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Layman’s Summary  
When reading someone’s DNA, every position is labeled as reference or a variant, a 

variant means different from the reference. Each person has wo copies of each somatic 
chromosome, called alleles, and a variant on each allele can either be healthy like the 
reference (A) or carry a variant (B). So, the combinations can be healthy AA, heterozygous 
variant AB or homozygous variant BB. The variant allele is thus typically found in 0, 50, or 
100 percent, depending on the combination of healthy and variant alleles.  

Another type of variants that are known to cause disease are Mosaic variants. These 
variants are different from normal variants as they are present in only a subpopulation of 
cells in the body, rather than in all cells. When reading the DNA of a person with a mosaic 
variant, the percentage of the variant will be somewhere between 0 and 50 percent. Mosaic 
variants are known to be involved in the development of various diseases, including 
autoinflammatory diseases. However, diagnosing patients with mosaic variants is currently a 
challenging task because it requires either manually examining of the DNA reads or using a 
targeted test. Current clinical practices could benefit from having a test that can find mosaic 
variants in all the genes. The MosaicHunter tool allows for the detection of these mosaic 
variants in DNA and could be of value in diagnostics. It offers a more general approach that 
can be used to detect mosaic variants in the exome, which is the complete set of genes in an 
organism. 

To evaluate the effectiveness of the MosaicHunter tool, simulated datasets were 
used that contain a number of true positive mosaic variants. The dataset where simulated 
because there are no datasets available that we need. These datasets were created in two 
different ways: one exome-wide dataset in which the mosaic variants were randomly 
distributed throughout the exome, and another dataset focused on six genes known to 
cause disease with a mosaic variant present. The MosaicHunter tool was able to detect 80 
percent of the simulated mosaic variants in these datasets, demonstrating its potential 
usefulness for diagnosing patients with mosaic variants. 

Overall, the MosaicHunter tool is a promising development in the field of genetics 
because it allows for the detection of mosaic variants in a more general and efficient way 
than previous methods. Further research and testing will be necessary to fully assess its 
capabilities and potential applications in clinical settings. 
  



Abstract   
With next generation sequencing (NGS) becoming faster, cheaper and more reliable, 

the use of NGS has become a standard procedure to diagnose genetic conditions in clinical 
human genetics. Genetic testing focusses on the identification of single nucleotide variants 
(SNV), INDELs, and copy number alterations (CNV) in the DNA. In the UMCU, when a patient 
undergoes genetic testing, whole exome sequencing (WES) is often carried out and variants 
are detected using the GATK haplotypecaller. There is increased evidence that mosaic 
variants can also cause genetic diseases. Mosaic variants, which are variants that are only 
present in a sub population of cells in the body, are hard to distinguish from sequencing 
errors and artifacts. Currently, detecting mosaic variants requires manual examination or a 
targeted approach, and is only performed when mosaicism is suspected. We would prefer to 
use an exome-wide approach, such as WES, to detect mosaic variants because it would be 
more flexible, generic, and able to explore mosaic variants that are not included in the 
targeted panel. In this study, we investigate the potential of MosaicHunter software to 
reliably detect mosaic variants in non-paired whole exome sequencing samples (WES). 
MosaicHunter is a tool that uses a Bayesian genotyper and error filters to make mosaic 
variant calls. In this study we used simulated data and positive controls with known mosaic 
variants to optimize the settings of MosaicHunter and determine the sensitivity 
MosaicHunter on different amounts of coverage. We show that MosaicHunter has a high 
sensitivity, and a better sensitivity then the GATK pipeline, to detect mosaic variants 
between 3 and 12%. We demonstrate that the method is of value in combination with the 
current GATK haplotype caller because, we showed that a combined analysis of 
MosaicHunter and GATK haplotypecaller results in a sensitivity >80% for mosaic variants in 
range of 2-12%, and >95% for mosaic variant above 12%. 
 

Introduction 
With next generation sequencing (NGS) becoming faster, cheaper and more reliable, 

the use of NGS has become a standard procedure to diagnose genetic conditions in clinical 
human genetics. Genetic testing focusses on germline, inherited, or somatic, acquired, 
alterations of the DNA (Yohe & Thyagarajan, 2017). The results of a genetic test can rule out 
or confirm a suspected genetic condition or can determine the probability to develop a 
disease. Several genetic tests are currently in use at the genome diagnostics lab in the 
University Medical Center Utrecht (UMCU). These methods can have a targeted approach for 
single variants to a few genes (i.e., Sanger sequencing and smMIP based targeted assays), or 
targeted to all genes such as whole exome sequencing (WES). Within the UMCU, WES is 
currently the standard test for most patients with a suspected genetic disease, although 
some specific lab tests are still needed as WES is insufficient to detect all forms of genetic 
variation. Around 7000 WES samples are currently sequenced per year. With WES a sample 
is taken from a person, this can be blood, skin or other tissue. In the UMCU the DNA is 
isolated from the sample and the sample is prepped for sequencing, for WES this means 
enrichment of the exome and sequencing is done by Illumina short read sequencing using 
the Illumina Novaseq 6000. After sequencing, reads are mapped to the reference genome, 
and variant calling is performed to identify germline and de novo variants for single 
nucleotide variants (SNV), small insertion/deletions (INDELs), and copy number variants 
(CNV) (Ernst & Elferink, 2020). With the use of WES, we now focus on germline or de novo 
variants (figure 1, left path).  



But next to germline variants which are present in virtually all cells of the body, 
genetic variants can be present within subpopulations of cells, referred to as mosaic or 
somatic variants (figure 1 right). There is increased evidence that mosaic variants can also 
cause genetic diseases (Vijg & Dong, 2020). Mosaic variants are acquired later after 
fertilization, postzygotic, during cell mitosis or DNA repair (figure 1, right figure, left path). 
Variants acquired later in development are located at a specific site (figure 1, right figure, 
right path). Mosaic variants are harder to detect with NGS methods due to the low 
frequencies which makes it difficult to distinguish them from sequencing errors and artefacts 
that frequently occur during library prep and sequencing. Moreover, due to the low 
frequency of these variants high sequencing depth is generally required.   

 
Figure 1: Tree different ways of acquiring a variant. Left, in red, an acquired germline variant, all cells of the affected person contain the 
variant. On the right, in blue, two different mosaic variants are depicted. A variant that occurred in postzygotic stage this variant only 
affects a part of the persons tissue but is seen in different sites in the body. The variant that occurred later in the development, that is only 
in one place at the person’s body. (Hoffman & Broderick, 2017) 

 
Several auto inflammatory diseases including VEXAS (vacuoles, E1 enzyme, X-linked, 

autoinflammatory, somatic) syndrome, and CAPS (cryopyrin-associated periodic syndrome) 
are known to be caused by mosaic variants (Ionescu et al., 2022; Labrousse et al., 2018; van 
der Made et al., 2022). For example, disease symptoms in CAPS are already observed when 
the causal variant is present in 0.5% of the blood cell population (Labrousse et al., 2018). 
Auto inflammatory diseases cause a broad range of symptoms for these including fever, 
headaches, redness of the skin and arthritis (Beck et al., 2020). Early diagnosis of these auto 
inflammatory diseases can provide better prognostic information and more suitable 
treatment options including stem cell transplantation (Beck et al., 2020; van der Made et al., 
2022).  

Currently to find these auto inflammatory diseases and confirm mosaicism single-
molecule molecular inversion probes (smMIP) tests are being used (Eijkelenboom et al., 
2016). This is an autoinflammatory gene panel, in current use of the UMCU, that consist of 5 
genes that are known be pathogenic as a mosaic variant. Although the smMIP test is very 
sensitive to detect mosaic variants, the test is limited to a few genes and prohibits the 



detection of mosaic variants in other genes. Additional disease genes can be included in the 
test but requires a labor-intensive procedure for optimalization and validation. Due to the 
inflexibility of the smMIP method it will be beneficial to use a more comprehensive and 
generic genetic test such as WES for the detection of mosaic variation.  
 Use of WES would fit us best for mosaic variant detection because of the general use in 
our diagnostics in the UMCU and because it gives us flexibility to explore mosaic variants in 
other cases. However, several challenges arise to detect mosaic variants based on WES, as 
WES data shows non-negligible capturing bias and over-dispersion in the distribution of 
alternative allele fractions (Ramu et al., 2013). This causes problems when calling variants 
because not all exons are covered equally. Despite the power of NGS, NGS library 
preparation, base-calling, and alignment introduce technical artifacts that are difficult to 
distinguish from true mosaic variants (Huang et al., 2017). The major challenge for 
bioinformatic algorithms is to find the physiologically relevant signals, coming from true 
mosaic variants, from these methodologically induced variation (Forsberg et al., 2017).  
  Several tools are developed that focus on the detection of mosaic variants in NGS 
data such as MosaicHunter, MosaicForecast and DeepMosaic (table 1) (Dou et al., 2020; 
Huang et al., 2017; Yang et al., 2021). More tools are developed for calling mosaic variants, 
but these need tumor-normal pairs, these tools include Varscan2, MuTect and SomVarIUS. 
However, all of them are focused on the detection of somatic variants in cancer samples 
(Koboldt et al., 2012; Mutect2, z.d.; Smith et al., 2016) and cannot be used when paired 
control samples are unavailable which is the case in our diagnostic patients.  
 
Table 1: Overview of mosaic calling tools. With the possible inputs; whole genome sequencing (WGS) or whole exome sequencing (WES). 
The type of variants, single nucleotides variants (SNV) and indels. The method used and the output.  

Tool Input Variant 
detection 

Method output 

MosaicHunter WES, WGS SNV Filters Text file 

MosaicForecast WGS (WES) SNV & indels Phasing & 
random forest 

Text file 

DeepMosaic WGS (WES) SNV Neural network Text file  

 
From the three available tools that could be used to detect mosaic variants (table1), 

MosaicHunter is the only tool that is developed and tested on the detection of mosaic 
variants in WES, unlike MosaicHunter and MosaicForecast which are based on WGS. A 
disadvantage of MosaicHunter is that it focused on mosaic SNVs and cannot detect mosaic 
INDELs. 

 MosaicHunter (Huang et al., 2017) is a Java-based computational tool for 
identification of mosaic variants in WGS and WES data without the need of having paired 
control samples. It is a Bayesian genotyper that uses a set of several specific error filters to 
detect mosaic variants. These filters include multiple filters for correcting for data quality 
and bias. It works in two steps. First, for WES data a beta binomial model is fitted to correct 
for overdispersion and capturing bias. For this an alpha and beta are fitted on this beta 
binomial model and the alpha and beta are input BAM specific. Secondly, with the 
parameters fitted to correct for over dispersion and capturing bias the suspected mosaic 
variants are calculated. Figure 2 gives an overview of the Bayesian genotyper and the error 
filters. MosaicHunter gives in the end a text file with a list of mosaic sites found in the input 
BAM file. 
 



 
Figure 2: Overview of MosaicHunter. From left to right: input BAM file and dbSNP file with common SNPs are used for the Bayesian 
genotyper to call potential mosaic variants. These variants are subsequently filtered using a series of stringent error filters. Ref-hom: 
homozygous for reference allele. Alt-hom: homozygous for alternative allele. Het: heterozygous. Altered from (Huang et al., 2017). 

 
In this study, we investigated the added value of MosaicHunter to reliably detect 

mosaic variants within our current diagnostic WES workflow. Towards this end, we used data 
from positive control samples with known mosaic variants, and simulated datasets to 
optimize settings and to determine sensitivity to detect mosaic variants within the exome 
and an auto-inflammatory gen-panel currently used in de smMIP diagnostic. Based on the 
simulated datasets, we furthermore determined the sensitivity to detect mosaic variants 
using the current variant caller (GATK haplotypecaller) in our diagnostic workflow. 

We show that the GATK-haplotypecaller is sensitive to detect mosaic variants for 
frequencies above 12% (sensitivity >95%) but performs poorly below this frequency 
(sensitivity <5%), and the mosaic variants are called as heterozygous with GATK. 
MosaicHunter has a high sensitivity to detect mosaic variants from 3-22% (sensitivity >80%), 
including a high sensitivity in the range of 3-12% (sensitivity >70%). Adding MosaicHunter to 
the diagnostic workflow would therefore be beneficial, increasing the sensitivity to detect 
genetic variant present at 3% or more.  
  



Material and Methods 
Installation of tools. 

To deploy the tools on the UMCU high-performance compute cluster (HPC) docker 
images were created for BAMSurgeon (supplementary 1, part 1.2) and MosaicHunter 
(supplementary 1, part 1.1). Dockers can be found at: hub.docker.com 
(https://hub.docker.com/repository/docker/anabuurs/bamsurgeon & 
https://hub.docker.com/repository/docker/anabuurs/mosaichunter) (Docker Hub Container 
Image Library | App Containerization, z.d.). The Dockerfiles used can also be found on the 
GitHub links can be found in supplementary 1, part 1.1 and 1.2. To check the installation of 
BAMSurgeon a random variant was simulated in a BAM file and checked in IGV. The demo of 
MosaicHunter https://github.com/zzhang526/MosaicHunter/tree/master/demo was 
performed to check whether the tool was installed properly.  

For the in house developed python scripts virtual environments were used. A list of 
dependencies for the variant selection can be found at the git and supplementary 1, part 1.3. 
A list of dependencies for the tsv to vcf parser can be found at the git and supplementary 1, 
part 1.4. 

 
GATK calling 
 The SD_Exome_Normal and SD_Exome_Deep datasets were analyzed with GATK 
haplotypecaller. Diagnostic settings like in the WES workflow of the UMCU were used 
(supplementary 1, part 3). The script used can be found at the GitHub (supplementary 1, 
part 3). These settings of GATK were used for all variant callings with GATK. 
 
Creation of datasets 

Five datasets were made in which mosaic variant SNVs were simulated: 
SD_Exome_Normal SD_Exome_Deep and SD_PID_5, SD_PID_5strand and SD_PID_10. 
Simulation of variants within BAM files was performed using BAMsurgeon (adamewing, 
2012, https://github.com/adamewing/bamsurgeon). See supplementary 5 for more details 
about BAMsurgeon. 
 
Table 2: Overview of datasets used for testing MosaicHunter.  

Dataset Sample Settings Goal 

SD_Exome_Normal 3 100X WES  100 mosaic variants 
per % 1-30 (n=3000) 

Find sensitivity of 
MosaicHunter for every 
percentage between 1-30 for 
100X WES samples 

SD_Exome_Deep 1 500X WES 100 mosaic variants 
per % 1-30 (n=3000) 

Find sensitivity in deepseq 
samples for every percentage 
between 1-30 

SD_PID_10 30 100X WES  10% mosaic  Look at target regions and the 
sensitivity in them 

SD_PID_5 10 100X WES  5% mosaic Look at target regions and the 
sensitivity in them 

SD_PID_5strand 10 100X WES  5% mosaic & 
strandbias threshold 
0.000001 

Look at target regions and the 
sensitivity in them 

https://hub.docker.com/repository/docker/anabuurs/bamsurgeon
https://hub.docker.com/repository/docker/anabuurs/mosaichunter
https://github.com/zzhang526/MosaicHunter/tree/master/demo
https://github.com/adamewing/bamsurgeon


TP_Regular 3 100X WES  - True positive samples for 
validation 

TP_Deepseq 7 500X WES  - True positive samples for 
validation 

 
Dataset SD_Exome_Normal and SD_Exome_Deep 

This dataset was used to determine the mosaic detection sensitivity on Exome wide 
scale. The BAM file used for simulation of data: U175754PMGIAB12891beta with 
SureSelectV7 enrichment and 211X. Per percentage from 1 to 30, 100 SNVs were simulated. 
These simulations were spread over 8 times the same BAM file to prevent simulation 
variants in a close range and to prevent to many mosaic variants in one BAM file. SNV 
positions in which mosaic variant were simulated using BAMSurgeon were randomly 
selected from a sub selection of the genome aggregation database (gnomAD). The v2.1.1 
data set (GRCh37/hg19) (https://storage.googleapis.com/gcp-public-data—
gnomad/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz) all exomes of 
gnomAD was used to pick the SNV positions. These were selected with creating_varfiles a in 
house developed python tool; this script can be found at 
https://github.com/UMCUGenetics/Dx_mosaic_project/blob/main/creating_varfiles/creatin
g_varfiles.py. SNV with a low allele frequency (AF < 0.01) and an allele count of more than 0 
(AC > 0) were selected (see supplementary 2.1.1 and 2.1.2 for used command). Selected SNV 
position in text format made with creating_varfiles were used as input for BAMSurgeon to 
simulate mosaic variants in the BAM file (see supplementary 2.2 for used command).  
 
Dataset SD_PID_5, SD_PID_5strand and SD_PID_10 

This dataset was used to determine the mosaic detection sensitivity base pair 
resolution within an autoinflammatory gene-panel (PID09). The PID09 gene panel consist of 
five clinically relevant genes; NLRP3, NLRC4, PSTPIP1, NOD2, and TNFRSF1A and UBA1 was 
added because it is also clinically relevant. Target regions can be found in the 
supplementary, all exons apart in supplementary 2 table 1 and overlapping regions collapsed 
in supplementary 3 table 2. For each base pair in the target (32164 positions) a mosaic 
variant was simulated with a specific percentage. These variants were based on not being 
the reference allele in 3 iterations of 10 samples, so every non-reference allele was tested. 
The SD_PID_5 and SD_PID_10 datasets were created with the Settings_LH_NS_mem settings 
(table 3).  

• Dataset SD_PID_5, mosaic variants were simulated at 5% in BAM files from 10 
samples for which a regular diagnostic WES was performed (see supplementary 6, 
table 3). 

• Dataset SD_PID_5strand, similar to SD_PID_5 but with the Settings_LH_NS_mem_SB 
settings (table 3). 

• Dataset SD_PID_10, mosaic variants were simulated at 10% in BAM files from 30 
samples for which a regular diagnostic WES was performed (see supplementary 6 
table 3).  

First the small variation files (varfiles) per position were written with a loop (supplementary 
1, part 2.4). This python script writing_small_varfiles can be found at the GitHub 
(supplementary 1, part 2.4). An overview of varfiles was created and an overview of the BAM 
files with their alpha, beta, sex, location, and name was created. The alpha and beta were 
calculated on the whole BAM file one time with strandbias on 0.05 and one time with 

https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
https://github.com/UMCUGenetics/Dx_mosaic_project/blob/main/creating_varfiles/creating_varfiles.py
https://github.com/UMCUGenetics/Dx_mosaic_project/blob/main/creating_varfiles/creating_varfiles.py


strandbias on 0.000001 (supplementary 1, part 2.5.1 & 2.5.2), for the simulation of the 
mosaic variants sliced BAM files were used to reduce computing time. These sliced BAM files 
were made with samtools (supplementary 1, part 2.6). The overview of the varfiles and BAM 
files were used to start arrays (supplementary 1, part 2.7.1 & 2.7.2), which simulated the 
mosaic variant in the sliced BAM file and performed MosaicHunter on this BAM file with 
mosaic variant.  

Simulating a variant on top of an already present variants with BAMSurgeon is not 
possible. These positions were ignored.  
 
Parameter optimalisation and selection of filters MosaicHunter  
 Settings of MosaicHunter were optimized based on our datasets using an iterative 
approach (see table 3 for the used settings sets). The following changes were made on the 
recommended settings by the developers of MosaicHunter and were used as a starting 
point. 

• dbSNP filtering was turned off 

• The minimum depth was decreased to 25 

• The maximum depth was increased to 5000 (as our WES contained high-
coverage, high-reliable regions e.g., the BRCA1/2 genes) 

• The minimum mosaic percentage was set to 1 

• The minimum number of alternative reads was set to 2 
Based on the iterations 4 more filters were altered  

• Syscall filter was turned off 

• The homopolymer filter was elongated. The minimum length of small 
homopolymers was changed to 10 and the minimum length of long 
homopolymer was changed to 16. 

• The aligner that BAMSurgeon uses was changed to the bwa-mem aligner 

• The strandbias filter p-value was changed to 0.000001 
Table 3 contains an overview of the changed parameters and the configuration files used 
when testing the different settings. 
 
Table 3: Configuration files used during parameter optimalisation. With the changed parameters in comparison to the recommended 
setting from MosaicHunter. Changed parameters are based on MosaicHunter recommended settings. Links to the configuration files can be 
found in supplementary 1, part 4.1 until part 4.5.  

 Changed parameters Configuration files 

Settings_default Depth min: 25 
Depth max: 5000 
No dbSNP file 
Min alt allele reads: 2 
Min mosaic percentage: 0.01 

Step 1) 
exome_default_parameters.conffile 
Step 2) 
exome_default.conffile 

Settings_LH_NS 
 

Depth min: 25 
Depth max: 5000 
No dbSNP file 
Min alt allele reads: 2 
Min mosaic percentage: 0.01 
Small homopolymer: 10 
Long homopolymer: 16 
Syscall filter off 

Step 1) 
exome_lh_ns_parameters.conffile 
Step 2) 
Exome_lh_ns.conffile 

Settings_LH_NS_ Depth min: 25 Step 1) 



mem 
 

Depth max: 5000 
No dbSNP file 
Min alt allele reads: 2 
Min mosaic percentage: 0.01 
Small homopolymer: 10 
Long homopolymer: 16 
Syscall filter off 

exome_lh_ns_parameters.conffile 
 
Step 2) 
exome_lh_ns.conffile 
 

Settings_LH_NS_ 
mem_SB 
 

Depth min: 25 
Depth max: 5000 
No dbSNP file 
Min alt allele reads: 2 
Min mosaic percentage: 0.01 
Small homopolymer: 10 
Long homopolymer: 16 
Syscall filter off 
Strandbias: 0.000001 

Step 1) 
exome_lh_ns_sb_parameters.conffile 
 
Step 2) 
exome_lh_ns_sb.conffile 
 

 
Testing of MosaicHunter with simulation datasets 
 Sensitivity of MosaicHunter on 100X WES samples was determined with 
SD_Exome_Normal (table 2). MosaicHunter was used to call mosaic variants for each of the 
8 BAM files per sample. This analysis was performed using a connected pipeline that 
included two steps (see supplementary 1, part 5.1.3):  

1) Determining the alpha and beta 
2) Calling mosaic variants using the determined alpha and beta values  

To determine the sensitivity of MosaicHunter on deep sequencing 500X WES samples, we 
used SD_Exome_Deep (table 2). The 8 BAM files with simulated mosaic variants were 
analyzed using the MosaicHunter Settings_LH_NS_mem_SB settings. To reduce the analysis 
time for deep sequencing samples, we performed step 1 (determining the alpha and beta 
values) as described above (see supplement 1, part 5.2.1). But for step 2, the analysis was 
split per chromosome so it could run in parallel. Chromosomes 1-22 were processed using an 
array-job (see supplement 1, part 5.2.2), and chromosomes X and Y were processed 
separately (see supplement 1, part 5.2.3). 
 To determine the sensitivity of MosaicHunter in the exons of PID09 panel and UBA1, 
we used SD_PID_5, SD_PID_5strand and SD_PID_10. The sensitivity was calculated by finding 
the percentage of BAM files where the simulated mosaic variant was detected at each 
simulated mosaic variant position. We also calculated the percentage of simulated positions 
found per BAM file and the average number of positions found in all BAM files. 
 
Dataset TP_Regular & TP_Deepseq 
 Two datasets were available for samples with a known mosaic variant: TP_Regular 
and TP_Deepseq. All samples were sequenced using the Ilumina Novaseq 6000 platform 
(paired-end sequencing 2x150bp). Data was processed using regular diagnostic workflow 
including mapping to the reference genome (hg19) using bwa-mem (Li & Durbin, 2009), and 
variant calling with GATK haplotypecaller (Ernst & Elferink, 2020). 

Dataset TP_Regular (table 4) consisted of 3 patients for which a regular diagnostic 
WES was performed. Exome capture was performed using the Agilent SureSelect Crev2 
design and the aimed sequencing was 100X. 



 
Table 4: TP_Regular dataset. true positive samples 100X depth WES. With suspected mosaic position and percentage, and the gene where 
it is located. 

Samplename Average 
coverage 

Position Mosaic 
Percentage* 

Gene  

Sample_1 89X X:47058450 (A>G) 31% UBA1 

Sample_2 90X X:47058451 (T>C) 83% UBA1 

Sample_3 136X X:47058451 (T>C) 43% UBA1 
*) as provided by labspecialist 

 
Dataset TP_Deepseq (table 5) consisted of 7 samples for which WES sequencing was 

performed aimed at high coverage (deep-sequencing or deepseq). Exome capture was 
performed using the Agilent SureSelect V7 design and the aimed sequencing was 5 times 
regular sequencing depth, thus 500X. 
 
Table 5: TP_Deepseq dataset. true positive samples 500X depth WES. With suspected mosaic position and percentage, and the gene where 
it is located. 

Samplename Average 
coverage 

Position Mosaic 
Percentage** 

Gene 

Sample_4 560X* 1:247588457 (G>A) 17,7% NLRP3 

Sample_5 190X 1:247587669 (A>T) 11% NLRP3 

Sample_6 665X* 1:247588457 (G>A) 35,9% NLRP3 

Sample_7 785X X:47058450 (A>G) 31% UBA1 

Sample_8 533X* 12:6442956 (C>A) 1,40% TNFRSF1A 

Sample_9 807X X:47058451 (T>C) 17% UBA1 

Sample_10 524X* X:47058451 (T>C) 43% UBA1 
*) 1 of 2 lanes used for analysis of this sample  
**) as provided by labspecialist 

 
To test the sensitivity of MosaicHunter, we used true positive control samples with 

both 100X and deep sequencing 500X coverage. For this, we used the 
Settings_LH_NS_mem_SB configuration files. For the 100X WES samples a connected 
pipeline was used mosaichunter_best_practice_pipeline (supplementary info 1, part 5.1.3). 
For the deepsequencing 500X coverage WES. The first step was done with 
exome_lh_ns_sb_stetp1 (supplementary info 1, part 5.2.1) and the second step was 
performed in parallel for each chromosome, with 
mosaichunter_deepseq_best_practice_step2 (supplementary info 1, part 5.2.2) and 
mosaichunter_deepseq_best_practice_X_Y_step2 (supplementary info 1, part 5.2.3).  

A known mosaic variants was scored as true positive if the position and genotype 
were detected in de MosaicHunter output, irrespectively of the frequency. For the false 
negative results MosaicHunter results were parsed to determine if and which filter was 
responsible for the filtering. 
 
VCF parser 

A VCF parser was written in python to convert the .tsv output of MosaicHunter to the 
standardized variant calling format (VCF). See supplementary info 1, part 6 for the command 
to run this parser.  

https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=1471469965_MNaGiohjfAsYSrg52bD9YaAwMiXH&db=hg19&position=chr1%3A247588457-247588457
https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=1471493023_yQu6YLsACjydVgrG0C5XA8dOsm7A&db=hg19&position=chr1%3A247587669-247587669
https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=1471469965_MNaGiohjfAsYSrg52bD9YaAwMiXH&db=hg19&position=chr1%3A247588457-247588457


Results & Discussion 
The only data available with known true positive pathogenic mosaic variants has only 

one mosaic variant present in them. But datasets with several true mosaic variants are 
needed to test MosaicHunter, calculate statistics and optimize settings. These datasets 
would preferably be exome-wide and for multiple mosaic percentages, and preferably based 
on data similar to our own diagnostics (lab)flow. Due to this lack of datasets, it was decided 
to create needed datasets for validation and testing ourselves, based on our diagnostic WES 
data. BAMSurgeon was used to simulate mosaic variants in both GIAB WES and random 
diagnostic WES samples. BAMSurgeon was used because the tools consider already existing 
variants and can drop variants that misalign.  
 
Installation of tools 

Before creating datasets and testing MosaicHunter and BAMSurgeon we need to 
ensure that they could run on the high-performance cluster (HPC) of the UU. To do this, 
dockers and virtual environment were used, which allow us to have multiple installed tools 
in them without having to install them directly on the HPC. Using this it is also possible to 
use several versions of a tool or package next to each other in different containers or 
environments. The current best practice in bioinformatics almost always makes use of these 
virtual containers with only needed packages installed because it makes room for better 
version control.  
 
Creation of datasets 

For SD_Exome_Normal and SD_Exome_Deep variants were randomly simulated in 
the whole exome. The artificial variants made are based on low allele frequency in the world 
population for this the gnomAD database was used. Variants with a low frequency in the 
population are selected because we suspect that there are not many mosaic variants present 
in the database and because it prevents from simulating a mosaic variant on top of an 
already existing variant. For this reason, variants in the gnomAD with AF < 0.01 & AC > 0 
were selected. 

For SD_PID_5, SD_PID_5strand and SD_PID_10 in all the base pairs of six clinically 
relevant genes mosaic variants were simulated. The six genes were chosen because their 
known pathogenicity with a mosaic variant present.  
 
Parameter optimalisation 

Parameter optimalisation for based on simulated data was performed to get an 
optimal sensitivity for MosaicHunter. Base settings were determined based on what we 
want to detect with MosaicHunter, these settings were altered from the recommended 
settings. For this project we would like to find mosaic percentages as low as 1% so we 
changed the minimal percentage to 1, recommended by the developers of MosaicHunter 
was 5%. The minimum and maximum depth were changed to depths that included all 
regions of the exome, as our coverage often exceeded the maximum default setting 
(especially for deepseq). The minimum was set to 25 and the maximum was set to 5000, as 
our WES contained high-coverage, high-reliable regions e.g., the BRCA1/2 genes. The 
minimum number of reads was set to 2, to allow for low mosaic percentages. The dbSNP file 
was not used, to not have the results based on existing SNVs. These altered settings on top 
of the recommended settings of MosaicHunter gave the Settings_default settings set. After 
this several filters were tuned in iterations, described below. 



 
Settings_default 

With the settings set Settings_default 44% of simulated variants in dataset 
SD_Exome_Normal were detected (table 7), which resulted in a low sensitivity. It was 
noticed that high percentage of variants were filtered out by the homopolymer filter (32%), 
mappingquality filter (28%), and syscallfilter (20%) (table 6). Close inspection on the syscall 
filter revealed that this filter was based on a Hiseq dataset. As our sample were sequenced 
Novaseq this is different data therefore the syscall filter was turned off. The homopolymer 
filter was elongated to allow for mosaic variants to be in short homopolymers. These 
settings gave settings set Settings_LH_NS 
 
Settings_LH_NS 

With the settings set Settings_LH_NS sensitivity of dataset SD_Exome_Normal 
increased to 63% (table 7). Many simulated mosaic variants were filtered with the mapping 
quality filter (49%) (table 6). After investigating, we discovered that the aligner used by 
BAMSurgeon did not match the aligner used to create the BAM files that we used. As a 
result, we needed to adjust the aligner used by BAMSurgeon to match the aligner we use to 
create the BAM file in order to reduce the number of variants filter by the mapping quality 
filter. As a last optimalisation the aligner that BAMSurgeon uses was changed to the BWA-
mem aligner that we use to create our BAM files.  
 
Settings_LH_NS_mem 

With the settings set Settings_LH_NS_mem sensitivity of dataset SD_Exome_Normal 
increased to 76% (table 7). The strandbias filter was filtering out the majority of mosaic 
variants simulated in the sample (11%) (Table 6). The strandbias filter was altered to 
p=0.000001 instead of 0.05. 
 
Settings_LH_NS_mem_SB 

With the settings set Settings_LH_NS_mem_SB sensitivity of dataset 
SD_Exome_Normal decreased to 74% (table 7). But a shift in the found percentages was 
observed, the low percentages were picked up better and the high worse. Between 1 and 
20% now 79% were found but between 20% and 30% 61% of mosaic variants were found. 
This is preferable because we want to look at the low percentage mosaic variants rather 
than high percentage mosaic variants. It was decided these settings of MosaicHunter and 
BAMSurgeon would be used in further testing of the tool. 
 
Table 6 overview of total simulated variants filtered by each filter. Based on a sample of dataset SD_Exome_Normal. 

Filter Settings_ 
default 

Settings_LH_
NS 
 

Settings_LH_
NS_mem 

Settings_LH_
NS_mem_SB 

Homopolymers filter 408 (32%) 14 20 20 

Mapping quality filter 354 (28%) 416 (49%) 37 38 

Mosaic filter 92 190  228 346 

Syscall filter 263 (20%) Filter off Filter off Filter off 

Within read position filter 80 95 109 112 

Complete linkage filter 2 3 3 3 

Misaligned reads filter 45 80 77 77 



Strand bias filter 41 52 58 (11%) 0 

Common site filter 1 1 1 1 

Total filtered 1286 851 533 597 
 
Table 7: Results for MosaicHunter for the different parameter settings. Based on a sample of dataset SD_Exome_Normal.   

Settings_ 
default 

Settings_LH_
NS  

Settings_LH_
NS_mem 

Settings_LH_
NS_mem_SB 

Detected simulated mosaic 
variants (percentage of total) 

1040 (44%) 1475 (63%) 1805 (76%) 1741 (74%) 

Total variants simulated in 
BAM file 

2345 2345 2372 2372 

Missed simulated variants 1305 870 533 597 

Extra mosaic variants found 173 288 282 327 

 
By optimizing the settings (Settings_LH_NS_mem_SB) we increased sensitivity from 

44% to 74%, an increase of 30% compared to the default setting (Settings_default). We 
therefore recommend using these settings in future analyses. Within this study we used 
Settings_LH_NS_mem_SB to analyze the simulated and true positive datasets, unless stated 
otherwise. 

Further optimizing is still possible. The syscall filter could be trained on own data. 
Most reads are filtered out by the misaligned reads filter and the within read position filter, 
it would be interesting to examine these filters. 
 
GATK  

To determine the number of mosaic variants that could already be detected using our 
WES workflow genotyping based on SD_Exome_Normal and SD_Exome_Deep were 
performed using the GATK haplotypecaller. GATK was able to detect >95% of mosaic variants 
above 12% mosaic in SD_Exome_Normal (fig 3) and SD_Exome_Deep (fig 4) but genotyped 
these mosaic variants as heterozygous variants.  

 
Dataset SD_Exome_Normal and SD_Exome_Deep 

In the previous analysis we discovered that the GATK haplotypecaller sensitivity to 
detects mosaic variants >12% mosaic is high. We also want to determine the sensitivity to 
detect mosaic variants of MosaicHunter on variants between 1-30%. especially the variants 
that are not detected by GATK between 1-12%. So, an in-depth comparison of GATK and 
MosaicHunter performance was performed.  

First, we analyzed GATK vs MosaicHunter for the SD_Exome_Normal dataset. 
MosaicHunter does not detect mosaic variant from 0 to 3 percent reliably (<70% sensitivity). 
From 3 to 22 percent MosaicHunter has a high >70% sensitivity for mosaic variants (fig 3). 
Above 22 percent MosaicHunter performs worse <70% sensitivity. GATK is able to detect 



>95% of mosaic variants >12% but has a low sensitivity <12% (fig 3). MosaicHunter performs 
well 3-12% compared to GATK (fig 3). With the current settings and sequence depth 
MosaicHunter is therefore able a clear added value when combined with GATK. 

 
Figure 3: Comparison of the performance of GATK and MosaicHunter on 100X coverage WES sample. In Blue the sensitivity of GATK and 
in red the sensitivity of MosaicHunter. On the y-axis the sensitivity is depicted and, on the x-axis, the different mosaic percentages. 

 
To investigate the potential added value of sequence coverage, we also performed 

the similar analysis with SD_Exome_Deep. GATK is able to detect >95% of mosaic variants 
>11% in the 717X coverage WES sample but has a low sensitivity <5% (fig 4). MosaicHunter 
has a high >80% sensitivity in the range of 2-10% (fig 4) and outperforms GATK here. In 
comparison with the 100X coverage samples there is a clear increase in sensitivity both with 
GATK (>11%) and MosaicHunter (>2%) (fig 5). 

 

 
 
Figure 4: Comparison of the performance of GATK and MosaicHunter on 500X coverage WES sample. In Blue the sensitivity of GATK and 
in red the sensitivity of MosaicHunter. On the y-axis the sensitivity is depicted and, on the x-axis, the different mosaic percentages. 



 

 
Figure 5: Comparison of sensitivity of MosaicHunter on deepsequencing and normal sequencing samples. Deepsequencing, 500X 
coverage, sample (blue) and a normal, 100X coverage, sample (red). On the y-axis the sensitivity is depicted and, on the x-axis, the different 
mosaic percentages. 

 
MosaicHunter performs better on 500X deepsequencing data than it does on 100X 

data (fig 5). For deepsequencing data >80% of mosaic variants between 3 and 7% are 
detected where on 100X coverage between 70 and 80% is detected (fig 5). So, using high 
coverage would be beneficial based on our simulated data.  

With GATK being very sensitive (>95%) for variants above 12% mosaic, it is reliable to 
detect these mosaic variants, although as heterozygous variants. MosaicHunter is reliable 
(>80%) to detect variants between 3-22% and will be of added value to GATK between 3-
12%.  

For the 100X SD_Exome_Normal dataset 3 samples are used to calculate results but 
for the 500X SD_Exome_Deep dataset only 1 sample was used to calculate the results. To 
Improve the comparison in extra deepsequencing samples mosaic variants need to be 
simulated. 
 
Dataset SD_PID_5, SD_PID_5strand and SD_PID_10 

In the previous analyses we determined the exome wide statistics to detect 
simulated variants. However, these analyses were performed using a relative low resolution 
(100 variants per BAM per percentage). To reach high resolution and gain insight in 
sensitivity we decided to perform a base pair resolution simulation for the six clinically 
relevant genes in which pathogenic mosaic variants are known. These six clinically genes 
were based on the PID09 gene panel and UBA1, so it contained six genes known to cause 
autoinflammatory diseases. Five out of these six genes are currently part of the 
autoinflammatory mosaic-detection gene panel sequenced with smMIPs, the PID09.  

Because MosaicHunter outperforms GATK between 3 and 12 percent it was decided 
to focus on mosaic percentages of 5% (lower limit) and 10% (upper limit). For each 
percentage, we simulated a mosaic variant in each base pair within BAM files of 30 samples.  
 
 



 
Results SD_PID_10 & SD_PID_05 

For SD_PID_05 with the 5% mosaic percentage variants simulated on average 72,5% 
of simulated mosaic variants in the target region were detected by MosaicHunter. For 
SD_PID_10 with the 10% mosaic percentage simulated an average 81,5% of the simulated 
variants in the target region were detected by MosaicHunter. A positive trend to detect 
mosaic variants was observed with increased sequence coverage (fig 8).  

Most target regions are detected even well, more than 50% of positions of every 
target are above 80% detected in the 30 BAM files (fig 6) for the SD_PID_10 dataset. For the 
SD_PID_5 dataset more than 50% of positions of every target are above 70% in the 10 BAM 
files (fig 7) which is a bit lower than in the SD_PID_10 dataset.  
 

 
Figure 6: Overview of boxplots of 10% simulated variants per target region in PID09 + UBA1 panel. Each boxplot represents a target 
region (supplementary 2) which could consist of one or more exons, overlapping regions are collapsed for this analysis). For each position 
in each region the percentage of found simulated variants in calculated and a boxplot of these percentages was created. 
 

 
Figure 7: Overview of boxplots of 5% simulated mosaic variants per target region in PID09 + UBA1 panel. Each boxplot represents a 
target region (supplementary 2) which could consist of one or more exons, overlapping regions are collapsed for this analysis). For each 
position in each region the percentage of found simulated variants in calculated and a boxplot of these percentages was created. 

 



 

 
Figure 8: percentage found per position in representative target region. Top part, percentage of simulated variants detected per position. 
In red the line that represents the average over the positions. Bottom part, overview of IGV of the same target region. Depicted in grey is 
the depth and in blue and red are the forward and reverse reads. Left graph, 10% mosaic simulated variants. Right graph, 5% simulated 
variants. 

 
There is a clear drop in sensitivity in the flanks of the targeted regions (fig 8) and 

within intronic regions (fig 8). For the coding part, the exons, it is expected that the 
sensitivity per position on average is higher than for the flanks. It would be interesting to 
look at the sensitivity of MosaicHunter on the exomes without the 100bp flanks and with 
20bp flanks. Also, diagnosis of genetic disorders in the UMCU is performed on the exome 
with 20 bp flanks. Which means that the outer 80bp of the flanks we also simulated variants 
in will not be considered in routine diagnostics. This would be interesting for both the 10% 
and 5% mosaic variant simulations. 

With tuned strandbias in the SD_PID_5strand analyses no large differences were 
found (Data not shown).   
 
Dataset TP_Regular & TP_Deepseq 

In the previous analyses we determined the exome wide statistics and statistics for 
high resolution in clinically relevant gene regions to detect simulated variants. This was all 
done on mosaic variants simulated in BAM files. To get an insight on the performance of 
MosaicHunter on true diagnostic samples with a known pathogenic mosaic variant two 
datasets TP_Regular and TP_Deepseq were used. TP_Regular consisting of WES data from 3 
samples with a sequence coverage of 90-140X, and TP_Deepseq consisting of WES data from 
7 samples with a sequence coverage of 500-1000X.  

After running the TP_Deepseq for the first time (settings set Settings_LH_NS_mem) 4 
of 7 samples were filtered with the strandbias filter. It was decided to alter the p-value of 
the strandbias filter to allow for a bigger different in strandbias between the mosaic variant 
and the reference allele.  
 
Results TP_Regular  

For validation of MosaicHunter three true positive 100X WES samples were available. 
These samples were analyzed with MosaicHunter with Settings_LH_NS_mem_SB settings. 
The mosaic variants of sample Sample_3 and Sample_2 were detected by MosaicHunter and 
with GATK. The mosaic variant of sample Sample_1 was not detected with MosaicHunter as 



this variant was filtered in the mosaic filter and was thus classified as a heterozygous variant 
by MosaicHunter. Which is likely because the mosaic variant was present in 31% of reads. It 
also was called as a heterozygous variant by our GATK pipeline. Called MosaicHunter 2/3 
(67%), called GATK 3/3 (100%), called by either MosaicHunter or GATK 3/3  (100%).   
 
Results TP_Deepseq  
 For validation of MosaicHunter 7 samples with known mosaic variants were 
sequenced on 5 times sequence depth, per sample coverage is shown in table 8. In total 
85.7% (6/7) of the mosaic variants were detected by either MosaicHunter (3/7) or GATK 
(6/7).  

The mosaic variant of sample Sample_8 was not detected using either method, likely 
as a result of the low mosaic percentage. As shown in the results of exome wide simulation, 
sensitivity to detect mosaic variants <3% is low for WES samples with both normal and deep 
coverage. It would be interesting to see if increased coverage could lead to detection (see 
final discussion). Sample Sample_71 & sample_6 were not detected due to the mosaic filter 
because the mosaic percentages are 31% and 36% MosaicHunter filtered them as 
heterozygous variants. Sample Sample_4 was not detected due to the strandbias filter, there 
was a big difference in the proportion of forward and reverse reads between the reference 
allele and variants present.  

This finding shows that for these samples GATK is sensitive enough to detect the 
mosaic variants because of the percentages that are >12% (table 8). This is in line with the 
results found with the exome wide analysis.  
  
Table 8: overview of dataset TP_Regular and TP_Deepseq. Included are the positions, depth and calls of MosaicHunter and GATK. 

Sample name TP variant 
Mosaic 
percentage* 

Found with 
MosaicHunter 

GATK call Depth 

Sample_10 
X:47058451 
(T>C) 

43% Yes (43%) Heterozygous 524X 

Sample_3 
X:47058451 
(T>C) 

43% Yes (42%) Heterozygous 136X 

Sample_2 
X:47058451 
(T>C) 

17% Yes (17%) Heterozygous 90X 

Sample_9 
X:47058451 
(T>C) 

17% Yes (15%) Heterozygous 807X 

Sample_5 
1:247587669 
(A>T) 

11% Yes (10%) Heterozygous 190X 

Sample_7 
X:47058450 
(A>G) 

31% No Heterozygous 785X 

Sample_4 
1:247588457 
(G>A) 

18% No Heterozygous 560X 

Sample_6 
1:247588457 
(G>A) 

36% No Heterozygous 665X 



Sample_1 
X:47058450 
(A>G) 

31% No Heterozygous 89X 

Sample_8 
12:6442956 
(C>A) 

1.4% No No call 533X 

*) as provided by labspecialist 

 
One note to make is that except Sample_6, the TP_Deepseq samples failed 

diagnostics QC due to high contamination (6-8% based on VerifyBAM contamination results) 
with a yet to be determined source. This contamination could have negative influence on the 
results. To get the most reliable results these samples need to be sequenced again on a 
depth of 500X coverage and without contamination. One other note is that the 100X 
coverage WES samples were sequenced using an older enrichment design (CREv2). To have 
the results most in line with our current methods the samples have to be sequenced with 
the SureSelect V7 capturing kit, as this is the current diagnostic standard at the UMCU when 
performing WES.  
 
Precision 

In the previous chapters we focused on the sensitivity to detect mosaic variants as 
this is the most important for diagnostics. However, typically high sensitivity has a tradeoff 
for lower precision or increased false positive results.   

To get a feeling about the precision the number of found mosaic variants by 
MosaicHunter on both TP_Regular 100X and TP_Deepseq 500X was looked at. In a 100X 
sample on average 350 (± 128) variants were found, in a 500X sample on average 307 (± 38) 
variants were found. Subtracting the variants found with GATK from the list of mosaic 
variants found by MosaicHunter leads to a 50% reduction of variants that need to be 
checked (~300 > 150) (table 9 & 10). Filtering for the six clinically relevant genes 
(PID09+UBA1) results in 0-2 mosaic variants per sample (table 9 & 10). 

Apart from that the variant rate for mosaic variants in a person is not known (based 
on literature study), which makes it difficult to estimate the number of mosaic variants an 
individual normally has. Not knowing the truth makes it difficult to determine the false 
positive rate. Mosaic variants detected with MosaicHunter can either be true positive 
variants (which might or might not be involved in genetic diseases) but can also be artifacts 
that are labeled as mosaic variants resulting from i.e., sequencing mistakes or mis mapping. 
This does mean that you cannot label all the found mosaic variants that are not known to 
cause illness as false positives. Whether these mosaic variants are true positives or false 
positives can only be determined by another method, like for instance ddPCR.   
 
Table 9: overview of amount of mosaic variants detected by MosaicHunter per BAM file. Number of mosaic variants called by 
MosaicHunter and filter for several panels and ranges. 

Sample Exome 100 bp flanks PID09 panel + UBA1  Next to GATK 

Sample_4 273 0 146 

Sample_5 362 2 144 

Sample_6 261 0 94 

Sample_7 344 0 147 

Sample_8 276 0 128 

Sample_9 305 1 115 

Sample_10 325 1 169 



Sample_1 240 0 79 

Sample_2 322 1 100 

Sample_3 489 1 82 

 
Table 10: Average number of mosaic variants detected by MosaicHunter per BAM file. Number of mosaic variants called by 
MosaicHunter and filter for several panels and ranges. 

Depth Exome 100bp flanks PID09 panel + UBA1 Next to GATK 

500X 307 (± 38) 0-2 135 (± 25) 

100X 350 (± 128) 0-1 87 (± 12) 

 

Future perspectives 
Before mosaic variant detection using MosaicHunter can be implemented in routine 

diagnostics, more (validation) analyses are needed. This includes finding the optimal 
coverage for MosaicHunter, analyzing more samples with a true positive variant between 2 – 
12% mosaic and simulating more datasets. There are currently two major challenges when 
using MosaicHunter: analysis time and precision. 

The analysis time of MosaicHunter can be long, especially for high sequence depths. 
This means that when samples need to be analyzed fast MosaicHunter cannot be performed. 
A 100X WES sample can be analyzed in 8 hours, and by using parallelization in step 2 this can 
be reduced to around 4-5 hours. However, analyzing deep sequencing 500X samples will 
take more than a week. Even with parallelization in step 2, this will only be reduced to about 
4 days. Parallelization of step 1 is not possible, due to the alpha and beta that are calculated 
on all the reads, making the analysis time for deep sequencing samples problematic. Possible 
solutions to the analysis time challenge include basing the alpha and beta on a smaller part 
of the exome. For instance, on one chromosome that represents the whole exome, or basing 
the alpha and beta on only the clinically relevant genes (~ 3000), or finding another region 
that can provide representative alpha and beta values. Another solution to shorten analyzing 
time might be to focus the whole analysis with MosaicHunter on a subset of genes, possibly 
the ~3000 clinically relevant diagnostic genes. This will prohibit direct mosaic variant calling 
in other genes, but it provides much broader resolution compared to for instance smMIP 
panels. 

The precision of MosaicHunter is another bottleneck. There are currently hundreds of 
mosaic variants detected by MosaicHunter, which is too many to check manually for 
pathogenicity. Different filtering strategies need to be tested to reduce this number to an 
acceptable number of variants. One option is to subtract the variants found with GATK, but 
flag them as mosaic in the GATK results, from the list of mosaic variants found by 
MosaicHunter and examine the number of remaining variants. This reduction will lead to a 
50% reduction of variants (~300 > 150) (table 9 & 10). Another option is to filter for different 
gene panels. These panels can be based on literature and would contain clinically relevant 
genes that cause disease. This will significantly reduce the number of variants found. For the 
six clinically relevant genes (PID09+UBA1) this results in 0-2 mosaic variants that need to be 
annotated and possibly validated with a second method (table 9 & 10). It is suspected hat 
other gene panels will yield similar results. Because MosaicHunter outperforms GATK in the 
3 – 12% range, filtering for the variants in this range could reduce the number of variants 
that need to be checked. At last, filtering for impact and annotation on gene function and 
relation to the disease of interest can also be effective in reducing the list of variants, 
because only variants with a high pathogenic impact will be kept. 



 
In this study, we only validated performance of MosaicHunter on mosaic variants 

outside the 3-12% range. Additional samples with a true positive mosaic variant in this range 
are required for complete validation of MosaicHunter.  

More simulations like the SD_PID09_10 and SD_PID09_5 should be conducted, 
including every percentage between 1-15% and using both deep sequencing and normal 
sequencing. This will give a base pair resolution of MosaicHunter for the clinically relevant 
genes and will give more insight in the sensitivity of MosaicHunter on the different mosaic 
percentages.  

To improve the statistical power of the results of MosaicHunter, it would be 
beneficial to find the coverage where performance is optimal. This could be done by 
stepwise down sampling 500X samples and assessing sensitivity for each step. Another 
option may be to consider sequencing with a coverage >500X, which may increase sensitivity 
for detection of mosaic variants below 2%. This study has shown that MosaicHunter 
performs better on 500X samples than on 100X samples but has not investigated other 
coverages. It would be interesting to examine the coverage at the six clinically relevant 
genes (PID09 + UBA1) and compare this to the coverage of the entire exome. If the coverage 
is the same, we would expect similar results of MosaicHunter for all positions of the exome 
as the performance for the six clinically relevant genes. We expect the performance of 
MosaicHunter is positively correlated with coverage, but this assumption has not been 
validated in this project. 

One option of implementation of MosaicHunter is to use the tool alongside the 
current GATK germline variant calling pipeline, which is run on all whole exome sequencing 
(WES) samples by the UMCU. Examining the results and the number of variants called can 
provide insight into the performance of MosaicHunter.  

Based on these considerations, it is recommended to implement MosaicHunter in 
diagnostics, but to also run it alongside GATK for a while as mentioned above. It would also 
be advisable to perform validation with another method.  
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