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Layman’s summary: 
 
Methicillin Resistant Staphylococcus aureus (MRSA) is a S. aureus bacterium which is 

resistant to most b-lactam antibiotics. Antibiotics in this class make up a majority of the 
antibiotics prescribed to humans and include groups such as Penicillins and Cephalosporins. 
livestock associated MRSA (LA-MRSA) can be traced back to contact with animals and is 
genetically distinct from both hospital and community acquired MRSA. Pigs are an important 
reservoir of LA-MRSA, and close contact between pigs and humans on farms can lead to MRSA 
carriage by workers. This is a concern as MRSA carriage can lead to active MRSA infection in 
vulnerable populations, such as those who are hospitalized, possibly resulting in serious skin 
infections and even sepsis.  

There is a growing body of research which seeks to understand the link between MRSA 
found in the environment on farms and its implication on human health. An important part of this 
is a thorough understanding of the occurrence of MRSA in that setting and the ability to measure 
it in a reproducible and robust way. This study aims to compare two different sampling methods 
for measuring airborne MRSA in the farm environment, passive dust sampling with electrostatic 
dust fall collectors (EDCs), and active sampling air pumps. The study described here is part of a 
larger study called Exclude MRSA whose objective is to reduce MRSA carriage in pigs by 
introducing benign bacteria into the noses of piglets which could competitively exclude MRSA. 
Additionally, the data collected may improve understanding of the ways that MRSA exists in the 
farm environment and make it easier to compare existing studies which used different sampling 
methods. Dust samples were taken from 7 Dutch pig farms, with measurements taken in multiple 
compartments housing pigs of varying ages. These samples were then analyzed for MRSA 
presence as well as total bacterial count. There was a strong positive relationship between the 
paired MRSA levels found in EDCs and those measured by pumps. This suggests that in the 
future EDCs can be used as the primary method for measuring MRSA presence in the pig farm 
setting.  
  

Introduction:  
 
     Methicillin Resistant Staphylococcus aureus (MRSA) is a S. aureus bacterium which is 
resistant to most b-lactam antibiotics, a group which includes Penicillins and Cephalosporins (1). 
Many people colonized with MRSA experience no ill health effects, however MRSA is an 
opportunistic pathogen and a study found that approximately 11% of patients who enter the 
hospital as carriers go on to develop and active MRSA infection during their stay (2). Moreover, 
research has shown that the risk for patients who are colonized with MRSA remains high even 
after their hospital stay, with one third of these patients developing an active MRSA infection in 
the year after discharge (3).MRSA is of increasing public health concern as it has properties 
which make it particularly dangerous if introduced into a healthcare setting, such as an ability to 
form biofilms and cause intravascular infections, in addition to the risk of serious skin infections 
and sepsis (4). 

Prior to the 1990’s MRSA infection was mainly found in hospitalized patients or 
outpatients who made frequent hospital visits (5). However, genetic studies have determined that 
the prevalence of MRSA infections in the European population has been increasing in people 
unconnected to hospitals (5). This is due to the rise in community associated MRSA (CA-
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MRSA), some of which can be attributed to the spread of livestock-associated MRSA (LA-
MRSA) strains (4,6). LA-MRSA was first described in 2004 when a 6-month-old girl was found 
to be MRSA positive during a pre-surgery screening, despite lacking the previously established 
risk factor of having been treated at a foreign hospital (7). The hospital could not decolonize the 
girl and it was found that her parents, who lived and worked on a pig farm, were also MRSA 
positive (7). This led researchers to explore livestock farming as a possible source of MRSA in 
the Dutch population. One such study done by Wulf et al. in 2006, investigated MRSA carriage 
in another group which has close livestock contact, veterinarians and veterinary students. They 
found contact with pigs conferred the highest relative risk of MRSA colonization when 
compared to contact with other types of animals (8). LA-MRSA shows no difference in clinal 
presentation from hospital-associated MRSA and CA-MRSA but is genetically distinct, with 
clonal complex 398 (CC398) being the most common clone in Europe (5,9). However, MRSA 
CC398, does show a reduced ability to spread from person to person, and a study done in a 
Dutch hospital showed that infections of CC398 were 72% less likely to create secondary cases, 
when compared with other MRSA strains (10). Nevertheless, MRSA CC398 is quickly evolving, 
and has demonstrated the ability to acquire foreign DNA, such as genes encoding various 
virulence factors (9). Studies have already found a sub-clade of CC398 which is presenting in 
patients without any history of livestock contact (11,12). This indicates that LA-MRSA, which 
started as a human pathogen and then adapted to colonize animals, is regaining genes which 
allow it to become more easily transmissible between humans making it a particularly worrying 
health threat (11,12). 

Pigs are an important reservoir of LA-MRSA, and close contact between pigs and 
humans on farms can lead to MRSA colonization of the anterior nares, from which human to 
human spread can occur (13). This puts not only farm workers but also their families and close 
contacts at risk of contracting LA-MRSA. Research has found that the concentration of airborne 
MRSA in farms is highly correlated to the MRSA loads found in the noses of exposed people 
(14). Other important factors that influence MRSA transmission from animals to humans 
include, the prevalence of MRSA in the animals, the number of working hours spent in the stalls, 
as well as environmental exposure through contaminated dust (15). In the farm environment 
MRSA can be found in the air as clusters of cells or attached to other airborne particles such as 
fragments of skin cells or feed, which then fall as settled dust (13). MRSA can be cultured from 
settled dust for up to 30 days and can easily be re-aerosolized during routine farm activities such 
as high-pressure cleaning, making dust an important factor in the transmission of LA-MRSA to 
humans (16). 
     The parent study for this report, the EU Joint Programming Initiative on Antimicrobial 
Resistance (JPI-AMR) funded Exclude MRSA project (Preventing transmission of MRSA from 
livestock to humans through competitive exclusion), aims to reduce MRSA carriage in pigs by 
introducing benign bacteria into the noses of piglets which could competitively exclude MRSA. 
By occupying the bacterial niche normally inhabited by MRSA, the introduced bacteria would 
lower the burden of MRSA on the farm and therefore reduce risk of infection for the farm 
workers. Commercially available competitive exclusion products, such as Aviguard, have been 
successfully implemented in the poultry sector to combat Salmonella colonization (17). Over a 
three-year period, the efficacy of the intervention will be assessed in Ireland, Germany and The 
Netherlands. During this study the change in pig nasal and airborne MRSA abundance will be 
evaluated. To estimate the possible impact of this intervention on the prevalence of LA-MRSA 
carriage among farmers, it is important to have a complete understanding of the occupational 
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exposure and risk to become a MRSA carrier in farm workers. In Exclude-MRSA, airborne 
MRSA in the pig stables will be evaluated using settled dust collected using passive dust 
samplers, called electrostatic dust fall collectors (EDCs). The main aim of the study is to 
understand the relationship between MRSA as found by EDCs and that found by pumps. 
Additionally, if the EDCs are determined to be a good predictor of MRSA load in the 
environment, they could be used in place of active air sampling equipment in future studies. This 
could be an advantage as EDCs are easier to use and more cost effective than pumps and could 
therefore be implemented at a larger scale. Furthermore, an understanding of the relationship 
between pumps and EDCs could help to make studies more comparable in the future as EDC’s 
simple construction means that it has few variables which can be changed form study to study, 
when compared to active pumps (18). 
  Previous studies have found EDCs to be useful and reproducible tools for measuring the 
microbial composition of dust found in farm environments (19). Additionally, EDCs are not size 
selective, they collect any size particle which is small enough to become airborne, providing a 
complete picture of the microbial environment (20). While the pumps used for active air 
sampling are size selective, selecting only particles small enough to be inhaled. The use of 
personal air samplers provided an estimate of what portion of the MRSA in the environment that 
workers are exposed, reflecting inhalation exposure during a workday. All this information will 
hopefully contribute to filling the knowledge gap of possible environmental reservoirs for MRSA 
in the pig farm environment, which currently poses a challenge in the creation of accurate risk 
modeling (18). If EDCs and pumps demonstrate to be equivalent methods of sampling then it 
will aid in growing the body of research which can be used to inform risk models such as the one 
proposed by Sørensen et al. in 2020, as currently the assumptions for the model are based on 
studies which used different sampling methods.  
    In the present study, we collected active (stationary and personal air sampling) and passive 
(EDCs) air samples on Dutch pig farms. MRSA loads were determined using qPCR targeting 
femA, nuc and mecA genes as a portion of the total bacterial load in the sample. The total number 
of all species of bacteria present was determined by 16S rRNA analysis. 16S rRNA is a gene that 
is highly conserved across bacterial species and can therefore be used to quantify the total 
number of bacteria found in a sample. For MRSA quantification, nuc and femA were selected as 
specific markers for all S. aureus, including antibiotic susceptible types, and mecA is responsible 
for MRSA’s resistance to b-lactam antibiotics (21).The mecA gene encodes an altered penicillin-
binding, methicillin resistant protein which is needed for bacterial wall synthesis which leads to 
the antibiotic resistance seen in MRSA (21,22). The presence of all three of these genes, femA, 
nuc, and mecA, strongly indicates the presence of MRSA in a sample.  
 
Aims and Objectives 
  The aim of this  study is to provide information on how MRSA measured in dust 
collected using a passive air sampling method (EDCs) compares to inhalable dust (active air 
sampling using stationary pumps) over a variety of pig farm environments. Understanding the 
relationship between these sampling methods could allow future research to use EDCs in place 
of pumps. EDCs have many advantages such as being cost effective and easy to use and could 
therefore be implemented at a larger scale. This information could also contribute to risk 
modeling by broadening the range of studies, both past and future, which can be used to inform 
the assumptions of risk modeling for MRSA in farms.  
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Methods: 
 
Study population 

Pig farmers were recruited from across the Netherlands. Farms could be of any size, and 
only farms using all organic practices were excluded, as they were unlikely to have MRSA 
present. A total of 7 farms were sampled. Every farmer was given a general questionnaire, asking 
about antimicrobial use and general biosecurity practices which could potentially influence the 
microbial diversity and abundance on the farm. On 6 of the farms, farm workers were recruited 
to wear personal air sampling devices during their shifts in the stables. The famer owners and 
every participant who wore a personal air sampler completed informed consent forms. 
 
Questionnaire Data 
A 26-item questionnaire was completed at each farm. The questions explored biosecurity 
practices at the farm as well as factors which may influence airborne dust such as the type of 
bedding used in the stables.  
 
Sampling and storage 

Three types of dust/air samples were collected at the farms: EDCs, stationary pump and 
personal pump air samples.  
 Electrostatic dust fall collectors (EDCs)  

Electrostatic dust fall collectors (EDCs) were used to sample settled dust in the pig farm 
stables. EDCs contain two electrostatic dust cloths held by a plastic frame and placed onto a 

cardboard platform and hung (see Figure 1). EDCs were placed in an 
average of three different stalls, containing pigs of a range of age 
groups. At each farm we sampled the following compartments: a 
nursery compartment, a weaned piglets and a fattening pigs’ 
compartment, except for 2 farms where only adult animals (fattening 
pigs) were sampled. At the farms where only adult animals were 
sampled, there was an effort made to place the EDCs and pumps in 
the compartments housing the oldest and youngest animals available 
to get a range of information. 

 The EDCs were hung at an average height of 1.5m in order 
to catch airborne matter and be out of reach of the animals. EDCs 
were then left in place for 7 days before being sent to the laboratory 
through the post by the farmer. An average of two EDCs were hung 
in each stall acting as duplicate measurements. Additionally, a blank 
EDC was taken to each farm but remained sealed and was sent back 
with the other samples and treated as a negative control. Once the 
EDCs arrived at the lab, both sides were sterilely removed from the 

plastic frame and placed in plastic zip top bags and stored at -20oC until 
analysis. 

Figure 1: Image of an EDC 
hanging in a pig stable 
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Active air sampling 
Active air sampling was performed using Gilian Gilair 5 air sampling pumps along with 

Teflon filters (Filters: PE Drain Disc, Whatman: GE Healthcare, with Teflon 2.0µm 37mm: Pall 
Corporation) in GSP sampling heads. The pumps were used both for the stationary air 

measurements and the personal air sampling. Pumps were calibrated 
before use and the flow was checked after sampling to ensure 
consistency and to detect any malfunctioning pumps. The flow rate 
3.5 liters per minute on average. At each farm a blank filter was 
transported to the farm but remained sealed and used as a negative 
control. An average of two pumps were placed in each stall and acted 
as duplicates. The pump sampling heads were clamped onto a metal 
rod which was 1.5m tall (see Figure 2). Any peculiarities, such as 
malfunctioning pumps or torn filters were recorded on the field 
forms. Personal air pumps were worn for approximately 6 hours 
while farm workers went about their daily tasks. A questionnaire was 
given to the participants wearing personal air samplers to gather 
further information on any activities which may have had an impact 
on the dust measurements. The personal air samplers were switched 
off during breaks when participants were in areas such as the canteen 
or office spaces and turned back on when they re-entered spaces 
containing animals. Stationary pumps were left in place for 6 hours 
and checked periodically. Once the sampling period was complete, 
the filters were sterile removed in the laboratory, placed into petri 

dishes and stored at -20oC until analysis.  
 
Laboratory Methods 
 Once in the laboratory EDCs were thawed and placed into stomacher bags containing FE 
buffer and blended to suspend the material. The liquid was then transferred into in a 50ml tube 
and centrifuged at 50g for 1 minute, the top 2ml of the resulting suspension was either used 
immediately or frozen at -20oC until DNA extraction could proceed. In total, 300 µlmicroliters of 
the EDC liquid was added to a tube containing lysis buffer and zirconia beads. 

 Air filters were prepared for DNA extraction by being allowed to thaw and being placed 
into tubes containing zirconia beads. Next 600µl lysis buffer was added to the tubes. 500µl 
Phenol was added to both tubes containing the air filters and beads, as well as the tubes 
containing the EDC suspension and beads, and all tubes were bead beaten. The supernatant was 
then removed and used as the samples for DNA extraction and purification.   

The elution volume was set to 67 µlmicroliters. Five microliters of DNA isolate was used 
in the following quantitative Real Time PCRs targeting, femA, nuc, mecA, and 16S rRNA, with 
all samples being run in duplicate. All targets were detected using the LightCyler480 and 
associated program. Each femA/nuc/MecA reaction consisted of 4 µl PCR grade water, 1 µl 
primer/probe mix and 10 µl LC480 probe mix. Each 16S rRNA reaction contained 7 µl PCR 
grade water, 1 µl primer 355F at 100uM, 1 µl primer 556R 10uM and 10 µl Cyber green master 
mix.  
 
 
 

Figure 2:Image of field worker 
setting up stationary pump 
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Statistical Analyses 
Statistical analysis was performed using “R” software (version 4.1.0). The average Cp 

from the PCR replicates from the qPCR analysis was taken. Cp values over 40 were excluded, as 
they were considered outside of the reliable range of the PCR. Cell counts were calculated from 
formulas derived from the creation of a dilution curve made with a reference MRSA strain (B9 
2-4662). The cell counts were then divided by their corresponding 16S measurements to give the 
relative abundance. Pump values were adjusted to account for flow rate and run time. 

Next, as it is not possible to quantify MRSA presence with any one of the qPCR targets 
alone, MRSA abundance was estimated based on the presence of multiple targets. S. aureus 
count was estimated from the nuc or FemA count—whichever was highest—then the MRSA 
count was determined by taking the S. aureus count or mecA count whichever is lowest, as 
described in Bos et al in 2016. In cases where only femA or nuc values were present the S. 
aureus count was calculated from the available value. Pearson’s correlation coefficients were 
calculated to indicate the correlation between targets. One sample was removed from the dataset 
due to a pump failure.  

ANOVAs were performed to determine whether the MRSA levels found on the farms 
was significantly different, as well to determine if levels were significantly different in the 
compartments housing animals or different ages.  

A Deming or orthogonal regression was performed on the paired EDC and pump data, as 
they are both continuous variables. The Deming regression was used as it accounts for error in 
both the x and y axis in place of the standard least squared regression which measures error only 
in the y axis, thus the Deming regression is often used in protocols which aim to compare 
measurement methods, such as in this study (23). 

Results 
Farm Characteristics  
 General farm characteristics are displayed in Table 1. Farms 2 and 7 had only adult 
animals present. All farms reported that no antibiotics were used in the week leading up the 
sampling in the compartments sampled.  
 

Farm 
ID 

Types of Animals Present Number of EDCs  Number of 
Stationary Air 

Samples  

Number of Personal air 
samples 

1 Piglets and Sows, Weaned 
Piglets, Fattening Pigs 

6 2 none 

2 Piglets and Sows, Weaned 
Piglets, Fattening Pigs 

9 6 2 

3 Piglets and Sows, Weaned 
Piglets, Fattening Pigs 

9 6 1 

4 Fattening Pigs 6 4 1 
5 Piglets and Sows, Weaned 

Piglets, Fattening Pigs 
8 6 1 

6 Piglets and Sows, Weaned 
Piglets, Sows 

9 6 1 

7 Fattening Pigs 6 4 1 
Total -- 53 34 7 

Table 1 Overview of samples collected 
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In all figures the MRSA load is expressed 
as the log transformed, relative (16S normalized) 
MRSA count.  
 None of the farms reported any antibiotic use in 
the week before sampling. None of the field 
blanks registered any S. aureus 
MRSA could be measured in all but 3 of the 87 
EDC and stationary pump samples, and was 
present on every farm sampled, one value was 
removed due to a pump failure. The MRSA 
loads found in the compartments housing young 
animals  (sows and suckling piglets, and 
weaned piglets) were found by ANOVA to be 

statically higher different than those containing 
only adult animals (fattening pigs and sows) for 
both EDC and stationary pump measurement 
methods (Figure 3). The ANOVAs yielded p-
values of less than 0.001. ANOVAs were also 
performed to test  differences between MRSA 
levels on farms for both measurement methods. 
Farm 2 emerged as having significantly lower 
average MRSA counts than the others, using both 
measurement methods, the ANOVAs yielded a 
p-values less than 0.001. 

Correlation between PCR Targets 
 There was a positive correlation found between all three gene targets (mecA, femA, and 
nuc). The highest Pearson correlation coefficient (PCC) was found between femA and nuc 
(PCC=0.98, p-value < 0.005). which indicates S. aureus presence in the sample. The correlation 
coefficients between mecA and femA (PCC=0.32, p-value < 0.005). ), and mecA and nuc 
(PCC=0.34 p-value < 0.005) were similar. Figure 4 shows the normalized counts for all 
measurements from both methods plotted against each other, to illustrate the relationship 
between the relative amounts of each gene found in the samples.  
 

Figure 4: Correlation plots between normalized gene counts on a log scale 

Figure 4: Boxplot indicating the distribution of MRSA by animal 
category, the diamond symbol indicates the mean value and the value 
printed on top is the number of measurements in the category. Both 
EDC and pump values are included. 

Figure 3:Boxplot of normalized MRSA level by animal category. The 
diamond icon indicates the mean MRSA measurement in that 
category, and the number over each box is the number of 
measurements taken in the category. 
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Comparison of EDC and Pump Measurements 
 A Deming orthogonal regression was performed on MRSA measured in inhalable dust 
samples by the pumps and the MRSA from the EDCs and found a positive relationship. There 
was an R-squared of 0.93, a slope of 1.02 indicating that a change in what was measured by the 
pumps had a closely corresponding change in what was measured by EDCs (Table 2). Figure 5 
plots the median level of MRSA as measured by pumps against that measured by EDCs in the 
same compartment on a farm, along with the Deming regression line. In addition to the 
regression, a Pearson’s correlation coefficient was also calculated and yielded a value of 0.90 (p-
value < 0.005). 

 
Figure 5: Median MRSA counts as measured by EDCs vs Pumps paired by compartment within each farm. The cross bars on 
each point indicate the maximum and minimum measurements taken in that compartment. The grey line indicates the Deming 
regression line. 

Table 2: Deming regression summary statistics 
 
 
 
 

Slope Slope: 95% 
Confidence 

Interval 

Intercept Intercept: 95% 
Confidence 

Interval 

R-squared 

1.02 0.864 – 1.20 0.24 -0.663 – 1.23 0.93 
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Personal Pumps 
There was at least one personal 

air sample taken on 6 of the 7 farms 
sampled. In total there were 7 personal 
samples all of which had measurable 
MRSA present in the filter. The 
Pearson correlation test between the 
average MRSA measured by the 
stationary pumps and the personal 
pumps yielded a non-significant result. 
Figure 6 illustrates the personal pumps 
relationship when compared to other 
locations sampled. 
 
 
 
 
 
 
 

Questionnaire 
 The questionnaire data was gathered to help explain any differences between farms but 
due to the small number of farms included in the study no definite conclusions can be drawn 
from the information. The questions asked about practices such as cleaning procedures and 
biosecurity measures such as whether all materials used are placed along working lines 
(youngest to oldest animals). For example, one question asked about the types of cleaners used to 
clean the stables and Farm 2 is the only farm which cleaned with water alone, which could be 
one explanation for the overall lower MRSA level found at farm 2. Figure 7 is a Beeswarm plot, 
where the MRSA levels all the samples, EDC and stationary pump, are plotted by farm 
according to their answer to the question “What products are used to clean and disinfect the 
stables?”.  

 

 Figure 7: Beeswarm plot of normalized MRSA count by questionnaire responses on cleaning products used in stables 

Figure 6: Boxplot indicating the distribution of MRSA by sampling area, the diamond 
symbol indicates the mean value in the category. 
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Normalization of Data 
 All the data in this report has been expressed as normalized values, meaning that for each 
sample the calculated amount of MRSA was then divided by the corresponding 16S value. As 
16S is a gene element that is conserved across bacterial species, the 16S value can be used as a 
measure of total bacterial load in the sample. By dividing by the 16S value of a sample we are 
left with a relative abundance of MRSA. To confirm the results of this study, the Deming 
regression was also performed on the non-normalized data, and the strong positive relationship 
between MRSA as measured by the stationary pumps and that measured by the EDCs remained. 
Table 3 contains the Deming regression summary statistics for both the normalized and non-
normalized values. In addition to the regression, a Pearson’s correlation coefficient was also 
calculated with the non-normalized data and yielded a value of  0.84 (p-value < 0.005).  
 

Table 3: Comparison of Deming Regression summary statistics using normalized and non-normalized data. 

Discussion 
 The information from this study adds to the existing body of work which demonstrates 
that EDCs are a viable way to quantify biological agents in air samples of various environments. 
In the present study, we showed that EDCs can be used to measure airborne MRSA levels in pig 
farms.  
 
Benefits of EDCs  

One of the major advantages of EDC use is their ability to be used for prolonged periods of 
time to potentially reflect cumulative exposure (19). Settled dust collected over a longer period is 
presumed to be an aggregate sample of what is airborne in the setting on average, in contrast 
with active air sampling which is highly subject to conditions at the time of sampling (20). For 
example, cleaning activities on the farm can stir up settled dust and re-aerosolize MRSA 
containing dust for a short period of time but would not be representative of the average amount 
of airborne dust (16). A longer sampling period for active air pumps is not viable if the sample is 
being used for a culture-based method, as the filters become saturated and the air flow dries out 
microorganisms, leading to a loss of diversity (19).  

Additionally, while reproducibility was not directly measured in this study, EDCs have in the 
past, been found to produce reproducible results during repeated sampling campaigns in the same 
setting (19,20). In 2008, Noss et al. used EDCs to measure endotoxin levels in farms and in farm 
and non-farm homes. There they found that endotoxin levels measured in consecutive periods in 
the same home yielded a correlation value of 0.85 (20). demonstrating suitable reproducibility. 
Normand et al also found that fungal and bacterial diversity as measured by EDCs was 
reproducible when sampling in the same location. In addition, they found a 0.82 pairwise 
correlation value from EDCs left in the same locations for differing lengths of time (15 days and 

 Slope Slope: 95% 
Confidence 

Interval 

Intercept Intercept: 95% 
Confidence 

Interval 

R-squared 

Normalized Data 1.02 0.858 – 1.19 0.24 -0.656 – 1.28 0.93 

Non-Normalized 
Data 

0.85 0.654 - 1.02 0.26 -0.28 - 0.955 0.89 
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1 month), indicating that EDC results could be comparable in studies which used differing 
sampling durations (19). A future study which confirms this capacity for reproducibility of EDCs 
for MRSA measurements would be beneficial.  

Previous work has shown that in addition to measuring endotoxin and bacterial and fungal 
diversity, EDCs can be used to measure other types of environmental exposures such as fungal 
contamination, total particulate matter, bacterial bioburden, and viral RNA (24,25). This capacity 
could be utilized in future studies to employ EDCs on a large scale to get a complete picture of 
the airborne occupational exposures in indoor areas.  
 
Personal air samples 

Personal air samples were used in this study as they provide a measurement which is more 
representative of workers’ actual exposure during the day. Workers move around different 
compartments and perform activities such as cleaning and handling animals which cause more 
dust to be released into the air, which means that stationary measurements could underestimate 
the actual occupational exposure (16). While there was no significant relationship between the 
MRSA measured personal pumps and the stationary pumps, there was a small number of 
personal samples in this study, and a more in-depth investigation into this relationship would be 
valuable in the future.  

In a previous study, it was found that MRSA presence in the air is a strong indicator of 
MRSA carriage in the nose of workers (15). Personal air measurements could be an important 
part of future studies which aim to assess the human health impact of reducing antibiotic use in 
the livestock sector. As it was found that MRSA presence in the air is a strong indicator of 
MRSA carriage in the nose of workers (15). The number of hours worked in the farms and the 
level of antibiotic use in the animals also influences workers likelihood to be colonized with 
MRSA (26). 
 
Differences between Compartments 

In 2016, Bos et al. found the highest level of MRSA both in the air and nasal prevalence 
in workers who worked with the farrowing pig population. This result is mirrored in this study 
where the highest levels of MRSA were also seen in compartments containing the youngest 
animals. This may be due to the fact that younger animals generally receive larger amounts of 
antimicrobial drugs than older animals and undergo procedures such as teeth clipping which 
make them more susceptible to infection (26). While no antibiotic use was reported in the week 
before sampling in this study, we did not request access to information on past antimicrobial use 
or for a history of procedures done with the animals. Another possible explanation for higher 
MRSA carriage in younger animals is the possible re-use of the tools used in procedures such as 
teeth clipping between piglets, transferring bacteria between young animals in a way which is 
not seen in older animals (26). 
 
Differences between Farms 

There were significant differences between farms that could possibly be due to 
differences in biosecurity factors as examined in the questionnaire. Such as the significantly 
lower MRSA level found in Farm 2, and it was the only farm which indicated that they use only 
water to clean the compartments. Previous research has found that the use of certain common 
disinfectants (Quaternary Ammonium Compound based agents) is an important driver for 
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selection of MRSA in pig herds (27). Data on the types of disinfectants used was not gathered in 
this questionnaire but could be an interesting topic for further study.  

Another factor which may have influenced the differences between farms is that they 
were sampled over a period of a few months, with the first farm sampled in the winter and the 
last in late spring. It has been found that in the winter months the bacterial load and numbers of 
airborne particles are higher in pig farms (28). At different times in the year, the levels of 
microorganisms and particles can vary due to changes in ventilation and animal density (19). In 
the winter animals are likely to be continuously present and ventilation may not be opened as 
often leading to more dust accumulation. However, as the data in this study was normalized to 
give relative amounts of MRSA present, the seasonal variation in overall bacterial load may not 
have a strong influence.  

 
Normalization of Data 
 As has been previously mentioned the data in the is study was normalized to give the 
relative amounts of MRSA present in a sample. This was done in an effort to make samples 
taken with different sampling methods and at different times in the year more comparable. It is 
important to note however, that the results without normalization show the same strong positive 
relationship between MRSA measurement taken by the pumps and those measured by the EDCs, 
as the normalized data.  
 
Drawbacks 

One evident drawback of this study was the relatively small sample size of farms 
sampled. However, despite its small size this study sampled pigs at various ages and provides 
important information on the feasibility of large-scale EDC use, as well finding a significant 
correlation between the sampling methods employed. 

 
Implications for Risk Modeling 
  In 2020, Sørensen et al., developed a model for LA-MRSA spread in pig farms, to be 
used as a tool for evaluating possible interventions. The model aims to aid in studying how 
different methods of reducing MRSA load in stables could limit the spread to humans, and even 
prevent spread to other farms. To do this they model how MRSA spreads within a pig herd 
through contaminated air, which can be used as a proxy for human risk (18).They also assess the 
potential impact of two types of interventions, where the MRSA shed by pigs is reduced, and 
where the MRSA level is reduced in the air without altering the prevalence in the animals (18). 
 Sørensen et al. note that they encountered a lack of previous studies with which to 
compare the models’ predicted air concentrations of LA-MRSA. This was in part due to the fact 
that in the few studies that are available some used EDCs and others used active air sampling 
making them hard to compare to each other. The data presented in this study could help to make 
more previous studies results equivalent and thus fill the knowledge gap and help improve the 
assumptions made in the model. 
 
The Continued Relevance of MRSA Monitoring 

In an effort to curb the rise of antibiotic resistant bacteria, in 2009 the Dutch government 
introduced a strict set of rules for how antimicrobials can be used in livestock (29). Subsequently 
antibiotic use in the industry fell by 59% between 2009 and 2014 (29). Despite this, a study done 
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in the Netherlands in 2016 by Dierikx et al, found that by the time pigs arrived at 
slaughterhouses, all 56 of the batches of animals tested positive for MRSA. This may be due to 
animals from positive farms mixing with those from negative ones during transport, however this 
illustrates that MRSA presence in even a small number of farms is a risk despite a lower level of 
MRSA present on farms in the Netherlands in general (30). Additionally, it is not yet known 
what the “dose-response” effect of reducing antibiotic use will have on the presence of resistant 
bacteria, this in conjunction with the knowledge that LA-MRSA has shown to be highly 
adaptable means that continual long-term monitoring will be important for years to come 
(11,12,29).  
 

Conclusion 
This study demonstrates that EDCs are a viable candidate for a sampling method to be 

used in large testing campaigns looking to measure MRSA in pig farms, when compared to 
active air sampling. This study adds to the existing body of work which demonstrated that EDCs 
are a feasible, and easily standardized way to measure airborne dust. This data establishes that 
EDCs can be used accurately in a variety of pig stables areas with a range of airborne MRSA 
concentrations when compared to active air sampling.  
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Appendix 
‘R’ Code 
--- 
title: "Exclude MRSA Final" 
author: "Anne Rittscher" 
date: "12/30/2021" 
output: html_document 
--- 
```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE) 
``` 
Load in Libraries 
```{r} 
library(ggplot2) 
library(dplyr) 
library(tidyr) 
library(readxl) 
library(e1071) 
library(fitdistrplus) 
library(beeswarm) 
library(olsrr) 
library(MethComp) 
``` 
Load in data 
```{r} 
setwd("~/Desktop/Exclude MRSA/Final") 
XMRSA<-read_xlsx("Copy of XMRSA PCR data 
Master list_Nov29.xlsx", sheet="Sheet 1 - 
XMRSA PCR data Master", range="A1:M995")  
XMRSAPumpinfo<-read_xlsx("XMRSA PCR 
data Master list_Nov09_with pumpinfo.xlsx", 
sheet="Pump info", range="A1:S43") 
``` 
Overview Plot 
```{r} 
ggplot(XMRSA, aes(x=Location.upper, y=Cp, 
col=Target))+geom_boxplot()+theme(axis.text.x = 
element_text(angle = 90)) 
``` 
Remove Everything that is NOT a replicate 
(removing blanks and PCR controls), and add a 
new column with original Cp values so they can be 
refereed back to. NA Cp values were replaced by 
50 to indicate that they is a very low amount or no 
DNA in the sample and it was out of range of the 
PCR.  
```{r} 
data1 <- XMRSA[XMRSA$Dupl %in% c("A", 
"B"),]  
data1$newCp=data1$Cp 

data1$newCp[is.na(data1$newCp)] <- 50 
head(data1) 
data2<-data1[data1$newCp<41,] 
``` 
Makes each target their own set where NTC are 
excluded, certain columns are included, and the 
table is pivoted. The absolute value is taken from 
the duplicates and marked acceptable is the 
difference is less than 1. Next columns are 
renamed to refelct the target. Lastly the sets are 
rejoined to make one large table with all the gene 
targets, called "db".  
```{r} 
db.16S <- data2[data2$Target=="16S",] %>% 
#select target 
  filter(Sample.Type != "NTC") %>% #exclude 
NTCs 
  dplyr::select(Farm, Sample.ID, Sample.Type, 
Location.upper, newCp, Dupl,Compartment) %>% 
#include certain columns 
  pivot_wider(names_from=Dupl, 
values_from=newCp) %>% #flips rows and 
columns 
  mutate(Dupl.OK=ifelse(abs(A-B)>2, "*", "")) 
%>% # takes absolute values of the duplicates, is 
okay if diff <1 
  rename("A.16S"="A", 
"B.16S"="B","Dupl.OK.16S"="Dupl.OK") 
#renaming columns 
db.femA <- data2[data2$Target=="femA",] %>%  
  filter(Sample.Type != "NTC") %>%  
  dplyr::select( Sample.ID, newCp,Dupl) %>%  
  pivot_wider(names_from=Dupl, 
values_from=newCp) %>%  
  mutate(Dupl.OK=ifelse(abs(A-B)>2, "*", "")) 
%>%  
  rename("A.femA"="A", "B.femA"= "B", 
"Dupl.OK.femA"="Dupl.OK") 
db.mecA<- data2[data2$Target=="mecA",] %>%  
  filter(Sample.Type != "NTC") %>%  
  dplyr::select(Sample.ID, newCp, Dupl) %>%  
  pivot_wider(names_from=Dupl, 
values_from=newCp) %>%  
  mutate(Dupl.OK=ifelse(abs(A-B)>2, "*", "")) 
%>%  
  rename("A.mecA"="A", "B.mecA"= "B", 
"Dupl.OK.mecA"="Dupl.OK") 
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db.nuc <- data2[data2$Target=="nuc",] %>%  
  filter(Sample.Type != "NTC") %>%  
  dplyr::select(Sample.ID,newCp,Dupl) %>%  
  pivot_wider(names_from=Dupl, 
values_from=newCp) %>%  
  mutate(Dupl.OK=ifelse(abs(A-B)>2, "*", "")) 
%>%  
  rename("A.nuc"="A", "B.nuc"= "B", 
"Dupl.OK.nuc"="Dupl.OK") 
 
db <- left_join(db.16S, db.femA, by="Sample.ID") 
db <- left_join(db, db.mecA, by="Sample.ID") 
db <- left_join(db, db.nuc, by="Sample.ID") 
rm(db.16S, db.femA, db.mecA, db.nuc) 
 
``` 
Pump standardization, corrects for run time and 
flow rate. data frame db is combined with pump 
info to make dbpumpinfo  
```{r} 
PumpInfo<-
dplyr::select(XMRSAPumpinfo,c('Sample.ID','Flo
w Rate','Pump Run Time')) 
PumpInfo<-na.omit(PumpInfo) 
PumpInfo$RunTime<-
as.numeric(PumpInfo$`Pump Run Time`) 
PumpInfo<-
dplyr::select(PumpInfo,c('Sample.ID','Flow 
Rate','RunTime')) 
PumpInfo$Vol_Air_Sampled=(PumpInfo$`Flow 
Rate`*PumpInfo$RunTime) 
colnames(PumpInfo)<-c("Sample.ID","AvgFlow 
Rate","RunTime","VolumeAirSampled") 
 
PumpInfo$Sample.ID<-
as.character(PumpInfo$Sample.ID) 
dbPumpInfo<-
left_join(db,PumpInfo,by="Sample.ID") 
``` 
Next mean Cps per sample were calculated.The 
new table containing cell counts is called db1.  
```{r} 
db1 <- dbPumpInfo %>%  
  mutate(mean_Cp_16S=(A.16S+B.16S)/2) %>%  
  mutate(mean_Cp_femA=(A.femA+B.femA)/2) 
%>%  
  mutate(mean_Cp_mecA=(A.mecA+B.mecA)/2) 
%>%  
  mutate(mean_Cp_nuc=(A.nuc+B.nuc)/2) %>%  
  filter(!Location.upper %in% c("BANK EDC", 
"BLANK", "BLANK EDC", "BLANK FILTER", 
"PERSONAL PUMP")) 
``` 

Next Cell counts were calculated. The log10 of 
these values was then taken. The new table 
containing normalized cell counts is called db2. 
The formulas for the cell count calculation were 
derived from calibration curves made by diluting 
down know concentrations of DNA. If one of the 
replicates was NA then the value from the 
remaining replicate was taken.  
```{r} 
db2 <- db1 %>% 
  mutate (OutcomeFemA=case_when(     
  is.na(A.femA) & !is.na(B.femA) ~ B.femA, 
  !is.na(A.femA) & is.na(B.femA) ~A.femA, 
  !is.na(A.femA) & !is.na(B.femA) ~ 
mean_Cp_femA 
  ))%>% 
  mutate (Outcomenuc=case_when(     
    is.na(A.nuc) & !is.na(B.nuc) ~ B.nuc, 
    !is.na(A.nuc) & is.na(B.nuc) ~A.nuc, 
    !is.na(A.nuc) & !is.na(B.nuc)~ mean_Cp_nuc 
  ))%>% 
  mutate (OutcomemecA=case_when(     
    is.na(A.mecA) & !is.na(B.mecA) ~ B.mecA, 
    !is.na(A.mecA) & is.na(B.mecA) ~A.mecA, 
    !is.na(A.mecA) & !is.na(B.mecA)~ 
mean_Cp_mecA 
  ))%>% 
  mutate(cellcount.16S=10^((mean_Cp_16S-
40.22)/-4.043)) %>%  
  mutate(cellcount.femA=10^((OutcomeFemA-
41.896)/-3.5474)) %>%  
  mutate(cellcount.mecA=10^((OutcomemecA-
39.716)/-3.2823)) %>%  
  mutate(cellcount.nuc=10^((Outcomenuc-
43.285)/-3.7116))   
``` 
Adjusts cell count to cell count per meters squared 
of air sampled by the pump. Lastly values were 
normalized by dividing the cell count of FemA, 
nuc, and MecA values by their corresponding 16S 
value to get relative abundance values. Removes 
one failed pump. 
```{r} 
db2b <- db2 %>%  
  
mutate(cellcount.16S.corr=ifelse(Sample.Type=="
PUMP", cellcount.16S/VolumeAirSampled*1000, 
cellcount.16S))%>% 
  
mutate(cellcount.femA.corr=ifelse(Sample.Type=
="PUMP", 
cellcount.femA/VolumeAirSampled*1000, 
cellcount.femA))%>% 
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mutate(cellcount.mecA.corr=ifelse(Sample.Type=
="PUMP", 
cellcount.mecA/VolumeAirSampled*1000, 
cellcount.mecA))%>% 
  
mutate(cellcount.nuc.corr=ifelse(Sample.Type=="
PUMP", cellcount.nuc/VolumeAirSampled*1000, 
cellcount.nuc)) 
 
db3 <- db2b %>%  
  
mutate(normal.femA=log10(cellcount.femA.corr/c
ellcount.16S.corr)) %>% 
  
mutate(normal.mecA=log10(cellcount.mecA.corr/
cellcount.16S.corr)) %>% 
  
mutate(normal.nuc=log10(cellcount.nuc.corr/cellc
ount.16S.corr))  
 
#Removes failed pump #303046 has no run time 
 
db3<-db3[(db3$Sample.ID!=303046),] 
``` 
Plotting normalized cell count values against 
animals type 
```{r} 
ggplot(db3, aes(x=Location.upper, 
y=normal.femA))+geom_boxplot()+labs(title="Fe
mA")+theme(axis.text.x = element_text(angle = 
90)) 
ggplot(db3, aes(x=Location.upper, 
y=normal.mecA))+geom_boxplot()+labs(title="M
ecA")+theme(axis.text.x = element_text(angle = 
90))                                
ggplot(db3, aes(x=Location.upper, 
y=normal.nuc))+geom_boxplot()+labs(title="nuc")
+theme(axis.text.x = element_text(angle = 90)) 
``` 
Plot normalized cell counts against each other to 
determine relationship  
```{r} 
ggplot(db3,aes(x=normal.femA,y=normal.mecA))
+geom_point(aes(color=factor(Farm)))+ggtitle('Fe
mA vs mecA Correlation')+ylab('Normalized 
mecA Counts')+xlab('Normalized FemA 
Counts')+labs(color='Farm')+theme(plot.title = 
element_text(hjust = 0.5)) 
 
ggplot(db3,aes(x=normal.femA,y=normal.nuc))+g
eom_point(aes(color=factor(Farm)))+ggtitle('Fem
A vs nuc Correlation')+ylab('Normalized nuc 

Counts')+xlab('Normalized FemA 
Counts')+labs(color='Farm')+theme(plot.title = 
element_text(hjust = 0.5)) 
 
ggplot(db3,aes(x=normal.mecA,y=normal.nuc))+g
eom_point(aes(color=factor(Farm)))+ggtitle('mec
A vs nuc Correlation')+ylab('Normalized nuc 
Counts')+xlab('Normalized mecA 
Counts')+labs(color='Farm')+theme(plot.title = 
element_text(hjust = 0.5)) 
``` 
Make a smaller table containing only the gene, 
value and animal type (location.upper) 
```{r} 
db4 <- db3 %>% 
  dplyr::select(Location.upper, normal.femA, 
normal.mecA, 
normal.nuc,Sample.ID,Compartment,Farm,Sample
.Type)%>%  
  pivot_longer(normal.femA:normal.nuc, 
names_to="gene", values_to = "value") 
``` 
Beeswarm plots of each gene (normalized cell 
counts) against the animals type (location.upper) 
clustered by farm.  
```{r} 
beeswarm(normal.femA  ~ Location.upper, 
data=db3,pwcol = 
as.numeric(Farm),col=sample(colors(), 27), 
pch=19, method="swarm", cex=0.5)  
            legend ("bottomright", legend=c("Farm 1", 
"Farm 2","Farm 3","Farm 4","Farm 5","Farm 
6","Farm7"),title = "Farm", pch = 16, col = 1:7) 
             
beeswarm(normal.mecA  ~ Location.upper, 
data=db3,pwcol = 
as.numeric(Farm),col=sample(colors(), 27), 
pch=19, method="swarm", cex=0.5)  
beeswarm(normal.nuc  ~ Location.upper, 
data=db3,pwcol = 
as.numeric(Farm),col=sample(colors(), 27), 
pch=19, method="swarm", cex=0.5)  
``` 
Beeswarm plots of each gene by farm, these 
reveled that farm 2 is quite different from the 
others is normalized FemA and nuc values.  
```{r} 
beeswarm(normal.femA ~ Farm, data=db3, 
method='swarm') 
beeswarm(normal.mecA ~ Farm, data=db3, 
method='swarm') 
beeswarm(normal.nuc ~ Farm, data=db3, 
method='swarm') 
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``` 
Normalized Cell counts by animals type all in one 
plot 
```{r} 
ggplot(db4,aes(x=Location.upper, y=value, 
col=gene))+geom_boxplot()+labs(title="Average 
Normalized Cell Counts",y="Gene 
Counts",x="Animal Type")+theme(axis.text.x = 
element_text(angle = 90)) 
``` 
Statistical Analysis of relationship between the cell 
counts of the different genes 
```{r} 
shapiro.test(db3$normal.femA)#p val=0.1560 
NORMAL 
 
shapiro.test(db3$normal.nuc)#p val= 0.1522 
NORMAL 
 
shapiro.test(db3$normal.mecA)#p val=0.1362 
NORMAL 
``` 
Statistical analysis of relationship between cell 
counts of the different genes,Pearson correlation 
because they are normally distributed 
```{r} 
cor.test(db3$normal.femA,db3$normal.nuc,metho
d='pearson',use='complete.obs')#0.984 
cor.test(db3$normal.femA,db3$normal.mecA,met
hod='pearson',use='complete.obs')#0.319 
cor.test(db3$normal.nuc,db3$normal.mecA,metho
d='pearson',use='complete.obs')#0.338 
``` 
Add in S.Aureus Counts and MRSA counts 
S.Aureus counts are found by taking the highest 
value between FemA and nuc for a sample and 
MRSA count was taken between mecA and 
S.Aureus whichever is lower. For S.aureus counts 
if femA or nuc were missing a samle, the 
remaining value was used.  
```{r} 
#Get S.Aureus counts (highest b/w femA and nuc) 
 
db3 <- db3 %>% 
  mutate (S.AreusCounts=case_when(     
    !is.na(db3$normal.femA) & 
!is.na(db3$normal.nuc) ~ 
pmax(db3$normal.femA,db3$normal.nuc), 
    !is.na(db3$normal.femA) & 
is.na(db3$normal.nuc) ~ db3$normal.femA, 
    is.na(db3$normal.femA) & 
!is.na(db3$normal.nuc) ~ db3$normal.nuc)) 
 

#Get MRSA counts (lowest b/w mecA and 
S.aureus) 
db3$MRSACounts<-
pmin(db3$normal.mecA,db3$S.AreusCounts) 
 
#Removes NA values 
db3<-db3[!is.na(db3$MRSACounts),] 
``` 
ANOVA to determine if significantly different by 
farm and animal type 
```{r} 
beeswarm(MRSACounts  ~ Farm, data=db3,pwcol 
= as.numeric(Farm),col=sample(colors(), 27), 
pch=19, method="swarm", cex=0.5)  
 
db3a <- subset(db3, db3$Sample.Type=="EDC") 
x <- aov(MRSACounts ~ as.factor(Farm)+ 
as.factor(Location.upper), data=db3a) 
 summary(x) 
TUKEY<-TukeyHSD(x) 
plot(TUKEY) 
  
db3b<-subset(db3, db3$Sample.Type=="PUMP") 
x1 <- aov(MRSACounts ~ as.factor(Farm)+ 
as.factor(Location.upper), data=db3b) 
 summary(x1) 
aovMRSAfarm<-aov(MRSACounts ~  
as.factor(Farm), data=db3) 
summary(aovMRSAfarm) 
``` 
Plotting Avg MRSA count per animal type. 
```{r} 
ggbox<- ggplot(db3,aes(x=Location.upper, 
y=MRSACounts,col=Location.upper))+ 
  geom_boxplot()+ 
  labs(title="MRSA levels by Animal 
Type",y="Normalized MRSA Counts (Log 
Scale)",x="Animal Type")+ 
  stat_summary(fun=mean, geom="point", 
shape=5, size=5, color="black", fill="black",  
position = position_dodge(width = 0))+ 
  theme(axis.text.x = element_text(angle = 
90))+theme(plot.title = element_text(hjust = 0.5)) 
ggbox+ 
  annotate("text", 
           x = 1:length(table(db3$Location.upper)), 
           y = aggregate(MRSACounts ~ 
Location.upper, db3, median)[ , 2], 
           label = table(db3$Location.upper), 
           col = "black", 
           vjust = - 1) 
``` 
Questionnaire data 
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```{r} 
Qs <-read.csv("Exclude MRSA Questionnaire 
Answers.oct.csv", header=TRUE, 
sep=",",row.names=1) 
colnames(Qs) 
colnames(Qs)<-
c('Question','1','2','3','4','5','6','7','Question.number') 
rownames(Qs)  
Qs1 <- as.data.frame(t(Qs)) 
colnames(Qs) 
ncol(Qs1) 
nrow(Qs1) 
 
#delete extra column  
dplyr::select(Qs1,-c(Question)) 
Qs<-subset(Qs1,select=c(-Question)) 
Qs<-
subset(Qs,rownames=c("Question","1","2","3","4"
,"5","6","7")) 
#add on S.AUREUS & MRSA Counts 
colnames(Qs) <- Qs[1,] 
Qs <- Qs[2:nrow(Qs),] 
Qs <- Qs[1:nrow(Qs)-1,] 
Qs <- Qs %>% 
dplyr::mutate(Farm2=seq.int(nrow(Qs))) 
 
#Questionnaire data 
colnames(Qs)<-
c('Q1','Q2','Q3','Q4','Q5','Q6','Q7','Q7A','Q8','Q9','
Q10A','Q10B','Q10C', 
                 
'Q11A','Q11B','Q11C','Q12','Q13','Q14','Q15','Q16'
,'Q17A','Q17B','Q17C', 
                 'Q17D','Q17E', 
'Q18','Q19','Q20','Q21','Q22','Q23A','Q23B','Q23C'
,'Q23D', 
                 
'Q23E','Q23F','Q24','Q25','Q26','Q27','Q28','Farm') 
``` 
Avg MRSA per farm and formatting of 
questionnaire data 
```{r} 
#avg S.Aureus & MRSA per farm 
Farm1Data<-subset(db3,Farm==1) 
meanF1S.Areus<-
mean(Farm1Data$S.AreusCounts,na.rm=TRUE) 
meanF1MRSA<-
mean(Farm1Data$MRSACounts,na.rm=TRUE) 
 
Farm2Data<-subset(db3,Farm==2) 
meanF2S.Areus<-
mean(Farm2Data$S.AreusCounts,na.rm=TRUE) 

meanF2MRSA<-
mean(Farm2Data$MRSACounts,na.rm=TRUE) 
 
Farm3Data<-subset(db3,Farm==3) 
meanF3S.Areus<-
mean(Farm3Data$S.AreusCounts,na.rm=TRUE) 
meanF3MRSA<-
mean(Farm3Data$MRSACounts,na.rm=TRUE) 
 
Farm4Data<-subset(db3,Farm==4) 
meanF4S.Areus<-
mean(Farm4Data$S.AreusCounts,na.rm=TRUE) 
meanF4MRSA<-
mean(Farm4Data$MRSACounts,na.rm=TRUE) 
 
Farm5Data<-subset(db3,Farm==5) 
meanF5S.Areus<-
mean(Farm5Data$S.AreusCounts,na.rm=TRUE) 
meanF5MRSA<-
mean(Farm5Data$MRSACounts,na.rm=TRUE) 
 
Farm6Data<-subset(db3,Farm==6) 
meanF6S.Areus<-
mean(Farm6Data$S.AreusCounts,na.rm=TRUE) 
meanF6MRSA<-
mean(Farm6Data$MRSACounts,na.rm=TRUE) 
 
Farm7Data<-subset(db3,Farm==7) 
meanF7S.Areus<-
mean(Farm7Data$S.AreusCounts,na.rm=TRUE) 
meanF7MRSA<-
mean(Farm7Data$MRSACounts,na.rm=TRUE) 
 
#delete extra column  
dplyr::select(Qs1,-c(Question)) 
Qs2<-subset(Qs1,select=c(-Question)) 
rownames(Qs2) 
Qs3<-
subset(Qs2,rownames=c("Question","1","2","3","4
","5","6","7")) 
#add in counts 
AvgS.Aureus<-
c(0,meanF1S.Areus,meanF2S.Areus,meanF3S.Are
us,meanF4S.Areus,meanF5S.Areus,meanF6S.Areu
s,meanF7S.Areus,0) 
AvgMRSA<-
c(0,meanF1MRSA,meanF2MRSA,meanF3MRSA,
meanF4MRSA,meanF5MRSA,meanF6MRSA,me
anF7MRSA,0) 
Qs3$MRSAcount<-AvgMRSA 
Qs3$S.Areus<-AvgS.Aureus 
#add on S.AUREUS & MRSA Counts 
Qs4<-Qs3 
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colnames(Qs4) <- Qs4[1,] 
Qs4 <- Qs4[2:nrow(Qs4),] 
Qs4 <- Qs4[1:nrow(Qs4)-1,] 
colnames(Qs4)[43] <- "Avg S.Aureus" 
colnames(Qs4)[44] <- "AvgMRSA" 
Qs4 <- Qs4 %>% 
dplyr::mutate(Farm2=seq.int(nrow(Qs4))) 
 
colnames(Qs3) <- Qs3[1,] 
Qs3 <- Qs3[2:nrow(Qs3),] 
Qs3 <- Qs3[1:nrow(Qs3)-1,] 
colnames(Qs3)[43] <- "Avg S.Aureus" 
colnames(Qs3)[44] <- "AvgMRSA" 
Qs3 <- Qs3 %>% 
dplyr::mutate(Farm2=seq.int(nrow(Qs3))) 
#Questionnaire data 
colnames(Qs4)<-
c('Q1','Q2','Q3','Q4','Q5','Q6','Q7','Q7A','Q8','Q9','
Q10A','Q10B','Q10C', 
                 
'Q11A','Q11B','Q11C','Q12','Q13','Q14','Q15','Q16'
,'Q17A','Q17B','Q17C', 
                 'Q17D','Q17E', 
'Q18','Q19','Q20','Q21','Q22','Q23A','Q23B','Q23C'
,'Q23D', 
                 
'Q23E','Q23F','Q24','Q25','Q26','Q27','Q28','AvgS.
Aureus','AvgMRSA','Farm') 
``` 
Combine questionnaire and pcr data 
```{r} 
Qs5<- Qs4 %>%  
  dplyr::select(Farm,Q18,Q22,Q20,Q7,Q25) 
 
db4<-db3 %>%  
  
dplyr::select(Farm,Sample.Type,S.AreusCounts,M
RSACounts,Compartment,Sample.ID,Location.up
per) 
 
db5 <- left_join(db4, Qs5, by="Farm") 
``` 
Plotting the effect of cleaning agents used against 
MRSA Counts 
```{r} 
plotQ27 <- ggplot(db5, aes(x=`Q18`, 
y=MRSACounts))+ggtitle('Cleaning Agents 
Used')+xlab('Type of Cleaner')+ylab("Normalized 
MRSA Counts (Log Scale)")+theme(axis.text.x = 
element_text(angle = 
0))+geom_point(aes(color=factor(Farm)))+labs(co
lor='Farm')  
plotQ27 

``` 
Plotting the effect of the placement of necessary 
materials along working lines against MRSA 
counts 
```{r} 
plotQ22 <- ggplot(db5, aes(x=`Q22`, 
y=MRSACounts))+ggtitle('Are Nessasary 
Materials Along Working Lines')+ylab('MRSA 
Counts')+theme(axis.text.x = element_text(angle = 
45))+geom_point(aes(color=factor(Farm)))+labs(c
olor='Farm')  
plotQ22 
``` 
~Linear Regression Analysis of EDC vs Pump data 
Exploratory Plots  
 
MRSA Counts,pumps vs EDCs clustered per farm 
and S.Aureus counts pumps vs EDCs clustered per 
farm  
```{r} 
PumpvEDCMRSA <- ggplot(db5, 
aes(x=`Sample.Type`, 
y=MRSACounts))+ggtitle('MRSA counts by 
Sampling Method')+xlab('Sample 
Type')+ylab('MRSA Counts')+theme(axis.text.x = 
element_text(angle = 
90))+geom_boxplot(aes(color=factor(Farm)))+labs
(color='Farm')  
PumpvEDCMRSA 
 
PumpvEDCS <- ggplot(db5, aes(x=`Sample.Type`, 
y=S.AreusCounts))+ggtitle('S.Aureus counts by 
Sampling Method')+xlab('Sample 
Type')+ylab('S.Aureus Counts')+theme(axis.text.x 
= element_text(angle = 
90))+geom_boxplot(aes(color=factor(Farm)))+labs
(color='Farm')  
PumpvEDCS 
``` 
Subsetting EDCS and Pumps  
```{r} 
EDCs<-subset(db5,db5$Sample.Type=='EDC') 
Pumps<-subset(db5,db5$Sample.Type=='PUMP') 
 
EDCs1<-EDCs%>%  
    
dplyr::select(Location.upper,S.AreusCounts,MRS
ACounts,Sample.ID,Compartment,Farm,Sample.T
ype) %>%   
    mutate(FC=paste(Farm, Compartment)) 
colnames(EDCs1) 
colnames(EDCs1)<-
c('Location.upper','EDC.S.AreusCounts', 
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'EDC.MRSACounts','Sample.ID','Compartment','F
arm','Sample.Type','FC') 
 
Pumps1<-Pumps%>% 
     
dplyr::select(Location.upper,S.AreusCounts,MRS
ACounts,Sample.ID,Compartment,Farm,Sample.T
ype) %>%  
     mutate(FC=paste(Farm, Compartment)) 
colnames(Pumps1) 
colnames(Pumps1)<-
c('Location.upper','Pump.S.AreusCounts', 
'Pump.MRSACounts','Sample.ID','Compartment','
Farm','Sample.Type','FC') 
 
EDCsvPumps<-left_join(EDCs1,Pumps1,by='FC') 
 
cor.test(EDCsvPumps$EDC.MRSACounts,EDCsv
Pumps$Pump.MRSACounts,method='pearson')  
plot(EDCsvPumps$EDC.MRSACounts,EDCsvPu
mps$Pump.MRSACounts) 
 
ggplot(EDCsvPumps,aes(x=EDC.MRSACounts,y
=Pump.MRSACounts,))+geom_point(aes(color=fa
ctor(Farm.y)))+ggtitle('Correlation of MRSA as 
measured by Pumps vs EDCs')+ylab('MRSA 
Count:Pumps')+xlab('MRSA 
Count:EDCs')+labs(color='Farm')  
```  
Normality tests EDCs and Pumps, most sets are 
not normal even with the removal of farm 2 
```{r} 
hist(EDCs$MRSACounts) 
shapiro.test(EDCs$MRSACounts)#not normal 
 
hist(EDCs$S.AreusCounts) 
shapiro.test(EDCs$S.AreusCounts) # normal 
 
hist(Pumps$MRSACounts) 
shapiro.test(EDCs$MRSACounts)#not normal 
 
hist(Pumps$S.AreusCounts) 
shapiro.test(EDCs$S.AreusCounts) # normal 
``` 
Average MRSA count per compartment EDC vs 
Pump 
```{r} 
db6 <- db5 %>%  
  
mutate(FCS=paste(Farm,Compartment,Sample.Ty
pe)) %>% 
  mutate(FC=paste(Farm, Compartment)) %>%  
  group_by(FCS) %>%  

  summarize(mean(MRSACounts, na.rm=TRUE), 
median(MRSACounts, na.rm=TRUE),  
            min(MRSACounts, 
na.rm=TRUE),max(MRSACounts, na.rm=TRUE), 
n=n(),unique(FC)) %>% 
  rename(MRSAmedian=`median(MRSACounts, 
na.rm = TRUE)`) %>%  
  rename(MRSAmean=`mean(MRSACounts, 
na.rm = TRUE)`) %>%  
  mutate(sample.type=ifelse(grepl("EDC",FCS), 
"EDC", "PUMP")) %>%  
  rename(FC=`unique(FC)`) %>%  
  dplyr::select(-FCS)   
``` 
Adding in Max and Min values so that they can be 
plotted in the regression graph, calculated by 
comaprtment 
```{r} 
db6a <- db6 %>% dplyr::select(FC, sample.type, 
MRSAmedian) %>% 
mutate(FCS=paste(FC,sample.type)) 
db6b <- db6 %>% dplyr::select(FC, sample.type, 
`min(MRSACounts, na.rm = TRUE)`) %>% 
mutate(FCS=paste(FC,sample.type)) 
db6c <- db6 %>% dplyr::select(FC, sample.type, 
`max(MRSACounts, na.rm = TRUE)`) %>% 
mutate(FCS=paste(FC,sample.type)) 
db6d <- db6 %>% dplyr::select(FC, sample.type, 
MRSAmean) %>% 
mutate(FCS=paste(FC,sample.type)) 
db6e <- db6 %>% dplyr::select(FC, sample.type, 
n) %>% mutate(FCS=paste(FC,sample.type)) 
db7 <- left_join(db6a, db6b, by="FCS") 
db7 <- left_join(db7, db6c, by="FCS") 
db7 <- left_join(db7, db6d, by="FCS") 
db7 <- left_join(db7, db6e, by="FCS") 
 
db7a <- db7 %>% filter(sample.type.x=="EDC") 
db7b <- db7 %>% filter(sample.type.x=="PUMP") 
db8 <- left_join(db7a, db7b, by="FC") 
 
rm(db6a, db6b, db6c, db6d, db6e,db7, db7a, db7b) 
db8 <- db8 %>% 
dplyr::select(FC,sample.type.x.x.x, MRSAmean.x, 
MRSAmedian.x, `min(MRSACounts, na.rm = 
TRUE).x`,`max(MRSACounts, na.rm = TRUE).x`, 
n.x, sample.type.y.y.y, MRSAmean.y, 
MRSAmedian.y, `min(MRSACounts, na.rm = 
TRUE).y`,`max(MRSACounts, na.rm = TRUE).y`, 
n.y) 
 
colnames(db8)<-
c('FC','EDC','MeanMRSACountEDC','MedianMR
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SACountEDC','minMRSACountEDC', 
'maxMRSACountEDC', 'n.EDC','Pump', 
'MeanMRSACountPump','MedianMRSACountPu
mp','minMRSACountPump', 
'maxMRSACountPump','n.Pump') 
 
summary(Deming(db8$MedianMRSACountPump, 
db8$MedianMRSACountEDC, vr=1)) 
``` 
Simple plot: avg MRSA pumps vs EDCs 
```{r} 
plot(db8$MeanMRSACountEDC,db8$MeanMRS
ACountPump) 
``` 
Deming regression: Max & min values and final 
graph Confidence intervals 
```{r} 
 
summary(Deming(db8$MedianMRSACountPump, 
db8$MedianMRSACountEDC, vr=1)) 
 
 
Deming_line <- Deming 
(db8$MedianMRSACountPump, 
db8$MedianMRSACountEDC, vr=1) 
DemCI<-Deming(db8$MedianMRSACountPump, 
db8$MedianMRSACountEDC, vr=1,alpha= 0.05, 
boot=1000,keep.boot=TRUE) 
 
Slope<-Deming_line[2] 
Intercept<-Deming_line[1] 
db8a <- db8[complete.cases(db8),] 
xmin <- min(db8a$MedianMRSACountPump) 
ymin <- xmin*Deming_line[2]+Deming_line[1] 
xmax <- max(db8a$MedianMRSACountPump) 
ymax <- xmax*Deming_line[2]+Deming_line[1] 
 
Corr <- cor(db8a$MedianMRSACountPump, 
db8a$MedianMRSACountEDC, 
method="pearson") 
cor.test(db8a$MedianMRSACountPump, 
db8a$MedianMRSACountEDC, 
method="pearson") 
 
p2 <-  ggplot(db8, 
aes(x=MedianMRSACountPump, 
y=MedianMRSACountEDC))+ 
  geom_abline(intercept=Intercept, slope=Slope, 
col="lightgrey", linetype="dashed")+ 
  geom_segment(x=xmin, y=ymin, xend=xmax, 
yend=ymax, col="lightgrey", size=1)+ 
  geom_point(aes(color=factor(substr(FC,1,1))))+ 

  geom_segment(aes(x=MedianMRSACountPump, 
y=minMRSACountEDC,  
                   xend=MedianMRSACountPump, 
yend=maxMRSACountEDC, 
color=factor(substr(FC,1,1))),data=db8)+ 
  geom_segment(aes(x=minMRSACountPump, 
y=MedianMRSACountEDC,  
                   xend=maxMRSACountPump, 
yend=MedianMRSACountEDC, 
color=factor(substr(FC,1,1))),data=db8)+ 
  #geom_smooth(method="lm", col="red", 
se=TRUE)+ 
  ggtitle('Median MRSA counts measured by EDCs 
vs Pumps')+ 
  xlab('Median MRSA Count as Measured by 
Pumps')+ 
  ylab('Median MRSA Count as Measured by 
EDCs')+ 
  labs(caption=paste("Line: Median(EDC) 
=",round(Slope,2),"* Median(Pump) +",  
                     round(Intercept,2),"\n r^2 
=",round(Corr,2), "{Deming regr.}"))+ 
  geom_text(aes(label=substr(FC,1,1)), 
col="black", size=3, nudge_x=0.10, angle= 0)+ 
  theme(plot.caption = element_text(face="italic"), 
        panel.background = element_rect(fill = 
'white', color = 'black'), 
        legend.key=element_rect(fill='white'))+ 
  coord_cartesian(xlim=c(-8,-2), ylim=c(-8,-2))+ 
  scale_colour_discrete("farm") 
 
p2 
``` 
Summary of Regression Statistics 
```{r} 
summary(lm(MeanMRSACountEDC~MeanMRS
ACountPump, data=db8)) 
``` 
______________Personal Pumps_____________ 
Personal Pumps-Personal Pumps compared to 
other "compartments"  
```{r} 
db <- dbPumpInfo %>%  
  mutate(mean_Cp_16S=(A.16S+B.16S)/2) %>%  
  mutate(mean_Cp_femA=(A.femA+B.femA)/2) 
%>%  
  mutate(mean_Cp_mecA=(A.mecA+B.mecA)/2) 
%>%  
  mutate(mean_Cp_nuc=(A.nuc+B.nuc)/2) %>%  
  filter(!Location.upper %in% c("BANK EDC", 
"BLANK", "BLANK EDC", "BLANK FILTER")) 
 
PP1 <- db %>% 
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  mutate (OutcomefemA=case_when(     
  is.na(A.femA) & !is.na(B.femA) ~ B.femA, 
  !is.na(A.femA) & is.na(B.femA) ~A.femA, 
  !is.na(A.femA) & !is.na(B.femA) ~ 
mean_Cp_femA 
  ))%>% 
  mutate (Outcomenuc=case_when(     
    is.na(A.nuc) & !is.na(B.nuc) ~ B.nuc, 
    !is.na(A.nuc) & is.na(B.nuc) ~A.nuc, 
    !is.na(A.nuc) & !is.na(B.nuc)~ mean_Cp_nuc 
  ))%>% 
  mutate (OutcomemecA=case_when(     
    is.na(A.mecA) & !is.na(B.mecA) ~ B.mecA, 
    !is.na(A.mecA) & is.na(B.mecA) ~A.mecA, 
    !is.na(A.mecA) & !is.na(B.mecA)~ 
mean_Cp_mecA 
  ))%>% 
  mutate(cellcount.16S=10^((mean_Cp_16S-
40.22)/-4.043)) %>%  
  mutate(cellcount.femA=10^((OutcomefemA-
41.896)/-3.5474)) %>%  
  mutate(cellcount.mecA=10^((OutcomemecA-
39.716)/-3.2823)) %>%  
  mutate(cellcount.nuc=10^((Outcomenuc-
43.285)/-3.7116))   
 
PP2 <- PP1 %>%  
 
mutate(normal.femA=log10(cellcount.femA/cellco
unt.16S)) %>% 
  
mutate(normal.mecA=log10(cellcount.mecA/cellc
ount.16S)) %>% 
  
mutate(normal.nuc=log10(cellcount.nuc/cellcount.
16S))  
#Get S.Aureus counts (highest b/w femA and nuc) 
PP2 <- PP2 %>% 
  mutate (S.AreusCounts=case_when(     
    !is.na(normal.femA) & !is.na(normal.nuc) ~ 
pmax(normal.femA,normal.nuc), 
    !is.na(normal.femA) & is.na(normal.nuc) ~ 
normal.femA, 
    is.na(normal.femA) & !is.na(normal.nuc) ~ 
normal.nuc)) 
 
#Get MRSA counts (lowest b/w mecA and 
S.aureus) 
PP2$MRSACounts<-
pmin(PP2$normal.mecA,PP2$S.AreusCounts) 
 
PP2<-PP2[!is.na(PP2$MRSACounts),] 
 

ggplot(PP2,aes(x=Location.upper, 
y=MRSACounts))+geom_boxplot()+labs(title="A
verage Normalized Cell Counts",y=" MRSA 
Counts",x="Sample Location")+theme(axis.text.x 
= element_text(angle = 90)) 
 
ggplot(PP2,aes(x=Location.upper, 
y=MRSACounts,col=Location.upper))+ 
  geom_boxplot()+ 
  labs(title="MRSA levels by Sampling 
Location",y="Normalized MRSA Counts (Log 
Scale)",x="Sampling Location")+ 
  stat_summary(fun=mean, geom="point", 
shape=5, size=5, color="black", fill="black",  
position =               position_dodge(width = 0))+ 
  theme(axis.text.x = element_text(angle = 
90))+theme(plot.title = element_text(hjust = 0.5)) 
 
PersonalPumps<-
subset(PP2,PP2$Location.upper=='PERSONAL 
PUMP') 
 
PersonalPumps1<-PersonalPumps%>%  
    
dplyr::select(Location.upper,S.AreusCounts,MRS
ACounts,Sample.ID,Compartment,Farm,Sample.T
ype) %>%   
    mutate(FC=paste(Farm, Compartment)) 
colnames(PersonalPumps1)<-
c('Location.upper','PP.S.AreusCounts', 
'PP.MRSACounts','Sample.ID','Compartment','Far
m','Sample.Type','FC') 
 
PersonalPumps2 <- PersonalPumps1 %>%  
  
mutate(FCS=paste(Farm,Compartment,Sample.Ty
pe)) %>% 
  mutate(FC=paste(Farm, Compartment)) %>%  
  group_by(FCS)  %>%  
  summarize(mean(PP.MRSACounts),unique(FC)) 
%>%  
  dplyr::select(-FCS)  
``` 
Average MRSA counts per farm (pumps) 
```{r} 
Farm2MRSApump<-subset(Pumps1,Farm==2) 
mean(Farm2MRSApump$Pump.MRSACounts,na.
rm=TRUE)#-6.362029 
 
Farm3MRSApump<-subset(Pumps1,Farm==3) 
mean(Farm3MRSApump$Pump.MRSACounts,na.
rm=TRUE) #-4.966491 
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Farm4MRSApump<-subset(Pumps1,Farm==4) 
mean(Farm4MRSApump$Pump.MRSACounts,na.
rm=TRUE) #-5.036958 
 
Farm5MRSApump<-subset(Pumps1,Farm==5) 
mean(Farm5MRSApump$Pump.MRSACounts,na.
rm=TRUE) #-4.423407 
 
Farm6MRSApump<-subset(Pumps1,Farm==6) 
mean(Farm6MRSApump$Pump.MRSACounts,na.
rm=TRUE) #-6.010262 
 
Farm7MRSApump<-subset(Pumps1,Farm==7) 
mean(Farm7MRSApump$Pump.MRSACounts,na.
rm=TRUE) # -5.155565 
``` 
Average MRSA counts per farm (EDCs) 
```{r} 
#EDC avg vals  
Farm2MRSAEDC<-subset(EDCs1,Farm==2) 
mean(Farm2MRSAEDC$EDC.MRSACounts,na.r
m=TRUE) #-6.557605 
 
Farm3MRSAEDC<-subset(EDCs1,Farm==3) 
mean(Farm3MRSAEDC$EDC.MRSACounts,na.r
m=TRUE) #-5.345531 
 
Farm4MRSAEDC<-subset(EDCs1,Farm==4) 
mean(Farm4MRSAEDC$EDC.MRSACounts,na.r
m=TRUE) #-4.89248 
 
Farm5MRSAEDC<-subset(EDCs1,Farm==5) 
mean(Farm5MRSAEDC$EDC.MRSACounts,na.r
m=TRUE) #-4.489716 
 
Farm6MRSAEDC<-subset(EDCs1,Farm==6) 
mean(Farm6MRSAEDC$EDC.MRSACounts,na.r
m=TRUE) #-5.214306 
 
Farm7MRSAEDC<-subset(EDCs1,Farm==7) 
mean(Farm7MRSAEDC$EDC.MRSACounts,na.r
m=TRUE) # -5.043732 
``` 
Personal Pumps vs Stationary Pumps. Farm 
averages plotted against personal pump 
measurements taken in the same farm. 
```{r} 
#add in counts 
PersonalPumps2$AvgMRSAstationaryPumps<-c(-
6.362029,-4.966591,-5.036958,-4.423407,-
6.010262,-5.155565) 

PersonalPumps2$AvgMRSAEDCs<-c(-6.557605,-
5.345531,-4.89248,-4.489716,-5.2124306,-
5.043732) 
PersonalPumps2$Farm<-c(2,3,4,5,6,7) 
 
PersonalPumps2<-PersonalPumps2[,-c(2)] 
                       
colnames(PersonalPumps2)<-c('Avg MRSA 
Personal Pumps','Avg MRSA Stationary 
Pumps','Avg MRSA EDCs','Farm') 
 
cor.test(PersonalPumps2$`Avg MRSA Personal 
Pumps`,PersonalPumps2$`Avg MRSA Stationary 
Pumps`) 
plot(PersonalPumps2$`Avg MRSA Personal 
Pumps`,PersonalPumps2$`Avg MRSA Stationary 
Pumps`) 


