further research

Based on the academic papers provided earlier, several gaps in the literature could be addressed by testing the regression equation on inflation. These include:

- Limited focus on the impact of unconventional monetary policy as the papers discussed the impact of traditional monetary policy tools such as interest rates on inflation, but there is a lack of research on the impact of unconventional monetary policy tools such as QE. The regression equation includes money supply (M2) as an independent variable, which can help to test the impact of unconventional monetary policy on inflation.
- Need for more recent data as the papers are several years old and do not consider more recent economic developments, such as the COVID-19 pandemic and the Ukraine war. The regression equation includes these variables as independent variables, which can help to test their impact on inflation in a more current context.

By testing the regression equation on inflation, we can help to fill these gaps in the literature and provide a more comprehensive understanding of the factors that impact inflation. This can help policymakers make more informed decisions about monetary policy and ultimately lead to more stable economic growth.

3.6 Hypotheses

Based on the literature review, shows that there is a strong relationship between monetary policy and inflation in the Eurozone, with core money growth, M3 growth, interest rates, and other monetary indicators all being significant factors. Thus, the following hypotheses can be derived:

H_1 : Interest rates and inflation have an inverse relationship, ceteris paribus;

Based on the findings of (Gerlach & Svensson, 2003) suggest that monetary indicators, including interest rates, can be useful for predicting inflation in the Eurozone. Therefore, the paper hypothesizes that as interest rates increase, inflation rates will decrease. Under this hypothesis, this paper will create a narrow/specific model of Monetary tools. One main tool is the interest rate can be divided into main two types as they represent different aspects of the interest rate environment, such as the Deposit Interest Rate (DIR) and the Euro Interbank Offered Rate (EURIBOR).

DIR refers to the interest rate that banks pay to individuals and firms on deposits made in their accounts. It is one of the monetary factors that can affect the inflation rate and it is reasonable to be used as one of the explanatory variables in the regression. The Eurozone is complex and depends on various factors such as the level of economic integration, the degree of competition in the banking sector, and the monetary policy regime. There is empirical evidence supporting that the relationship between deposit interest rates and inflation is negative. For example, (Golinelli & Rovelli, 2002) find that higher deposit interest rates are associated with lower inflation in the Eurozone, but this effect is stronger in countries with more developed financial systems.

The EURIBOR is the interest rate at which banks in the Eurozone lend funds to each other in the interbank market. It is one of the key benchmark rates used in financial markets and is closely watched by policymakers as an indicator of the overall level of liquidity in the Eurozone. A higher EURIBOR can indicate a tighter liquidity condition in the Eurozone, which can affect inflation through its impact on borrowing costs for households and businesses.

Several academic studies support the inclusion of EURIBOR in the regression analysis. For example, the study by (Pateiro-Rodríguez, Barros-Campello, Candamio, & Pateiro-López, 2016) found that EURIBOR is a significant predictor of inflation in the Eurozone, with a one percentage point increase in EURIBOR leading to a decrease in inflation by around 0.2 percentage points.

H_2 : Money supply and inflation have a positive relationship, *ceteris paribus*;

Both (Gerlach & Svensson, 2003) and (Diermeier & Goecke, 2016) found evidence of a connection between money supply and inflation and finds that interest rates play a role in the transmission of monetary policy. The paper by (Rua, 2012) takes a time-frequency view and finds evidence of a long-run relationship between money growth and inflation in the Eurozone. Therefore, the paper hypothesizes that as the money supply increases, inflation rates will also increase.

H_3 : The COVID-19 pandemic is hypothesized to have a significant negative relationship with the inflation rate in the Eurozone, *ceteris paribus*;

According to a study by (Bodnár, Le Roux, Lopez-Garcia, Szörfi, et al., 2020), the COVID-19 pandemic has resulted in a decline in economic activity, reduced consumer spending, and disrupted supply chains in the Eurozone. These factors have led to a decrease in aggregate demand and excess capacity in various sectors of the economy. As a result, businesses are facing downward pressure on prices, and central banks have implemented accommodative monetary policies to stimulate economic recovery. Based on this evidence, it is hypothesized that the COVID-19 pandemic has a negative relationship with the inflation rate in the Eurozone.

Sub-hypothesis under H_3 : The interaction between the COVID-19 pandemic and loose monetary policy tools variables are hypothesized to have an amplifying effect on the negative relationship between the pandemic and the inflation rate in the Eurozone, *ceteris paribus*.

According to a study by (Aßhoff et al., 2021), unconventional monetary policy tools, such as quantitative easing and forward guidance, have been widely used by central banks in response to the COVID-19 pandemic. These tools aim to provide additional stimulus to the economy, support financial markets, and prevent a deflationary spiral. The study suggests that the interaction between loose monetary policy and the COVID-19 pandemic can amplify the deflationary pressures caused by the pandemic. The increased liquidity injected into the economy through these measures may further dampen aggregate demand and contribute to downward pressure on prices. Therefore, it is hypothesized that the interaction between the COVID-19 pandemic and loose monetary policy tools has an amplifying effect on the negative relationship between the pandemic and the inflation rate in the Eurozone.

H_4 : The Ukraine war has had a positive significant impact on inflation, *ceteris paribus*;

The study conducted by (Caldara, Conlisk, Iacoviello, & Penn, 2022) suggests that the war in Ukraine has had a significant impact on the inflation rate. They argue that conflicts and political instability can lead to disruptions in the supply chain, trade, and increased uncertainty, which can contribute to inflationary pressures. While the specific nature of the impact is not explicitly mentioned, it can be inferred that the impact of the Ukraine war on the inflation rate is expected to be positive and significant.

Sub-hypothesis under H_4 : The interaction between the Ukraine war and loose monetary policy tools variables are hypothesized to have an exacerbating effect on the positive impact of the war on inflation, *ceteris paribus*.

Based on the findings of (Ozili, 2022), it can be inferred that the interaction between loose monetary policy and the Ukraine war may exacerbate the inflationary pressures caused by the conflict. Loose monetary policy tools, such as increased liquidity and low-interest rates, can provide support to sectors affected by the war and stimulate economic activity. However, in the context of the Ukraine war, the disruption in the supply chain, trade, and increased uncertainty may create inflationary pressures. The interaction between loose monetary policy and the war may amplify these inflationary pressures, leading to a stronger positive impact of the war on inflation. Therefore, it is hypothesized that the interaction between the Ukraine war and loose monetary policy tools has an exacerbating effect on the positive impact of the war on inflation.

4 Data and Methodology

4.1 Data sources and sample selection

The data set is built in the years 2010-2022 monthly for 19 countries in the Eurozone, namely Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Portugal, Slovakia, Slovenia, and Spain. The paper will investigate the relationship between the Inflation rate and its key determinant exogenous variables. The data are gathered from Eurostat or the ECB database. The data set is mainly on monthly calculations, however, the GDP variable is published in quarter rate and will be interpolated. The dependent variable is the Inflation Rate, and the independent variables are all the above-mentioned variables. A quantitative panel data analysis will be conducted to examine the relationship between macroeconomic variables and inflation rates across Eurozone countries. The regression equation employed in this study was inspired by previous research in the field. The equation included variables such as the deposit interest rate, EURIBOR, log of money supply (M2), consumer confidence indicator survey, log of GDP growth rate, and two dummy variables related to COVID-19 and the Ukraine war.

The descriptive data table (Tables 4 and 5 in Appendix A) provides an overview of the key variables used in the analysis and calculates summary statistics for the panel data. The summary statistics typically include count, mean, standard deviation, minimum, and maximum values for each variable within each country.

In this study, the logarithmic transformation is applied to two variables namely GDP and Money Supply M2 following established econometric practices. (Campbell & Perron, 1991) study emphasizes the importance of transforming variables to logarithms. They highlight the benefits of taking logarithms when dealing with time series data and unit roots. According to their findings, logarithmic transformations help in linearizing relationships and reducing the impact of extreme values, leading to more reliable and robust regression results. The use of logarithms enhances the reliability and interpretability of the regression results, contributing to a more comprehensive analysis of the relationship between monetary aggregates and other variables of interest. In line with this methodology, the logarithmic million units of national currency are used to present the data, enabling a better understanding of the relative changes in these variables and facilitating the interpretation of coefficients in the regression equation.

To support the validity of the regression equation, several academic papers were referenced. For instance, (Ascari et al., 2023) investigated the inflation surge in the euro area, while (Aßhoff et al., 2021) analyzed the impact of unconventional monetary policy on inflation expectations. Additionally, (Diermeier & Goecke, 2016) explored the relationship between money supply and inflation in Europe. (Lyziak & Mackiewicz-Lyziak, 2020) examined the influence of fiscal stance on inflation expectations, and (Pateiro-Rodríguez et al., 2016) analyzed the behaviour of monetary aggregates in the euro area. By referring to these studies, this regression analysis aimed to provide empirical evidence and insights into the relationship between macroeconomic variables and inflation rates.

- Inflation Rate: Harmonised Index of Consumer Prices (HICP) is used to measure consumer price inflation. That means the change over time in the prices of consumer goods and services purchased by euro-area households. The data obtained is a monthly rate of change per country. Source of euro area data: European Central Bank (ECB)
- **Deposit Interest Rate**: The rates used in the data set are the rate per country for Euro-denominated deposits with an agreed maturity of more than one year from euro-area households (percentages per annum, rates on new business) of euro area data: ecb.europa.eu
- Euro Interbank Offered Rate: The Euribor rates are based on the interest rates at which a panel of European banks borrows funds from one another. In the calculation, the highest and lowest 15 per cent of all the quotes collected are eliminated. The remaining rates will be averaged and rounded to three decimal places. Euribor is determined and published at about 11:00 am each day, Central European Time. And in the data set, the highest percentage was selected as a unified figure for the EUROZONE countries per month. Source of euro area data: Euribor-rates.eu
- Gross domestic product (GDP): Nominal GDP growth rate at market prices is the result of the production activity of resident producer units. The paper will use Nominal GDP in the regression because real GDP is adjusted for inflation, which can introduce measurement error and obscure the true relationship between the variables of interest and capture the full impact of inflation on the economy (Campbell & Perron, 1991). It is defined as the value of all goods and services produced less the value of any goods or services used in their creation. Data are presented in logarithmic million units of national currency. Unit: the GDP used in the data set was quarterly figures interpolated to a monthly rate per country. Source of euro area data: European Central Bank (ECB)
- Money Supply M2: Monetary aggregates comprise monetary liabilities of euro area residents excluding the central government. Data are presented in logarithmic million units of national currency. Unit: Monthly rate as a unified figure for the EUROZONE countries. Source of euro area data: European Central Bank (ECB)
- Consumer Confidence Indicator Survey (CCI): The Consumer Survey Consumer Confidence Indicator measures consumers' attitudes and opinions about their economic prospects, their financial situation, and their willingness to spend. Consumer Confidence Indicators are used to gauge the overall level of consumer confidence in the economy and are often used by policymakers and analysts as an early indicator of changes in consumer spending behaviour. Unit: Period-to-period per cent -change as a unified percentage published by the ECB for the EUROZONE. Source of euro area data: European Central Bank (ECB)

4.2 Shock variables

- **COVID-19**: dummy variable that takes the value of 1 for the period affected by the COVID-19 pandemic and 0 otherwise.
- Ukraine War: a dummy variable that takes the value of 1 for the period affected by the Ukraine war and 0 otherwise.

COVID-19 and Ukraine War are included in the regression as dummy variables to capture the effects of these exogenous shocks on inflation in the Eurozone. The COVID-19 pandemic and the Ukraine war have the potential to affect inflation by disrupting supply chains, causing changes in demand patterns, and leading to changes in expectations about future economic conditions. By including these variables in the regression, the paper aims to control for the potential confounding effects of these external factors and obtain more accurate estimates of the coefficients of interest.

The war in Ukraine as a full-scale invasion by Russian forces began on February 24, 2022, and this start date will be used in the data set as per (Ozili, 2022) which has used the same start date.

The first human cases of COVID-19 were identified in Wuhan, People's Republic of China, in December 2019; accordingly, the data set will consider this date the pandemic variable start date. 4

4.3 Regression model specification

The structure of the data leads us subsequently to test the relationship between the variables, using a panel regression analysis which will be conducted using the STATA software. The fixed-effects model or Random effect Model will account for country-specific heterogeneity and time-invariant unobserved effects. The Hausman test will be used to choose between the fixed-effects and random-effects models. Fixed Effects will control for all invariant differences between the countries in the data set. The robustness of the results could be tested by conducting various diagnostic tests, such as testing for multicollinearity, heteroskedasticity, and auto-correlation. The significance of the coefficients could be tested using the t-test, and the overall fit of the model could be tested using the F-test. To estimate the relationship between the independent and dependent variables, the following regression models are computed:

To estimate the relationship between the independent and dependent variables, the coefficients in the equation, denoted by β , α , γ and δ with subscripts indicating the country and time represented the effects of these variables on the inflation rate. The following regression models are computed:

4.3.1 Model 1: Monetary factors effect on Inflation rate

 $InflationRate_{it} = \beta_0 + \beta_1 DepositInterestRate_{it} + \beta_2 EURIBOR_{it}$ $+ \beta_3 \log MoneySupplyM2_{it} + \beta_4 \log GDPgrowthrate_{it}$ $+ \beta_5 ConsumerConfidenceIndicatorSurvey_{it},$ (1) + $\alpha_6 COVID19_{it} + \alpha_7 UkraineWar_{it} + \alpha_t + \epsilon_{it},$ $\forall i \in \{1, 2, ..., 19\}, \quad \forall t \in \{2011, ..., 2021\}$

⁴World Health Organization. (2020). Statement on the meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV) [Press Release]. https://www.who.int/news/item/23-01-2020-statement-on-the-meeting-of-the-international-health -regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)

4.3.2 Model 2: Monetary policy effect on Inflation rate with Interaction terms (COVID-19 and Ukraine War)

$$\begin{aligned} InflationRateit &= \beta_0 + \beta_1 DepositInterestRate_{it} + \beta_2 EURIBOR_{it} \\ &+ \beta_3 \log MoneySupplyM2_{it} \\ &+ \beta_4 ConsumerConfidenceIndicatorSurvey_{it} \\ &+ \beta_5 \log GDP growthrate_{it} \\ &+ \alpha_6 COVID19_{it} + \alpha_7 UkraineWar_{it} \\ &+ \gamma_1 COVID19_{it} \times DepositInterestRate_{it} \\ &+ \gamma_2 COVID19_{it} \times EURIBOR_{it} \end{aligned} \tag{2} \\ &+ \gamma_3 COVID19_{it} \times \log MoneySupplyM2_{it} \\ &+ \delta_1 UkraineWar_{it} \times DepositInterestRate_{it} \\ &+ \delta_2 UkraineWar_{it} \times EURIBOR_{it} \\ &+ \delta_3 UkraineWar_{it} \times \log MoneySupplyM2_{it} \\ &+ \delta_4 UkraineWar_{it} \\ &+$$

5 Results

This section presents the summary of the regression results obtained from five different tests, labelled as Tests (1) to (5) for each Model suggested in the earlier section. The models explore the relationship between various Macroeconomics variables and the inflation rate in EUROZONE. For each model, OLS regression will be conducted, noting that Model 2 will introduce interaction variables with both dummies' variables; followed by fixed effects estimator and random-effects GLS regression. The results indicate that some of the economic factors have a significant impact on inflation, while others do not show statistical significance.

The correlation matrix (Table 1) suggests limited associations between the variables in the model. The correlations, where present, are generally weak, indicating that these variables may not have a strong linear relationship. The inflation rate (IR) demonstrates a slight positive association with euribor, indicating that changes in euribor might influence the inflation rate to some extent. Additionally, the deposit interest rate (dr) shows a weak positive correlation with euribor and a weak negative correlation with the customer surveys (CS), suggesting that as euribor increases, the deposit interest rate might slightly increase. Furthermore, the logarithm of money supply (lM2) exhibits a weak negative correlation with the deposit interest rate, indicating that an increase in money supply might correspond to a decrease in the deposit interest rate.

It is important to note that the two dummy variables, COVID and WAR, show weak correlations with the other variables. COVID-19 demonstrates a positive correlation with euribor, suggesting that changes in euribor might be associated with the impact of the COVID-19 pandemic. Similarly, WAR shows negative correlations with CS and lM2, indicating a potential relationship between the Ukraine War, customer surveys and money supply. However, these correlations are generally weak, implying that the impact of these events on the other variables may be influenced by other factors not considered in the model.

5.1 Interpretation of Model 1 regression results

The first regression model in Table (2) aimed to examine the monetary factors' impact on the inflation rate in the Eurozone. The model included the DIR, the EURIBOR and M2 as explanatory independent variables. Further, the table started including the dummy variables COVID-19 and the Ukraine War to assess their potential influence on the inflation rate with the independent variables.

Regression (1) examines the relationship between the inflation rate and the monetary policy tools represented by the deposit interest rate (dr), Euribor, and the log of money

Table 1: Correlation Matrix Base Model

	IR	dr	\mathbf{CS}	euribor	lGDP	lM2	COVID	WAR
IR	1.00							
dr	0.0697	1.00						
\mathbf{CS}	-0.1898	-0.3892	1.00					
euribor	0.2404	0.2722	-0.1860	1.00				
lGDP	0.0383	0.0258	0.0136	0.0136	1.00			
lM2	-0.0165	-0.6549	0.1651	-0.0480	0.0778	1.00		
COVID	0.0521	-0.3883	-0.2001	0.1586	0.0577	0.8007	1.00	
WAR	0.1946	-0.1424	-0.4793	0.0861	0.0451	0.4676	0.4594	1.00

supply (lM2). The coefficients for the deposit interest rate and lM2 are not statistically significant. Solely, the coefficient for Euribor is high reading 7.172, and it is statistically significant (p < 0.01). These results suggest that the monetary policy tools of the deposit interest rate and lM2 do not have a significant impact on inflation, unlike euribor. The R-squared value for this regression is 0.066, indicating that the variables included in the model explain only a small portion of the variation in the inflation rate.

Regression (2) expands on the monetary policy tools by introducing dummy variables for specific events, namely COVID and WAR. In addition to the monetary policy tools variable, this regression includes the dummy variables for COVID and WAR. The coefficient for the COVID-19 dummy variable is statistically insignificant (p > 0.05), suggesting that the COVID-related shocks do not have a significant impact on inflation. However, the coefficient for the WAR dummy variable is statistically significant (p < 0.001), indicating that the WAR has a significant positive impact on inflation. The R-squared value for this regression increases to 0.130, indicating that the inclusion of the dummy variables improves the explanatory power of the model.

Regression (3) further extends the model by incorporating additional variables. In addition to the variables from regression (2), this model includes the country, this model incorporated the Consumer Confidence Indicator Survey (CS) as a measure of consumer sentiment and IGDP (log of GDP growth rate) as an indicator of economic activity. The coefficients for both the deposit interest rate and money supply remain negative and statistically insignificant, confirming that higher deposit interest rates are associated with lower inflation. The coefficient for the Euribor variable is steadily positive and statistically significant at conventional levels (p < 0.001), suggesting that increases in Euribor are associated with higher inflation. The COVID and WAR dummy variables maintain their insignificance and significance, respectively. The coefficients for the added variables, country, Consumer Surveys-CS, and IGDP are not statistically significant. The R-squared value for this regression is 0.129, indicating that the inclusion of these additional variables slightly improves the model's ability to explain the variation in the inflation rate.

Regression (4) employs fixed effects estimation, incorporating country-fixed effects to account for unobserved heterogeneity across countries. The variables included in this regression are the same as in regression (3). The coefficients for the variables remain largely consistent with those in regression (3), and their statistical significance is preserved. The within R-squared of 0.1218 suggests that the fixed effects model explains approximately 12.18 per cent of the variation in the inflation rate within each country over time. The between R-squared of 0.0081 indicates that approximately 0.81 per cent of the variation in the inflation rate between countries is accounted for by the fixed effects. The overall R-squared of 0.1005 represents the combined effect of within and between variations.

It is important to note that the R-squared values in this regression indicate a moderate level of explanatory power. This suggests that although the fixed effects model captures some of the variations in the inflation rate, there are other factors or unobserved variables that also contribute to the dynamics of inflation and are not accounted for in the model. Regression (5) uses random effects estimation, assuming that the individual-specific effects

	(1)	(2)	(3)	(4)	(5)
VARIABLES	-reg-	Adding	Adding All	Fixed Effects	Random
	monetary policy	Dummies	variables	-xtreg-	Effects
	tools	variables			
	0.02(0	0.400	0.551	0.0016	0.0000
Deposit int. rate- di	r 0.0260	-0.480	-0.551	-0.0316	-0.0606
F '1	(0.201)	(0.952)	(1.023)	(0.2/1)	(0.050)
Euribor	7.172***	5.976	7.004	6.651***	6.671
	(1.234)	(4.251)	(4.948)	(0.546)	(4.729)
IM2	-0.00285	-0.0970	-0.0550	-0.0370	-0.0378
	(0.0188)	(0.122)	(0.101)	(0.0236)	(0.0883)
COVID		0.00930	-0.00600	-0.00673	-0.00671
		(0.0139)	(0.00593)	(0.00802)	(0.00546)
WAR		0.0876***	0.0806***	0.0797***	0.0798***
		(0.00927)	(0.00843)	(0.0100)	(0.00796)
country		-0.00286	-0.00295		
•		(0.00240)	(0.00235)		
Consumer Survey	s-CS		-0.00106*	-0.000855*	-0.000866*
			(0.000602)	(0.000439)	(0.000453)
lGDP			-0.000605	0.00346	0.00290
			(0.00355)	(0.00598)	(0.00315)
Constant	0.0443	1.600	0.918	0.550	0.568
	(0.303)	(1.990)	(1.634)	(0.380)	(1.399)
Observations	2.964	2.964	2.926	2.926	2.926
R-squared	0.066	0.130	0.129	0.122	2,220
Country FE	YES	YES	YES	YES	YES
Year FE	YES	YES	YES	YES	YES
Number of countr	v	125	125	19	19
i tamber of could	5			17	1/

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 2: Model 1: Monetary factors effect on Inflation rate

are uncorrelated with the regressors. The variables included in this regression are the same as in regression (3). The coefficients for the variables are like those in regression (3), indicating that the results are robust to different estimation methodologies. The R-squared value for this regression is 0.122.

These findings align with the literature papers provided, which hypothesize that changes in the euribor rate affect inflation positively. However, the lack of significance for the shortterm interest rate contradicts the expectations outlined in the hypotheses. The Euribor rate and M2 money supply variables continue to exhibit no statistically significant relationship with the inflation rate in Model 2, consistent with (Diermeier & Goecke, 2016); (Gerlach & Svensson, 2003).

In terms of the R-squared values for this model, they indicate the proportion of the variation in the inflation rate that can be explained by the included variables in each regression. The R-squared values for all regressions are relatively low, ranging from 0.066 to 0.130. This suggests that the variables included in the models explain only a small portion of the variation in the inflation rate, indicating that other factors not considered in the models might significantly contribute to the dynamics of inflation.

Overall, these regressions provide insights into the relationships between various variables and the inflation rate. While the Euribor and the WAR dummy variable show significant associations with inflation, the COVID-19 dummy variable and other variables do not exhibit statistically significant relationships. The inclusion of additional variables and the use of fixed effects estimation support the robustness of the results. However, the relatively low R-squared values suggest that there are other important factors influencing inflation that need to be considered in future analyses.

Hausman test is used to determine whether the random effects model or the fixed effects model is more appropriate for a panel data analysis. If the test statistic is large and the probability (p-value) is small, we reject the null hypothesis, indicating that the FE model is not consistent and efficient, and the RE model should be preferred. Conversely, if the test statistic is small and the p-value is large, we fail to reject the null hypothesis, suggesting that the FE model is consistent and efficient. The Hausman test was conducted to compare the fixed-effects model (4) with the random-effects model (5). The test results indicate that the random-effects model is preferred over the fixed-effects model, as the test statistic (chi2(2) = 1.04, p = 0.5947) does not provide evidence to reject the null hypothesis of no systematic difference in the coefficients between the two models.

5.2 Interpretation of Model 2 regression results

The second regression model in Table (3) aimed to explore the overall impact of monetary policy on the inflation rate. The table presents the results of five regression models examining the relationship between the inflation rate and various variables in the Eurozone, and their potential effects on the inflation rate including interaction terms between monetary policy tools variables and two dummy variables COVID-19 and the Ukraine War.

Interaction terms are introduced in the model to capture the joint effects of two dummy variables (COVID-19 and the Ukraine War) with the monetary policy tools variables. These interaction terms allow for the examination of how the impact of COVID-19 and the Ukraine War may vary depending on the levels of the monetary policy tools. These terms capture the interaction effect of COVID-19 with the deposit interest rate (Deposit Interest Rate), the European Interbank Offered Rate (EURIBOR), and the logarithm of the money supply (log Money Supply M2), denoted as "coviddr", "covideuribor" and "covidIM2" respectively. Similarly, the interaction terms between Ukraine War and each monetary policy tool variable are represented as "wardr", "wareuribor" and "warIM2". These terms account for the interaction effect of Ukraine War with the deposit interest rate, the EURIBOR, and the log MoneySupplyM2, respectively. By including these interaction terms in the model, it becomes possible to assess how the impact of COVID-19 and Ukraine War on the dependent variable is influenced by variations in the monetary policy tools. Moreover, the model also incorporates other variables such as country (to capture country-specific effects) to provide a comprehensive analysis of the factors affecting the

	(1)	$\langle 0 \rangle$	(2)	(4)	(5)
MADIADI DO	(1)	(2)	(3)	(4)	(5)
VARIABLES	-reg-	Only	Only	Fixed	Random
	All	COVID19	WAR	Effects-	Effects-
	Interaction	Interaction	Interaction	ALL	ALL
	Variables	variables	variables	variables	variables
,	0.075***	0.056***	0 (00***	0.250	0.000
dr	-0.8/5***	-0.956***	-0.690***	-0.358	-0.383
.,	(0.220)	(0.217)	(0.205)	(0.766)	(0.783)
euribor	7.353***	7.502***	7.413***	7.025	7.040
	(1.508)	(1.494)	(1.448)	(5.070)	(5.080)
IM2	-0.0907***	-0.0616***	-0.0765***	-0.0705	-0.0716
	(0.0251)	(0.0228)	(0.0170)	(0.0887)	(0.0904)
COVID	-7.231***	-8.654***		-6.961***	-6.970***
	(1.004)	(0.621)		(1.332)	(1.331)
WAR	-0.396		-8.142**	-2.010	-1.936
	(4.410)		(3.852)	(5.447)	(5.492)
coviddr	1.825***	3.168***		1.421	1.423
	(0.392)	(0.422)		(1.459)	(1.448)
covideuribor	-17.26***	-9.269***		-18.60***	-18.54***
	(5.796)	(1.866)		(3.493)	(3.498)
covidlM2	0.445***	0.528***		0.429***	0.430***
	(0.0628)	(0.0381)		(0.0815)	(0.0815)
wardr	2.570***		4.199***	2.229	2.258
	(0.726)		(0.678)	(1.891)	(1.880)
wareuribor	8.395		-8.930***	10.14*	10.06**
	(6.098)		(1.871)	(5.047)	(5.084)
warlM2	0.0227		0.499**	0.120	0.116
	(0.267)		(0.233)	(0.329)	(0.332)
CS	-0.000849*	-0.00181***	-0.000720***	-0.000639	-0.000650
	(0.000448)	(0.000284)	(0.000248)	(0.000542)	(0.000553)
IGDP	-0.000273	-0.000215	-0.000404	0.00216	0.00232
-	(0.000459)	(0.000463)	(0.000454)	(0.00385)	(0.00313)
country	-0.00288***	-0.00289***	-0.00290***	(00000000)	(********)
country	(0.000450)	(0.000450)	(0.000451)		
Constant	1.494***	1.015***	1.264***	1.109	1.126
constant	(0.409)	(0.371)	(0.276)	(1.412)	(1.432)
	(007)	(0.571)	(0.270)	(1.712)	(1.452)
Observations	2.926	2,926	2,926	2.926	2,926
R-squared	0.140	0.137	0.135	0.133	_,,0
Country FE	YES	YES	YES	YES	YES
Year FF	YES	YES	YES	YES	YES
Number of	1 2.5	1 2.5	110	19	19
country				17	17
country					

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 3: Model 2: Monetary policy effect on Inflation rate with Interaction Variables (COVID-19 and Ukraine War)

dependent variable.

In regression (1), which includes all interaction variables, the coefficients indicate that a decrease in the deposit interest rate and an increase in the euribor rate are associated with a significant decrease and increase in the inflation rate, respectively. The log of money supply (lM2) also shows a significant negative relationship with inflation. All the interaction variables for COVID-19 and Ukraine War were significant (p < 0.01), and all of them were positively related to inflation, except for "covidlM2" and "wareuribor" suggesting a negative impact on inflation. The R-squared value of 0.138 indicates that approximately 13.8 per cent of the variation in the inflation rate is explained by the variables included in this model.

Regression (2) focuses on the interaction between monetary policy tools and the COVID-19 dummy variable. The results show similar patterns as in regression (1), with the deposit interest rate and euribor rate exhibiting significant consistent effects on inflation, except for the log of money supply changed to the positive effect on inflation and became insignificant. Interaction variables recorded contradicting results compared to the prior regression. "coviddr" remained significant and positive; "covidlM2" interaction variable remained insignificant however its effect on inflation changed to negative. The "covideuribor" interaction variable remained significant as well, however, changed its effect to negative, an increase in the euribor rate leads to lower inflation. The R-squared value of 0.118 indicates that approximately 11.8 per cent of the variation in inflation is explained by the variables in this model.

In regression (3), the interaction between monetary policy tools and the Ukrainian War dummy variable is examined. The results reveal steady significant relationships between the deposit interest rate and euribor rate. However, the log of money supply with inflation remained significant, it changed effect to negative. The war interaction variables remained consistent and significant as in model (1) and had the same effect on the inflation rate. The R-squared value of 0.135 suggests that around 13.5 per cent of the variation in inflation is accounted for by the variables included in this model.

Regression (4) includes all variables and fixed effects. While the deposit interest rate, euribor rate, and log of money supply show no significant relationship with inflation, The "wareuribor" and "warlM2" interaction variables do not have a significant effect on inflation in this model. However, the Ukrainian War dummy variable (wardr) has a positive and significant effect. The R-squared value is 0.130, indicating that approximately 13 per cent of the variation in inflation is explained by the variables and fixed effects in this model.

In regression (5), which incorporates all variables and random effects, the results are similar to regression (4). The R-squared value remains at 0.130, suggesting that approximately 13 per cent of the variation in inflation is captured by the variables and random effects included in this model.

Overall, the R-squared values indicate that the included monetary policy tools variables and interactions variables account for a moderate proportion of the variation in inflation across the models.

Regarding the external factors results suggest that ceteris paribus, the coefficient estimates for COVID-19 were not statistically significant, unlike the Ukraine War which remained a consistently significant effect on the inflation rate in the Eurozone.

To summarize, the regression results indicate a significant relationship between the deposit rate, Euribor rate, CS and war, supporting the literature on the influence of interest rates on inflation backed by (Diermeier & Goecke, 2016); (Gerlach & Svensson, 2003). However, the impact of other variables, such as the M2 money supply, and COVID-19 indicators, is not statistically significant. The inclusion of additional variables, such as GDP growth and consumer survey, provides further insights into the inflation dynamics; however, insignificant. Nevertheless, these models capture only a fraction of the overall variation in the inflation rate, suggesting the presence of other unobserved factors as challenged by (Allen & Geels, 2021).

And based on the Hausman test results, this paper does not have evidence to suggest that one model is superior to the other. Since the test statistic is 1.05, and the corresponding p-value is 0.9836. Since the p-value is greater than the conventional significance level (e.g.,

0.05), we do not reject the null hypothesis. This suggests that the difference between the coefficients of the fixed-effects and random-effects models is not statistically significant.

5.3 Findings

Hypothesis 1 suggested that the Interest rate has an inverse effect on the inflation rate. The results in both Model 1 and Model 2 partially support this hypothesis, as the deposit rate shows a statistically insignificant negative coefficient in Model 1 (0.551, p > 0.05) and a statistically significant reliable negative coefficient in Model 2 (-0.852, p < 0.01) backed by (Golinelli & Rovelli, 2002). Euribor rate was consistently positive and significant in both models. However, when controlling for other variables in Model 1, the significance of the deposit rate diminishes, suggesting that its impact may be influenced by other factors. These findings align with the existing literature on the relationship between interest rates and inflation (Akinci et al., 2020) supporting the inverse relationship between interest rates and inflation.

Hypothesis 2 posited that the M2 money supply would have a significant positive relationship with the inflation rate. However, the results in both models do not support this hypothesis, as the M2 money supply partially exhibited statistically significant coefficients, however, all are negative. These findings are consistent with previous studies suggesting that the connection between money supply and inflation may have weakened over time (Diermeier & Goecke, 2016);(Gerlach & Svensson, 2003).

Hypothesis 3 suggested that the COVID-19 pandemic has a significant negative relationship with the inflation rate in the Eurozone, same with the interaction variables with the monetary policy tools. Even though the COVID-19 dummy partially recorded a negative insignificant effect on the inflation rate, the interaction variables specifically "coviddr" and "covidlM2" both were positive and significant. Only "covideuribor" maintained negative and significant. These findings emphasize the importance of considering the interplay between economic shocks, such as the pandemic, and monetary policy measures when analysing inflation dynamics in the Eurozone. The study by (Bodnár et al., 2020) supports this finding, highlighting the adverse impact of the pandemic on economic activity and the subsequent decrease in inflation. These findings suggest that the COVID-19 pandemic has a significant negative relationship with the inflation rate in the Eurozone.

Hypothesis 4 proposed that the Ukraine war had a positive significant impact on the inflation rate, coupled with the same relation between the interaction variables with the monetary policy tools. In both models, the findings align with the hypothesis, whereby the War variable in model 1 consistently showed a positive and significant effect on the inflation rate (Ozili, 2022). Moreover, the interaction variables steadily recorded positive and significant effects on the inflation rate (Attinasi et al., 2022). However, "wareuribor" and "warlM2" recorded insignificance in regression (1) in model 2 and as (Belsley et al., 2005) it could be for collinearity issues.

6 Discussion and Robustness checks

Further analysis and modelling are necessary to achieve a better understanding of the dynamics and potential causal relationships among these variables.

6.1 Shortfalls and Limitations

Endogeneity: One potential shortcoming of the regression models is the possibility of endogeneity, where the explanatory variables may be influenced by the dependent variable (inflation) or other omitted variables. Endogeneity can bias the coefficient estimates and lead to unreliable results. To address this limitation, instrumental variable techniques or alternative econometric approaches could be considered.

Omitted Variables: The regression models suffered from omitted variable bias if important variables that are not included in the analysis are correlated with both the

explanatory variables and the dependent variable. This omission could lead to biased coefficient estimates and an incomplete understanding of the factors affecting inflation. And three variables were omitted Logarithm of ECB Balance of Payment, Unemployment per country, and Producer Price Index.

Model Specification: The choice of variables included in the models may not capture all the relevant factors that drive inflation. Alternative specifications or additional variables, such as fiscal policy indicators or sector-specific variables, could enhance the models' explanatory power.

Cross-sectional dependence: It refers to the interdependence or correlation of the error terms across different cross-sectional units, violating the assumption of independence. Ignoring cross-sectional dependence can lead to biased and inefficient estimates, compromising the validity of the results.

To address this limitation, various tests and approaches have been proposed in the literature. One commonly used test is the Pesaran CD test, which examines the presence of cross-sectional dependence in panel data (Pesaran, 2004). In the context of this paper's analysis, it was beneficial to explore the presence of cross-sectional dependence and consider appropriate modelling techniques to mitigate its potential impact. Future research could employ advanced econometric methods, such as the spatial panel data models proposed by (Baltagi & Baltagi, 2008), which explicitly account for cross-sectional dependence and provide more reliable estimates.

Pesaran's test of cross-sectional independence yields a test statistic of 97.957 with a p-value of 0.0000 (Table 8 in the appendix). This indicates that there is a significant cross-sectional dependence among the panel data, implying that the observations within each country are not independent of each other. In addition, the results suggest the presence of cross-sectional dependence among the panel data; it can be concluded that the Ukraine war has had a significant positive impact on the inflation rate. However, the COVID-19 pandemic, deposit interest rate, Euro interbank interest rate, and money supply do not exhibit a significant relationship with the inflation rate.

6.2 Random Walk, Heteroskedasticity, and Multicollinearity

The presence of a random walk suggests that the current inflation rate is primarily determined by its past values, and the regression models may not adequately capture this dynamic process. The inclusion of lagged variables in Model (6) attempts to address this concern, but the coefficient estimate for the lagged short-term interest rate is not statistically significant. Previous studies have highlighted the challenges of modelling random walks in economic and financial time series (Choi, 1994); (Geweke, 1982). Further research could explore alternative modelling approaches, such as autoregressive integrated moving average (ARIMA) or state-space models, which are better suited for capturing the persistence and dynamics of random walks (Hamilton, 1994).

Heteroskedasticity refers to the presence of unequal variances of the error term across different levels of the independent variables. The regressions' standard errors reported in the table do not indicate any explicit signs of heteroskedasticity. However, conducting additional diagnostic tests, such as White's test or Breusch-Pagan test (Table 6 in Appendix B), would provide more robust evidence regarding the presence of heteroskedasticity (White, 1980); (Breusch & Pagan, 1979). Notably, both models reported a test statistic value of 14943.028, and the associated p-value is 0.0000, indicating strong evidence against the null hypothesis of independence. Therefore, there is evidence of heteroscedasticity in the panel data. Moreover, the correlation matrix of residuals for the panel data was conducted (see Table 7 in Appendix B). The values in the matrix represent the correlation coefficients between different pairs of residuals. For example, the correlation coefficient between e1 and e2 is -0.7057, between e1 and e3 is -0.4603, and so on. Multicollinearity refers to a high correlation among the independent variables, which can lead to imprecise coefficient estimates and difficulty in interpreting the individual variables' effects. The regressions table does not provide explicit information about multicollinearity. However, it is essential to examine the correlation matrix or conduct a variance inflation factor (VIF) analysis to assess the extent of multicollinearity among the included variables (Belsley, Kuh, & Welsch, 2005). In this study, many of the regressions performed yielded VIF values above 1 (Table 9 in Appendix B), suggesting the presence of multicollinearity. To mitigate multicollinearity, potential solutions include excluding highly correlated variables, collecting additional data, or applying dimensionality reduction techniques, such as principal component analysis (PCA) or ridge regression (Hoerl & Kennard, 1970); (Jolliffe, 2002).

7 Conclusion

The implementation of conventional low-interest rates and unconventional quantitative easing (QE) by central banks in the Eurozone over the last decade has been a subject of controversy and debate regarding its effectiveness in controlling inflation. The analysis incorporated panel data regression models using monthly data from 2010 to 2022 for 19 countries in the Eurozone. Moreover, Dummy variables were included to account for the Ukraine war and the COVID-19 pandemic.

In analyzing the relationship between inflation and monetary policy, this paper employed panel data regression models and incorporated dummy variables for the Ukraine war and the COVID-19 pandemic along with creating interaction variables between them and the monetary policy tools variables, which may have influenced inflation during the end of the last decade. The results of the analysis provided insights into the effectiveness of combing conventional and unconventional monetary policy tools in controlling inflation in the Eurozone.

The literature review revealed mixed evidence on the effectiveness of low interest rates and QE in controlling inflation. Studies such as (Aßhoff et al., 2021) found that unconventional monetary policy, including QE, had an impact on inflation expectations in the Eurozone. Conversely, other studies, such as (Bernanke & Reinhart, 2004), found that the effect of QE on inflation was less clear. The research also highlighted potential unintended consequences of these monetary policy tools, including increased financial risk-taking and asset price bubbles (Adrian & Shin, 2010).

This study contributes to the debate by providing empirical evidence regarding the relationships between interest rates, money supply, the COVID-19 pandemic, the Ukraine war, and inflation in the Eurozone and the impact of the implementation is this loose monetary policy. The findings of interest rate variables were conflicting with each other, whereby the deposit interest rate supports an inverse relationship between interest rates and inflation, aligning with existing literature. Unlike, euribor shows a steady positive relationship between interest rates and inflation. However, the connection between money supply and inflation appears to have weakened over time. The COVID-19 pandemic shows a moderately significant negative relationship with inflation when considering the interplay with monetary policy measures. Additionally, the Ukraine war has a positive and significant impact on inflation (Ozili, 2022), along with its interaction variables. These findings contribute to a better understanding of inflation dynamics in the Eurozone and emphasize the importance of considering multiple non-monetary factors in economic analysis.

References

- Adrian, T., & Shin, H. S. (2010). The changing nature of financial intermediation and the financial crisis of 2007–2009. Annu. Rev. Econ., 2(1), 603–618.
- Akinci, O., Benigno, G., Del Negro, M., & Queralto, A. (2020). The financial (in) stability real interest rate, r. FRB of New York Staff Report (946).
- Allen, E. M., & Geels, H. J. (2021). The assumption that the relationship between monetary easing and inflation is positive is spurious. Available at SSRN 3763499.
- Ascari, G., Bonomolo, P., Hoeberichts, M., & Trezzi, R. (2023). The euro area great inflation surge. De Nederlandsche Bank.
- Aßhoff, S., Belke, A., & Osowski, T. (2021). Unconventional monetary policy and inflation expectations in the euro area. *Economic Modelling*, 102, 105564.
- Attinasi, M. G., Balatti, M., Mancini, M., Metelli, L., et al. (2022). Supply chain disruptions and the effects on the global economy. *Economic Bulletin Boxes*, 8.
- Baltagi, B. H., & Baltagi, B. H. (2008). *Econometric analysis of panel data* (Vol. 4). Springer.
- Belsley, D. A., Kuh, E., & Welsch, R. E. (2005). Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley & Sons.
- Bernanke, B. S., et al. (2002). Deflation: making sure 'it'doesn't happen here. Remarks before the National Economists Club, Washington, DC, 21.
- Bernanke, B. S., & Reinhart, V. R. (2004). Conducting monetary policy at very low shortterm interest rates. American Economic Review, 94(2), 85–90.
- Bodnár, K., Le Roux, J., Lopez-Garcia, P., Szörfi, B., et al. (2020). The impact of covid-19 on potential output in the euro area. *Economic Bulletin Articles*, 7.
- Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. *Econometrica: Journal of the econometric society*, 1287–1294.
- Caldara, D., Conlisk, S., Iacoviello, M., & Penn, M. (2022). The effect of the war in ukraine on global activity and inflation.
- Campbell, J. Y., & Perron, P. (1991). Pitfalls and opportunities: what macroeconomists should know about unit roots. NBER macroeconomics annual, 6, 141–201.
- Choi, I. (1994). Residual-based tests for the null of stationarity with applications to us macroeconomic time series. *Econometric Theory*, 10(3-4), 720–746.
- Cochrane, J. H. (2016). Do higher interest rates raise or lower inflation? Unpublished paper, February, https://faculty. chicagobooth. edu/john. cochrane/research/papers/fisher. pdf.
- Diermeier, M., & Goecke, H. (2016). Money supply and inflation in europe: is there still a connection? (Tech. Rep.). IW Policy Paper.
- Gerlach, S., & Svensson, L. E. (2003). Money and inflation in the euro area: a case for monetary indicators? Journal of Monetary Economics, 50(8), 1649–1672.
- Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American statistical association, 77(378), 304–313.
- Golinelli, R., & Rovelli, R. (2002). Painless disinflation? monetary policy rules in hungary, 1991-99. Economics of Transition, 10(1), 55–91.
- Grauwe, P. D., & Polan, M. (2005). Is inflation always and everywhere a monetary phenomenon? Scandinavian Journal of economics, 107(2), 239–259.
- Hamilton, J. (1994). Time series econometrics. Princeton University Press Princeton, NJ.
- Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. *Technometrics*, 12(1), 55–67.
- Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer.
- Kantor, B. (2022). Recent monetary history: A monetarist perspective. Journal of Applied Corporate Finance, 34(2), 82–99.
- Lyziak, T., & Mackiewicz-Lyziak, J. (2020). Does fiscal stance affect inflation expectations? evidence for european economies. *Economic Analysis and Policy*, 68, 296–310.
- Mishkin, F. S. (2006). *Monetary policy strategy: how did we get here?* National Bureau of Economic Research Cambridge, Mass., USA.

- Onaran, Y. (2011). Zombie banks: How broken banks and debtor nations are crippling the global economy (Vol. 160). John Wiley & Sons.
- Ozili, P. K. (2022). Global economic consequence of russian invasion of ukraine. Available at SSRN.
- Pateiro-Rodríguez, C., Barros-Campello, E., Candamio, L. V., & Pateiro-López, C. (2016). The behavior of the components of m3 in the euro area: 1999-2014. Open Journal of Business and Management, 4(4), 606–620.
- Pesaran, M. (2004). General diagnostic tests for cross section dependence in panels (iza discussion papers no. 1240. bonn: Institute for the study of labor (iza).
- Rey, H. (2015). Dilemma not trilemma: the global financial cycle and monetary policy independence (Tech. Rep.). National Bureau of Economic Research.
- Romer, C. D., & Romer, D. H. (2010). The macroeconomic effects of tax changes: estimates based on a new measure of fiscal shocks. *American Economic Review*, 100(3), 763– 801.
- Rua, A. (2012). Money growth and inflation in the euro area: A time-frequency view. Oxford Bulletin of Economics and Statistics, 74(6), 875–885.
- Sargent, T. J., Wallace, N., et al. (1981). Some unpleasant monetarist arithmetic. Federal reserve bank of minneapolis quarterly review, 5(3), 1–17.
- van Lerven, F. (2016). Quantitative easing in the eurozone: A one-year assessment. Intereconomics, 51(4), 237–242.
- Vega, M., & Winkelried, D. (2005). Inflation targeting and inflation behavior: a successful story? International Journal of Central Banking, 1(3), 153–175.
- White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. *Econometrica: journal of the Econometric Society*, 817– 838.
- Woodford, M. (2012). Inflation targeting and financial stability (Tech. Rep.). National Bureau of Economic Research.
- Yue, H.-Y., & Leung, K.-T. (2011). The effects of quantitative easing on inflation rate: A possible explanation on the phenomenon. European Journal of Economics, Finance and Administrative Sciences, 41(11), 34–40.

A Appendix A: Additional Tables

A.1 Descriptive Data Tables

Variable		Mean	Std. Dev.	Min	Max	Observations
Inflation	overall	0.0303663	0.0959031	-0.043	1.47	N = 2964
Pate	between		0.0418809	0.0107628	0.2010755	n = 19
Nate	within		0.0868052	-0.1677092	1.299291	T = 156
Deposit	overall	0.0138198	0.0110478	0	0.062	N = 2964
Interest	between		0.0050346	0.0034538	0.0223083	n = 19
Rate	within		0.0099012	-0.0068084	0.0574262	T = 156
	overall	0.0044369	0.0034263	0.00003	0.01913	N = 2964
euribor	between		0	0.0044369	0.0044369	n = 19
	within		0.0034263	0.00003	0.01913	T = 156
Money	overall	1.09E+07	2138889	8209452	1.54E+07	N = 2964
Supply	between		0	1.09E+07	1.09E+07	n = 19
M2	within		2138889	8209452	1.54E+07	T = 156
	overall	141000.2	214852	0	1006810	N = 2964
GDP	between		215264.2	2810.825	768015.4	n = 19
	within		47400.06	-627015.2	737472.9	T = 156
Customor	overall	-11.62372	6.004752	-28.7	0	N = 2964
Survey	between		0	-11.62372	-11.62372	n = 19
Survey	within		6.004752	-28.7	0	T = 156
	overall	10.72696	1.588184	7.383244	13.8223	N = 2926
IGDP	between		1.605572	7.899201	13.52616	n = 19
	within		0.2816209	5.637219	14.56548	T = 154
	overall	16.18608	0.1897637	15.9208	16.55094	N = 2964
IM2	between		0	16.18608	16.18608	n = 19
	within		0.1897637	15.9208	16.55094	T = 156
	overall	0.2371795	0.425425	0	1	N = 2964
COVID	between		0	0.2371795	0.2371795	n = 19
	within		0.425425	0	1	T = 156
	overall	0.0705128	0.2560525	0	1	N = 2964
WAR	between		0	0.0705128	0.0705128	n = 19
	within		0.2560525	0	1	T = 156
	overall	10	5.47815	1	19	N = 2964
country	between		5.627314	1	19	n = 19
	within		0	10	10	T = 156
	overall	20621.08	1370.935	18263	22980	N = 2964
month	between		0	20621.08	20621.08	n = 19
	within		1370.935	18263	22980	T = 156

Table 4: Descriptive Statistics of the panel Data set Variables

/ Councy madelia	->	country	=	Austria
------------------	----	---------	---	---------

Variable	e	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.2010755	.357101 .357101	.003 .2010755 .003	1.47 .2010755 1.47	N = 156 n = 1 T = 156
dr	overall between within	.0095019	.0067368 .0067368	.0027 .0095019 .0027	.0268 .0095019 .0268	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	11.58751	.1254518 .1254518	11.14461 11.58751 11.14461	11.89549 11.58751 11.89549	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156
-> count	ry = Belgi	Lum				
Variable		Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0247756	.0259892 .0259892	009 .0247756 009	.131 .0247756 .131	N = 156 n = 1 T = 156
dr	overall between within	.0121827	.0080559 .0080559	.0013 .0121827 .0013	.0304 .0121827 .0304	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lGDP	overall between within	9.496096	.3182929 .3182929	9.065777 9.496096 9.065777	11.36858 9.496096 11.36858	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Descriptive Statistics of the panel Data set Variables by country (1)

> councry - cyprus	->	country	= Cyprus
--------------------	----	---------	----------

Variable	e	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0136154	.0270403 .0270403	029 .0136154 029	.106 .0136154 .106	N = 156 n = 1 T = 156
dr	overall between within	.0210282	.0160372 .0160372	.0004 .0210282 .0004	.0488 .0210282 .0488	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	13.52616	.4441925 .4441925	8.436417 13.52616 8.436417	13.8223 13.52616 13.8223	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156
-> count	ry = Estor	nia				
Variable		Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0378654	.0514609 .0514609	018 .0378654 018	.252 .0378654 .252	N = 156 n = 1 T = 156
dr	overall between within	.0192359	.0069495 .0069495	.0084 .0192359 .0084	.0406 .0192359 .0406	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	10.71458	.2382874 .2382874	8.103706 10.71458 8.103706	10.96167 10.71458 10.96167	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Descriptive Statistics of the panel Data set Variables by country (2)

-> country = Finland	
----------------------	--

Variable	è	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0189295	.0191339 .0191339	007 .0189295 007	.091 .0189295 .091	N = 156 n = 1 T = 156
dr	overall between within	.0102186	.0071661 .0071661	.0022 .0102186 .0022	.0282 .0102186 .0282	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	12.52742	.1857501 .1857501	10.68561 12.52742 10.68561	12.7807 12.52742 12.7807	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between	.0705128	.2568338	0 .0705128	1 .0705128	N = 156 n = 1
\	within		.2568338	0	1	T = 156
-> counc	iy - riand					
Variable		Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0164103	.0151674 .0151674	004 .0164103 004	071. 0164103. 071.	N = 156 n = 1 T = 156
dr	overall between within	.0165103	.0088725 .0088725	.0053 .0165103 .0053	.032 .0165103 .032	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lGDP	overall between within	13.24127	.0801566 .0801566	13.09752 13.24127 13.09752	13.44211 13.24127 13.44211	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Descriptive Statistics of the panel Data set Variables by country (3)

Varia	able	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0203077	.0222628 .0222628	007 .0203077 007	.116 .0203077 .116	N = 156 n = 1 T = 156
dr	overall between within	.0112282	.0072677 .0072677	.0026 .0112282 .0026	.0284 .0112282 .0284	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
eurik	oor overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	9.493435	.4973173 .4973173	9.194495 9.493435 9.194495	13.33196 9.493435 13.33196	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVII) overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall	.0705128	.2568338	0	1	N = 156
-> count	betwee within ry = Greec	n Ce	.2568338	.0705128 0	.0705128 1	n = 1 T = 156
Variable		Mean	Std. Dev.	Mi	n Max	x Observations
IR	overall between within	.0127628	.0306759 .0306759	02 .012762 02	9 .123 8 .0127628 9 .123	$ \begin{array}{cccc} 1 & N = & 156 \\ 8 & n = & 1 \\ 1 & T = & 156 \end{array} $
dr	overall between within	.0034538	.0080147 .0080147	.003453	0 .0443 8 .003453 0 .0443	3 N = 156 8 n = 1 3 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28. -11.6237 -28.	7 (2 -11.62372 7 ($ \begin{array}{cccc} 0 & N & = & 156 \\ 2 & n & = & 1 \\ 0 & T & = & 156 \end{array} $
euribor	overall between within	.0044369	.0034367 .0034367	.0000 .004436 .0000	3.01913 9.0044369 3.01913	3 N = 156 9 n = 1 3 T = 156
lgDP	overall between within	12.93917	.1928695 .1928695	10.901 12.9391 10.901	4 13.1548 7 12.9391 4 13.1548	$ \begin{array}{cccc} 1 & N &= & 154 \\ 7 & n &= & 1 \\ 1 & T &= & 154 \end{array} $
1M2	overall between within	16.18608	.1903428 .1903428	15.920 16.1860 15.920	8 16.55094 8 16.18608 8 16.55094	4 N = 156 B n = 1 4 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	.237179	0 : 5 .237179 0 :	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
WAR	overall between within	.0705128	.2568338 .2568338	.070512	0 8 .0705128 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

-> country = Germany

Descriptive Statistics of the panel Data set Variables by country (4)

-> country = Ireland

Variable		Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0107628	.0239163 .0239163	025 .0107628 025	.096 .0107628 .096	N = 156 n = 1 T = 156
dr	overall between within	.0129051	.0124166 .0124166	.0004 .0129051 .0004	.0385 .0129051 .0385	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	8.814468	.2905833 .2905833	8.365044 8.814468 8.365044	10.63775 8.814468 10.63775	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156
-> count	ry = Ital	y Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0178269	.0242163 .0242163	01 .0178269 01	.126 .0178269 .126	N = 156 n = 1 T = 156
dr	overall between within	.0140609	.0082132 .0082132	.0057 .0140609 .0057	.0429 .0140609 .0429	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	9.304793	.4934321 .4934321	8.841405 9.304793 8.841405	12.83766 9.304793 12.83766	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Descriptive Statistics of the panel Data set Variables by country (5)

-> country = Latvia

Variable		Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0269615	.0482139 .0482139	043 .0269615 043	.22 .0269615 .22	N = 156 n = 1 T = 156
dr	overall between within	.0183936	.0118463 .0118463	.0069 .0183936 .0069	.062 .0183936 .062	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	9.536166	.2137457 .2137457	8.311816 9.536166 8.311816	9.92543 9.536166 9.92543	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156
-> count	ry = Lith	uania				
Variable	è	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0330064	.0494788 .0494788	015 .0330064 015	.225 .0330064 .225	N = 156 n = 1 T = 156
dr	overall between within	.0114218	.0073358 .0073358	.0022 .0114218 .0022	.037 .0114218 .037	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	10.30808	.2356625 .2356625	8.745937 10.30808 8.745937	10.7535 10.30808 10.7535	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Descriptive Statistics of the panel Data set Variables by country (6)

-> country = Luxembourg

Variable		Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0225641	.0225429 .0225429	016 .0225641 016	.103 .0225641 .103	N = 156 n = 1 T = 156
dr	overall between within	.0061071	.0051765 .0051765	0 .0061071 0	.0254 .0061071 .0254	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	7.899201	.3230792 .3230792	7.409379 7.899201 7.409379	9.22377 7.899201 9.22377	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR -> count	overall between within ry = Malta	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156
Variable	•	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0182244	.0156525 .0156525	.001 .0182244 .001	.074 .0182244 .074	N = 156 n = 1 T = 156
dr	overall between within	.0223083	.0098012 .0098012	.0093 .0223083 .0093	.0432 .0223083 .0432	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	12.07805	.4113248 .4113248	7.383244 12.07805 7.383244	12.41773 12.07805 12.41773	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Descriptive Statistics of the panel Data set Variables by country (7)

-> country = Netherlands

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variable	÷	Mean	Std. Dev.	Min	Max	Obsei	rvations
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IR	overall	.0235449	.0302911	007	.171	N =	156
within.0302911 007 $.171$ T =156droverall.0191417.00961790.0386N =156CSoverall -11.62372 6.023075 -28.7 0N =156CSoverall.0044369.0034367.00003.01913N =156euriboroverall.0044369.0034367.00003.01913N =156iGDPoverall11.40927.12497311.2049111.9532N =154IM2overall16.18608.190342815.920816.55094N =156COVIDoverall.2371795.426723101N =156COVIDoverall.0705128.2371795.2371795.23717951N =156MARoverall.0705128.256338.0705128.0705128.0161795.0161795.0161795N =156CSoverall.0161795.02287120084.0161795.02287120084N =16r = is6.0131302.004367.0043167.0043167.0043167N =156CSoverall.0161795.02287120084.0161795.0161795N =16CSoverall.0161795.02287120084.0144166N =16COVIDoverall.014369.0034367.00033.01913N =16CSoverall.0161795.0228712-		between			.0235449	.0235449	n =	1
dr overall .0191417 .0096179 0 .0386 N = 156 CS overall -11.62372 6.023075 -28.7 0 N = 156 CS overall .0044369 .0034367 .00003 .01913 N = 156 euribor overall .0044369 .0034367 .00003 .01913 N = 156 ibetween .0044369 .0034367 .00003 .01913 N = 156 ibetween .0044369 .0034367 .00003 .01913 N = 156 ibetween .11.40927 .124973 11.20491 11.9532 N = 154 iM2 overall if.18008 .1903428 15.9208 if.55094 N = 156 iM2 overall .2371795 .4267231 0 1 N = 156 iM2 overall .27075128 .2371795 .2371795 .2371795 .2371795 .2371795 .16.55094 N = 156 iM2 overall .0161795 .0228712 -008 .00705128 N = 156 iM2 overall .0161795 .0		within		.0302911	007	.171	T =	156
between within	dr	overall	.0191417	.0096179	0	.0386	N =	156
within.0096179.0006179.00066TT=156CSoverall between within-11.62372 6.023075 -28.7 -28.7 		hetween			0191417	0191417	n =	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		within		.0096179	0	.0386	T =	156
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CS	overall	-11.62372	6.023075	-28.7	0	N =	156
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	00	hetween	11.02072	0.020070	-11 62372	-11 62372	n =	1
within 0.02337 22.7 1 <th1< th=""> 1 1</th1<>		within		6 023075	-11.023/2	-11.02372	л — т —	156
euribor overall .0044369 .0034367 .00003 .01913 N = 156 1GDP overall 11.40927 .124973 11.20491 11.9532 N = 154 1GDP overall 11.40927 .124973 11.20491 11.9532 N = 154 1M2 overall 16.18608 .1903428 15.9208 16.55094 N = 156 1M2 overall .2371795 .4267231 0 1 N = 156 COVID overall .2371795 .4267231 0 1 N = 156 MAR overall .0705128 .2568338 .0705128 .0705128 N = 156 MAR overall .0161795 .0228712 .008 .106 N = 156 MAR overall .0161795 .0228712 .008 .0161795 .0161795 .0228712 .008 .0161795 .019051 .0131302 .0004 .0441 T = 156 C overall .0119051 .0131302 .00004		WICHIH		0.023073	20.7	Ŭ	1 -	100
between within	euribor	overall	.0044369	.0034367	.00003	.01913	N =	156
within .0034367 .00003 .01913 T = 156 1GDP overall 11.40927 .124973 11.20491 11.9532 N = 154 1M2 overall 16.18608 .1903428 15.9208 16.55094 N = 156 1M2 overall .2371795 .4267231 0 1 N = 156 COVID overall .2371795 .4267231 0 1 N = 156 Detween within .0705128 .2568388 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0705128 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .028772 -0.08 .00411 N = 156		between			.0044369	.0044369	n =	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		within		.0034367	.00003	.01913	T =	156
between within . 11.40927 11.40927 11.40927 n = 1 1M2 overall between within 16.18608 .1903428 15.9208 16.55094 N = 156 COVID overall .2371795 .4267231 0 1 N = 156 Detween within .2371795 .2371795 .2371795 .17 = 156 WAR overall between within .0705128 .2568338 .0705128 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 .0161795 <	lgDP	overall	11.40927	.124973	11.20491	11.9532	N =	154
within.12497311.2049111.9532T =1541M2overall between within16.18608.190342815.920816.55094 16.58094N =156 n =COVIDoverall.2371795.426723101N =156 n =Detween within.2371795.426723101N =156 n =WAR withinoverall between within.0705128.2371795 .2371795.2371795 n =.1N =WAR withinoverall between within.0705128.2568338 .0705128.0705128 .0705128.0705128 n =.16VariableMeanStd. Dev. withinMaxObservations .0161795N =156 n =IR within.0161795.0228712 .0228712008 .0161795.0161795 		between			11.40927	11.40927	n =	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		within		.124973	11.20491	11.9532	T =	154
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1M2	overall	16.18608	.1903428	15.9208	16.55094	N =	156
within .1903428 15.9208 16.55094 T = 156 COVID overall .2371795 .4267231 0 1 N = 156 WAR overall .0705128 .2568338 .0705128 .0161795 .016		between			16.18608	16.18608	n =	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		within		.1903428	15.9208	16.55094	T =	156
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COVID	overall	.2371795	.4267231	0	1	N =	156
WAR overall between within .0705128 .2568338 .0705128 <th.0705128< th=""> .0705128 .0705128</th.0705128<>		between within			.2371795	.2371795	n =	1
MAR Overall between within .0705128 .2568338 .0705128 .0705128 .0705128 .n = 11 Variable Mean Std. Dev. Min Max Observations IR overall between within .0161795 .0228712 008 .106 N = 156 dr overall between within .0119051 .0131302 .0004 .0441 N = 156 CS overall between within .0119051 .0131302 .0004 .0441 N = 156 CS overall between within .0119051 .0131302 .0004 .0441 T = 156 CS overall between within .0044369 .0044369 n = 1 1 .0044369 .004367 .00003 .01913 N = 156 IGDP overall between within .1057069 10.61488 11.04265 N = 154 IM2 overall between within .1057069 10.61488 11.04265 T = 154 IM2 overall between within .2371795 .4267231 0		witchill	0705100	.4207231	°	1		150
within .2568338 .00010 1 T 156 Variable Mean Std. Dev. Min Max Observations IR overall .0161795 .0228712 008 .016 N = 156 IR overall .0161795 .0228712 008 .016 N = 156 dr overall .0119051 .0131302 .0004 .0441 N = 156 dr overall .0119051 .0131302 .0004 .0441 T = 156 CS overall .0119051 .0131302 .0004 .0441 T = 156 CS overall -11.62372 6.023075 -28.7 0 N = 156 euribor overall .0044369 .0034367 .00003 .01913 N = 156 fdGDP overall .0.77516 .0.77516 N = 154 hetween .0043367 .00003 .01913 T =	WAR	between	.0705128	.2568338	0705128	0705128	N =	156
-> country = Portugal Variable Mean Std. Dev. Min Max Observations IR overall between within .0161795 .0228712 008 .106 N = 156 dr overall between within .0119051 .0131302 .0004 .0441 N = 156 CS overall between within .0119051 .0131302 .0004 .0441 N = 156 CS overall between within -11.62372 6.023075 -28.7 0 N = 156 CS overall between within .0044369 .0034367 .00003 .01913 N = 156 euribor overall between within .0044369 .0034367 .00003 .01913 N = 156 IGDP overall between within .1057069 10.61488 11.04265 N = 154 IM2 overall between within .1057069 10.61488 11.04265 N = 154 IM2 overall between within .1057069 10.61488 11.04265 N = 156 COVID overall b		within		.2568338	0	1	Т =	156
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-> count	try = Port	ugal					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variable	9	Mean	Std. Dev.	Min	Max	Obse:	rvations
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IR	overall	.0161795	.0228712	008	.106	N =	156
within.0228712 008 .106 $T =$ 156droverall between within.0119051.0131302.0004.0441N =156CSoverall between within -11.62372 6.023075 6.023075 -28.7 -28.7 0N =156euriboroverall between within.0044369.0034367.00003 -0034367 .00003 -28.7 .01913 0004369 N =1561GDPoverall between within10.77516.1057069 10.57069 10.61488 10.77516 11.04265 10.77516 N =154 11.04265 1M2overall between within16.18608 $.1903428$ 15.9208 15.9208 16.55094 16.18608 N =156 15.55094 COVIDoverall between within.2371795 $.4267231$.2371795 $.2371795$ $.2371795$ N =156 15.65094 WARoverall between within.0705128 $.2568338$.0705128 $.0705128$.0705128 $.0705128$ N =156 $.0705128$		between			.0161795	.0161795	n =	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		within		.0228712	008	.106	т =	156
between within.0131302.0119051.019051 $n = 1$ CSoverall between within-11.62372 6.023075 $6.023075-28.7-28.70N = 156n = 1euriboroverallbetweenwithin.0044369.0034367.00003.01913.0044369N = 1561.623721GDPoverallbetweenwithin10.77516.105706910.6148810.7751611.0426510.77516N = 15410.775161M2overallbetweenwithin16.18608.1903428.190342815.920815.920816.5509416.18608N = 15616.55094COVIDoverallbetweenwithin.2371795.4267231.42672312371795.2371795N = 1561.57069WARoverallbetweenwithin.0705128.2568338.2568338001N=156$	dr	overall	.0119051	.0131302	.0004	.0441	N =	156
within.0131302.0004.0441T =156CSoverall between within-11.62372 6.023075 -28.7 -28.7 0N =156euriboroverall between within.0044369.0034367.00003 $.0034367$.01913 $.0044369$ N =1561GDPoverall between within10.77516.1057069 $.1057069$ 10.61488 10.61488 11.04265 10.77516 N =154 $n =$ 1M2overall between within16.18608.1903428 $.1903428$ 15.9208 15.9208 16.55094 16.55094 N =156 $n =$ COVIDoverall between within.2371795.4267231 $.4267231$ 01N =156 $n =$ WARoverall between within.0705128.2568338 $.2568338$ 01N =156 $n =$ IM2overall between within.0705128.2568338 $.0705128$ 01N =156 $n =$ IM2overall between within.0705128.2568338 $.0705128$ 01N =156 $n =$		between		•	.0119051	.0119051	n =	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		within		.0131302	.0004	.0441	T =	156
between within.0044369 6.023075.0034367 -28.7.0003 0.0111.62372 T $n = 1$ T1 Teuriboroverall between within.0034367 .0034367.00003 .00003.01913 .004369 .00003N = 156 n = 1 1 T = 156IGDPoverall between within10.77516 .105706910.61488 10.6148811.04265 10.77516 10.77516N = 154 n = 11 1 the state of the state	CS	overall	-11.62372	6.023075	-28.7	0	N =	156
within 6.023075 -28.7 0 $T =$ 156 euriboroverall within $.0044369$ $.0034367$ $.00003$ $.01913$ $N =$ 156 $1GDP$ overall between within 10.77516 $.1057069$ 10.61488 11.04265 $N =$ 154 $1M2$ overall between within 16.18608 $.1903428$ 15.9208 16.55094 $N =$ 154 $1M2$ overall between within 16.18608 $.1903428$ 15.9208 16.55094 $N =$ 156 $COVID$ overall between within $.2371795$ $.4267231$ 0 1 $N =$ 156 WARoverall between within $.0705128$ $.2568338$ 0 0 1 $N =$ 156 MARoverall between within $.0705128$ $.2568338$ 0 1 $N =$ 156 MARoverall between within $.0705128$ $.2568338$ 0 1 $N =$ 156		between			-11.62372	-11.62372	n =	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Within		6.023075	-28.7	0	T =	156
$ \begin{array}{c} \begin{array}{c} \text{between}\\ \text{within} \\ \mbox{log} \end{tabular} \\ \mbox{log} $	euribor	overall	.0044369	.0034367	.00003	.01913	N =	156
1GDPoverall between within10.77516.1057069 .105706910.61488 10.7751611.04265 10.77516N n n n T =1541M2overall between within16.18608.1903428 .190342815.9208 16.1860816.55094 16.18608N n =156 n n =156 n =COVIDoverall between within.2371795 .4267231 .4267231.2371795 .2371795 .2371795 .2371795 .2371795 1N =156 n =WARoverall between within.0705128 .2568338 .2568338 .2568338 .0705128.0705128 .0705128 .0705128N n =156 n n =		between within		.0034367	.0044369 .00003	.0044369 .01913	n = T =	1 156
1051 0.57131 10.77516 10.77516 10.77516 10.77516 $n =$ 1134 1M2overall between within 16.18608 1903428 15.9208 16.55094 $n =$ 1 1M2overall between within 16.18608 1903428 15.9208 16.55094 $n =$ 1 COVIDoverall between within $.2371795$ $.4267231$ 0 1 $n =$ 1 COVIDoverall between within $.2371795$ $.4267231$ 0 1 $N =$ 156 WARoverall between within $.0705128$ $.2568338$ 0 1 $N =$ 156 NAR overall between within $.0705128$ $.2568338$ 0 1 $N =$ 156 T T T T T T T T T	LCDP	oworall	10 77516	1057069	10 61488	11 04265	N -	154
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1001	between	10.77510	. 100,000	10.77516	10.77516	n =	1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		within		.1057069	10.61488	11.04265	Т =	154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M2	overall	16,18608	.1903428	15.9208	16.55094	N =	156
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		between	10110000		16.18608	16.18608	n =	100
$ \begin{array}{c} \text{COVID} & \text{overall} \\ \text{between} \\ \text{within} \end{array} \begin{array}{c} .2371795 & .4267231 \\ .4267231 & .2371795 \\ .4267231 & .2371795 \\ .2371795 \\ .2371795 \\ .2371795 \\ .2371795 \\ .1 \\ T \end{array} \begin{array}{c} \text{N} = & 156 \\ \text{n} = & 1 \\ 156 \\ \text{N} = & 1 \\ 156 \\ \text{n} = & 1 \\ 1 \\ T \end{array} \right) $		within		.1903428	15.9208	16.55094	T =	156
between within .2371795 .2371795 n = 1 WAR overall .0705128 .2568338 0 1 T = 156 WAR overall .0705128 .2568338 0 1 N = 156 within .2568338 0 1 T = 156	COVID	overall	.2371795	.4267231	0	1	N =	156
within .426/231 0 1 T = 156 WAR overall .0705128 .2568338 0 1 N = 156 between within .2568338 0 1 N = 156		between		100000	.2371795	.2371795	n =	1
WAR overall .0705128 .2568338 0 1 N = 156 between within .2568338 0 1 N = 156 T = 12568338 0 1 T = 156		within		.4267231	0	1	T =	156
within .2568338 0 1 T = 156	WAR	overall between	.0705128	.2568338	0705128	1	N =	156 1
		within		2568338	0	1	T =	156

Descriptive Statistics of the panel Data set Variables by country (8)

-> country = Slovakia

Variable	•	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0251795	.0323992 .0323992	009 .0251795 009	.151 .0251795 .151	N = 156 n = 1 T = 156
dr	overall between within	.0169019	.0078612 .0078612	.0065 .0169019 .0065	.0357 .0169019 .0357	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	9.27725	.1567391 .1567391	9.043943 9.27725 9.043943	9.67165 9.27725 9.67165	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156
-> count	ry = Slove	enia				
Variable		Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0189295	.0256985 .0256985	014 .0189295 014	.117 .0189295 .117	N = 156 n = 1 T = 156
dr	overall between within	.0159865	.0151817 .0151817	.0013 .0159865 .0013	.0423 .0159865 .0423	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	9.939955	.1668666 .1668666	9.027283 9.939955 9.027283	10.27421 9.939955 10.27421	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Descriptive Statistics of the panel Data set Variables by country (9)

-> country = Spain

Variable	1	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0180385	.0244759 .0244759	015 .0180385 015	.107 .0180385 .107	N = 156 n = 1 T = 156
dr	overall between within	.010084	.0107382 .0107382	.0003 .010084 .0003	.033 .010084 .033	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	10.94417	.1942409 .1942409	10.74272 10.94417 10.74272	12.45916 10.94417 12.45916	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Descriptive Statistics of the panel Data set Variables by country (10)

-> Country - Austria	->	country	=	Austria
----------------------	----	---------	---	---------

Variable	è	Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.2010755	.357101 .357101	.003 .2010755 .003	1.47 .2010755 1.47	N = 156 n = 1 T = 156
dr	overall between within	.0095019	.0067368 .0067368	.0027 .0095019 .0027	.0268 .0095019 .0268	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	11.58751	.1254518 .1254518	11.14461 11.58751 11.14461	11.89549 11.58751 11.89549	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156
-> count	ry = Belgi	ium				
Variable		Mean	Std. Dev.	Min	Max	Observations
IR	overall between within	.0247756	.0259892 .0259892	009 .0247756 009	.131 .0247756 .131	N = 156 n = 1 T = 156
dr	overall between within	.0121827	.0080559 .0080559	.0013 .0121827 .0013	.0304 .0121827 .0304	N = 156 n = 1 T = 156
CS	overall between within	-11.62372	6.023075 6.023075	-28.7 -11.62372 -28.7	0 -11.62372 0	N = 156 n = 1 T = 156
euribor	overall between within	.0044369	.0034367 .0034367	.00003 .0044369 .00003	.01913 .0044369 .01913	N = 156 n = 1 T = 156
lgDP	overall between within	9.496096	.3182929 .3182929	9.065777 9.496096 9.065777	11.36858 9.496096 11.36858	N = 154 n = 1 T = 154
1M2	overall between within	16.18608	.1903428 .1903428	15.9208 16.18608 15.9208	16.55094 16.18608 16.55094	N = 156 n = 1 T = 156
COVID	overall between within	.2371795	.4267231 .4267231	0 .2371795 0	1 .2371795 1	N = 156 n = 1 T = 156
WAR	overall between within	.0705128	.2568338 .2568338	0 .0705128 0	1 .0705128 1	N = 156 n = 1 T = 156

Table 5: Descriptive Statistics of the panel Data set Variables by country

B Appendix B: Robustness Checks tables

	(1)	(2)
VARIABLES	Random Effects-MP	Fixed Effects-MP
Deposit Interest Rate- dr	0.00629	0.0305
	(0.621)	(0.605)
euribor	5.660	5.644
	(4.060)	(4.048)
1M2	-0.0705	-0.0692
	(0.105)	(0.104)
COVID	0.00619	0.00604
	(0.0119)	(0.0118)
WAR	0.0838***	0.0836***
	(0.00785)	(0.00783)
Constant	1.140	1.118
	(1.701)	(1.676)
Observations	2.064	2.064
Doservations B squared	2,904	2,904
K-squaled	10	0.124
Number of country	19	19
Country FE	YES	YES
Year FE	YES	YES

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 6: Breusch-Pagan Lagrange Multiplier (LM) test for random effects assumptions

Correlation matrix of residuals:

	_e1	_e2	_	e3	_e4	e5	e6	_	_e7	_e8	_e9	_e10	e	11 _	_e12	_e13	_e14	_e15
_e1	17.85051																	
e2	7883976	.0699119																
_e3	5062341	.0556433	.06776	58														
e4	7534436	.0804735	.0692	61 .2	112902													
_e5	653432	.0508239	.04987	69 .0	412202	.0567667												
e6	7790911	.0585133	.05506	06 .0	332945	.0602261	.0726117											
e7	8816787	.0665952	.05708	07 .0	702604	.0592826	.0672402	.07513	94									
e8	4997078	.0538088	.05270	07 .0	757967	.0349169	.0431929	.04656	56 .0	693927								
_e9	9957002	.0771853	.0664	12 .0	846179	.0694766	.0763427	.08497	53 .0	495294	.1050326							
e10	6952081	.0534742	.04891	79 .0	606173	.0484198	.0530151	.05837	25 .0	378936	.06/5262	.0516728	10000					
e11	9139184	.0761903	.05770	86 .1	822119	.0408963	.0376556	.07294	100 .	056492	.0930931	.0597854	.19363	10				
e12	9368044	.0808329	.06268	52 .I	919391	.0389284	.035132	.0716	041 .0	005095	.0887457	.0600957	.18244	51 .194	49129			
_e13	6485649	.0619474	.06257	13 .0	609756	.0564322	.0646461	.06553	01 .U	520626	.0744765	.0516004	.05280	5 .05	/5288	.0710842		
e14	7457259	.0538874	.04857	62 .0	272945	.0577562	.067803	.06160	148 .0	416292	.0717003	.0507248	.03282	72 .021	78628	.0570228	.0723485	0001640
e10	940.0200	.0716692	.03946	42 .1	030323	.0303720	.0606338	.07393	02 .0	202202	.0000300	.0612989	.10243	21 .103 DE 0E1	11241	.0640799	.0572021	.0981649
	01013/2	.0302046	.043/0	43 .U 64 1	005504	0474261	.0306264	.033/0	107 .0	012020	.0029390	.044/3/4	103300	50 .001 97 10/	11341	0524541	0452670	.0339633
e1/	/00 3 /02	0675202	06400	24 .1	0000001	0.609077	0662110	.00317	151 0	566204	0927465	0602042	.10315	74 083	22212	0661512	061107	0780226
	- 7120657	0704241	06882	55 .0	070168	0.612784	0688552	07242	101 .0	602205	0825882	0576655	06654	76 074	12622	0758207	0617792	0745625
_e15	/12003/	.0/04241	.00008		075100	.0013/04	.0000332	.0/212		002255	.0023008	.0370033	.00034	10 .0/1	10700	.0/30357	.001//52	.0/15025
	e16	e17		18	_e19													
e16	.046677																	
e17	0462737	.0815275																
e18	.0537557	.0690026	.08245	19														
e19	.054178	.0630241	.07700	78 .0	870239													
_																		
e1 1.000	1e2 0	_e3	_e4	_e5	e6	_e7	e8	_e9	_e10	_e13	1 _e12	_e13	_e14	_e15	e	16 _e17	_e18	_e19
e2 -0.705	7 1.0000																	
_e3 -0.460	3 0.8084	1.0000																
_e4 -0.388	0 0.6621	0.5788	1.0000															
_e5 -0.649	1 0.8068	0.8042	0.3764	1.0000														
e6 -0.684	3 0.8212	0.7849	0.2688	0.9381	1.0000													
_e7 -0.761	3 0.9188	0.7999	0.5576	0.9077	0.9103	1.0000												
_e8 -0.449	0 0.7725	0.7685	0.6260	0.5563	0.6085	0.6449	1.0000											
_e9 -0.727	2 0.9007	0.7872	0.5680	8998.0	0.8742	0.9565	0.5802	1.0000										
_e10 -0.723	9 0.8897	0.8267	0.5801	0.8940	0.8655	0.9368	0.6328	0.9166	1.0000									
_e11 -0.491	6 0.6548	0.5038	8006.0	0.3901	0.3176	0.6048	0.4873	0.6528	0.5977	1.000	0							
e12 -0.502	2 0.6925	0.5455	0.9458	0.3701	0.2953	0.5920	0.5724	0.6202	0.5988	0.939	1 1.0000							
e13 -0.575	8 0.8787	0.9015	0.4975	0.8884	0.8998	0.8966	0.7413	0.8619	0.8514	0.450	1 0.4887	1.0000						
e14 -0.656	2 0.7577	0.6938	0.2208	0.9012	0.9355	0.8355	0.5875	0.8225	0.8296	0.277	3 0.2346	0.7951	1.0000					
e15 -0.716	8 0.8651	0.7291	0.7349	0.7820	0.7182	0.8844	0.6261	0.8729	0.8607	0.743	0.7648	0.7671	0.6788	1.0000	1			
e16 -0.677	2 0.8789	0.7785	0.5384	0.8650	0.8696	0.9068	0.6919	0.8989	0.9113	0.578	0.5361	0.8328	0.8780	0.7972	1.00			
e17 -0.637	1 0.7840	0.7260	0.7662	0.6971	0.6486	0.8072	0.5701	0.8389	0.8211	0.8210	0 0.8284	0.7022	0.5907	0.9060	0.75	01 1.0000		
e18 -0.705	1 0.8894	0.8695	0.6544	0.8888	0.8570	0.9102	0.7485	0.8892	0.9223	0.629	5 0.6494	0.9033	0.7923	0.8672	0.86	65 0.8416	1.0000	
_e19 -0.571	3 0.9029	0.8964	0.5838	0.8733	0.8662	0.8956	0.7751	0.8638	0.8599	0.512	7 0.5704	0.9643	0.7786	0.8067	0.85	01 0.7482	0.9091	1.0000

Breusch-Pagan LM test of independence: chi2(171) = 14943.028, Pr = 0.0000 Based on 156 complete observations over panel units

Table 7: Breusch-Pagan LM test of independence

37

	(1)
VARIABLES	Correlation of the panels
dr	0.0305
	(0.605)
euribor	5.644
	(4.048)
IM2	-0.0692
	(0.104)
COVID	0.00604
	(0.0118)
WAR	0.0836***
	(0.00783)
Constant	1.118
	(1.676)
Observations	2.964
Number of country	19
R-squared	0.124
Country FE	YES
Year FE	YES
Robust standa	rd errors in parentheses

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Pesaran's test of cross sectional independence = 97.957, Pr = 0.0000 Average absolute value of the off-diagonal elements = 0.729

Table 8: Pesaran's test of cross-sectional independence

Number of obs	=	2,964
F(3, 2960)	=	51.53
Prob > F	=	0.0000
R-squared	=	0.0660
Root MSE	=	.09273

IR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dr	.0260273	.200752	0.13	0.897	3676005	.419655
euribor	7.171851	1.23382	5.81	0.000	4.75262	9.591082
1M2	0028464	.0187628	-0.15	0.879	039636	.0339431
_cons	.0442587	.3028062	0.15	0.884	5494732	.6379907

. vif

Linear regression

Linear regression

Variable	VIF	1/VIF
dr 1M2 euribor	1.93 1.81 1.16	0.516954 0.551856 0.860483
Mean VIF	1.64	

Number of obs F(6, 18) Prob > F R-squared	= = =	2,964 34.31 0.0000 0.1304
Root MSE	=	.08952

(Std. Err. adjusted for ${\bf 19}$ clusters in country)

IR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
dr	4803544	.9516821	-0.50	0.620	-2.479764	1.519056
euribor	5.975796	4.250717	1.41	0.177	-2.954629	14.90622
1M2	0969774	.1216991	-0.80	0.436	3526578	.158703
COVID	.0092971	.0139162	0.67	0.513	0199396	.0385339
WAR	.0875526	.0092673	9.45	0.000	.0680827	.1070225
country	0028629	.002396	-1.19	0.248	0078967	.0021709
_cons	1.600425	1.990062	0.80	0.432	-2.58054	5.78139

. vif

Variable	VIF	1/VIF
1M2 COVID dr WAR euribor country	5.13 3.39 2.12 1.52 1.26 1.00	0.194942 0.295347 0.470621 0.658450 0.795435 0.997842
Mean VIF	2.40	

Multicollinearity test - variance inflation factor (VIF) analysis (1)

	Li	n	e	a	r	r	e	q	r	e	s	s	i	0	n	
--	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Number of obs	=	2,926
F(8, 18)	=	27.69
Prob > F	=	0.0000
R-squared	=	0.1292
Root MSE	=	.08964

(Std.	Err.	adjusted	for 19	clusters	in	country	r)
-------	------	----------	---------------	----------	----	---------	----

IR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dr	5510949	1.023245	-0.54	0.597	-2.700854	1.598664
euribor	7.00449	4.947872	1.42	0.174	-3.390602	17.39958
1M2	0550255	.100753	-0.55	0.592	2666996	.1566486
COVID	0059969	.0059326	-1.01	0.325	0184609	.006467
WAR	.0806089	.008435	9.56	0.000	.0628877	.0983301
country	0029455	.002355	-1.25	0.227	0078931	.0020021
CS	0010632	.0006021	-1.77	0.094	0023281	.0002017
lgDP	0006049	.0035513	-0.17	0.867	008066	.0068562
cons	.9176135	1.634063	0.56	0.581	-2.515426	4.350653

. vif

Variable	VIF	1/VIF
1M2 COVID CS WAR dr euribor 1GDP country	7.60 4.96 2.86 2.42 2.26 1.22 1.14 1.12	0.131558 0.201510 0.349145 0.413163 0.442127 0.822775 0.880851 0.895757
Mean VIF	2.95	

.

Linear	regres	sion
--------	--------	------

Number of obs	=	2,926
F(14, 2911)	=	74.08
Prob > F	=	0.0000
R-squared	=	0.1403
Root MSE	=	.08915

IR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	[Interval]
dr	8747919	.2200505	-3.98	0.000	-1.306262	4433214
euribor	7.353141	1.508276	4.88	0.000	4.395745	10.31054
1M2	0907062	.0250515	-3.62	0.000	1398266	0415858
COVID	-7.230651	1.00354	-7.21	0.000	-9.198372	-5.262931
WAR	3959067	4.410081	-0.09	0.928	-9.043102	8.251289
coviddr	1.82518	.3917714	4.66	0.000	1.057003	2.593357
covideuribor	-17.26444	5.795745	-2.98	0.003	-28.62861	-5.900259
covid1M2	.4449714	.0628069	7.08	0.000	.3218208	.5681219
wardr	2.570448	.7262311	3.54	0.000	1.14647	3.994427
wareuribor	8.395395	6.097664	1.38	0.169	-3.560778	20.35157
warlM2	.0226502	.2668005	0.08	0.932	5004867	.5457872
CS	0008486	.0004478	-1.89	0.058	0017267	.0000295
lgDP	0002734	.0004589	-0.60	0.551	0011733	.0006264
country	0028836	.0004501	-6.41	0.000	0037661	0020011
_cons	1.49411	.408698	3.66	0.000	.6927437	2.295477
_						

Multicollinearity test - variance inflation factor (VIF) analysis (2)

			-	
•	V	1	İ	

Variable	VIF	1/VIF
warlM2	1.99e+06	0.000001
WAR	1.98e+06	0.00001
covid1M2	495925.78	0.00002
COVID	466717.28	0.00002
covideuribor	581.14	0.001721
wareuribor	238.57	0.004192
1M2	8.79	0.113720
wardr	5.47	0.182918
coviddr	4.18	0.239420
CS	3.42	0.292212
dr	2.50	0.400412
euribor	1.33	0.754567
lgDP	1.14	0.875754
country	1.12	0.893412
Mean VIF	352685.69	

Linear regression

Number of obs	=	2,926
F(10, 2915)	=	81.70
Prob > F	=	0.0000
R-squared	=	0.1365
Root MSE	=	.08929

IR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dr	955668	.2174522	-4.39	0.000	-1.382044	5292925
euribor	7.502133	1.494347	5.02	0.000	4.572049	10.43222
1M2	0615702	.0228067	-2.70	0.007	1062891	0168513
COVID	-8.654453	.6212968	-13.93	0.000	-9.872678	-7.436228
coviddr	3.167579	.4216389	7.51	0.000	2.340839	3.99432
covideuribor	-9.269157	1.866231	-4.97	0.000	-12.92842	-5.609893
covid1M2	.5283032	.0380999	13.87	0.000	.4535977	.6030086
CS	0018063	.0002837	-6.37	0.000	0023627	00125
lGDP	0002145	.0004625	-0.46	0.643	0011214	.0006924
country	0028877	.0004503	-6.41	0.000	0037705	0020048
_cons	1.01461	.3710675	2.73	0.006	.2870293	1.742191

. vif

Variable	VIF	1/VIF
covidlM2 COVID covideuribor lM2 coviddr dr CS euribor lGDP country	78223.07 77313.84 9.94 7.55 2.64 2.46 2.07 1.32 1.14 1.12	0.000013 0.000013 0.100602 0.132500 0.378363 0.406290 0.484005 0.759921 0.877229 0.894955
Mean VIF	15556.51	

Multicollinearity test - variance inflation factor (VIF) analysis (3)

Linear regression	Number of obs =	2,926
2	F(10, 2915) =	92.80
	Prob > F =	0.0000
	R-squared =	0.1354
	Root MSE =	.08935

IR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dr	6896389	.2052694	-3.36	0.001	-1.092127	2871512
euribor	7.412587	1.447838	5.12	0.000	4.573698	10.25148
1M2	0764592	.0170251	-4.49	0.000	1098418	0430767
WAR	-8.142013	3.851808	-2.11	0.035	-15.69455	589473
wardr	4.198752	.6781741	6.19	0.000	2.869003	5.528501
wareuribor	-8.930031	1.871292	-4.77	0.000	-12.59922	-5.260844
warlM2	.4987381	.2331604	2.14	0.033	.0415623	.9559138
CS	0007204	.0002485	-2.90	0.004	0012076	0002332
lgDP	0004036	.0004544	-0.89	0.375	0012946	.0004874
country	002897	.0004512	-6.42	0.000	0037818	0020123
_cons	1.264251	.2757629	4.58	0.000	.7235411	1.804961

. vif

Variable	VIF	1/VIF
warlM2 WAR wareuribor wardr 1M2 dr CS euribor 1GDP country	1.80e+06 1.80e+06 4.36 2.63 2.32 2.04 1.20 1.14	0.000001 0.229409 0.264571 0.380203 0.430678 0.489863 0.835493 0.877785 0.893589
Mean VIF	360560.80	

Multicollinearity test - variance inflation factor (VIF) analysis (4)

Number of obs	=	2,964
F(3, 2960)	=	51.53
Prob > F	=	0.0000
R-squared	=	0.0660
Root MSE	=	.09273

IR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dr	.0260273	.200752	0.13	0.897	3676005	.419655
euribor	7.171851	1.23382	5.81	0.000	4.75262	9.591082
1M2	0028464	.0187628	-0.15	0.879	039636	.0339431
_cons	.0442587	.3028062	0.15	0.884	5494732	.6379907

. vif

Linear regression

Linear regression

Variable	VIF	1/VIF
dr 1M2 euribor	1.93 1.81 1.16	0.516954 0.551856 0.860483
Mean VIF	1.64	

Number of F(6, 18)

Number of obs F(6, 18) Prob > F R-squared	= = =	2,964 34.31 0.0000 0.1304
Root MSE	=	.08952

(Std. Err. adjusted for **19** clusters in country)

IR	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dr	4803544	.9516821	-0.50	0.620	-2.479764	1.519056
euribor	5.975796	4.250717	1.41	0.177	-2.954629	14.90622
1M2	0969774	.1216991	-0.80	0.436	3526578	.158703
COVID	.0092971	.0139162	0.67	0.513	0199396	.0385339
WAR	.0875526	.0092673	9.45	0.000	.0680827	.1070225
country	0028629	.002396	-1.19	0.248	0078967	.0021709
_cons	1.600425	1.990062	0.80	0.432	-2.58054	5.78139

. vif

Variable	VIF	1/VIF
1M2 COVID dr WAR euribor country	5.13 3.39 2.12 1.52 1.26 1.00	0.194942 0.295347 0.470621 0.658450 0.795435 0.997842
Mean VIF	2.40	

Table 9: Multicollinearity test - variance inflation factor (VIF) analysis

C Supplementary Materials

C.1 .do file

cap log close
cap clear matrix
clear
set mem 500m
set matsize 500
cd "D:\Banking and Finance UU\Period Four\Thesis (USEMT)\Thesis\Data\STATA\Final\Final Trial ISA 5eer"
// cd " <directory data="" is="" where="">"</directory>
log using "Thesis_Aya_tables_Final.log", replace

*** Load Describe the data & create a papel data:

use Final_DF2.dta, clear
sort country month
//create a panel data
xtset country month
*Summary statistics, taking into account both dimensions:
xtsum IR dr CS euribor IGDP IM2 COVID WAR
bysort country: xtsum ik dr CS euridor IGDP IM2 COVID WAK

*** Explore the data:

corr IR dr CS euribor IGDP IM2 COVID WAR

Figure 1: .do File (1)

*** Model 1: Monetary factors effect on Inflation rate:

*R2 6.6%

reg IR dr euribor IM2, robust

vif

//outreg2 using Empirical_results_Model_1.doc, replace ctitle (reg Specific monetary policy tools)
addtext(Country FE, YES, Year FE, YES)

*R2 13%

reg IR dr euribor IM2 COVID WAR country, vce(cluster country) hascons

vif

//outreg2 using Empirical_results_Model_1.doc, append ctitle (Adding Dummies variables) keep(dr euribor IM2 COVID WAR country) addtext(Country FE, YES, Year FE, YES)

*R2 12.9%

reg IR dr euribor IM2 COVID WAR country CS IGDP, vce(cluster country) hascons

vif

//outreg2 using Empirical_results_Model_1.doc, append ctitle (Adding All variables) keep(dr euribor IM2 COVID WAR country CS IGDP) addtext(Country FE, YES, Year FE, YES)

*FE

xi: xtreg IR dr euribor IM2 COVID WAR CS IGDP, fe

//outreg2 using Empirical_results_Model_1.doc, append ctitle (Fixed Effects) keep(dr euribor IM2 COVID WAR country CS IGDP) addtext(Country FE, YES, Year FE, YES)

*RE

xi: xtreg IR dr euribor IM2 COVID WAR CS IGDP, re robust

//outreg2 using Empirical_results_Model_1.doc, append ctitle (Random Effects) keep(dr euribor IM2 COVID WAR country CS IGDP) addtext(Country FE, YES, Year FE, YES)

/* Hausman test */

xtreg IR dr euribor IM2 CS IGDP, fe

est store fixed

xtreg IR dr euribor IM2 CS IGDP, re

est store random

hausman fixed random, sigmamore

Figure 2: .do File (2)

*** Model 2: Monetary factors effect on Inflation rate:

gen dr_int = int(dr)
gen euribor_int = int(euribor)
gen IM2_int = int(IM2)

gen wardr = WAR * dr

gen wareuribor = WAR * euribor

gen warIM2 = WAR * IM2

gen coviddr = COVID * dr

gen covideuribor = COVID * euribor

gen covidIM2 = COVID * IM2

reg IR dr euribor IM2 COVID WAR covid
dr covideuribor covidl M2 wardr ware
uribor warl M2 CS IGDP country, robust

vif

//outreg2 using Empirical_results_Model_2.doc, replace ctitle (reg All Interaction Variables) keep(dr euribor IM2 COVID WAR coviddr covideuribor covidIM2 wardr wareuribor warIM2 CS IGDP country) addtext(Country FE, YES, Year FE, YES)

reg IR dr euribor IM2 COVID coviddr covideuribor covidIM2 CS IGDP country, robust

vif

//outreg2 using Empirical_results_Model_2.doc, append ctitle (Only COVID19 Interaction variables)
keep(dr euribor IM2 COVID coviddr covideuribor covidIM2 CS IGDP country) addtext(Country FE,
YES, Year FE, YES)

reg IR dr euribor IM2 WAR wardr wareuribor warIM2 CS IGDP country, robust

vif

//outreg2 using Empirical_results_Model_2.doc, append ctitle (Only WAR Interaction variables) keep(dr euribor IM2 WAR wardr wareuribor warIM2 CS IGDP country) addtext(Country FE, YES, Year FE, YES)

*FE

xi: xtreg IR dr euribor IM2 COVID WAR coviddr covideuribor covidIM2 wardr wareuribor warIM2 CS IGDP, fe robust

Figure 3: .do File (3)

outreg2 using Empirical_results_Model_2.doc, append ctitle (Fixed Effects-ALL variables) keep(dr euribor IM2 COVID WAR coviddr covideuribor covidIM2 wardr wareuribor warIM2 CS IGDP) addtext(Country FE, YES, Year FE, YES)

*RE

xi: xtreg IR dr euribor IM2 COVID WAR coviddr covideuribor covidIM2 wardr wareuribor warIM2 CS IGDP, re robust

outreg2 using Empirical_results_Model_2.doc, append ctitle (Random Effects-ALL variables) keep(dr euribor IM2 coviddr COVID WAR covideuribor covidIM2 wardr wareuribor warIM2 CS IGDP) addtext(Country FE, YES, Year FE, YES)

/* Hausman test */

xtreg IR dr euribor IM2 COVID WAR coviddr covideuribor covidIM2 wardr wareuribor warIM2 CS IGDP, fe

est store fixed

xtreg IR dr euribor IM2 COVID WAR coviddr covideuribor covidIM2 wardr wareuribor warIM2 CS IGDP, re

est store random

hausman fixed random, sigmamore

/* Breusch-Pagan Lagrange Multiplier (LM) test for random effects assumptions */

xtreg IR dr euribor IM2 COVID WAR, re robust

xttest0

outreg2 using Empirical_results_Model_3.doc, replace ctitle (Random Effects-MP) addtext(Country FE, YES, Year FE, YES)

ssc install xttest2

xtreg IR dr euribor IM2 COVID WAR, fe robust

xttest2

outreg2 using Empirical_results_Model_3.doc, append ctitle (Fixed Effects-MP) addtext(Country FE, YES, Year FE, YES)

*Are the panels correlated?

ssc install xtcsd

xtreg IR dr euribor IM2 COVID WAR, fe robust

Figure 4: .do File (4)

xtcsd, pesaran abs

outreg2 using Empirical_results_Model_4.doc, replace ctitle (Correlation of the panels) addtext(Country FE, YES, Year FE, YES)

//concluding heteroskedasticity

ssc install xttest3

xtreg IR dr euribor IM2, fe robust

xttest3

Figure 5: .do File (5)