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Plants are inhabited by a collection of microorganisms, together called the microbiome. Some of these microorganisms
can positively influence plant functioning, while others negatively impact plant health. Therefore, the overall composition
of the microbiome is important for the plants’ well-being. Pathogens have been shown to alter the microbiome com-
position through microbe-pathogen interactions. Furthermore, plants themselves alter the microbiome upon pathogen
detection. There is no knowledge on the generality of the microbial change; infections with different pathogen sources
on different plants might affect the microbial community in similar ways. In this study, it was shown that there is a
consistent decrease in the relative abundance of bacterial order Sphingomonadales upon pathogen infection. This shift
happens irrespective of the present pathogen type and the infected host. Furthermore, the specific shift was localized
to the pathogen residence, showing that systemic signalling is not responsible for the Sphingomonadales decrease. It
appears that general plant stress invoked by successful pathogen invasion does not necessarily contribute towards the
Sphingomonadales reduction. Immune system suppression on the other hand might partially explain the pathogenic ef-
fects on the Sphingomonadales, as A. thaliana mutants with altered immune system functioning show a similar shift in
the relative abundances of the bacterial order. It is probable that direct microbe-pathogen interactions also play a role in
the Sphingomonadales decrease, which should be confirmed in further research.

Introduction

All plant species live in symbiosis with a unique and diverse
set of microorganisms, collectively referred to as the micro-
biome. Most abundant in this microbiome are the bacteria and
fungi. The plant host with their microbes is together called the
holobiont.1 The composition of bacterial and fungal species
within holobionts depends on many different factors: the plant
species, the plant growth stage, the plant tissue type, the sur-
rounding microbiota in the environment and the abiotic cir-
cumstances.2

The different microorganisms in a holobiont can have a
large influence on the plant health and functioning.1 Cer-
tain microbes can stimulate growth by producing phytohor-
mones, or by facilitating nutrient uptake for production of new
plant material.2 Others can provide protection from harmful
biotic influences, for example through production of antibi-
otics or through induced systemic resistance, priming the plant
for invading pathogens.3 Furthermore, microbes around and
within plants can protect them from abiotic influences such
as drought and salt stress.4,5 Besides the positive influences,
certain microorganisms can negatively impact a plant’s health.
Some microbes produce toxins, while others cause downright
disease in plant tissue.6

Plants actively shape the microbial community to maximize
their fitness.7 This shaping is most visible around the roots,
where the so-called rhizosphere effect takes place; root exu-
dates that include organic acids, amino acids, fatty acids, nu-
cleotides, sugars, and vitamins attract certain beneficial mi-
crobes.3 Besides nutrient excretion, plants can secrete defen-
sive secondary metabolites that inhibit the growth of certain
detrimental microorganisms.8

Pathogens are microorganisms that cause disease, which
need to evade the defense mechanisms of the holobiont for
successful plant invasion.8 Usually, pathogens express effec-
tor proteins to aid in their colonization of a specific plant
species. These proteins can alter plant processes, usually re-
lated to plant immunity.9 During successful invasion, the re-
siding plant microbiome is concomitantly altered. A lot is
unknown about this microbiome shift. For example, it has
not been investigated whether different pathogens cause sim-
ilar shifts, and how shifts are brought about. Potentially,
pathogens need to remove certain general protective microbial
species before being able to infect plants, due to the secretion
of inhibitory antimicrobial compounds by the microbes. Cer-
tain other microbes might be stimulated by pathogen-presence
if they produce nutrients and aid in hijacking the plant immune
system. On the other hand, it could be that indirect effects
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Experiment Name Host plant Microbiome Location Pathogen Infection type Environment Bacterial community
tomato root verticillium Solanum lycopersicum Root Verticillium dahliae Manual Greenhouse Synthetic

chili xylem fusarium Capsicum annuum L. Xylem Fusarium oxysporum Natural Field Natural
wheat leaf zymoseptoria Triticum aestivum Leaf Zymoseptoria tritici Manual Phytochamber Synthetic

wheat adjacentleaf zymoseptoria Triticum aestivum Adjacent leaf (control) Zymoseptoria tritici Manual Phytochamber Synthetic
arabidopsis leaf mildew Arabidopsis thaliana Leaf Golovinomyces orontii Manual Greenhouse Natural
arabidopsis root mildew Arabidopsis thaliana Root (control) Golovinomyces orontii Manual Greenhouse Natural

tomato rhizosphere phytophthora Solanum lycopersicum Phytophthora parasitica Rhizosphere Manual Greenhouse Natural
banana pseudostem ralstonia Musa paradisiaca Pseudostem Ralstonia Natural Field Natural

rice stem dickeya Oryza sativa Stem Dickeya zeae Natural Field Natural

Table 1: Characteristics of selected pathogen datasets. Displayed for each experiment are the infected host plant, the microbiome sampling
location, the infecting pathogen, how the infection came about, in what environment the study was conducted and which bacterial community
type was present on the plants.

like plant stress and immune system suppression are responsi-
ble for microbial alterations, as shifts in the microbiome have
previously been reported for both these situations.10,11

In this research project we investigate the commonalities
in microbiome alterations upon pathogen infection. We fo-
cus our analysis on the alterations in the relative abundances
of bacterial orders. To research whether observed pathogen-
induced shifts could be explained by indirect pathogen effects,
we subsequently analyze the influence of abiotic stresses and
immune system manipulation on the microbial community.

Materials and Methods

Pathogen invasion datasets
A literature search was performed to obtain publicly avail-
able datasets with 16S ribosomal DNA sequencing data of
both pathogen-affected and healthy plant tissue. The influ-
ence of confounding factors on the microbiome composition
was considered by including datasets with varying pathogen
types, plant hosts and abiotic experimental circumstances.
Furthermore, the plant tissue used for microbiome analysis
was varied, thereby further varying the input microbiome.
In the end, seven different datasets were included to visual-
ize a potential general trend in microbiome alteration.12–18

The BioProject accession numbers associated to these datasets
are PRJEB3428112, PRJNA66730213, PRJNA549447.14, PR-
JEB4313915, PRJNA35484716, PRJNA27790417 and PR-
JNA602829.18 For the study by Seybold et al., the data was
unfortunately not demultiplexed, so that the reads could not be
used to generate an OTU-table, a taxonomy table and a phylo-
genetic tree. Instead, these data structures were directly down-
loaded from https://github.com/hmamine/ZIHJE/ located un-
der the directory community analysis.

The most important characteristics of these datasets are dis-
played in Table 1. In total, the seven datasets include seven
different pathogen types, infecting six different plant hosts.
The microbiome samples were taken from pathogen-infected
plant tissue, which was a different tissue for the different

pathogen types. Two datasets additionally included micro-
biome samples taken from distal plant tissue, away from the
pathogen-infection site. These samples were analyzed to look
into the difference between direct and systemic pathogen ef-
fects.

The infection type varied in the datasets; In some exper-
iments, pathogen infections were naturally occurring in the
sampled plants, while other plants were manually infected
with a pathogen. Another important discriminant for the
datasets was the sampling location; certain experiments were
performed in greenhouses, while others were sampled in the
field. Lastly, the bacterial community type varied between the
different experimental setups; certain datasets used a synthetic
community of bacteria, while others contained natural bacte-
rial communities.

For most datasets, subsets were created to limit the vari-
ables to only the pathogen presence. The used samples per
BioProject are displayed in Table S1.

Abiotic stress datasets
A literature search was performed to obtain publicly available
datasets with 16S ribosomal DNA sequencing data of plant
tissue in the presence or absence of different abiotic stresses.
In the end, four different datasets were included to visual-
ize a potential general trend in microbiome alteration.19–22

The BioProject accession numbers associated to these datasets
are PRJNA741547,19 PRJNA551661,20 PRJNA69081921 and
PRJEB47399.22

The most important characteristics of these datasets are dis-
played in Table 2. The datasets included plant hosts that were
present in the pathogen invasion datasets, to be able to ex-
trapolate the findings to plant stress upon pathogen infection.
For all included datasets, plant growth hindering by the ex-
perimental circumstances was used as an indication of plant
stress presence. In total, three different abiotic stresses were
included as experimental conditions. The microbiome sam-
ples were again taken from different plant tissues affected by
the abiotic stresses.

Subsets were again created for certain datasets to reduce

2



the number of variables. The used samples per BioProject are
displayed in Table S2.

Experiment Name Host plant Microbiome Location Abiotic Stress
tomato leaf drought Solanum lycopersicum Leaf Drought

rice endosphere drought Oryza sativa Endosphere Drought
rice endosphere salt Oryza sativa Endosphere Salt

wheat root flood Triticum aestivum Root Flooding

Table 2: Characteristics of selected abiotic stress datasets.
Displayed for each experiment are the infected host plant, the
microbiome sampling location and the imposed abiotic stress.

Immune mutants dataset
A dataset with 16S ribosomal DNA sequencing data of the en-
dosphere of a collection of A. thaliana immune system mu-
tants and a wildtype (WT) control was obtained. The im-
mune system mutants were characterized by one or more gene
knockouts of proteins present in important immune system
signalling pathways.11 In the end, 17 different immune mu-
tants were included to visualize a potential general trend in
microbiome alteration. The different mutation-combinations
interfered with different parts of the immune system. A full
description of the different mutant types can be read in the
article by Pfeilmeier et al.11

Metagenomics analysis
16S ribosomal DNA sequencing data was downloaded from
the NCBI database and subsequently converted to fastq-data
using the SRA-toolkit (version 2.8.0). Most datasets contained
Miseq data, while two datasets contained Hiseq data. For the
different datasets, different parts of the 16S gene were ana-
lyzed. Also, different read lengths were present in the different
datasets due to different sequencing setups. Each dataset was
analyzed using the workflow from ‘Workflow for Microbiome
Data Analysis: from raw reads to community analyses’.23

Reads were first trimmed up to a suitable length with a qual-
ity score of ∼ 30, and subsequently filtered based on the num-
ber of errors present in the sequence (maximum of two errors).
The exact settings used for trimming the reads are displayed in
Table S3 for each ’pathogen invasion’ dataset, and in Table S4
for each ’abiotic stress’ dataset. Chimeric sequences were
removed, and for each unique read it was checked whether
their uniqueness could be attributed to sequencing errors. If
so, the reads were removed. Subsequently, the forward and
reverse sequencing reads were joined for the paired-end se-
quencing data, and all total reads were demultiplexed. With
the sequences, an OTU-table, taxonomy table and phyloge-
netic tree were created and combined in a phyloseq-object.
For certain datasets, the phyloseq-objects were obtained from
the respective study’s authors. These datasets were ’tomato
root verticillium’, ’tomato leaf drought’ and ’rice endosphere
drought’. The sample counts were transformed into relative

abundances, and subsequently agglomerated on the bacterial
order level. Relative abundance plots and Principal Coordi-
nate Analysis (PCoA) plots with Bray-Curtis dissimilarities
(β -diversity) were generated for quality control before initiat-
ing the comparisons.

Software
The whole microbiome data analysis workflow was per-
formed with R software24 (version 4.1.2) using packages
dada225(version 1.22.0), phyloseq26 (version 1.38.0), DECI-
PHER27 (version 2.22.0) and phangorn28,29 (version 2.8.1).
All packages were downloaded from Bioconductor using the
BiocManager package30 (version 3.14). Further packages
used for data manipulation and visualization were ggplot231

(version 3.3.5), magrittr32 (version 2.0.3), dplyr33(version
1.0.8), tidyverse34 (version 1.3.1), cowplot35 (version 1.1.1),
ggpubr36 (version 0.4.0), gridExtra37 (version 2.3), and we-
sanderson38 (version 0.3.6).

Experimental Comparison and Statistical Analysis
The relative abundances for each bacterial order were com-
pared between samples affected by a specific experimental
condition and healthy controls. For the pathogen invasion and
distal tissues experiments, the experimental condition was a
certain pathogen infection. For the abiotic stress experiments,
the experimental condition was the presence of a certain abi-
otic stress. For the immune mutants experiments, the experi-
mental condition was the knockout of certain immune system
proteins.

A Welch’s t-test39 was performed to compare the relative
abundances for each bacterial order. No multiple testing cor-
rection was included, as the goal of the research was to vi-
sualize a general trend across conditions. P < 0.05 was con-
sidered statistically significant, while P < 0.1 was considered
near-significant.

Results

Pathogens consistently decrease the local relative abun-
dance of Sphingomonadales
Metagenomic datasets that included microbiomes from
pathogen-affected plants and healthy plants were analyzed for
their bacterial composition. After determining the relative
abundances of bacterial orders, the results were compared be-
tween the pathogen-affected and healthy plants. For all these
comparisons, plant tissue from which the microbiome was
isolated corresponded to the infection-site in the pathogen-
affected plants, showing the local impact of pathogens on the
microbiome. To determine whether systemic pathogen effects
were present as well, plant tissues’ microbiomes from distal
plant tissues without direct pathogen presence were analyzed.
Again, the bacterial composition in tissues from pathogen-

3



Figure 1: Bacterial composition change upon imposition of different experimental conditions. a-c) The relative abundances of different
bacterial orders according to 16S ribosomal DNA profiling were compared in situations with and without an imposed experimental condition.
The results are displayed in heatmaps showing the log2-fold changes of different bacterial orders and the significance of the change, as
determined by a Welch’s t-test. Significant differences are shown by * (p < 0.05), ** (p < 0.01) and *** (p < 0.001). Differences that are
near-significant (p < 0.1) are displayed by a thickened outline of the associated heatmap box. Only the bacterial orders that were present in at
least five out of seven pathogen-invasion studies were included in the plots. The experiment name specifies which plant host was investigated,
which plant tissue the microbiome was isolated from, and which experimental condition the plant was subjected to. a) Local bacterial
composition change upon pathogen infection. b) Distal bacterial composition change upon pathogen infection. The samples were obtained
from two experiments of the pathogen invasion conditions from a), but looked at tissues where pathogens were not localized. c) Bacterial
composition change upon imposition of abiotic stress conditions.

affected and healthy plants were compared.
The quality of the final included metagenomic samples was

checked by generating relative abundance plots, portraying
the respective distributions of the bacterial orders (Figure S1).
Furthermore, the influence of the pathogen-presence on the
microbiome composition was characterized in PCoA based on
β -diversity scores (Figure S2).

The relative abundances for all bacterial orders were com-
pared between the pathogen-affected and healthy plants by
both looking at the size of the log2-fold change, and the signif-
icance of the alteration. The results are displayed in Figure 1a.
As the included plant hosts and plant tissues had different in-
put microbiomes, the bacterial orders that were present in each
experiment varied. To obtain a clear overview, only bacte-
rial orders that were present in at least five out of the seven
pathogen invasion datasets were included.

For most bacterial orders, the resulting heatmap displays a

variable pattern over the different experiments. The only or-
der that shows a consistent pattern are the Sphingomonadales;
in all experiments, there was a significant or near-significant
decrease in the relative abundance. This decrease varied from
relatively small (< 2 fold) to large (4-8 fold). The relative
abundance of the Sphingomonadales was more than 1% for all
experiments but ’wheat leaf zymoseptoria’ (Figure S3), show-
ing the bacterial order encompasses a non-negligible portion
of the bacteria in the analyzed microbiomes. Furthermore, the
general abundance shows that the height of the fold-changes
of the relative abundances of the Sphingomonadales in the ex-
perimental conditions was not caused by a minimal bacterial
presence; the lower the relative abundance, the easier it is to
obtain a large fold-change in either direction.

In Figure 2, the relative abundances of the Sphingomon-
adales per experiment, split up into pathogen-affected and
healthy samples, are zoomed in on. In most experiments,
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Figure 2: Boxplot with relative abundances Sphingomonadales per experimental condition in pathogen invasion experiments. The
dots show the individual measurements of the relative abundances in each experimental condition. The separate boxplots per experiment show
the relative abundances in pathogen-affected and healthy samples. Unaffected samples do not necessarily contain no pathogen, but are
effective at suppressing pathogen invasion.

the Sphingomonadales relative abundance portrays a normal
distribution, meeting the assumptions of the chosen statistical
test. Furthermore, the boxplots confirm that the average value
of the relative abundance of the Sphingomonadales is higher
for the healthy samples than for the pathogen-affected sam-
ples, again suggesting the existence of a general trend of Sph-
ingomonadales decrease upon pathogen-infection. Besides a
higher average value, a clear separation of the abundances
in the different experimental conditions could be visualized,
increasing the confidence in the significance of the observed
downshift.

In contrast to the local influence of pathogen invasion on
the microbiome, there were only few significant changes vis-
ible for distal tissues without direct pathogen contact. As the
samples were taken from the same plants as in their respective
pathogen invasion experiments, a direct comparison between
the two results is possible, suggesting that local pathogen ef-

fects on the microbiome are much larger than systemic ef-
fects. Furthermore, no significant shift in the Sphingomon-
adales was observed, making it likely that local pathogen ef-
fects are responsible for the consistent decrease of this specific
bacterial order.

Abiotic stresses do not induce changes in the relative abun-
dance of Sphingomonadales

To examine whether plant stress in general, caused by local
pathogen presence, could partially be responsible for a de-
crease in the relative abundances of the Sphingomonadales,
datasets were selected in which plants were subjected to dif-
ferent abiotic stresses. In all datasets, reduced plant growth
was present,19–22 confirming the presence of plant stress in
general. Unfortunately, most abiotic stresses do not only gen-
erate plant stress, but also directly affect microbial composi-
tion by stressing the present microbes.40 Therefore, direct abi-
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Figure 3: Bacterial composition change upon immune system protein knockout(s) in A. thaliana. The relative abundances of different
bacterial orders were compared between A. thaliana wildtype plants and immune system mutants, where one or more proteins important for
immune system functioning were knocked out. A heatmap was created showing the log2-fold changes of different bacterial orders and the
significance of the change. Significant differences are shown by * (p < 0.05), ** (p < 0.01) and *** (p < 0.001). Differences that are
near-significant (p < 0.1) are displayed by a thickened outline of the associated heatmap box.

otic stress effects on microbes can confound the results of the
analyzed conditions. For the ’rice endosphere salt’ dataset,
the researchers tested multiple salt concentrations, of which
the concentration was chosen where the salt-infused soil did
not show large and significant alterations in the relative abun-
dances of the Sphingomonadales (data not shown). For the
other experiments, there was no opportunity to control for di-
rect effects of the abiotic stress on the microbial community.

The quality of the final included metagenomic samples was
again checked by generating relative abundance plots (Fig-
ure S4). Likewise, the influence of the abiotic stress on the
microbiome composition was again characterized in PCoA
based on β -diversities (Figure S5). A less clear separation
of microbiomes was observed for most abiotic stresses than
for the pathogen-invasion datasets. For certain datasets, this
decreased separation was caused by the presence of other de-
terminants that had an influence on the sample discrimina-
tion, like the phosphorous concentration for the ’tomato leaf
drought’ experiment. However, no determining confounders
could be determined for both ’rice’ experiments, suggesting
here that the abiotic stress might have been a smaller determi-
nant for the microbiome composition than the pathogen inva-
sion.

In the different selected datasets, the relative abundances
for all bacterial orders were compared between abiotic stress-
affected and healthy plants in a similar fashion as for the
pathogen invasion experiments. In the resulting heatmap (Fig-
ure 1c), the same bacterial orders were displayed as for the
pathogen invasion. Visible is that the trend of decreased rel-

ative abundances of the Sphingomonadales does not hold for
the different abiotic stresses. Neither drought stress or saline
treatment had a significant impact on this specific bacterial
order. The flooding treatment was the only condition that
did significantly decrease the relative abundance of the Sphin-
gomonadales. However, the direct effect of the flooding con-
dition on the present microbes in the soil could not be deter-
mined, for which reason it is uncertain whether the significant
decrease was caused by plant stress or direct microbe stress
caused by the abiotic condition.

Immune system manipulations decrease the relative abun-
dance of Sphingomonadales
Plants respond to the presence of a perceived pathogen by at-
tracting certain beneficial microbes that can help defend holo-
bionts. When the immune system functioning is impaired, for
example through immune system manipulation by pathogen
invasion, the normal microbe attraction might not function
well anymore, likely lowering the resilience of the holobiont.
Furthermore, the impaired immune system functioning may
facilitate the growth of certain other microbes that are nor-
mally repressed, which in turn may impact the growth of oth-
ers through resource competition or toxin production. There-
fore, immune system alterations may have a profound effect
on the bacterial composition, and might partially explain the
influence of pathogen invasion on the microbiome.

To examine whether immune system manipulation by the
investigated pathogens could explain the general decrease in
the relative abundance of Sphingomonadales, a dataset with
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different A. thaliana mutants that had compromised immune
systems was obtained and analyzed. Within this dataset, there
were 17 different mutant plants present with knockouts of dif-
ferent proteins important to immune system functioning. For
all these mutant plants, the bacterial composition was com-
pared to A. thaliana WT.

Again, the same methodology was used to create the
heatmap of Figure 3, except now all measured bacterial orders
were included. These bacterial orders do not completely over-
lap with the bacterial orders from Figure 1. The heatmap por-
trays that the log2-fold change of the relative abundance of the
Sphingomonadales is consistent again across the different im-
mune system mutants. Similar to the pattern associated with
pathogen invasion, there was a general significant decrease
in the relative abundance. The decrease was generally rela-
tively small (< 2 fold), and not significant or near-significant
in all conditions, in contrast to the pattern associated to the
pathogen presence. Therefore, certain immune system func-
tion alterations appear to have a more pronounced effect on
the Sphingomonadales than others.

Discussion & Conclusion

The data presented in this research project demonstrates for
the first time that pathogens consistently and significantly
lower the relative abundance of the Sphingomonadales. The
decrease happens across different experimental conditions that
vary in pathogen type and plant host. No other bacterial orders
showed a consistent bacterial alteration upon infection across
conditions, with various bacterial orders displaying significant
changes in only one or two experiments. The inconsistency
of the changes likely depends on confounding factors present
in the experimental conditions, like the infected plant host or
abiotic circumstances. Boxplots of the relative abundances of
the Sphingomonadales in both pathogen-affected and healthy
plants confirmed that there was a consistent downshift of the
specific bacterial order upon infection. Therefore, it appeared
that the change in the relative abundance of the Sphingomon-
adales was linked to general pathogen infection in plants.

Significant microbiome-alterations were mostly present at
the pathogen site, showing that the largest microbiome dis-
turbance is local. For the Sphingomonadales, the decrease in
relative abundance was specifically linked to local presence
of pathogens as well. This shows that systemic signalling by
plants upon infection is not responsible for a decreased pres-
ence of the bacterial order.

Pathogens could locally impact the Sphingomonadales both
in a direct and indirect way. With direct manipulation,
pathogens could actively suppress Sphingomonadales. From
literature it is known that Fungal pathogen V. dahliae, in-
cluded in the datasets, can directly suppress Sphingomon-
adales growth with its effector protein VdAve1.12 Therefore, it

appears plausible that other pathogens might also secrete cur-
rently unknown effector proteins that specifically interact with
the Sphingomonadales. Further research is needed to specify
whether other included pathogen types also can directly sup-
press members of this bacterial order. For this purpose, pro-
teins secreted by pathogens could be administered directly to
isolates of Sphingomonadales, to look at the growth rates of
the bacterial order as a whole upon encountering the pathogen
secretome. Alternately, specific strains or families of the Sph-
ingomonadales could be subjected to the so-called pathogen
culture filtrate, to see more specifically which bacteria of the
order are being targeted. An important assumption for this ap-
proach is that the pathogens have a similar secretome in cul-
ture and in plant tissue. Therefore, there is a probability to
obtain a false absence of influence of the culture filtrate on the
bacterial growth rate. However, if one of the pathogen culture
filtrates has an effect on the growth rate of the bacteria, the
presence of one or more growth-reducing pathogen proteins in
the mixture is probable. This would provide opportunities to
subsequently identify the protein responsible for the decrease.

Apart from local impact, pathogens could potentially affect
local bacterial presence indirectly by altering plant function-
ing, through increasing plant stress, and locally manipulating
the immune system. Different abiotic stresses that instigated
plant stress did not alter the Sphingomonadales presence in a
general way, with only the flooding of wheat plants causing a
significant decrease in the bacterial order. For this significant
decrease, it could furthermore not be determined whether it
was caused by plant stress, or by the flooding process itself;
oxygen deprivation stemming from flooding can have a sig-
nificant impact on the bacterial composition as well, increas-
ing anaerobic bacteria and concomitantly reducing other bac-
terial orders.22 As a result, the conclusions from this abiotic
stress condition should be approached with caution. Because
two out of three abiotic stress conditions did not instigate sig-
nificant downshifts in the relative abundances of the Sphin-
gomonadales, it appears plausible that general plant stress is
not one of the main pillars for Sphingomonadales suppression
by pathogens upon invasion.

A pitfall of the included datasets could be that the insti-
gated abiotic stresses might not have been stressful enough
for plants to subsequently alter the microbiome. The PCoA
analysis would support this claim for certain datasets, as the
abiotic stress had less influence on the bacterial composition
than pathogen invasion. However, as all included datasets had
significantly decreased plant growth as a characteristic, plants
from the studies were per definition stressed. Furthermore,
both drought-stress datasets showed a non-signifant increase
instead of a decrease in the relative abundance of the Sphin-
gomonadales. Therefore, it seems unlikely that more stressful
abiotic circumstances would cause a pattern of Sphingomon-
adales reduction as in the pathogen-affected samples.
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Immune system suppression is another indirect way for
pathogens to manipulate the associated microbiome. Surpris-
ingly, almost all A. thaliana immune system mutants showed
a significant decrease in the relative abundance of the Sphin-
gomonadales. This suggests that immune system manipula-
tion by pathogens could contribute to this microbiome shift.
With the knowledge that immune system manipulation by
pathogens could alter the relative abundance of Sphingomon-
adales upon infection, it remains a mystery what is the ex-
act nature of the connection between the bacterial order and
the immune system. Potentially, in a normal situation the im-
mune system allows for active recruitment of Sphingomon-
adales, with immune manipulation leading to decreased attrac-
tion. For active recruitment, plants secrete certain molecules
that allow growth of specific microbes that have enzymes for
utilization of the molecules in their metabolism. For the Sph-
ingomonadales, it is already known they have enzymes for the
conversion of certain plant-generated molecules.41 However,
more research is needed to figure out whether Sphingomon-
adales are actively attracted by the immune system, for exam-
ple by bacterial attraction studies upon plant infection.42 In
these studies, it is researched which soil bacteria are drawn
into the rhizosphere from a long distance due to root exuda-
tion. If immune system activation leads to active attraction
of Sphingomonadales, the root exudates excreted upon infec-
tion should attract more Sphingomonadales than the healthy
plant exudate. Furthermore, attraction upon pathogen infec-
tion could be researched in a similar fashion, where root-
associated pathogens could potentially cause a decrease in the
attraction of the Sphingomonadales due to local immune sys-
tem manipulation.

Another explanation for the decrease of the relative abun-
dance of the Sphingomonadales upon immune system ma-
nipulation by pathogens might be that the immune system
normally suppresses other microorganisms that are in re-
source competition with the Sphingomonadales. With re-
duced immune suppression, these microorganisms can grow
more rapidly and decrease the available food sources. Re-
source competition could be identified using metabolic profil-
ing studies, where different microorganisms can portray sim-
ilar metabolic pathways to metabolize particular metabolites.
Further research should provide a more definitive answer on
the reason why altered immune system functioning decreases
the Sphingomonadales presence.

With the current results, it was displayed that there is a
significant reduction in the relative abundances of the Sph-
ingomonadales upon pathogen invasion. However, the signif-
icance of this reduction on plant functioning is currently still
unknown. Potentially, the reduced presence of Sphingomon-
adales reduces the resilience of the holobiont and leaves the
plant host more vulnerable to infection by several pathogen
types. Different synthetic bacterial communities could be cre-

ated with increased and decreased amounts of Sphingomon-
adales, to research the effect of the Sphingomonadales pres-
ence on the resilience of the holobiont. In this setup, it could
be determined how successful the different synthetic commu-
nities are at fighting infection with different pathogen types.
If the Sphingomonadales have a protective function in plant
holobionts, an increased abundance should protect from infec-
tions, while a decreased abundance should give rise to more
infected plants. It was already shown before that a Sphin-
gomonas strain, isolated from A. thaliana, activates a subset
of plant defense genes upon invasion of bacterial pathogen P.
syringae DC3000, promoting immunity.43 Therefore, it is not
unlikely that specific other strains of the Sphingomonadales
order may also assist immunity in different plant hosts against
different pathogen types.

The search for bacterial strains that may assist in plant im-
munity may eventually lead to a better way to control pathogen
infections in plants. Namely, if specific beneficial bacterial
strains that reduce the infection potential of pathogens are
boosted in plants, crops might become infected less often,
causing less plant wasting. As certain pathogens are currently
detrimental to crop harvesting yields,17 with no known control
options, other methods to reduce pathogen invasion potential
are much needed. Therefore, the results of this studies may
potentially provide a new direction to limiting crop wasting,
where artificially increasing Sphingomonadales might boost
immune system functioning.
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Supplementary material

Experiment Name BioProject accession number Diseased samples Healthy samples
tomato root verticillium PRJEB34281 ERR3509498 - ERR3509500 ERR3509495 - ERR3509497

chili xylem fusarium PRJNA667302 SRR12773360 - SRR12773365, SRR12773367 - SRR12773369 SRR12773370 - SRR12773376, SRR12773378, SRR12773379
wheat leaf zymoseptoria PRJNA549447 N/A N/A

wheat adjacentleaf zymoseptoria PRJNA549447 N/A N/A
arabidopsis leaf mildew PRJEB43139 ERR6617855 - ERR6617863 ERR6617846 - ERR6617854
arabidopsis root mildew PRJEB43139 ERR6617837 - ERR6617845 ERR6617828 - ERR6617836

tomato rhizosphere phytophthora PRJNA354847 SRR5079786-SRR5079788 SRR5079784, SRR5079785, SRR5079789
banana pseudostem ralstonia PRJNA277904 SRR1920149 - SRR1920152 SRR1920144, SRR1920146, SRR1920147

rice stem dickeya PRJNA602829 SRR10959410 - SRR10959426, SRR10959431, SRR10959442, SRR10959453 - SRR10959461, SRR10959388 - SRR10959391, SRR10959436 - SRR10959441, SRR10959443, SRR10959444,
SRR10959464, SRR10959475, SRR10959573, SRR10959574 SRR10959471 - SRR10959474, SRR10959476, SRR10959484, SRR10959495, SRR10959506,

SRR10959564 - SRR10959566, SRR10959569 - SRR10959571

Table S1: Selected samples for pathogen invasion experiments. For each dataset, displayed are the associated BioProject accession
number, which samples were analyzed as pathogen-affected samples, and which samples were analyzed as healthy samples.

Experiment Name BioProject accession number Stressed samples Healthy samples
tomato leaf drought PRJNA741547 N/A N/A

rice endosphere drought PRJNA551661 SRR9612737, SRR9612745, SRR9612865, SRR9612870 SRR9612739, SRR9612647, SRR9612450, SRR9612456,
SRR9612864, SRR9612867, SRR9612869, SRR9612571

rice endosphere salt PRJNA690819 SRR13428751, SRR13428755, SRR13428987, SRR13428992, SRR13428782, SRR13428803, SRR13428807, SRR13428875,
SRR13429003, SRR13429007, SRR13429011 SRR13428923, SRR13428958, SRR13428998

wheat root flood PRJEB47399 ERR6717428 - ERR6717433, ERR6717440 - ERR6717445, ERR6717434 - ERR6717439, ERR6717446 - ERR6717449,
ERR6717450 - ERR6717455 ERR6717456 - ERR6717463

Table S2: Selected samples for abiotic stress experiments. For each dataset, displayed are the associated BioProject accession number,
which samples were analyzed as stressed samples, and which samples were analyzed as healthy samples.

Experiment Name Sequencing type Trim length forward read Trim length reverse read Trim front (both)
tomato root verticillium Paired-end N/A N/A N/A

chili xylem fusarium Paired-end 235 235 5
wheat leaf zymoseptoria N/A N/A N/A N/A

wheat adjacentleaf zymoseptoria N/A N/A N/A N/A
arabidopsis leaf mildew Paired-end 260 240 5
arabidopsis root mildew Paired-end 260 240 5

tomato rhizosphere phytophthora Single-end 220 N/A 0
banana pseudostem ralstonia Paired-end 145 100 10

rice stem dickeya Paired-end 250 250 20

Table S3: Characteristics of the read trimming procedures for each pathogen invasion dataset. Displayed is whether paired-end of
single-end sequencing was performed, what the total trim length was of the forward and reverse reads, and how many bases were trimmed of
the front end of the read for both the forward and reverse read. In case of single-end sequencing, the associated read length is displayed under
the forward read trim length.

Experiment Name Sequencing type Trim length forward read Trim length reverse read Trim front (both)
tomato leaf drought N/A N/A N/A N/A

rice endosphere drought N/A N/A N/A N/A
rice endosphere salt Paired-end 280 250 5

wheat root flood Paired-end 250 200 5

Table S4: Characteristics of the read trimming procedures for each abiotic stress dataset. Displayed is whether paired-end of single-end
sequencing was performed, what the total trim length was of the forward and reverse reads, and how many bases were trimmed of the front
end of the read for both the forward and reverse read. In case of single-end sequencing, the associated read length is displayed under the
forward read trim length.
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Figure S1: Relative abundances for all bacterial phyla in the pathogen invasion datasets. Pathogen-affected and healthy samples are
shown together in one graph for each experiment.
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Figure S2: Principal coordinate analysis (PCoA) plot with Bray-Curtis dissimilarity for pathogen invasion datasets. Pathogen-affected
and healthy samples are illustrated by the different colors and show separation in space.
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Figure S3: Mean relative abundances bacterial orders in pathogen invasion experiments. Significant and near-significant experimental
conditions of the relative abundance comparison are highlighted with the thickened outline of the bubbles. For the Sphingomnonadales, the
relative abundances varied mostly between 1-10%.
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Figure S4: Relative abundances for all bacterial phyla in the abiotic stress datasets. Stressed and healthy samples are shown together in
one graph for each experiment.
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Figure S5: Principal coordinate analysis (PCoA) plot with Bray-Curtis dissimilarity for abiotic stress datasets. Stressed and healthy are
illustrated by the different colors and show some separation in space.
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