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Layman abstract – Dutch 
Amyotrofe laterale sclerose (ALS) is de op twee na meest voorkomende neurodegeneratieve 
ziekte die voorkomt bij mensen. Een kenmerk van de ziekte is dat men niet zeker weet wat 
de algemene oorzaak is die de ziekte veroorzaakt. Wel weten we, na jaren aan onderzoek, dat 
er veel genen zijn gevonden die geassocieerd worden met de ziekte. Deze genen worden ook 
wel ALS genen genoemd. Veel van deze genen waren gevonden met betrekking tot zenuwen, 
associaties met andere celtypes werden vaak achterwege gelaten. In de laatste jaren komen 
juist de andere celtypes van het brein in de schijnwerpers. Dit patroon dat juist deze 
alternatieve celtypes te maken hebben met het ziektebeeld zien wij bijvoorbeeld terug in de 
ziekte van Alzheimer. Hier was een gen gevonden in microglia, een type afweercel in het brein, 
dat een groot risico geeft om de ziekte te krijgen als het een specifieke mutatie heeft. Dit gen 
heet APOE en kent verschillende vormen. Elk vorm van het gen wordt geclassificeerd door 
twee mutaties en er bestaan in totaal 3 vormen van het gen. Deze vormen worden ook wel 
genotypen genoemd. 
 
In ons onderzoek wilden wij kijken of de verschillende genotypen van APOE een effect hebben 
op ALS. Dus wij wilden zien of het hebben van elk van deze genotypen de ziekte juist verergert 
of verbetert. Een tegenslag in ons onderzoek was echter dat veel datasets geen informatie 
bieden of bepaalde patiënten een bepaald genotype hebben. Wij hadden daarom zelf een 
manier ontwikkeld om te gebruiken op publiek toegankelijke RNA-data voor het bepalen van 
de genotypen van de patiënten. Hierbij lieten wij zien dat, mits de data van hoge kwaliteit is, 
we met een hoge zekerheid konden zeggen dat een patiënt ook een bepaald genotype heeft. 
Met onze manier bieden wij onderzoekers een alternatief aan om genotype informatie te 
genereren van alleen RNA-data, zonder dat zij extra DNA-data nodig hebben. Met de 
hoeveelheid RNA-data dat al publiekelijk te vinden is, biedt onze methode ook een manier 
aan om de zee van ongebruikte data op een extra wijze te analyseren. Uiteindelijk hopen wij 
met het werk dat wij doen de wetenschap te innoveren en ontdekkingen te versnellen, 
allemaal om de patiënt zo veel mogelijk van dienst te kunnen zijn.  
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Abstract 
Amyotrophic lateral sclerosis (ALS) is the third most occurring neurodegenerative disease in 
humans and is defined by its heterogeneous clinical presentation. Over the years, many genes 
related to ALS were discovered by the rapid advancement of sequencing technology. Most of 
these studies were mainly focused on neuronal involvement. Only recently, non-neuronal 
cells joined the spotlight of the ALS field. In Alzheimer’s disease (AD), the involvement of these 
non-neuronal cells had been well defined, with the genotype of the APOE gene being the 
biggest risk factor for AD onset. We propose that APOE genotype could perhaps also have an 
effect on ALS. However, APOE involvement in ALS is not well defined and thus most public 
datasets do not readily offer genotype information on this gene. Here we present our method 
of utilizing a well-established variant calling pipeline on publicly available RNA sequencing 
data to genotype APOE allele status. We observed that if proper quality control steps on 
publicly available data were taken, we could robustly genotype APOE providing that read 
depth around the region of interest was high enough. After validation with a pre-genotyped 
dataset, we found that our method managed to reach an accuracy of 0.9667 in determining 
the correct genotype. Our results show that even if there are no microarray or whole genome 
sequencing data available for genotyping, we can use RNA sequencing data alone to 
accurately genotype the polymorphic variants of our gene of interest. We could possibly open 
up many doors for researchers in the field who are limited to RNA sequencing and need 
genotype information. Adding to it, it could also contribute to researchers in the exploration 
of already available datasets and reuse data that otherwise would be less informative. With 
this, we ultimately hope to contribute to the acceleration of scientific discovery and indirectly 
help patients towards a better clinical outcome.  
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Introduction 
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is 
the third most prevalent neurodegenerative disease next to Alzheimer’s disease (AD) and 
Parkinson disease (PD) (Vahsen et al., 2021). The disease is characterized by gradual loss of 
upper and lower motor neurons, leading to a diverse set of health complications and 
eventually death (Hardiman et al., 2017; Kim et al., 2020; Vahsen et al., 2021). Incidence and 
survival rates of the disease vary based on ancestral origin. Incidence of ALS around the world 
ranges from 0.7 to 3 per 100,000 individuals depending on the population (Hardiman et al., 
2017). Median overall survival of patients with ALS is estimated to be around 24 to 48 months, 
with rare events of some patients having the disease for more than a decade before death 
(Turner et al., 2010). 
 
Depending on the location of onset – bulbar-onset or limb-onset – the disease progresses 
differently. A third of the patients present the disease with bulbar-onset. Typical symptoms 
during the early stages of bulbar-onset ALS consist of dysphagia and dysarthria, followed by 
loss of motor functions in the limbs and body in the later stages of the disease. Limb-onset 
patients generally present the disease in a reversed manner. Several other symptoms typically 
presented with ALS include spasticity, hypersalivation, pain, muscle cramps, deep venous 
thrombosis, mood alterations, cognitive impairment and respiratory impairment. The latter 
is the main factor leading to death in most patients as a result of respiratory failure. Most of 
the manifestations can be treated symptomatically, however ALS itself remains without a cure 
to this day (Hardiman et al., 2017). 
 
From the etiological perspective, ALS can be categorized into two different groups. The first 
group contains patients with familial ALS (fALS) and the second group are patients with 
sporadic ALS (sALS). The group of fALS patients only represents around 10% of the total 
amount of ALS cases, but nonetheless these patients played a big role in etiological studies 
on the disease. Most of the major causative genes have been found with the help of genetic 
studies in families with a history of fALS (Kim et al., 2020). Combined with the rise of advanced 
sequencing methods, the small list of genes associated with ALS has been expanded towards 
several dozens of disease-associated genes in the past decade (Abel et al., 2012; Lill et al., 
2011; McCann et al., 2021). These genes include SOD1, C9ORF72, TARDBP (TDP-43), FUS/TLS, 
OPTN, TBK1, GRN, NEK1 and C21ORF2. Although an abundance of disease-associated genes 
has been found, they are only found in a select number of cases of fALS and the etiology of 
sALS remains largely unknown (Kim et al., 2020). 
 
Clinical and genetic differences in each patient are defining characteristics of ALS, marking 
ALS as a heterogeneous disease. Despite this heterogeneous classification, only neuronal 
involvement in the disease was broadly studied, while non-neuronal cells received less 
attention. Now, these cells are becoming more and more interesting to study as their 
involvement in ALS becomes increasingly elucidated. Especially the involvement of glia cells 
has been described for ALS, marking the relationship of the interconnected glia cells – 
microglia, astrocytes and oligodendrocytes – with neuronal damage mechanisms (Geloso et 
al., 2017; Madore et al., 2020; Trias et al., 2019; Vahsen et al., 2021). Also, involvement of 
perivascular fibroblasts has been shown to have an association with disease onset, 
highlighting the importance of vascular cells in ALS context (Månberg et al., 2021). 
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In contrast to ALS, the involvement of non-neuronal cells in AD has been described extensively. 
Particularly microglial effects on AD-progression have been observed in patients. 
Apolipoprotein E (APOE) is the main genetic culprit for this association (Belloy et al., 2019; 
Yamazaki et al., 2019). The presence of a particular allele of the APOE gene greatly increases 
or decreases the chance to develop AD (Montagne et al., 2021). APOE in humans can present 
itself with three different alleles: APOE ε2, APOE ε3 and APOE ε4. APOE ε3 is the most 
common allele amongst the three, followed by APOE ε4 and lastly APOE ε2. APOE ε1 does 
exist, however the occurrence of this allele has only been reported three times all around the 
world (Seripa et al., 2007). Due to its limited occurrence, the three other alleles are mostly 
the matter of discussion in literature when APOE is mentioned. The isoforms are defined by 
the single nucleotide polymorphisms (SNPs) rs429358 (T>C) and rs7412 (C>T). These 
polymorphisms result in changes for amino acid (AA) 112 and 158 of the protein, defining the 
different isoforms (Belloy et al., 2019). In AD context, having a single APOE ε4 allele increases 
the risk of AD by 4-fold and a homozygous carrier has a 12-fold increase in risk of AD 
(Montagne et al., 2021). Furthermore, carrying the APOE ε4 allele also accelerates the timing 
of disease onset. In contrast, carrying the APOE ε2 allele seems to be having the opposite 
effects of carrying APOE ε4 in terms of developing AD (Belloy et al., 2019). APOE genotype 
dependency on the developmental risk of disease has also been shown in cardiovascular 
diseases (Bennet et al., 2007; Montagne et al., 2021) and even tumors (Ostendorf et al., 2020). 
 
Here, we want to see whether we can observe an effect in ALS-context caused by differences 
in APOE genotype. To facilitate this, we turned to the public domain. One of the biggest 
available RNA sequencing (RNA-Seq) datasets representing ALS patient tissue transcriptomes 
was deposited by Tam et al. (Tam et al., 2019). The dataset (GEO: GSE124439) contains 176 
samples of ALS patients, neurological controls and non-neurological controls. The only 
downside to the dataset was that the dataset does not contain any APOE genotyping 
information of the samples. To solve this issue, we tried to genotype APOE ourselves from the 
raw RNA-Seq data provided by the authors. We used the two defined SNPs for the 
classification of the APOE alleles to find the genotype of the samples. Furthermore, the 
dataset also presented itself with a gender bias, in which gender represented more variance 
in the gene expression data than the disease status. To solve this observed phenomenon, we 
assessed gene expression in the sex chromosomes. We found an indication that the 
discordances were possibly alignment errors, which could be easily solved with removal in 
subsequent analysis steps. 
 
Ultimately, the goal was to determine APOE genotypes using a robust variant calling pipeline 
to find high confidence SNPs and validate the calls using a dataset where the APOE genotype 
is well defined. 
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Material and Methods 
Software and Algorithms 
The computations and data handling were enabled by resources in project SNIC 2022/22-143 
provided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX. 
Allocated resources: 10x 1000 core-h/month and 128 GB local (Crex) storage. 
RStudio was executed locally on a MacBook Pro (14-inch, 2021), Apple M1 Pro, 16 GB with 
macOS Monterey. 
 

Name Version Source Identifier 
DESeq2 1.34.0 Love et al., 2014 RRID:SCR_015687 
GATK 4.2.0.0 Broad Institute RRID:SCR_001876 

 
GEOquery 2.62.2 Davis & Meltzer, 

2007 
RRID:SCR_000146 

ggbeeswarm 0.6.0 Erik Clarke & Scott 
Sherril-Mix 

https://cran.r- 
project.org/web/packages/ggbeeswar
m/ vignettes/usageExamples.pdf 

ggpubr 0.4.0 Alboukadel 
Kassambara 

RRID:SCR_021139 

how_are_we_strande
d_here 

1.0.1 Beth Signal https://github.com/betsig/how_are_w
e_stranded_here/ 

HTSeq 0.12.4 Anders et al., 2014 RRID:SCR_005514 
kallisto 0.44.0 Bray et al., 2016 RRID:SCR_016582 
Picard 2.23.4 Broad Institute RRID:SCR_006525 

 
R 4.1.2 R Project RRID:SCR_001905 
R (UPPMAX) 4.1.1 R Project RRID:SCR_001905 
R_packages (UPPMAX) 4.1.1 UPPMAX https://www.uppmax.uu.se/support/us

er-guides/r_packages-module-guide/ 
RSeQC 2.6.4 Wang et al., 2016 RRID:SCR_005275 
rstatix 0.7.0 R Project  

 
RRID:SCR_021240 

RStudio 2021.09.
1 - 372 

R Studio RRID:SCR_000432 

samtools 1.14 Wellcome Sanger 
Institute 

RRID:SCR_002105 

STAR 2.7.9a Alex Dobin RRID:SCR_004463 
Synapse Python Client 2.3.1 Synapse https://pypi.org/project/synapseclient/ 
tidyverse 1.3.1 R Studio RRID:SCR_019186 
Trim Galore 0.6.1 Brabaham 

Institute 
RRID:SCR_011847 

VariantAnnotation 1.40.0 Obenchain et al., 
2014 

https://bioconductor.org/packages/rele
ase/bioc/ 
html/VariantAnnotation.html 

viridis 0.6.2 https://github.com
/ 
sjmgarnier/viridis/ 

RRID:SCR_016696 

Data and scripts availability 
Raw gene expression data generated by Tam et al. (Tam et al., 2019) was downloaded from 
GEO (GEO: GSE124439) on 07-03-2022. Raw sequencing files (Paired-end FASTQs) of 
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GSE124439 (n=176) were acquired through the European Nucleotide Archive (ENA) with 
project-ID PRJNA512012 (https://www.ebi.ac.uk/ena/browser/view/PRJNA512012) and 
downloaded through cURL using FTP-links provided by ENA on 23-03-2022. Raw sequencing 
files (Paired-end FASTQs) of ROSMAP batch 1 (n=120; Synapse ID = syn8612097) and batch 3 
(n=100; Synapse ID = syn21589959) were acquired through Synapse with the Synapse Python 
Client from the cloud servers of Synapse on 10-04-2022 and 31-03-2022 respectively. 
 
Scripts used in the study are deposited in the following GitHub-repository: 
https://github.com/munytre/2022_KI_Lewandowski 
 
Calculation of TPMs 
The transcript lengths were acquired through Ensembl Biomart (Ensembl V105 and 
GRCh38.p13) and included the lengths of the UTRs of each individual gene. TPMs were 
calculated according to the following equation (Zhao et al., 2021): 
 
(1) 

𝑇𝑃𝑀! =

𝑞!
𝑙!

𝛴" (
𝑞"
𝑙"
)
∗ 10# 

	𝑤ℎ𝑒𝑟𝑒	𝑞! = 𝑅𝑒𝑎𝑑𝑠	𝑚𝑎𝑝𝑝𝑒𝑑	𝑡𝑜	𝑔𝑒𝑛𝑒, 
𝑙! = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡	𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑔𝑒𝑛𝑒, 

	𝑎𝑛𝑑	𝛴" B
𝑞"
𝑙"
C = 𝑆𝑢𝑚	𝑜𝑓	𝑚𝑎𝑝𝑝𝑒𝑑	𝑟𝑒𝑎𝑑𝑠	𝑡𝑜	𝑔𝑒𝑛𝑒	𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑏𝑦	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡	𝑙𝑒𝑛𝑔𝑡ℎ 

 
Variant calling pipeline 
Raw fastq files were downloaded prior to quality control, alignment, counting and variant 
calling. Sources from which the data were acquired differ depending on the dataset as 
described previously. 
 
General resources 
The following resources were used throughout the pipeline (Schematic overview in 
Supplementary 1 & 2): 
FASTA 
Human reference genome (GRCh38) made with all the unmasked autosomes (1-22), sex 
chromosome X and MT chromosome. Individual FASTAs were acquired from 
http://ftp.ensembl.org/pub/release-105/fasta/homo_sapiens/dna/ and concatenated into 
one FASTA with zcat. 
Annotation file 
Ensembl (V105) for Homo sapiens was acquired from http://ftp.ensembl.org/pub/release-
105/gtf/homo_sapiens/Homo_sapiens.GRCh38.105.gtf.gz. 
STAR Index 
For each data set a new STAR index was made according to the read length of the reads found 
in the FASTQs following the max readlength-1 rule as indicated by the authors of STAR. 

• For PRJNA512012: --sjdbOverhang = 124 
• For ROSMAP batch 1: --sjdbOverhang = 100 
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• For ROSMAP batch 3: --sjdbOverhang = 149 
 
TrimGalore 
The fastq files were first processed with TrimGalore to select high-quality reads. This wrapper 
script runs Cutadapt and FastQC, to remove possible sequencing adapters, filter low-quality 
bases, and obtains other statistics. HTML-files generated by FastQC in this step were used to 
further assess the quality of the data. Validated files resulting from TrimGalore were then 
used as input for STAR. 
 
STAR 
A full alignment of the samples to the human reference genome annotated with Ensembl 
(V105) was conducted with STAR (Dobin et al., 2013) using twopassMode Basic. 
 
HTSeq-Count 
We then proceeded to index the sorted BAMs with samtools prior to read counting. The tool 
of choice for read counting was HTSeq-Count from HTSeq. In the tool we set --order to pos, 
as the BAMs were sorted by coordinates, and --stranded to reverse, as the reads were RF/fr-
firststrand stranded. The strandedness for the datasets were confirmed with 
how_are_stranded_here from https://github.com/betsig/how_are_we_stranded_here. 
 
GATK 
The BAM files were processed with a modified GATK pipeline for variant calling. We built the 
pipeline following the developer’s instructions and implemented the modifications in the 
pipeline indicated next.  
 
AddOrReplaceReadGroups 
The first step in our GATK pipeline was to assign read group information to the sorted BAM, 
which is necessary for the base recalibration step later in the pipeline. We used the defaults 
setting from AddOrReplaceReadGroups from Picard for this step and the resulting BAM with 
assigned read group was subsequently indexed with samtools index. 
MarkDuplicates 
The indexed BAM with assigned read groups was then put through MarkDuplicates from 
Picard to remove duplicated reads. Compared to recommended settings to only mark the 
duplicated reads in the BAM, we removed the duplicated reads from the entire BAM. 
SortSam 
The output BAM from MarkDuplicates was sorted based on coordinates and indexed with 
Picard SortSam after removal of duplicated reads. 
SplitNCigarReads 
The sorted BAM was then used in SplitNCigarReads to remove Ns from the reads aligned to 
the reference. As RNA-Seq data has a lot of Ns indicating regions where introns are located, 
this could disturb up the variant call. To prevent problems arising from these gaps filled with 
Ns in the reads SplitNCigarReads was used to split reads with Ns in the cigar. 
BaseRecalibrator & ApplyBQSR 
The output BAM from SplitNCigarReads was used in BaseRecalibrator to generate a 
recalculation table. This recalculation table was then used to recalculate QC scores for all 
reads to remove errors resulting from systematic biases that could arise prior or during 
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sequencing. The recalculation of the QC score in the BAM was done by ApplyBQSR. The VCF 
from dbSNP (V146, hg38) was used as the reference for known sites and was acquired from 
the GATK reference bundle located on UPPMAX. The naming of the chromosomes in the VCF 
was modified to accompany the Ensembl nomenclature of chromosome names by removing 
“chr”. BaseRecalibrator ran two times, one prior ApplyBQSR and one after. This was done to 
assert the base recalibration was successful in the following step. 
AnalyzeCovariates 
The two recalibration tables from BaseRecalibrator (prior and after ApplyBQSR) were run 
through AnalyzeCovariate to generate a pdf to assess the quality of recalibration. 
HaplotypeCaller 
The output BAM from ApplyBQSR was used in HaplotypeCaller to do the actual variant calling. 
The variant call was limited to the region 19:44500000-45000000 to spare resources. APOE is 
located on chromosome 19:44905791-44909393 (1-based position), so running the entire 
genome through HaplotypeCaller would take several hours compared to the limited region. 
Furthermore, we did not use the recommended settings of --standard-min-confidence-
threshold-for-calling = 20 to call RNA-Seq data. (The minimum phred-scaled confidence 
threshold at which variants should be called.) Instead, we used the tools default setting of 30. 
VariantFiltration 
At last, the generated VCF containing the calls were hard filtered with VariantFiltration to 
eliminate low quality calls. We used the same filtering criteria used in the WDL that was 
provided by GATK to make calls in RNA-Seq data (https://github.com/gatk-workflows/gatk4-
RNA-Seq-germline-snps-indels/blob/master/gatk4-rna-best-practices.wdl), which restricted 
the filtering to FisherStrand (FS) and QualityByDepth (QD). This resulted in calls with FS > 30.0 
and QD < 2.0 to be filtered out from the final VCF. Further analyses on the final files were 
done in R.  
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Results 
Gender separation 
Gene expression data (GEO: GSE124439) from Tam et al. (Tam et al., 2019) was inspected 
before we started genotyping the APOE gene from its raw RNA-Seq data. During initial 
inspection of the raw count table – GSE124439_RAW.tar – provided by the authors, the entire 
dataset (raw count matrix) was deemed unusable for our purposes due to gender effects as 
detailed next (Szczepińska & Lewandowski, unpublished). 
 
As part of this study, we scrutinized this dataset. Instead of edgeR, used in the initial 
inspection, we used DESeq2 for the analysis. The raw count matrix generated by Tam et al. 
was processed through the wrapper function DESeq() from DESeq2, with experimental design 
= ~ sample_group_ch1. Each group in sample_group_ch1 represented disease status of the 
patient (i.e. ALS Spectrum; Non-Neurological Control; Other Neurological Controls). Hidden 
expression biases were studied with a PCA (Principle Component Analysis) using plotPCA() 
from DESeq2. In particular, the two components explaining most of the sample’s variance in 
expression (PC1 and PC2) were used to assess the quality of the data. From this analysis, 
samples were separated on PC2 into two distinct clusters, each an admixed of different 
sample groups. Upon inspection, the two clusters separated distinctively with gender (Figure 
1). When corrected for gender in the experimental design (~ sample_group_ch1 + Gender), 
the observed separation of clusters disappeared. This suggests that gender had more effect 
on the expression differences between samples than the disease context in terms of cases 
(ALS Spectrum) versus controls (Non-Neurological Control and Other Neurological Controls). 
We evaluated the contribution of genes in the X and Y chromosomes (i.e., sex-linked genes) 
in the observed expression variance (Supplementary 3). Upon removal of the Y-linked 

Figure 1. Principle component analyses generated from DESeq2 variance stabilized transformed counts 
from the full GSE124439 raw count table. A) PCA with PC1 and PC2, samples are colored by ALS 
classification determined by Tam et al. NAs are non-ALS samples. B) PCA with PC1 and PC2, samples are 
colored by gender. C) PCA with PC1 and PC2, samples are colored by sample group. D) PCA with PC2 and 
PC3, samples are colored by gender. 

A. B. 

C. 
D. 
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genes, the separation of samples by gender disappeared on the PC2 (13% variance), but 
remained in PC3 (6% variance, Figure 2). Nevertheless, when the X-linked genes were also 
removed, the separation by gender in the PC3 (5% of the variance) was also normalized 
(Figure 3). 

Figure 2. Principle component analyses generated from DESeq2 variance stabilized transformed counts 
from the full GSE124439 raw count table with Y-linked genes removed. A) PCA with PC1 and PC2, samples 
are colored by ALS classification Tam et al. NAs are non-ALS samples. B) PCA with PC2 and PC3, samples 
are colored by ALS classification. NAs are non-ALS samples. C) PCA with PC1 and PC2, samples are colored 
by sample group. D) PCA with PC2 and PC3, samples are colored by gender. 

Figure 3. Principle component analyses generated from DESeq2 variance stabilized transformed counts 
from the full GSE124439 raw count table with both X-linked and Y-linked genes removed. A) PCA with 
PC1 and PC2, samples are colored by ALS classification Tam et al. NAs are non-ALS samples. B) PCA with 
PC2 and PC3, samples are colored by ALS classification. NAs are non-ALS samples. C) PCA with PC1 and PC2, 
samples are colored by sample group. D) PCA with PC2 and PC3, samples are colored by gender. 

A. B. 

C. D. 

A. B. 

C. D. 
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To determine the reason why gender contributed to a large percentage of the variance 
observed in the dataset, we proceeded to evaluate the gene counts for several sex-linked 
genes per sample for each sex. 
 
The groups used for the different comparisons were: 
 
Group 1 (Chromosome X): AKAP17A, ASMT, ASMTL, CD99, CRLF2, CSF2RA, DHRSX, GTPBP6, 
IL3RA, IL9R, P2RY8, PLCXD1, PPP2R3B, SHOX, SLC25A6, VAMP7, WASH6P, ZBED1 
Group 2 (Chromosome Y): AKAP17A, ASMT, ASMTL, CD99, CRLF2, CSF2RA, DHRSX, GTPBP6, 
IL3RA, IL9R, P2RY8, PLCXD1, PPP2R3B, SHOX, SLC25A6, VAMP7, WASH6P, ZBED1 
Group 3 (Chromosome X-specific with homologue shared by chromosome Y): AMELX, 
DDX3X, EIF1AX, KDM5C, KDM6A, NLGN4X, PCDH11X, RPS4X, TBL1X, TGIF2LX, TMSB4X, USP9X, 
VCX3A, VCX3B, VCX, VCX2, ZFX 
Group 4 (Chromosome Y-specific with homologue shared by chromosome X): AMELY, DDX3Y, 
EIF1AY, KDM5D, UTY, NLGN4Y, PCDH11Y, RPS4Y1, RPS4Y2, TBL1Y, TGIF2LY, TMSB4Y, USP9Y, 
VCY, VCY1B, ZFY 
Group 5 (Chromosome Y-specific): BPY2, BPY2B, BPY2C, CDY1, CDY1B, CDY2A, CDY2B, DAZ1, 
DAZ2, DAZ3, DAZ4, HSFY1, HSFY2, PRY, PRY2, PRYP3, RBMY1A1, RBMY1B, RBMY1D, RBMY1E, 
RBMY1F, RBMY1J, SRY, TSPY1, TSPY10, TSPY2, TSPY3, TSPY4, TSPY8, TSPY9P 
 
Groups 1 and 2 contain genes in homologue regions of chromosomes X and Y, and because 
both sex chromosomes contain the coding region for these genes, reads mapping to them can 
originate in males from either or both chromosomes. Groups 3 and 4 represent genes that 
are paralogues to each other and originate from the different sex chromosomes. Group 5 
contains genes that are Y-linked; thus, they can only originate from the Y-chromosome. 
Normalized counts (TPMs) (Wagner et al., 2012) were used to qualitatively compare the 
counts for these genes over the samples. Because we were missing the transcript length for 
each individual gene, and we did not know which specific transcript per gene was expressed, 
we used the average transcript length of all transcripts for each gene to calculate the TPMs.  
 
The expression difference between genders was computed for each gene group and its 
significance determined using Benjamini-Hochberg corrected Wilcoxon and Welch’s t-tests 
(Figure 4). Both statistical methods were used to account for possible differences in data 
distributions. Genes for groups 1 and 2 are presented as one group (i.e., Group 1) as both 
represent identical genes in homologue regions of the chromosomes X and Y, respectively. 
We observed for every group, except for the comparison of group 1 and 2, that there was a 
significant difference in TPMs for each gender (FDR<0.01). Unexpectedly, expression was 
detected for genes in groups 4 and 5 for female subjects. Both groups include genes exclusive 
to the Y-chromosome, and thus male specific. This discordance could be a result of the 
misalignment of reads due to the high similarity of sequences between genes of groups 3 and 
4, paralogue to each other. For group 5 we also detected gene expression in female subjects, 
which we speculate could be a result of either misalignment or an error made prior to 
sequencing. 
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Figure 4. TPMs per gene group are represented in TPMs and separated by gender. Group 1 in the figure 
encompasses group 1 and 2 as described in an earlier section. A) Pairwise Wilcoxon tests corrected for 
multiple tests with Benjamini-Hochberg. B) Pairwise Welch's t-test corrected for multiple tests with 
Benjamini-Hochberg. TPMs of all groups, except the combined first group, are significant different 
(FDR<0.01) between both genders. In group 4 and 5, expression from Y-linked genes were detected among 
female patients, suggesting the occurrence of errors during alignment or preparation of the biological 
samples. 
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In the end, we made the decision to use the dataset for further analysis, although we found 
the discordances in the genes located on the sex-linked chromosomes. By excluding the sex-
linked chromosomes in subsequent analyses, we ensured that the observed discordances will 
not affect the newly generated results. 
 
Genotype assignment 
Variant calling 
After curing the dataset for further usage, we proceeded to infer the genotype of APOE from 
the raw RNA-Seq reported by Tam et al. (Supplementary 4). The two single nucleotide 
polymorphisms (SNPs) rs429358 (T>C) and rs7412 (C>T) were used to classify the different 
genotypes (Table 1). Genotype of APOE was assigned based on the found SNP(s) by a modified 
GATK variant calling pipeline (van der Auwera and O’Connor, 2020). 
 
rs429358 rs7412  Allele  To observe 
C T  ε1  Both SNPs 
T* T  ε2  rs7412 
T* C*  ε3  NA 
C C*  ε4  rs429358 

 
Table 1. Schematic overview of the SNPs to classify APOE into its different isoforms. The SNPs rs429358 
(T>C) and rs7412 (C>T) define nucleotide changes that result in amino acid changes in APOE, resulting in 
different observed genotypes of the proteins. In AD, the ε4 allele is linked to increased risk of developing 
the disease. *Reference base for the SNP. 
 
Validation 
We assessed the accuracy of our genotyping pipeline by using RNA-Seq data and SNP data 
generated by The Religious Orders Study and Memory and Aging Project (ROSMAP) Study 
found on the AD Knowledge Portal (Bennett et al., 2018; Greenwood et al., 2020). All samples 
in ROSMAP were genotyped for APOE with an independent genotyping method where 
Agencourt Bioscience Corporation made use of high-throughput DNA sequencing to 
determine polymorphisms in codon 4 of APOE and its resulting genotype (de Jager et al., 
2018). Thus, running these samples through our pipeline and comparing the predicted 
genotypes with the originally assigned genotypes provided the necessary validation for our 
own calls. 
 
We randomly choose 100 and 120 samples from batch 3 and batch 1 respectively with a 
restriction on the number of selected samples per genotype and ran it through the pipeline. 
The latter batch contained more samples, as we wanted to include more samples with 
uncommon genotypes that were available in batch 1 in comparison to batch 3. 
 
ROSMAP batch 3 
We initially started with the selection of samples from ROSMAP batch 3 (Table 2 & 3; 
Supplementary 5). The reason to use this specific batch was that this batch was the only batch 
of the entire ROSMAP dataset with readily provided raw FASTQs. Other batches contained 
BAM files and to keep the pipeline consistent, the choice was made to keep the input to 
FASTQs. We proceeded with the selection of 100 random samples based on metadata 
provided by Synapse describing the APOE genotype of each patient and the availability of bulk 
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RNA-Seq data. We used the following files to make the selection: ROSMAP_assay_RNA-
Seq_metadata.csv, ROSMAP_biospecimen_metadata.csv and ROSMAP_clinical.csv. All files 
can be requested from Synapse. We furthermore limited the tissue origin to dorsolateral 
prefrontal cortex to keep the end-results consistent. 
 
Genotype Amount 
ε2ε3 34 
ε2ε4 2 
ε3ε3 160 
ε3ε4 48 
ε4ε4 8 

 
Table 2. Total amount of available samples found on Synapse for each APOE genotype in ROSMAP batch 
3. 
 
Genotype Amount 
ε2ε3 18 
ε2ε4 2 
ε3ε3 40 
ε3ε4 33 
ε4ε4 7 

 
Table 3. Total amount of samples per APOE genotype selected from ROSMAP batch 3 on Synapse. 
 
After running the selected samples through the pipeline, we discovered that from the 100 
samples SNPs have been detected in only 4 samples. We proceeded to look at the number of 
reads supporting each count and discovered that the value for each called variant was very 
low. The 4 samples RISK_226, RISK_253, RISK_17_rerun and RISK_390 had DP-values (Read 
Depth) of 2, 4, 5 and 40 respectively. Due to these low values, we proceeded to look at the 
counts generated by HTSeq-Count to see what the overall raw counts were for APOE. Overall, 
the number of raw counts for the APOE gene looked normal and ranged from 32 to 3878. It 
is noticeable that only a few samples had counts over 3000 and RISK_390 (raw count = 3129) 
with a variant call supported by 40 reads was one of them. In the end, due to the low amount 
of predicted genotype calls in ROSMAP batch 3, we explored ROSMAP batch 1. The latter had 
considerably higher detected raw counts for APOE when we looked at the raw count data 
generated by The RNA-Seq Harmonization Study (Synapse ID = syn21241740). 
 
ROSMAP batch 1 
After looking around the AD Knowledge Portal, we found that The RNA-Seq Harmonization 
Study regenerated raw FASTQs for ROSMAP batch 1 (Synapse ID = syn8612097). This meant 
that we could use ROSMAP batch 1 in our pipeline, instead of the initially provided BAMs 
(Synapse ID = syn4164376). Because batch 1 contained a lot more uncommon samples than 
batch 3, we selected for 120 samples to include in the validation set instead of 100 samples 
(Table 4 & 5; Supplementary 6). In this case, we also included all ε2ε2 samples in the pipeline 
as well. Sample selection was again random, but with the restriction on the number of 
samples per genotype. The selection was also based on the files described in the section for 
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ROSMAP batch 3. Limiting tissue selection was furthermore not necessary, as all samples in 
batch 1 originated from the dorsolateral prefrontal cortex. 
 
Genotype Amount 
ε2ε2 5 
ε2ε3 82 
ε2ε4 16 
ε3ε3 386 
ε3ε4 140 
ε4ε4 6 

 
Table 4. Total amount of available samples found on Synapse for each APOE genotype in ROSMAP batch 
1. 
 
Genotype Amount 
ε2ε2 5 
ε2ε3 30 
ε2ε4 5 
ε3ε3 40 
ε3ε4 35 
ε4ε4 5 

 
Table 5. Total amount of samples per APOE genotype selected from ROSMAP batch 1 on Synapse. 
 
Following our expectations, running batch 1 through the pipeline generated a substantial 
amount of called variants (Supplementary 7). In total, rs7412 was found in 38 samples and 
rs429358 was found in 45 samples. From all 120 samples, 4 samples were predicted 
incorrectly (Table 6). The resulting accuracy of our genotyping efforts using RNA-Seq data was 
calculated to be 0.9667.  
 
Type Amount 
True Positives (TP) 76 
False Positives (FP) 2 
True Negatives (TN) 40 
False Negatives (FN) 2 

 
Table 6. Overview of predictions of ROSMAP batch 1 samples according to our variant calling pipeline. In 
where TP = Number of samples with called SNPs that agree with the genotype, FP = Number of samples 
with called SNPs that do not agree with the genotype, TN = Number of samples with no called SNPs that 
have a wild-type genotype and FN = Number of samples with no called SNPs that do not have a wild-type 
genotype. 
 
Comparison of datasets 
To find out the reasons why ROSMAP batch 3 was ineffective as validation set, we proceeded 
with a comparison of the three datasets (PRJNA512012, ROSMAP batch 1 and ROSMAP batch 
3) on multiple levels (Figure 5). We saw from the RNA-Seq data that ROSMAP batch 3 had an 
overall lower amount of uniquely mapped reads, coverage and reads aligned to APOE. This 
indicated that ROSMAP batch 3 was of lower sequencing quality than the other two datasets 
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and therefore could have impacted the variant calling. This was further confirmed when we 
compared the read depth supporting the SNPs called (rs7412 and rs429358) in APOE for each 
of the three datasets, where ROSMAP batch 3 had substantial lower read depth for the calls 
made compared to the other two datasets (Figure 6). 
 
Reproduction runs 
To verify the technical reproducibility of our results, we ran 2 random samples from each 
dataset through the pipeline for a second time (Table 7). This was done for PRJNA512012 and 
ROSMAP batch 1. ROSMAP batch 3 was excluded from the reproduction runs, as the batch 
did not detect a substantial number of variants. Thus, to save resources, the decision was 
made to only reproduce the results of the other two datasets. 
 
Dataset Sample Output files of second run 
PRJNA512012 SRR8375325 Identical output 
 SRR8375392 Identical output 
ROSMAP batch 1 331_120501 Identical output 
 583_120522 Identical output 

 
Table 7. Chosen samples for reproduction runs and the result of the second runs. 
 
The results from HTSeq-Count and GATK from each of the samples were compared for the 
different runs. The count-file and the filtered VCF from GATK were loaded into R for each 
sample and compared using setequal() from dplyr (tidyverse). To see, if samples from the 
same dataset were equal due to technical errors, the samples were also cross compared. At 
the end, the reproduced results of each sample from each dataset were identical. 
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Figure 5. Comparison of PRJNA512012, ROSMAP batch 3 and ROSMAP batch 1. A) Uniquely mapped 
reads, B) Estimated Nucleotides Covered (nReads * Read Length), C) Raw read counts generated by HTSeq-
Count for APOE, D) Percentage of reads aligned to protein coding genes counted for APOE by HTSeq-
Count for each sample are plotted per dataset (PRJNA512012, ROSMAP batch 3 and ROSMAP batch 1). E) 
Comparison of read depth for variants called in APOE (rs7412 and rs429358) across the different 
datasets.  
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Figure 6. Comparison of PRJNA512012, ROSMAP batch 3 and ROSMAP batch 1 – Coverage of SNP 
locations. Coverage of SNP location was assessed after read duplication removal for all three datasets 
with samtools mpileup. Coverage (read depth) of the different datasets are compared with Kruskal-Wallis 
test. ROSMAP 1 = ROSMAP batch; ROSMAP3 = ROSMAP batch 3. A) Coverage for chr19: 44908822 
(rs7412). B) Coverage for chr19: 44908684 (rs429358). All chromosomal locations shown here are 1-
based.  
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Discussion 
After decades of research on ALS, we start to understand the disease better. From the 
anatomical level up down to the molecular level, we start to connect the dots leading to novel 
treatments and discoveries on the neurodegenerative disease. Particularly on the molecular 
level, the field has progressed a lot with the developments in sequencing technology. More 
and more genetic alterations are being linked to cause ALS, in which multiple novel genes are 
classified ALS-genes (Kim et al., 2020). With the steady decrease in sequencing cost over the 
years many groups have acquired a substantial amount of sequencing data, particularly RNA-
Seq data and its resulting gene expression data. Most of the gene expression data is used to 
just answer strictly gene expression related questions. However, the biological function can 
also be affected by specific allele variants as exemplified by APOE contribution to Alzheimer’s 
disease and vascular dysfunction (Belloy et al., 2019). Therefore, we aimed to re-genotype 
the APOE variants for future genotype stratification of gene expression in publicly available 
ALS datasets. 
 
Using the biggest publicly available ALS RNA-Seq dataset (Tam et al., 2019), we managed to 
demonstrate the utility of APOE allele variant calls from raw RNA-Seq data. We showed with 
our results that data that was available without the APOE genotype, could be re-genotyped 
from RNA-Seq data if proper steps regarding quality control are taken before actual analysis 
of the data. Initially, the gender effects that were observed in gene expression were a 
substantial source of variance in principle component analysis. However, with multiple PCAs 
we showed that gender effects on the variability of the data could be normalized if we do not 
include gene expression data from the sex chromosomes. Although the number of coding 
genes in the sex chromosomes are not high in numbers and removal of the effect caused by 
gender can be done in other ways, we still made the decision to remove the sex chromosomal 
genes. Gene expression that was biologically unlikely to be found on the sex chromosomes, 
where Y-linked genes were found to be expressed in females (Figure 4), gave us reasons to 
believe that the removal of genes originating from the sex chromosomes is necessary if we 
wanted to fully utilize the dataset for further analyses. Even though we did not further 
investigate why we found these biologically unlikely gene expression values, we believe that 
the observations could be a cause of technical issues. We propose that these could either be 
originating from the sequencer itself or the algorithms that were used to align the sequences. 
In addition, the sex chromosomes have the same evolutionary origin and thus share a high 
similarity (Ross et al., 2005; Webster et al., 2019). The many homozygous regions, which 
include gene encoding regions, could easily introduce problems for alignment algorithms 
(Olney et al., 2020). 
 
It is worth to mention that removal of the sex chromosomes in the alignment step is not 
recommended. As stated by the authors of STAR, forced misalignment of reads could happen 
when a suitable reference is missing (Dobin et al., 2013). Thus, instead of removing all sex 
chromosomal genes at the alignment step, we made the choice to remove it only during the 
analysis steps. The X-chromosome was included in the reference genome for the STAR aligner. 
Contrasting this, the Y-chromosome was excluded from the reference genome. One of the 
reasons is that the highly homologue regions of both sex chromosomes are the regions that 
are most robustly assembled, the other regions are variable, repetitive and difficult to resolve 
(Kuderna et al., 2019). Thus, leaving out the Y-chromosome and using the X chromosome to 
prevent possible forced misalignment of reads to the reference genome, would provide us 
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with an alignment of higher quality. This is with the assumption that reads originating from 
the Y-linked genes are not disturbing the alignments of reads on the autosomes and 
disturbing gene expression rates of the genes located there. 
 
On another note, we showed that if raw RNA sequencing data was of high quality, we can 
accurately determine the genotype of a gene of interest by assessing present SNPs in the data. 
Usually, genotyping of a gene is done with either microarrays, whole genome sequencing 
(WGS) or whole exome sequencing (WES). These techniques have the advantage of having a 
high coverage at the regions of interest, thereby providing high quality SNP calls if the certain 
base differs from the reference. RNA sequencing has the downside of only providing reads at 
locations in the genome where transcription actually happens (Jehl et al., 2021; Sims et al., 
2014). Consequently, this means that if a gene of interest is not expressed and thus not 
transcribed, we cannot find SNPs at all due to the low coverage of that gene. 
 
To improve our genotyping efforts in future perspective, we need to find an optimum of 
parameters to use in the GATK pipeline. It is unavoidable that coverage rates in different 
samples of our particular gene of interest will differ. We need to find a general threshold of 
the read depth that allows us to make SNP calls of high accuracy. One possible way to do this 
is by using an already genotyped dataset and test different threshold regarding read depth of 
the region of interest. We can artificially reduce read depth of a particular region, for which a 
module exists in GATK (DownsampleSam from Picard), through multiple iterations and find a 
suitable threshold in which SNPs are accurately called. To test the threshold found, we can 
utilize several different datasets and validate the robustness of the threshold set. 
 
With the found genotypes, we can assess differential expressed genes between the genotypes 
and other characteristics related to the allele of interest. In particular, for APOE, we can look 
at datasets without readily available APOE genotyping in a different context than Alzheimer’s 
disease. For our interest, this method provides us with extra analytical options to assess the 
effects of APOE genotype on ALS disease variability. As survival risk could be a parameter to 
associate the APOE genotype with, we could consider doing survival analysis with the 
acquired information in the future. However, due to the limitations of our genotyping method, 
the downside of the mentioned survival analysis will be that the results are an indication of 
the observed effect than an actual observation of causation. A more robust approach needs 
to be developed if we want to see a significant association effect. 
 
Furthermore, although the validation dataset (ROSMAP batch 1) had a similar level of 
coverage of the SNPs, one could argue that the disease origin of the dataset may not be the 
best comparison material for our purpose. As ROSMAP is originally a study on Alzheimer’s 
disease and the dataset we are interested in, PRJNA512012, is focused on ALS. To rectify this 
and have a formal validation endeavor, we could use a reference ALS dataset where RNA-Seq 
and WGS were performed. To see if our pipeline produces the same unbiased result, we can 
perform the SNP calling and genotyping on the raw RNA-Seq data and compare it with the 
results of the WGS called SNPs and genotyping. To further increase the validity of the 
unbiased approach, we can also increase the number of samples in the validation set to e.g., 
an arbitrary number of 5x the amount of test samples. However, the type of disease should 
not be a matter of concern towards the variant calls and the subsequent genotyping. As we 
were only assessing the accuracy of our variant calls, a validation set with a comparable tissue 
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source and coverage was needed to minimize variability of possible biological effects. 
ROSMAP fulfilled these criteria, as it has a known allele status and a similar tissue source. 
 
To conclude, we managed to use public RNA-Seq data for APOE genotyping and to reach high 
accuracy in calling the actual SNPs defining APOE genotypes. Further investigations are 
needed to validate our approach of genotyping via RNA-Seq data. This approach could be 
promising, considering the robustness of variant call accuracy achieved in this project. If we 
manage to find a suitable threshold to accurate determine appropriate read depth levels of 
our gene of interest, we can try to apply our genotyping method to a vast number of RNA-
Seq data available in the public domain. In essence, our approach could reach past the limits 
that exist on public data and open up novel possibilities that could contribute to our 
understanding of human biology.  
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Glossary of abbreviations 
AD    Alzheimer’s Disease 
ALS    Amyotrophic Lateral Sclerosis 
APOE    Apolipoprotein E 
DP    Read Depth 
fALS    Familial Amyotrophic Lateral Sclerosis 
GATK    Genome Analysis Toolkit 
PD    Parkinson Disease 
RNA-Seq   RNA Sequencing 
ROSMAP   The Religious Orders Study and Memory and Aging Project 
sALS    Sporadic Amyotrophic Lateral Sclerosis 
SNP    Single Nucleotide Polymorphism 
WGS    Whole Genome Sequencing 
WES    Whole Exome Sequencing 
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Supplementary 
S1. Schematic overview of genotyping pipeline 

 
Raw counts generated by Tam et al. were evaluated prior to realignment and genotyping of 
the raw RNA-Seq data. FASTQs were used as input for the general re-alignment and 
genotyping pipeline and executed on a high-performance computing cluster. The output 
files were gathered afterwards for future analyses. A detailed schematic of the realignment 
and genotyping pipeline is provided in Supplementary 2. 
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S2. Schematic overview of genotyping pipeline with tools 

 
The pipeline starts with the trimming and quality control of the raw FASTQs of raw RNA-Seq 
data. After mapping, BAMs are split into two different modules. The green boxes indicate 
the main module responsible for realignment of the transcriptomics data and counting gene 
expression. The yellow boxes indicate the modified GATK pipeline used to call SNPs from the 
realigned reads. Following the SNP detection, we assigned genotype based on found SNPs 
with a dedicated R-script. 
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S3. List used to remove genes originating from the sex chromosomes in raw count data 
For the version used in the analysis of raw count data obtained from GSE124439 see: 
https://github.com/munytre/APOE_supplementary/blob/main/XY_genes.txt 
For the version used in the analysis of the re-aligned data from PRJNA512012 see: 
https://github.com/munytre/APOE_supplementary/blob/main/XY_genes_ENSEMBL.txt 
 
S4. Genotyped samples of PRJNA512012 
The list of 176 samples from PRJNA512012 with their respective genotype predictions can 
be found on: 
https://github.com/munytre/APOE_supplementary/blob/main/PRJNA512012_genotyped.tx
t 
 
S5. Chosen samples of ROSMAP batch 3 
The 100 samples chosen randomly from ROSMAP batch 3 can be accessed via: 
https://github.com/munytre/APOE_supplementary/blob/main/ROSMAP_batch_3_samples.
txt 
 
S6. Chosen samples of ROSMAP batch 1 
The 120 samples chosen randomly from ROSMAP batch 1 can be accessed via: 
https://github.com/munytre/APOE_supplementary/blob/main/ROSMAP_batch_1_samples.
txt 
 
S7. Genotyped samples of ROSMAP batch 1 
The list of 120 samples from ROSMAP batch 1 with their respective genotype prediction and 
real genotype can be found on: 
https://github.com/munytre/APOE_supplementary/blob/main/ROSMAP_batch_1_genotyp
ed.txt 


