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Abstract 

INTRODUCTION: High variability in drug exposure and subsequent drug response can hamper 

effectiveness and safety. Dose adjustments can be made a priori (e.g. pharmacogenetic testing) or a 

posteriori (e.g. therapeutic drug monitoring (TDM)). Although combining both would be ideal, this is 

not always possible due to scarcity of resources. High unexplained inter-individual variability (IIV) can 

be captured by TDM, while pharmacogenetics may be a better option in case of high inter-occasion 

variability (IOV) and residual unexplained variability (RUV). This study explores the effect of these 

variabilities and evaluates the cut-off points between a priori (in form of pharmacogenetics) and a 

posteriori (in form of TDM) based on those variabilities to inform decision making on those 

adjustment strategy.  

METHODS: Pharmacokinetic models with pharmacogenetic covariates of drugs of which dosages are 

adjusted by both pharmacogenetic and TDM were retrieved from Pubmed. Simulations with those 

models were performed under different magnitudes of variability (IIV 0-1, IOV 0-1 and RUV 0-

0.5,proportional). A priori simulation based on a covariate subpopulation average and a posterori 

simulation including all types of variability and the covariate value were compared with a theoretical 

true value including only the covariate average and IIV.  

RESULTS: Five cases were included: tacrolimus, tamoxifen, efavirenz, risperidone and vincristine. The 

general pattern was similar for all the included models, where increase in IOV and RUV gave 

preference to a priori and increase in unexplained IIV gave preference to a posteriori. 

CONCLUSION:  The trade-off between the degree of explainable IIV for pharmacogenetics, versus IOV 

with RUV for TDM on the other hand has been visualized. TDM seems the optimal strategy for all 

cases, except vincristine. This is possibly influenced by the outcome measure being AUC. Our results 

can be used as a theoretical framework to inform biomarker selection for dosing adjustments on the 

included drugs.  
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Introduction 

In clinical practice, effectiveness and safety of drugs can be hampered by high interindividual 
variability in drug response. (1) Part of this difference in drug response can be explained by 
differences in pharmacokinetics, which results in variation in drug exposure after receiving the same 
dose. By understanding and/or measuring the variability in exposure, patients can get the dose 
tailored to their needs.(2) Dose adjustments can be made a priori (i.e. dose personalization, before 
the first administration) based on patient characteristics, such as weight or pharmacogenetics, or a 
posteriori (i.e. dose individualization, after one or more administrations) based on drug level 
measurements via therapeutic drug monitoring (TDM).(3,4) 

Pharmacogenetic testing can inform dose adjustment before the start of treatment and thus can be 
considered an a priori strategy for dosing, which hinges on the concept that inter-individual 
variability (IIV) in patients can be (partially) explained by differences in genetic coding (i.e. explained 
inter-individual variability). (5,6) By testing for differences in the genetic coding of metabolic, the 
exposure of a patient can be (partially) predicted.(7) Over the last two decades a growing interest in 
pharmacogenetics can be seen, reflected in the number of consortia formed to develop clinical 
guidelines regarding dose adjustments for genetic variations. (8,9) Although such variations explain 
part of the differences in drug exposure between patients, the predictive capacity can be limited due 
to large remaining unexplained inter-individual variability or due to the fact that it often captures 
only one pharmacokinetic parameter (often related to clearance with metabolic enzyme variations). 
One example is the use of different doses for patients with CYP2D6 mutations for tamoxifen allowing 
for more patients reaching target endoxifen concentrations. (10) 

TDM represents an a posteriori strategy, used to measure levels of a drug in the blood after the dose 
with the intention to adjust the dose if necessary. A blood sample is usually taken directly before a 
new dose at steady state conditions for maintenance treatment, i.e. Ctrough, or multiple samples after 
dose administration when the area under the curve (AUC) should be measured. (11) TDM is only 
useful when there are multiple dosing occasions to adjust. (12) Unlike a priori based dosing 
strategies, TDM is able to capture the complete inter-individual variability in drug exposure. 
However, the measurements’ relationship to individual pharmacokinetic parameters can become 
clouded by the presence of inter-occasion variability (IOV), i.e. the random variability between 
different dosing occasions, and residual unexplained variability (RUV) related to variability in the 
bioanalysis, within-occasion variability and potential model misspecification (figure 1, from Sassen et 
al. (2,11,13,14) 
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For some drugs both pharmacogenetic and TDM-based dose adjustments have been suggested for 
clinical implementation. Although in theory the utilization of both methods (either in sequence or 
conjointly) could give rise to the best possible prediction of drug exposure and optimized dose, the 
combination of these methods is not always possible due to scarcity of resources and practical 
considerations such as the time to perform a genetic test and the feasibility of its implementation. 
(15) For example, if routine measurement of drug exposure is already present in clinical practice, this 
may have an effect on the impact of pharmacogenetic testing by accounting for the present effect of 
that routine measurement and previously invested resources. (5) However, scientific arguments 
should ultimately also play a large role in this decision. Given the fact that the magnitudes of 
explained, unexplained IIV, IOV and RUV influence the preference for an a priori based dose 
adjustment, versus an a posteriori one, it is conceivable that there is an ultimate trade-off between 
these measures at which preference should go to one strategy over the other.  

Little empirical evidence is available comparing the two and using the magnitude of variability has 
not been done yet. Most trials focus on evaluation of one strategy compared to fixed dosing and 
there are not many comparisons available between pharmacogenetics and TDM. (1,12) Population 
pharmacokinetic (PK) models represent mathematical structures that capture the time course of 
drug concentration (16) The statistical component of PK models captures the degree of variability in 
patients and the companion covariate component describes sources of variability between patients, 
e.g. pharmacogenetic variations. Various PK models have been published that describe both 
variability between patients, as well as the relative contribution of pharmacogenetic differences to 
this variability. Such models can be exploited to simulate in silico clinical trials evaluating both 
pharmacogenetic and TDM dose interventions (16), which would not be limited by many of the 
practical, financial and ethical boundaries of real-life clinical trials. (17,18)  

The current study provides one of the first efforts to quantitatively determine the circumstances 
under which a priori dose adjustments would be favored over a posteriori ones based on the 

Figure 1 - three types of variability. Concentration-time curves depicting the three forms of variability. ID1 has two 
concentration-time curves from two subsequent dose administrations (solid line); ID2 has a single concentration-time cure 
after a single administration. 1. Between-subject variability (BSV), differences (e.g., in peak concentration) between the two 
patients; 2. Interoccasion variability (IOV), difference between dose administration time points; 3. Residual variability, due to 
model misspecification. (From Sassen et al. 2019) 
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magnitude of the three types of variability. Using several relevant drug cases, where both 
pharmacogenetic and TDM guided dosing has been suggested as a relevant example, corresponding 
PK models were derived from the literature to simulate scenarios under which an a priori dosing 
strategy would be favored over an a posteriori. To this end, different combinations of unexplained 
inter-individual variability, intra-occasional variability and residual unexplained variability were 
assessed. Based on the results, recommendations on individual dose adjustments of the included 
cases can be made and give clinicians insight in the effect of variability on dose adjustments.  

Methods 

2. Methods 

Compounds where both pharmacogenetic testing and TDM are used for personalizing dosage were 
selected to test the favored strategy under different circumstances. To this end, published models 
were retrieved via a literature search and assessed for suitability for our simulations. Model-based 
simulations using either a pharmacogenetic- or TDM-based strategy were performed to predict drug 
exposure in virtual patients, the results were repeatedly assessed for their proximity to the 
theoretical true value in different combinations of the variabilities. 

2.1 Literature search and model selection 

For the literature search term pharmacogenetic, e.g. a priori markers of potential interest were 
gathered for more focused search for suitable models. Only SNPs with a clinically relevant influence 
on pharmacokinetics, defined as dose adjustment for at least one phenotype, were gathered via 
guidelines of the Dutch Pharmacogenetic Working Group & the Clinical Pharmacogenetics 
Implementation Consortium. The following enzymes were included: ABCG2, CYP2B6, CYP2C9, 
CYP2C19, CYP2D6, CYP3A4, CYP3A5, DPD, MTHFR, NUDT15, SLCO1B1 (OATP1B1), TPMT and 
UGT1A1.  

Models that included these predefined pharmacogenetic covariates were searched for with PubMed 
in September 2021 to identify suitable cases. Initial screening of title and abstract was performed via 
Rayyan QCRI by NR and an independent sample for validation was done by MC. Doubtful cases were 
discussed by both to reach consensus on inclusion or exclusion. Inclusion criteria were: 
pharmacokinetic model available, presence of a statistically significant effect of pharmacogenetic 
covariate and models based on patient samples. Exclusion criteria were: in vitro models, animal 
models, foreign language, physiology based pharmacokinetic models, only pediatric population, 
models older than 2010, drugs not utilized in Dutch and Swedish clinic.  Subsequently, the cases were 
assessed for their dosing strategy options.  

Only models of drugs where both pharmacogenetic-dosing and TDM were used in the clinic were 
evaluated for suitability. Models based on less than 30 patients, very complex pharmacokinetics and 
complex formulations were excluded. If multiple models were available, models were selected based 
on highest sample size and samples per patient. If that did not offer an decisive answer, the models 
were assessed by both NR and MC to select one model. These models are discussed in ‘Results 3.1.2’.  

2.2 Virtual patients and simulations 

The included models and corresponding parameter estimates from the publication were translated in 
mrgsolve (version 0.11.2) for simulation in R (version 4.1.1.). (19,20) A virtual population of 1000 
patients was created. For simplicity covariates other than pharmacogenetic components were fixed 
to a single value (e.g. weight and comedication). For this, continuous variables were fixed at median 
value, whereas the reference value (i.e. most used value) was used for categorical variables.  The 
dosing regimen was  simulated according to the regimen specified in the originial model publication. 
In the situation that  amultiple doses were described, the median dose was taken. BSA was needed 
for the 5-FU and vincristine model, this was taken from the literature.(21) The distribution of CYP 
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covariates was obtained from the corresponding model, if possible or from the literature if not 
reported to ensure a plausible population. 

First, a single model-based simulation was performed using the  original published parameter values. 
The variabilities were calculated from the reported CV%. (22) Under normal circumstances, OMEGA 
represents the population variance with a mean of 0. During the first simulation round, however, IIV 
and IOV were simulated using a fixed effect component (i.e. THETA) representing the variability value 
of the original value, multiplied by a random effect component (i.e. OMEGA,) which set to a value of 
1 in order to sample Z-values (i.e. number of standard deviations from the mean) from the 
population distribution (Eq. 1):  
 

Eq. 1  θi= θ*exp(ηi * ηij) 
 
Where θi represents the individual pharmacokinetic parameter value, θ represents the population value, θ(IIV) 
represents the original variance value from the publication and η(IIV) represents the Z-score.  

 
Individual Z-values were subsequently exported and used in consecutive simulations, where the 
individual z-values were used to calculate individual SD van the mean when different fixed effect 
values where altered in magnitude. Individual values of the parameter of interest (clearance in most 
cases) were also exported to allow for scaling correction relative to the change in random effect 
changes during the second simulation round (Eq. 2).  

 
During the second simulation round, the magnitude of the θIIV (the interindividual variability that was 
adjustable) of the parameters of interest (i.e. clearance mostly and residual error) were changed per 
model, while the remaining parameters retained their original values and variability. In addition, the 
fixed effect value of the PK parameter of interest was scaled to the original individual parameter 
value (from simulation round 1) in order to ensure that the individual value remained identical, 
whilst only the relative contribution of between the random effect versus the fixed effect (i.e. the 
pharmacogenetic covariate effect) differed over the simulation rounds. (Eq. 2): 
 
Eq. 2  Covariate factorSIM2  = (CLSIM1 / CLSIM2) * Covariate factorSIM1 

 
Where CL represents the clearance from either the first simulation round (SIM1) or the second 
simulation round (SIM2).  

 
During this second simulation round, simulations were performed multiple times. In each seperate 
simulation different combinations of magnitude for θIIV (the interindividual variability that was 
adjustable) were evaluated. Variability was only changed for one parameter per model, while the 
original variability was kept for all other parameters. During such simulations three separate 
endpoints relating to the exposure were outputted (figure 1) : (i) theoretical true value (Eq. 3 and 4), 
(ii) a priori predicted value (Eq. 5 and 6) and (iii) a posteriori predicted value that would be based on 
measurements (Eq. 6 and 7). The endpoint was either Ctrough or AUC, dependent on the used 
endpoint used in the corresponding publication. The theoretical true value included all IIV, but 
without IOV and RUV. The a priori value included the pharmacogenetic covariate explaining the IIV of 
the genetic marker, but without the remaining IIV, IOV and RUV. The a posteriori value included all 
three types of variability. The proportional error models was applied according to Eq. 9 and was used 
for all, except vincristine. The additive model was applied according to Eq. 10. For every model IIV, 
IOV & RUV were simulated repeatedly in different combinations of magnitudes with the imported η, 
ε and parameter of interest from the initial simulation. Combinations ranging from 0 – 1 in steps of 
0.1 for IIV & IOV and 0 - 0.5 in steps of 0.05 for RUV, which resulted in 1331 simulations per model. 
For the additive error model, A range between 0% and 50% of the mean theoretical true 
concentration was set in eleven steps via a scaling factor.  
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True simulation  

Eq. 3 Pharmacokinetic parameter value - θi= θ*exp(ηi) *COVgenotype 

Eq. 4 IPRED – Css(t) = Amount in compartment / Vd 

Prior simulation  

Eq. 5  Pharmacokinetic parameter value - θi= θ*COVgenotype 

Eq. 6 IPRED - Css(t) = Amount in compartment / Vd 

 Posteriori simulation  

Eq. 7 Pharmacokinetic parameter value – θi= θ*exp(ηi + ηij) *COVgenotype 

Eq. 8  If proportional error model - IPRED – Css(t) = Amount in compartment / Vd*(1* ε) 

Eq. 9 If additive error model - IPRED – Css(t) = Amount in compartment / Vd*(1 + ε*SF) 

Where IPRED represents the individual predicted plasma concentration, θi represents the individual 
pharmacokinetic parameter value, COVgenotype represent the covariate value for the different genotypes, θ 
represents the population value, ηi represents the random effect for IIV, ηij represents the random effect for 
IOV, Css represents the concentrations at steady state, Vd represents the volume of distribution and ε the 
value of the residual error, SF represents the scaling factor. 
 

The summary metric of interest was either Ctrough or AUC was exported after every simulation.  Ctrough was 
calculated when steady-state conditions were reached by calculating the plasma concentration 
predictions at time point before the next dose. AUC was approximated by equations 8 for first order 
elimination, due to difficulties with simulation of the a priori value and true value simultaneously 
with the posterior. For the posterior simulation the AUC was calculated by trapezoidal method using 
three time points.  

Eq. 10  AUC= Dose / Clearance 

Bioavailability is left out of equation 10 as only IV bolus was the route of administration for the drugs where 
AUC was simulated and therefore assumed 100%. Where AUC represents the area under the curve. 
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2.3 Graphical and numerical evaluation 
To compare pharmacogenetic-based dosing (as a priori) with TDM-based dosing (as a posteriori), the 
predicted endpoint value of relevance based on each dosing strategy was compared to the ‘true’ 
exposure value. The biomarker that was relatively closest to the true exposure value was then 
considered superior, since each simulation utilized 1000 seperate individuals the % of patients 
favouring the a priori biomarker versus the a posteriori biomarker was summarized under all the 
simulated circumstances. To gain insight in the interaction between the three variabilities, a 3D plot 
was constructed for every model with R package plot3D (Version 1.4 where the y-axis represents 
residual unexplained variability , the x-axis interindividual variability and z-axis interoccasion 
variability. (23) Two plots were constructed for every model using R package ggplot2 (Version 3.3.5). 
(24) These were 2D plots generated to summarize the information in a more condensed manner. 
Herein, the relationship between only two variables (e.g. IIV-IOV or IIV-RUV) are depicted, and the 
output represents the average of the omitted variable (e.g. IOV or RUV). For every combination of 
two of the variables, there were eleven simulations using eleven different values for the omitted 
variability. The outcomes of those simulations were averaged for every combination of the two 
plotted variabilities. 

 

 

 

Figure 2 – schematic representation of the concept to simulate the different scenarios using 
tacrolimus as an example. True value includes covariate effect and IIV, PGx value includes covariate 
effect only and TDM value include covariate effect, IIV, IOV and RUV Cli = individual cleance, TVCL = 
typical value of clearance, IIV = inerindividual variability, IOV = interoccasion variability, RUV = 
residual unexplained variability,  COVslow/rapid = the factor of the covariate of pharmacogenetic  
polpolymorphism, PGx = pharmacogenetics, TDM = therapeutic drug monitoring. 
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Results  

3.1 Models in the literature 

3.1.1 Literature results 

Out of the 586 identified articles, 78 were selected based on the predefined selection criteria (figure 
2).  Of those articles, 38 were excluded for absence of use of either one or both dosing strategies in 
the clinic and 27 were excluded because of other models available for that drug. A total of five 
articles were selected from the literature search, in addition to two unpublished models recently 
developed at our research group. A summary on the included cases and models are discussed below. 

 

3.1.2 Included models 

The details of the models included and the input used for this study can be found in table 1. 

Tacrolimus 

Tacrolimus is an immunosuppressive used to prevent rejection after solid organ transplantation. (25) 
Tacrolimus dosing is based on maintaining drug concentration within a therapeutic window to obtain 
beneficial immunosuppression whilst maintaining adequate safety, although differences are 
observed in which target range is used. (26) (25) Additionally, CYP3A5*1 carriers have an increased 
clearance of tacrolimus compared to wild-type (3A5*3), requiring an 1,5-2,5 times increased dose to 
achieve target concentration with less dose adjustments. (1,9) 

The 2-compartment model reported in Andrews et al. (27) was used for its rich sampling (i.e. more 
samples per patient per occasion), sampling in whole blood, number of patients (4527 samples from 
337 patients) and investigated potential covariates. The Størset et al. (28) model was not included 
due to the absence of a dataset for external validation and whole blood levels that were calculated 
on literature values.  The model of Andreu et al. was not included due to the smaller group for the 
model validation and the aggregation of CYP3A5 and CYP3A4 in one phenotype. (29)  

 

 

Figure 3 - flowchart of selection process of the models. *other reasons discussed in the summary under 3.1.2.  
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Tamoxifen 

Tamoxifen is an oral estrogen-receptor blocker used for estrogen-receptor positive breast cancer and 
is converted to the active metabolite endoxifen. (30) Due to the relationship between endoxifen 
concentration and risk of recurrence, a plasma concentration of > 5.97 ng/ml has been proposed. 
(31) Dose adjustments based on TDM have been suggested to achieve this goal (30). Additionally, 
given the reduced endoxifen concentration of CYP2D6 intermediate metabolizers and poor 
metabolizers as compared to wildtype, an increase in tamoxifen dose to twice the usual dose has 
been recommended for patients with polymorphisms. (9) Although controversy remains, clinical use 
of both strategies is present. 

Efavirenz 

Efavirenz is a non-nucleoside reverse transcriptase, used as part of the highly active antiretroviral 
therapy for HIV patients. (32) Due to the relationship between efavirenz concentration and 
treatment outcome, a target concentration between 1.0 – 4.0 mg/L is proposed to reduce 
therapeutic failure and neural toxicity. (33–35). Additionally, given the influence of CYP2B6 
polymorphisms (namely CYP2B6*6 carriers) of efavirenz clearance, dose reduction in patients with 
slow metabolizing polymorphisms are being used. (9,33) 

The model of Habtewold (36) was the only with full concentration-time profile at steady state in 
some patients and was able to estimate more parameters than other models, that fixed parameters 
on literature values. Dickinson et al. (37) did not have rich sampling. Mukonzo et al. (33) had more 
dosing occasions, but only one mid-dose sample per occasion were taken.  

Risperidone 

Risperidone is a second-generation antipsychotic, used in the treatment of schizophrenia amonst 
other psychiatric disorders. (38) It is metabolized into 9OH-risperidone, later marketed as 
paliperidone. (39)  Poor metabolizers of CYP2D6 are recommended a lower dose to reduce the 
chance of neurological side effects, as risperidone has a higher blood-brain barrier passage than its 
metabolite. (40) The exposure-response relation is moderately substantiated. Some evidence is 
available for improvement of schizophrenia and reduced neurological side-effects. (41) Both 
strategies are reactively performed to explain lack of effect or unexpected side effects. (42) 

The 2-compartment model of Vandenberghe et al. (43) was included. One model with richer 
sampling was available however, the samples of Vandenberghe were more representative for clinical 
practice in terms of dosing and phenotypes and were taken under steady-state conditions. Although 
Yoo et al. had rich samples of the patients, they only received one dose for bioequivalence studies 
and no poor metabolizers were included. (44)  

Vincristine 

A few studies in children suggested an effect of CYP3A5*1 carriers (expressors) compared to 
CYP3A5*3 (non-expressors and most common in Caucasian population) with a reduced risk and 
severity on peripheral neuropathy for expressors. (45)  However, contradictory results are available. 
Exposure-response analysis provide indications for an exposure-response relationship with 
progression-free survival and side-effects (anemia and peripheral neuropathy). (46) 

The 2-compartment model was available inhouse and is not yet published. (47) First order 
elimination was included in the model. Although developed for a pediatric population, it was 
included. It is one of the few models that have allometric scaling using weight instead of body surface 
area and adds a case where Ctrough cannot be used as outcome measure, but AUC can.   

 



 

Table 1 – Characteristics of included models. 

Drug name Model 
characteristics 

Number 
of 
patients 
(number 
of 
samples) 

Patient 
characteristics 

Variability Genetic covariate and 
factor 

Dose Time of 
sampling 

Simulated 
endpoint 

Ref. 

Tacrolimus Starting dose 
model 
2-COMP 
First order 
elimination 

337 (4527) CYP3A4*22: 
no 
Age: 56 years 
BSA: 1.93 m2 
Weight: 70 kg 

IIV 
CL: 0.144; Vc: 0.256; Vp: 
0.253;  Q: 0.49 
 
IOV 
CL: 0.021 
 
RUV (prop.) 
Tac.: 0.059 (of LC-MS method) 

CL: 1 L/h 
(CYP3A5*1*1) 
CL: 1.62 L/h 
(CYP3A5*1*3) 

2 times a day 0.1 
mg/kg 

168 hours Ctrough (28) 

Tamoxifen 2-COMP 
First order 
elimination 

468 (1935) SSRI: no 
Rifampicin: no 
Age: 64 

IIV 
CLtam: 0.148; CLend: 0.201 
 
IOV 
CLtam: 0.022; CLend: 0.029 
 
RUV (prop.) 
Tam:  0.026; End:   0.027 

CL: 0.533 
(CYP2D6 UM) 
CL: -0.211 
(CYP2D6 NM) 
CL: -0.510 
(CYP2D6 IM) 
CL: -0.722 
(CYP2D6 PM) 
 

1 time a day 20 
mg 

2160 hours Ctrough (49) 

Efavirenz 4-COMP 
First order 
elimination 

313 (1185) - IIV 
CLEFV: 0.142; CL9OH-EFV: 0.310; 
VcEFV: 0.892; VmaxEFV: 0.223; 
Km9OH-EFV: 0.641 
 
IOV 
- 
 
RUV (prop.) 
EFVCentral: 0.116; 9OH-
EFVCentral: 0.423; EFVPeripheral: 
0.229; 
9OH-EFVPeripheral: 0.313 

CL: 18 
(CYP2B6*1*1) 
CL: 14 
(CYP2B6*1*6) 
CL: 8.6 
(CYP2B6*6*6) 

1 time a day 
800 mg 

288 hours Ctrough (37) 
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Risperidone 2-COMP 
First order 
elimination 

150 (178) CYP2D6 
inhibitor: no 

IIV 
CLrisp : 0.155 
CLpali : 0.097 
FR : 1.00 
 
IOV 
- 
RUV (prop.) 
Risp: 0.168 
Pali: 0.137 

FR: 2.6 
(CYP2D6 NM/UM) 
FR: -0.85 
(CYP2D6 IM) 
FR: -2.6 
(CYP2D6 PM) 
 

1 time a day 4 mg 168 hours Ctrough (41) 

Vincristine 2-COMP 
First order 
elimination 

35 (425) – 
pediatric 
population 

BSA: 1.83 m2 IIV 
CL: 0.315 
Vc: 0.478 
 
IOV 
CL: 0.352 
 
RUV (add.) 
Vin: 0.137 

CL: 
CYP3A5 wt 
CL: 
CYP3A5 mut 

1.5 mg/m2, 
maximum 2 mg 

0-24 hours AUC 
(three 
samples at 
time = 0, 
0.6 and 24 
hours) 

(47) 
Unpublished 

COMP =  amount of compartments, CYPXXX = Cytochrome P450, subtype XXX, BSA = body surface area, IIV = inter-individual variability, IOV = inter-occasional variability, 
RUV = residual unexplained variability, prop. = proportional error model, add. = additive error model, CL = clearance, Vc = volume of distribution of central compartment, Vp 
= volume of distribution of peripheral compartment, Q = intercompartmental clearance, Vmax = maximum rate achieved by system, Km = Michaelis constant, PM = poor 
metabolizer, IM = intermediate metabolizer, NM = normal metabolizer, UM = ultrarapid metabolizer, wt = wildtype, mut = mutation, FR = fraction value,   tac = tacrolimus, 
tam = tamoxifen, end = endoxifen, EFV = efavirenz, 9OH-EFV = 9-hydroxy-efavirenz, risp = risperidone, pali = paliperidone, vinc = vincristine 

 

 

  



3.2 Effect of variability 

Figure 4 shows the included cases with either IOV or RUV plotted against the IIV with every 
combination representing the average of the percentages at different values of the omitted variable. 
In general, we observe similar effects of alterations in variability. An increase in the unexplained IIV 
from 0 - 1 results in a lower percentage of the a priori simulations being closer to the true value than 
a posterori. Contrarily, increasing the IOV and the RUV results in the opposite. An increase in IOV 
from 0 - 1 results in a higher percentage of the a priori simulations being closer to the true value than 
a posteriori. The same holds true for RUV, although this variability ranges from 0 – 0.5. Due to this, a 
steeper increase is seen for RUV and it cannot be compared directly to the IOV pattern.  

Although these general principles hold for all the models, the steepness of the change for proximity 
to the true value differs per model. Most notably is the differences between the models that are 
measured at Ctrough compared to models of which an AUC is sampled. A higher share of individuals 
where the a priori value was simulated closer to the true value was seen for the AUC calculated 
simulation. This model was also less sensitive to changes in the IOV and RUV, indicated by the 
relatively straight line parallel to the y-axis. Differences are also seen within models of the same 
group of outcome measure. 

Also within the cases that were simulated for Ctrough differences in intensity are observed. Under 
different magnitudes of IOV compared to IIV, efavirenz shows the biggest differences under extreme 
magnitudes. Followed by risperidone, tamoxifen and tacrolimus in that order. The same pattern is 
seen for RUV compared to IIV. 

Pharmacogenetic versus TDM 

Table 2 shows the models with their original values. It can be seen that the models simulated with 
Ctrough show a percentage lower than the 50% cut-off of patients which have an a priori simulation 
better approximating the true value than the a posteriori simulation. Contrarily, the AUC dependent 
simulations show a percentage of a priori favoring individuals above the 50% cut-off. Based on the 
original variabilities in the published models, the Ctrough simulations favor TDM guided dosing and the 
AUC simulation with favor pharmacogenetic-guided dosing. The distance to the cutoff plane (figure 
5) is also of relevance. The majority of Ctrough have approximately 10% of the a priori simulations being 
closer to the true value, except for efavirenz at 40.5%. Efavirenz original combinations of variability 
lie close to the cut-off plane of 50%. The original values of risperidone are far away from the cut-off 
plane in green (50%). For the other two cases, tacrolimus and tamoxifen, the original values could 
approach the cut-off plane if the IOV would be increased. Less effect is seen from an increase in RUV. 
The AUC dependent simulation, vincristine, has 78.0% of the a priori simulations being closer to the 
true value. The original combination of variability lies around the 75% plane, which is almost the only 
one of the three planes visible in that plot. Only some extreme combinations lie around the cut-off 
plane (50%). 

Table 2 – percentage of a priori individuals closest to the true value based on original variabilities from published model 

Case/drug Individuals a priori 
simulation closest to true 

value (%) 

IIV (ω) IOV (ω) RUV (σ) 

Tacrolimus 10.6 0.144 (CL) 0.021 (CL) 0.059 (Prop) 

Tamoxifen 12.7 0.201 (CLend) 0.029 (CLend) 0.027 (Prop, end) 

Risperidone 8.50 1.000 (FR) 0.000 0.168 (Prop, risp) 

Efavirenz 40.5 0.142 (CLEFV) 0.000 0.116 (Prop, 
EFVCentral) 

Vincristine 78.0 0.315 (CL) 0.352 (CL) 0.137 (Add) 
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A value of 0.000 means that it was not reported in the publication of the model; IIV = inter-individual variability, 
IOV = inter-occasional variability, RUV = residual unexplained variability, prop. = proportional error model, add. 
= additive error model, CL = clearance, Vmax = maximum rate achieved by system, FR = fraction value, end = 
endoxifen, EFV = efavirenz, risp = risperidone 

Discussion 

To the best of our knowledge, this is the first study to systematically evaluate how differences in 

sources of pharmacokinetic variability give rise to favoring an a priori dosing strategy versus a 

posteriori. The different ‘drug cases’ evaluated enabled the evaluation of different model structures 

and subsequent pharmacokinetic characteristics to evaluate how these influence the benefit of an a 

priori versus a posteriori dosing strategy. The general pattern was similar for all the included models, 

where increase in IOV and RUV gave preference to a priori and increase in unexplained IIV gave 

preference to a posteriori. It was found that, based on the variability reported, TDM-guided dosing 

would be favored for drugs where Ctrough can be measured, while pharmacogenetic-guided dosing was 

favored for the case where AUC needs to be measured.  

By using multiple models from examples subject to discussion on pharmacogenetics and TDM, the 

results are relevant to clinical practice. Models from different therapeutic areas have been included, 

increasing the generalizability of the results. Clinicians can get better understanding of the effects of 

IIV, IOV and RUV for these choices. Furthermore, the approach can be extended to other a priori and 

a posteriori dosing strategies influenced by IIV, IOV and RUV. 

The differences observed between the models could be due to the remaining IIV over the other 

parameters. In this study the IIV over one parameter, usually clearance, was altered. The remaining 

IIV was left untouched and was thus not taken into account in the a priori simulations and therefore 

still had an effect on the outcome. This is supported by the fact that even in the hypothetical 

situation that all IIV could be explained, the a posteriori strategy sometimes still is favored over the a 

priori. The observed differences between simulations where the AUC was calculated compared to 

those where we simulated Ctrough could arise from the calculation of the AUC for the a posteriori. We 

used three occasions, to imitate TDM measurements, to calculate this while using the same formula 

for the true simulations and the a priori. Suboptimal choice of both time and number of the 

occasions, could steer the simulations into the direction favoring a priori simulations. 

Braal et al. (48) showed that TDM is a viable strategy for patients using tamoxifen to increase the 

proportion of patients with endoxifen levels above the lower limit. Despite a relatively low IOV (16%), 

some patients went below the limit on different occasions. CYP2D6 was mentioned to be a strong 

predictor. It is also shown that CYP2D6-guided dosing improved patients reaching the target 

concentration. Nonetheless, poor metabolizers often still did not reach the target concentration. (49) 

Binkhorst et al. (30) argued TDM to be the better strategy. It should be noted that the effect of 

CYP2D6 and TDM on clinical outcome has been controversial. (50) 

Risperidone can be individualized best by TDM according to de Leon, but genotyping can be useful to 

identify poor metabolizers. (51,52) TDM is superior because it captures all the other variability in this 

case. It was unclear how CYP2D6 genotype would be able to optimize risperidone, but that remains 

the 
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same for TDM. (53,54) For efavirenz, Figueroa et al. explored the added gain of pharmacogenetics to 

TDM already and was questioning the added value. For adjustment of the initial dose the authors  

deemed it valuable, but that should be confirmed in clinical practice (55). Martin investigated dose 

reductions using both and results suggested a better tolerance and found it to be cost-effectiveness 

compared to standard dosing. Either one of the two strategies might be even better use of resources.  

TDM guided dosing is recommended for tacrolimus, however the time to reach target concentrations 

is lower for pharmacogenetic testing. (56) Still, no added benefit is shown in those studies. It appears 

that TDM dosing is quick enough in getting the right dose.(57)  

Limited evidence is available for dose personalization and individualization of vincristine is available, 

although there are suggestions for CYP3A5 guided dosing. (47,48)  This observation is in line with the 

preference for pharmacogenetic-guided dosing found in our study.   

There were several limitations to this study. Firstly, the results are dependent on the models that 

were found and included. Altough effort was taken into careful selection, any bias or uncertainty in 

the models will persist into the simulations and reduce the validity of the results. The accuracy of the 

combination of variability in the model is essential for conclusions in this study. The risperidone 

model had one sample per patient, reducing accuracy of the estimations and this made the model 

unable to capture IOV. The IOV was also not reported in the efavirenz model. By excluding IOV it will 

inflate either IIV or RUV (13) with possibly misjudging the favored strategy as a consequence. 

Assumptions have been made on other covariates and used dose. Secondly, the presented approach 

is not completely representative for the clinical situation by using the proximity to the true value. 

Dose adjustment based on pharmacogenetic testing are based on the subgroups average while TDM 

dose adjustments are on the individual and therefore more precise. This would increase the number 

of simulated individuals favoring TDM.  

This study offers a theoretical approach to aid in rational decision-making on dosing strategies. After 

model development, the magnitude of the variability can be a useful addition to  the decision-

making. By rational optimizing of the dosing strategy, patients are able to receive better treatment 

under circumstances where resources are scarce and effective pharmaceutical care is critical. There 

should be room for other considerations too. For example the severity of the consequences can play 

a role, as 5-FU severe side effects can occur rapidly after the first dose. TDM is not capable of aiding 

in that, possibly tipping the balance in favor of pharmacogenetic testing. 

Extending the principle to other drugs where both dosing strategies are available could be focus of 

further research. For example, TPMT-testing for thiopurines and CYP2D6-testing for amitriptyline can 

be compared to TDM for these drugs. To be able to use the principle presented in this study, more 

and larger models should be developed incorporating genotypes explaining IIV. 

Although this study focusses on the comparison between both dosing strategies, ideally they are 

combined to create a more sophisticated dose adjustment. Both strategies can work complementary 

to each other for optimal treatment. It would be of great interest to provide insight in the added gain 

of combining both strategies instead of opting for either one. This applies to pharmacokinetics, but 

also pharmacodynamics changes and economical outcomes. Pharmacoeconomic studies could be 

very relevant for policy makers to allocate the resources for dose personalization and 

individualization. 
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Supplementary information 

S1 – For every model, the plasmaconcentration curve is shown of the theoretical true value based 

on all individuals and the different groups of the pharmacogenetic covariate.  

Tacrolimus 
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S2 – example code – tamoxifen – Ctrough 

################## Population for simulation 1 ##################  

DOSET = seq(0, 2160, by=24) 

#Endoxifen steady state reached can take up to 3 months (Klopp-Schulz) 

TIME = rep(seq(0, 2160, by=1), times=1000) 

ID = rep(seq(1, 1000, by=1), each=2161) 

mrgsolve <- data.frame(ID, TIME) 

mrgsolve$CMT <- 1 

mrgsolve$EVID <- 0 

mrgsolve$AMT <- 0 

 

#daily dosing 20mg 

mrgsolve$AMT <-  ifelse(mrgsolve$TIME %in% DOSET, 20, 0) 

mrgsolve$EVID <-  ifelse(mrgsolve$TIME %in% DOSET, 1, 0) 

################## Simulation 1 ################## 

code <- ' 

$PLUGIN Rcpp 

//Rifampicin & SSRI comedication not effect in the simulation 

$PARAM @annotated 

TVCL20    : 5.77  : CL (L/h) from tamoxifen compartment 

TVCL30    : 5.10  : CL (L/h) from endoxifen compartment - fixed value from a clinical study 

TVCL23    : 0.493 : Formation/intercompartmental CL (L/h) of TAM to END 

 

TVVTAM    : 1120  : Vd of Tamoxifen (L) 

TVVEND    : 400   : Vd of Endoxifen (L) - fixed value from a clinical study 

 

TVKA      : 1.78  : Absorption constant (/h) 

 

TVETA_CL20: 0.148 : Eta of CL20 as theta to be adjustable 

TVETA_CL23: 0.201 : Eta of CL23 as theta to be  
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TVETA_IOV_CL20 : 0.0222 : Eta of IOV of CL20 as theta to be adjustable 

TVETA_IOV_CL23 : 0.0289 : Eta of IOV of CL20 as theta to be  

TVEPS_TAM : 0.0260 : EPS of Tamoxifen 

TVEPS_END : 0.0267 : EPS of Endoxifen 

DOSE      : 1   : Dose to be imported 

 

$OMEGA @annotated 

ETA_CL20: 1 : Eta of CL20 as theta to be adjustable 

ETA_CL23: 1 : Eta of CL23 as theta to be  

 

ETA_IOV_CL20 : 1 : Eta of IOV of CL20 as theta to be adjustable 

ETA_IOV_CL23 : 1 : Eta of IOV of CL20 as theta to be  

 

$SIGMA @block @annotated 

EPS_TAM : 1         : EPS of Tamoxifen 

EPS_END : 0.0169 1  : EPS of Endoxifen, including correlation with TAM 

 

$CMT @annotated 

GUT : Gut compartment for dosing 

TAM_TRUE : Tamoxifen compartment 

END_TRUE : Endoxifen compartment 

TAM_PRIOR : Tamoxifen compartment typical individual 

END_PRIOR : Endoxifen compartment typical individual 

TAM_POSTERIOR : Tamoxifen compartment IPRED 

END_POSTERIOR : Endoxifen compartment IPRED 

 

$MAIN 

 

if (NEWIND <=1) { 

  double Ucyp = R::runif(0,1); 

} 
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//AS scores of 1.5, 1, 2 and not reported assumed as reference (gNM) 

if(Ucyp <= 0.85){; 

double CYPCLorig = 0; 

} else if(Ucyp >= 0.851 & Ucyp <= 0.930){; 

  CYPCLorig = -0.510; 

} else if(Ucyp >= 0.931 & Ucyp <= 0.990){; 

  CYPCLorig = -0.722; 

} else if(Ucyp >= 0.991 & Ucyp <= 1.000){; 

  CYPCLorig = 0.533; 

}; 

 

ALAG_GUT = 0.389; 

 

double CL20_TRUE = TVCL20 * exp(ETA_CL20 * TVETA_CL20); 

double CL20_PRIOR = TVCL20; 

double CL20_POSTERIOR = TVCL20 * exp(ETA_CL20 * TVETA_CL20 + ETA_IOV_CL20 * 

TVETA_IOV_CL20); 

 

double CL23_TRUE_sim1 = TVCL23 * exp(ETA_CL23 * TVETA_CL23) * (1 + CYPCLorig); 

double CL23_PRIOR = TVCL23 * (1 + CYPCLorig); 

double CL23_POSTERIOR = TVCL23 * exp(ETA_CL23 * TVETA_CL23 + ETA_IOV_CL23 * 

TVETA_IOV_CL23) * (1 + CYPCLorig); 

 

double VTAM = TVVTAM; 

 

double VEND = TVVEND; 

 

double Ka = TVKA; 

 

double K20_TRUE = CL20_TRUE / TVVTAM; 

double K20_PRIOR = CL20_PRIOR / TVVTAM; 
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double K20_POSTERIOR = CL20_POSTERIOR / TVVTAM; 

 

double K23_TRUE = CL23_TRUE_sim1 / TVVTAM; 

double K23_PRIOR = CL23_PRIOR / TVVTAM; 

double K23_POSTERIOR = CL23_POSTERIOR / TVVTAM; 

 

double K30 = TVCL30 / TVVEND; 

 

 

$ODE 

 

dxdt_GUT = -Ka * GUT; 

 

dxdt_TAM_TRUE = Ka * GUT - K23_TRUE * TAM_TRUE - K20_TRUE * TAM_TRUE;  

dxdt_TAM_PRIOR = Ka * GUT - K23_PRIOR * TAM_PRIOR - K20_PRIOR * TAM_PRIOR; 

dxdt_TAM_POSTERIOR = Ka * GUT - K23_POSTERIOR * TAM_POSTERIOR - K20_POSTERIOR * 

TAM_POSTERIOR; 

 

dxdt_END_TRUE = K23_TRUE * TAM_TRUE - K30 * END_TRUE; 

dxdt_END_PRIOR = K23_PRIOR * TAM_PRIOR - K30 * END_PRIOR; 

dxdt_END_POSTERIOR = K23_POSTERIOR * TAM_POSTERIOR - K30 * END_POSTERIOR; 

 

 

$TABLE 

 

double IPRED_CON_TAM = (TAM_TRUE / TVVTAM) * 1000; //True value TAM incl IIV 

double IPRED_CON_END = (END_TRUE / TVVEND) * 1000; //True value END incl IIV 

 

double IPRED_CON_PRIOR_TAM = (TAM_PRIOR / TVVTAM) * 1000; //Prior value TAM incl CYP 

double IPRED_CON_PRIOR_END = (END_PRIOR / TVVEND) * 1000; //Prior value END incl CYP 
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double IPRED_Y_TAM = (TAM_POSTERIOR / TVVTAM) * 1000;                       //Posterior value TAM incl 

IOV 

double Y_TAM_POSTERIOR = IPRED_Y_TAM + (IPRED_Y_TAM * EPS_TAM * TVEPS_TAM); //Posterior 

value TAM incl RUV 

double IPRED_Y_END = (END_POSTERIOR / TVVEND) * 1000;                       //Posterior value END incl 

IOV 

double Y_END_POSTERIOR = IPRED_Y_END + (IPRED_Y_END * EPS_END * TVEPS_END); //Posterior 

value END incl RUV 

 

 

$CAPTURE 

IPRED_CON_TAM  

IPRED_CON_END  

IPRED_CON_PRIOR_TAM  

IPRED_CON_PRIOR_END  

IPRED_Y_TAM  

Y_TAM_POSTERIOR  

IPRED_Y_END  

Y_END_POSTERIOR  

 

TVETA_CL20 

TVETA_CL23  

 

TVETA_IOV_CL20 

TVETA_IOV_CL23 

 

TVEPS_TAM 

TVEPS_END 

 

ETA_CL20 

ETA_CL23  
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ETA_IOV_CL20 

ETA_IOV_CL23 

 

EPS_TAM 

EPS_END 

 

CL20_TRUE 

CL23_TRUE_sim1 

 

CYPCLorig  

Ucyp  

 

' 

 

mod <- mcode("tamoxifen", code) 

 

out <- mod %>% 

  data_set(mrgsolve) %>% 

  mrgsim(seed=12345) 

 

# Export data from simulation 1 for subsequent simulations 

DATA  <- as.data.frame(out) 

 

################## Population and ETAs & SIGMAs for simulation round 2 ################## 

 

exportedvalues = select(NIELS, ID, TIME, CL23_TRUE_sim1, ETA_CL23, ETA_CL20, ETA_IOV_CL20, 

ETA_IOV_CL23, EPS_TAM, EPS_END, CYPCLorig, Ucyp) 

exportedvalues = filter(exportedvalues, TIME==2160) ### needs to be a Ctrough at steady state!! 

exportedvalues = select(exportedvalues, ID, CL23_TRUE_sim1, ETA_CL23, ETA_CL20, ETA_IOV_CL20, 

ETA_IOV_CL23, EPS_TAM, EPS_END, CYPCLorig, Ucyp) 

exportedvalues = unique(exportedvalues) 
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merged_datasets = left_join(mrgsolve, exportedvalues, by='ID') 

 

################## Simulation round 2 ################## 

 

code2 <- ' 

$PLUGIN Rcpp 

 

//Rifampicin & SSRI comedication not included in the simulation 

 

$PARAM @annotated 

TVCL20    : 5.77  : CL (L/h) from tamoxifen compartment 

TVCL30    : 5.10  : CL (L/h) from endoxifen compartment - fixed value from a clinical study 

TVCL23    : 0.493 : Formation/intercompartmental CL (L/h) of TAM to END 

 

TVVTAM    : 1120  : Vd of Tamoxifen (L) 

TVVEND    : 400   : Vd of Endoxifen (L) - fixed value from a clinical study 

 

TVKA      : 1.78  : Absorption constant (/h) 

 

TVETA_CL20: 0.148 : Eta of CL20 as theta to be adjustable 

TVETA_CL23: 0.201 : Eta of CL23 as theta to be  

 

TVETA_IOV_CL20 : 0.0222 : Eta of IOV of CL20 as theta to be adjustable 

TVETA_IOV_CL23 : 0.0289 : Eta of IOV of CL20 as theta to be  

 

TVEPS_TAM : 0.0260 : EPS of Tamoxifen 

TVEPS_END : 0.0267 : EPS of Endoxifen 

 

DOSE       : 1 : Dose 

 

ETA_CL20  : 1   : Exported ETA of TAM clearance from original simulation 
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ETA_CL23  : 1   : Exported ETA of END formation from original simulation 

 

ETA_IOV_CL20 : 1   : Exported ETA of TAM clearance from original simulation 

ETA_IOV_CL23 : 1   : Exported ETA of END formation from original simulation 

 

EPS_TAM   : 1 : Exported ETA of TAM clearance from original simulation 

EPS_END   : 1 : Exported EPS of END formation from original simulation 

 

CL23_TRUE_sim1 : 1 : Exported true value of CL from original simulation 

 

CYPCLorig : 1 : Exported factor for CYP covariate 

Ucyp      : 1 : Exported RNG for CYP covariate value determination 

 

#OMEGAs and SIGMAs are imported 

$OMEGA @annotated 

//ETA_CL20: 1 : Eta of CL20 

//ETA_CL23: 1 : Eta of CL23  

 

//ETA_IOV_CL20 : 1 : Eta of IOV of CL20 

//ETA_IOV_CL23 : 1 : Eta of IOV of CL20  

 

 

$SIGMA @block @annotated 

//EPS_TAM : 1         : EPS of Tamoxifen 

//EPS_END : 0.0169 1  : EPS of Endoxifen, including correlation with TAM 

 

 

$CMT @annotated 

GUT : Gut compartment for dosing 

TAM_TRUE : Tamoxifen compartment 

END_TRUE : Endoxifen compartment 
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TAM_PRIOR : Tamoxifen compartment typical individual 

END_PRIOR : Endoxifen compartment typical individual 

TAM_POSTERIOR : Tamoxifen compartment IPRED 

END_POSTERIOR : Endoxifen compartment IPRED 

 

$MAIN 

 

double CLprev = TVCL23 * exp(ETA_CL23 * TVETA_CL23) * (1 + CYPCLorig); 

double COV_CL = CL23_TRUE_sim1 / CLprev; 

 

if(Ucyp <= 0.85){; 

double CYPCL = (1 + 0) * COV_CL; 

} else if((Ucyp >= 0.851) & (Ucyp <= 0.930)){; 

  CYPCL = (1 + -0.510) * COV_CL; 

} else if((Ucyp >= 0.931) & (Ucyp <= 0.990)){; 

  CYPCL = (1 + -0.722) * COV_CL; 

} else if((Ucyp >= 0.991) & (Ucyp <= 1.000)){; 

  CYPCL = (1 + 0.533) * COV_CL; 

}; 

 

ALAG_GUT = 0.389; 

 

double CL20_TRUE = TVCL20 * exp(ETA_CL20 * TVETA_CL20); 

double CL20_PRIOR = TVCL20; 

double CL20_POSTERIOR = TVCL20 * exp(ETA_CL20 * TVETA_CL20 + ETA_IOV_CL20 * 

TVETA_IOV_CL20); 

 

double CL23_TRUE = TVCL23 * exp(ETA_CL23 * TVETA_CL23) * CYPCL; 

double CL23_PRIOR = TVCL23 * CYPCL; 

double CL23_POSTERIOR = TVCL23 * exp(ETA_CL23 * TVETA_CL23 + ETA_IOV_CL23 * 

TVETA_IOV_CL23) * CYPCL; 
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double VTAM = TVVTAM; 

 

double VEND = TVVEND; 

 

double Ka = TVKA; 

 

double K20_TRUE = CL20_TRUE / TVVTAM; 

double K20_PRIOR = CL20_PRIOR / TVVTAM; 

double K20_POSTERIOR = CL20_POSTERIOR / TVVTAM; 

 

double K23_TRUE = CL23_TRUE / TVVTAM; 

double K23_PRIOR = CL23_PRIOR / TVVTAM; 

double K23_POSTERIOR = CL23_POSTERIOR / TVVTAM; 

 

double K30 = TVCL30 / TVVEND; 

 

 

$ODE 

 

dxdt_GUT = -Ka * GUT; 

 

dxdt_TAM_TRUE = Ka * GUT - K23_TRUE * TAM_TRUE - K20_TRUE * TAM_TRUE;  

dxdt_TAM_PRIOR = Ka * GUT - K23_PRIOR * TAM_PRIOR - K20_PRIOR * TAM_PRIOR; 

dxdt_TAM_POSTERIOR = Ka * GUT - K23_POSTERIOR * TAM_POSTERIOR - K20_POSTERIOR * 

TAM_POSTERIOR; 

 

dxdt_END_TRUE = K23_TRUE * TAM_TRUE - K30 * END_TRUE; 

dxdt_END_PRIOR = K23_PRIOR * TAM_PRIOR - K30 * END_PRIOR; 

dxdt_END_POSTERIOR = K23_POSTERIOR * TAM_POSTERIOR - K30 * END_POSTERIOR; 
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$TABLE 

 

double IPRED_CON_TAM = (TAM_TRUE / TVVTAM) * 1000; //True value TAM incl IIV 

double IPRED_TRUE = (END_TRUE / TVVEND) * 1000; //True value END incl IIV 

 

double IPRED_CON_PRIOR_TAM = (TAM_PRIOR / TVVTAM) * 1000; //Prior value TAM incl CYP 

double IPRED_PRIOR = (END_PRIOR / TVVEND) * 1000; //Prior value END incl CYP 

 

double IPRED_Y_TAM = (TAM_POSTERIOR / TVVTAM) * 1000;                       //Posterior value TAM incl 

IOV 

double Y_TAM_POSTERIOR = IPRED_Y_TAM + (IPRED_Y_TAM * EPS_TAM * TVEPS_TAM); //Posterior 

value TAM incl RUV 

double IPRED_Y_END = (END_POSTERIOR / TVVEND) * 1000;                       //Posterior value END incl 

IOV 

double IPRED_POSTERIOR = IPRED_Y_END + (IPRED_Y_END * EPS_END * TVEPS_END); //Posterior 

value END incl RUV 

 

//Formation from TAM is influenced by 2D6 so CL23, END RUV captured because most active 

compound (>200x TAM) 

 

double IIV = TVETA_CL23; 

double IOV = TVETA_IOV_CL23; 

double RUV = EPS_END; 

 

$CAPTURE 

IPRED_CON_TAM  

IPRED_TRUE 

 

IPRED_CON_PRIOR_TAM  

IPRED_PRIOR 

 

IPRED_Y_TAM  

Y_TAM_POSTERIOR  
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IPRED_Y_END  

IPRED_POSTERIOR  

 

IIV 

IOV 

RUV 

 

CYPCLorig 

CYPCL 

Ucyp  

 

' 

 

mod2 <- mcode("tamoxifen", code2) 

######################   Dataset for adjustment of variability ########################## 

datasetloop = merged_datasets 

### 1331 combinations of variability  

IIVsel = rep(seq(0, 1, by=0.1), times=121)   # n x n x n 

IOVsel = rep(rep(seq(0, 1, by=0.1), each=11), times=11) 

RUVsel = rep(seq(0, 0.5, by=0.05), each=121) 

dataframe <- data.frame(IIVsel, IOVsel, RUVsel) 

 

####################   Function for automated simulations round 2 ######################## 

looptacrolimus <- function(n){ 

  nSeeds <- ceiling(10000*rnorm(n)) 

  # IIVvalue = 0 

  # IOVvalue = 0 

  # RUVvalue = 0 

  dataset=datasetloop 

  # dataset$TVETA_CL = IIVvalue 
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  # dataset$TVETA_IOV = IOVvalue 

  # dataset$TVEPS = RUVvalue 

  dataframe=dataframe 

  rownr=1 

  i = 1 

  while (i <= n) { 

    noseed = print(nSeeds[i]) 

    set.seed(noseed) 

    rand_no = floor(runif(1, min=0, max=99999)) 

    out <- mod2 %>% 

      data_set(dataset) %>% 

      mrgsim(seed=12345)   # HIER MOET JE NUMMER VERVANGEN MET noseed 

    NIELS_SIM2 <- as.data.frame(out)#save as data frame for ggplot plotting 

     

    output = filter(NIELS_SIM2, TIME==2160) 

    output$PRIOR = output$IPRED_PRIOR/output$IPRED_TRUE # Looking at relative difference, not 

sure if necesserely better 

    output$POSTERIOR = output$IPRED_POSTERIOR/output$IPRED_TRUE 

    output$PRIOR_DIF = sqrt((output$PRIOR-1)^2) 

    output$POSTERIOR_DIF = sqrt((output$POSTERIOR-1)^2) 

    output$SCORE <-  ifelse(output$PRIOR_DIF > output$POSTERIOR_DIF, 1, 0) 

     

    data = output %>% filter(SCORE==0) %>% summarise(percentage_prior=((n()/1000)*100)) 

    IIVx=mean(output$IIV) 

    IOVx=mean(output$IOV) 

    RUVx=mean(output$RUV) 

    data <- data.frame(data, IIVx, IOVx, RUVx)  

     

    if(i==1){ 

      data2 = data 

    } else { 
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      data2 = bind_rows(data, data2) 

    } 

     

    if(i==1){ 

      output2 = output 

    } else { 

      output2 = bind_rows(output, output2) 

    } 

     

    IIVvalue=data$IIV 

    IOVvalue=data$IOV 

    RUVvalue=data$RUV 

     

    # if(IIVvalue<1){ 

    #   IIVvalue = IIVvalue + 0.5 

    # } else { 

    #   IIVvalue = 0 

    # } 

     

    dataframe2=dataframe %>% slice(rownr) 

     

    dataset$TVETA_CL23 <- dataframe2$IIVsel 

    dataset$TVETA_IOV_CL23 <- dataframe2$IOVsel 

    dataset$TVEPS_END <- dataframe2$RUVsel 

     

    i = i + 1 

    rownr=rownr+1 

  } 

 

  print(data2) 

  # print(i) 
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  # print(IIVx) 

  # print(IOVx) 

  # print(RUVx) 

  # return(data2) 

  # print(dataframe2) 

  # print(dataset) 

  # print(output2) 

} 

loopamount = nrow(dataframe) 

dataframeNIELS=looptacrolimus(loopamount) 
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S3 – code AUC calculation (only new elements compared to previous example) 

 

NCAtime = c(0, 0.6, 24) 

 

code <- ' 

 

$PLUGIN Rcpp mrgx 

$GLOBAL 

#### defining function for AUC calculation ### 

using namespace Rcpp; 

NumericVector NCAtime; 

 

bool within(Rcpp::NumericVector x, double val) { 

int n = x.size(); 

for (int i = 0; i < n; ++i) { 

if (x[i] == val) { 

return true; 

} 

} 

return false; 

} 

$TABLE 

if (within(NCAtime, TIME)) { 

if (NEWIND <=1) { 

   double MEAS = 0; 

   double CP2 = 0; 

   double AUCper = 0; 

} 

 MEAS = MEAS+1; 

if (TIME == 0) {           //UITLEG4 als tijd 0 is dan initieert die dit, om concentratie baseline vast te 

stellen 
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   double AUClastNCA=0; 

   double CP1 = Y_CON_POSTERIOR; 

   double TIME1 = self.time; 

} 

 

if(EVID == 0) {             //UITLEG6 voorzichtig zijn dat je EVID matcht met die van je table 

   

  CP2 = Y_CON_POSTERIOR;     // je difinieert hier concentratie 1 en 2 telkens waarmee de auc tussen 

twee tijdsputen wordt bepaald 

  double TIME2 = self.time; 

   

  AUCper = (CP1 + CP2)*(TIME2 - TIME1)/2; 

  if (CP2 < CP1) { 

    AUCper = (CP2 - CP1)/(log(CP2) - log(CP1))*(TIME2 - TIME1); 

  } 

   

  TIME1 = self.time; 

  double CPold = CP1; 

  CP1 = Y_CON_POSTERIOR;          // hier update je concentratie 1 naar het nieuwe tijdspunt voor de 

volgende ronde 

  AUClastNCA = AUClastNCA + AUCper;   //UITLEG6 trapezoidaal hier waarbij je de AUCs summarized 

} 

} 

 

double AUC_POSTERIOR = AUClastNCA; 

‘ 


