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ABSTRACT 
Understanding change in river morphology is a crucial aspect to comprehend the complex and intertwined 
processes within a river ecosystem. The Dutch implementation of the Water Framework Directive (WFD) has 
established parameters that need to be monitored of river systems. One of those parameters included is 
hydromorphology. Although past studies emphasize the importance of measuring hydromorphology over 
time, this is not directly considered within this implementation of the WFD.  
 
Beyond the WFD parameters, the objective of this study was to monitor the hydromorphology shallow 
streams on high temporal basis with Superview-1 images. The research goal was to assess which waterbody 
extraction method gained the highest accuracy based on the Superview-1 satellite images. The AHN lidar 
scans of the Netherlands were used as validation reference, as lidar sources are substantiated for their 
classification accuracy. 
 
This research tested three waterbody extraction methods, including the Otsu threshold method, Supervised 
machine learning (Support Vector Machine) on a single training image, and Supervised machine learning 
(Support Vector Machine) on a multi-image training dataset. Accuracies for the threshold method, single-
image SVM, and multi-image SVM were assessed to be 90% (Kappa: 0.70), 76% (Kappa: 0.50) and 90% 
(Kappa:072), respectively.  
 
Going forward with hydromorphological monitoring of the shallow water streams, the Support vector 
machine trained on multiple images was used given its accuracy and kappa scores. By means of intersecting 
the extracted river polygons, with a pre-defined cross section, shift in riverbanks (left and right) and centre 
point was computed for an eroding and non-eroding section. This study revealed that a total shift of between 
4.5 and 8.6 meters was recorded at the eroding section between the period of 2019 and 2023. At the non-
eroding section, the shift remained between 0.2 and 1.3 meter between 2019 and 2023. A maximum shift of 
13.1 meters was recorded at one of the cross sections at the right riverbank (eroding section).  
 
This approach utilizing Superview-1 images has increased the temporal resolution of hydromorphology 
monitoring to approximately five yearly images. Towards monitoring the ecological status of shallow rivers, 
this research identified what the contribution of Superview-1 imagery could imply. Understanding trends in 
river (bank) shift at is crucial for creating context for monitoring ecological status, within WFD.  
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1 INTRODUCTION 
Most of the water bodies in the Netherlands do not comply with the desired quality standards (CLO, 2022). 
These standards are defined in the Dutch implementation, "Kaderrichtlijn Water (KRW)", of the Water 
Framework Directive (WFD) set by the European Union(STOWA, 2020). The goal of the directive is to reach 
'good' and non-deteriorating ecological status for all waterbodies in Europe (Kallis & Butler, 2001). 
Hydromorphology is one of the components in this directive. This parameter relevant for the shallow water 
streams in the Netherlands.  

 
A review of literature reveals that temporal change in fluvial morphology is a key process to assess the health 
of a river ecosystem (Belletti et al., 2015; Corenblit et al., 2015; González del Tánago et al., 2021; Stutter et al., 
2021). While change in fluvial morphology is not a parameter considered within hydromorphology from KRW 
perspective, Newson et al. (2006), Vogel et al. (2011), and Woodget et al. (2017) highlighted its importance 
due to the non-stationarity an uncertainty in hydrologic assessments. A key component in the definitions by 
these authors is that hydromorphology considers the change of the morphology of the river over time, 
whereas the KRW omitted the time component in their definition. This study goes beyond the definition of 
KRW and builds further upon the necessity of monitoring hydromorphology over time as substantiated 
within literature.   
 
Monitoring of fluvial morphology - in terms of erosion, sediment transport, and deposition - ranged from, 
physical measuring, towards remote sensing (Table 1). Fundamental to these studies is that they rely on 
accurate measurements of the position of the studied waterbody. Earlier studies use manual measuring 
methods to extract the position of the waterbodies. Hooke (1979) used field measurements to monitor the 
river, newer studies of Winterbottom and Gilvear (2000), Large and Gilvear (2015), and Dragićević 
(2017)moved towards GIS approaches with airborne imagery. However, the authors still relied on manual 
delineation of the waterbody.  Recent work of Langat et al. (2019) moved to automated waterbody extraction 
based on spaceborne remote sensing imagery.  
 
Table 1,  
Overview of existing research based on their study areas, findings, data type, and spatial and temporal resolution.  
 

Authors Data type Study area (size) Temporal 
resolution 

Spatial 
resolution 

Findings 

(Hooke, 1979) Field 
measurements 

Devon, England Study period of 
2.5 years 

n/a Mean monthly 
erosion between 1 
cm and 140 cm 

(Winterbottom 
& Gilvear, 2000)  

Aerial imagery River Tummel 
(length of 6 km) 

Four 
observations in 
6 years 

5m Peak erosion of > 5 
meters between 
images 

(Large & 
Gilvear, 2015) 

Google earth Three rivers of 
different scales 
(between  

Single 
assessment  

n/a n/a 

(Dragićević et 
al., 2017) 

Maps + Aerial 
photographs 

Kolubara River 
basin (15 km 
section) 

Seven 
observations in 
87 years 

n/a + 1m 
+ 5cm 

Bank erosion rate of 
1.9 m year-1 

(Hemmelder et 
al., 2018) 

UAV 
RGB  

Petit Buëch 
river (0.4 km2) 

One observation 
per year 

5cm/10c
m 

<20m channel 
displacement 
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(Langat et al., 
2019) 

Spaceborne RS 
Green + MIR 

Tana River 
(length of 142 
km) 

Four 
observations in 
42 years 

30m <980m channel 
displacement 

Automated waterbody extraction on remote sensing images another well-studied area of research (Table 2). 
Recent reviews of the existing methodologies are performed (J. Li et al., 2022; Y. Li et al., 2022). J. Li (2022) 
stated five key methods for waterbody extraction to be single band threshold, multiband threshold (spectral 
index threshold), classification trees, machine learning models, object-oriented classification, and deep 
learning.  
 
Table 2 
Overview of existing research on the topic of waterbody extraction methods, comparing methods resolutions, and classification 
accuracy.  

Authors Type of method Type of data Included 
bands 

Spatial 
Resolution 
(meters) 

Classification 
accuracy (%) 

(Donchyts et 
al., 2016) 

CART + spectral 
indexes 

Landsat 8 / SRTM All Landsat 
bands 

15, 30, 60 / 30 n/a 

(Thanh Noi et 
al., 2017) 

LULC – 
RF/KNN/SVM 

Sentinel – 2 RGB1 + 7 
bands 

20 90 – 95 

(Mozgovoy et 
al.,2018) 

Spectral index 
thresholding 

Superview – 1 RGB + NIR2 0.50 82 – 90 

(Langat et al., 
2019) 

Spectral index 
thresholding 

Landsat Collection 
1 

RGB + MIR3 30 n/a 

(Vos et al., 
2019) 

Deep learning + 
spectral indexes 

Landsat RGB + NIR + 
SWIR4 

30 99 

(Jiang et al., 
2021) 

Spectral index 
threshold 

Sentinel 2 RGB + 
VRE15 + 
SWIR2 

10 - 20 92.75 – 93 

(Dong et al., 
2022) 

Spectral index 
threshold 

Landsat / Sentinel 
2 

RGB + NIR + 
SWIR 

30 / 20 97 

(Basheer et 
al.,2022) 

LULC – ArcGIS SVM Landsat 8 / 
Sentinel 2 / Planet 

RGB + 
Infrareds 

30 / 10 / 3-5 89 – 94 

 
(Y. Li et al., 

2022) 

Review of six Deep 
learning approaches 

GF-2 RGB + NIR 4 96.36 - 97.27 

 
Many studies use one of the mentioned methods in the study of J. Li et al. (2022). The most used method for 
waterbody extraction is a threshold method with a spectral index (multiband threshold method) (Table 2).  
These studies implemented this with the Normalized Difference Water Index (NDWI), which was assessed to 
be the fastest and most simple to implement (J. Li et al., 2022). This method builds upon the methods of Gao 
(1996) and Xu (2006) for computing the NDWI and of Otsu (1979) to split an image into two classes. Additional 
benefits of computing NDWI is that is can be used as additional feature in the classification models. Given this 
nature, most studies using classification algorithms also use the NDWI threshold method, indicated by the 
overlapping nature of previous studies in table 2 (Donchyts, Schellekens, et al., 2016; Dong et al., 2022; Vos et 
al., 2019). 

 
1 Red, Green, and Blue bands 
2 Near Infrared band 
3 Mid Infrared band 
4 Shortwave Infrared band 
5 Visible and near Infrared 
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Table 2 states that the accuracies of existing waterbody extraction are towards and over 90%. Most research 
is aimed on extracting large waterbodies. Only, Dong et al. (2022) aimed to test their method for small 
waterbodies, including shallow water streams. However, in contrast to their research aim, the authors 
decided to use images with a special resolution between 30 and 20 meters, which might not be adequate to 
extract small waterbodies, depending on the considered scale. 
 
Classification accuracy (non-deep learning) with Red, Green, and Blue (RGB) bands along with either 
Shortwave Infrared (SWIR), Mid Infrared (MIR), or Visible and Near infrared (VRE1) gained accuracies 
between 89% and 95% (Basheer et al., 2022; Dong et al., 2022; Jiang et al., 2021; Thanh Noi & Kappas, 2017). In 
contract, the combination of RGB and Near-Infrared (NIR) gained accuracies between 82% and 90% 
(Mozgovoy et al., 2018). The availability of spectral bands depends on the specific platform and its spatial 
resolution, however this impacts spatial resolution (Table 2). This trade-off is also underpinned by the 
findings of Y. Li et al. (2022) stating that high-resolution spaceborne imagery comes with the challenge of 
having limited spectral information. From a Land Use Land Cover (LULC) prediction perspective, the 
accuracies mentioned are not based on the two-class distinction between water and non-water, however on 
a multi-class classification. From these approaches a support vector machine (SVM) predicting on pixel basis 
emerged as a promising model with accuracies between 90% and 95% (Basheer et al., 2022; Thanh Noi & 
Kappas, 2017).  
 
Y. Li et al. (2022) reviewed similar methods as J. Li et al. (2022), however further studied the recent 
developments in deep learning waterbody extraction. Achieved accuracies are higher than other methods 
(Table 2). Y. Li et al. (2022) identified five key challenges for waterbody extraction based on high resolution 
spaceborne images: (1) Limited spectral information and small scene coverage, (2) variability of shape, size, 
and distribution, (3) scene complexity, (4) complex and blurry boundaries, and (5) deficiency of large-size 
image datasets. The fourth limitation is related to fact that water does not have straight and crisp edges, 
Large & Gilvear (2015) and Winterbottom & Gilvear (2000) had related arguments stating that their studies 
were limited by the challenge of overhanging vegetation, which obscured the riverbanks. These authors 
interpolated these vegetation patches by manually delineating a reasonable water edge. 
 
Temporal resolution is an essential part of monitoring hydromorphology. The reviewed studies in Table 1 
have temporal resolutions ranging from one yearly image to seven images across 87 years.  Recent studies 
aimed to increase this and developed near real-time water mapping tools on spatial resolutions between 10 
and 30 meters (Donchyts, Baart, et al., 2016; Donchyts et al., 2017; van Leeuwen et al., 2020). A key limitation 
of these methods as mentioned by the authors is the disability to detect small waterbodies due to the spatial 
resolution. High resolution open data sources, such as areal imagery or lidar scans, typically have temporal 
resolution in the range years. In contrast, Superview-1 data is available with both high spatial and temporal 
resolution between 2019 and 2023. 
 
While the temporal resolution of existing riverbank erosion studies, beside the manual method from Hooke 
(1979) do not go beyond yearly (Table 1), opportunities to increase this have emerged with the Superview-1 
data. This poses additional prospects for the monitoring of the KRW goals of hydromorphology, as both 
spatial and temporal resolution is of importance for monitoring. High temporal resolution waterbody 
monitoring for large waterbodies, as well as high spatial resolution hydromorphological monitoring based 
on aerial photographs and lidar scans are well-established in literature. However, there is a gap in knowledge 
regarding the monitoring hydromorphology of shallow water streams based on high temporal and spatial 
resolution, in combination with automated waterbody extraction, since classification accuracy for this is 
unknown. Specifically, images from the Superview-1 were used for this study as it provides the increased 
temporal resolution compared to other sources like Unmanned Aerial Vehicles (UAV) aerial photographs and 
lidar scans. 
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Based on the examined literature, a spaceborne remote sensing waterbody extraction approach emerges as 
a promising method for erosion monitoring. However, these methods needed to be tested to assess its 
accuracy. Therefore, this study aimed determine the classification accuracy of waterbody extraction methods 
based on Superview-1 images, with the goal to monitor hydromorphology of shallow streams on high 
temporal basis. For this, three methods for waterbody extraction were used (Otsu Threshold, single-image 
SVM and multi-image SVM). With regards to hydromorphological monitoring, the study area of the mouth 
of the Geul River was considered. 
 
Sub questions to build towards the main question are: 
 

1. What are the classification accuracies of the three tested waterbody extraction methods 
 

2. What hydromorphological changes of the Geul River took place between 2019 and 2023? 
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2 DATA & METHODS 
2.1 STUDY AREA 

This study aimed to increase temporal resolution of hydromorphological monitoring with Superview-1 
satellite images and assess its waterbody extraction classification accuracy. For this, the study area of the 
mouth of the Geul River was selected, which is located near Itteren (Limburg), the Netherlands. The Geul is a 
river with a catchment of 380 km2 of which approximately 240 km2 is in the Netherlands (de Moor & 
Verstraeten, 2008). The source of de Geul lies near the Belgium town Eynatten, making the total length of the 
river approximately 56 km (Leenaers, 1989).  
 

 
Fig. 1. Overview of study area, with on-site photographs. (A) upstream straight section, (B) downstream meandering section with 
overhanging vegetation, and (C) eroding bank near the mouth of the river. 

The upstream part of the river, within the study area, consists of relatively straight river segments with 
limited vegetation adjacent to and above the river. Fig. 1 (A) shows an image of this section (image taken at 
(17759, 323524)6). The downstream part of the Geul River, near the mouth in the Maas River, shows a 
meandering part of the river with high vegetation around and above the river, shown in Fig. 1 (B) (image 
taken at (1781211, 324267)6).  With the goal of hydromorphological monitoring, the mouth of the Geul River 

 
6 Coordinates in coordinate reference system Amersfoort / RD New, EPSG: 28992 
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presents an eroding bank, as shown in Fig. 1 (C) (image taken at (178374, 324226)6). Average width of the Geul 
river is around 8 to 15 meters, whereas the average discharge is 3.4 m3  s-1 (de Moor, 2007; de Moor et al., 2007) 
The Geul River is considered a third/fourth order stream (Higler & Tolkamp, 1982).  
 
In past years, the river is known for its ability to flood (van Heeringen et al., 2022). In 2021, the Geul River 
experienced two significant floodings. Bank erosion and channel displacement occur during such high 
discharge flooding events (Hooke, 1979; Rusnák & Lehotské, 2014; Winterbottom & Gilvear, 2000), making de 
Geul suitable study area for hydromorphology monitoring in the Netherlands.  

2.2 DATA COLLECTION 

2.2.1 SUPERVIEW-1 IMAGE DATA 

The Superview-1 constellation consist of a collection of four commercial remote sensing satellites placed in 
a sun-synchronous orbit with an altitude of around 530 km. Superview-1 (01) and Superview-1 (02) were 
launched on the 28th of December 2016 (EOS-a, n.d.). On January 9, 2018, the last two satellites, Superview-1 
(03) and Superview-1 (04) went to orbit (EOS-a, n.d.). The payload of the satellites are two sensors, one 
multispectral and one panchromatic.  
 
In each of the satellites, the multispectral sensor measures the bands red, green, blue, and near infrared, the 
bandwidths and spatial resolutions are stated in Table 3. Additionally, a panchromatic sensor allowed for 
pan-sharpened red, green, blue, and near-infrared (RGBI) images with a spatial resolution of 0.5 meter. The 
process op pan-sharpening aims to combine the low-resolution data from a multispectral sensor with a high-
resolution pan image to create a single high resolution colour image (Xie et al., 2021). These pan sharpened 
RGBI images were the input images for this study. 
 
Table 3. 
Overview of bandwidth and spatial resolution of the included bands of superview-1, derived from (SpaceWill, n.d.). 

Spectral band Bandwidth (nm) Spatial Resolution (m) 
PAN 450 - 900 0.5 
Blue 450 - 520  2 

Green 520 – 590  2 
Red 630 - 690 2 
NIR 770 - 890 2 

 
The publisher of the Superview-1 images in the Netherlands, Netherlands Space Office (NSO), provides 
context on the processing that was performed on the Superview-1 images (NSO, n.d.). First, the raw satellite 
images were radiometrically calibrated. Radiometric calibration enables a relationship for converting the 
digital numbers of the images to radiance images with physical units (Liu et al., 2020). For the retrieved 
Superview-1 images this step adjusted for sun angle, view angle, and (particles in) the atmosphere (Helder et 
al., 2012; NSO, n.d.). The second pre-processing step involved sensor correction. Sensor correction typically 
consists of noise correction, radiance strength modification, wavelength dependent correction factor 
methodology, and lens distortion (Kelcey & Lucieer, 2012). An additional service of NSO is that they provide 
orthorectified images. Orthorectification is the process of correctly geo-locate image pixels (Campbell & Shin, 
2012; Mercer et al., 2003).  

 
NSO provides coverage of this data in the period between 2019 and 2023. Of the considered study area of the 
Geul, a total of 29 images were retrieved. The timeline in Fig. 2 shows the distribution of images over time. 
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The images were retrieved with the help of an application programmable interface (API). A script was created 
to extract these images. This script took a Geojson file of the desired study region, date range, and resolution. 
The API then downloads this data from the NSO organisation, which saved considerable time compared to 
manually downloading the files one by one.  

2.2.2 LIDAR DERIVED VALIDATION POINT CLOUDS 

Within the period of the collected Superview-1 images (2019-2023), three lidar campaigns were carried out. 
Data from this was retrieved in the form of .LAZ point clouds. One scan was completed by the National lidar 
database (Actueel Hoogtebestand Nederland, 2020). From flight plans, the date of the campaign was derived. 
The flight plan indicated that the AHN4 scan in the study area was completed on 18-12-2020 (AHN, 2020). The 
resolution of this data is a point density of between 10 –14 points per m2 (AHN, n.d.-a).  
 
Another organisation, Rijkswaterstaat, performed two additional scans of the area for their monitoring of the 
Maas River (Rijkswaterstaat, 2021, 2022). Metadata of the Rijkswaterstaat scan reveals that the provided scans 
have resolution of 16.6 points per m2. These campaigns were carried out on 10-04-2021 and 07-04-2022.  

 
The retrieved point clouds where output of the classification algorithm performed by the respective 
organizations. Hence, points in the point cloud were either classified as: ground, buildings, miscellaneous, or 
water (AHN, n.d.-b). Although water is a class in their classification, not all water was classified in their 
classification, due to the reflective nature of water (Paul et al., 2020; Saylam et al., 2017). Therefore, water 
surfaces appear as missing data in the retrieved point clouds. Although missing data in lidar point clouds can 
have multiple causes such non-overlapping flight strips, given the full coverage of the point cloud, the 
missing data patches were assumed to be the Geul River. This extraction from the point clouds was visually 
inspected to be following the riverbanks.  
 
Past studies have substantiated the accuracy of lidar classification methods (Antonarakis et al., 2008; Yan et 
al., 2015). One study summarized the accuracies of those studies, which range between 66% for older methods 
and >90% for more recent studies (Yan et al., 2015). A specific study focussed on river areas, achieved an 
overall classification accuracy between 94% and 95% (Antonarakis et al., 2008). Additionally, the height 
accuracy of the lidar scans is known to be within 15cm in 95,4% of the data points (AHN, n.d.-b). While the 
exact method used by AHN is not clear from a technical point of view, newer lidar classification methods can 
be seen as reliable validation sources for extracting water surfaces.  

2.2.3 DATA PRE-PROCESSING 

Image pre-processing 
The retrieved Superview-1 images were first clipped on the study area. Additionally, the Normalized 
Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI) were computed for the 
waterbody extraction methods. The NDWI (eq. 1) is an index designed for creating contrast with water (Gao, 
1996; Xu, 2006). The NDVI (eq. 2) revolves around the same idea for contrast on vegetation (Myneni et al., 
1995). 
For the analysis mentioned in section 2.3.1, the NDWI was used. For the analysis mentioned regarding the 
classifiers (sections 2.3.2 and 2.3.3), an enhanced version of the RGBI raster was used by adding the NDWI and 
NDVI rasters as bands as one multi-dimensional raster dataset. Adding these spectral indices as bands is 
known to increase classification accuracy (J. Li et al., 2022).  
 

𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
    (eq. 1) 
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𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
         (eq. 2) 

 
Lidar pre-processing 
The workflow to convert lidar to raster consist of three key steps. The first step is to convert the classified 
lidar .Laz file to a .las file to be compatible with ArcGIS pro functionalities. The second step was to convert 
the point could to a digital elevation model (DEM) at a spatial resolution of 50cm. Because of the low 
reflectance properties of water, the Geul River was retrieved by the NoData pixels. The third step was to 
polygonise the raster image. The river polygon could be extracted by means of an intersect operation on a 
defined water point in the river.  

2.3 METHODS 

The Superview-1 images were used for the waterbody extraction and hydromorphological monitoring 
whereas, lidar validation point clouds were used as a reference for computing the accuracy of the waterbody 
extraction methods. Both images and lidar scans are collected of the study area between the period of 2019 
and 2023 (Fig. 2).  
 

 
Fig. 2. Timeline of the collected Superview-1 images (red) and lidar point clouds (blue). Numbers indicate the count of superview-1 
images. Codes associated with the blue lines are related to the data source; AHN4 (Actueel Hoogtebestand Nederland, 2020), 
RWS21 (Rijkswaterstaat, 2021), and RWS22 (Rijkswaterstaat, 2022b). 

The objective of this research can be split into two main sub goals. After data retrieval and pre-processing, 
the first subgoal is to compute the accuracy of waterbody extraction with Superview-1 images, reflected in 
the waterbody extraction assessment phase (Fig. 3). The second subgoal related to the main objective of this 
research is to perform hydromorphological monitoring of a shallow water stream, which is reflected in the 
hydromorphological monitoring phase (Fig.3). 
 
Three methods are included for testing the accuracies of different waterbody extraction methods (Fig. 3). The 
methods for this research were selected based on the literature review. The Otsu threshold method emerged 
as a feasible implementation for waterbody extraction (Table 2). Moreover, the LULC implementation of the 
support vector machine appeared feasible implementation. While deep learning was labelled as the best 
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performing method type, with the highest achieved accuracies, due to time limitations these 
implementations had to be moved to suggestions for further research.  
 

 
Fig. 3, Schematic overview of included methods in this study and explaining the different phases included. 

2.3.1 THRESHOLD METHOD 

The Otsu threshold method was proven to be an effective solution for waterbody extraction (Donchyts, 
Schellekens, et al., 2016; Dong et al., 2022; Langat et al., 2019; Mozgovoy et al., 2018; Vos et al., 2019). The idea 
of this method is to minimize the intraclass distribution and maximise the interclass distribution of values. 
This method splits an image in two classes. In the reviewed papers, this method implemented with the NDWI 
index. Multiple variants of NDWI with different spectral bands exist, by including different spectral bands. 
For this research the version using the NIR band (eq. 1) was used because of the availability in bands. Other 
variants of the NDWI use the bands MIR and Green, which are available on other spaceborne remote sensing 
platforms such as Landsat and Sentinel however not on the Superview-1 (Xu, 2006). The index is designed to 
create contrast between water and non-water surfaces. One source indicates that values between 0.2/0.0 and 
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1 indicate water, while values between -1 and 0 indicate non-water surfaces (EOS-b, n.d.). This method 
however does not consider differences between individual images. In contrast, the threshold method relies 
more on contrast between the two classes instead of absolute values. The implementation of this method was 
done in the GIS software ArcGIS pro with the Binary Thresholding function (Esri, n.d.). 
 

2.3.2 SINGLE-IMAGE PIXEL-BASED SUPERVISED LEARNING METHOD 

Land-use land cover classification methods commonly use a pixel-based implementation of a classification 
model. Proven models had accuracies between 89% and 94% (Talukdar et al., 2020; Thanh Noi & Kappas, 2017). 
Between supervised learning methods there is a division between pixel based and object based. One study 
identified that for small waterbodies, pixel based is the most suitable option (J. Li et al., 2022). In these studies, 
the Support Vector Machine (SVM) emerges as best performing model. Such SVM model requires labelled 
data to train on. The concept of a SVM is based on the structural risk minimization criteria to find the optimal 
classification hyperplane in the high-dimensional feature space (J. Li et al., 2022; Mountrakis et al., 2011; 
Talukdar et al., 2020).  

 
Manual delineation of classes on the Superview-1 images was performed to serve as input for the training 
data in ArcGIS pro.  For this research, a total of four classes were considered. The first two are the classes 
River and Ground. The remaining two classes are more focussed on the problem of overhanging vegetation, 
as identified in past research to be a specific problem for shallow water streams. Therefore, overhanging 
vegetation was considered a class during labelling of data. Because this class is spectrally similar to regular 
tree canopies, trees were also considered a class. After prediction, the classes are combined to the parent 
classes water (river + overhanging vegetation) and non-water (ground + vegetation). 
 
The input for this model is the RGBI image, enhanced with NDWI and NDVI bands. This adding was suggested 
by earlier studies as it aims to increase the accuracy of the model (J. Li et al., 2022). The included model is the 
ArcGIS pro implementation of a Support Vector Machine as past research indicated the high performance in 
benchmarks, compared to other implementations (Basheer et al., 2022). The ArcGIS pro implementation of 
used 250 samples of each of the included classes, ensuring a balanced class division. One model was made for 
each of the three analysis images because of ArcGIS implementation only being able to accept one image as 
training data, resulting in a total of three models. Models could not be used on images due to spectral 
differences, hence three models were made for each of the validation images. 

2.3.3 MULTI-IMAGE PIXEL-BASED SUPERVISED LEARNING METHOD  

Recent studies identify the challenge of seasonal change in images, resulting in different spectral values 
(Cheng et al., 2014; Dong et al., 2022; Lu et al., 2019). This creates challenges for multi-temporal analysis as 
the model trained on one image might not be suitable for another image. This was also found with the single-
image SVM model. To cope with this one study only collected data from the same seasons (Zewdie & 
Csaplovics, 2015). Another study study trained the SVM model on multiple images (Ahmad et al., 2010). As 
the aim of this study was to increase temporal resolution of hydromorphological monitoring, the challenge 
of spectral differences between images due to seasonal changes became a problem, which could not be tackled 
with training the model a single image. To overcome this challenge, this method used training data from 
multiple images to train one model. This incorporated the spectral information of multiple images, instead 
creating models that are only suited for one specific image, like done with the single image method.  
 
The input for this model consisted of seven randomly selected images in different seasons for training, 
incorporating different seasons and circumstances into the training data. The Supervieuw-1 images used for 
validation were not used for the training of the model, to test the model on unseen data. For the seven 
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selected images, manual landcover classes were delineated. The same training classes as the single-image 
model were used for training. For this implementation, the NDVI and NDWI values were scaled towards the 
same scale of the RGBI images, in order to overcome problems with the classification model. 
 
The images were transformed into a Pandas DataFrame with the rows representing the labelled raster cells 
and the columns representing the spectral bands and the class label. This made it possible to merge the 
spectral Dataframes of different images into one training dataset. Based on the reflective values of the merged 
images, a SVM model was trained. A 0.5 fraction, based on the amount of training samples in every image, of 
the full available data was used to limit the size of the training dataset. This ensured that every class appeared 
in proportion to the amount of collected training samples, avoiding that a small class as overhanging 
vegetation becomes dominant. 
 
Implementation of this was done with the scikit-learn SVM (Pedregosa et al., 2011). The model takes three 
key hyperparameters which have significant influence on the accuracy of the model. The parameters the 
SVM model requires are the kernel, C, and max iterations. From literature it is known that the radial kernel, 
performs best for remote sensing classification (Lu et al., 2019; Talukdar et al., 2020; Thanh Noi & Kappas, 
2017; Zewdie & Csaplovics, 2015). The radial kernel allows for non-linear classification (Razaque et al., 2021). 
For this study, optimal parameters were found with hyperparameter tuning, implemented with gridsearchcv 
from scikit learn. The majority filter (four neighbours; majority criteria) was additionally used to remove 
false classifications, so that isolated pixels do not exist.  
 
The prediction phase was implemented in a similar manner as the training phase. The rasters to be classified 
were transformed to a Pandas DataFrame. By leveraging Dask arrays, predictions were performed with 
multicore processing, resulting in faster computation time and allowing for scalability of the method 
(Rocklin, 2015).  

2.3.4 PERFORMANCE MEASURES 

With regards to sub question one, the selected three waterbody extraction methods were assessed based on 
the performance measured against the lidar validation scan. Of the 29 analysis images, the images closest in 
time to the validation lidar scan are paired (Table 4. & Fig.4)  
 
Table 4 
Superview-1 image and lidar point cloud pairs for assessing the accuracy and Kappa of waterbody extraction methods. 
 

Image date Validation lidar scan date 
20-03-2021 18-12-2020 
17-04-2021 10-04-2021 
02-05-2022 07-04-2022 
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Fig. 4. Overview of the three Superview-1 images of the study area, selected for the waterbody extraction methods assessment. 

For the sake of comparison, the assumption was made that water levels between the analysis images and lidar 
scans are similar. This assumption allows for the implicit statement that the riverbanks are at the same 
location between analysis image and validation scan.  
 
Each method was used to make a binary prediction on the classes water and non-water. For all three methods, 
and the considered test images, a confusion matrix was generated within a 15-meter buffer of the validation 
river. The performance measure to compare the included methods is the accuracy. The accuracy is based on 
the confusion matrix accuracy of the sum of True Positives (TP) and True Negatives (TN) divided by the sum 
of TP, TN, False positives (FP), and False Negatives (FN) (eq. 3).  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
    (𝑒𝑞. 3) 

 
Additionally, the Cohen’s Kappa coefficient was also included to assess the best performing method (eq. 4) 
(Cohen, 1960; sklearn, 2023). This measure is the proportion of agreement corrected for chance (Warrens, 
2015). This measure is well acknowledged by the RS community (Feizizadeh et al., 2022) .  
 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝐾𝑎𝑝𝑝𝑎 =  
𝑝0 −  𝑝𝑒

1 − 𝑝𝑒
    (𝑒𝑞. 4) 

 
Where 𝑝0is the empirical probability of agreement on the label assigned to any sample, and 𝑝𝑒  is the expected 
agreement when both annotators assign labels randomly (sklearn, 2023).  
 
Additionally, for all three waterbody extraction methods a north section (around the eroding section) and 
south section (around the non-eroding section) are plotted for visual reference (Fig. 11 – Fig. 16). Accuracy of 
overhanging vegetation could not be computed as the data of the validation scan only included the classes 
water and non-water. Therefore, performance of the overhanging vegetation classification was interpreted 
manually with the maps. 

2.3.5 HYDROMORPHOLOGICAL MONITORING 

With regards to sub question two, the hydromorphological monitoring was performed at two subsections of 
the study area, including one eroding section and one non-eroding section (Fig. 5.). Identifying a shifting 
riverbank is evenly important as having a non-eroding bank showing no channel shift. The method of 
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hydromorphological monitoring which was used for this study is based on the shift of the waterbody with 
respect to a selection of pre-defined cross sections. Existing research also used cross sections, in the form of 
height profiles (Hemmelder et al., 2018). Points of interest on this cross section is the left bank, centre point 
and right bank. For both the eroding section and the non-eroding section, four cross sections at each site are 
defined (Fig. 5) 

 
Fig. 5. Overview of the hydromorphological monitoring sites (eroding and non-eroding), with the cross sections (red). 

Using the best performing waterbody extraction method, this study created predictions on the rasters of the 
specific monitoring sites. The resulting classified raster with the distinction of water and non-water were 
then polygonised. The images with cloud cover above the monitoring site were automatically filtered from 
the analysis. Additionally, falsely classified river polygons were filtered out by removing outliers in terms of 
polygon area. The polygons were plotted to gain spatial insight into both the dynamics of the river and the 
classification predictions. Additionally, Intersecting the river polygon with the cross sections gave two points 
at either bank of the river. To determine the centre point, the location of the two banks are averages. Using 
this point data, the Euclidean distance of the specific point of interest was computed over time, enabling the 
visualization of the river shift over time.  
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3 RESULTS 
3.1 WATERBODY EXTRACTION ASSESSMENT 

3.1.1 OTSU THRESHOLD RESULTS 

From the Otsu threshold method, the Accuracy and Kappa coefficient were an average of 90% and 0.70, 
respectively (Table 5).  Of the three measuring moments, the image of 20-03-2021 gave the highest accuracy, 
followed by 05-05-2022 and 17-04-2021. Additionally, the extracted rivers were plotted along with the 
validation scan for the three measuring moments in appendix I (Fig.11 & Fig.12). The predictions of the 
eroding section (Fig. 11) show a patchy pattern compared with the validation image. This section contains 
high vegetation above or adjacent to the river (Fig. 1 & Fig. 4.). Furthermore, in the 17-04-2021 prediction 
(Fig.11), a large amount water was predicted compared to the validation image due to cloud shadow (Fig.4). 
This also reflected in the amount of FP water observations of the 2021 image (Table 7). In Table 6 until Table 
8, the confusion matrices of the three images can be found. 
 
Table 5 
Accuracies and Kappa coefficients of the Otsu threshold method.  

Date of image Accuracy (%) Kappa coefficient  
20-03-2021 92 0.75 
17-04-2021 88 0.66 
02-05-2022 91 0.70 

Average 90 0.70 
 
Table 6 
Confusion matrix of the Otsu threshold method of the 20-03-2021 image. 

 
 
 
 
 

 
Table 7 
Confusion matrix of the Otsu threshold method of the 17-04-2021 image. 

 Prediction 
 Non-Water Water 

Validation Non-Water 239034 32631 

 Water 9763 60155 
 
Table 8 
Confusion matrix of the Otsu threshold method of the 02-05-2022 image. 

 Prediction 
 Non-Water Water 

Validation Non-Water 263627 9237 
 Water 21704 48732 

 Prediction 
 Non-Water Water 

Validation Non-Water 251038 22143 
 Water 6435 59306 
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3.1.2 SINGLE-IMAGE SUPPORT VECTOR MACHINE RESULTS 

The second tested method, the pixel based SVM method trained and predicted on the same image gained an 
average accuracy of 76%, whereas the Kappa coefficient gained an average of 0.50 (Table 9.). The best 
performing model of the three was the 17-04-2021 model on the respective image. The 02-05-2022 model and 
image and 20-03-2021 model and image both had lower accuracies and Kappa coefficients. 
 
Fig. 13 and Fig. 14 in appendix I show the predicted images compared to the lidar validation for the eroding 
section. This image shows a patchy pattern of water and non-water. Fig.13 and Fig. 14 regarding the non-
eroding section for 20-03-2021 shows more predicted water compared to the validation image, as reflected in 
table 9. Also, most of the prediction images show that more of the overhanging vegetation was classified with 
this method. However, this was not without the expense of FP water predictions (Fig. 13 & Table 11) The 
confusion matrixes of the individual images can be found in Table 10 to 12. 
 
Table 9 
Accuracies and Kappa coefficients of the Single-image SVM method.  
 

Date of image Accuracy (%) Kappa coefficient 
20-03-2021 55 0.19 
17-04-2021 91 0.75 
02-05-2022 82 0.55 

Average 76 0.50 
 
Table 10 
Confusion matrix of the single-image SVM method of the 20-03-2021 image. 
 

 Prediction 
 Non-Water Water 

Validation Non-Water 131025 14156 

 Water 9056 65585 
 
Table 11 
Confusion matrix of the single-image SVM method of the 17-04-2021 image. 
 

 Prediction 
 Non-Water Water 

Validation Non-Water 250185 21480 

 Water 8591 61327 
 
Table 12 
Confusion matrix of the single-image SVM method of the 02-05-2022 image. 

 Prediction 
 Non-Water Water 

Validation Non-Water 21687 58177 

 Water 5059 65377 
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3.1.3 MULTI-IMAGE SUPPORT VECTOR MACHINE RESULTS 

Training data for the third selected method contained the feature space as shown in Fig. 6. It shows the 
distribution of the training data across the different bands. The feature space of the training data contains 
approximately 95,000 rows, and six features for prediction. 
 

 
Fig. 6, feature space of the training dataset of the multi-image SVM model. 

This multi-image model gained an average accuracy of 90%, Table 13 further specifies the accuracies of all 
the specific test images. Tables 14 to 16 show the confusion matrices of the specific images. 
 
Table 13  
Accuracies and Kappa coefficients of the Otsu threshold method.  
 

Date of image Accuracy (%) Kappa coefficient 
20-03-2021 94 0.80 
17-04-2021 84 0.61 
02-05-2022 92 0.75 
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Average 90 0.72 
 
Table 14 
Confusion matrix of the multi-image SVM method of the 20-03-2021 image. 
  

 Prediction 
 Non-Water Water 

Validation Non-Water 261715 11569 

 Water 10215 55432 
 
Table 15 
Confusion matrix of the multi-image SVM method of the 17-04-2021 image. 

 Prediction 
 Non-Water Water 

Validation Non-Water 222171 49580 

 Water 4427 65489 
 
Table 16 
Confusion matrix of the multi-image SVM method of the 02-05-2022 image. 

 Prediction 
 Non-Water Water 

Validation Non-Water 258325 14373 
 Water 14184 56259 

 
Fig. 15 & Fig. 16 in appendix I shows the predicted and ground truth images for the third method. It reveals 
that the 20-03-2021 and 02-05-2022 image there is a patchy pattern in Fig. 15, whereas Fig. 16 shows more 
crisp lines. The 17-04-2021 image shows a significant portion of water pixel in the north part (Fig. 15).  
 

3.2 HYDROMORPHOLICAL MONITORING AT THE MOUTH OF 
THE GEUL RIVER 

Based on the performance of the included models, and further arguments stated in section 4, the 
hydromorphological monitoring was performed based on the multi-image SVM model. Between fifteen and 
seventeen polygons were extracted, depending on the specific cross section. The extracted polygons of the 
eroding section were plotted to visually interpret the shift of the river (Fig. 7). Approximately two of the 
predicted polygons show large uncertainty in the boundary of the river, with large additional predicted 
water.  
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Fig.7. Extracted polygons over time of the used superview-1 images for hydromorphological monitoring on the eroding section. Cross 
sections are delineated in red. 

Furthermore, the cross sections of the eroding section showed a total centre point shift between 4.5 and 8.6 
meters throughout the study period (Fig. 8). Left bank shift was between 1,4 and 8.6 meters whereas the right 
bank shift was between 4.6 and 8.6 meters throughout the study period. Furthermore, maximum bank right 
bank shift was recorded of 13.1 meters on the second cross section. 
 
The first, second and third cross sections show clear temporal trends in channel shift (Fig. 8). The fourth 
eroding cross section shows less of a trend.  
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Fig. 8. Temporal plot of the shift of the centre point and left and right riverbanks of the eroding section. Shift is measured compared 
to the first observation. 

The river in the non-eroding section remained on the same location, however one outlier in right riverbank 
was shown (Fig. 9.). Over time, no clear trend was derived from Fig. 9. 
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Fig.9. Extracted polygons over time of the used superview-1 images for hydromorphological monitoring on the non-eroding section. 
Cross sections are delineated in red. 

 
Plotting the temporal riverbank shift (Fig. 10) showed no shifting trend on the non-eroding section. 
Maximum riverbank shift was recorded of 6.4 meters which was due to a classification error resulted by 
shadow. However, this was due to shadow. Overall, the centre point of remained between 0.2 and 1.3 meters 
of shift during the study period. The left bank shift was between 0.7 and 1.3 meters towards the end of the 
study period. The right bank shift remained between -0.4 and 1.9 meters at the end of the study period.  
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Fig. 10. Temporal plot of the shift of the centre point and left and right riverbanks of the non-eroding section. Shift is measured 
compared to the first observation. 

For both the eroding and non-eroding sections of the analysis gif animations were created to visualize the 
polygons and the Superview-1 images over time. These gifs can be found on GitHub.  
 
 
 
 
 

https://github.com/JitseRuurd/ThesisPoster
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4 DISCUSSION 
This study aimed to assess which waterbody extraction method gained the highest accuracy with Superview-
1 images, compared to lidar scans to be able to monitor the hydromorphology of shallow river systems. The 
motivation to do this is related to the goals of the WFD. The definition of the WFD for hydromorphology omits 
the time component, deemed important by (Newson et al., 2006; Vogel & Asce, 2011). Therefore, this study 
went beyond the definition of WFD and build further upon the necessity of monitoring hydromorphology in 
terms of erosion and sedimentation processes. This research created a method for measuring this change in 
morphology with Supeview-1 images, to create more hydromorphological context on high temporal basis of 
shallow river ecological systems.  
 
The Otsu threshold method demonstrated high accuracy, especially considering its complexity. This finding 
was consisted with research (Donchyts, Baart, et al., 2016; Dong et al., 2022; Jiang et al., 2021; Langat et al., 
2019; J. Li et al., 2022; Mozgovoy et al., 2018; Vos et al., 2019). Average accuracy was 90%, with a Kappa 
coefficient of 0.70. However, this method was sensitive for misclassification regarding the cloud shadow in 
the 17-04-2021 image, as well as for the overhanging vegetation near the eroding section of the stream (Fig. 
11). 
 
The single-image SVM method had the lowest accuracy of the tested methods with 76% (Kappa 0.50). howe 
er, this model successfully addressed one of the key limitations identified from literature, overhanging 
vegetation (Large & Gilvear, 2015; Winterbottom & Gilvear, 2000). Nevertheless, this could not be identified 
with both the threshold method and the multi-image methods, reflected by the patchy patterns (Fig.11 & Fig. 
15). While the single image model was able to detect overhanging vegetation, it was not able to do this without 
the expense of creating false positive observations of this class as well. This resulted in a lower classification 
accuracy on water vs non-water, as reflected in table 5.  Therefore, the limitation of overhanging vegetation 
was still left a challenge with regard to spaceborne remote sensing. The presence of cloud shadow in the 14-
07-2021 image was not a problem for this model, as it was trained on the spectral properties of the specific 
image. 
 
Increasing temporal resolution of images also introduced the problem of seasonality in spectral values. 
Earlier temporal research collected their imagery in the same season, to overcome this challenge (Zewdie & 
Csaplovics, 2015). The single image model could not cope with differences between images. Therefore, this 
study opted to train a classification model spectral values from multiple images in various seasons, to create 
a generalized model. This method resulted in a classification accuracy of 0.90 with a Kappa coefficient of 0.72.  
In the feature space, there is significant overlap between classes within most of the histograms (Fig. 6). 
However, given the number of features, the SVM is able to extract the different classes. Overhanging 
vegetation was a problem for this model, shown by the patchy pattern in Fig. 15. Also, the model was not able 
to cope with the cloud shadow of the 17-04-2021 image. 
 
In terms of accuracies, this study gained comparable accuracies on waterbody extraction as recent studies 
using spectral thresholding (Dong et al., 2022; Jiang et al., 2021; Mozgovoy et al., 2018). Past studies gained 
accuracies between 82% and 97%, whereas this study gained average accuracies between 90%. Moreover, 
comparing the Support Vector Machine accuracies, the single image performed worse than literature with 
its 76% accuracy. Existing studies with Support Vector Machines archived accuracies in the range of 90 - 95% 
accuracy. Nevertheless, the multi-image Support Vector Machine realized accuracies in line with the existing 
studies with its 90% accuracy. Though in line, the 90% is at the lower side of the accuracy range. Additionally, 
comparing the accuracies computed by past studies using deep learning (96.36% - 99%), the results of this 
research were lower. From this study overhanging vegetation and cloud shadow emerges as key limitations 
for shallow water stream waterbody extraction, impacting the accuracy negatively. This explains the fact 
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that the classification accuracies of this study were lower than existing studies. lower waterbody extraction 
accuracy.  
 
Based on classification accuracies, both the Otsu threshold method and the multi-image method gained the 
90%, the difference is that the multi-image model had a higher Kappa coefficient. Therefore, the decision was 
made to continue with the multi-image model for the hydromorphological monitoring. 
 
Not all retrieved images were used for hydromorphological monitoring. Between fifteen and seventeen 
images, depending on the specific cross section, of the total of 29 images were used for monitoring due 
classification errors or cloud cover obstruction. Hence, making the average temporal resolution of this study 
around five yearly images. 
 
The hydromorphological change between 2019 and 2023 along the eroding cross sections was striking. The 
right bank of the eroding section experienced a maximum bank shift between 7.6 and 13.1 meters. At the end 
of the study period a total centre point shift was measured of between 4.5 and 8.6 meters. From the temporal 
plots, a clear shifting trend was derived (Fig. 8). The non-eroding section shifted less than the eroding section 
with between 0.2 and 1.3 meters for the centre point. Maximum shift for the non-eroding section was 
dominated with a miss classified section, highlighting the that the classification accuracy is highly important 
for quality monitoring. However, regardless of the included misclassification, no eroding trend was found in 
the temporal plots of the non-eroding section (Fig. 10). 
 
Compared with the study of Langat et al. (2019), this research revealed rather insignificant changes in river 
morphology. In contrast, compared with other shallow water streams of Hemmelder et al., (2018), Hooke 
(1979), and Winterbottom & Gilvear (2000), findings are comparable. The temporal resolution of 
hydromorphological monitoring of the reviewed river specific studies, was between one image yearly and 
one image every twelve years. This study was able to increase this resolution to five yearly images. While 
(Donchyts, Baart, et al., 2016; Donchyts et al., 2017; van Leeuwen et al., 2020) provide a high temporal 
resolution with near real time waterbody mapping, the spatial resolution of 10 or 30 meters is not adequate 
for shallow water steams. 
 
From a perspective of feasibility of monitoring on high temporal basis, spaceborne remote sensing created a 
clear advantage compared to UAV data as used by Hemmelder et al. (2018). Spaceborne remote sensing 
eliminates the additional resources of UAV equipment and operators. However, hydromorphological 
monitoring with spaceborne remote sensing compromises on spatial resolution and three-dimensional 
capabilities. 
 
A key assumption of this study was that the difference in water level between Superview-1 images and 
validation scans was insignificant. For the mouth of the Geul River, the water level is influences by the water 
level of the Maas River. The actual water levels on the specific days differed (Table 17). Also, throughout the 
days of which data has been retrieved, waterlevels fluctuated. 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

26 

 

Table 17  
Overview of water level of the Maas River near the mouth of the Geul River, at location Borgharen Dorp, retrieved (Rijkswaterstaat, 

2023).  
 

Date of image Average water level of the 
Maas River in cm above 
NAP 

Date of lidar Average water level of the 
Maas River in cm above NAP  

Absolute 
difference in 
cm 

20-03-2021 4082 ± 118 18-12-2020 4033 ± 117 49 
17-04-2021 4019 ± 117 10-04-2021 4025 ± 118 6 
02-05-2022 3836 ± 14 07-04-2022 3893 ± 16 57 

 
This water level difference most definitely influenced the accuracy negatively, as riverbank locations differ 
between the superview-1 images compared to the validation scans. It must be noted that a perfect situation 
would be to have a lidar scan on the same exact moment of the satellite image, resulting in equal 
environmental circumstances. This was however not feasible to arrange for this study.  
 
Two key limitations related to the waterbody extraction of this approach for hydromorphological monitoring 
were identified. Firstly, The limitation of cloud shadow was identified.  In this analysis, the north part of the 
17-04-2021 image was subject to cloud shadow (Fig 4). Results indicate that only the model trained on this 
single image data was able to cope with this. The Otsu threshold and Multi-image SVM approaches confused 
this shadow area to be water. This limitation was also found in the review by Y. Li et al., (2022). There are 
approaches available to mask these cloud shadows (Shahtahmassebi et al., 2013). Additionally, cloud shadow 
classes could be predicted with additional classes in the SVM. However due to time limitation, these must be 
explored in further research. Secondly, the limitation of overhanging vegetation was identified. Because the 
multi-image SVM method is currently not able to detect this, the usability of the method is biased towards 
open water surfaces. However, hydromorphological monitoring is equally important in these overhanging 
vegetation sections compared to open sections and must not be ignored.  
 
Further studies should research methods to extract water under patches of overhanging vegetation, and 
compute its accuracy. One suggestion is to the method proposed by Zeng et al. (2015) to interpolate the river 
at patches over overhanging vegetation. This method connects the discontinued river patches with the 
assistance of an image pyramid (Zeng et al., 2015). Furthermore, to limit the false positive overhanging 
vegetation predictions, multi-temporal techniques such as dynamic Bayesian network can produce 
probabilistic reasoning, which could assist detecting false positives (Jianya et al., 2008). Another suggestion 
is to leverage data fusion opportunities to incorporate higher resolution areal imagery and lidar point clouds. 
From the validation data, it is known that the lidar data is not limited by overhanging vegetation. The 
extracted waterbodies can be incorporated into both the map of overlaid polygons and the temporal shift 
across the defined cross sections. This increases both temporal resolution by adding more data, as well as 
leverage the higher spatial resolutions for higher precision extraction. Data fusion was proved to be effective 
for monitoring by (Joshi et al., 2016; Schmitt & Zhu, 2016).  
 
Also, for waterbody extraction, there are further opportunities with regards to models. As indicated by Y. Li 
et al (2022), deep learning approaches have a higher average accuracy compared to non-deep learning 
methods. Therefore, researching these methods have the potential to achieve higher accuracies than have 
currently been achieved. 
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5 CONCLUSION 
The aim of this research was to determine the most accurate method for waterbody extraction, with the goal 
to increase temporal resolution of hydromorphological monitoring based on Superview-1 images for shallow 
streams. The context for this is that most waterbodies do not comply with the KRW, as set by the European 
union and the Dutch government. Earlier studies substantiated the importance of monitoring the 
hydromorphology of water steams as it is deemed a crucial process to grasp the ecological status of the 
stream. A Support Vector Machine model trained on multiple images emerged as the best method for 
waterbody extraction with a classification accuracy of 90% (Kappa: 0.72). The Otsu threshold method gained 
an accuracy of 90% (Kappa:0.70), while a Support Vector Machine trained on single images achieved lower 
accuracy of 76% (Kappa:0.50). Overhanging vegetation was a limitation identified at the beginning of the 
study however, this study could not resolve this. Also, cloud (shadow) masking are also well-established fields 
in remote sensing, however these methods were note implemented due to time constraints. 
 
Hydromorphological monitoring based on the extracted waterbodies resulted in a map with the extracted 
polygons over time. Additionally, a graph indicating the amount of bank and channel shift of the river, 
measured over a specified cross section was created. The river banks a centre point shifted between 4.5 and 
8.6 meters across the four different cross sections during the study period at the eroding section. The centre 
point of the non-eroding section shifted between 0.2 and 1.3 meters at the end of the study period. The left 
shifted a maximum of 8.6 meters, whereas the right bank shifted a maximum of 13.1 meters during the study 
period 2019 – 2023 at the eroding section.  
 
The temporal resolution of this method, with between fifteen to seventeen images, in a period of three years.  
Hence, the temporal of this study was around five yearly images. Therefore, resolution was significantly 
increased compared to existing research assessing the change in morphology of a waterbody.  
 
Towards monitoring the ecological status of surface water, this research allowed for high temporal 
monitoring of the hydromorphological processes. Understanding this process creates valuable context for 
assessing the full health of a water stream ecosystem. This research serves as context for what the 
contribution of Superview-1 imagery could be for the monitoring of WFD hydromorphological goals. 
 
Further research should investigate opportunities to increase the accuracy of waterbody extraction. 
Interpolation methods for overhanging vegetation and probabilistic approach for multi-temporal analysis 
provide the potential the ability to detect overhanging vegetation. Additionally, data fusion methods could 
further increase temporal resolution along with leveraging the high spatial accuracy of lidar scans and aerial 
imagery.  
 
 
 
 
 
Refs not cited by Mendeley: (Dragićević et al., 2017; Otsu, 1979; Woodget et al., 2017) 
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APPENDIX 
I. PREDICTION IMAGES  

OTSU THRESHOLD METHOD (ERODING SECTION) 

 
Fig.11. Prediction and validation of Otsu threshold method (Eroding section) 
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OTSU THRESHOLD METHOD (NON-ERODING SECTION)

 

Fig.12. Prediction and validation of Otsu threshold method (non-eroding section) 
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SINGLE IMAGE ML METHOD (ERODING SECTION) 

  
 
Fig.13. Prediction and validation of Singe image ML method (eroding section) 

 
 
 
 
 



 

 
 
 

36 

 

SINGLE IMAGE ML METHOD (NON-ERODING SECTION) 

 

 
 
Fig.14. Prediction and validation of Singe image ML method (non-eroding section) 
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MULTI IMAGE ML METHOD (ERODING SECTION) 

 
 
Fig.15. Prediction and validation of Multi image ML method (eroding section) 
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MULTI IMAGE ML METHOD (NON-ERODING SECTION) 

 

 
Fig.16. Prediction and validation of Multi image ML method (non-eroding section) 

 
 
 
 


