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Abstract 
Our study aimed to investigate poor outcomes among ICU patients with acute poisoning, with a 

specific focus on discerning international variations. Additionally, we assessed the efficacy of 

Generalized Linear Mixed Models (GLMM) when compared to Generalized Linear Models (GLMs). We 

found that patient outcomes significantly diverge across countries, even after accounting for various 

factors. Notably, countries introduced as random effects within the GLMM exerted a substantial 

influence on patient outcomes, reflecting the influence of distinct healthcare systems, sociocultural 

factors, and resource availability. In terms of modelling, GLMM outperformed GLMs. The inclusion of 

laboratory results alongside patient characteristics notably improved the ability to discriminate poor 

outcomes. The most effective model incorporated a comprehensive set of parameters, encompassing 

physiological indicators, laboratory findings, and exposure types. Our analysis unveiled the 

complexity of the data, indicating that relying solely on physiological and laboratory parameters does 

not suffice to explain patient outcomes fully. Exposure types, as revealed in this study, significantly 

contribute to our understanding, aligning with prior research on the mortality implications of 

intoxication. However, while exposures remained relevant, their impact was comparatively modest. 

The study also highlighted challenges related to categorizing exposures due to methodological 

disparities. To tackle this challenge, we must explore and evaluate new exposure categories. 

Furthermore, concerns emerged regarding patients exposed to multiple substances, warranting the 

need for a refined approach to exposure categorization and prudent consideration of exposure 

dosages. To enhance our models, we should consider transforming physiological and laboratory 

parameters to establish linear relationships with outcomes, thus addressing challenges posed by 

right-skewed distributions and outliers. In conclusion, our study sheds light on the varying patient 

outcomes following intoxication, emphasizing the effectiveness of GLMM as an analytical tool, 

emphasizing the importance of considering exposure types alongside physiological and laboratory 

parameters. This comprehensive approach emphasizes the need for future research to refine 

exposure categorization, consider exposure dosages, and carefully handle other parameters to 

establish linear relationships with outcomes. 
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Layman’s Summary 
In our study, we embarked on an exploration to unravel the factors influencing the outcomes of ICU 

patients who had experienced acute poisoning, with a particular emphasis on understanding why 

these outcomes differed across various countries. Additionally, we sought to determine whether 

employing a statistical approach known as Generalized Linear Mixed Models (GLMM) yielded more 

insightful results than the conventional Generalized Linear Models (GLMs). 

What emerged from our investigation was a notable discrepancy in patient outcomes between 

different countries, even when accounting for variables like age and gender. It became evident that 

the variations were closely linked to the disparities in healthcare systems, cultural norms, and 

available resources across these nations. The GLMM approach proved its mettle by providing 

superior results compared to the GLMs. By incorporating data from laboratory tests in conjunction 

with patient-specific details, our predictive accuracy for adverse outcomes significantly improved. 

The most effective model we developed incorporated an extensive range of parameters, 

encompassing not only laboratory findings and patient characteristics but also the specific type of 

poison involved. 

Our journey through the data revealed its inherent complexity. It became increasingly clear that 

relying solely on information from laboratory tests and patient records was insufficient to fully 

elucidate the intricacies of the outcomes. The type of poison to which individuals were exposed 

emerged as a significant factor, albeit with varying degrees of impact. Categorizing these poisons 

presented challenges due to the diverse methods employed by different individuals, and the added 

complexity of some patients being exposed to multiple poisons further compounded the issue. To 

enhance the robustness of our models, we recognized the need to revamp our approach to 

interpreting laboratory results and patient data, simplifying the process while taking into account 

data anomalies that deviated from the expected patterns or displayed unusual characteristics. 

In summary, our study illuminated the stark divergence in patient outcomes following poisoning 

incidents across different countries. The application of GLMM as our analytical tool proved to be a 

more effective approach compared to GLMs. We learned that the comprehensive evaluation of 

patient outcomes necessitates not only an examination of laboratory results and patient profiles but 

also a careful consideration of the specific type of poison involved. While this presented its own set 

of challenges, it underscored the importance of adapting our methodology to accommodate these 

complexities in the pursuit of more accurate models and results. 
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Introduction 
Acute poisoning represents a critical medical emergency with potential life-threatening 

consequences. The prediction of prognosis in patients with acute poisoning bears significant clinical 

importance by facilitating timely and appropriate treatment interventions (Han, et al., 2021). 

Variations in admission rates are evident across hospitals and countries, particularly regarding the 

admission of intoxicated patients to the ICU. Intoxication refers to the manifestation of harmful 

effects in humans caused by the exposure to a single or repeated instances of a mixture, whether it is 

a naturally occurring or synthetic substance, commonly found in the market or existing in the 

surrounding environment (de Lange, Hunault, & Zwaag, 2021)  

Developed countries tend to prioritize ICU admissions for intoxicated patients primarily for 

observational purposes rather than immediate treatment. This approach acknowledges the critical 

importance of closely monitoring these patients, as severe symptoms may still arise if the xenobiotic 

substances have not yet reached their peak concentration (Brandenburg, et al., 2016). The patients 

with acute intoxication comprise approximately 14% of ICU admissions, however, the in-hospital 

mortality rate among these patients is relatively modest, estimated at around 2% (Hondebrink, et 

al., 2021) 

The mortality rate among patients with acute poisoning is contingent upon their physiological 

condition and the distinctive attributes of the poisoning episode. Various factors, including the type 

of substance, route of exposure, and intent of poisoning, significantly impact the observed outcomes 

in these individuals. Consequently, an effective mortality prediction model for patients with acute 

poisoning must encompass both poisoning-related characteristics and the patients' physiological 

status, while also accommodating individuals across all age groups (Han, et al., 2021). Distinguishing 

between patients who do not necessitate immediate treatment and those at risk of experiencing 

severe symptoms and complications poses a significant challenge.  

Previous studies have investigated different factors and different clinical systems utilized in critical 

care. The Acute Physiology and Chronic Health Evaluation (APACHE) score and Simplified Acute 

Physiology Score (SAPS) are widely employed tools in the intensive care unit, specifically for 

forecasting outcomes in specific poisoning cases (Brandenburg, Brinkman, de Keizer, Meulenbelt, & 

de Lange, 2014). The established association between certain laboratory and physiological 

parameters and an extended ICU stay highlights their significance in clinical outcomes. However, the 

investigation into the relationship between exposure type and outcomes, beyond mortality, remains 

inadequately explored in the existing scientific literature (Liisanantti, Ohtonen, Kiviniemi, Laurila, & 

Ala-Kokko, 2011; Clark, Binswanger, & Moss, 2014).  

Moreover, extensive research has been conducted to investigate the outcomes of acute poisoning 

observed among different countries worldwide, including studies conducted in regions such as 

Australia (Henderson, Wright, & Pond, 1993; Cretikos & Parr, 2003), Europe (Brien, Murphy, Conrick-

Martin, & Marsh, 2009; Liisanantti, Ohtonen, Kiviniemi, Laurila, & Ala-Kokko, 2011) and Asia 

(Fathelrahman, Ab Rahman, & Zain, 2008; Lam, Lau, & Yan, 2010; Han, et al., 2021). This examination 

across diverse geographic regions highlights the urgent need for a comprehensive understanding of 

the multifactorial determinants contributing to the divergent outcomes in cases of acute poisoning. 

By examining these variations in outcomes, valuable insights can be gained to improve our 

understanding of the factors influencing the prognosis and management of acute poisoning globally. 

As well the difference in outcome between different countries across the globe, from Australia to UK, 

including countries from Asia, Middle East, Africa and Europe.  
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Given the intricate nature of our dataset, drawn from intoxicated patients in diverse countries, we 

adopted a mixed model approach for our analysis. This decision was prompted by the inherent 

hierarchical or clustered structure of our data, stemming from the complex interplay of contextual 

factors that influence patient outcomes. Patients residing within the same country or region often 

share common characteristics and risk profiles related to intoxication. These shared traits are shaped 

by a multitude of determinants, encompassing healthcare infrastructure, cultural norms, and access 

to medical services (Mulyaningsih, et al., 2021). Additionally, individual patient attributes, 

comorbidities, and exposure types can vary significantly across different countries. The utilization of 

mix effect modelling provides a robust framework to accommodate these intricacies, both within and 

between countries. This approach enables a comprehensive exploration of the factors contributing to 

poor patient outcomes. 

The primary objective of this study is to examine the association between the prevalent poor 

outcomes observed in ICU patients across diverse geographical areas and the risk factors related to 

exposure type and patients' characteristics. To achieve this, we perform a Generalized linear mixed 

model (GLMM). The objectives of the study: 

1. Does the risk of poor outcome in ICU intoxicated patients differ between countries after 

adjustment for demographic, clinical examination, lab results and exposures variables? 

2. To assess the potential improvement in predictive accuracy for poor outcomes among ICU 

patients following acute poisoning through the implementation of GLMM, in comparison to 

the Generalized Linear Models (GLM) utilized in previous investigations.  
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Methods 

Design of the Study 
This study is a part of a multinational and multi-centre observational study, the INTOXICATE study, 

which focuses on examining the outcomes and prognosis of patients admitted to intensive care units 

(ICUs) following incidents of acute intoxication. In the scope of the study, an intensive care unit (ICU) 

is characterized as a specialized facility capable of performing endotracheal intubation and delivering 

mechanical ventilation to patients. It encompasses a range of specialties, including medical, surgical, 

toxicology, and other specialized units. Furthermore, high-dependency units (HDUs) or high-care 

units (HCUs) that offer comprehensive care for critically ill patients and possess the capability to 

provide mechanical ventilation, if necessary, are considered as part of the ICU framework within the 

INTOXICATE study (de Lange, Hunault, & Zwaag, 2021). 

The study encompasses multiple sites across Europe and other continents, including Asia, Australia, 

UK and Africa. Clinicians of the participating ICUs were referred to the study through its website 

(www.toxicstudy.org). While participation is not limited by geographic boundaries, it is worth noting 

that the majority of patients included in the study are primarily sourced from ICUs located in Europe, 

particularly the Netherlands (Table 1). Because of the limited patient inclusion, Greece (N=2), Sudan 

(N=1), and United Stated (N=2) will be excluded from the data analysis.  

Table 1: The number (N) and the percentage (%) of the patients that included in the study per country 

The total number of patients that included in the study is 1915.  

COUNTRY NUMBER OF PATIENTS (N) % OF TOTAL PATIENTS 

NETHERLANDS 873 45.75 
SPAIN 214 11.22 

SWEDEN 200 10.48 
TURKEY 119 6.24 

BELGIUM 114 5.97 
AUSTRALIA 63 3.30 

AUSTRIA 53 2.78 
JORDAN 42 2.20 

GERMANY 34 1.78 
LIBYA 33 1.73 

ROMANIA 33 1.73 
PORTUGAL 31 1.62 
LITHUANIA 28 1.47 

EGYPT 20 1.05 
UNITED KINGDOM 19 1.00 

ITALY 10 0.52 
PALESTINE 10 0.52 
CROATIA 7 0.37 
BRUNEI 5 0.26 
GREECE 2 0.10 

UNITED STATES 2 0.10 
SUDAN 1 0.05 

 
 

http://www.toxicstudy.org/
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Patients and Data Collection 
From January 2021 to July 2023, which signifies the completion of the inclusion period, participating 

units diligently provide data from acutely intoxicated patients admitted to their respective ICUs. 

Those data are integrated into the online data aggregation platform, Castor EDC. This integration is 

achieved through the use of a comprehensive questionnaire, which captures crucial information 

including patient characteristics, exposure details, clinical assessment, administered treatments, 

complications, and vital status at the time of hospital discharge. 

The study employs specific criteria to ensure that the selected patient population focuses on those 

who meet the necessary requirements for ICU/HDU admission due to intoxication. These criteria 

include:  

(1) Patients must have been directly admitted to the intensive care unit (ICU) or high-

dependency unit (HDU) from an ambulance or the Emergency Department, or transferred 

from a medical or surgical ward to the ICU/HDU.  

(2) The primary reason for ICU/HDU admission should be intoxication. 

(3) Patients must have stayed in the ICU/HDU for a minimum duration of at least 4 hours.  

(4) The study includes patients (males/females) who are 18 years of age or older.  

The study applied strict exclusion criteria to ensure a well-defined patient population, enhancing the 

relevance and validity of the findings regarding the outcomes and prognosis of ICU/HDU patients 

specifically related to intoxication. The following criteria were implemented: 

(1) The outcome used in this study could not be determined.  

(2) The patient had no ICU admission date 

(3) The data entry was too empty to use. We removed the patients that had >50% of missing 

data (Marino, Lucas, Latour, & Heintzman, 2021; Lee & Carlin, 2012; Haji-Maghsoudi, 

Haghdoost , Rastegari, & Baneshi, 2013; Wulff & Jeppesen, 2017) 

The data for this study were extracted from the Castor EDC database as of July 31, 2023. The patient 

selection process involved applying a predefined exclusion criteria, which has been represented in 

Figure 1. The total patients in Castor were 2056, which after the use of the exclusion criteria the final 

patients that used in the analysis were 1907. 
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Figure 1: The number of patients in Castor in the start of the analysis and after the exclusion of 

patients with missing important information. The exclusion criteria used show in each step. 

 

Definitions of Variables  

A. Poor outcome:  
It is defined in this study as a patient who either passes away before hospital discharge, as indicated 

by "Deceased at ICU/HDU" or "Deceased at the ward following ICU/HDU discharge," or experiences 

complications during their ICU stay. The complications recorded in the Castor database include the 

following:  

1. Acute liver failure 

2. Acute renal failure  

3. Anoxic brain injury  

4. Aspiration pneumonitis 

5. Coma  

6. Hospital acquired infection  

7. Hypertensive crisis  

8. Hypoxic-ischemic brain injury  

9. Respiratory failure 

10.Other 

11. No complications 

Total patients in 
Castor: 2056

•Exclusion of patients with >50% missing values

Patients in Castor: 
1951

•Exlusion of patients with missing vital status in 
hospital discharge

Patients: 1916
•Remove Patients with missing the Date of ICU 

admission

FINAL PATIENTS: 
1907
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In cases where a specific complication is not listed in the database, the investigator has the flexibility 

to select the "Other" option and manually input the complication. This allows for the inclusion of 

additional complications that may not be predefined in the database.  

Furthermore, it is important to note that the definition of a poor outcome extends beyond the 

duration of hospital discharge. Specifically, it encompasses the assessment of patient status up to 30 

days following hospital discharge, taking into account whether the patient remains alive or not 

during this period. Conversely, a good outcome is defined as the patient being "Alive" without any 

documented complications upon  and after 30 days of hospital discharge.   

B. Comorbidities: 
Comorbidity refers to the presence of additional medical conditions that coexist alongside a primary 

health condition. These comorbidities can encompass both physical and mental health disorders and 

are typically chronic in nature. In the context of intoxication, the presence of comorbidities can lead 

to an elevated risk of hospitalization, heightened susceptibility to adverse treatment effects, 

increased demands on both patients and healthcare professionals, escalated healthcare expenses, 

diminished quality of life, and higher mortality rates. It is crucial to consider comorbidities when 

evaluating the overall health status and outcomes of individuals affected by intoxication. 

Comorbidities used in this study and listed in Castor dataset as follows: 

1. Acute Myocardial Infarction (AMI) 

2. Acute airway obstruction 

3. Addiction 

4. Arrythmia 

5. Chronic cardiovascular insufficiency 

6. Chronicled haemodialysis 

7. Chronic Kidney Disease (CKD) 

8. Chronic Obstructive Pulmonary 

Disease (COPD) 

9. Cirrhosis 

10. Delirium  

11. Demetria 

12. Diabetes 

13. Haematological malignancy 

14. High intracranial pressure 

15. Immunodeficiency 

16. Maltutrition/weight loss 

17. Metabolic/endocrine disease 

18. Metastasized cancer 

19. Paralysis 

20. Primary Epilepsy 

21. Psychiatric disease 

22. Sepsis 

23. Stroke 

24. Other 

25. Severe respiratory disease with e.g. 

oxygen use or mechanical ventilation 

at home 

26. None 

 

In the analysis of the data, physicians had the option to specify comorbidities in the "Other" 

category. This allowed for the identification of various comorbidities present among the patients. 

However, it was observed that some of the conditions initially categorized as comorbidities were, in 

fact, symptoms directly related to the intoxication itself. Therefore, to ensure accuracy, these 

symptoms were not considered as separate comorbidities and were excluded from the final analysis. 

To classify the comorbidities appropriately, two distinct categories were established. The first 

category focused on somatic comorbidities, encompassing conditions such as Acute Myocardial 

Infarction (AMI), Chronic Kidney Disease (CKD), and others that primarily relate to physical health. 

The second category specifically addressed psychiatric comorbidities, which included conditions like 

Dementia, Psychiatric Diseases, Alzheimer's Disease, Addiction, and other mental health disorders. 

By segregating comorbidities into these two categories, the analysis aimed to capture and 
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differentiate the various types of comorbidities experienced by the patients, considering both their 

physical and mental health aspects. 

C. Clinical assessment and Laboratory Results: 
Glasgow Coma score (GCS): In Castor, the GCS is recorded in two different ways, allowing for 

flexibility in score calculation. Users have the option to record the individual sub-scores and Castor 

computes the total GCS score, or directly input the total GCS score. By incorporating both 

approaches, Castor enables the derivation of a comprehensive and accurate final score that serves as 

a crucial component for statistical analysis. In order to capture the complete spectrum of patient 

conditions, specific limits for GCS calculation, GCS manual, and GCS admission have been set at 3. 

This choice ensures that patients who are intubated during their admission at ICU are still included in 

the analysis. By establishing the minimum GCS final score as 3, the system accounts for these cases 

and avoids the exclusion of important data.  

Platelet count: To ensure the integrity of the analysis, a minimum limit for platelet counts has been 

established at 150 mmol/L in Castor. Any value below this threshold is considered indicative of 

thrombocytopenia, which could potentially introduce confounding factors. Consequently, patients 

falling below this limit are excluded from the analysis. 

Potassium concentration: The variable is categorized as bad potassium levels, which are defined as 

values above 5.0 and less than 3.0 mmol/L. "Bad potassium levels" encompass both hyperkalemia 

(elevated potassium levels) and hypokalemia (low potassium levels). 

Sodium concentration: The variable is categorized as either hyponatremia or hypernatremia, with 

specific limits set at 145 mmol/L and 135 mmol/L, respectively. Hyponatremia refers to a lower than 

normal concentration of sodium in the blood, while hypernatremia indicates an elevated sodium 

level. 

Heart rate: The variable is categorized as tachycardia which is defined as a heart rate exceeding 109 

beats per minute. In this analysis, bradycardia is not considered as it has been established that it 

does not exhibit a significant relationship with prolonged ICU stay (Liisanantti, Ohtonen, Kiviniemi, 

Laurila, & Ala-Kokko, 2011). 

Systolic Blood Pressure: The variable is categorized as "low systolic blood pressure," defined by a 

threshold of less than 90 mmHg. In this analysis, high systolic blood pressure is not considered, as 

previous research (Liisanantti, Ohtonen, Kiviniemi, Laurila, & Ala-Kokko, 2011) has indicated that it 

does not exhibit a significant relationship with prolonged ICU stay. 

Temperature: The variable is defined as “hyperthermia” and “hypothermia” with thresholds as >38.3 

and <35 Co, respectively. Hyperthermia refers to an elevated body temperature, while hypothermia 

indicates a lower than normal body temperature. 

During the analysis of the remaining laboratory variables including Arterial pH, Creatinine, and 

White Blood Cells (WBC), a thorough quality check of the data was conducted. Values that did not 

make sense or appeared to be inconsistent were identified and corrected to ensure the accuracy and 

reliability of the dataset. In addition to addressing erroneous data, particular attention was given to 

the units used for these variables. All values were standardized to a uniform unit of measurement 

prior to conducting the analysis. By standardizing the units, potential discrepancies stemming from 

variations in unit measurements were effectively eliminated. This critical step enabled a consistent 

and meaningful comparison of the laboratory results.  
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D. Exposures: 
The categorization of exposure types utilized in the study is derived from various sources, including 

APACHE IV, the annual reports of the American Association of Poison Control Centres, and relevant 

scientific articles. Notable references in this regard include studies conducted by Brandenburg et al. 

(2016), and (Rezar, et al., 2022). 

• Cardiopulmonary: Includes anticoagulants, blood pressure medication,  antiarrhythmics, 

cholesterol medications, antithrombotic. 

• Antipsychotics: As benzodiazepines, antipsychotics and sedatives, including lithium and 

methylphenidate. 

• Antidepressants: Includes TCA’s, SSRI’s, SNRI’s, MAO-inhibitors 

• Opioids: Includes both medical used opioids like morphine and drugs of abuse like heroin 

• Analgesics: Includes Paracetamol and NSAID’s 

• Antidiabetics: Includes insulin, metformin, sulfonylurea derivatives, SGLT2-inhibitors 

• Alcohol: Non-Ethanol alcohols, including methanol and ethylene glycol. 

• Ethanol: Drinks containing ethanol 

• Street Drug: Including cocaine, amphetamine, GHB, 2-CB, 3-MMC, Cannabis 

• Chemicals: Non-drug chemicals, e.g. industrial chemicals, cleaning products, pesticides and 

the ‘Other Toxins’ type: Arsenic, carbon monoxide, cyanide 

• Toxins not otherwise specified: Exposure does not belong to any of the categories above  

• Two or more types: A combination of 2 or more types above  

• Unknown: No exposure data was available 

Data analysis 
The INTOXICATED study encompasses a substantial amount of data for each patient, resulting in a 

large number of variables. However, conducting an analysis with such a vast number of variables may 

pose challenges for the Generalized Linear Mixed Model (GLMM), and more accurately the 

Generalized Regression Mixed Model (GLMER), which is part of GLMM. To address this issue, the 

analysis will focus solely on the variables that have been previously identified as important based on 

relevant studies. These variables have demonstrated significance in relation to the research question, 

and their relevance has been established through previous investigations. Furthermore, the selection 

of these specific variables is guided by the principle of avoiding overly specific or context-specific 

findings. 

Assumptions of the model: 
For Generalized Linear Mixed Models (GLMM) the assumptions that must be fulfilled are the follow 

(Schielzeth, et al., 2020; Grilli & Rampichini, 2015; Brown, 2021):  

• Validity of the model 

• Independence of the data points 

• Absence of measurement error in the predictor 

• Occurrence of data missing completely at random 

• Linearity of the relationship between predictor and response and collinearity between 

variables. This can be illustrated by scatterplots showing a linear or curvilinear relationship. 

• Normality of the residuals (Q-Q plots). Mixed models are flexible, in principle, in their use of 

various distributions (Lee & Nelder, 2004), but normal distributions are by far the most 

commonly used. 
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• Homogeneity of the residuals. Plotting residuals against fitted values allows an assessment of 

heteroscedasticity—although again observing the predicted pattern does not guarantee the 

absence of heteroscedasticity (Grilli & Rampichini, 2015). 

As per the definition of GLMER, the dependent variable in our study is appropriately categorized as 

"poor outcome," aligning with the binary nature required for this kind of analysis. The outcome 

variable has two levels, indicating the presence or absence of a poor outcome, making it suitable for 

this type of modelling. Additionally, the study design ensures the independence of variables. Each 

patient's data is unique and distinct, with no duplicated measurements or observations, thus 

preserving the necessary independence of variables for accurate analysis. 

To ensure the absence of measurement errors in the predictors, we diligently corrected values and 

units before proceeding with the analysis. To address potential biases from missing data, the study's 

design was carefully crafted, and thorough data cleaning was performed to identify and rectify any 

inconsistencies or errors. Additionally, multiple imputation techniques were employed to estimate 

missing values based on observed data patterns, significantly reducing bias and improving the 

statistical efficiency of the analysis. Moreover, the use of mixed-models in this study proves 

advantageous in handling missing data compared to general linear models, further enhancing the 

robustness of the results. 

In order to assess the presence of collinearity among the continuous variables intended for inclusion 

in the model, a pair-wise correlation analysis was conducted (refer to the provided FIGURE displaying 

the collinearity) (Figure 2).  This analysis aimed to evaluate the strength of the relationships between 

these variables and identify any potential multicollinearity issues that may arise from high 

correlations among them, which may cause faulty results in the model.  

According to the literature on collinearity, for two variables to be considered collinear, their 

correlation must be close to 1 or -1. In our study, the highest correlation is observed between 

creatine levels and age, with a value of 0.240, while the lowest correlation is between arterial pH and 

white blood cells, with a value of -0.049. Based on these results, it can be assumed that there is no 

strong collinearity between the variables in this study. However, it's important to note that the 

Figure 2: Pair-wise correlation analysis of the continuous variables to check collinearity of the data. 
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presence of missing values, particularly in arterial pH and white blood cells (WBC) variables, may 

influence the correlation values when imputed data is introduced in the analysis. This highlights the 

need to handle missing data appropriately and be cautious in interpreting the correlation results in 

the presence of imputed data.  

Boxplots were generated to compare the distribution of continuous variables used in the study 

between the two "poor_outcome" groups (presence or absence of a poor outcome) (Figure 3). The 

boxplots reveal the variability and central tendency of each variable across the two groups. In order 

to better visualize certain variables, a log transformation was applied to the "value" variable for some 

of the variables. The log transformation can help address skewness in the data and highlight patterns 

that might not be apparent in the original scale.  

The analysis of the boxplots reveals some interesting patterns between patients with a poor 

outcome and those with a good outcome. Specifically, there are slight differences in the distribution 

of age and creatine levels among patients who died compared to those who survived. However, no 

significant variations are observed for BMI, white blood cell count (WBC), and arterial pH between 

the two groups. These findings suggest that age and creatine levels might play a role in distinguishing 

between poor and good outcomes, while BMI, WBC, and arterial pH appear to have similar 

distributions across both patient groups. It is important to note that these observations are based on 

the data visualizations, and further statistical analyses would be required to confirm the significance 

of these differences. (Appentix: 1.Distribution of variables) 

The normality of the residuals, were checked using the Q-Q plots for continuous variables used in the 

model, while their distribution using histograms. The Q-Q plots show  a normal distribution for age, 

arterial pH and creatinine (Figure 4). The rest variables shown in Appendix, especially the binary and 

categorical variables. 

 

Figure 3:The distribution of continuous variables at each level of the binary outcome (poor outcome). 
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The homoscedasticity assumption in our analysis implies that the discrepancies between observed 

and predicted values should exhibit a roughly constant spread across all levels of the independent 

variables. In simpler terms, this means that the variability or dispersion of residuals should remain 

Figure 4: The normality of the residuals and the distribution of the variables Age, Arterial Ph and Creatine 

Levels. On the left are the histograms of the distribution, and on the right the QQ plots for normality check.  
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consistent, without any discernible pattern as we traverse the range of predictor values. However, as 

depicted in Figure 5 we observe a violation of the homoscedasticity assumption. This suggests that 

certain variables may be contributing to the inconsistent spread of residuals. To address this issue, 

further examination and potential transformations of these variables are warranted. 

Data extraction and cleaning 
The data from Castor EDC was imported into the R programming language using the 'CastoRedc' R-

package, developed by Castor EDC. In the study, certain variables in the dataset allowed site 

investigators to input data using multiple different units through the Castor interface. However, for 

the purpose of data analysis, all values were standardized and converted to a consistent unit to 

ensure uniformity and comparability. During the study, a thorough data validation process was 

carried out by a team member who carefully reviewed all data entries in Castor. If any typing errors, 

incorrect units, or other mistakes made by the site investigator were identified during data entry into 

the database, a query was raised to notify the investigator for necessary corrections. Data points 

flagged by queries underwent careful evaluation, and if they were deemed to be highly improbable 

or erroneous, they were excluded from the dataset during the data analysis phase. 

Imputations of missing data 
The use of clinically captured data for research often encounters the challenge of missing data, 

potentially introducing bias or affecting analytical results (Sterne, et al., 2009; Li, Stuart, & Allison, 

2015). Missing data can arise from factors such as inconsistent staff documentation in electronic 

health records, technical malfunctions in data capture devices, and data stored in unstructured 

formats (Li, et al., 2014). As a result, these data are not readily accessible for analysis (Hegde, et al., 

2019). One way to deal with missing values is to exclude the incomplete data from the subsequent 

analysis [9]. Excluding incomplete data from analysis is common (Manly & Wells , 2014), but widely 

considered suboptimal (Masconi, Matsha, Erasmus, & Kengne , 2015). This leads to information loss 

Figure 5: The Homoscedasticity of the residuals. The dispersion of the residuals across the range of 
the the predicted values.  
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and potential bias (Hegde, et al., 2019). Various techniques exist for handling missing data, but in this 

study, we will employ the Multiple Imputation method (MI).  

Multiple imputation is a statistical technique employed to handle non-responses in surveys, which 

can potentially jeopardize the validity of survey results and subsequent statistical inferences (RUBIN, 

1976)Rather than replacing missing values with a single value, this method utilizes the distribution of 

observed data or variables to estimate multiple potential values for the data points. This approach 

takes into account the uncertainty surrounding the true values, resulting in more robust and 

informative values for more comprehensive analysis. The multiply-imputed datasets can be analysed 

using standard complete-data methods, treating them as if they were the actual dataset, despite not 

containing any real data from nonrespondent individuals. (LITTLE & RUBIN, 1989). 

The 'Multiple Imputation Using Chained Equations' (MICE) technique, which is an example of a MI 

(AZUR, STUART, FRANGAKIS, & LEAF, 2011; Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 

2001), was chosen for the INTOXICATE study Our study utilized MICE operates with the assumption 

that the missing data is Missing At Random (MAR), implying that the probability of data being 

missing is solely dependent on observed values used in the imputation process, and not influenced 

by unobserved values (Schafer & Graham, Missing data: our view of the state of the art, 2002).The 

percentage of missing data points for each variable used is shown in Table 2. The missing data points 

were replaced with substituted values through 100 imputation iterations and five imputed datasets. 

The multiple imputation process was conducted using the 'MICE' R-package (Zhang, 2015; Wulff & 

Jeppesen, 2017).  

 

Table 2: Percentage of Missing Data for Variables Used in Multiple Imputation 

Variables Percentage of missing data 

Arterial_ph 0.35% 
Wbc 0.17% 

Low_platelet 0.10% 
Creatinine_ln 0.1% 

Bad_potassium 0.08% 
Bad_sodium 0.08% 

GCS 0.05% 
Bad_temp 0.02% 
Low_sbp 0.01% 
High_hr 0.007% 

Sex_binary 0.004% 
Poor_Outcome 0.001% 

 

 

Model Selection 
The INTOXICATE study includes data from various countries worldwide, with diverse protocols in 

managing intoxicated patients. Assessing variations in the relationship between exposure types and 

poor outcomes across countries is crucial to contextualize findings and consider the impact of diverse 

healthcare systems on research outcomes. In this study, binary, continuous, and categorical variables 

were employed to evaluate a Generalized Linear Mixed Model (GLMMs), aiming to investigate the 

potential differences in poor outcome associated with exposure types across different countries.  
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GLMERs extend the capabilities of GLMM, making them suitable for handling response variables 

from various distributions, including binary outcomes. These models are especially valuable when 

dealing with data that lacks independence due to a hierarchical structure. These models incorporate 

both fixed and random effects, providing flexibility in analysing different types of data. Fixed effects 

represent population-level effects that remain consistent across experiments, while random effects 

capture clusters of dependent data points with observations belonging to the same higher-level 

group (Brown, 2021). These random effects are discrete units sampled from a larger population 

(Winter & Wieling, 2016). GLMERs address issues like over-dispersion and account for population 

heterogeneity, making them valuable for statistical analysis (Takele, Zewotir, & Ndanguza, 

Understanding correlates of child stunting in Ethiopia using generalized linear mixed models, 2019). 

 

In our study, in the Equation 1, the dependent variable (Y) is defined as the binary variable 

representing the occurrence of the poor outcome. The independent variables encompass various 

factors, such as country, exposure types, laboratory results and clinical assessment findings. The 

independent variables in the study were categorized into two types: fixed effects (X) and random 

effects (Z). Fixed effects consisted of exposure types, clinical assessment variables and laboratory 

results. In our study, we treated countries as random effects. This decision was driven by the use of a 

specific subset of countries instead of all possible options. This approach allowed us to factor in the 

variability associated with different countries and consider how country-related factors might impact 

patient responses. 

Potential confounders, including age, somatic or/and psychiatric comorbidities, and gender, were 

considered in the model. Confounding variables are associated with both the independent and 

dependent variables, meeting two conditions: correlation with the independent variable (causality 

not necessary) and causal relationship with the dependent variable. Addressing confounding 

variables ensures internal validity, as neglecting them may introduce bias and distort relationships 

between other variables. Age, for example, does not change due to exposure types, but it could 

influence the exposure type a patient experiences (e.g., younger individuals being more likely 

exposed to street drugs), making it a potential confounder if it also affects the outcome 

The initial step involved identifying the variables used in constructing the model. The country was 

considered a constant random effect in the model. Subsequently, these variables were organized into 

three distinct blocks, facilitating the investigation into whether the exposure type can effectively 

distinguish between poor and good outcomes. The first block comprises physiological parameters 

that a physician can determine upon encountering an acutely intoxicated patient. The second block 

includes laboratory parameters that require blood tests for measurement. The third block consists of 

information about the exposure type (Table 3).  

 

Equation 1: The GLMER model equation. Y is the outcome variable, X is a matrix of the predictor variables, β 

is the vector for fixed effects regression coefficients, Z is the matrix for the random effects, u is the vector for 

the random effects and ε is the vector of the residuals that are not explained by the model. 
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Table 3: Blocks of variables used in the models. 

 

Initially, we developed a model using covariates from the first block, which included patient 

characteristics. Next, we constructed a second model, incorporating covariates from both the first 

block and the second block, which consisted of laboratory results. Subsequently, the third model was 

constructed, incorporating covariates from both the first block (patient characteristics) and the third 

block (exposure categories). In this way, we assessed whether the inclusion of the third block 

improved the model fit compared to the models with covariates solely from the first block or the first 

and second blocks. Lastly, the fourth model was built, incorporating all three blocks, to examine 

whether the model with exposure types enhanced the goodness-of-fit compared to the models with 

the other covariates. Below on Table 4 are the models developed in the study: 

Table 4: Models used in the analysis. 

MODEL FIXED EFFECTS RANDOM EFFECTS 

1# Block 1# Countries 
2# Block 1# + Block 2# Countries 
3# Block 1# + Block 3# Countries 
4# Block 1# + Block 2# + Block 3# Countries 

 

As we navigate the intricacies of the GLMER model, a crucial decision arises—choosing between 

random/fixed intercepts and random/fixed slopes. In mixed modelling, the fixed-intercept estimate 

represents the average starting point, while random intercepts let individuals and items deviate from 

this average. Here, we've utilized random intercepts to uncover variations in baseline poor outcomes 

among subjects. This approach suggests that patients in each country have distinct starting points for 

poor outcomes, following a typical distribution of deviations with a zero mean and a variance 

estimated by the model (Brown, 2021). In contrast, a random slope model enhances this versatility 

by allowing explanatory variables to exert differing effects within each group, acknowledging the 

potential for distinct relationships between variables and responses across subsets. In our current 

study, we've embraced a model with fixed slopes. This choice implies that each explanatory variable 

BLOCK VARIABLES 

1# 

Age, Gender, Comorbidity category, 
Tachycardia (High_hr), Low systolic blood 
pressure (Low_spb), Glasgow Coma Score 

(GCS) 

2# 

Thrombocytopenia (Low_platelet), Arterial pH, 
White blood cells concentration (wbc), 

Creatine concentration (creatinine_ln),  hypo-
/hyperkalemia (bad_potassium), hypo-
/hypernatremia (bad_sodium), hypo-

/hyperthermia (bad_temp) 

3# 

Exposure types: Alcohol, Analgesics, Anti-
diabetics, Antidepressants, Cardiopulmonary, 

Ethanol, Opioids, Street drugs, Chemicals, 
Toxins not otherwise specified, Unknown 
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maintains a consistent impact across all patient groups, ensuring uniformity and enabling meaningful 

comparisons among countries in our analysis (University of Bristol). 

Comparisons of the models 
To compare the models and determine the parameters that best explain our data, we utilized the 

likelihood-ratio test through the anova() function in R. This test compares the goodness of fit 

between two nested models. A nested model contains a subset of the independent variables present 

in the full model. In our case, we compared the subset models (1, 2, 3) with the full model (4) to 

identify the one that provides a better explanation for our data. For the comparison of non-nested 

models, such as model 2 and model 3, which do not contain nested variables, the Akaike Information 

Criterion (AIC) is utilized. 

The Likelihood ratio test is based on the following null and alternative hypotheses: H0: Both the full 

model and the nested model provide an equal fit to the data. Consequently, the nested model 

should be preferred for use. HA: The full model exhibits a significantly superior fit to the data 

compared to the nested model. Consequently, the full model should be favoured for utilization. If the 

p-value of the test is below a specific significance level (e.g., 0.2) (Steyerberg, 2019), we can reject 

the null hypothesis and infer that the full model provides a significantly better fit to the data. (Glen, 

2023). The likelihood-ratio test was performed on the 5 imputed datasets, which were combined 

using the R package 'mice.' 

The AIC is a mathematical approach for assessing how well a model fits the data from which it was 

derived. In statistics, AIC is employed to compare various models and identify the one that provides 

the best fit for the data. It takes into account the number of independent variables used in 

constructing the model and the maximum likelihood estimate, which measures how well the model 

replicates the data. The preferred model according to AIC is the one that explains the most variation 

while utilizing the fewest independent variables. Lower AIC scores are preferable as AIC penalizes 

models with more parameters. When two models explain the same amount of variation, the one 

with fewer parameters will have a lower AIC score and is considered the better-fit model (Cavanaugh 

& Neath, 2019; Bevans R. , 2023).  

Generalized Linear Mixed Models VS Generalized Linear Model  
The secondary objective of this study is to evaluate whether Generalized Linear Mixed Models offer a 

more comprehensive explanation for the relationship between exposures and poor outcomes across 

different countries compared to the Generalized Linear Models used previously. To achieve this, we 

will employ the AIC (Akaike Information Criteria) and likelihood-ratio test to compare the two types 

of models. The AIC is calculated from (1) the number of independent variable that used to build the 

model and (2) the maximum likelihood estimate of the model. The best-fit model according to AIC is 

the one that explains the greatest amount of variation using the fewest possible independent 

variables (Bevans R. , 2023). 

Another method to compare the goodness of fit two regression models is the Bayesian Information 

Equation 2: The BIC criteria for comparison of regression models. d: The number of predictors, n: 

Total observations, σ:̂ Estimate of the variance of the error associate with each response 

measurement in a regression model, RSS: Residual sum of squares of the regression model, TSS: 

Total sum of squares of the regression. 
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Criterion (BIC). BIC is calculated from Equation 2  

The (BIC) is more useful in selecting a correct model while the AIC is more appropriate in finding the 

best model for predicting future observations (Chakrabarti & Ghosh, 2011). Both models will 

encompass identical independent variables, covariates, and dependent variables, with the GLMM 

model uniquely incorporating the random effect of countries. This analysis aims to determine which 

model provides a more robust understanding of the association between exposures and poor 

outcomes, accounting for potential variations among different countries.  
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Results  

Variables 
The age range of the patients enrolled in this study spans from 18 to 96 years old. The average age of 

the patients across the study cohort is 54.57 years. Notably, patients who experienced poor 

outcomes due to intoxication had a marginally higher mean age of 48.19 years compared to those 

who survived. A gender breakdown reveals that the study population consisted of 1024 females and 

877 males. Interestingly, a greater proportion of females participated in the study. Specifically, 

28.77% of males exhibited poor outcomes, whereas a slightly lower proportion, 18.46%, of females 

experienced poor outcomes. Table 5 presents the patient demographics from the study, illustrating 

the average values (expressed as percentages) of the variables associated with poor or bad 

outcomes. These variables were subsequently utilized for the purpose of statistical analysis. 

Examining patients with poor outcomes reveals a distinct pattern: a higher occurrence of somatic 

comorbidities in contrast to psychiatric conditions. Interestingly, patients with both types of 

comorbidities exhibit an intermediate position. Furthermore, individuals who experienced poor 

outcomes exhibited noteworthy differences: their Glasgow Coma Scale (GCS) scores were notably 

lower, arterial pH levels were reduced, creatinine levels were higher, and white blood cell (WBC) 

counts were elevated. 
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The risk of poor outcomes across diverse countries in the study was evaluated using a logistic 

regression model: glm(poor_outcome ~ country, data = data, family = binomial). As depicted in 

Figure 6, Brunei demonstrates the highest estimated risk for poor outcomes (0.9), though this could 

be influenced by limited patient participation. Following Brunei, Libya, Romania, and Egypt exhibit 

heightened risks of poor outcomes among their patients. In contrast, Spain and Belgium, with 

substantial patient representation, also reveal notable risks of poor outcomes, approaching 0.70. 

These findings suggest the persistence of distinct outcomes, irrespective of variations in patient 

participation rates among countries 

Table 5: Comparison of how various factors are distributed among three distinct patient groups: all patients, 

patients with good outcomes, and patients with poor outcomes. The p-values associated with continuous 

variables highlight differences in average values between patient groups, while p-values for categorical variables 

highlight associations between the variable and the likelihood of poor outcomes.  
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To reinforce the findings discussed earlier, Table 6 and Table 10 (Appendix: 2.Distribution of Exposure 

Variables in different countries) offer a more detailed examination of key variables, showcasing their 

variations in both average values and percentages. These tables are particularly relevant as we delve 

into the upcoming models. Table 6 centres on patients' characteristics, lab results, and clinical 

assessments, whereas Table 10 focuses on exposure-related variables. Together, they dissect these 

distinctions across five specific countries that played a role in our study. 

Differences in parameter distributions among Belgium, Turkey, Spain, Sweden, and the Netherlands 

are evident. For instance, Belgium exhibits a higher percentage of tachycardia among patients 

compared to the Netherlands. Similarly, when it comes to somatic comorbidities, Turkey stands out 

with nearly 17% of its population affected, while only 5% of the Netherlands' population has somatic 

comorbidities. These disparities underscore the importance of considering regional variations in 

patient characteristics when conducting analyses and drawing conclusions.  

 

Figure 6: The plot that illustrates the risk of poor outcomes for each country included in the study. The risk 

assessments are derived from a simple logistic regression model, providing valuable insights into country-specific 

outcome patterns. 
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Analysis of Table 10 (Appendix: 1.Distribution of variables) reveals significant disparities in the 

distribution of exposure categories within the study population. For instance, the "Street_drug" 

category has no patients in Turkey and Belgium, whereas approximately 5% of patients in Spain and 

the Netherlands have experienced street drug intoxication. Conversely, the "2_or_More" category 

stands out with a higher number of patients compared to other categories in all countries. This 

prevalence of the "2_or_More" category may lead to inaccurate exposure estimations. It's 

noteworthy that a patient exposed to both "Street drug" and "Alcohol" is categorized under 

"2_or_More," rather than in both "Alcohol" and "Street drug." This raises questions about the 

accuracy of exposure categorization, highlighting the need for further investigation in this area we 

can conclude that the exposures categories are not equally distributed among the population of the 

study.  

 

 

 

 

 

 

 

Table 6: The distribution of patient characteristics, clinical assessment criteria, and laboratory results variables across five 
participating countries in the study. The results are presented as percentages or mean/median values for the number of 
patients in each country. 
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Multiple Imputations (MI) 
To assess the missing data before the statistical analysis, multiple imputation using the mice() 

package were contacted with 100 iterations and 5 different imputed datasets. Figure 7, shows the 

density plots of the real data (blue line) across the imputed data (red lines) for  patient vitals during 

the ICU stay and their laboratory results. The graphs show that the imputed and real data trends are 

quite similar. Most imputed curves follow the same patterns with the real data, however, some 

imputed values have higher or lower data distribution. It's interesting to note that heart rates and 

systolic blood pressure (SBP) values often go above the usual range of the real data, while the 

sodium levels as well as temperature and platelet values follow under the curve of real data. The rest 

data shown in Appendix: 3. Multiple Imputations   

 

 

 

Figure 7: The density plots of comparison of imputed data (depicted in red) with real data (shown in blue) pertaining to vital 
signs (heart rates, systemic blood pressure, temperature and GCS) and laboratory results (platelet counts, sodium levels. 
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Detecting the convergence of the MICE algorithm can be a challenging task, often requiring specific 

diagnostic methods. One approach is to visualize the behavior of imputed parameters against the 

iteration number. In Figure 8, the mean and variance of imputations for each parallel stream are 

displayed. When convergence is achieved, these streams should blend together seamlessly, without 

displaying distinct patterns. Convergence is typically established when the variance across different 

sequences is comparable to or smaller than the variance within each individual sequence. This 

criterion indicates that imputed values from different streams have coalesced into a consistent 

result, implying that the imputation process has reached a stable state (Abayomi, Gelman, & Levy, 

2007). The rest data shown in Appendix: 3. Multiple Imputations . 

As shown in the figure, the differences in imputed values across various datasets don't follow any 

noticeable patterns and fit together smoothly. This indicates that the imputation process has 

successfully reached a stable point. When we tried using fewer iterations, the imputed values didn't 

work well and didn't show consistent patterns. This is why we decided to increase the number of 

iterations from 10 to 100. This change led to better imputation results, where the values became 

more reliable and consistent. 

Model selection 
The process of selecting the most effective model for explaining outcomes in each country 

commenced with the development of four distinct models (Appendix: 4. Model Selection). The initial 

model Table 11 characterized by its simplicity, integrated patients' physiological attributes, 

encompassing age, gender, and comorbidities.  

Figure 8: Mean and standard deviation of the synthetic values plotted against iteration number for the imputed 
data. 
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On the other hand, the second model Table 12, marked by its complexity, not only combined these 

physiological parameters but also incorporated laboratory results, all while accounting for age and 

gender variables. The comparison of these two models using the likelihood-ratio test yields a p-value 

less than 0.001 (Table 7). This outcome suggests that including the laboratory results in the analysis 

enhances the model’s overall fit. Notably, the data seems to be derived from a model that is more 

intricate than one based solely on physiological parameters.  

Moreover, as we proceed to delve into more intricate models, the analysis will incorporate the 
exposure variables. In Model 3, the scope broadens to encompass the physiological parameters from 
Block 1, along with age, gender, and comorbidities. Subsequently, in Block 3, we integrate the distinct 
exposure categories into our analysis Table 14. When subjecting Model 1, our initial model, to a 
likelihood-ratio test, the resulting p-value registers at less than 0.001 (Table 7). This pattern holds 
true for the comparison between Model 3 and Model 2, yielding p-values less than 0.001 once again 
. This compelling outcome underscores the augmentation of the model's fit through the inclusion of 
exposure variables in the analysis. Importantly, these results imply that the data aligns more closely 
with a model of greater complexity—one that not only hinges on physiological parameters or 
laboratory results but also incorporates the intricate interplay of exposure variables. 

 

Additionally, as we proceed to make the most complex model, the Model 4, the analysis will 
incorporate the exposure categories (Block 3) along with the laboratory results (Block 2), and 
physiological parameters (Block 1) Table 13. When subjecting Model 1, our initial model, to a 
likelihood-ratio test, the resulting p-value registers at less than 0.000 (Table 7). This compelling 
outcome strongly emphasizes the improvement in the model's accuracy when including all variables, 
making the model more complex. Similar trends are observed when comparing Model 4 to both 
Model 3 and Model 2, with p-values consistently below 0.001 and 0.02, respectively. These results 
reinforce the idea that the data is better explained by a more intricate model. Such a model not only 
considers physiological and laboratory aspects but also takes into account the intricate interactions 
of exposure variables. 

Finally, our “current” final model, supported by a analysis incorporating imputed data and variable 

selection, offers a comprehensive view of the key factors influencing the outcome Table 8. Across the 

Table 7: The comparisons of the models use to conclude in the variables selection that included in the 
“Current” final model. The p- value were retrieve after comparisons of the models fit with Likelihood Ratio 
Test.  
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five imputed datasets, it is calculated AIC (Akaike Information Criterion) values as follows: 1698.059, 

1707.825, 1720.260, 1714.664, 1714.138. By considering these multiple datasets, we enhance the 

reliability and generalizability of our conclusions. In Table 8 showcases the pooled data, presenting 

the mean estimates of the 24 variables utilized in the model. This aggregation gives us a more stable 

and accurate representation of the relationships between these variables and the outcome. The 

synthesized results from the five imputed datasets provide a comprehensive view that accounts for 

potential variability. 

  

A careful selection of the key variables that offer the most explanatory power for our data, 

accounting for both physiological parameters, laboratory results, and exposures. The variables used 

in the model based on imputed data are: from Block A, we incorporated crucial physiological 

indicators such as age, gender, GCS (Glasgow Coma Scale), low SBP (Systolic Blood Pressure), high 

heart rate, and abnormal temperature readings. In Block 2, we integrated laboratory results, 

including elevated potassium levels, creatinine levels, and arterial pH. Finally, Block 3's Exposures 

provided valuable insights through the inclusion of all the exposures found in the study.  

In addition, Figure 9 provides a compelling visualization of the mean estimation of random intercepts 

for each country. This plot helps us understand how the model explains the variation in poor 

outcomes across different countries. By examining these random intercepts, we gain insights into the 

influence of country-specific factors on the outcome, contributing to a deeper understanding of the 

study's implications. 

Table 8: Results of “Current”Final Model with selection of variables from the 3 different blocks made 
with the imputed datasets. 
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The caterpillar plot for random effects provides a visual representation of how individual levels 

within a grouping variable affect the response variable in a mixed-effects model, allowing you to 

identify which levels have significant deviations from the overall trend. In Y-Axis we have each level 

of the grouping variable (countries). Each dot represents a unique level of the grouping variable. In X-

Axis, the dots represent the estimated random effects (deviation from the fixed effect) for each level. 

This indicates how much each level's effect deviates from the overall average or fixed effect.  

The caterpillar plot shows that between countries there is a variation on the random intercepts. The 

positive values indicated that a country has an effect grater than the fixed effects, while the negative 

values of intercept for the countries indicate that the country has a smaller effect. As an example, 

Netherlands has negative random intercept of -0.63, while Belgium has an intercept of 0.74, which 

shows a greater influence in the outcome. showing that including the countries as random effect was 

a good choice, because there is a difference in patients outcome between countries when the other 

variables are the same.  

Levels with dots that are significantly different from zero (i.e., their error bars do not include zero) 

have random effects that significantly deviate from the fixed effect. This suggests that these levels 

have a substantial impact on the response variable beyond what would be expected based on the 

fixed effect alone. Levels with dots close to zero and overlapping error bars have random effects that 

are not significantly different from the fixed effect. This suggests that these levels do not contribute 

much additional variation beyond the fixed effect. 

Figure 9: The caterpillar plot showcasing the random intercepts per country for Best Model. The plot offers insights into the 
variations in the intercepts across different countries within the context of the model. The data represent the mean values of the 
random intercepts from the five imputed datasets.  
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This we can also explain it if we compare a patient from Netherlands and a patient from Belgium 

(Figure 10). The #3 patient from Netherlands were female, 33 years old with both somatic& 

psychiatric comorbidity. She shows bad results both in clinical assessment and lab results, after the 

intoxication of Street drugs and Ethanol, which conclude to her death. On the other hand, patient 

#113 from Belgium, also female age of 45 years old, with only Somatic comorbidity without any bad 

lab results, and exposure of Antidiabetics, conclude to her death. We can see that a patient with less 

severe situation comparing to the patient from Netherlands, in Belgium can died. 

The Caterpillar Plots displayed in Appendix: 4.Model Selection offer a revealing insight into the 

variability of random intercepts among individual countries. These plots underscore the significance 

of considering the unique impact of each country, irrespective of the fixed effects, on the study's 

outcome. Notably, these analyses were conducted using real data, accounting for missing values 

without the need for imputation. This exploration highlights that each country's distinct 

characteristics and factors contribute to explaining the variability in patient outcomes observed in 

the study.  

Generalized Linear Mixed Models VS Generalized Linear Model  
In the initial analysis of the INTOXICATED data, we employed Generalized Linear Models (GLM) 

without considering the potential influence of different countries on patient outcomes. Recognizing 

the significance of this factor, we proceeded to compare our GLMM (Generalized Linear Mixed 

Model) against the GLM to determine the extent to which accounting for random effects associated 

with different countries enhances our understanding of the data. Both models utilized the original 

data without employing multiple imputations. The results of this comparison, conducted using the 

Likelihood Ratio Test (LRT) via the 'anova()' function and presented in Table 9, are illuminating. They 

reveal that many of the laboratory and patient characteristic variables exhibit significant differences 

in the GLMM model. This underscores the importance of incorporating random effects, such as those 

associated with different countries, into our analysis. 

Furthermore, when we compare the Akaike Information Criterion (AIC), the Bayesian Information 

Criterion (BIC), and the Deviance between both models, it becomes evident that the GLMM 

Figure 10: Patients comparisons between Netherlands and Belgium. Both patients had poor outcome 
of death. 
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approach utilized in this study offers a superior fit for the data and provides a more comprehensive 

explanation of the outcomes compared to the previous GLM approach. As depicted in Figure 11, the 

AIC for GLM stands at 1121.017, whereas it's notably lower at 1102.747 for GLMM. Similarly, BIC is 

1245.073 for GLM and 1231.765 for GLMM, while the Deviance is 1071.017 for GLM and 

considerably lower at 1025.847 for GLMM. These differences were evaluated using a Likelihood Ratio 

Test, revealing a significant improvement in model fit for GLMM with a p-value <0.05. Taken together, 

all three criteria (AIC, BIC, Deviance) strongly support the conclusion that the GLMM model 

significantly outperforms the GLM model when applied to the INTOXICATE data. This improvement in 

model fit and explanatory power is attributed to the inclusion of random effects, which complement 

the fixed effects  

 

 

Table 9: Results of comparison of the GLM (Generalized Linear Model) and  the GLMM (Generalized Linear Mixed 
Model) with the variables selected after different simulations of GLMER models. The test use for the comparison is 
Likelihood Ratio Test (LRT). Variables with the Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1, means that are 
significant more explain in GLMER model than the GLM model. 
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Figure 11: The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and he 
Deviance of the comparison of GLM and GLMER model. GLMER model has better fit of the data and 
explain better the poor outcome (p-value <0.05 for all three measurements). 
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Discussion 
In this study, we aimed to investigate the risk of poor outcomes in ICU patients with acute poisoning, 

with a specific focus on understanding the potential variations between countries. Additionally, we 

sought to assess whether the implementation of Generalized Linear Mixed Models (GLMM) could 

improve the predictive accuracy of poor outcomes in comparison to the previously used Generalized 

Linear Models (GLMs). 

Firstly, it is evident that patient outcomes do indeed vary by country, even after adjusting for an array 

of demographic, clinical, and exposure-related factors. Our study revealed that countries act as 

random effects, exerting a significant influence on patient outcomes. These variations may be 

attributed to differences in healthcare infrastructure, treatment protocols, access to medical 

resources, or even cultural and socioeconomic factors. Furthermore, we explored the utility of 

Generalized Linear Mixed Models (GLMM) in enhancing our understanding of these variations. Our 

findings clearly support the use of GLMM as an advance analytical tool compared to traditional 

Generalized Linear Models (GLMs). Incorporating random effects at the country level in GLMM 

provides a more refined perspective on the factors contributing to patient outcomes. 

When comparing the initial model, which solely considers patients' characteristics, with the second 

model that incorporates laboratory results, a noteworthy enhancement in poor outcome 

discrimination becomes evident. The Likelihood Ratio Test underlines the significance of this 

improvement (p-value<0.001). Moving on to Model 3, which introduces exposure types alongside 

patients' characteristics, we observe that while exposures contribute significantly to improving poor 

outcome discrimination, their impact appears to be less influential than laboratory results. This trend 

is highlighted by the higher AIC values of model 3 compare to model 2 across the five imputed 

datasets presented (Table 7).  

In contrast, when we introduced exposures in alongside physiological parameters, we didn't observe 

significant improvements in outcome interpretation. However, upon transitioning to Model 4, which 

encompasses all available parameters—physiological parameters, laboratory results, and 

exposures—we witnessed a noteworthy enhancement in the discrimination of poor outcomes. This 

improvement consistently received strong support from high levels of significance in the Likelihood 

Ratio Test (LRT) and when comparing the AIC values across the five imputed datasets. While there 

was a slight AIC penalty due to the model's increased complexity compared to Model 2, which solely 

considers lab results, Model 4 significantly (p-value=0.01) outperformed in explaining poor 

outcomes. 

The results from the likelihood-ratio tests robustly point towards a higher level of complexity in the 

data than what can be effectively captured by a model containing solely physiological and laboratory 

parameters. This implies that these parameters alone are inadequate for comprehensively 

delineating the distinctions between poor and good outcomes. In the clinical context, this signifies 

that when evaluating a patient's condition, factors pertaining to exposure types should be taken into 

account. Furthermore, it emphasizes that physiological and laboratory parameters do not entirely 

account for the impact of exposure types. This conclusion gains further credence from their inclusion 

in the final model. This aligns with the findings from a prior study by Brandenburg et al. (2014), 

which similarly reported a notable impact of the type of intoxication on both in-hospital mortality 

and mortality within one month after ICU admission. 

The intricate interplay and the associated AIC penalty in the model comparisons underscore the 

necessity for refining the approach to exposure categories in our study. To provide a more 

comprehensive explanation of the outcomes and to establish a more resilient relationship with other 
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parameters, we must reevaluate the categorization of exposures. Our study's classification of 

exposure types faced challenges due to inconsistencies and variations in categorization methods. 

Exposure types can be grouped differently, causing differences in toxicity and overlaps. Testing each 

substance individually is impractical due to numerous exposures. To address this, we added 

categories like chemicals, ethanol, and opiates to improve accuracy. Future research can refine 

exposure categorization approaches. 

 A significant concern is the high prevalence of patients exposed to multiple substances in our 

dataset. Future research might combine certain exposures into distinct categories or exclude low 

ethanol doses from the "two or more types" category. This is prompted by patients consuming 

substances with low ethanol doses, which may not be relevant for our research focused on 

significant outcomes and ICU admissions. Moreover, enhancing our models' precision in 

discriminating patient outcomes could be achieved by considering the inclusion of additional 

exposure-related data, specifically exposure dosages. However, it's imperative to approach this 

cautiously due to the potential biases stemming from missing dosage information during patient 

inclusion in the study. 

Another avenue for improving the models' discrimination ability between patient outcomes involves 

the transformation of physiological and laboratory parameters. Several laboratory parameters, such 

as creatinine levels and arterial pH, exhibit right-skewed distributions (as illustrated in Figure 4), 

which can pose challenges in establishing a linear relationship with the outcome variable. 

Additionally, the presence of outliers in categorical variables significantly associated with poor 

outcomes can lead to misinterpretations within the model (Figure 3). These issues, in turn, disrupt 

the assumption of homoscedasticity, yielding potentially erroneous results (Figure 5).  

To enhance the models, applying techniques like splines and log transformations to these variables 

can facilitate the establishment of more linear relationships with poor outcomes, leading to stronger 

associations between the variables and adverse outcomes (Gurka, Edwards, Muller, & Kupper, 2006). 

However, this approach comes with a trade-off, as it can lead to decreased interpretability when 

working with data that is no longer on its original scale (Grilli & Rampichini, 2015; Houle, Pélabon, 

Wagner, & Hansen, 2011; Jacqmin-Gadda, Sibillot, Proust, & Molina, 2007). This study did not 

manipulate the value variables, as its primary purpose was to investigate the relationship between 

country and outcomes, as well as to assess the suitability of GLMM models for this analysis.  

On the contrary, the random effects of the countries consistently displayed a significant influence on 

the differentiation of outcomes in all four models, even when other parameters were not 

considered. This is evident from the caterpillar plots (Appendix: 4.Model Selection) for each model. 

The random intercept for each country significantly deviates from 0, indicating a substantial random 

effect on the model's outcome. It's important to note that the distribution of patients across 

countries is not uniform, with the Netherlands having the highest number of included patients, 

which could potentially introduce bias into the estimations.  

In crafting the final model, we meticulously selected variables that demonstrated significant 

explanatory power regarding the outcome. The criteria employed for variable selection, as derived 

from the full model (Model 4: Table 13), involved considering a p-value threshold of 0.2 for patient 

characteristics, clinical assessment criteria, and laboratory results. These p-value criteria were 

determined following established guidelines (Steyerberg, 2019). Based on these p-values, we made 

the decision to exclude psychiatric comorbidity (p-value 0.399) and bad_sodium (p-value 0.439) from 

the "current final model." This decision aligns with previous research on intoxication, which has often 

integrated a range of laboratory parameters and patient characteristics, including age, gender, 
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somatic comorbidities, temperature, heart rates, GCS, systolic blood pressure, and more (Han, et al., 

2021; O’Brien, Murphy, Conrick-Martin, & Marsh, 2009; Liisanantti, Ohtonen, Kiviniemi, Laurila, & 

Ala-Kokko, 2011; Lionte, Sorodoc, Jaba, & Botezat, 2017). However, it's worth noting that all 

exposure categories were retained in the model due to their crucial relevance to the analysis. 

Nonetheless, it's important to note that GLMM models are particularly well-suited for managing 

non-normally distributed variables, making them a fitting choice for research of this nature. In a 

robustness study involving mixed models, it was observed that violations of distributional 

assumptions, whether pertaining to random effect variances or residual variances, had surprisingly 

minimal impact on the estimates of interest. However, it's worth highlighting that these violations 

did affect the precision of the estimates. Specifically, when dealing with severely skewed 

distributions and heteroskedastic residuals, the precision of the estimates decreased (Schielzeth, et 

al., 2020). 

In our study, although GLMM models are well-equipped to handle missing data, we adopted a more 

robust approach by incorporating Multiple Imputation (MI). Prior to MI, a meticulous data selection 

process was executed, specifically targeting patients with at least half of their data complete. 

Patients with over 50% missing data were deliberately excluded from the study to uphold the 

integrity of the multiple imputation process and to avert potential bias. This practice aligns with 

studies that have indicated that a substantial amount of missing data can introduce bias into MI 

estimations (Marino, Lucas, Latour, & Heintzman, 2021; Lee & Carlin, 2012; Haji-Maghsoudi, 

Haghdoost , Rastegari, & Baneshi, 2013; Wulff & Jeppesen, 2017). 

In contrast, Madley-Dowda, Hughesa, Tilling, & Heron, (2019) study emphasizes the paramount 

importance of prioritizing imputation quality over merely focusing on the proportion of missing data. 

Their research underscores that robust imputation methods effectively mitigate bias and enhance 

analysis efficiency. Recent findings also suggest that increasing the number of imputed datasets from 

the conventional 5 to 10 to as many as 40 significantly bolsters statistical power, particularly when 

dealing with varying degrees of missing data (Graham, Olchowski, & Gilreath , 2007; AZUR, STUART, 

FRANGAKIS, & LEAF, 2011). To ensure reliability, the imputation model must encompass all 

relationships explored in subsequent analyses, including both dependent variables and potential 

interactions. Additionally, the inclusion of "auxiliary" variables in imputation, even if unused in the 

analysis, enhances imputation quality (Schafer, 2003; Collins, Schafer, & Kam, 2001). This 

comprehensive approach substantially elevates imputed dataset accuracy and dependability (Austin, 

White, Lee, & van Buuren, 2021). 

Lastly, the comparative analysis of GLM and GLMM models highlights the superior resilience of 

GLMM models in handling complex data like this. The Likelihood Ratio Test, considering AIC and BIC, 

along with the examination of Deviance between the two models, clearly demonstrates that the 

inclusion of random effects significantly enhances the model's capacity to explain poor outcomes (p-

value <0.05). This improvement is particularly notable when considering the unbalance in the 

distribution of the data among exposure types and non-transformed data. Likewise, mixed models 

have been employed in two distinct studies focusing on population heterogeneity concerning 

childhood stunting in Ethiopia and Indonesia. These studies utilized mixed models as a means to 

explore variations within populations characterized by diverse socioeconomic backgrounds 

(Mulyaningsih, et al., 2021; Takele, Zewotir, & Ndanguza, 2019). 

Similarly, the incorporation of various countries into our study enriches our comprehension of 

patient outcomes in the aftermath of intoxication incidents. This strategy acknowledges the varying 

socioeconomic factors and healthcare disparities existing among different nations, thereby 
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contributing to a more comprehensive analysis of the factors shaping patient results. In a similar 

vein, to gain a deeper insight into healthcare disparities, we can consider including each hospital as a 

random effect in our models, while treating countries as fixed effects. This approach signifies our 

intent to estimate random effects for both "country" and "hospital," recognizing that hospitals within 

the same country may share certain common characteristics or exhibit similar behavior due to their 

geographical location. It accommodates the possibility that different hospitals within the same 

country may exert distinct effects on the response variable. 

Conclusion 
In conclusion, our study not only validates the presence of significant variations in patient outcomes 

across different countries but also highlights the pivotal role of advanced statistical methodologies 

such as Generalized Linear Mixed Models (GLMM) in unravelling the intricate nuances of these 

disparities. Our findings underscore the importance of addressing critical considerations brought to 

the forefront in this analysis. These include the refinement of exposure categorization, the 

enhancement of explanatory variable characterization, and the thoughtful handling of missing data. 

By embracing these refinements and applying them to our modelling approach, we can aspire to not 

only improve the accuracy of our predictions but also to foster a deeper understanding of the 

multifaceted factors influencing patient outcomes. 
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Appendix 

1. Distribution of variables 
 

Figure 12: Distribution of BMI and GCS values among the patients. 

Figure 13: Distribution of binary variables. Bad potassium, Bad sodium, Low Temperature, Low SBP, Low Platelet and Gender. 
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2. Distribution of Exposure Variables in different countries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10: The distribution of patients exposures across five participated countries in the study. The results are 
presented as percentages of patients in each country for each exposure occurrence. 
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3. Multiple Imputations  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:The density plots of comparison of imputed data (depicted in red) with real data (shown in blue) pertaining to 
patients' characteristics (sex_binary) and laboratory results (creatinine, potassium arterial pH and white blood cells counts). The 
graphs demonstrate a consistent alignment between the imputed and real data trends. While most imputed data points closely 
track the curve of the actual data, certain imputed values deviate slightly below the real data curve such as creatinine. 
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Figure 15:Mean and standard deviation of the synthetic values plotted against iteration 
number for the imputed data. 
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Figure 16:Mean and standard deviation of the synthetic values plotted against iteration number for the imputed 
data. 



38 
 

4. Model Selection 

 

 

Table 11:  Results of model 1 with Block 1 made with the imputed datasets. The Block includes the age and gender of 
the patients, the physiological parameters and the somatic comorbidities of the patients. 

Table 12: Results of model 2 with Block 1& Block 2 made with the imputed datasets. The Block 1 includes the age and 
gender of the patients, the physiological parameters and the somatic comorbidities of the patients. The Block 2 includes 
the laboratory results. 
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Table 14: Results of model 3 with Block 1& Block 3 made with the imputed datasets. The Block 1 includes the age and 
gender of the patients, the physiological parameters and the somatic comorbidities of the patients. The Block 3 
includes the different exposure categories. 

 

Table 13: Results of model 4 with all the variables from the 3 blocks made with the imputed datasets. The Block 
1 includes the age and gender of the patients, the physiological parameters and the somatic comorbidities of 
the patients. The Block 2 includes the laboratory results and the Block 3 includes the different exposure 
categories. 
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Figure 17: The caterpillar plot showcasing the random intercepts per country for Model 1. The plot offers insights into the 
variations in the intercepts across different countries within the context of the model. 

Figure 18: Comparisons of model 2 and model 3 with model 4 using anova() function using Likelihood Ratio test and 
the AIC criteria. Model 4 is explain better the data in the study from Model 2 and Model 3. 
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Figure 19: The caterpillar plot showcasing the random intercepts per country for Model 2. The plot offers insights into 
the variations in the intercepts across different countries within the context of the model. 

Figure 20:The caterpillar plot showcasing the random intercepts per country for Model 4. The plot offers insights into 
the variations in the intercepts across different countries within the context of the model. 
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Figure 20: The caterpillar plot showcasing the random intercepts per country for Model 4. The plot offers 
insights into the variations in the intercepts across different countries within the context of the model. 

Figure 19: The caterpillar plot showcasing the random intercepts per country for “Current” Final Model. The plot offers 
insights into the variations in the intercepts across different countries within the context of the model. The data represent the 
real values of the variables without any imputations. 


