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Abstract 
Cardiomyopathy is one of the major causes of heart failure that affects approximately 26 million 

patients worldwide. In a healthy situation, the heart depends on fatty acid oxidation (FAO) to maintain 

its energy demand. In failing hearts, the heart reverts to a fetal-like metabolic state in which FAO is 

downregulated and the heart switches to glucose metabolism. Peroxisome proliferator-activated 

receptor alpha (PPARA), a regulator of FAO, has recently been found to be hypoacetylated and its 

downstream effectors downregulated in dilated cardiomyopathy. However, the exact mechanisms 

remain largely unknown. The main purpose of this internship was to identify the specific FAO 

expression patterns in a large heterogenic patient cohort and investigate the involvement of PPARA 

regulation. The secondary goal was to set up a transcriptomic pipeline within Galaxy, a user-friendly 

bioinformatics platform, and test whether this platform can be used in diagnostics in the future. 

Differential expression analysis and gene enrichment of RNA-sequencing data show a type-specific 

FAO expression pattern of DCM and LVH versus HCM and confirm a downregulation of FAO related 

processes. Public RNA-sequencing data after the use of a bezafibrate, a PPARA agonist, which has been 

integrated, shows the upregulation of genes that are downregulated in our data. Combined, the 

results confirm the downregulation of FAO, but indicate a disease-type-specific FAO expression 

pattern. The results from the Galaxy pipeline show that this pipeline is suitable for transcriptomic 

analyses. Furthermore, we highlight the potential therapeutic role of bezafibrate in cardiomyopathy.  

Keywords: cardiomyopathy, transcriptomics, fatty acid beta-oxidation, metabolism, peroxisome-

proliferator activator-alpha 

Layman’s summary 
Heart failure is a condition that affects approximately 26 million patients worldwide. Patients 

experience extreme tiredness or shortness of breath, because the heart’s function to pump blood is 

weakened. Within five years, approximately 50% of the patients die of heart failure. Cardiomyopathy 

is a disease that can cause heart failure, which is why it is important to prevent and treat 

cardiomyopathy. Cardiomyopathy can arise from a mutation (variant) or it is a consequence of another 

disease. There are various forms of cardiomyopathy; the heart muscle can be thickened or thinned 

affecting the heart’s pump function, the heart can beat arrhythmic, or the heart is not properly filled 

with blood. It is seen in cardiomyopathy that the heart makes less use of fat metabolism to generate 

energy. Recently, a major regulator of fat metabolism, peroxisome proliferator-activator α (PPARA) 

was seen to be less expressed and downstream players were affected. In this report, all analyses were 

performed on a user-friendly platform called Galaxy, with the intention of finding out whether this 

platform can be used for similar projects in the hospital. Furthermore, it is highlighted how genes 

involved in fat metabolism behave across different forms of cardiomyopathy and whether PPARA can 

be used as a target for intervention. This was done by comparing patient data with healthy control 

data and filtering out the genes of interest. The results show that fat metabolism genes behave 

differently depending on the form of cardiomyopathy, and confirm that fat metabolism is 

downregulated. In combining public data that used bezafibrate, a drug that alters PPARA, we see that 

it has potential as a drug for cardiomyopathy.  

 

 



3 
 

Graphical abstract 
  

Transcriptomics workflow of this project: 1) Biopsies were taken from controls, HCM-, DCM-, and LVH patients. 2) RNA was 
sequenced by Illumina. The RNA-seq data was processed and visualized, with differential expression analysis, heatmaps and 
volcano plots. 4) Then a more targeted analysis was done with a focus on mitochondrial and peroxisomal fatty acid oxidation, 
for which a STRING gene interaction figure was used. 5) Afterwards, the involvement of PPARA and RXRs was investigated by 
literature research, data integration, motif enrichment and imaging. 6) Immunofluorescent stainings were made for PPARA, 
which were quantified using CellProfiler. 7) The end goal of this analysis was to further research whether PPARA is a potential 
therapeutic target, that then can be used in various forms of cardiomyopathy. (BioRender) 
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Introduction 
Heart failure is a condition that affects approximately 26 million patients worldwide. With a mortality 

rate of 50% after a 5-year follow-up, it is essential to research ways to prevent and treat heart failure. 

One of the underlying causes of heart failure is cardiomyopathy 1. Cardiomyopathies can be classified 

into primary or secondary categories. The primary category includes genetic, acquired, and mixed 

cardiomyopathies, and the secondary category holds cardiomyopathy due to a systemic condition. 

The most common primary genetic and mixed cardiomyopathies are arrhythmogenic right ventricular 

cardiomyopathy (ARVC), hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and 

restrictive cardiomyopathy (RCM), respectively 2. HCM is the most common cardiomyopathy, with an 

approximated prevalence of 1:500 adults. In most cases, HCM is inherited, though there is a broad 

clinical heterogeneity with nongenetic phenotypes. HCM is characterized by left ventricular 

hypertrophy (LVH), diastolic dysfunction, and abnormal vascular response 3–5. In a third of all cases of 

heart failure, the underlying cause is DCM 6. DCM is defined by systolic dysfunction with an 

enlargement or dilation of the left ventricle and can have ischemic or non-ischemic (often genetic) 

aetiology 7. The causative variant is familial in about 25-30% of non-ischemic DCM patients 6,8. The 

patient cohort in this report includes 9 genetic forms for HCM and DCM and two nongenetic forms. 

The genetic variants (mutations) are located in known cardiomyopathy genes, such as myosin binding 

protein C3 (MYBPC3), myosin heavy chain 7 (MYH7), myosin light chain 2 (MYL2), troponin I3 (TNNI3), 

troponin T2 (TNNT2), titin (TTN), desmoplakin (DSP), Ischemic, and phospholamban (PLN). Nongenetic 

forms include sarcomere mutation-negative (SMN) and LVH. This form of LVH is distinct from HCM in 

that the underlying cause for LVH is hypertension, and LVH can be a characteristic of HCM 4,9. 

Fatty acid β-oxidation (FAO) is the preferred 

metabolic pathway of the adult heart, 

supplying the majority of produced 

adenosine triphosphate (ATP). Yet, the 

heart contains great substrate flexibility 

and can switch to metabolising glucose, 

lactate, and ketone bodies 10,11. The process 

of FAO consists of three steps: the uptake 

into the cytosol, the transport across the 

mitochondrial membrane, and the 

oxidation inside the mitochondria 12. There 

are approximately 20 enzymes/proteins 

involved in this process (Figure 1) 13. Fatty 

acids are transported into the cell via fatty 

acid transporters (FAT/CD36) and fatty acid 

binding proteins (FABPs). A coenzyme A 

(CoA) group and carnitine are added to 

further transport into the mitochondria by 

fatty acyl CoA synthetase (FACS) and 

carnitine palmitoyl transferase 1 (CPT1), 

respectively. The acylcarnitine is 

transported over the inner membrane of 

the mitochondria via carnitine translocase. 

Figure 1 Mitochondrial FAO: The cell membrane and mitochondrion 
are visualised. Fatty acids are transported into the cell via FAT/CD36 
and FABP. FACS ads a CoA group (not in the figure) and CPT1 adds a 
carnitine to the fatty acids in order to facilitate transport into the 
mitochondrium. The carnitine is removed by CPT2. What follows isβ-
oxidation in the mitochondrial matrix, catalysed by multiple proteins 
(ACADM, ACADS, ACADVL, MTP, and more. The end products are 
further metabolised in other cycles and processes 13. ACADM = MCAD, 
ACADS = SCAD, VLCAD = ACADVL. 
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As acylcarnitine is converted back into long-chain acyl-CoA by carnitine palmitoyl transferase 2 (CPT2), 

it enters β-oxidation in the mitochondrial matrix 12,14. Enzymes involved in this step are acyl-CoA 

dehydrogenases (ACADM, ACADS, ACADVL) and the mitochondrial trifunctional proteins (MTPs), 

namely hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA) 

and hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) 15. 

FAO results in NADH and FADH2 that can be further used to produce ATP and supply the cell with 

energy 12,14. FAO genes are under tight transcriptional control; up- or downregulation of FAO genes 

often translates to an up- or downregulated FAO. Peroxisome proliferator-activated receptors (PPARs) 

are key players in metabolic homeostasis and function 11.  

PPARs are nuclear, ligand-activated transcription factors (TFs) that belong to a nuclear hormone 

receptor superfamily, consisting of three isoforms: PPARα, PPARγ, and PPARβ/δ, encoded by their 

respective genes PPARA, PPARG, and PPARD, respectively. PPARs are ubiquitously expressed, and 

these tissues include the liver, intestine, skeletal muscle, adipose tissue, vascular wall, and heart. It is 

considered that each PPAR has its own distinct function in metabolism; PPARα is a regulator of energy 

homeostasis through fatty acid transport, FAO, and ketogenesis. PPARγ regulates adipogenesis, such 

as lipid storage, insulin sensitivity, and glucose metabolism, and PPARδ increases lipid and glucose 

metabolism and switches muscle fibres from glycolytic to oxidative 10,16.  

Once PPARs bind their ligand and 

become activated, they 

heterodimerise with another nuclear 

receptor, retinoid X receptor 

(RXR/NR2B) 17. As a complex, they 

alter the transcription of target genes 

by binding to peroxisome proliferator 

response elements (PPREs), which 

consist of a repetition of AGG(A/T)CA 

interspaced by one or two 

nucleotides 10,17. PPAR consists of six 

domains; The A/B domain contains 

the AF-1 region and has 

(in)dependent ligand binding activity, 

which is influenced by 

phosphorylation from MAPK 18 (Figure 

2A). The A/B domain plays a role in 

determining the target gene 

specificity between the PPAR 

isoforms. However, a complete 

understanding of how the distinction 

in gene expression between the three 

isoforms is made remains unclear 19. 

The DNA binding domain (DBD)/domain C has two zinc fingers that bind to the PPREs, which is linked 

to the ligand binding domain by the hinge region. The hinge region/domain D is the binding spot for 

corepressors and can be phosphorylated. AF-2/domain E/F determines the ligand specificity and 

undergoes conformational changes upon binding of the ligand, regulating interactions with co-

Figure 2: PPARs sequence and structure homology. A) The six domains of 
PPAR. Purple displays the AF-1 and AF-2 regions, green the DBD region, red 
is the hinge region, and blue is the LBD region. B) The sequences of the PPAR 
isoforms with their sequence homology coloured. Bars above the sequences 
correlate to the colours of the different regions. C) Structure of the three 
isoforms, PPARA, PPARD, and PPARG. Green correlates to the DBD region, 
blue to the LBD region and red to the hinge region 20. 
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activators. The E/F domain is also called the ligand-binding domain (LBD) 18. The domains and structure 

reflect the homology of the isoforms, as the sequence for the DBD is most conserved between the 

three PPARs. The LBD has significant sequence variation, which explains why the isoforms have ligand 

selectivity (Figure 2B and 2C)20.  

Ligands for PPARs can be natural or synthetic. Natural ligands include a wide range of fatty acids, like 

essential fatty acids (EFAs), mono- or poly(un)saturated fatty acids, oxylipins and prostaglandins 21. 

Synthetic ligands are mainly fibrates for PPARα, and thiazolidinediones for PPARγ. Thiazolidinediones 

have derivatives, glitazones (PPARγ) and glitazars (dual PPARα/PPARγ). Besides these three classes of 

synthetic ligands, many other compounds are being tested 21–23. These compounds include specific 

PPAR modulators but also dual agonists and pan-agonists (agonists for all three isotypes). Depending 

on what ligands bind determines what cofactor interactions are possible and regulatory response 

follows 10. As for the coregulators, these are a broad class of proteins that can be divided into 

subgroups based on whether they are essential, where they bind on PPAR and function. Repressors 

prevent PPAR from binding to the PPRE, and activators can prevent PPARs from degradation in the 

cytosol before they can be translocated to the nucleus. In addition, they assist in binding to PPRE and 

associating with other proteins like histone methylases, histone acetyltransferases, and DNA-

helicases. Activators also function in transcriptional regulation 24. 

As stated before, PPARs are regulators of FAO in cardiomyocytes, which is the main mechanism for 

the heart’s energy demand. During rest or exercise, PPARs switch the metabolic state of the heart to 

either predominantly use fatty acids or lactate. In a failing heart, as seen in cardiomyopathy, the heart 

returns to a fetal-like metabolic state. This state is characterised by a high expression of glycolytic 

genes and low expression of FAO and mitochondrial genes due to an increase in hypoxia-inducible 

factor (HIF) and a decrease in PPARα-PPARγ-coactivator 1α (PGC1α) activity, respectively. Though the 

direct role of PPARα in this FAO-glycolysis switch is not yet proven, it is seen that PPARα-deficient mice 

have a lower expression of genes involved in mitochondrial and peroxisomal FAO 10,25. Peroxisomal 

FAO differs from mitochondrial FAO as peroxisomal FAO only processes very long-chain FAs and does 

not contribute to ATP synthesis; instead, it regulates cellular thermogenesis 24. Of all the hundreds of 

genes that PPARα regulates, PPARα controls eight proteins typically localized in peroxisomes (ACOX1, 

EHHADH, ACAA1B, SCP2, CAT, MLYCD, PEX11A) 24. Mitochondrial genes that are less expressed in 

patients with cardiomyopathy are, for example, very long chain acyl-CoA dehydrogenase 

(VLCAD/ACADVL), carnitine acylcarnitine translocase (CACT/SLC25A20), organic cation transporter 

(OCTN2/SLC22A5), HADHA/HADHB, and CPT2 13.  

In (yet) unpublished research conducted by members of the group I am doing my internship with, 

chromatin immunoprecipitation and sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) data of 

PLN-R14del and control hearts was analysed. In the detected hypoacetylated regions, transcription 

factor binding motifs (TFBMs) were found that related to TFs involved in metabolism, adipogenesis, 

and mitochondrial structure. One of these TFBMs belonged to PPARA, which, after 

immunofluorescent staining, was found to be less localized within intercalated disks and the nucleus 

compared to healthy hearts. Downstream targets of PPARA, such as HADHA/HADHB/MLYCD/PNPLA2, 

showed hypoacetylation and decreased mRNA levels 26.  

It has been established that FAO is downregulated in cardiomyopathy and heart failure 27. However, a 

direct link with PPARα, or how exactly FAO is downregulated in cardiomyopathy, has never been 

made. The research and this gap in knowledge about how exactly FAO is downregulated in 
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cardiomyopathy resulted in the main research question for this project: What are the expression 

patterns of FAO genes during various forms of heart failure? And: What proteins that cause the 

downregulation of FAO are potentially suitable targets for PPARA-targeted treatment?  

To answer these questions, the project was set up in two objectives relating to the two research 

questions. For the first objective, which was the original research question of the project, patient-

specific RNA-seq data from a large heterogenic cohort was analysed and visualised for differentially 

expressed genes (DEGs), focusing on FAO genes and PPARA. Gene enrichment was done to zoom in 

on the regulation of different FAO-related metabolic processes. For the second objective I decided to 

take a more exploratory approach. I collected a list of PPARs-modulating compounds and a list of 

articles that used PPARA modulators in different settings. This data and other information I gathered 

regarding PPARA as a therapeutic target was used to publish a mini-review 28. Subsequently, a publicly 

available dataset from one of these articles was used to compare it to the UNRAVEL transcriptomic 

study. Afterward, motif enrichment with the MoLoTool was tested to check for PPARA (specific) 

regulation. At last, I helped with staining and imaging on the confocal microscope. A small pipeline 

was made on CellProfiler to quantify the PPARA signal within the nucleus in relation to the size of the 

nucleus.  
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Materials and methods 

Sample information 

RNA was isolated from biobanked frozen human cardiac tissue from different centres, using two 

different protocols. Consent was given by all individuals. The libraries were prepared in collaboriation 

with the Epigenomics facility at UMCU. Sequencing was done by USEQ. The library consists of single-

end RNA-seq data from Illumina. The total sequencing library consists of 118 samples, of which 28 

samples are technical replicates. The samples originate from 94 patients (59 males and 35 females), 

of which 102 biopsies were taken either from the septum (n = 69), left ventricle (n = 23), remote zone 

to the left ventricle (n = 4), or right ventricle (n = 6). Patients came from various locations, London (n 

= 4), Rotterdam (n = 50), St. Louis (n = 9), Sydney (n = 6), and Utrecht (n = 27). From the patient group, 

24 patients are considered controls, 18 patients are diagnosed with DCM, 50 patients are diagnosed 

with HCM, and 4 patients are diagnosed with LVH (Figure 3, Supplementary Table Library overview). 

Included forms are ischemic DCM, MYBPC3, MYH7, PLN, TTN, DSP, MYL2, SMN HCM, TNNI3, TNNT2, 

TTN, TMEM43, and LVH. Two samples are labelled Uncertain, due to uncertainty about the causal 

variant; TTN or TMEM43, and MYH7 or MYBPC3. Some of the libraries have already been analysed and 

used in (un)published papers 26,29–38.  

One technical replicate was removed before analysis due to a faulty file containing only 21,733 genes 

instead of 63,678 genes. The final library then consisted of 117 samples, 27 technical replicates, and 

94 patients (16 biological replicates) (Supplementary Table Library overview). 

Galaxy 

For the main analyses of this project, the usegalaxy.eu portal has been used 39. All data is stored under 

the username avdbrink. The histories are private and only accessible upon request. An overview of 

the histories can be found in Supplementary File FAOgeneslist: Table 1. For the descriptions of the 

analyses done in Galaxy, default settings were used unless stated otherwise.  

Data formatting 

Galaxy requires a certain format for differential expression analysis. All count files need to contain a 

header, and all summary lines at the end should be removed. All files need to have equal rows. It is 

recommended to use Select last (Operation = Keep last lines, Number of lines = 5) and Select first 

(Select first = 3, a dataset has a header = true) to check whether the files have the correct formatting. 

Figure 3 Heatmap of the patient overview. Rows represent factor and columns represent 
patients. Each factor has its own name and colour scheme. There are four groups: Control 
(n=24), HCM (n=50), DCM (n=18) and LVH (n=4). These groups can be further divided into 
subgroups based on (pathogenic) forms. Patients come from diverse locations, London (n=4), 
Rotterdam (n=50), St. Louis (n=9) and Sydney (n=6). Biopsies originate from the septum (n=69), 
left ventricle (LV, n=23), right ventricle (RV, n=6), or the remote zone to the left ventricle (RZ, 
n=4). Patients were either males or females. 
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A script in Python was written to automatically add a header line to all 117 files (Supplementary File 

Rnotebook: Script 1). Summary lines can be removed in Galaxy by using Select (Select lines from = all 

data files, that = NOT matching, the pattern = ^_, Keep header line = True). The workflow can be found 

in the Galaxy history: DESeq data. After formatting the datasets in Python and Galaxy, the correct 

Galaxy input files were copied into new histories for analysis. 

Replicates 

Three groups were created to perform analyses on (all samples, all biopsies, and all patients). In the 

biopsies group, all technical replicates (same sample, multiple sequencing runs) were merged together 

by averaging the counts. In the patients groups, additionally, all the biological replicates (same patient, 

different biopsy) were merged by averaging the counts. This was performed in Galaxy using Column 

Join (input = technical replicates/patient duplicates, identifier column = 1, number of header lines in 

each input file = 1, add column name to header = no) and Compute (input = output of Column Join, 

Input has a header line with column names = yes, Expressions – Add expression = int((c2+c3)/2), Mode 

of operation = append). In case of a class error, i.e., an error in converting strings to integers, the 

output of Column Join was downloaded and the averaged counts were calculated in excel 

(=INTEGER(SOM(A1:A2)). Workflow can be found in the Galaxy history: Sum/average replicates. 

Outlier removal 

Outlier removal and verification were done in four steps. First, principal component analysis (PCA) 

plots were generated using DESeq2 on all samples, all biopsies, and all patients. The PCA plots show 

clustering based on the top 500 genes, which is the unchangeable default of DESeq2 in Galaxy. The 

three analyses were pre-filtered on the sum of all samples in that group (n = 117, n = 102, n = 94). 

Second, another method for visual outlier representation was used; dendrograms were made using 

hierarchical clustering with average linkage in R (WGCNA). This clustering was done based on 5,000 

genes, selected from DESeq2 analysis on the comparison with the most samples, HCM-control, and 

selecting the top 5,000 genes. Third, the outliers selected by the PCA plots in DESeq2 were removed 

stepwise from limma analysis on all biopsies. The results were compared against the box plots and 

MDS plots without outlier removal. Fourth, a limma analysis was done on all biopsies, and the outliers 

based on the MDS plots were then removed from another limma analysis. All limma analyses were 

performed with the voom method without sample quality weights. Counts were TMM-normalised. 

Workflows can be found in the Galaxy histories: Analysis 1: DESeq on all samples, Analysis 2: DESeq 

on all biopsies, Analysis 3: DESeq on patients, and Analysis 4: Limma (biopsies, with/out outlier 

removal). 

Dendrograms were created in R in combination with Galaxy. The DESeq2 result file of HCM-Control 

(of all samples, all biopsies, all patients) was used to select the first 5,000 genes with Select first (select 

first: 5,000, dataset has header: yes). This list was combined with the count matrix of all samples/all 

biopsies/all patients to create a count matrix containing the first 5,000 genes of DESeq2. The output 

made with the following tools was uploaded into R: Compare two datasets (compare: count matrix of 

all samples, using column: 1, against: Output of Select first, and column: 1, to find: matching rows of 

1st dataset). Dendrograms were made with the hclust function of the WGCNA package (Supplementary 

File R notebook: Script 2) 40.  
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Quality control 

All samples were tagged according to their factors in Galaxy. The different factors (i.e., origin, location, 

sex, and runs) were visually analysed by PCA plots and sample-to-sample distances plots generated by 

DESeq2. All factors were analysed on all samples, with a pre-filtering value of 117. Additionally, the 

factor origin was run on all biopsies, with a pre-filtering value of 102. The factor sex and location were 

run on all patients, with a pre-filtering value of 94. Workflows can be found in the Galaxy histories: 

Analysis 1: DESeq on all samples, Analysis 2: DESeq on all biopsies, and Analysis 3: DESeq on patients.  

Sex difference 

Limma analysis was done on the comparison Female-Male with a pre-filtering value of 1 CPM in a 

minimum of 33 samples. DEGs were run through the STRING database and further analysed with 

Glimma volcano plots. Limma was set to voom without sample quality weights. The adjusted P-value 

threshold was set at 0.05 and corrected with the Benjamini and Hochberg method. Counts were TMM-

normalised. All additional output options were selected: Glimma interactive plots, density plots, 

CpmsVsCounts plots, box plots, MDS extra, MD plots for individual samples, heatmaps and strip charts. 

An annotation file was supplied to limma for the Glimma interactive plots. The annotation file was 

created by using Cut (input = a counts file, cut columns = c1, delimited by = tab), followed by 

AnnotateMyIDs (input = output of Cut, file has header = true, organism = human, ID Type = Ensembl 

Gene, output columns = SYMBOL, GENENAME). Workflow can be found in the Galaxy history: Analysis 

4b: Limma patients factor: sex. 

FAO genes list 

The FAO genes list comprised the 76 genes associated with the GO term GO:0006635 and our own 

additions based on work from the group that highlighted the involvement of these genes in 

cardiomyopathy (KLF15, PPARs, and RXRs). The Ensembl IDs were annotated using BioMart with the 

filters for Gene type and transcript type set to protein_coding, and the attributes: transcript type, 

gene name, gene synonym, gene stable ID, and chromosome (Supplementary File FAOgeneslist: Table 

2). 

Differential gene expression 

Differential expression analysis was performed with limma on all biopsies without the outliers (n = 

100). Pre-filtering value was set on 1 CPM in a minimum of 4 samples. Limma was applied with the 

voom method without sample quality weights. Counts were TMM-normalised with robust settings. 

The adjusted P-value was corrected with Benjamini and Hochberg and was set on a threshold of 0.05. 

All additional output options were selected: Glimma interactive plots, density plots, CpmsVsCounts 

plots, box plots, MDS extra, MD plots for individual samples, heatmaps, and stripcharts. The limma 

annotation file was provided. Comparisons were set on HCM-Control, DCM-Control, and LVH-Control. 

Workflow can be found in Analysis 4: Limma (biopsies, with/out outlier removal). 

Heatmaps 

Heatmaps of the top 50 most differentially expressed genes in HCM, DCM, and LVH were made based 

on the limma DE tables that were filtered on an adjusted p-value (Benjamini and Hochberg) of 0.05 

and sorted based on Log2(FC). For this Filter (Input = output of Limma, DE tables, with the following 

condition = c7 < 0.05, number of header lines to skip = 1) and Sort in descending or ascending order 

(Input = output of Filter, number of header lines = 1, on = column 4, in = Descending order, Flavor = 

Fast numeric sort (-n)). Ensembl IDs with a NA for Gene Symbol and Gene Name were filtered out by 
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Filter (Input = output of Sort, with the following condition = c2!= ‘NA’, number of header lines to skip 

= 1. The 25 most upregulated and 25 most downregulated genes were selected with Select first (Select 

first = 25, from = output from Filter, dataset has a header = True) and Select last (Text file = output 

from Filter, Operation = Keep last lines, Number of lines = 25). These two lists were combined with 

Concatenate datasets tail-to-head (Concatenate dataset = output from Select first, Select = output 

from Select last). These lists were then matched with the normalized counts table using Compare two 

datasets to find common or distinct rows (Compare = output from Limma: Normalised counts, using 

column = 1, against = output from Concatenate dataset, and column = 1, to find = matching rows of 

1st dataset), which yielded the normalized counts for the top 50 most differentially expressed genes. 

The normalized counts for the FAO genes list heatmap was made with Compare (Input = Limma on 

biopsies: Normalized counts, using column = 1, against = ensemblIDs of the FAO genes list, and column 

= 1, to find = Matching rows of the 1st dataset). These lists were downloaded and loaded into R. There, 

heatmaps were made with the Coolmap function of the Limma package (Supplementary File R 

notebook: Script 3 and Script 4). Workflows can be found in Analysis 4: Limma (biopsies, with/out 

outlier removal) and Analysis X: heatmap of the FAOgeneslist. 

Gene sets 

Gene sets were made for Gene Ontology analysis through RNA-seq (GOseq) and fast pre-ranked gene 

set enrichment analysis (FGSEA). Gene Ontology (GO) terms of interest were selected through the 

Gene Ontology website by looking at the sub-classification of the fatty acid metabolic process 

(GO:0006631), fatty acid oxidation (GO:0019395), and fatty acid beta-oxidation (GO:0006635). 

Additional GO terms related to glucose metabolism, amino acid metabolism, ketone metabolism, and 

fatty acid related were selected. All 23 selected GO terms were run through Ensembl BioMart 

GRCh38.p13, as the hg19 version of BioMart does not allow filtering on GO terms. Selected attributes 

were Gene stable ID and Gene name (Supplementary File FAOgeneslist: Table 3). In the GO terms fatty 

acid metabolic process and long-chain fatty acid metabolic process, there are four genes that do not 

have a gene name and, upon investigation, have no expression data in our count files. Therefore 

ENSG00000276490, ENSG00000281938, and ENSG00000284341 are excluded from the corresponding 

gene sets. ENSG00000258653 (a novel protein 41) does appear in the count matrix, so it will be kept 

in. The GO terms glycolytic process and cellular amino acid metabolic process contain 10 genes 

without a gene name. ENSG00000282835, ENSG00000283189, ENSG00000286112, and 

ENSG00000284512 are excluded and ENSG00000266953, ENSG00000255835, ENSG00000111780, 

ENSG00000260643, ENSG00000255730, ENSG00000249319, and ENSG00000269547 are included 

based on the previous criteria.  

The gene set of fatty acid beta-oxidation was adapted to match the FAO genes list, therefore, the 

PPARs, RXRs, and KLF15 were added to the gene set.  

Additionally, five Hallmark gene sets and three PPARA-related datasets were acquired from the 

MSigDatabase (Supplementary File FAOgeneslist: Table 3). This resulted in a total list of four sets (fatty 

acid metabolic related gene sets, additional gene sets, hallmark gene sets, and PPARA related gene 

sets), which include 31 gene sets. 

Fast pre-ranked gene set enrichment analysis (FGSEA) 

Gene sets were Gene Matrix Transposed (GMT) formatted for FGSEA (Supplementary Table Gene 

enrichment input). The first column has the gene set name, the second column has the GO term or 
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link to MSigDB, and the following columns have Ensembl IDs. Each row represents a gene set. The 

second FGSEA input was created using Cut (input = limma-voom DE table for HCM-Control, DCM-

Control, LVH-control; cut columns = c1, c6; delimited by = tab). This output holds the Ensembl IDs and 

the t-statistic of the original limma DE output table. Next Sort data in ascending or descending order 

was used (input = output of Cut, number of header lines = 1, on column = 1, in = descending order, 

flavor = fast numeric sort (-n)). FGSEA is performed with the three outputs of Sort for all three 

comparisons and the GMT formatted gene sets, with the following settings: FGSEA (Ranked genes = 

output from Sort, file has header = True, Gene sets = gene set files, minimum size of gene set = 1, 

maximal size of gene set = 500, number of permutations = 1000, outputs plots = true, plot top most 

significant pathways = 16/10, Output RData file = False). Results from the FGSEA analysis read in R and 

with the ggplot2 package bubble plots were made (Supplementary File R notebook: Script 5). 

GOseq  

Limma outputs three DE tables for the three comparisons. Compute (Input = limma-voom DE table, 

Input has a header line with column names = yes, add expression = c8 < 0.05), mode of operation = 

append, the new column name = status) is used to add a Boolean column stating which genes are 

significantly differentially expressed. Then Cut (input = output of Compute, cut columns = c1, c10, 

delimited by = tab) is used to select the Ensembl ID and Status columns. The assembled gene sets are 

formatted according to the input requirements; Ensembl IDs in the first column and associated GO 

term in the second column (Supplementary Table Gene enrichment input).  

Gene set enrichment with GOseq needs a gene lengths file to correct for length bias. The reference 

genome in Gene Transfer Format (GTF) of hg19 was retrieved from: 

http://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/?C=S;O=D. The gene length file was 

generated with the tool Gene length & GC content (Select a built-in GTF file or one from your history 

= history, Select a GTF file = Homo_sapiens.GRCh37.87.gtf, analysis to perform = length). Analysis was 

performed with GOseq (Differentially expressed file = output from Cut, Gene lengths file = output from 

Gene length & GC content, Gene categories = history, Gene category file = gene sets file in tabular 

format, Use Wallenius method = True, Use hypergeometric method = False, Sampling number = 0, 

Select a method for multiple hypothesis testing correction = Benjamini-Hochberg [FDR] (1995), Count 

genes without any category = False, Output Top GO terms plot = True, Produce diagnostic plots = True, 

Extract the DE genes for the categories (GO/KEGG terms?) = True, Output RData file = False). The 

Wallenius method is a method of approximation that states that all genes within the same category 

have the chance of being chosen but that this chance is different from choosing genes outside this 

category.  

This tool only outputs the top 10 categories in the Top GO terms plots. Therefore, the fatty acid 

metabolism-related gene sets are split in two so that all terms will be visualised in a plot.  

PPAR-modulating compounds 

A semi-systematic search was conducted on PubMed to look for PPAR-modulating compounds. This 

search included natural or synthetic ligands, single/dual/pan-agonists or antagonists of PPARα, PPARδ, 

and PPARγ. Information was noted about binding affinity for other proteins, clinical trials, publishing 

date, and the PMID.  
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PPARα-modulating compounds in pre-existing datasets 

A semi-systematic search on PubMed was executed to collect research papers that have publicly 

available transcriptomics dataset of PPARA-modulating compounds. The search included PPARA-

specific agonists, dual-agonists and pan-agonists (Wy-14,643, pemafibrate, ciprofibrate, fenofibrate, 

saroglitazar, clofibrate, chiglitazar/Bilessglu, lobeglitazone, GW409544, lanifibranor, gemfibrozil, 

bezafibrate/GW7647, BMS631707, KRP101, AVE8134, biphenyl derivative, 

elafibranor/GFT505/DY121, palmitoylethanolamide, LY518674, ZYH7, K111, macuneos, N-

oleoylethanolamine, astaxanthin). Three antagonists (IS001, GW6471, AA452) yielded no results. With 

the compounds the following search terms were used: RNA-seq OR microarray OR transcriptomics OR 

transcriptome AND PPAR. Papers that used the compound in combination with another non-PPAR-

modulating compound were excluded.  

Integration of public dataset 

From the PPARA-modulating compounds in pre-existing datasets one article was selected that had 

RNA-seq data on heart tissue. Supplementary files (Supplementary Table 2, 3, and 4) from Schafer, C. 

et al. containing the log(FC) and P-value of the RNA-seq data of tafazzin knockdown (TazKD) mice vs 

wild-type (WT) and bezafibrate treated vs untreated TazKD mice were downloaded 42. From all three 

datasets, and the DE tables from limma for HCM, DCM, and LVH the FAO genes were selected with 

Compare (input = DE tables, using column = 1, against = FAO genes list, and column = 1, to find = 

matching rows of 1st dataset) in Galaxy. For the public data the gene symbols of the FAO genes list 

were used, and for the DE tables from limma the Ensemble IDs.  

Motif enrichment 

First, the transcription start site (TSS) was retrieved from the Ensemble website (assembly 

GRCh37/hg19). The first transcript ID per gene was chosen, and the first or last coordinate of the 

transcript region was chosen as TSS, depending on whether the genes were on the forward or reverse 

strand. For HADHA/HADHB a TSS was selected that was exactly in between the end coordinate of 

HADHA and the beginning coordinate of HADHB. To these TSS site 2,000 bp was added up- and 

downstream for the promotor region (Supplementary Table Motif Enrichment: Table 1A). The 

following promotor regions were made into BED format and uploaded onto Galaxy (Supplementary 

Table Motif Enrichment: Table 1B). With the tool bedtools getfasta (input = TSS sites in BED format, 

choose the source for the FASTA file = server indexed files, fasta_id = human (homo sapiens): hg19) 

the corresponding sequences were retrieved. Motif enrichment was executed on the HOCOMOCO 

website, with the sequence motif location (MoLo) tool. The motifs for PPARA, PPARG, RXRA, RXRB, 

RXRG, and KLF15 were used (Supplementary Table Motif Enrichment: Table 2). 

CellProfiler 

Nuclear size and PPARA quantification in the nucleus were analysed and measured using CellProfiler 

(4.2.5). All images were uploaded into CellProfiler and the metadata was automatically set-up to 

retrieve the case and channel data. First the nuclei were identified with IdentifyPrimaryObjects from 

the DAPI channel. Then, the nuclei were masked out in the PPARA channel with MaskImage. PPARA 

was selected using IdentifyPrimaryObjects in the DAPImask image, creating an object of PPARA signal 

only in the region of the nucleus. To quantity the PPARA signal in the nuclei, the nuclei and PPARA 

signal were related to each other with RelateObjects using the nuclei and PPARA objects. With 

MeasureObjectSizeShape the nuclei object and the related nuclei-PPARA object were measured. All 
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data was exported with ExportToSpreadsheet. The specific settings and pipeline can be found in 

Supplementary File CellProfiler.  

All figures were created in Galaxy (version …), Excel (Microsoft 365) and RStudio (R version 4.1.2), and 

potentially adjusted with Inkscape (version 1.2).   
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Results 

Pre-filtering increases the amount of differentially expressed genes 

Both DESeq2 and limma offer the option to pre-filter the data. When pre-filtering all the samples in 

DESeq2 on a row sum of 117, and limma on 1 CPM in a minimum of 4 samples. The total number of 

genes goes down after pre-filtering in both DESeq2 and limma. The number of DEGs increases as well 

in DCM-Control and LVH-Control in limma by around 1,000-2,000 DEGs. Even though there is a relative 

increase in DEGs in DESeq2, the number of DEGs stays almost the same in DESeq2 after pre-filtering. 

HCM-Control in limma decreases in both the total number of genes and DEGs after pre-filtering. Thus, 

pre-filtering shows that the number of DEGs increases compared to no pre-filtering, with the 

exception of the HCM-Control comparison in limma (Supplementary Figure 1).  

PCA plots and dendrograms of samples do not match 

In the library of 117 samples, 27 are technical replicates and 16 are biological replicates. DESeq2 was 

used to generate PCA plots of all samples, all biopsies, and all patients to look at the clusters without 

technical and/or biological replicates. The groups were created by averaging the technical and 

biological replicates together.  

Outlier identification was performed through visual identification with the output of DESeq2 (Galaxy) 

and dendrograms based on hierarchical clustering and average linkage (R) (Supplementary Figure 2). 

DESeq2 uses the top 500 most variable genes to generate the PCA plot. For the hierarchical clustering, 

the top 5,000 most differentially expressed genes were taken based on the HCM-Control comparison 

in DESeq2. The sample do5126IVS does not cluster according to its groups in “all samples” and “all 

biopsies” (Supplementary Figure 2A), and another sample from the same patient, do5126LV, does not 

cluster in “all biopsies” (Supplementary Figure 2B). Sample PLN4S lies apart in “all patients” 

(Supplementary Figure 2C). However, these samples do not show as outliers in the dendrograms. 

Removal of DESeq2 outliers does not affect DEGs in limma 

Limma is the analysis tool that will be used for eventual differential expression analysis, therefore the 

stepwise removal of the outliers from DESeq2 (do5126IVS, do5126LV, and PLN4S) is checked. All 

samples, except for two HCM samples, are normalized and the removal of the do5126 samples and 

PLN4S does not show a change (Supplementary Figure 3A). Limma outputs MD plots in four 

dimensions, which show 62HCM and 166HCM as outliers based on all samples (Supplementary Figure 

3B). After the do5126 samples are removed (Supplementary Figure 3C) or additionally, PLN4S is 

removed (Supplementary Figure 3D), the clustering does not change, and 62HCM and 166HCM remain 

outliers. With the stepwise removal of the DESeq2 outliers, the amount of DEGs on the different 

disease comparisons decreases by an average of 8.8%, and 11.7% (Supplementary Figure 3E).  

Removal of limma outliers affects DEGs 

The removal of the limma outliers, 62HCM and 166HCM, caused all the samples to be normalized 

(Supplementary Figure 4A). The MD plots in the four dimensions show clear clusters when 62HCM and 

166HCM are removed. Only in the second and third dimensions is there one sample that does not 

cluster well, 6056IVS (Supplementary Figure 4B and 4C). The amount of DEGs increases by an average 

of 27.1% once 62HCM and 166HCM are removed from the analysis (Supplementary Figure 4D). This 

led to the limma outliers being excluded. 
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Quality control 

Based on all samples, PCA plots of all different factors, location, origin, sex, and runs, were made with 

DESeq2 (Supplementary Figure 5). The PCA plot for location shows two separate clusters for 

Rotterdam and Utrecht. St. Louis, Sydney, and London clusters show in between each other. Samples 

based on origin seem to largely overlap, there is a large diagonal cluster for septum with most of the 

samples of left ventricle and right ventricle clustering slight above it or to the right. For run only run_11 

seems to be slightly below the rest of the clusters. In the sex PCA plot it seems like the female samples 

cluster more closely together, and the male samples are slightly above it. 

Additionally, PCA plots were made for location and sex based on all patients, and a PCA plot for origin 

was made based on biopsies (Supplementary Figure 6). This was done because origin is a biopsy-

related factor, and location and sex patient-related factors. The PCA plot for origin looks almost 

identical to the one based on all samples. In location the separate clusters for Utrecht and Rotterdam 

are now more clearly visible. For sex the PCA plot shows the same result, the clusters largely overlap, 

though male samples seem to cluster a bit lower than the female samples.  

The sample-to-sample-distances plots, generated by DESeq2, were manually adjusted to only view the 

samples that DESeq2 and limma previously showed as outliers (Figure 5B and 6B). If not manually 

adjusted, Galaxy outputs the plots in such a way the sample names cannot be distinguished from each 

other. The outliers from limma also show as outliers in these sample-to-sample-distances, which was 

eventually used as an extra confirmation to remove them from the limma analysis. 

No disease-related DEGs in sex comparison 

There seems to be a slight 

clustering of females and males in 

the DESeq2-generated PCA plot. 

After setting the comparison 

Female-Male (n = 33, n = 59) on a 

pre-filtering value of 33, the 

limma analysis generated MD 

plots show two overlapping, but 

distinct clusters (Supplementary 

Figure 7B). The quality of this 

analysis looks normal 

(Supplementary Figure 7A, 7C). 

The report further reveals that 

there are 28 DEGs (9 upregulated and 19 downregulated) (Figure 3A and 3B). 

Running the 28 DEGs through the STRING database, all but 5 genes lie on the sex chromosomes and 

are involved in sex-related processes. The five autosomal genes (IFDR1, TMEM140, WDR31, RGS6, and 

DIPK1C) are not known to be implicated in any cardiac diseases. Figure 4A reflects that the top 10 

DEGs are sex-related and separate the males from the females. However, 3 male samples and 4 female 

samples showed opposite results compared to their group. XIST and EIF1AY expression, a female and 

male marker, respectively, were analysed (Figure 4B and 4C). The strip charts show that 3 female 

samples and 3 male samples do not cluster with their group in EIF1AY expression, and 1 female and 4 

A B 

Figure 3 DEGs of the sex comparison: The significantly differentially expressed 
genes in the Female-Male comparison. A. MD plot of the DEGs. B. Volcano plot 
of the DEGs.. Blue: downregulation. Red: upregulation. (Galaxy) 
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male samples do not cluster with their group in XIST expression. This shows the importance of 

including an analysis like this in the pipeline, to check for labelling mistakes. 

Differential expression analysis 

The top 50 up- and downregulated genes in HCM, DCM, and LVH were selected from the DE table 

from limma, and expression patterns were visualised in heatmaps (Figure 5). Clustering was done on 

rows, and columns are shown in a pre-selected order. The group, subgroup, and location of the 

samples are shown in the three bars below the columns. The figures show a clear distinction between 

controls and disease in all three comparisons (Figure 5). In the HCM-Control comparison, the 

expression of the bottom four genes in the Control group seems to relate to the location of the 

samples. Low expression in the St. Louis samples, higher expression in the Sydney samples, and lower 

expression in the Utrecht samples (Figure 5A). In the DCM-Control comparison, the control samples 

from Utrecht and three samples from Sydney show fewer striking colours relating to expression, when 

compared to the other samples (Figure 5B). The bottom cluster of genes resembles the DCM samples, 

while the top cluster resembles the control samples. This pattern of less expression and resembling 

the other control samples is also visible in the HCM-Control and LVH-control comparisons (Figure 5A 

and 5C). No FAO genes are found among the top 50 DEGs in all three comparisons. Only myosin heavy 

chain 6 (MYH6), a known cardiomyopathy gene, is one of the top 25 most downregulated genes in 

HCM-Control (Figure 5A). In the top upregulated genes in LVH-Control, shown in the bottom cluster, 

there are five genes that show heterogeneous expression across the control samples (Figure 5C). Four 

of the five genes (DDX3Y, KDM5D, TXLNGY, USP9Y, and UTY) are Y-linked, and all five show relation to 

male-specific diseases. Although these findings are not metabolism related, this overview shows a 

clear distinction between control and disease samples and shows the nonconforming expression of 

the control samples from Utrecht.  

Figure 4 Expression of DEGs: Differentially expressed genes in the Female-Male comparison. A. Heatmap of the top-10 DEGs 
based on adjusted P-value. B. Stripchart of XIST. C. Stripchart of EIF1AY. (Galaxy) 
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 A 

B 

C 

Figure 5 Heatmaps of the top 50 
differentially expressed genes: The top 50 
up- and downregulated genes are 
clustered on rows, and shown on the right 
side. Samples are shown in a pre-selected 
order based on group, subgroup, and 
location, shown in the three bars below the 
columns. The different colours represent 
different groups. A. Visualisation of the 
DEGs in HCM-Control, B. DCM-Control, C. 
LVH-Control. (R) 
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Differential expression of FAO genes list 

A targeted analysis of the differential expression was achieved through selection of the FAO genes list 

in the normalized counts. In the heatmap, clustering was executed on the genes and samples were 

sorted based on the group, subgroup and location as shown in the bars below the columns (Figure 6). 

Four genes (ABCB11, SLC27A2, ACOXL, FABP1) are not present in the heatmap, therefore 77 genes 

from the FAO genes list are visualised. The clustering of genes shows a separation between the top 37 

genes and the bottom 40 genes, in green and purple bars on the left, respectively. The control group 

shows heterogeneity based on location. The control samples from St. Louis show high expression 

across the two clusters, the samples from Sydney show low expression in the purple cluster and high 

expression in the green cluster. The control samples from Utrecht, show a similar pattern as DCM and 

LVH, a high expression in the purple cluster and a low expression in the green cluster. Overall, the 

control samples show high expression in both clusters. The green cluster is downregulated in DCM 

and LVH and upregulated in HCM. The purple cluster is upregulated in DCM and LVH and 

downregulated in HCM. The control group shows a high expression for both the clusters. DCM and 

LVH show similar expression patterns compared to HCM. The HCM group also shows heterogeneity, 

although it is not clear whether it relates to the subgroups. Most samples in the HCM group show a 

relatively low expression in the purple cluster, and a high expression in the green cluster. HCM samples 

with the MYBPC3 variant show either low or high expression in the purple cluster of genes, and high 

expression in the green cluster. The HCM-SMN samples do not clearly show low or high expression 

across the two gene clusters. One sample in the DCM-PLN group shows a lower expression across all 

genes compared to the PLN group.  

Taking a further look into the two gene cluster, STRING analysis shows that the distinction between 

the two gene clusters is not based on peroxisomal and mitochondrial genes, or positive and negative 

regulation of FAO. However, there are specific clusters of genes in the green or purple gene cluster 

(Supplementary Figure 8). All the peroxisomal PEX genes (PEX2, PEX5, and PEX7), three of the five acyl-

CoA dehydrogenases (ACADS, ACADM, ACADVL), the peroxisomal and mitochondrial acetyl-CoA 

acyltransferases (ACAA1, ACAA2, ACAT1, ACAT2), are in the green cluster. The peroxisomal acyl-CoA 

oxidases (ACOX1, ACOX2, ACOX3), two of the PPARs (PPARA, PPARD), two of the RXRs (RXRA, RXRG), 

and HADHA and HADHB are in the purple cluster with AKT1. AKT2, PPARG, RXRB, and KLF15 are in the 

green cluster. The ABCD transports are also split between the two clusters, ABCD1 and ABCD2 in the 

green cluster and ABCD3 in the purple cluster. Thus, there is a specific split between the FAO genes in 

terms of up- or downregulation in cardiomyopathy and the expression changes based on the group, 

HCM, DCM, or LVH. 
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Specific DEGs in HCM, DCM, and LVH 

A deeper look into the expression of the FAO genes list in the different comparisons shows that there 

are 5 DEGs in HCM-Control, 6 in DCM-Control, and 6 in LVH-Control with a significant P-value (P-value 

< 0.05) and a fold change > 1, these are the genes lined in red (Figure 7). Decreasing the fold change 

limit to 0.5 shows a big increase in the number of significant genes (HCM = 18, DCM = 25, LVH = 13). 

A majority of the DEGs in HCM and DCM are downregulated, while in LVH there are 7 upregulated 

genes and 6 downregulated genes. ADIPOQ is downregulated in HCM, but upregulated in DCM. RXRA 

is one of the genes downregulated in HCM, but RXRG is upregulated in DCM. MTL is upregulated in 

HCM, and downregulated in DCM. ADIPOQ and MTLN are two of the few genes with a fold change > 

1. There are genes that are downregulated in all three groups (ACADVL, ECH1), or in HCM and DCM 

(PLIN5, PPARG, ACADVL, ECH1). All the downregulated genes in LVH are also downregulated in DCM. 

None of the genes that are upregulated overlap between the three groups. These results further 

Figure 6 Expression of the FAO genes list across the four groups: the expression of the FAO genes list is visualised according 
to Z-score. Dendrograms on the left represent the clusters of genes, and divides the genes in two clusters and shown by the 
green and purple bars. Below the heatmap are coloured bars representing the group, supgroup or location of the samples. 
(R) 
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confirm the pattern that is seen in the FAO genes heatmap; HCM has a different gene expression 

profile than DCM and LVH. 

Gene enrichment analyses 

For gene enrichment with FGSEA, the genes are ranked according to the t-statistic, which means that 

the genes are ranked based on the ratio of the Log2(FC) to its standard error. An enrichment score 

(ES) reflects whether a gene is represented at the top or bottom of the ranked list; a low ES translates 

to downregulation and a high ES means upregulation. FGSEA for the 31 gene sets shows a significant 

enrichment score for 15 sets in HCM, 11 sets in DCM, and 6 sets in LVH (Figure 8, Supplementary Table  

Gene enrichment result: Table 1). All these sets have a normalized enrichment score (NES) of lower 

than -1. Three gene sets (adipogenesis, fatty acid metabolism, glycolysis) have a significant negative 

NES across all three diseases (Figure 8C). Five gene sets have shared enrichment in HCM and DCM 

(fatty acid metabolic process, lipid oxidation, fatty acid oxidation, long-chain fatty acid metabolic 

process, FAO genes list, cellular amino acid metabolic process) (Figure 8A and 8B). Enrichment in one 

gene set (glycolytic process) is shared in HCM and LVH, and for two gene sets (oxidative 

phosphorylation and ROS pathway) it is shared in DCM and LVH (Figure 8B and 8C). Regardless of the 

adjusted P-value, most gene sets show a negative NES. The only gene sets that show a positive NES in 

one or two groups are negative regulation of fatty acid metabolic process, fatty acid omega-oxidation, 

regulation of glucose metabolic process, and PPARA 1.  

GOseq is a method for gene enrichment that corrects for length bias. GOseq shows no significant 

enrichment for any of the 23 gene sets (fatty acid metabolic related gene sets and additional gene 

sets) (Supplementary Figure 9, Supplementary Table Gene enrichment results: Table 2). The lowest 

adjusted P-value is 0,068 for glycolytic process in LVH. Almost all gene sets in LVH have an adjusted P-

value of 1, and all gene sets in FA metabolic related gene set 2 have an adjusted P-value of 1 in DCM. 

HCM has four gene sets with an adjusted p-value below 0,5: ketone body metabolic process, 

regulation of glucose metabolic process, positive regulation of fatty acid oxidation, and response to 

fatty acid.  

Figure 7 Volcano plots of the significant DEGs in the three groups: Volcano plots of FAO genes in the three groups (HCM, 
DCM, and LVH). Labelled genes have a P-value < 0.05 and a FC > 0.5. Genes that are lined with red have a FC > 1. The X-axis 
shows the Log(FC) and the Y-axis shows the -Log10(P-value). Blue dots represent downregulated genes and red dots represent 
upregulated genes. (Galaxy) 
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PPAR-modulating compounds 

To properly understand genes involved in PPARα transcriptional regulation, the second objective of 

this project was to identify all natural and synthetic modulators of PPARα, and its isotypes PPARγ and 

PPARδ. Once a list was compiled, the second objective was to find all available datasets on the use of 

PPARα-modulating compounds so that these could be used to compare our results with.  

Hallmark and PPARA gene sets 

NES 

G
en

e 
se

t 
n

am
es

 
Additional gene sets 

NES 

G
en

e 
se

t 
n

am
es

 

FA related gene sets 
G

e
n

e
 s

e
t 

n
am

e
s 

NES 

Group 

HCM 

DCM 

LVH 

Adjusted P-value 

1 

0.75 

0.5 

0.25 

0.05 

Figure 8 FGSEA results: Bubble plots of the FGSEA results. 
The x-axis show the normalised enrichment score (NES) 
and the y-axis shows the gene set. The size of the bubble 
relates to the adjusted P-value. A) The FA related gene 
sets. B) Additional gene sets. C) Hallmark and PPARA 
gene sets. Purple: DCM. Red: HCM. Blue: LVH. 
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From the semi-systematic PubMed search, a total of 88 PPAR agonists and 4 antagonists were found 

(Supplementary Table PPAR: Table 1). For this project, all specific PPARδ and PPARγ agonists are 

excluded as the focus is mainly on PPARα-mediated substrate flexibility. All agonists that are only 

mentioned in one paper or agonists of which it is not clear whether it is a direct ligand are excluded. 

This results in a table with 48 PPARα agonists, and 3 PPARα antagonists. Of these 48 compounds, four 

compounds are pan-agonists (bezafibrate, lanifibranor, chiglitazar, and indeglitazar), and 24 dual 

agonists (PPARα/PPARγ and PPARα/PPARδ). Eight of the synthetic PPARα agonists have been 

approved for clinical use in a variety of diseases, and twelve others have undergone clinical trials. Even 

though PPARα agonists are being used/tested for clinical use, none of the compounds is currently 

being developed or tested for cardiomyopathies. 

Integration of public dataset  

The search for transcriptome-wide datasets involving PPARα-modulating compounds yielded a list of 

48 articles, including various organisms and various tissues (Supplementary Table PPAR: Table 2). From 

the 48, two articles were found where the influence of a PPARA-modulating compound was tested in 

mice cardiac tissue 42,43. No articles were found in human cardiac tissue. The two articles used either 

bezafibrate or fenofibrate against cardiac hypertrophy or Barth syndrome. The selected article, from 

Schafer, C. et al.42, uses TazKD mice as a model for Barth syndrome. This Barth syndrome model in 

mice exhibits DCM, similarly human patients often present DCM as well 42,44. 

The expression data of the bezafibrate-treated mice, and our own data was compared (Figure 9). A 

majority of the FAO genes list was not found to be significantly differentially expressed in the Schafer, 

C. et al.42 dataset by bezafibrate, thus there is no data on fold change from these genes. The fold 

change of all FAO genes in our dataset are visualised in the figure, significance (P-value ≤ 0.05) is 

marked by a black bar on top. The heatmap is ordered by the log FC of the DCM – Control group. From 

the 25 FAO genes that bezafibrate upregulates, 12 of 17 downregulated genes are significant in DCM, 

7 of 19 downregulated genes are significant in LVH, and 10 of 16 downregulated genes are significant 

in HCM. There are genes that bezafibrates upregulate that are significantly upregulated in our data as 

well, like IRS1, RXRG, ALDH1L2 in DCM (n = 8), IRS1 in LVH (n = 4), and ACAT1 in HCM (n = 7). Thus, of 

the genes that bezafibrate affects, more genes are (significantly) downregulated on our data. 

Nevertheless, bezafibrate also upregulates genes that are upregulated in our data.  

 

 

 

Motif enrichment 

PPARA is known to regulate peroxisomal and mitochondrial FAO genes. To check the transcriptional 

regulation of PPARA, four known PPARA targets were chosen from peroxisomal and mitochondrial 

FAO, and each present in a different cluster (green or purple) in Figure 6 (ACOX1, SCP2, CPT2, HADH). 

Figure 9 Comparison of DEGs in a PPARA-modulating dataset against our own data: 
Expression data from the Schafer, C. et al. dataset is shown in the top row, and our own 
data is shown in the last three rows. Fold change of the FAO genes list is reflected in this 
figure by different colours, red for a positive FC and blue for a negative FC. The black bar 
indicates a significant P-value (P-value ≤ 0.05). The FAO genes list is shown by gene symbol 
below the heatmap in columns.  
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As a control, a FAO gene was selected to was known to not be directly regulated by PPARA; 

HADHA/HADHB. HADHA/HAHDB have a bidirectional promotor, thus one promotor was taken for 

these genes.  

By retrieving the TSS from the region of the first transcript, an overlapping PPARA+RXR motif was 

found in one of the five promotor regions, HADH (Supplementary Table Motif enrichment: Table 3). 

PPARG+RXRA overlapped occurred in ACOX1 and SCP2. KLF15 overlapped with RXRA on five 

occurrences, in three genes (ACOX1, CPT2, HADHA/HADHB). Furthermore, KLF15 overlapped with 

PPARG and RXRA in ACOX1, and with PPARA and PPARG in HADHA/HADHB. As for orientation of the 

motifs, all motifs were found in the opposite orientation as the gene, except for one motif in ACOX1 

and one motif in HADHA/HADHB. The results from HOCOMO, including found motif, P-value and 

coordinates, can be found in Supplementary Table Motif enrichment: Table 4. 

CellProfiler 

PPARA in the nucleus was successfully quantified with the CellProfiler pipeline (Supplementary File 

CellProfiler). However, other staining's and additional pipelines are needed to fully analyse PPARA in 

cardiomyocytes.   



28 
 

Discussion 
For this project, a novel pipeline was set up and recommendations were made to analyse RNA-seq 

data from a retrospective patient cohort of 94 patients, with a total of 102 biological samples. The 

analyses have shown the possibilities of a transcriptomics project within a less coding-intensive 

environment named Galaxy. With the use of this pipeline, the expression patterns of FAO genes in 

HCM, DCM, and LVH are elucidated. Additionally, the pipeline has outlined the importance of 

comprehensive quality control when dealing with a large heterogenic cohort; how to deal with outliers 

and a check for labelling. The results show a split in the regulation of FAO genes that has not been 

shown to this extent before. First, it was shown that the significant FAO DEGs in HCM and DCM are 

downregulated, which was further confirmed by gene set enrichment analysis. Secondly, FA related 

gene sets primarily show negative normalized enrichment scores, indicating enrichment of 

downregulated genes in that particular gene set. Next, a more exploratory approach was taken to 

study the relationship between FAO genes and PPARA, which is the critical transcription factor 

regulating FAO signalling, by collecting a list of PPARA modulators and public transcriptomics datasets 

that used PPARA modulators. Combined with the integration of a public dataset that used bezafibrate, 

a PPARA agonist, the potential of PPARA as a therapeutic target was investigated. Lastly, a motif 

enrichment analysis was tried out in order to analyse PPARA regulation in FAO genes. This type of 

analysis and the interpretation of the results needs to be more extensively examined in the future. 

Our novel meta-analysis pipeline has successfully shown the different regulation patterns between 

the three types of heart failure. The results indicate that there are similar FAO expression patterns 

between DCM and LVH, whereas HCM showed distinct FAO expression patterns. This shows in both 

the heatmap, where there is a contrasting expression pattern between HCM and DCM with LVH, and 

the volcano plots. Of the significant downregulated DEGs in HCM (n = 12) and DCM (n = 21), only four 

are shared between them. This distinct profile of HCM and DCM is in line with recent literature 28,45,46. 

Research showed that KLF15 is downregulated in DCM, but upregulated in HCM 26,30. The regulation 

of the peroxisomal acyl-CoA oxidases (ACOX1, ACOX2, ACOX3) is shown to be upregulated in DCM 

when compared to non-failing hearts, but remains unchanged in HCM 28,47. These findings align with 

our data. We also observe the upregulation of the ACOX genes in DCM hearts. Besides, ACOX1 is 

significantly upregulated in LVH. Additionally, KLF15 is significantly downregulated in DCM, although 

our results do not show a significant change in HCM. KLF15 is a transcription factor involved in 

controlling cardiac metabolism and cooperates with PPARA to regulate lipid metabolism. Studies have 

shown that KLF15 expression protects against hypertrophy and fibrosis 48. Furthermore, we see more 

opposite expression profiles between HCM and DCM in our data. ADIPOQ is significantly 

downregulated in HCM and significantly upregulated in DCM. The opposite is true for MTLN and two 

of the PEX genes. PEX7 is significantly upregulated in HCM, while PEX2 is significantly downregulated 

in DCM. The PEX genes are involved in peroxisomal biogenesis and import of substrates into the 

peroxisome 49. Mitoregulin (MTLN) interacts with the mitochondrial trifunctional proteins in the 

regulation of FAO, of which a previous study has shown downregulation in DCM 26,50. In contrast with 

these findings, gene enrichment does not confirm the distinct profiles of HCM and DCM. Despite a few 

nonsignificant opposite enrichment scores for HCM and DCM in the FA-, additional-, and hallmark 

gene sets, the general consensus is a negative enrichment score for all three diseases.  

Beside a downregulation of FAO and an upregulation of glucose metabolism, studies have revealed 

alterations in other metabolic pathways 11,51–53. Ketone metabolism is downregulated in both HCM 
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and DCM, but amino acid metabolism, and oxidative metabolism is downregulated in DCM and 

upregulated in HCM 28,54–57. Consistently, we show a positive enrichment score for HCM in oxidative 

phosphorylation and for DCM in regulation of glycolytic process and regulation of glucose metabolism. 

Interestingly, we did not observe positive enrichment scores for ketone metabolism in HCM and DCM, 

or positive enrichment scores for glucose metabolism and amino acid metabolism in HCM. Instead, all 

gene sets showed negative enrichment scores for both DCM and HCM. While these results might 

suggest that these metabolic pathways are similarly downregulated in HCM, DCM, and LVH, it is 

plausible that the two chosen gene sets per metabolic pathway are not representative of the complex 

metabolic pathways. It is recommended to repeat the gene enrichment analysis with a more complete 

gene set collection better presenting glucose, ketone, and amino acid metabolism. Furthermore, to 

investigate whether the first results of a different FAO regulation in HCM and DCM align with gene 

enrichment, the enriched genes within each gene set can be compared between the two diseases. 

Our results show a split in the FAO genes list in terms of regulation according to disease. There is 

interplay between mitochondrial and peroxisomal FAO, and each pathway uses different fatty acids 

as substrates 58–60. For the first time, we specifically looked at the expression of mitochondrial and 

peroxisomal FAO genes, and the implication of it. Contrary to the hypothesized link that the split is 

due to a separation in peroxisomal and mitochondrial genes, our data shows an equal distribution of 

peroxisomal and mitochondrial genes in each cluster. There seems to be a yet undefined reason for 

this split. In our data we see a split in the peroxisomal ABCD genes, which transport lipids into the 

peroxisomal matrix 61. ABCD1 and ABCD2 are downregulated in DCM and LVH, and ABCD3 is 

downregulated in HCM. Downstream genes are the ACOX genes and SCP2, which are upregulated in 

DCM and downregulated in HCM, and vice versa. This shows that proteins that directly interact with 

each other show opposite expression profiles within this observed split. As for the PPARs and RXRs, 

the members are also present in the split. PPARG is significantly downregulated in DCM, and PPARA is 

slightly upregulated in DCM and LVH, although this upregulation is not significant. This relates with 

previously mentioned unpublished research by our group, where the expression of PPARA seemed 

unchanged, but acetylation levels were different and downstream effectors were downregulated 26. 

These downstream effectors, HADHA and HADHB, also show significant downregulation in our data. 

For which HADHA is downregulated in HCM, and HADHB in DCM. HADHA was also significantly 

downregulated in a multi-omics paper comparing 27 HCM patients with 13 healthy controls 62. The 

dysfunction or deficiencies in mitochondrial trifunctional proteins, that are formed by HADHA and 

HADHB, show severe clinical symptoms and can present itself as HCM or DCM, amongst other types 

of cardiomyopathy 63. MTPs catalyse the last steps in mitochondrial FAO and are therefore crucial 64. 

Further research is needed to investigate this split in FAO genes and the implications thereof.  

The explorative investigation of PPARA regulation and modulation has shown that there are already a 

lot of PPARA modulators being researched, developed, and approved for clinical use. The integration 

of a public dataset shows that a PPARA agonist can specifically elevate expression of FAO genes that 

are downregulated in cardiomyopathy, suggesting a positive effect of bezafibrate in cardiomyopathy. 

However, of all the datasets found, none of the datasets were on human cardiac tissue. This poses as 

a limitation in the direct translation of this result to the use in humans. As mentioned before, PPARA 

modulators like bezafibrate have already been approved for clinical use e.g. dyslipidemia 65. The use 

in humans has thus already been deemed safe. Additionally, there are ongoing clinical trials for the 

use of bezafibrate in diseases that reflect the impaired mitochondrial function and lipid accumulation 

as seen in cardiomyopathy, like mitochondrial disease and neutral lipid storage disease with myopathy 
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66–68. As the effect of fibrates has not been researched in human cardiomyopathy, these findings show 

promising results for the use in cardiomyopathy and emphasise the need for more research into 

PPARA as a therapeutic target. The last arising question involving PPARA modulation, is the specificity 

of the PPARs and RXRs. As shown the PPARs and RXRs show structure and sequence homology and 

their bindings motifs are extremely similar 18,20,69. Subsequently, motif enrichment was done to find 

out more about PPAR regulation. Our results did not return the expected results yet, as we did not 

find any PPARA motifs in genes that are known to be regulated by PPARA. There were motifs found 

on the reverse orientation as the gene, although this is not of importance for gene regulation as the 

orientation of the motifs does not matter 70. Future projects should focus on perfectioning the motif 

enrichment analysis to further define the regulation of PPARs and their specificity.  

This project is the first time that a meta-analysis was performed on a large retrospective cohort, that 

included this many genetic variants. There are studies done in large cohorts, but these are either 

single-centre, or do not contain all three disease types and as many variants as this cohort 71–73. The 

heterogenicity of the cohort is both a strength and a limitation. The heterogeneity poses as an 

opportunity to elucidate disease-wide disturbances and changes, instead of finding variant-specific 

variation in small cohorts. However, by using a heterogenic cohort, some form of bias has to be 

accepted. For instance, biopsies from four different locations in the heart were used. Therefore, this 

could also be a cause of variance in our data. This highlights the importance of an extensive quality 

control and looking for possible confounders in the data. In the part of outlier removal, we show 

clustering based on 500 and 5,000 genes, where we do not see any outliers based on 5000 genes. An 

explanation for this might be that a higher selection of genes, causes less clear outlier. Therefore, it is 

better to cluster on a large group of genes. Another result from the quality control analyses is that 

origin and run do not cause variance in the data. Although it looks like location might be a confounder 

due to the separate clusters for Rotterdam and Utrecht, it can be expected that this is actually variance 

caused by disease, since all samples from Rotterdam are HCM samples and Utrecht only supplied 

control samples. This shows the hyper-specialisation of hospitals and how relevant it is to assemble 

and promote more inclusive single-centre biobanks. Another way this reflects in the results, is in the 

untargeted analysis on the top 50 DEGs. The control samples from Utrecht do not show the same 

results as the other control samples from other locations. This might be due to the tissue extraction 

protocol from Utrecht, in comparison to the direct tissue sample handling happening in other 

locations.  

Due to lack of samples in the LVH group, the reliability of the results for this group are questionable. 

The lack of samples in LVH, compared to the number of samples in HCM and DCM, might have led to 

robustness into detecting DEGs between LVH and control. Moreover, the generalizability of the results 

from the FAO genes heatmap is limited by the overall limited expression and thus dull colours. It is 

hard to draw concise conclusions based on this. At last, future studies should take into account that 

the genes in GO:terms are based on different organs, and therefore not heart specific. This led us to 

include genes in our FAO genes list that are not expressed in the heart (ABCD11, ACOXL, FABP1, 

SLC27A2). Due to no expression of these genes in the heart, the genes were filtered out during limma 

analysis as is seen in the heatmap and gene interaction figure. 

In conclusion, my project presents a novel pipeline for the meta-analysis of a large heterogenic patient 

cohort. The data showed distinct expression profiles within three types of heart failure, and with gene 

enrichment the downregulation of FAO was further confirmed. Herein I emphasize the importance of 
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an extensive quality control with a more detailed description on how to deal with outliers and how to 

check the sex-labelling of your samples. The more explorative and integrative research highlighted the 

importance of further investigation into PPARA regulation. The use of PPARA-modulating compounds 

or metabolic-altering drugs might benefit cardiomyopathy patients and open new avenues for drug 

repurposing. 

Future perspectives for Galaxy 
For this project, the aim was to create a workflow on a local Galaxy docker on an Azure DRE 

environment. Since 2018 the General Data Protection Regulation (GDPR) has come into effect in the 

European Union (EU). GDPR governs the regulation and protection of the personal data of natural 

persons. This entails that people hold the right to decide what happens with their personal 

information and that all institutions need to uphold and respect that right. GDPR states certain rules 

and regulations about the storage and processing of personal data. Personal data may not be 

uploaded or analysed on open and accessible servers 74. UMC Utrecht, in collaboration with Erasmus 

MC Rotterdam and Radboudumc Nijmegen, has created anDREa B.V., the company behind Azure DRE. 

Azure DRE offers researchers a GDPR-compliant digital environment where personal data can be 

securely stored, shared between collaborators and accessed from anywhere 75. The combination of 

Galaxy and Azure DRE allows research to be safely conducted and shared between collaborations, 

without violation of data protection laws. The generation of bioinformatics pipelines within this Galaxy 

Docker offers the future possibility of bedside analyses.  

The integration of scripted analyses in user-friendly tools has made Galaxy an interesting software for 

future diagnostics. Researchers in the field can make workflows that can supply clinicians who have 

little to no bioinformatics background with a fully operational pipeline. It is a great step towards 

personalized medicine, where patient material can be analysed and visualised bedside within hours. 

The opportunities are limitless. My project has shown that it is possible to analyse a large cohort within 

this platform, and that multiple different analysis and quality checks can be properly done. However, 

working on this report, several things have stood out that would be great additions to the Galaxy 

platform for better usability and improved analytics. 

Limitations and recommendations for Galaxy 
Since 2005 Galaxy is an open-source platform that strives for accessibility, reproducibility, 

transparency and scalability. The platform has integrated more than 8,000 packages in a user-friendly 

interface called tools, that allow users to easily integrate and reproduce data analyses in their 

research. Whole pipelines of analyses can be saved and edited into workflows that can be run by 

anyone and anywhere if access is granted. Galaxy currently hosts three servers in Australia, Europe, 

and the United States, though the server can also be installed on clusters or local clouds. Besides data 

analysis and visualization tools, Galaxy offers workshops and has set up large, comprehensive training 

materials and modules that enable users to start and learn new analyses and tools 39. In this section I 

provide a list of limitations and recommendations for the Galaxy platform. 

Copying of datasets 

The current version of Galaxy works with the beta history panel. This panel shows the current history 

datasets and offers options to, for instance, copy the history, export the tool citations or set the 

permissions of the history. The previous version of Galaxy used the legacy history panel, which had 
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some features that were beneficial compared to the beta history panel. One such function was the 

ability to select history datasets and copy them to new or existing datasets. In the beta history panel 

it is only possible to copy whole histories, not single datasets. This feature allows for the easy structing 

of analyses in Galaxy and continuing analyses in different histories without having to deal with all the 

data of another history.  

Analysis and visualisation with DESeq2 versus limma 

Usually, for RNA-seq analysis DESeq2 is more often used than limma. In Galaxy the usability and 

visualisation option of limma offer an advantage so that the use of limma is preferred over the usage 

of DESeq2. DESeq2 provides the PCA plots and sample-to-sample distances that are good to use for 

quality control and outlier removal. Limma offers the possibility to set multiple comparisons in one 

analysis run, multiple QC plots and the MDS plots, and with an annotation file limma offers Glimma 

interactive plots. For improvement, it would be best if DESeq2 allowed for multiple factor analysis and 

returned the output of all the comparisons. Also, the visualisation option for DESeq2 leaves something 

to be desired.  

Plots and heatmap2 

Galaxy has tools to visualise data and with various tools it offers to output plots immediately. 

However, with a lot of these tools it is not possible to change colour schemes, change font sizes or 

select data within the tool (e.g. the heatmap2 tool). When making a heatmap with heatmap2, and the 

supplied dataset exceeds approximately 20 samples and 20 genes, the samples become unreadable 

and it selectively chooses which genes to output on the axis. So, it is not possible to relate rows back 

to genes. This limitation could be easily solved by providing the option to change font sizes.  

Rscript and RData 

A possible solution to the visualisation problem, is to download the RData and Rscript from Galaxy and 

manually change the plots in R studio. Despite this, the option for RData and Rscript is not available 

for every tool. It is therefore recommended that this will become available in more tools. 

GOseq returns NA with supplied gene categories 

The GOseq tool on Galaxy performs gene enrichment. This tool needs a datafile that states which 

genes are differentially expressed in Booleans and a gene length file for length bias correction. Further, 

there is an option to let the tool get categories to file the genes in, or to supply your own categories 

file. When a categories file is supplied, the tool errors in one of the outputs. It is an option to output 

the DE categories list, which is a table that states which genes were found in what GO terms. If 

categories were manually supplied, the lists only returns NA values. It is thus not possible to trace back 

which of the DEGs were categorized/found in the GO terms. 
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