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Layman	summary	
	
Kanker	in	kinderen	is	een	proces	dat	nog	niet	zo	goed	wordt	begrepen.	Ongeveer	10%	van	alle	
kinderkankers	 wordt	 veroorzaakt	 door	 een	 genetische	 aandoening,	 waardoor	 kinderen	 een	
hoger	risico	hebben	om	kanker	te	ontwikkelen.	Mutaties	in	de	BRCA1	en	BRCA2	genen	worden	
vaak	 geassocieerd	met	 een	 hoger	 risico	 op	 het	 ontwikkelen	 van	 borst	 en	 eierstok	 kanker	 in	
volwassenen.	 Steeds	 vaker	 zien	 we	 ook	 mutaties	 in	 deze	 genen	 bij	 kinderen	 met	 kanker.	
Verschillende	onderzoeken	suggereren	dat	een	pathogene	kiembaanvariant	in	één	allel	in	een	van	
deze	genen	het	risico	op	het	ontwikkelen	van	hersen	en	solide	tumoren	bij	kinderen	verhoogt.	
Echter,	dit	is	nog	steeds	niet	bewezen.		
	
Dit	 onderzoek	 ging	 voornamelijk	 over	 het	 aantonen	 van	 de	 aanwezigheid	 van	 een	 potentiële	
tweede	genetische	gebeurtenis	die	een	rol	zou	kunnen	hebben	gespeeld	bij	het	ontstaan	van	de	
kinderkanker	 bij	 patiënten	 die	 een	 pathogene	BRCA1	 of	BRCA2	 kiembaanvariant	 in	 één	 allel	
dragen.	Voor	dit	onderzoek	werden	er	twee	verschillende	analyses	gedaan.	Ten	eerste	werd	er	
gekeken	 naar	 de	 somatische	 mutatiepatronen	 van	 patiënten	 met	 kinderkanker	 om	 te	
onderzoeken	 of	 er	 sprake	 was	 van	 een	 verlies	 van	 het	 homologe	 recombinatie	 reparatie	
mechanisme.	Dit	reparatie	mechanisme	 is	erg	belangrijk	voor	het	herstellen	van	 fouten	 in	het	
DNA,	en	een	verlies	hiervan	kan	zorgen	voor	onbalans	van	de	allelen	en	in	sommige	gevolgen	ook	
kanker.	Er	werd	gekeken	of	bepaalde	mutatiepatronen	die	vaak	worden	gezien	bij	het	verlies	van	
het	 reparatie	mechanisme	 in	 volwassenen	 overeen	 kwamen	met	 de	mutatiepatronen	 van	 de	
kinderen	met	kanker.	Ook	werd	er	met	een	algoritme,	genaamd	CHORD,	een	score	berekend	die	
een	voorspelling	doet	over	hoe	waarschijnlijk	het	 is	dat	 iemand	een	verlies	van	het	 reparatie	
mechanisme	heeft.	Daarnaast	werd	gekeken	of	varianten	die	veel	voorkomen	in	de	populatie	en	
een	 hoge	 associatie	 hebben	met	 een	 verlaagde	 expressie	 van	 het	BRCA2	 gen,	 ook	wel	 eQTLs	
genoemd,	voorkomen	op	het	kiembaan	allel	zonder	de	pathogene	variant	van	de	kinderen.	De	
aanwezigheid	van	eQTLs	in	de	kiembaan	zouden	eventueel	kunnen	leiden	tot	onbalans	van	de	
allelen.	
	
De	 resultaten	 toonden	 aan	 dat	 een	 verlies	 van	 het	 reparatie	 mechanisme	 alleen	 werd	
waargenomen	 bij	 kinderkanker	 patiënten	 met	 twee	 pathogene	 kiembaanvarianten	 op	 beide	
allelen	van	het	BRCA2	gen	of	een	pathogene	BRCA2	kiembaanvariant	en	een	somatische	tweede	
hit.	Er	werd	nog	geen	verband	gevonden	tussen	pathogene	BRCA1	of	BRCA2	kiembaanvarianten	
op	één	allel	 en	het	 ontstaan	van	kinderkanker.	Verder	werden	er	wel	 eQTLs	gevonden	op	de	
kiembaan	allelen	van	de	kinderen	met	kanker,	alleen	is	het	onduidelijk	of	deze	eQTLs	voorkomen	
op	het	allel	zonder	de	pathogene	variant	en	of	deze	eQTLs	ook	daadwerkelijk	een	effect	hebben.	
Om	 de	 resultaten	 beter	 te	 begrijpen	 moet	 opvolgend	 onderzoek	 worden	 gedaan	 naar	 de	
potentiële	 tweede	 genetische	 gebeurtenis	 die	 de	 tumorontwikkeling	 zou	 kunnen	 hebben	
veroorzaakt.	Ook	zijn	er	meer	patiënten	nodig	in	deze	studie	om	de	resultaten	beter	te	begrijpen.	

	

	

	
 



 

 4 

Abstract	
	
Childhood	cancer	is	a	complex	and	poorly	understood	process.	It	is	estimated	that	around	10%	
of	 pediatric	 cancer	 cases	 are	 due	 to	 a	 genetic	 condition	 known	 as	 a	 cancer	 predisposition	
syndrome	(CPS).	Variants	 in	adult	cancer	predisposing	genes	 (CPGs),	BRCA1	 and	BRCA2,	have	
been	found	to	be	enriched	in	pediatric	cancer	patients	and	are	often	associated	with	breast	and	
ovarian	 cancer	 in	 adults.	 Suggestions	 are	made	 that	 heterozygous	 germline	 variants	 in	 these	
genes	 can	 increase	 the	 risk	 of	 developing	 brain	 and	 solid	 tumors	 in	 children,	 although	 the	
relationship	between	heterozygous	BRCA1	and	BRCA2	germline	variants	and	pediatric	cancer	is	
not	yet	demonstrated.		
	
This	study	aimed	to	examine	the	presence	of	a	potential	second	genetic	event	in	pediatric	patients	
with	a	heterozygous	BRCA1	 or	BRCA2	 germline	variant.	The	study	employed	 two	approaches.	
First,	somatic	mutational	pattern	analysis	was	conducted	to	assess	the	presence	of	homologous	
recombination	deficiency	(HRD),	which	is	associated	with	most	cancers	in	adult	patients	with	a	
BRCA1	or	BRCA2	germline	variant.	Hence,	a	comparison	of	HRD-related	mutational	signatures	
and	 the	 use	 of	 CHORD	 aimed	 to	 assess	 the	 presence	 of	 HRD	 in	 pediatric	 patients	 with	 a	
heterozygous	 BRCA1	 or	 BRCA2	 germline	 variant.	 Next,	 the	 study	 aimed	 to	 investigate	 the	
relationship	between	expression	quantitative	trait	loci	(eQTLs)	on	the	non-pathogenic	allele	of	
the	BRCA2	 gene	 in	pediatric	patients	and	allelic	 imbalance	by	comparing	germline	variants	of	
patients	with	the	presence	of	eQTLs.	
	
Results	showed	that	HRD	was	only	observed	in	pediatric	patients	with	a	biallelic	BRCA2	germline	
variant	or	heterozygous	BRCA2	germline	variant	and	a	somatic	second	hit.	However,	no	relation	
was	found	between	heterozygous	BRCA1	or	BRCA2	germline	variants	and	HRD,	and	therefore	the	
onset	of	pediatric	cancer.	Moreover,	 the	study	found	a	slightly	higher	percentage	of	cis-eQTLs	
within	 patients	 with	 a	BRCA2	 germline	 variant	 compared	 to	 the	 healthy	 population,	 but	 not	
compared	to	the	AYAs	patients	with	bladder	cancer.	Additionally,	seven	clusters	of	co-occurring	
eQTLs	were	found.	Accordingly,	read-based	phasing	and	RNA	expression	analysis	are	required	to	
validate	whether	combinations	of	cis-eQTL	clusters	are	present	on	the	non-pathogenic	allele	and	
therefore	could	induce	allelic	imbalance	leading	to	tumor	development.	Due	to	a	limited	sample	
size,	further	research	is	required	to	better	understand	the	findings.	
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1.		 Introduction	
	
The	onset	of	childhood	cancer	is	a	complex	and	poorly	understood	process.	While	most	cases	are	
due	to	coincidence	and	environmental	factors,	more	cases	are	thought	to	be	a	genetic	disorder	
and	may	be	related	to	cancer	predisposition	syndromes	(CPS)	(Ripperger	et	al.,	2017).	CPS	is	the	
condition	 in	which	a	genetic	variant,	 inherited	or	de	novo,	 increases	the	chance	of	developing	
cancer	at	a	younger	age	compared	to	the	general	population.	Approximately	10%	of	cancer	among	
children	is	due	to	this	syndrome	(Kratz	et	al.,	2021).	Recent	research	has	shown	an	enrichment	
of	 germline	pathogenic	variants	 (PVs)	 in	 adult	 cancer	predisposing	genes	 (CPGs)	 (e.g.	BRCA1,	
BRCA2,	MLH1,	MSH2	&	MSH6)	in	pediatric	cancer	patients	(Zhang	et	al.,	2015;	Kratz	et	al.,	2022).	
However,	the	association	between	heterozygous	PVs	in	adult	CPGs	and	their	role	of	the	onset	of	
pediatric	cancer	is	not	yet	demonstrated.		
	
A	 higher	 frequency	 of	 germline	 PVs	 in	 the	 adult	 CPGs	BRCA1	 and	BRCA2	 has	 been	 found	 in	
pediatric	cancer	patients	(Kratz	et	al.,	2022).	These	genes	are	often	associated	with	hereditary	
breast	and	ovarian	cancer	(HBOC),	pancreatic	and	gastric	cancer	in	adults	(Petrucelli,	Daly	and	
Pal,	1993;	Decker	et	al.,	2016).	Cancer	development	in	these	adults	can	be	due	to	inherited	BRCA1	
or	BRCA2	PVs	which	combined	with	a	somatic	second	hit	or	 loss-of-heterozygosity	 (LOH)	can	
cause	tumor	formation.	Another	way	is	through	having	a	biallelic	germline	variant,	such	as	in	the	
disease	Fanconi	anemia	(Woodward	and	Meyer,	2021;	Kratz	et	al.,	2022).	In	both	cases	there	is	
prominent	evidence	 that	 there	 is	complete	 loss	of	BRCA1	or	BRCA2	gene	 function.	Besides,	an	
increased	risk	of	breast	and	ovarian	cancers	is	found	in	adults	with	a	heterozygous	BRCA1	and	
BRCA2	 germline	 variant	 (Nguyen	 et	 al.,	 2020),	 while	 knowledge	 of	 the	 relationship	 between	
heterozygous	BRCA1	and	BRCA2	germline	variants	and	the	risk	of	childhood	cancer	is	still	lacking.	
Extensive	research	of	germline	variants	in	pediatric	patients	has	been	performed,	which	shows	
an	enrichment	of	heterozygous	variants	in	adult	CPGs	BRCA1	and	BRCA2	associated	with	a	higher	
risk	 of	 developing	 brain	 and	 solid	 tumors	 in	 children.	 This	 could	 suggest	 a	 causal	 role	 of	
heterozygous	germline	variants	in	these	CPGs	in	the	onset	of	cancer	in	a	subset	of	pediatric	cancer	
cases,	which	link	seems	particularly	strong	in	the	BRCA2	gene	(Zhang	et	al.,	2015;	Kratz	et	al.,	
2022).	
	
In	 most	 (adult)	 cancer	 patients	 with	 a	 germline	 variant	 in	 the	 BRCA1	 and	 BRCA2	 genes,	 an	
association	is	found	with	a	defective		homologous	recombination	repair	(HRR)	pathway.	The	HRR	
pathway	is	responsible	for	repairing	various	genetic	lesions	in	DNA	(Creeden	et	al.,	2021).	The	
identification	 of	 homologous	 recombination	 deficiency	 (HRD)	 in	 pediatric	 cancer	 patients	
harbouring	 germline	 variants	 in	 the	 BRCA1	 and	 BRCA2	 genes	 is	 crucial	 to	 provide	 valuable	
information	on	the	combined	impact	of	a	heterozygous	germline	PV	in	the	BRCA	genes	and	other	
genetic	factors	which	may	have	contributed	to	the	development	of	pediatric	cancer.		
	
Genetic	aberrations	caused	by	HRD	can	be	identified	as	genomic	signatures	or	footprints	(Nguyen	
et	al.,	2020).	A	mutational	signature	is	a	unique	pattern	of	mutations	that	was	caused	by	specific	
processes	that	led	to	the	development	of	a	tumor.	Signatures	resulting	from	HRD	exist	dominantly	
as	 small	 insertions	 and	deletions	 (indels)	 and	 structural	 variants	 (SVs).	However,	 single	 base	
substitutions	(SBS)	can	also	display	a	characteristic	pattern	due	to	HRD,	defined	as	mutational	
signature	SBS3	(Figure	1.A)	(Alexandrov	et	al.,	2013a).	Deletions	associated	with	HRD,	which	are	
equal	or	greater	than	5	base	pairs	in	size	are	correlated	with	indel	signature	ID6	(Figure	1.B)	
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(Nguyen	 et	 al.,	 2020).	 These	 deletions	 are	 characterized	 by	 having	 extended	 stretches	 of	
microhomology	 at	 the	 breakpoint	 junctions	 (Alexandrov	 et	 al.,	 2013b).	 Hence,	 discovering	
signatures	SBS3	and	ID6	in	somatic	data	can	indicate	a	defect	in	the	HRR	pathway,	along	with	
increased	genomic	instability.	
	

	
Figure	1.	Mutational	 profiles	 of	 SNVs	 and	 indels	which	have	been	 associated	with	 a	 defective	homologous	
recombination	repair	pathway.	A.	Signature	SBS3	is	a	specific	pattern	of	mutations	in	the	DNA	that	is	characterised	
by	 the	 presence	 of	 six	 specific	 substitution	mutations:	 C>A,	 C>G,	 C>T,	 T>A,	 T>C,	 and	 T>G.	 The	 height	 of	 each	 bar	
represents	what	percentage	of	the	total	number	of	mutations	in	the	signature	is	made	by	one	specific	mutation	subtype.		
B.	Deletions	with	a	length	of	>	5	bp	with	microhomology	is	a	characteristic	for	ID6	and	an	important	feature	in	the	
relation	to	HRD.	
	
Several	whole	genome	sequencing	(WGS)	classifiers,	based	on	machine-learning	algorithms,	are	
developed		to	give	more	insight	in	the	role	of	BRCA1	and	BRCA2	germline	variants	in	the	onset	of	
cancer.	These	algorithms	can	predict	BRCA1	and	BRCA2	deficiencies	based	on	somatic	mutational	
patterns,	and	provide	more	insight	into	whether	a	patient	has	an	impaired	HRR	pathway	or	not.	
Several	 algorithms	were	 evaluated	 for	 the	prediction	of	HRD	 in	 the	BRCA1	 and	BRCA2	 genes.	
CHORD	(Classifier	of	HOmologous	Recombination	Deficiency),	a	random	forest	model,	deemed	
most	effective	in	the	HRD	prediction	(Nguyen	et	al.,	2020;	Štancl	et	al.,	2022).	CHORD	assigns	a	
positive	or	negative	HRD	classification	score	based	on	 the	presence	and	 frequency	of	 somatic	
mutations	that	are	associated	with	HRD.	In	addition,	identification	of	SVs	enables	the	distinction	
between	BRCA1-type	HRD	and	BRCA2-type	HRD,	which	can	be	differentiated	by	the	presence	of	
structural	duplications	ranging	in	size	from	1–100	kb	(Nguyen	et	al.,	2020).	Although	CHORD	is	
based	on	adult	tumor	data,	we	aim	to	investigate	if	predictions	made	by	CHORD	can	be	used	to	
determine	potential	occurrence	of	HRD	in	pediatric	cancer	patients	with	a	heterozygous	BRCA1	
or	BRCA2	germline	variant.	
	
The	analysis	of	somatic	genomic	data	can	provide	valuable	information	regarding	the	presence	of	
HRD	 in	pediatric	cancer	patients	with	germline	PVs	 in	 the	BRCA1	 and	BRCA2	 genes.	Although	
germline	variants	can	contribute	to	the	development	of	cancer	in	children,	they	are	often	not	the	
sole	cause	(Zhang	et	al.,	2015).	For	example,	the	functional	copy	of	the	gene	may	not	be	able	to	
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compensate	for	the	loss	of	the	pathogenic	allele.	This	causes	a	decrease	in	normal	function	of	the	
gene,	known	as	haploinsufficiency	(Karaayvaz-Yildirim	et	al.,	2020).	The	reduction	in	function	of	
the	 wildtype	 allele	 of	 BRCA1	 and	 BRCA2	 can	 be	 attributed	 to	 the	 presence	 of	 certain	 single	
nucleotide	 polymorphisms	 (SNPs)	 that	 have	 an	 reducing	 impact	 on	 gene	 expression.	 The	
eQTLGen	Consortium	has	compiled	a	database	containing	information	about	the	effects	of	SNPs	
that	are	related	to	specific	traits	(Võsa	et	al.,	2021).	These	variants,	better	known	as	expression	
quantitative	 trait	 loci	 (eQTLs),	 are	 located	 in	 regulatory	 regions	 and	may	 have	 the	 ability	 to	
modulate	gene	expression	(Li	et	al.,	2013).	There	are	two	main	types	of	eQTLs:	cis-eQTLs	and	
trans-eQTLs.	Cis-eQTLs	are	 located	on	or	near	(<1 Mb)	the	gene	whose	expression	they	affect,	
while	trans-eQTLs	affect	gene	expression	through	long-range	interactions	located	on	a	different	
chromosomes	(Võsa	et	al.,	2021).	Cis-eQTLs	are	extensively	studied	and	utilized,	from	which	the	
effect	 is	 represented	 in	 Figure	 2.	 Determining	 eQTLs	 and	 deducing	 a	 pattern	 leading	 to	
haploinsufficiency	might	give	insight	into	allelic	imbalance	and	its	possible	role	in	the	onset	of	
childhood	cancer.	

	
Figure	 2.	 A	 typical	 effect	 of	 a	 cis-eQTL	 on	 the	 expression	 of	 the	 BRCA2	 gene.	 The	 BRCA2	 gene	 located	 on	
chromosome	 13	 is	 represented.	 Certain	 SNPs	 located	 within	 1	Mb	 near	 or	 on	 the	BRCA2	 gene	 can	 induce	 allelic	
imbalance	and	affect	the	BRCA2	protein	expression.		
	
The	aim	of	the	project	was	to	investigate	the	relationship	between	pediatric	cancer	patients	with	
a	germline	BRCA1	or	BRCA2	variant	and	the	identification	of	a	second	genetic	factor,	such	as	a	
defective	HRR	pathway,	that	may	have	played	a	role	in	the	onset	of	pediatric	cancer.	Additionally,	
the	study	aimed	to	determine	the	presence	of	eQTLs	that	could	reduce	the	expression	of	the	non-
pathogenic	allele,	in	order	to	gain	a	deeper	understanding	of	the	various	genetic	factors	that	could	
contribute	to	pediatric	cancer.	
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2.		 Method	
 

2.1.  Workflow overview  
In	this	section,	 the	methods	used	to	predict	HRD	in	patients	with	a	BRCA1	or	BRCA2	germline	
variant	and	to	compare	the	patient’s	germline	data	with	the	presence	of	eQTLs	are	explained	in	
detail.	A	visual	representation	of	these	procedures	is	provided	in	Figure	3.		
	

	
	
Figure	3.	A	workflow	for	BRCA1	and	BRCA2	somatic	and	germline	variant	analysis:	HRD	Prediction	and	eQTL	
comparison.	DNA	samples	 from	patients	with	cancer	and	a	heterozygous	BRCA1	 or	BRCA2	 germline	variant	were	
collected	(1).	The	samples	were	processed	using	high-throughput	sequencing	techniques	(2).	The	data	was	aligned	to	
the	human	reference	genome	and	stored	in	CRAM	format	(3).	Somatic	variants	were	called	using	Mutect2	and	Strelka2	
for	SNV	and	indel	calling.	Manta	and	GRIDSS	were	used	for	SV	calling	(4).	Germline	variants	(SNVs)	were	called	with	
HaplotypeCaller	and	GenotypeGVCFs	(5).	All	variants,	except	SVs,	were	annotated	with	the	VEP	tool	(6)	and	filtered	
based	on	various	criteria	(7).	A	HRD	score	based	on	somatic	mutations	was	predicted	with	CHORD	(8)	and	germline	
variants	were	compared	with	the	presence	of	eQTLs	(9).		
	
2.2. Sample	selection	
Whole	genome	sequencing	(WGS)	data	of	germline	and	tumor	samples	was	collected	for	patients	
with	a	germline	BRCA1	or	BRCA2	PV.	Samples	were	retrieved	from	the	Princess	Máxima	Center	in	
Utrecht	and	from	the	INFORM	study	database.	Seven	patients	were	selected	for	further	germline	
and	somatic	analysis	(Supplementary	Table	1).	
	
25	WGS	 samples	of	 adult	 patients	with	 a	 germline	BRCA2	 PV	and	HRD	were	used	as	positive	
controls	to	reproduce	and	validate	results	(Priestley	et	al.,	2019;	de	Witte	et	al.,	2022).	All	samples	
were	 requested	 from	 the	 Hartwig	 Medical	 Foundation	 (HMF)	 databank	 and	 used	 for	 eQTL	
comparison	analysis.	Six	samples	were	excluded	for	HRD	prediction	analysis	due	to	a	low	tumor	
purity	(≤0.3).	An	overview	of	the	adult	patient	data	and	their	characteristics	 is	represented	in	
Supplementary	Table	2.	Data	access	and	patient	consent	had	been	obtained	from	all	necessary	
parties	before	data	analysis	was	conducted.	
	
116	WGS	 samples	 of	 adolescent	 and	 young	 adult	 (AYAs)	 patients	 with	 bladder	 cancer	 were	
retrieved	from	the	MOTIEF	study	to	use	as	negative	controls	for	the	eQTL	comparison	analysis.	
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2.3. Sequencing	information	
WGS	 for	 all	 samples	 was	 performed	 using	 the	 Illumina	 NovaSeq	 6000	 platform	 sequencing	
technique.	The	sequencing	depth	was	targeted	at	30X	for	pediatric	germline	samples	and	100X	
for	pediatric	tumor	samples.	For	samples	requested	by	the	HMF	databank,	the	sequencing	depth	
was	 targeted	 at	 50X	 for	 germline	 samples,	 and	 at	 150X	 for	 tumor	 samples.	 CRAM	 files	were	
received	 from	 external	 institutions	 and	 processed	with	 the	 in-house	 pipeline	 of	 the	 Princess	
Máxima	Center	(2.14.)	
	
2.4.				 Data	analysis	
Sequencing	data	of	pediatric	patients	was	stored	in	FASTQ	files.	These	files	were	converted	to	
unaligned	BAM	(uBAM)	format	using	the	PICARD	v2.10.10	fastqToSam	tool	prior	to	read	mapping	
(Picard	Tools	-	By	Broad	Institute,	no	date).	The	sequencing	reads	were	then	aligned	to	version	
GRCh38	of	the	human	reference	genome	using	the	Burrows-Wheeler	Aligner	(BWA)	v0.7.13	(Li	
and	Durbin,	2009).	Mapped	reads	were	stored	 in	CRAM	format	and	could	be	used	 for	variant	
calling.	HMF	data	was	originally	mapped	 to	version	GRCh37	of	 the	human	 reference	genome.	
Therefore,	CRAM	files	were	converted	to	uBAM	format	using	the	PICARD	RevertSam	tool,	and	
remapped	to	version	GRCh38	of	the	human	reference	genome.		
	

2.5.			 Somatic	variant	calling	and	filtering	
Somatic	 variant	 calling	 of	 SNVs	 and	 indels	was	 conducted	with	The	Genome	Analysis	 Toolkit	
(GATK)	version	4.1.1.0	Mutect2	and	Strelka2,	using	CRAM	files	as	input	(McKenna	et	al.,	2010;	
Saunders	et	al.,	2012;	Benjamin	et	al.,	2019).	The	Mutect2	pipeline	allowed	the	exclusion	of	soft	
clipped	bases,	which	helps	to	minimize	noise	in	the	analysis	of	the	3'	and	5'	untranslated	regions.	
Variants	with	a	PASS	filter	were	selected	using	GATK	SelectVariants	and	GATK	FilterMutectCalls,	
to	assure	the	probability	of	identifying	true	variants	(Auwera	and	O’Connor,	2020).	Variant	calls	
by	Strelka2	were	filtered	by	extracting	SNVs	and	indels	with	a	PASS	filter	from	the	generated	VCF	
file.	All	somatic	variant	information	was	stored	in	VCF	files.		
	
Variants	were	annotated	with	Ensembl	Variant	Effect	Predictor	(VEP)	version	105	(McLaren	et	
al.,	2016),	which	provided	information	on	how	each	variant	may	affect	the	corresponding	protein.	
Population	 frequency	 data	 from	 the	 Genome	 Aggregation	 Database	 (gnomAD)	 version	 3.0	
(Karczewski	et	al.,	2020)	and	the	Genome	of	the	Netherlands	(GoNL)	(Boomsma	et	al.,	2014)	were	
added	to	provide	information	about	the	prevalence	of	the	variants	in	healthy	populations.	
	
Somatic	variant	calls	by	Mutect2	and	Strelka2	were	filtered	using	R	version	4.2.2	(RStudio	Team,	
2020).	Variants	in	the	centromeric	regions	were	removed	from	the	VCF	file	due	to	their	repetitive	
and	complex	nature	(Lamb	and	Birchler,	2003).	Additionally,	variants	with	reads	in	the	germline	
sample	 and	 a	 population	 frequency	 higher	 than	 1%	 in	 the	 gnomAD	 or	 GoNL	 database	 were	
filtered	out	to	exclude	common	variants.	SNVs	were	selected	based	on	a	minimum	coverage	of	
20X,	more	than	5	supporting	reads	of	the	alternative	allele	and	a	variant	allele	frequency	(VAF)	
of	 at	 least	 0.25.	 Indels	 were	 selected	 based	 on	 a	 minimum	 coverage	 of	 20X,	 more	 than	 4	
supporting	reads	of	 the	alternative	allele	and	a	VAF	of	at	 least	0.2.	The	criteria	differ	because	
indels	are	less	common	compared	to	SNVs	and	CHORD	requires	a	minimum	of	50	indels	to	predict	
a	HRD	score.	
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2.6.			 Somatic	SV	calling	
Manta	 and	 GRIDSS	 were	 used	 for	 detection	 of	 structural	 variants	 (SVs)	 (Chen	 et	 al.,	 2016;	
Cameron	 et	 al.,	 2017).	 Manta	 required	 a	 CRAM	 file	 as	 input	 whereas	 CRAM	 files	 had	 to	 be	
converted	to	BAM	format	for	SV	calling	with	GRIDSS.	Somatic	SV	information	was	stored	in	a	VCF	
file.	R	was	used	to	annotate	SVs	by	defining	SV	types	and	lengths,	and	to	filter	the	data	to	select	
only	 variants	with	 a	 PASS	 filter.	 To	 further	 reduce	 the	 number	 of	 false	 positive	 variants	 and	
improve	 accuracy	 of	 the	 results,	 a	 minimal	 of	 5	 paired	 and	 split	 alternative	 reads	 was	 set.	
However,	the	filtering	parameters	were	adjusted	if	there	were	less	then	30	SVs	per	sample	left	as	
CHORD	required	a	minimum	of	30	SVs	per	sample	to	calculate	HRD	scores.		
	
2.7.		 Mutational	profile	analysis		
The	R	package	MutationalPatterns	version	3.4.1	was	used	to	reconstruct	mutational	profiles	from	
somatic	 SNV	 and	 indel	 data	 (Blokzijl	 et	 al.,	 2018).	 These	 profiles	were	 then	 compared	 to	 the	
mutational	signatures	SBS3	and	ID6	from	the	Cancer	Genome	Project's	database	(COSMIC	v3.3)	
by	calculating	a	cosine	similarity	score	(Tate	et	al.,	2019).	The	cosine	similarity	score	represents	
a	measure	of	similarity	between	vectors	that	is	based	on	ranges	from	0	to	1	(Alexandrov	et	al.,	
2013a).	The	standard	cosine	similarity	threshold	of	at	least	0.85	was	used	to	indicate	a	high	level	
of	 similarity	between	 the	pediatric	profiles	 and	 ID6.	However,	due	 to	 a	 featureless	pattern	of	
SBS3,	the	standard	threshold	for	similarity	was	adjusted	to	a	score	of	at	least	0.8	to	show	a	high	
level	 of	 similarity	 with	 this	 signature.	 The	 R	 package	 BSgenome.Hsapiens.UCSC.hg38	 from	
Bioconductor	was	used	as	a	reference	genome	for	this	analysis.	
	

2.8.		 Predicting	HRD	score		
The	random	forest	model	CHORD	v.2.0	was	used	as	a	R-package	HRD	score	calculations	(Nguyen	
et	al.,	2020).	The	mutational	context	of	the	filtered	somatic	variants	was	analysed	to	predict	a	HR	
status	 in	 each	 patient,	 being	 either	 HRD-positive	 or	 HRD-negative.	 CHORD	 generated	 a	 HRD	
probability	value	per	sample,	a	HR	status,	together	with	probability	values	for	the	distinguishing	
BRCA1-type	HRD	from	BRCA2-type	HRD.	The	cut-off	value	for	indicating	the	presence	of	HRD	was	
set	at	0.5,	the	same	threshold	used	in	the	study	by	Nguyen	et	al.	(2020).	
	

2.9. Copy	number	variations	
Copy	number	variations	(CNVs)	were	detected	to	identify	all	changes	in	the	number	of	copies	of	
a	specific	segment	within	each	patient.	WGS	germline	and	somatic	CRAM	files	were	used	as	input	
and	CNVs	were	 calculated	 using	GATK	 version	4.1.7.0.	 The	 segment	 files	 containing	 the	 copy	
numbers	were	subsequently		annotated	in	R,	where	segments	of	neutral	copy	numbers	between	
0.6	and	1.2	were	filtered	out.	Further	processing	generated	CNV	plots,	which	could	be	used	for	
analysis.	
	

2.10. Germline	calling	
Germline	calling	was	performed	to	identify	inherited	genetic	variants.	The	HaplotypeCaller	tool	
of	GATK4	was	used	to	call	SNVs	and	small	indels		(Poplin	et	al.,	2018)	and	processes	CRAM	files	
to	GVCFs.	Subsequently,	genotype	calling	was	done	to	determine	the	genotype	at	each	position.	
The	GenotypeGVCFs	tool	of	GATK4	was	used	to	perform	genotype	calling	with	a	GVCF	as	input	
and	VCF	as	output	(Nielsen	et	al.,	2011).	The	VEP	tool	was	used	for	variant	annotation	(McLaren	
et	al.,	2016).	Population	frequencies	were	added	from	the	gnomAD	database	and	GoNL	database	



 

 12 

(Boomsma	et	al.,	2014;	Karczewski	et	al.,	2020).	Germline	variants	with	a	VAF	of	at	least	0.1	were	
selected	to	increase	the	biological	relevance	of	selected	variants.	
	
2.11.		 Variant	validation	in	IGV	
To	ensure	the	accuracy	of	germline	and	somatic	variants,	a	random	selection	of	75	called	variants	
per	sample	were	further	verified	with	the	tool	Integrated	Genomics	Viewer	(IGV).	IGV	was	used	
to	visualize	the	genomic	data	and	to	examine	whether	the	called	variants	were	true	somatic	or	
germline	variants	(Robinson	et	al.,	2011).	The	proportion	of	true	variants	per	variant	caller	was	
calculated	to	evaluate	the	performance	of	the	variant	caller.	
	
2.12.		 eQTL	comparison	analysis		
All	variants	 that	significantly	correlated	with	negative	BRCA2	 gene	expression	were	 identified	
from	the	eQTLGen	Consortium	database,	downloaded	on	October	28,	2022	(Võsa	et	al.,	2018).	
eQTLs	were	filtered	in	R	based	on	the	following	selection	criteria:	a	FDR-adjusted	p-value	of	less	
than	 0.05	 to	 indicate	 statistical	 significance	 and	 a	 Z-score	 of	 less	 than	 -2	 to	 identify	 variants	
associated	with	negative	expression	of	the	gene.	Selected	eQTLs	were	compared	to	the	germline	
variants	identified	from	the	samples	to	see	possible	enrichment	of	these	eQTLs	compared	to	a	
healthy	population.	
	

2.13.		 Hierarchical	clustering	
A	hierarchical	clustering	analysis	was	conducted	based	on	the	prevalence	of	eQTLs	to	examine	
the	association	between	a	BRCA2	germline	variant	and	the	co-occurrence	of	eQTLs	in	each	sample	
within	 its	 corresponding	 cohort.	 R-package	 pheatmap	 version	 1.0.12	 was	 used	 to	 draw	 a	
clustered	heatmap	(Kolde,	2018).	
	

2.14.		 Code	availability:	bitbucket		
The	codes	used	in	the	study	for	the	analysis	can	be	accessed	through	the	following	link:	
https://bitbucket.org/princessmaximacenter/pmc_kuiper_pipelines/src/master/scripts/adult
CancerPredisposingGenes/		
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3.		 Results	
 
The	results	are	presented	in	two	main	sections.	First,	the	study	looked	at	similarities	between	the	
patient’s	somatic	data	and	mutational	signatures	SBS3	and	ID6	and	used	CHORD	to	calculate	the	
prediction	 score	 for	 HRD.	 Next,	 germline	 eQTLs	 located	 in	BRCA2	 gene	 regions	 which	 could	
potentially	reduce	gene	expression	were	identified.	Hence,	eQTL	comparison	was	conducted.	The	
goal	was	to	understand	if	there	was	a	connection	or	pattern	between	these	eQTLs,	their	influence	
on	reduced	gene	expression	and	the	potential	occurrence	of	allelic	imbalance.	Comparison	was	
only	done	for	the	BRCA2	gene	region	as	samples	with	a	BRCA1	germline	variant	were	limited.		
	
Seven	 patients	 were	 selected	 for	 germline	 and	 somatic	 analysis,	 represented	 in	 Table	 1.	
Additional	patient	data	can	be	found	in	Supplementary	Table	1.	Patients	P.20034	and	P.20003	
were	selected	due	to	the	diagnosis	Fanconi	Anemia,	characterised	by	biallelic	PVs	in	the	BRCA2	
gene.	The	other	five	patients	carry	a	germline	BRCA1	or	BRCA2	variant.	Only	germline	data	was	
available	for	patient	P.95988.	
	

PATIENT GENE  CANCER TYPE  MUTATION 
CHARACTERISTIC 

ADDITIONAL 
INFORMATION 

DATA 
AVAILABILITY 

P.20034 
 

BRCA2 High Grade Glioma Compound 
heterozygous 

Fanconi Anemia G & T 

P.20003 
 

BRCA2 Medulloblastoma, 
Wilms tumor 

Homozygous Fanconi Anemia G & T (MB) 

P.20778 
 

BRCA2 Acute Lymphocytic 
Leukemia 

Heterozygous - G & T 

P.67780 
 

BRCA2 Low Grade Glioma Heterozygous - G & T 

P.51624 
 

BRCA2 Osteosarcoma Germline variant + 
somatic 2nd hit 

LOH G & T 

P.23410 
 

BRCA1 Neuroblastoma Heterozygous - G & T 

P.95988 BRCA2 Ewing sarcoma Heterozygous - G 
	
Table	1.	An	overview	of	all	pediatric	samples	included	in	the	study.	For	all	included	tumor	data,	matched	germline	
control	data	was	available.	G	=	germline,	T	=	Tumor.	
	
The	HMF	cohort	was	used	as	a	positive	control	to	validate	the	pipelines	that	were	used	in	this	
study	for	mutational	signature	comparison	and	HRD	predictions.	
	
3.1.		 HRD	prediction	
	
3.1.1.	 Mutational	pattern	analysis	
Somatic	mutational	pattern	characteristics	of	SNVs	and	indels	of	each	patient	are	displayed	in	
Figure	4	&	Figure	5,	which	were	compared	to	the	HRD-associated	reference	signatures	SBS3	and	
ID6	(Figure	1).	The	mutational	pattern	analysis	showed	the	presence	of	signature	SBS3	in	four	
out	of	six	pediatric	patients	as	a	cosine	similarity	score	of	at	least	0.8	to	SBS3	was	identified	in	
these	patients	(Figure	4).	These	patients	included	three	with	a	biallelic	PV	or	second	hit	and	one	
with	a	heterozygous	BRCA1	germline	variant.		
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Figure	4.	Four	patients	with	a	heterozygous	BRCA2	germline	variant	show	similarity	to	SBS3.	Mutational	profile	
plot	show	the	relative	contribution	of	SNVs	found	in	the	tumor	sample	of	the	patients.	A	threshold	of	at	least	0.8	is	
considered	to	indicate	a	high	level	of	similarity	to	COSMIC	SBS3.		
	
No	correlation	was	 found	between	mutational	 signature	 ID6	and	 indel	patterns	of	patients	as	
cosine	similarities	were	below	0.85.	In	addition	to	comparing	the	overall	mutational	profile	of	
indels	to	ID6,	a	further	analysis	was	conducted	specifically	looking	at	a	subset	of	indel	mutations.		
The	 subpart	 5+	 bp	 deletions	with	 a	microhomology	 pattern	 is	 an	 important	 feature	 for	HRD	
prediction.	A	high	similarity	was	found	to	the	subpart	of	ID6	as	the	cosine	similarity	was	equal	or	
higher	than	0.85	for	the	patients	with	Fanconi	anemia	and	the	patient	with	the	combination	of	a		
BRCA2	germline	variant	and	a	somatic	second	hit	(Figure	5).	

	
Figure	5.	Three	patients	with	a	heterozygous	BRCA2	germline	variant	show	the	presence	of	the	5+bp	deletion	
with	microhomology	subpart	of	ID6.	No	similarities	are	identified	when	the	complete	indel	mutational	profiles	of	
the	 patients	 were	 compared	 to	 COSMIC	 ID6.	 Three	 patients	 show	 a	 high	 similarity	 to	 the	 5+bp	 deletion	 with	
microhomology	subpart	of	ID6	(≥0.8).	
	
In	 summary,	 three	 patients	 showed	 a	 similarity	 with	 the	 HRD-related	mutational	 profiles	 as	
expected	by	their	homozygous	variant:	 two	patients	with	Fanconi	Anemia	(P.20034,	P.20003)	
and	 one	 patient	 with	 a	 combination	 of	 a	 BRCA2	 germline	 variant	 and	 a	 somatic	 second	 hit	
(P.51624).	 Patient	 P.23410	 with	 a	 heterozygous	 BRCA1	 germline	 variant	 presented	 a	 good	
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similarity	to	SBS3	but	not	to	the	subpart	of	the	ID6,	making	it	challenging	to	suggest	a	possible	
HRR	defect.	No	HRD-association	was	 found	 for	patients	with	 a	heterozygous	BRCA2	 germline	
variant.	
	
In	Supplementary	Figure	1,	 a	heatmap	 is	displayed	 that	 illustrates	 the	relationship	between	
mutational	characteristics	of	the	pediatric	patients	and	various	signatures	from	COSMIC	(Tate	et	
al.,	2019).	Multiple	signatures	are	displayed,	but	they	have	a	relatively	 low	similarity	with	the	
mutational	profile	of	the	patients.	Many	of	these	signatures	are	identified	as	"clock-like"	and	have	
no	association	to	any	specific	trait.	
	
Validation	 was	 done	 for	 the	 mutational	 signature	 comparison	 with	 the	 HMF	 control	 cohort.	
Mutational	profiles	were	generated	of	somatic	data	of	the	19	patients	and	compared	to	signatures	
SBS3	and	ID6.	Fourteen	patients	showed	a	cosine	similarity	above	the	threshold	(≥0.8),	indicating	
a	good	similarity	to	SBS3.	Furthermore,	a	good	similarity	(≥0.85)	with	signature	ID6	was	found	
in	8	patients	(Supplementary	Figure	2)	and	all	patients	showed	a	high	similarity	to	the	subpart	
of	ID6.	These	results	confirms	that	most	of	the	HMF	patients	with	a	germline	BRCA2	variant	and	
HRD	have	a	high	similarity	to	the	HRD-associated	signatures.	Supplementary	Figure	3	displayed	
a	 heatmap	 of	 the	 comparison	 between	 the	 mutational	 profiles	 of	 HMF	 patients	 and	 various	
signatures	from	the	COSMIC.	The	comparison	showed	that	there	were	only	associations	between	
the	mutational	profiles	of	HMF	patients	and	signatures	classified	as	"clock-like."	No	similarities	
were	found	between	HMF	patient	profiles	and	any	other	trait	related	signatures.	
	
3.1.2.	 Evaluation	of	the	performance	of	CHORD		
The	performance	of	CHORD	was	evaluated	to	identify	a	possible	difference	in	prediction	score	
between	our	own	 implemented	variant	 callers	 as	well	 as	 variant	 callers	used	 for	 training	 the	
CHORD	classifier.	CHORD	predicted	a	HRD	score,	based	on	input	from	four	different	combinations	
of	variant	callers	(Mutect2-Manta,	Mutect2-GRIDSS,	Strelka2-Manta	&	Strelka2-GRIDSS).	Figure	
6	presents	an	evaluation	of	the	performance	of	CHORD	using	six	patients	randomly	selected	from	
the	HMF	cohort.	

	
Figure	6.	The	evaluation	of	 the	performance	of	CHORD,	using	four	variant	calling	combinations.	The	results	
suggest	 that	 the	 scores	 obtained	 from	 the	 four	 variant	 caller	 combinations	 are	 relatively	 similar	 for	 the	 six	 HMF	
patients.	
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The	 findings	 indicate	 that	 the	 scores	 generated	 by	 the	 four	 different	 combinations	 of	 variant	
callers	are	similar	for	the	six	patients	selected	from	the	HMF	cohort,	and	therefore	comparable.	
Accordingly,	using	the	combination	Mutect2	and	Manta	which	is	implemented	in	our	own	pipeline	
should	be	appropriate	for	predicting	reliable	HRD	scores.		
	
Additionally,	 the	 performance	 of	 CHORD	 was	 evaluated	 to	 identify	 a	 possible	 difference	 in	
predicting	a	HRD	score	for	pediatric	patients	between	the	four	different	combinations	of	variant	
callers	(Supplementary	Figure	4.A).	CHORD	generated	higher	HRD	probability	(p_hrd)	scores	
when	 Mutect2	 was	 used	 as	 variant	 caller	 for	 SNVs	 and	 indels	 compared	 to	 Strelka2.	 This	
difference	mostly	influenced	the	HRD	prediction	of	patient	P.20003.	HRD	was	not	detected	in	this	
patient	 when	 Strelka2	was	 used	 as	 SNV	 and	 indel	 caller	 (p_hrd	 =	 0.004),	 whereas	 HRD	was	
detected	when	Mutect2	was	used	(p_hrd	=	0.730).	In	contrast,	the	type	of	SV	caller	did	not	have	a	
substantial	impact	on	the	HRD	results.	
	
To	further	investigate	the	significant	discrepancy	in	prediction	between	Mutect2	and	Strelka2,	a	
validation	of	the	called	variants	was	performed	by	comparing	the	similarity	of	identified	SNVs	
and	indels.	A	similarity	of	more	than	80%	was	assessed	in	the	detection	of	somatic	SNVs,	except	
for	 patient	 P.67780.	 However,	 less	 than	 25%	 similarity	 was	 assessed	 for	 indel	 calling	
(Supplementary	Figure	4.B).	Thus,	both	tools	had	a	similar	performance	in	SNV	calling	whereas	
discrepancies	 in	 detected	 indels	was	 assessed.	 Somatic	 indels	 from	both	 variant	 callers	were	
visualized	in	IGV	to	determine	the	accuracy	of	the	identified	indels.	No	clear	distinction	could	be	
made	 between	 the	 percentage	 of	 true	 somatic	 indels	 called	 by	 either	 Mutect2	 or	 Strelka2	
(Supplementary	Figure	4.C).	Hence,	a	similar	specificity	was	detected	for	both	variant	callers.		
	
The	evaluation	results	of	the	HMF	cohort	indicate	comparable	scores	between	the	four	
combinations	of	variant	callers	for	the	six	adult	patients.	A	discrepancy	in	HRD	prediction	was	
observed	between	Mutect2	and	Strelka2	in	pediatric	patients,	but	a	similar	accuracy	was	found	
for	both	variant	callers.	Therefore,	the	use	of	Mutect2	as	SNV	and	indel	caller	and	Manta	as	SV	
caller	in	our	pipeline	is	appropriate	for	reliable	HRD	score	prediction	for	pediatric	patients.	
 

3.1.3.	 HRD	probability	prediction	
Probability	 scores	 of	 being	 HR	 deficient	 were	 calculated	 with	 the	 CHORD	 using	 the	 somatic	
variant	data	generated	by	Mutect2	and	Manta.	HRD	scores		of	the	pediatric	patients	are	shown	in	
Figure	7.		
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Figure	7.	Probability	score	of	being	HR	deficient	generated	with	Mutect2	and	Manta	represented	together	with	
number	of	filtered	variants	and	cancer	type	per	patient.	The	probability	scores	of	being	HR	deficient	are	plotted	
alongside	the	number	of	filtered	variants	and	the	type	of	cancer	for	each	patient.	Patients	P.20003	and	P.51624	have	a	
high	probability	score	for	having	HRD	above	the	threshold	of	0.5.	The	other	four	samples	have	a	probability	score	below	
the	threshold.		The	filtering	criteria	include	a	minimum	variant	allele	frequency	of	0.25	for	SNVs	and	0.2	for	indels,	and	
a	minimum	of	5	alternative	paired	&	split	reads	for	structural	variants	(SVs).	However,	to	meet	the	minimum	input	
requirements	of	the	CHORD,	the	filtering	criteria	for	SVs	were	adjusted	to	4	alternative	paired	&	split	reads	for	sample	
P.67780,	and	3	for	sample	P.23410.	
	
One	Fanconi	patient	with	a	BRCA2	biallelic	hit	(P.20003)	and	one	patient	with	a	BRCA2	germline	
variant	and	a	somatic	second	hit	(P.51624),	displayed	a	significant	HRD	score	above	the	threshold	
(≥0.5).	Therefore,	these	two	patients	likely	have	a	defective	HRR	pathway.	The	other	four	patients	
did	not	display	HRD	scores	above	the	threshold,	 indicating	no	deficiency	 in	the	HRR	pathway.	
Three	out	of	four	patients,	all	with	a	heterozygous	BRCA1	or	BRCA2	germline	variant,	displayed	
scores	 close	 to	 zero.	 A	 score	 of	 0.126	 was	 detected	 for	 a	 Fanconi	 patient	 with	 a	 compound	
heterozygous	BRCA2	germline	variant.	It	is	notable	that	the	two	patients	with	positive	HRD	score	
had	a	relatively	higher	proportion	of	SNVs,	indels,	and	SVs	(see	Table	in	Figure	7)	and	a	higher	
tumor	mutational	burden	(TMB)	(Supplementary	Table	1)	compared	to	the	other	four	patients.	
In	addition,	many	copy	numbers	variations	were	found	in	patient	P.51624,	suggesting	a	possible	
contribution	towards	the	identification	of	HRD	and	genomic	instability	(Supplementary	Figure	
5).	Furthermore,	a	probability	score	was	calculated	by	CHORD	to	distinguish	BRCA1-type	from	
BRCA2-type	HRD.	Supplementary	Table	1	shows	A	BRCA2-type	HRD	was	correctly	predicted	for	
all	patients	with	a	BRCA2	variant	for	which	a	positive	HRD	score	was	calculated.	Hence,	a	positive	
HRD	score	was	observed	for	two	out	of	three	patients	with	a	homozygous	variant,	as	expected	for	
these	 two.	 Patients	 with	 a	 heterozygous	 BRCA1	 or	 BRCA2	 germline	 variant	 did	 not	 show	
indications	of	HRD,	and	therefore	no	second	genetic	event.	
	
In	addition,	CHORD	was	used	to	determine	the	likelihood	of	a	deficiency	in	the	HRR	pathway	by	
analyzing	somatic	variant	data	of	the	HMF	adult	patients	obtained	from	Mutect2	and	Manta.	A	
HRD-score	higher	 than	0.5	was	 calculated	 for	 all	 19	 adult	 patients,	 indicating	 a	 deficient	HR-
status.	Moreover,	all	patients	with	a	BRCA2-type	HRD	score	≥0.5	was	calculated	for	all	patients,	
confirming	HRD	resulting	from	the	BRCA2	variant,	depicted	in	Supplementary	Figure	6.	
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3.2.	 eQTL	analysis	
	
3.2.1	 Cis	and	trans	eQTLs	
eQTLs	were	selected	that	are	related	to	a	negative	expression	of	the	BRCA2	gene.	65	cis-eQTLs	
were	identified	that	are	significantly	associated	with	a	reduced	expression	of	the	BRCA2	gene.	
Characteristics	of	these	cis-eQTLs	can	be	found	in	Supplementary	Table	3.	However,	no	trans-
eQTLs	 significantly	 reduced	 the	 expression	 of	 the	 BRCA2	 gene	 (Supplementary	 Table	 4).	
Therefore,	trans-eQTLs	were	excluded	from	the	analysis.	
	
3.2.2.	 eQTL	comparison		
The	 selected	 cis-eQTLs	 were	 compared	 to	 the	 filtered	 germline	 variants	 of	 all	 patients	 by	
evaluating	the	genomic	coordinates	(location,	reference	allele,	and	alternative	allele)	of	the	eQTLs	
and	germline	variants.	In	most	pediatric	patients	and	HMF	adult	patients,	cis-eQTLs	were	found	
on	the	germline,	displayed	in	Figure	8.		
																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	

	
	
Figure	8.	The	number	of	matching	eQTLs	per	patient	for	the	pediatric	cohort	and	HMF	adult	control	cohort.	
Filtered	variants	found	in	the	germline	data	of	patients	were	compared	to	the	65	cis-eQTL	variants	that	negatively	
influenced	gene	expression	of	BRCA2.	For	most	patients,	a	number	of	eQTLs	was	found	in	the	germline	data.		
	
64	out	of	65	eQTLs	that	are	associated	with	lower	expression	of	the	BRCA2	gene	were	present	in	
the	 germline	 data	 of	 patient	 P.51624.	 This	 patient	 showed	 a	 relatively	 high	 copy	 number	
variations	in	the	germline	compared	to	the	other	pediatric	patients	(Supplementary	Figure	5).	
In	contrast,	no	eQTLs	were	identified	in	one	of	the	pediatric	patients,	P.67780.	eQTL	comparison	
was	also	conducted	for	the	25	adult	patients	of	the	HMF	cohort	with	a	BRCA2	germline	variant.	
eQTLs	were	identified	in	20	adult	patients,	indicating	that	the	occurrence	of	eQTLs	that	are	linked	
to	a	reduced	expression	of	BRCA2	in	the	germline	is	not	uncommon	in	patients	with	a	germline	
BRCA2	 variant.	 Additionally,	 the	 frequency	 of	 these	 eQTLs	 in	 the	 healthy	 population	 was	
determined	 based	 on	 population	 frequencies	 present	 in	 the	 gnomAD	 database.	 This	 analysis	
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demonstrated	that	the	occurrence	of	eQTLs	is	prevalent	within	the	germline	data	of	the	general	
population,	although	with	lower	frequencies	(as	illustrated	in	Figure	9).		
	

	
Figure	9.	 Population	 frequencies	 of	 eQTL	 coordinates	between	 three	different	 cohorts.	The	 gnomAD	 cohort	
represents	the	presence	of	eQTLs	related	to	negative	BRCA2	expression	in	the	healthy	population.	Similar	distributions	
were	detected	in	the	HMF	cohort	and	the	pediatric	cohort,	where	a	small	increase of	eQTL	presence	towards	the	healthy	
population	is	observed	between	positions	32305058-32314572	on	chromosome	13.		
	
SNPs	located	near	and	on	the	BRCA2	gene	have	a	population	frequency	between	12-60%	in	adult	
and	pediatric	patients	with	a	heterozygous	BRCA2	germline	variant.	Frequencies	of	eQTLs	in	the	
healthy	population	are	between	20-40%	(Karczewski	et	al.,	2020).	In	general,	a	higher	occurrence	
of	eQTLs	is	observed	between	region	32305058-32314572	on	chromosome	13.	Patients	with	a	
germline	BRCA2	variant	show	a	higher	percentage	of	eQTLs	compared	to	the	healthy	population.	
However,	due	to	the	similarities	in	the	distribution	of	cis-eQTLs	between	pediatric	patients	and	
HMF	adult	patients	with	a	BRCA2	germline	variant,	it	was	not	possible	to	determine	a	potential	
contributing	factor	of	eQTLs	in	pediatric	patients.			
	
Seven	 clusters	 of	 co-occurring	 eQTLs	 were	 discovered	 after	 analysing	 the	 eQTL	 distribution	
throughout	the	genome	(Supplementary	Figure	7).	A	higher	number	of	variants	were	identified	
with	a	lower	Z-score	near	the	start	region	of	the	BRCA2	gene,	suggesting	that	these	eQTLs	may	
have	a	greater	effect	on	negative	expression	of	the	gene.	It	is	necessary	to	determine	the	effect	of	
these	co-occurring	clusters	on	expression	of	the	BRCA2	gene	in	order	to	interpret	the	results	of	
haploinsufficiency.	
	
Results	were	validated	by	analysing	the	presence	of	eQTLs	in	a	negative	control	cohort	of	116	
AYAs	patients	with	bladder	cancer.	The	analysis	revealed	that	87	of	these	patients	contained	cis-
eQTLs	 that	were	correlated	with	negative	expression	of	 the	BRCA2	gene.	A	similar	population	
frequency	distribution	was	 found	when	 compared	 to	 patients	with	 a	BRCA2	 germline	 variant	
(Supplementary	Figure	8).	Interestingly,	the	same	seven	clusters	of	co-occurring	eQTLs	were	
found	in	bladder	cancer	patients	as	well.	
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Hierarchical	clustering	was	performed	based	on	the	prevalence	of	eQTLs	in	each	sample	to	check	
the	 association	 of	 a	BRCA2	 germline	 variant	 and	 the	 co-occurrence	 of	 eQTLs.	 The	 clustering	
indicated	a	lack	of	discernible	grouping	of	eQTLs	among	the	three	distinct	populations,	suggesting	
an	absence	of	eQTL	patterns	that	are	predominant	within	a	particular	cohort.	(Supplementary	
Figure	9).	
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4.		 Discussion	
This	study	focused	on	pediatric	patients	with	a	heterozygous	BRCA1	and	BRCA2	germline	variant	
and	the	identification	of	a	potential	second	genetic	event	that	may	have	contributed	to	the	onset	
of	 pediatric	 cancer.	 To	 investigate	 the	 presence	 of	 a	 potential	 second	 genetic	 event,	 two	
approaches	 were	 examined.	 First,	 somatic	 mutational	 patterns	 were	 analysed	 to	 identify	 a	
possible	 HRD,	 which	 could	 reveal	 the	 presence	 of	 a	missed	 second	 genetic	 event.	 The	 study	
further	 investigated	 the	potential	 relation	between	eQTLs	 in	 the	germline	of	 the	patients	and	
allelic	 imbalance	contributing	 to	 the	onset	of	pediatric	cancer.	 It	 is	 important	 to	note	 that	 the	
sample	 size	 was	 limited	 in	 this	 study,	 meaning	 that	 further	 research	 is	 required	 to	 fully	
understand	the	findings	of	this	study.	
	

4.1. HRD	findings	and	limitations		
The	 HRD	 prediction	 analysis	 aimed	 to	 investigate	 whether	 pediatric	 cancer	 patients	 with	 a	
heterozygous	BRCA1	or	BRCA2	germline	variant	had	a	deficiency	in	their	HRR	pathway	through	
evincing	HRD-related	signatures	and	by	calculating	a	HRD	score.	The	HMF	adult	control	samples	
together	with	current	research	shows	that	biallelic	inactivation	in	the	BRCA1	and	BRCA2	genes	
has	a	relatively	high	correlation	to	HRD	and	similarity	to	signatures	SBS3	and	ID6	(Nguyen	et	al.,	
2020).	 The	 cosine	 similarity	was	 used	 as	 the	measure	 of	 similarity	 between	 the	HRD-related	
signatures	and	the	somatic	mutational	profiles	of	the	patients.	Four	out	of	six	pediatric	patients	
showed	high	similarity	to	signature	SBS3	due	to	a	cosine	similarity	higher	than	0.8.	The	similarity	
score	to	SBS3	was	adjusted	compared	to	the	commonly	used	threshold	value	of	0.85	(Blokzijl	et	
al.,	2018;	Levatić	et	al.,	2022),	due	to	a	featureless	profile	of	SBS3.	Three	out	of	six	patients,	all	
with	a	biallelic	BRCA2	germline	variant	or	an	 identified	second	hit,	had	resemblance	with	 the	
subset	5+	bp	deletions	with	a	microhomology	of	ID6,	due	to	a	cosine	similarity	score	equal	or	
greater	 than	 0.85.	 No	 similarity	 to	 a	 HRD-related	 signature	 was	 found	 in	 patients	 without	 a	
biallelic	 variant	 or	 identified	 second	 hit.	 These	 results	 show	 the	 absence	 of	 HRD-related	
signatures	in	pediatric	patients	without	a	second	genetic	event.	In	addition,	no	HRD	score	above	
the	threshold	was	predicted	with	CHORD	in	the	pediatric	patients	with	a	heterozygous	BRCA1	or	
BRCA2	 germline	 variant,	 assuming	no	HRR	pathway	defect.	 A	 likely	HRR	pathway	defect	was	
found	 in	 patient	 P.51624	 with	 a	 germline	 BRCA2	 variant	 and	 somatic	 2nd	 hit	 and	 in	 patient	
P.20003	with	a	biallelic	BRCA2	variant.	Although	these	results	confirm	the	hypothesis	that	HRD-
related	signatures	and	HRD	were	expected	in	the	patients	with	a	second	hit	or	biallelic	germline	
variant,	no	positive	HRD	score	was	found	in	patient	P.20034.	Two	suggestions	could	be	made:	a	
prediction	score	for	HRD	below	0.5	may	suggest	that	the	impact	of	HRD	may	be	less	pronounced	
in	 children	 and	 that	 the	 threshold	 for	 HRD	 prediction	 should	 be	 re-evaluated	 for	 pediatric	
patients.	 However,	 it	 is	 important	 to	 note	 that	 the	 model	 was	 trained	 on	 adult	 patient	 and	
according	to	existing	 literature,	a	HRD	prediction	score	below	the	threshold	should	always	be	
considered	as	HR	proficient,	based	on	significance	of	the	trained	model	(Nguyen	et	al.,	2020).	On	
the	other	hand,	children	tend	to	have	lower	TMBs	compared	to	adults	which	often	do	not	meet	
CHORD’s	TMB	requirements	(Rahal	et	al.,	2018).	Depending	on	tumor	type,	the	number	of	SVs	
often	do	not	meet	the	minimum	requirement	of	30	to	generate	a	HRD	prediction	score.	Hence,	
less	strict	selection	criteria	were	used	for	the	filtering	of	SVs.	This	approach	may	have	led	to	a	
higher	number	of	false	positive	SVs	in	the	tumor	data	and	ultimately,	a	less	reliable	HRD	score.		
Furthermore,	evaluating	CHORD	with	different	variant	callers	produced	comparable	HRD	scores	
for	HMF	adult	controls,	suggesting	the	in-house	pipeline	with	Mutect2	and	Manta	seems	to	predict	
HRD	 accurately.	 However,	 the	 combinations	 with	 Mutect2	 produced	 higher	 HRD	 probability	
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scores	compared	to	combinations	with	Strelka2	in	pediatric	patients.	This	result,	along	with	the	
fact	that	the	indels	identified	by	Mutect2	and	Strelka	had	a	very	low	similarity,	suggest	that	there	
may	be	a	contributing	factor	in	pediatric	patients	that	affects	HRD	prediction	scores.	
	

4.2. eQTL	findings	and	limitations	
In	order	to	deduce	if	other	genetic	changes	may	affect	the	expression	of	the	wildtype	allele,	cis-
eQTLs	affecting	the	expression	of	the	BRCA2	gene	were	compared	to	all	filtered	variants	found	in	
the	 germline	 of	 pediatric	 patients	 and	 the	HMF	 adult	 control	 cohort.	 Germline	 variants	were	
found	 in	 the	 patients	 on	 the	 same	 location	 as	 cis-eQTLs	 were	 identified.	 Comparing	 the	
frequencies	 of	 these	 germline	 variants	 to	 the	 healthy	 population	 showed	 a	 slightly	 higher	
percentage	of	 a	 subpart	of	 cis-eQTLs	 found	around	 the	BRCA2	 gene	 in	patients	with	a	BRCA2	
germline	variant.	Further	analysis	was	done	to	distinguish	the	different	patterns	and	numbers	of	
cis-eQTLs	 found	 in	 the	 patient's	 germline.	 Ultimately,	 seven	 clusters	 of	 cis-eQTLs	 that	 could	
negatively	influence	gene	expression	were	identified	across	the	genome.	These	clusters	contained	
varying	numbers	of	cis-eQTLs,	which	were	identified	as	the	variants	typically	co-occurred	within	
the	same	cluster.	Despite	the	efforts	to	understand	the	germline	cis-eQTL	information	contained	
in	the	data,	no	determination	was	done	about	which	cis-eQTLs	are	present	on	the	wildtype	(non-
pathogenic)	allele.	This	means	that	more	analysis	is	needed	to	draw	a	conclusion	about	whether	
cis-eQTLs	on	the	wildtype	(non-pathogenic)	allele	together	with	the	pathogenic	BRCA2	germline	
variant	could	lead	to	haploinsufficiency,	and	therefore	allelic	imbalance.		
	
Additionally,	bladder	cancer	AYAs	patients	were	used	as	a	negative	control	for	cis-eQTL	analysis.	
Despite	that	these	patients	did	not	have	pathogenic	variants	in	the	BRCA2	gene,	a	slightly	higher	
percentage	of	cis-eQTLs	compared	to	the	healthy	population	was	found,	with	almost	the	same	
distribution	as	 found	 in	 the	pediatric	 and	HMF	adult	patients	with	 a	BRCA2	germline	variant	
(Supplementary	 Figure	8).	 In	 addition,	 the	 bladder	 cancer	 patients	 showed	 the	 same	 seven	
clusters	of	co-occuring	cis-eQTLs.	While	the	presence	of	cis-eQTLs	is	common	in	the	population,	
the	 validation	 of	 these	 seven	 specific	 clusters	 could	 suggest	 a	 rare	 cooperation	 of	 specific	
combinations	of	clusters	with	a	clear	effect	on	reduced	expression	of	the	BRCA2	gene.		However,	
further	 analysis	 and	 expansion	of	 the	 cohort	 is	 required	 to	 validate	whether	 combinations	of	
clusters	could	affect	reduced	gene	expression.		
	

4.3. Conclusion	
The	objective	of	this	study	was	to	investigate	if	heterozygous	BRCA1	or	BRCA2	germline	variants	
in	 pediatric	 patients	 together	 with	 a	 second	 genetic	 event	 could	 have	 initiated	 tumor	
development.	An	association	with	HRD	was	only	observed	in	pediatric	patients	with	a	biallelic	
BRCA2	germline	variant	or	heterozygous	germline	variant	and	a	somatic	second	hit.	Accordingly,	
HRD	was	 not	 found	 in	 patients	 with	 a	 heterozygous	 BRCA1	 or	BRCA2	 germline	 variant,	 and	
therefore	no	relation	 to	 the	onset	of	pediatric	 cancer	was	 found.	 In	addition,	a	 slightly	higher	
percentage	of	cis-eQTLs	within	patients	with	a	BRCA2	germline	variant	was	found	compared	to	
the	 healthy	 population,	 but	 not	 compared	 to	 the	 AYAs	 patients	 with	 bladder	 cancer.	 Seven	
clusters	 of	 co-occurring	 cis-eQTLs	 were	 found.	 Accordingly,	 splitting	 the	 alleles	 to	 identify	
clusters	 of	 cis-eQTLs	on	 the	non-pathogenic	 allele	 together	with	RNA	expression	 analysis	 are	
recommended	 to	 identify	 the	potential	 effect	 of	 cis-eQTL	 clusters	 on	 gene	 expression.	Due	 to	
sample	size	limitations,	further	research	is	necessary	to	fully	understand	our	findings.	
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4.4. Future	perspectives	and	recommendations	
It	is	known	that	the	genetic	cause	of	HRD	varies	depending	on	tumor	type	(Nguyen	et	al.,	2020).	
Research	has	shown	that	an	association	with	a	germline	variant	in	the	BRCA2	gene	and	cancer	is	
commonly	found	in	pediatric	patients	who	have	a	brain	or	solid	tumor	(Kratz	et	al.,	2022).	To	
increase	the	likelihood	of	identifying	patients	with	this	specific	association,	it	is	recommended	to	
focus	 recruitment	 efforts	 on	 pediatric	 patients	 with	 brain	 or	 solid	 tumors	 who	 have	 a	
heterozygous	BRCA2	 germline	 variant.	By	 specifically	 targeting	 this	patient	population,	 it	will	
probably	be	easier	to	identify	and	better	understand	of	the	effects	of	HRD	within	pediatric	cancer	
patients.	 	Moreover,	due	to	sample	size	limitation,	three	distinct	groups	were	identified	in	this	
study:	patients	with	biallelic	germline	variants	associated	with	Fanconi	Anemia,	patients	with	a	
germline	 variant	 and	 a	 somatic	 alteration	 (e.g.	 LOH),	 and	 patients	 with	 only	 a	 heterozygous	
germline	variant	without	a	somatic	alteration.	However,	it	has	already	been	established	that	the	
first	two	groups	are	associated	with	HRD,	as	supported	by	prior	research	(Woodward	and	Meyer,	
2021).	 Therefore,	 the	 focus	 should	 shift	 to	 study	 the	 effect	 of	 heterozygous	BRCA1	 or	BRCA2	
germline	variants	in	pediatric	patients.	The	group	with	biallelic	PVs	or	a	second	hit	could	be	used	
as	a	positive	control	cohort.		
	
As	certain	clusters	of	cis-eQTLs	were	identified	as	potential	affecters,	a	next	step	in	the	cis-eQTL	
analysis	would	be	allele	phasing.	Through	the	process	of	phasing,	the	paternally	and	maternally	
inherited	 copies	 of	 the	 patient's	 germline	 data	 can	 be	 distinguished,	 allowing	 for	 the	
determination	 of	 the	 phase	 of	 each	 cis-eQTL	 and	 the	 haplotype	 blocks	 to	which	 they	 belong.	
Therefore,	a	full	understanding	of	the	cis-eQTLs	per	allele	can	be	gained.	This	allows	for	further	
analysis	 to	 determine	 which	 clusters	 of	 the	 cis-eQTLs	 are	 present	 on	 the	 wildtype	 allele.	
WhatsHap	 is	 a	 tool	 that	 can	 be	 used	 to	 perform	 read-based	 phasing	 (Martin	 et	 al.,	 2016).	
Additionally,	it	would	be	interesting	to	analyse	RNAseq	expression	levels.	By	analysing	the	gene	
expression	profiles,	it	is	possible	to	identify	clusters	of	co-occurring	cis-eQTLs	with	a	significant	
impact	on	reduced	BRCA1	and	BRCA2	gene	expression.	This	impact	is	particularly	noteworthy	if	
the	effect	is	found	to	be	stronger	in	the	pediatric	cohort	compared	to	control	cohorts	and	healthy	
population.	 This	 can	 provide	 insights	 into	 the	 functional	 consequences	 of	 innocent	 germline	
variants	 and	 how	 it	 may	 contribute	 to	 cancer	 development	 in	 pediatric	 patients	 with	 a	
heterozygous	BRCA1	or	BRCA2	germline	variant.	
	
This	study	did	not	analyse	the	effect	of	cis-eQTLs	on	the	BRCA1	gene,	due	to	sample	size	limitation	
of	patients	with	a	heterozygous	BRCA1	germline	variant.	Comparing	germline	variants	with	cis-	
or	trans-eQTLs	that	could	affect	the	expression	of	BRCA1	would	be	interesting	for	future	research.	
In	addition,	eQTLs	on	the	wildtype	allele	can	also	result	in	overexpression	of	the	BRCA1	or	BRCA2	
gene,	what	could	possibly	lead	to	allelic	imbalance	(Satyananda	et	al.,	2021).	Therefore,	it	can	be	
important	to	study	the	effect	of	eQTLs	on	the	wildtype	allele,	resulting	in	gene	overexpression,		in	
future	research.		
	
This	study	focused	on	the	BRCA1	and	BRCA2	genes,	which	are	known	to	be	associated	with	the	
process	of	HRR.	However,	multiple	other	genes	are	involved	in	HRR	and	can	lead	to	deficiencies	
in	this	process.	Two	examples	of	these	genes	are	PALB2	and	RAD51C,	which	are	among	the	most	
common	genetic	causes	of	HRR	deficiencies.	These	genes,	along	with	recombination	mediators	or	
co-mediators,	would	be	interesting	to	consider	in	future	studies	for	predicting	HRD.	
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Lastly,	 the	HRD	status	could	provide	predictive	 information	on	the	expected	degree	of	benefit	
from	a	class	of	drugs	called	PARP-inhibitors.	Recent	studies	have	shown	sensitive	responses	to	
PARP-inhibitors	therapy	in	adult	patients	with	BRCA1	or	BRCA2	germline	variants	and	ovarian	
cancer	(Zhang,	Yuan	and	Hao,	2014).	If	it	were	to	be	determined	that	these	types	of	variants	are	
also	a	cause	of	HRD	and	the	development	of	pediatric	cancers,	adjustments	and	recommendations	
to	pediatric	treatment	plans	could	be	made.	
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Supplementary	Material		
	
Supplementary	Figures	
 

 

 
Supplementary	Figure	1.	Heatmap	of	cosine	similarities	between	the	signatures	from	COSMIC	and	the	somatic	
mutational	profiles	of	pediatric	patients	with	BRCA1	or	BRCA2	germline	variant(s).	3	patients	show	a	high	
similarity	to	the	HRD-related	signature	SBS3	from	COSMIC	(≥0.8).	
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Supplementary	Figure	2.	Mutational	profiles	of	 the	HMF	patients.	A.	 The	 SNV	mutational	 profiles	 of	 the	HMF	
patients.	14	patients	show	a	high	cosine	similarity	score	(≥0.8),	indicating	a	high	similarity	to	HRD-related	signature	
SBS3	from	COSMIC.	B.	The	indel	mutational	profiles	of	the	HMF	patients.	8	patients	show	a	high	cosine	similarity	to	ID6	
from	COSMIC	(≥0.85).	All	HMF	adult	patient	show	an	extremely	high	cosine	similarity	with	the	5+bp	deletion	with	
microhomology	subpart	of	ID6.	
 
 
 
 
 
 
 

A 
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Supplementary	Figure	3.	Heatmap	of	cosine	similarities	between	the	signatures	from	COSMIC	and	the	somatic	
mutational	profiles	of	the	HMF	adult	control	patients	with	a	BRCA2	germline	variant.	Fourteen	patients	show	a	
high	similarity	to	the	HRD-related	signature	SBS3	from	COSMIC	(≥0.8).	
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Supplementary	Figure	4.	Classier	validation	shows	a	significant	contrast	in	the	HRD	prediction	score	between	
different	 variant	 caller	 combinations.	 A.	 Probability	 score	 of	 being	 HR	 deficient	 (p_hrd)	 between	 different	
combinations	of	variants	callers	shows	a	clear	difference	in	prediction	for	sample	P.20003	&	P.51624.	B.1	A	high	degree	
of	similarity	between	SNVs	called	by	Mutect2	and	Strelka2	is	represented,	with	over	80%	of	all	SNVs	being	identical	
across	both	variant	callers	after	filtering.	B.2	The	similarities	and	differences	of	indels	called	with	Mutect2	and	Strelka2	
are	shown.	There	is	relatively	little	overlap	(≤25%)	in	the	indels	identified	by	Mutect2	and	Strelka2	C.	An	analysis	of	
the	true	somatic	variants	identified	by	Mutect2	and	Strelka2	through	the	use	of	the	Integrative	Genomics	Viewer	(IGV)	
revealed	no	significant	difference	in	the	reliability	of	performance	of	the	two	callers.	
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Supplementary	Figure	5.	CNV	plots	for	all	pediatric	patient	with	a	BRCA1	or	BRCA2	germline	variant.	Patient	
P.51624	shows	a	high	number	of	CNVs.	No	CNV	analysis	was	done	for	patient	P.95988.	
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Supplementary	Figure	6.	Probability	score	of	being	HR	deficient	for	the	HMF	patients	generated	with	Mutect2	
and	Manta.	All	adult	patients	with	a	germline	BRCA2	variant	show	a	HRD	score	above	the	threshold	of	0.5,	indicating	
a	deficiency	in	the	HRR	pathway.	
 
 
 

 
	
Supplementary	 Figure	 7.	 Seven	 clusters	 of	 co-occurring	 eQTLs	 were	 discovered	 after	 analysing	 the	 eQTL	
distribution	throughout	the	genome.	The	locations	of	the	start	and	end	of	the	BRCA2	gene	were	highlighted	in	green.	
A	Z-score	was	assigned	to	all	eQTLs	to	measure	the	reliability	of	their	impact	on	gene	expression	levels.	
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Supplementary	Figure	8.	Population	frequencies	of	eQTL	coordinates	of	the	AYAs	bladder	cancer	patient	
cohort.	Similar	distributions	were	detected	in	the	HMF	cohort	and	the	pediatric	cohort.	
 

 
	
Supplementary	Figure	9.	Hierarchical	 clustering	was	performed	based	on	 the	prevalence	of	eQTLs	 in	each	
sample	to	check	the	association	of	a	BRCA2	germline	variant	and	the	co-occurrence	of	eQTLs.	No	grouping	was	
observed,	indicating	an	absence	of	eQTL	patterns	that	are	predominant	within	a	particular	cohort	
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Supplementary	Tables	
	
Supplementary	Table	1.	Supplementary	information	and	variant	characteristics	of	the	pediatric	patients.		
 

 
 
Supplementary	Table	2.	Supplementary	information	and	variant	characteristics	of	the	HMF	adult	control	cohort.	.	G	
=	germline,	T	=	Tumor.	
	

 
 
 
 
 
 
 
 
 
 
	
	
	
	
	

SAMPLE 
NAME  

GERMLINE PV GENDER  TMB HRD-TYPE 

P.20034 c.658_659delGT (p.Val220fs) & c.5969del (p.Asp1990fs)  - 3.75 none 
P.20003 c.1772_1775delTTTA (p.Ile591_Tyr592?fs) - 0.36 BRCA2-type 
P.20778 c.145G>T (p.Glu49Ter)  Girl 0.38 none 
P.67780 c.3847_3848delGT (p.Val1283fs) Boy 0.10 none 
P.51624 c.5286T>A (p.Tyr1762Ter) Girl 1.13 BRCA2-type 
P.23410 c.2517_2518del (p.His839fs) Girl 0.25 none 
P.95988 c.9672dupA (p.Tyr3225fs) - - - 

SAMPLE NAME CANCER 
TYPE 

GENDER GENE BIALLEL
IC IN 
TUMOR 

GERMLINE PV SNVS INDEL  SV TMB ANALY
SIS 

CPCT02010003 Breast female BRCA2 TRUE 13:32340000C>A 3698 1247 842 1.95 G & T 
CPCT02010419 Breast female BRCA2 TRUE 13:32319109G>T 2389 995 825 1.42 G & T 
CPCT02020369 Breast female BRCA2 FALSE 13:32338200CTG>C 10909 1481 598 4.38 G & T 
CPCT02020493 Breast female BRCA2 TRUE 13:32363369G>C 4866 1226 486 2.22 G & T 
CPCT02020673 Prostate male BRCA2 FALSE 13:32341170GAA>G 4677 1203 233 2.06 G & T 
CPCT02030278 Ovary female BRCA2 NA NA 10411 1571 834 4.32 G & T  
CPCT02030296 Ovary female BRCA2 TRUE 13:32340630CTT>C 5280 886 406 2.21 G & T 
CPCT02040192 Ovary female BRCA2 TRUE 13:32326143TAA>T 5890 628 106 2.23 G & T 
CPCT02050019 Skin male BRCA2 TRUE 13:32363269T>A 21839 4297 1072 9.17 G & T 
CPCT02060063 Gallblad

der 
female BRCA2 TRUE 13:32355268AGT>A 13478 1766 434 

5.28 
G & T  

CPCT02070125 Prostate male BRCA2 TRUE 13:32330989CAG>C 4790 1383 736 2.33 G & T 
CPCT02070218 Prostate male BRCA2 FALSE 13:32340985AGTTT>A 13966 2721 1477 6.12 G & T 
CPCT02080125 Breast female BRCA2 TRUE 13:32379913G>A 4098 781 288 1.74 G & T 
CPCT02100105 Breast female BRCA2 TRUE 13:32339568ATACT>A 13075 2155 606 5.34 G & T 
CPCT02120117 Breast female BRCA2 TRUE 13:32340630CTT>C 12691 2290 758 5.30 G & T 
CPCT02180053 Breast female BRCA2 TRUE 13:32340775T>TA 3994 944 1216 2.07 G & T 
CPCT02210037 Breast female BRCA2 TRUE 13:32340300GT>G 6172 1062 390 2.57 G & T 
CPCT02220031 Prostate male BRCA2 FALSE 13:32331032T>G 11922 2414 470 4.99 G & T 
CPCT02230049 CUP female BRCA2 TRUE 13:32319123AG>A 16434 1670 434 6.25 G & T 
CPCT02010593 Breast female BRCA2 TRUE 13:32363258CT>C - - - - G 
CPCT02030315 Hepatob

iliary  
male BRCA2 TRUE 13:32337841TG>T - - - - G 

CPCT02040050 Ovary female BRCA2 TRUE 13:32340623CAT>C - - - - G 
CPCT02050135 Pancreas male BRCA2 TRUE 13:32379913G>A - - - - G 
CPCT02080184 Breast female BRCA2 TRUE 13:32371012AAAGG>A - - - - G 
CPCT02090031 Pancreas male BRCA2 TRUE 13:32340630CTT>C - - - - G 
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Supplementary	Table	3.	An	overview	of	all	65	cis-eQTLs	with	characteristics.		
	
 

ROW.NAMES PVALUE SNP ASSESSEDALLELE OTHERALLELE ZSCORE GENESYMBOL FDR BONFERRONIP CHR38 POS38 CADD_PHRED POPMAX CONSEQUENCE IMPACT 

CHR13:32315226_G/A 3.43E-13 rs3092989 A G 7.2765 BRCA2 0 4.37E-05 chr13 32315226 3.964 0.199 intron_variant MODIFIER 

CHR13:32315655_A/G 0.00011611 rs206118 G A -3.8541 BRCA2 0.22922361 1 chr13 32315655 11.68 0.176 5_prime_UTR_variant MODIFIER 

CHR13:32315889_C/T 1.08E-34 rs9562605 T C -
12.2859 

BRCA2 0 1.37E-26 chr13 32315889 4.717 0.33 intron_variant MODIFIER 

CHR13:32316090_G/T 7.79E-36 rs9567552 T G -
12.4966 

BRCA2 0 9.92E-28 chr13 32316090 8.175 0.352 intron_variant MODIFIER 

CHR13:32316435_G/A 7.05E-41 rs1799943 A G -
13.3884 

BRCA2 0 8.98E-33 chr13 32316435 8.123 0.387 5_prime_UTR_variant MODIFIER 

CHR13:32317661_T/C 5.68E-32 rs11571579 C T -
11.7684 

BRCA2 0 7.23E-24 chr13 32317661 5.793 0.397 intron_variant MODIFIER 

CHR13:32318623_A/C 6.88E-31 rs11571583 C A -
11.5558 

BRCA2 0 8.77E-23 chr13 32318623 2.261 0.395 intron_variant MODIFIER 

CHR13:32325331_G/T 5.98E-07 rs4942423 T G 4.9918 BRCA2 0.00181897 1 chr13 32325331 3.011 0.0653 intron_variant MODIFIER 

CHR13:32325430_G/C 6.11E-32 rs11571613 C G -
11.7622 

BRCA2 0 7.78E-24 chr13 32325430 6.926 0.397 intron_variant MODIFIER 

CHR13:32326796_T/A 7.31E-29 rs3752451 A T -
11.1481 

BRCA2 0 9.30E-21 chr13 32326796 2.578 0.491 intron_variant MODIFIER 

CHR13:32328257_T/C 8.72E-28 rs12869544 C T -
10.9253 

BRCA2 0 1.11E-19 chr13 32328257 3.927 0.396 intron_variant MODIFIER 

CHR13:32329548_C/T 6.10E-10 rs2126042 T C 6.1879 BRCA2 0 0.077691231 chr13 32329548 7.398 0.248 intron_variant MODIFIER 

CHR13:32332592_A/C 7.11E-13 rs144848 C A 7.1774 BRCA2 0 9.05E-05 chr13 32332592 17.21 0.358 missense_variant MODERATE 

CHR13:32334210_C/T 4.73E-29 rs1963505 T C -
11.1866 

BRCA2 0 6.03E-21 chr13 32334210 7.305 0.49 intron_variant MODIFIER 

CHR13:32334492_A/G 2.84E-29 rs1029304 G A -
11.2318 

BRCA2 0 3.62E-21 chr13 32334492 1.222 0.397 intron_variant MODIFIER 

CHR13:32336191_T/C 4.45E-10 rs2320236 C T 6.2375 BRCA2 0 0.056654366 chr13 32336191 14.04 0.211 intron_variant MODIFIER 

CHR13:32337751_A/G 1.35E-30 rs1801406 G A -
11.4982 

BRCA2 0 1.72E-22 chr13 32337751 8.234 0.396 synonymous_variant LOW 

CHR13:32340099_C/T 0.04580346 rs4987117 T C -1.9971 BRCA2 0.99992203 1 chr13 32340099 0.185 0.0309 missense_variant MODERATE 

CHR13:32341387_C/A 3.46E-29 rs11571662 A C -
11.2146 

BRCA2 0 4.40E-21 chr13 32341387 0.499 0.396 intron_variant MODIFIER 

CHR13:32344804_A/G 7.90E-10 rs4942439 G A 6.1472 BRCA2 1.32E-05 0.100551631 chr13 32344804 5.253 0.247 intron_variant MODIFIER 

CHR13:32344830_G/A 8.06E-10 rs4942440 A G 6.1439 BRCA2 1.32E-05 0.102599287 chr13 32344830 3.488 0.247 intron_variant MODIFIER 

CHR13:32345389_A/T 8.51E-10 rs4942443 T A 6.1353 BRCA2 1.32E-05 0.108306746 chr13 32345389 1.784 0.242 intron_variant MODIFIER 

CHR13:32345500_T/G 2.83E-29 rs9567576 G T -
11.2323 

BRCA2 0 3.60E-21 chr13 32345500 1.259 0.395 intron_variant MODIFIER 

CHR13:32346481_G/A 7.17E-09 rs206079 A G 5.787 BRCA2 4.52E-05 0.912467654 chr13 32346481 7.317 0.46 intron_variant MODIFIER 

CHR13:32347807_A/G 6.86E-29 rs9567578 G A -
11.1537 

BRCA2 0 8.74E-21 chr13 32347807 3.428 0.394 intron_variant MODIFIER 

CHR13:32349553_C/T 7.83E-10 rs4942448 T C 6.1485 BRCA2 1.32E-05 0.099667878 chr13 32349553 0.796 0.243 intron_variant MODIFIER 

CHR13:32350510_G/C 7.26E-29 rs9567582 C G -
11.1487 

BRCA2 0 9.24E-21 chr13 32350510 2.554 0.391 intron_variant MODIFIER 

CHR13:32350747_C/T 2.32E-13 rs559067 T C 7.3291 BRCA2 0 2.95E-05 chr13 32350747 1.806 0.359 intron_variant MODIFIER 

CHR13:32351120_C/A 8.37E-10 rs1853521 A C 6.138 BRCA2 1.32E-05 0.106549429 chr13 32351120 0.008 0.247 intron_variant MODIFIER 

CHR13:32352880_G/A 0.00406852 rs11571700 A G 2.8729 BRCA2 0.99029283 1 chr13 32352880 1.261 0.104 intron_variant MODIFIER 

CHR13:32353757_C/T 3.58E-13 rs9943876 T C 7.2708 BRCA2 0 4.56E-05 chr13 32353757 1.503 0.353 intron_variant MODIFIER 

CHR13:32353975_G/A 1.47E-14 rs9943890 A G 7.6905 BRCA2 0 1.87E-06 chr13 32353975 7.084 0.268 intron_variant MODIFIER 

CHR13:32354065_A/G 1.26E-14 rs9943888 G A 7.7097 BRCA2 0 1.61E-06 chr13 32354065 6.21 0.268 intron_variant MODIFIER 

CHR13:32354267_T/C 3.47E-14 rs1460817 C T 7.5796 BRCA2 0 4.42E-06 chr13 32354267 8.663 0.267 intron_variant MODIFIER 

CHR13:32355095_A/G 3.86E-20 rs1799955 G A -9.1919 BRCA2 0 4.91E-12 chr13 32355095 7.146 0.394 synonymous_variant LOW 

CHR13:32359789_A/G 7.87E-20 rs9567600 G A -9.1149 BRCA2 0 1.00E-11 chr13 32359789 3.191 0.394 intron_variant MODIFIER 

CHR13:32360774_G/A 1.14E-20 rs11571717 A G -9.3226 BRCA2 0 1.45E-12 chr13 32360774 2.62 0.394 intron_variant MODIFIER 

CHR13:32361269_T/C 1.58E-14 rs9534259 C T 7.6812 BRCA2 0 2.01E-06 chr13 32361269 1.303 0.268 intron_variant MODIFIER 

CHR13:32364744_A/G 9.92E-20 rs11571725 G A -9.0896 BRCA2 0 1.26E-11 chr13 32364744 3.726 0.394 intron_variant MODIFIER 
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CHR13:32365149_T/G 2.89E-13 rs9534269 G T 7.2997 BRCA2 0 3.68E-05 chr13 32365149 3.425 0.263 intron_variant MODIFIER 

CHR13:32366751_C/T 2.58E-14 rs11571734 T C 7.618 BRCA2 0 3.28E-06 chr13 32366751 0.016 0.269 intron_variant MODIFIER 

CHR13:32367964_C/T 0.03172965 rs139834007 T C 2.1479 BRCA2 0.99978687 1 chr13 32367964 0.426 0.0141 intron_variant MODIFIER 

CHR13:32369919_G/T 2.57E-19 rs9634672 T G -8.9855 BRCA2 0 3.28E-11 chr13 32369919 0.017 0.392 intron_variant MODIFIER 

CHR13:32369961_G/A 1.20E-14 rs11571742 A G 7.7161 BRCA2 0 1.53E-06 chr13 32369961 0.21 0.265 intron_variant MODIFIER 

CHR13:32371400_A/T 2.07E-14 rs10492395 T A 7.6465 BRCA2 0 2.63E-06 chr13 32371400 0.721 0.266 intron_variant MODIFIER 

CHR13:32371580_A/G 2.51E-19 rs9567609 G A -8.9883 BRCA2 0 3.19E-11 chr13 32371580 0.724 0.394 intron_variant MODIFIER 

CHR13:32372668_G/A 2.94E-19 rs61946969 A G -8.9706 BRCA2 0 3.75E-11 chr13 32372668 6.239 0.394 intron_variant MODIFIER 

CHR13:32376974_A/C 1.31E-19 rs3764791 C A -9.0595 BRCA2 0 1.67E-11 chr13 32376974 1.07 0.391 intron_variant MODIFIER 

CHR13:32376978_C/T 2.28E-19 rs3764792 T C -8.999 BRCA2 0 2.90E-11 chr13 32376978 2.852 0.393 intron_variant MODIFIER 

CHR13:32377317_C/T 2.29E-19 rs9567623 T C -8.9982 BRCA2 0 2.92E-11 chr13 32377317 0.506 0.394 intron_variant MODIFIER 

CHR13:32377459_A/C 1.28E-14 rs9526148 C A 7.7077 BRCA2 0 1.63E-06 chr13 32377459 1.691 0.266 intron_variant MODIFIER 

CHR13:32381972_G/A 9.66E-15 rs10870659 A G 7.7436 BRCA2 0 1.23E-06 chr13 32381972 8.782 0.266 intron_variant MODIFIER 

CHR13:32382146_G/A 1.15E-14 rs9534344 A G 7.7221 BRCA2 0 1.46E-06 chr13 32382146 2.579 0.266 intron_variant MODIFIER 

CHR13:32383682_G/A 1.49E-19 rs7337574 A G -9.0451 BRCA2 0 1.90E-11 chr13 32383682 5.663 0.393 intron_variant MODIFIER 

CHR13:32383835_G/C 3.65E-19 rs7337784 C G -8.9471 BRCA2 0 4.64E-11 chr13 32383835 15.68 0.395 intron_variant MODIFIER 

CHR13:32384329_T/G 3.61E-19 rs11571787 G T -8.948 BRCA2 0 4.60E-11 chr13 32384329 5.396 0.394 intron_variant MODIFIER 

CHR13:32384512_G/A 3.79E-19 rs9567639 A G -8.9427 BRCA2 0 4.83E-11 chr13 32384512 0.136 0.394 intron_variant MODIFIER 

CHR13:32384750_G/A 1.14E-07 rs10492396 A G 5.3033 BRCA2 0.00036453 1 chr13 32384750 14.65 0.0648 intron_variant MODIFIER 

CHR13:32389701_A/G 0.01598753 rs9526160 G A 2.4092 BRCA2 0.99929288 1 chr13 32389701 2.432 0.0612 intron_variant MODIFIER 

CHR13:32395894_T/C 4.85E-14 rs1012130 C T 7.536 BRCA2 0 6.18E-06 chr13 32395894 6.565 0.276 downstream_gene_variant MODIFIER 

CHR13:32399139_A/G 1.97E-14 rs7334543 G A 7.6527 BRCA2 0 2.51E-06 chr13 32399139 9.257 0.306 downstream_gene_variant MODIFIER 

CHR13:32399302_A/G 8.97E-20 rs11571836 G A -9.1008 BRCA2 0 1.14E-11 chr13 32399302 9.088 0.393 downstream_gene_variant MODIFIER 

 
 
 
 
 
Supplementary	Table	4.	Number	of	eQTLs	per	filter	step.	After	final	filtering,	65	significant	cis-eQTLs	could	be	
used	for	eQTL	comparison.	
 

 Trans-eQTLs Cis-eQTLs 
Total in database 10293 6675 
Significant (p < 0.05) 634 652 
Sig. & neg. exp. (Z-score > -2) 282 342 
Sig. & neg. exp. & significant Bonferroni correction (p < 0.05) 0 65 

 
 
 
 
 
 
 
	


