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Abstract

The concept of numerical representations as defined by Okasaki [Oka98] explains
how certain datastructures resemble number systems, and motivates how number sys-
tems can be used as a basis to design datastructures. Using McBride’s ornaments
[McB14], the method of designing datastructures starting from number systems can be
made precise. In order to study a broad spectrum of indexed and unindexed numeri-
cal representations, we encode a universe allowing the expression of nested datatypes,
and the internalization of descriptions of composite types. By equipping the universe
with metadata, we can describe number systems and numerical representations in the
same setup. Adapting ornaments to this universe allows us to generalize well-known
sequences of ornaments, such as naturals-lists-vectors. We demonstrate this by imple-
menting the indexed and unindexed numerical representations as ornament-computing
functions, producing a sequence of ornaments on top of the number system.
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1 Introduction
There is a close relation between number systems and datastructures containing certain
numbers of elements. Examples of datastructures designed to resemble a number system, are
explored in Okasaki’s Purely Functional Data Structures ([Oka98], chapter 9) as numerical
representations, relating some known datastructures to their underlying number system.

To illustrate such an example, consider the binary numbers in their bijective, or zeroless,
form (least significant digit first):

data Bin : Type where

0b : Bin

1b_ 2b_ : Bin → Bin

This definition declares that a binary number is either formed by 0b, or by prepending either
1b or 2b. The number 0b represents the number 0; 1b n corresponds to 2n + 1, representing
the positive odd numbers; and 2b corresponds to 2n + 2, representing the positive even
numbers. As a positional number system, Bin has digits 1 and 2: Counting from the left,
starting at 0, the weight of a digit at the ith position is 2i. For example, the number 5 is
represented by 1b 2b 0b, since 1 · 20 + 2 · 21 + 0 · 22 = 5.

Compare this to the type of random-access lists (complete binary trees) in their nested
(non-uniformly recursive) form ([Oka98], subsections 9.2.2 and 10.1.2):

data Random (A : Type) : Type where

Zero : Random A

One : A → Random (A × A) → Random A

Two : A → A → Random (A × A) → Random A

Similarly, a random-access list can be formed by Zero, or by prepending One x for some x in A,
or by Two x y with both x and y in A. Note that in the recursive fields of One and Two, we pass
the type of pairs A × A as the parameter rather than simply A (hence the non-uniformity).
In this recursive field, a One would thus ask for two values of A, and another level deeper for
four, and so on.

By forgetting that a random-access list xs has fields, we find a binary number size xs

again:
size : Random A → Bin

size Zero = 0b

size (One _ xs) = 1b size xs

size (Two x y xs) = 2b size xs

For example, applying size to One _ (Two _ _ Zero) gives us back 1b 2b 0b. Additionally,
this number given by size coincides with the number of elements in xs: evidently, the size

and number of elements of Zero are both zero. On the other hand, suppose that xs of type
Random (A × A) has size n. Since A × A contains two values of A, we have doubled the weight
of xs, so that it actually contains 2n values of A. Consequently, One x xs contains 2n + 1

values, and Two x y xs contains 2n + 2 values, so in general any ys contains size ys values.
In fact, if we remove the fields from random-access lists, binary numbers and random-

access lists are essentially the same datatype. Conversely, we can describe random-access
lists as binary numbers decorated with fields. Exactly such “informal human observations”
can be made more precise and general using the language of ornaments as described by
McBride [McB14]. This language effectively describes up to which modifications, such as
adding or deleting fields, one datatype can be seen as a more elaborate version of another.
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Using ornaments, we can formulate random-access lists as a patch on top of binary numbers,
and get size for free as the forgetful function.

Datastructures with relations to number systems occur more commonly, which raises the
questions of how we can make this relation explicit in more general cases, but also which
number systems have associated numerical representations, and which numerical represen-
tations arise from ornaments.

In this thesis we will explore how we can construct all numerical representations for
a certain generalization of positional number systems, and how some known examples of
numerical representations fit into this framework. We make the following contributions:

1. We define a universe in which we will encode number systems and numerical repre-
sentations. This universe allows annotations, non-uniform datatypes, and composite
datatypes. By encoding those datatypes in the universe, we gain the ability to write
generic programs over them.

2. Then, we adapt ornaments to this universe, which lets us relate datatypes up to
insertion of fields, nesting, and refinement of parameters, indices, and variables.

3. Finally, we prove the existence of two variants of numerical representations by imple-
menting generic functions from number systems to ornaments, establishing that each
number system has a numerical representation of the same structure.

As far as we are aware, a universe construction with this particular combination of features
had not been studied before, hopefully allowing for further exploration of the interaction be-
tween features like non-uniform recursion and ornaments, and how incorporating generalized
metadata can support more precise generic programming.

We formalize our work using the dependently typed proof assistant Agda [Tea23]. We
use the unsafe --type-in-type option (manual page) so that the presented code is not
diluted by the level variables, although our constructions can be modified to work with-
out this flag [EC22]. We also use --with-K1 and omit some type variables using vari-
able generalization (manual page). The source code of this thesis can be found on https:

//github.com/samuelhklumpers/master-thesis.

2 Background
Many of our constructions extend upon or are inspired by existing work in the domain of
generic programming and ornaments, so let us take a closer look at the nuts and bolts to
see what all the concepts are about.

This section describes some common datatypes and their usages, exploring how de-
pendent types let us prove properties of programs, or write programs that are correct-by-
construction. We then discuss certain proofs or programs can be generalized to classes of
types by encoding datatypes using descriptions. Finally, we take a look at ornaments as a
means to relate datatypes by their structure, or construct more datatypes of a given struc-
ture, but also as a way to identify comparable programs on structurally similar datatypes.

1In B Appendix B, we explain a variant on the universe which is compatible --without-K.
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2.1 Agda
We formalize our work in the programming language Agda [Tea23]. Agda is a total functional
programming language with dependent types. Using dependent types we can use Agda as
a proof assistant, reinterpreting types as formulas and functions as proofs, allowing us to
state and prove theorems about our datastructures and programs. Since Agda is total, and
hence all functions are total, all functions of a given type always terminate in a value of that
type. As a bonus, this rules out invalid proofs2. While we will only occasionally reference
Haskell, those more familiar with Haskell might understand (the reasonable part of) Agda
as the subset of total Haskell programs [Coc+22].

In this section, we will explain and highlight some parts of Agda which we use in the
later sections. Many of the types and functions we define in this section are also described
and explained in most Agda tutorials ([Nor09], [WKS22], etc.), and can be imported from
the standard library [The23].

2.2 Datatypes in Agda
At the level of (generalized) algebraic datatypes Agda is close to Haskell. In both languages,
one can define objects using data declarations, and interact with them using function dec-
larations. For example, we can define the type of booleans by declaring:

data Bool : Type where

false : Bool

true : Bool

The constructors of this type state that values of Bool are produced in exactly two ways:
false and true. We can then define functions on Bool by pattern matching, using that
a variable of Bool is necessarily either false or true. As an example, we can define the
conditional operator as:

if_then_else_ : Bool → A → A → A

if false then t else e = e

if true then t else e = t

When we pattern match on a variable of type A, in this case Bool, the coverage checker
ensures we define the function on all possible cases, and thus the function is completely
defined.

We can also define a type representing the natural numbers:
data ℕ : Type where

zero : ℕ

suc : ℕ → ℕ

Here, ℕ always has a zero element, and for each element n the constructor suc expresses
that there is also an element representing n+1. Hence, ℕ represents the natural numbers by
encoding the existential axioms of the Peano axioms3. By pattern matching and recursion
on ℕ, we define the less-than operator:

_<?_ : (n m : ℕ) → Bool

n <? zero = false

2On the other hand, we sometimes have to put in some effort to convince Agda that a function indeed
terminates.

3The equality, injectivity, and induction axioms follow from the corresponding principles for arbitrary
datatypes.
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zero <? suc m = true

suc n <? suc m = n <? m

One of the cases contains a recursive instance of ℕ, so termination checker also verifies
that this recursion indeed terminates, ensuring that we still define n <? m for all possible
combinations of n and m. In this case the recursion is valid, since both arguments decrease
before the recursive call, meaning that at some point n or m hits zero and the recursion
terminates.

Like in Haskell, we can parametrize a datatype over other types to make a polymorphic
type. By parameterizing a definition, the context of that definition is extended with a
variable of the type parametrized over. Parametrizing lists over a type, we can define lists
of values for all types:

data List (A : Type) : Type where

[] : List A

_∷_ : A → List A → List A

A list of A can either be empty [], or contain an element of A and another list via _∷_. In
other words, List is a type of finite sequences in A, in the sense of sequences as an abstract
type [Oka98].

Using polymorphic functions, we can manipulate and inspect lists by inserting or ex-
tracting elements. For example, we can define a function to look up the value at some
position n in a list:

lookup? : List A → ℕ → Maybe A

lookup? [] n = nothing

lookup? (x ∷ xs) zero = just x

lookup? (x ∷ xs) (suc n) = lookup? xs n

However, this function is partial, as we are relying on the type
data Maybe (A : Type) : Type where

nothing : Maybe A

just : A → Maybe A

to handle the [] case, where the position does not lie in the list and we cannot return an
element. If we know the length of the list xs, then we also know for which positions lookup

will succeed, and for which it will not. We define
length : List A → ℕ

length [] = zero

length (x ∷ xs) = suc (length xs)

so that we can test whether the position n lies inside the list by checking n <? length xs. If
we declare lookup as a dependent function consuming a proof of n <? length xs, then lookup

always succeeds. This, however, merely replaces the check whether lookup returns nothing

with a check if n <? length xs is before applying lookup.
More elegantly, we can combine natural numbers with an inequality by defining an

indexed type, representing numbers below an upper bound:
data Fin : ℕ → Type where

zero : Fin (suc n)

suc : Fin n → Fin (suc n)

Like parameters, indices add a variable to the context of a datatype, but unlike parameters,
indices can influence the availability of constructors. The type Fin is defined such that a
variable of type Fin n represents a number less than n. Since both constructors zero and

7



suc dictate that the index is the suc of some natural number n, we see that Fin zero has no
values. On the other hand, suc gives a value of Fin (suc n) for each value of Fin n, and zero

gives exactly one additional value of Fin (suc n) for each n. We can thus conclude that Fin

n has exactly n closed terms, each representing a number less than n.
To complement Fin, we define another indexed type representing lists of a known length,

also known as vectors:
data Vec (A : Type) : ℕ → Type where

[] : Vec A zero

_∷_ : A → Vec A n → Vec A (suc n)

The [] constructor of this type produces the only term of type Vec A zero. The _∷_ con-
structor ensures that a Vec A (suc n) always consists of an element of A and a Vec A n. Similar
to Fin, we find that a Vec A n contains exactly n elements of A. Thus, we conclude that Fin

n is exactly the type of positions in a Vec A n. In comparison to List, we can say that
Vec is a type of arrays, in the sense of arrays as the abstract type of sequences of a fixed
length. Furthermore, knowing the index of a term xs of type Vec A n uniquely determines
the constructor it was formed by. Namely, if n is zero, then xs is []. Otherwise, if n is suc

of m, then xs is formed by _∷_.
Using this, we define a variant of lookup for Fin and Vec, taking a vector of length n and

a position below n:
lookup : ∀ {n} → Vec A n → Fin n → A

lookup (x ∷ xs) zero = x

lookup (x ∷ xs) (suc i) = lookup xs i

We can now omit the [] case, where lookup? would return nothing. This happens because
a variable of type Fin n is either zero or suc i, and both cases imply that n is suc m for some
m. As we saw above, a Vec A (suc m) is always formed by _∷_, which ensures that finding []

for xs is impossible. Consequently, lookup always succeeds for vectors. However, this does
not yet prove that lookup necessarily returns the right element, and we will need some more
logic to verify this.

2.3 Proving in Agda
To describe the equality of terms we define a new type:

data _≡_ (a : A) : A → Type where

refl : a ≡ a

If we have a value x of a ≡ b, then, as the only constructor of _≡_ is refl, we must have that
a is equal to b. We can use _≡_ to describe the behaviour of functions like lookup.

To test lookup, we can insert elements into a vector with:
insert : ∀ {n} → Vec A n → Fin (suc n) → A → Vec A (suc n)

insert xs zero y = y ∷ xs

insert (x ∷ xs) (suc i) y = x ∷ insert xs i y

If lookup is correct, then we expect the following to hold
lookup-insert-type : ∀ {n} → Vec A n → Fin (suc n) → A → Type

lookup-insert-type xs i x = lookup (insert xs i x) i ≡ x

which essentially states that we find elements where we insert them.
To prove lookup-insert-type, we proceed as when defining any other function. By

simultaneous induction on the position i and vector xs, we prove:
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lookup-insert : ∀ {n} (xs : Vec A n) (i : Fin (suc n)) (y : A)

→ lookup-insert-type xs i y

lookup-insert [] zero y = refl

lookup-insert (x ∷ xs) zero y = refl

lookup-insert (x ∷ xs) (suc i) y = lookup-insert xs i y

In the first two cases, where we lookup the first position, insert xs zero y simplifies to y ∷

xs, so the lookup immediately returns y as wanted. In the last case, we have to prove that
lookup is correct for x ∷ xs, so we use that the lookup ignores the term x, and appeal to the
correctness of lookup on the smaller list xs to complete the proof.

Like _≡_, we can encode many other logical operations into datatypes, which establishes
a correspondence between types and formulas, known as the Curry-Howard correspondence.
For example, we can encode disjunctions (the logical ‘or’ operation) as

data _⊎_ A B : Type where

inj₁ : A → A ⊎ B

inj₂ : B → A ⊎ B

Conjunction (logical ‘and’) can be represented by:4
record _×_ A B : Type where

constructor _,_

field

fst : A

snd : B

True and false are respectively represented by
record ⊤ : Type where

constructor tt

so that always tt : ⊤, and:
data ⊥ : Type where

The body of ⊥ is intentionally empty: since ⊥ has no constructors, there is no proof of false5.
Because we identify function types with logical implications, we can also define the

negation of a formula A as “A implies false”:
¬_ : Type → Type

¬ A = A → ⊥

The logical quantifiers ∀ and ∃ act on formulas with a free variable in a specific domain
of discourse. We represent closed formulas by types, so we can represent a formula with
one free variable of type A by a function A → Type sending values of A to types, also known
as a predicate. The universal quantifier ∀aP (a) is true when for all a the formula P (a) is
true, so we represent the universal quantification of a predicate P as a dependent function
type (a : A) → P a, producing for each a of type A a proof of P a. The existential quantifier
∃aP (a) is true when there is some a such that P (a) is true, so we represent the existential
quantification as

record Σ A (P : A → Type) : Type where

constructor _,_

field

4We use a record here, rather than a datatype with a constructor A → B → A × B. The advantage of using
a record is that this directly gives us projections like fst : A × B → A, and lets us use eta equality, making
(a, b) = (c, d) ⇐⇒ a = c ∧ b = d holds automatically.

5If we did not use --type-in-type, and even in that case I can only hope.
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fst : A

snd : P fst

so that we have Σ A P if and only if we have an element fst of A and a proof snd of P a. To
avoid the need for lambda abstractions in existentials, we define the syntax

syntax Σ-syntax A (λ x → P) = Σ[ x ∈ A ] P

letting us write Σ[ a ∈ A ] P a for ∃aP (a).

2.4 Descriptions
In the previous sections we completed a quadruple of types (ℕ, List, Vec, Fin) equipped
with the nice interactions length and lookup. Similar to the type of length : List A → ℕ, we
can define

toList : Vec A n → List A

toList [] = []

toList (x ∷ xs) = x ∷ toList xs

converting vectors back to lists. In the other direction, we can also promote a list to a vector
by recomputing its index:

toVec : (xs : List A) → Vec A (length xs)

toVec [] = []

toVec (x ∷ xs) = x ∷ toVec xs

This is no coincidence, but happens because ℕ, List, and Vec are structurally similar.
But how can we prove that datatypes have similar structures? In this section, we will ex-

plain a framework of datatype descriptions and ornaments, allowing us to describe datatypes
as codes which can be compared directly, while also forming a foundation for generic pro-
gramming in Agda [Nor09; AMM07; eff20; EC22].

Recall that while polymorphism allows us to write one program for many types at once,
those programs act parametrically [Rey83; Wad89]: polymorphic functions must work for
all types, thus they cannot inspect values of their type argument. Generic programs, by
design, do use the structure of a datatype, allowing for more complex functions that do
inspect values6.

Using datatype descriptions we can then relate ℕ, List and Vec, explaining how length

and toList are instances of forgetful functions. Let us walk through some ways of defining
descriptions. We will start from simpler descriptions, building our way up to more general
types, until we reach a framework in which we can describe ℕ, List, Vec and Fin.

2.4.1 Finite types

An encoding of datatypes consists of two parts, a type of descriptions U of which the values
are codes representing other datatypes, and an interpretation U → Type decoding those codes
to the represented types. In the terminology of Martin-Löf type theory (MLTT)[Cha+10;
Mar84], where types of types (e.g., Type) are called universes, we can think of a type of
descriptions as an internal universe.

To start off, we define a basic universe with two codes 𝟘 and 𝟙, respectively representing
the types ⊥ and ⊤, and the requirement that the universe is closed under sums and products:

6As examples, consider the generic JSON encoding of suitable datatypes [VL14], or the derivation of
functor instances for a broad class of types [Mag+10].
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data U-fin : Type where

𝟘 𝟙 : U-fin

_⊕_ _⊗_ : U-fin → U-fin → U-fin

The meaning of the codes in this universe is then assigned by the interpretation:7
⟦_⟧fin : U-fin → Type

⟦ 𝟘 ⟧fin = ⊥

⟦ 𝟙 ⟧fin = ⊤

⟦ D ⊕ E ⟧fin = ⟦ D ⟧fin ⊎ ⟦ E ⟧fin

⟦ D ⊗ E ⟧fin = ⟦ D ⟧fin × ⟦ E ⟧fin

In this universe, we can encode the type of booleans simply as:
BoolD : U-fin

BoolD = 𝟙 ⊕ 𝟙

Since the types represented by 𝟘 and 𝟙 are finite, and sums and products of finite types are
also finite, we refer to U-fin as the universe of finite types. From this, one can immediately
conclude that there is no code in U-fin representing the (infinite) type of natural numbers
ℕ.

2.4.2 Recursive types

We saw before that ℕ differs from Bool by having a recursive field. So, in order to make a
universe which can encode ℕ, we begin by adding a code ρ to U-fin representing recursive
type occurrences:

data U-rec : Type where

𝟙 ρ : U-rec

_⊕_ _⊗_ : U-rec → U-rec → U-rec

Then, we also have to redefine the interpretation: consider the interpretation of 𝟙 ⊕ ρ, for
which we need to know that the whole type was 𝟙 ⊕ ρ while interpreting ρ. As a consequence,
the interpretation splits in two phases.

In the first, we use functions from Type to Type8 to represent types with one free type
variable. Interpreting a code D, we use the free variable X to represent “the type D”:

⟦_⟧rec : U-rec → Type → Type

⟦ 𝟙 ⟧rec X = ⊤

⟦ ρ ⟧rec X = X

⟦ D ⊕ E ⟧rec X = (⟦ D ⟧rec X) ⊎ (⟦ E ⟧rec X)

⟦ D ⊗ E ⟧rec X = (⟦ D ⟧rec X) × (⟦ E ⟧rec X)

We can then model a recursive type by indeed setting the variable to the type itself, taking
the least fixpoint of the functor:

data μ-rec (D : U-rec) : Type where

con : ⟦ D ⟧rec (μ-rec D) → μ-rec D

Recall the definition of ℕ, which we can reinterpret as the declaration that ℕ is the fixpoint
of ℕ ≡ F ℕ for F X = ⊤ ⊎ X. Hence, ℕ can simply be encoded as:

7One might recognize that ⟦_⟧fin is a morphism between the rings (U-fin, ⊕, ⊗) and (Type, ⊎, ×). Similarly,
Fin also gives a ring morphism from ℕ with + and × to Type, and in fact ⟦_⟧fin factors through Fin via the
map sending the expressions in U-fin to their value in ℕ.

8We also refer to these functions as polynomial functors, which are polynomial here because they consist
of sums and products, and are functors because they have a (functorial) mapping operation, as we will see
later.
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NatD : U-rec

NatD = 𝟙 ⊕ ρ

2.4.3 Sums of products

A downside of U-rec is that the definitions of types do not mirror their equivalents in user-
written Agda very well. Using that polynomials can always be written as sums of products9,
we can define a similar universe which more closely resembles handwritten code.

Unlike the arbitrarily shaped polynomials formed by ⊕ and ⊗, a sum of products is
analogous a datatype presented as a list of constructors. Thus, we split the descriptions
into a stage in which we can form sums, equivalently datatypes

data U-sop : Type where

[] : U-sop

_∷_ : Con-sop → U-sop → U-sop

on top of a stage where we can form products, equivalently constructors:
data Con-sop : Type where

𝟙 : Con-sop

ρ : Con-sop → Con-sop

σ : (S : Type) → (S → Con-sop) → Con-sop

When doing this, we also let the left-hand side of a product be any type, which allows us
to represent ordinary fields. The interpretation of this universe, while similar to the one in
the previous section, is also split into a part interpreting datatypes

⟦_⟧U-sop : U-sop → Type → Type

⟦ [] ⟧U-sop X = ⊥

⟦ C ∷ D ⟧U-sop X = ⟦ C ⟧C-sop X × ⟦ D ⟧U-sop X

and a part interpreting the constructors:
⟦_⟧C-sop : Con-sop → Type → Type

⟦ 𝟙 ⟧C-sop X = ⊤

⟦ ρ C ⟧C-sop X = X × ⟦ C ⟧C-sop X

⟦ σ S f ⟧C-sop X = Σ[ s ∈ S ] ⟦ f s ⟧C-sop X

In this universe, we can define the type of lists as a description quantified over a type:
ListD : Type → U-sop

ListD A = nilD ∷ consD ∷ []

where

nilD = 𝟙 -- : List A

consD = σ A λ _ → -- A

ρ -- → List A

𝟙 -- → List A

Using this universe requires us to split functions on descriptions into multiple parts, but
makes interconversion between representations and concrete types straightforward.

2.4.4 Parametrized types

The encoding of fields in U-sop makes the descriptions large in the following sense: by
letting S in σ be an infinite type, we can get a description referencing infinitely many other

9We do not require these to be reduced, as different representations of the same polynomial represent
different datatypes for us.
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descriptions. As a consequence, we cannot inspect an arbitrary description in its entirety.
At the same time, we could not express List fully internally, and needed to handle the
parameter externally.

We can resolve both quirks simultaneously by introducing parameters and variables using
a new gadget. In a naive attempt, we can represent the parameters of a type as List Type.
However, this cannot represent some useful types. For example, the second parameter B

of the existential quantifier Σ_ has the type A → Type, which references back to the first
parameter A. This referencing between parameters cannot be encoded in an ordinary list of
parameters.

In a general parametrized type, parameters can refer to the values of all preceding
parameters. The parameters of a type are thus a sequence of types depending on each
other, which refer to as telescopes [Bru91] (also known as contexts in MLTT [Mar84]). We
define telescopes using induction-recursion:

data Tel′ : Type

⟦_⟧tel′ : Tel′ → Type

data Tel′ where

∅ : Tel′

_▷_ : (Γ : Tel′) (S : ⟦ Γ ⟧tel′ → Type) → Tel′

A telescope can either be empty, or be formed from a telescope and a type in the context
of that telescope, where we used the meaning of a telescope ⟦_⟧tel to define types in the
context of a telescope. This meaning represents valid assignments of values to parameters

⟦ ∅ ⟧tel′ = ⊤

⟦ Γ ▷ S ⟧tel′ = Σ ⟦ Γ ⟧tel′ S

interpreting a telescope into the dependent product of all the parameter types. This defini-
tion of telescopes enables us to write down the type of Σ:

Σ-Tel : Tel′

Σ-Tel = ∅ ▷ (λ _ → Type) ▷ (λ A → A → Type) ∘ snd

To encode Σ, we will need to be able to bind the argument a of A and reference it in the field
P a. While viable, a universe built around Tel′ would awkwardly confuse parameters and
bound arguments.

By quantifying telescopes over a type [EC22; Sij16], we can distinguish parameters and
bound arguments using almost the same setup:

data Tel (P : Type) : Type

⟦_⟧tel : Tel P → P → Type

A Tel P then represents a telescope for each value of P, which we can view as a telescope in
the context of P. For readability, we redefine values in the context of a telescope as

_⊢_ : Tel P → Type → Type

Γ ⊢ A = Σ _ ⟦ Γ ⟧tel → A

so we can define telescopes and their interpretations as:
data Tel P where

∅ : Tel P

_▷_ : (Γ : Tel P) (S : Γ ⊢ Type) → Tel P

⟦ ∅ ⟧tel p = ⊤

⟦ Γ ▷ S ⟧tel p = Σ[ x ∈ ⟦ Γ ⟧tel p ] S (p , x)

By setting P = ⊤, we recover the previous definition of parameter telescopes. We can then
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define an extension of a telescope as a telescope in the context of a parameter telescope
ExTel : Tel ⊤ → Type

ExTel Γ = Tel (⟦ Γ ⟧tel tt)

representing a telescope of variables V over the fixed parameter telescope Γ, which can be
extended independently of Γ. An extension of Γ can also be interpreted in the context of Γ:

⟦_&_⟧tel : (Γ : Tel ⊤) (V : ExTel Γ) → Type

⟦ Γ & V ⟧tel = Σ (⟦ Γ ⟧tel tt) ⟦ V ⟧tel

To describe conversions of telescopes, we give names to maps of telescopes and extensions:
Cxf : (Δ Γ : Tel P) → Type

Cxf Δ Γ = ∀ {p} → ⟦ Δ ⟧tel p → ⟦ Γ ⟧tel p

Vxf : Cxf Δ Γ → ExTel Δ → ExTel Γ → Type

Vxf g W V = ∀ {d} → ⟦ W ⟧tel d → ⟦ V ⟧tel (g d)

var→par : {g : Cxf Δ Γ} → Vxf g W V → ⟦ Δ & W ⟧tel → ⟦ Γ & V ⟧tel

var→par v (d , w) = _ , v w

Vxf-▷ : {g : Cxf Δ Γ} (v : Vxf g W V) (S : V ⊢ Type)

→ Vxf g (W ▷ (S ∘ var→par v)) (V ▷ S)

Vxf-▷ v S (p , w) = v p , w

We also defined two functions we will use extensively, var→par states that a map of extensions
extends to a map between the whole telescopes, and Vxf-▷ lets us extend a map of extensions
by acting as the identity on a new variable.

In the descriptions, the parameter telescopes are relayed directly to the constructors,
but the variable telescope is reset to ∅ at the start of each constructor:

data U-par (Γ : Tel ⊤) : Type where

[] : U-par Γ

_∷_ : Con-par Γ ∅ → U-par Γ → U-par Γ

In the descriptions of constructors, we modify the σ code to request a type S in the context
of V, which then also extends the context for the subsequent fields by S:

data Con-par (Γ : Tel ⊤) (V : ExTel Γ) : Type where

𝟙 : Con-par Γ V

ρ : Con-par Γ V → Con-par Γ V

σ : (S : V ⊢ Type) → Con-par Γ (V ▷ S) → Con-par Γ V

Replacing the function S → U-sop by Con-par (V ▷ S) allows us to bind the value of S while
avoiding the higher order argument. The interpretation of the universe is then

⟦_⟧U-par : U-par Γ → (⟦ Γ ⟧tel tt → Type) → ⟦ Γ ⟧tel tt → Type

⟦_⟧C-par : Con-par Γ V → (⟦ Γ & V ⟧tel → Type) → ⟦ Γ & V ⟧tel → Type

⟦ [] ⟧U-par X p = ⊥

⟦ C ∷ D ⟧U-par X p = ⟦ C ⟧C-par (X ∘ fst) (p , tt) × ⟦ D ⟧U-par X p

⟦ 𝟙 ⟧C-par X pv = ⊤

⟦ ρ C ⟧C-par X pv = X pv × ⟦ C ⟧C-par X pv

⟦ σ S C ⟧C-par X pv@(p , v) = Σ[ s ∈ S pv ] ⟦ C ⟧C-par (X ∘ var→par fst) (p , v , s)

where the σ case now provides the current parameters and variables to the field S, and
extends the variables by s before passing them to the rest of the interpretation. In this
universe, we can describe the parameters of lists with a one-type telescope:
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ListD : U-par (∅ ▷ λ _ → Type)

ListD = nilD

∷ consD

∷ []

where

nilD = 𝟙

consD = σ (λ { ((_ , A) , _) → A })

( ρ

𝟙)

This description declares that List has two constructors: the first has no fields and corre-
sponds to [], and the second has one ordinary field and one recursive field, corresponding
to _∷_. In the second constructor, we use pattern lambdas to deconstruct the telescope10

and extract the type A.
Using the variable bound in σ, we can also give a description of the existential quantifier

SigmaD : U-par (∅ ▷ (λ _ → Type) ▷ λ { (_ , _ , A) → A → Type })

SigmaD = σ (λ { (((_ , A) , _) , _) → A } ) -- _,_ : (a : A)

( σ (λ { ((_ , B) , (_ , a)) → B a } ) -- → B a

𝟙) -- → Σ A B

∷ []

having one constructor with two fields. The first field of type A adds a value a to the
variable telescope, which we pass to B in the second field by pattern matching on the variable
telescope.

2.4.5 Indexed types

Lastly, we can integrate indexed types [DS06] into the universe by abstracting over indices:
data U-ix (Γ : Tel ⊤) (I : Type) : Type where

[] : U-ix Γ I

_∷_ : Con-ix Γ ∅ I → U-ix Γ I → U-ix Γ I

Recall that in native Agda datatypes, a choice of constructor can fix the indices of the
recursive fields and the resultant type, so we encode:

data Con-ix (Γ : Tel ⊤) (V : ExTel Γ) (I : Type) : Type where

𝟙 : V ⊢ I → Con-ix Γ V I

ρ : V ⊢ I → Con-ix Γ V I → Con-ix Γ V I

σ : (S : V ⊢ Type) → Con-ix Γ (V ▷ S) I → Con-ix Γ V I

Both 𝟙 and ρ now take a value of I in context V, where for 𝟙 this value represents the
actual index, and for ρ it represents the expected index of the recursive field. Consider as
an example Fin, where “suc n” bit of the constructor signatures tells us what the index of
a constructor actually is, while the recursive type Fin n tells us which index the recursive
field needs to have.

If we are constructing a term of some indexed type, then the previous choices of con-
structors and arguments build up the actual index of this term. This actual index must then
match the expected index of the declaration of this term. Hence, in the case of a leaf, we
replace the unit type with the necessary equality between the expected i and actual index j

10Due to the interpretation of telescopes, the ∅ part always contributes a value tt we explicitly ignore,
which also explicitly needs to be provided when passing parameters and variables.
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[McB14]. For a recursive field, the expected index j is then computed from the parameters
and variables:

⟦_⟧C-ix : Con-ix Γ V I → (⟦ Γ ⟧tel tt → I → Type) → (⟦ Γ & V ⟧tel → I → Type)

⟦ 𝟙 j ⟧C-ix X pv i = i ≡ (j pv)

⟦ ρ j C ⟧C-ix X pv@(p , v) i = X p (j pv) × ⟦ C ⟧C-ix X pv i

⟦ σ S C ⟧C-ix X pv@(p , v) i = Σ[ s ∈ S pv ] ⟦ C ⟧C-ix X (p , v , s) i

⟦_⟧D-ix : U-ix Γ I → (⟦ Γ ⟧tel tt → I → Type) → (⟦ Γ ⟧tel tt → I → Type)

⟦ [] ⟧D-ix X p i = ⊥

⟦ C ∷ Cs ⟧D-ix X p i = ⟦ C ⟧C-ix X (p , tt) i ⊎ ⟦ Cs ⟧D-ix X p i

With indexed types, we can describe finite types and vectors11 as
FinD : U-ix ∅ ℕ

FinD = zeroD ∷ sucD ∷ []

where

zeroD = σ (λ _ → ℕ) -- : (n : ℕ)

( 𝟙 (λ { (_ , (_ , n)) → suc n } )) -- → Fin (suc n)

sucD = σ (λ _ → ℕ) -- : (n : ℕ)

( ρ (λ { (_ , (_ , n)) → n } ) -- → Fin n

( 𝟙 (λ { (_ , (_ , n)) → suc n } ))) -- → Fin (suc n)

and:
VecD : U-ix (∅ ▷ λ _ → Type) ℕ

VecD = nilD

∷ consD

∷ []

where

nilD = 𝟙 (λ _ → zero) -- : Vec A zero

consD = σ (λ _ → ℕ) -- : (n : ℕ)

( σ (λ { ((_ , A) , _) → A } ) -- → A

( ρ (λ { (_ , ((_ , n) , _)) → n } ) -- → Vec A n

( 𝟙 (λ { (_ , ((_ , n) , _)) → suc n } )))) -- → Vec A (suc n)

In the first constructor of VecD we report an actual index of zero. In the second, we have a
field ℕ to bring the index n into scope, which is used to request a recursive field with index n,
and report the actual index of suc n. For completeness, let us replicate the natural numbers
and lists in U-ix:

! : A → ⊤

! x = tt

NatD : U-ix ∅ ⊤

NatD = zeroD ∷ sucD ∷ []

where

zeroD = 𝟙 !

sucD = ρ !

( 𝟙 !)

ListD : U-ix (∅ ▷ λ _ → Type) ⊤

11Unlike some more elaborate encodings, we do not model implicit fields, so the descriptions of Fin and
Vec look slightly different.
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ListD = nilD ∷ consD ∷ []

where

nilD = 𝟙 !

consD = σ (λ { ((_ , A) , _) → A })

( ρ !

( 𝟙 ! ))

Writing the descriptions NatD, ListD and VecD next to each other makes it easy to see the
similarities: ListD is the same as NatD with a type parameter and an extra field σ of A.
Likewise, VecD is the same as ListD, but now indexing over ℕ and with another extra field σ

of ℕ. In Section 2.5, we will explain how this kind of analysis of descriptions can be performed
formally inside Agda.

2.4.6 Generic Programming

As a bonus, we can also use U-ix for generic programming. For example, we can define the
generic fold operation12:

_→₃_ : (X Y : A → B → Type) → Type

X →₃ Y = ∀ a b → X a b → Y a b

fold : ∀ {D : U-ix Γ I} {X}

→ ⟦ D ⟧D-ix X →₃ X → μ-ix D →₃ X

From the point of view of category theory, we actually get fold for free: since μ-ix D is the
least fixpoint, or initial algebra, of ⟦ D ⟧D, fold f is simply the induced map to the algebra
f : ⟦ D ⟧D X →₃ X.

More concretely, we can view ⟦ D ⟧D X as a variant of μ-ix D, in which the recursive
positions hold values of X rather than other values of μ-ix D. For example, the type ⟦ ListD

⟧D X reduces (up to equivalence) to ⊤ ⊎ (A × X A), substituting X A for what would usually be
the recursive field.

In a sense, a term of ⟦ D ⟧D X is a kind of D-structured set of values of X. From this
perspective, fold roughly states that an operation f, collapsing D-structured sets of X into X,
extends to a function fold f. This function sends a whole value of μ-ix D into X, recursively
collapsing applications of con from the bottom up.

As an example, we can instantiate fold to ListD, which corresponds to
foldr : {X : Type → Type}

→ (∀ A → ⊤ ⊎ (A × X A) → X A)

→ ∀ B → List B → X B

by the aforementioned equivalence. Much like the familiar foldr operation lets us consume
a List A to produce a value X A; provided we give a value X A for the [] case, and a means
to convert a pair A × X A to X A for the _∷_ case.

Do note that this version of fold takes a polymorphic function as an argument, as
opposed to the usual fold which has the quantifiers on the outside:

foldr′ : ∀ A B → (⊤ ⊎ (A × B) → B) → List A → B

Like a couple of constructions we will encounter in later sections, we can recover the usual
fold into a type C by generalizing C to the appropriate kind of maps into C. For example,
by letting X be continuation-passing computations into ℕ, we can recover:

12The full construction can be found in A Appendix A.
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sum′ : ∀ A → List A → (A → ℕ) → ℕ

sum′ = foldr {X = λ A → (A → ℕ) → ℕ} go

where

go : ∀ A → ⊤ ⊎ (A × ((A → ℕ) → ℕ)) → (A → ℕ) → ℕ

go A (inj₁ tt) f = zero

go A (inj₂ (x , xs)) f = f x + xs f

sum : List ℕ → ℕ

sum xs = sum′ ℕ xs id

2.5 Ornaments
In this section we will introduce a simplified definition of ornaments, and use it to compare
descriptions. Simply looking at their descriptions, ℕ and List are rather similar, except
that List has some things ℕ does not have. We could say that we can form the type of
lists by starting from ℕ and adding a parameter and field, while keeping everything else the
same. In the other direction, we see that each list corresponds to a natural by stripping this
information. Likewise, the type of vectors is almost identical to List, can be formed from
it by adding indices, and each vector corresponds to a list by dropping the indices.

Observations like these can be generalized using ornaments [McB14; KG16; Sij16], which
define a binary relation describing which datatypes can be formed by “decorating” others.
Conceptually, a type can be decorated by adding or modifying fields, extending its param-
eters, or refining its indices.

Essential to the concept of ornaments is the ability to convert back, forgetting the extra
structure. After all, if there is an ornament from a description D to E, then E should be D

with added fields, and more specific parameters and indices. This means that we should also
be able to discard those extra fields, and revert to the less specific parameters and indices,
obtaining a conversion from E to D. If D is a U-ix Γ I and E is a U-ix Δ J, then for a conversion
from E to D to exist, there must also be functions re-par : Cxf Δ Γ and re-index : J → I for
re-parametrization and re-indexing.

In the same way that descriptions in U-ix are lists of constructor descriptions, ornaments
are lists of constructor ornaments. We define the type of ornaments re-parametrizing with
re-par and re-indexing with re-index as a type indexed over U-ix:

data Orn (re-par : Cxf Δ Γ) (re-index : J → I) : U-ix Γ I → U-ix Δ J → Type where

[] : Orn re-par re-index [] []

_∷_ : ConOrn re-par id re-index CD CE

→ Orn re-par re-index D E

→ Orn re-par re-index (CD ∷ D) (CE ∷ E)

An ornament then induces a conversion between types via the forgetful map
bimap : {A B C D E : Type}

→ (A → B → C) → (D → A) → (E → B)

→ D → E → C

bimap f g h d e = f (g d) (h e)

ornForget : ∀ {re-par re-index}

→ Orn re-par re-index D E

→ μ-ix E →₃ bimap (μ-ix D) re-par re-index
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which reverts the modifications made by the constructor ornaments, and restores the original
indices and parameters.

The definition of the constructor ornaments ConOrn controls the kinds of modification
ornaments allow. Each allowed modification, equivalently each constructor of ConOrn also
has to be reverted by ornForget. Accordingly, some modifications will have preconditions,
which are in this case always pointwise equalities:

_∼_ : {B : A → Type} → (f g : ∀ a → B a) → Type

f ∼ g = ∀ a → f a ≡ g a

Since constructors exist in the context of variables, we let constructor ornaments transform
variables with re-var, in addition to parameters and indices.

The first three constructors of ConOrn represent the operations which copy the corre-
sponding constructors of Con-ix13. For example, the ornament 𝟙 states that if actual indices
i and j are related, then the datatype constructors of the same names 𝟙 i and 𝟙 j are
related.

By contrast, the Δσ ornament allows adding fields which are not present on the original
datatype.:

data ConOrn (re-par : Cxf Δ Γ) (re-var : Vxf re-par W V) (re-index : J → I)

: Con-ix Γ V I → Con-ix Δ W J → Type where

𝟙 : ∀ {i j}

→ re-index ∘ j ∼ i ∘ var→par re-var

→ ConOrn re-par re-var re-index (𝟙 i) (𝟙 j)

ρ : ∀ {i j CD CE}

→ re-index ∘ j ∼ i ∘ var→par re-var

→ ConOrn re-par re-var re-index CD CE

→ ConOrn re-par re-var re-index (ρ i CD) (ρ j CE)

σ : ∀ {S CD CE}

→ ConOrn re-par (Vxf-▷ re-var S) re-index CD CE

→ ConOrn re-par re-var re-index (σ S CD) (σ (S ∘ var→par re-var) CE)

Δσ : ∀ {S CD CE}

→ ConOrn re-par (re-var ∘ fst) re-index CD CE

→ ConOrn re-par re-var re-index CD (σ S CE)

The commuting square re-index ∘ j ∼ i ∘ var→par re-var in the first two constructors
ensures that the indices on both sides are indeed related, up to re-index and re-var. As
expected, we see that there can only be an ornament from a description D to E if there
are constructor ornaments for all constructors. Likewise, there can only be an ornament
between constructors CD and CE if CE consists wholly of added fields and fields copied from
CD, potentially refining parameters, variables, and indices.

Using these ornaments, we can make the claim that “lists are indeed natural numbers
decorated with fields” more precise:

NatD-ListD : Orn ! id NatD ListD

NatD-ListD = nilO ∷ consO ∷ []

where

13Viewing ConOrn as a binary relation on Con-ix, these represent the preservation of ConOrn by 𝟙, ρ, and σ,
up to parameters, variables, and indices.
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nilO = 𝟙 (λ _ → refl) -- : List A

consO = Δσ {S = λ { ((_ , A), _) → A }} -- : A

( ρ (λ _ → refl) -- → List A

( 𝟙 (λ _ → refl))) -- → List A

This ornament preserves most of the structure of ℕ, and only adds a field A using ∆σ14. As
ℕ has no parameters or indices, List has more specific parameters, namely a single type
parameter. Consequently, all commuting squares factor through the unit type and can be
satisfied with λ _ → refl.

We can also ornament lists to get vectors by re-indexing them over ℕ:
ListD-VecD : Orn id ! ListD VecD

ListD-VecD = nilO ∷ consO ∷ []

where

nilO = 𝟙 (λ _ → refl) -- : Vec A zero

consO = Δσ {S = λ _ → ℕ} -- : (n : ℕ)

( σ -- → A

( ρ {j = λ { (_ , (_ , n) , _) → n }} -- → Vec A n

(λ _ → refl)

( 𝟙 {j = λ { (_ , (_ , n) , _) → suc n }} -- → Vec A (suc n)

(λ _ → refl))))

We bind a new field of ℕ with ∆σ, extracting it in 𝟙 and ρ to declare that the constructor
corresponding to _∷_ takes a vector of length n and returns a vector of length suc n.

The conversions from lists to natural numbers (length), and from vectors to lists (toList)
arise as ornForget, which we define using the fold over an algebra that erases a single layer
of decorations:

ornForget O = fold (ornAlg O)

Recursively applying this algebra, which reinterprets layers of E-data as D-data, lets us take
apart a value in the fixpoint μ-ix E and rebuild it to a value of μ-ix D. This algebra

ornAlg : ∀ {D : U-ix Γ I} {E : U-ix Δ J} {re-par re-index}

→ Orn re-par re-index D E

→ ⟦ E ⟧D-ix (bimap (μ-ix D) re-par re-index)

→₃ bimap (μ-ix D) re-par re-index

ornAlg O p j x = con (ornErase O p j x)

is a special case of the erasing function, which “undecorates” a single interpretation over an
arbitrary type X:

ornErase : ∀ {re-par re-index} {X}

→ Orn re-par re-index D E

→ ⟦ E ⟧D-ix (bimap X re-par re-index)

→₃ bimap (⟦ D ⟧D-ix X) re-par re-index

ornErase (CD ∷ D) p j (inj₁ x) = inj₁ (conOrnErase CD (p , tt) j x)

ornErase (CD ∷ D) p j (inj₂ x) = inj₂ (ornErase D p j x)

conOrnErase : ∀ {re-par re-index} {W V} {X} {re-var : Vxf re-par W V}

{CD : Con-ix Γ V I} {CE : Con-ix Δ W J}

→ ConOrn re-par re-var re-index CD CE

14Note that S, and some later arguments we provide to ornaments, are implicit arguments: Agda would
happily infer them from ListD and then later from VecD, had we omitted them.
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→ ⟦ CE ⟧C-ix (bimap X re-par re-index)

→₃ bimap (⟦ CD ⟧C-ix X) (var→par re-var) re-index

conOrnErase {re-index = i} (𝟙 sq) p j x = trans (cong i x) (sq p)

conOrnErase {X = X} (ρ sq CD) p j (x , y) = subst (X _) (sq p) x

, conOrnErase CD p j y

conOrnErase (σ CD) (p , w) j (s , x) = s

, conOrnErase CD (p , w , s) j x

conOrnErase (Δσ CD) (p , w) j (s , x) = conOrnErase CD (p , w , s) j x

By pattern matching on the ornament, conOrnErase sees which bits of CE are new, and which
are copied from CD. This tells us which parts of a term x under an interpretation of CE need
to be forgotten, and which parts need to be copied or translated. Specifically, the first
three cases of conOrnErase correspond to the structure-preserving ornaments, and merely
translate equivalent structures from CE to CD.

For example, the 𝟙 sq case tells us that CD is 𝟙 i' and CE is 𝟙 j'. Recalling that a leaf 𝟙 j'

at parameter p and expected index j is interpreted as the equality j ≡ (j' p), we only need
to produce the corresponding equality for 𝟙 i', which is re-index j ≡ i' (var→par re-var

p). This is precisely accomplished by applying re-index to both sides and composing with
the square sq at p. Likewise, in the case of ρ we have to show that x can be converted from
one ρ to the other ρ by translating its parameters, but in σ case, we can directly copy the
field. Only the ornament Δσ adds a field, which is easily undone by removing that field.

In this way ornForget reinforces the idea that E is a decorated version of D when there
is an ornament from D to E by associating to each value of E an underlying value in D.
This additionally makes it easier to relate functions between related types. For example,
instantiating ornForget for NatD-ListD yields length. Hence, the statement that length

sends concatenation _++_ to addition _+_, that is length (xs ++ ys) ≡ length xs + length ys,
is equivalent to the statement that _++_ and _+_ are related by ornForget15.

2.6 Ornamental Descriptions
By defining the ornaments NatD-ListD and ListD-VecD we demonstrated that lists are num-
bers with fields, and vectors are lists with fixed lengths. Even though we had to give ListD

before we could define NatD-ListD, the value of NatD-ListD actually forces the right-hand
side to be ListD.

If we somehow could leave out the right-hand side of ornaments, then we can also use
ornaments to represent descriptions as patches on top of other descriptions. So, ornamen-
tal descriptions are precisely defined as ornaments without the right-hand side, effectively
bundling a description and an ornament to it16. Their definition is analogous to that of
ornaments, making the arguments which would only appear in the new description explicit:

data OrnDesc (Δ : Tel ⊤) (J : Type) (re-par : Cxf Δ Γ) (re-index : J → I)

: U-ix Γ I → Type where

[] : OrnDesc Δ J re-par re-index []

_∷_ : ConOrnDesc Δ ∅ J re-par ! re-index CD

→ OrnDesc Δ J re-par re-index D

→ OrnDesc Δ J re-par re-index (CD ∷ D)

15Equivalently, _++_ is a lifting of _+_ [DM14].
16Consequently, OrnDesc Δ J g i D must simply be a convenient representation of Σ (U-ix Δ J) (Orn g i D).
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data ConOrnDesc (Δ : Tel ⊤) (W : ExTel Δ) (J : Type)

(re-par : Cxf Δ Γ) (re-var : Vxf re-par W V)

(re-index : J → I)

: Con-ix Γ V I → Type where

𝟙 : ∀ {i} (j : W ⊢ J)

→ re-index ∘ j ∼ i ∘ var→par re-var

→ ConOrnDesc Δ W J re-par re-var re-index (𝟙 i)

ρ : ∀ {i} {CD} (j : W ⊢ J)

→ re-index ∘ j ∼ i ∘ var→par re-var

→ ConOrnDesc Δ W J re-par re-var re-index CD

→ ConOrnDesc Δ W J re-par re-var re-index (ρ i CD)

σ : ∀ (S : V ⊢ Type) {CD}

→ ConOrnDesc Δ (W ▷ S ∘ var→par re-var) J re-par (Vxf-▷ re-var S) re-index CD

→ ConOrnDesc Δ W J re-par re-var re-index (σ S CD)

Δσ : ∀ (S : W ⊢ Type) {CD}

→ ConOrnDesc Δ (W ▷ S) J re-par (re-var ∘ fst) re-index CD

→ ConOrnDesc Δ W J re-par re-var re-index CD

Using OrnDesc, we can describe ListD as a patch on NatD, inserting a σ in the constructor
corresponding to suc:

ListOD : OrnDesc (∅ ▷ λ _ → Type) ⊤ ! ! NatD

ListOD = nilOD ∷ consOD ∷ []

where

nilOD = 𝟙 (λ _ → tt) (λ _ → refl) -- : List A

consOD = Δσ (λ { ((_ , A) , _) → A }) -- : A

( ρ (λ _ → tt) (λ _ → refl) -- → List A

( 𝟙 (λ _ → tt) (λ _ → refl)) ) -- → List A

Since an ornamental description simply represents a patch on top of a description, we can
also extract the patched description and the ornament to it. To extract the description, we
can use the projection applying the patch in an ornamental description

toDesc : {D : U-ix Γ I}

→ OrnDesc Δ J re-par re-index D

→ U-ix Δ J

toDesc [] = []

toDesc (COD ∷ OD) = toCon COD ∷ toDesc OD

toCon : ∀ {CD : Con-ix Γ V I} {re-par} {W} {re-var : Vxf re-par W V}

→ ConOrnDesc Δ W J re-par re-var re-index CD

→ Con-ix Δ W J

toCon (𝟙 j j∼i) = 𝟙 j

toCon (ρ j j∼i COD) = ρ j (toCon COD)

toCon {re-var = v} (σ S COD) = σ (S ∘ var→par v) (toCon COD)

toCon (Δσ S COD) = σ S (toCon COD)

which would extract ListD out of ListOD.
The other projection reconstructs the ornament to the extracted description
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toOrn : {D : U-ix Γ I}

→ (OD : OrnDesc Δ J re-par re-index D)

→ Orn re-par re-index D (toDesc OD)

toOrn [] = []

toOrn (COD ∷ OD) = toConOrn COD ∷ toOrn OD

toConOrn : ∀ {CD : Con-ix Γ V I} {re-par} {W} {re-var : Vxf re-par W V}

→ (COD : ConOrnDesc Δ W J re-par re-var re-index CD)

→ ConOrn re-par re-var re-index CD (toCon COD)

toConOrn (𝟙 j j∼i) = 𝟙 j∼i

toConOrn (ρ j j∼i COD) = ρ j∼i (toConOrn COD)

toConOrn (σ S COD) = σ (toConOrn COD)

toConOrn (Δσ S COD) = Δσ (toConOrn COD)

and would extract NatD-ListD from ListOD. As a consequence, OrnDesc enjoys the features
of both Desc and Orn, such as interpretation into a datatype by μ and the conversion to the
underlying type by ornForget, by factoring through these projections.

In later sections, we will routinely use OrnDesc to view triples like (NatD, ListD, VecD) as
a base type equipped with two patches in sequence.

3 Descriptions
Before we can analyze number systems and their numerical representations using generic
programs, we first have to ensure that these types fit into the descriptions. Some numerical
representations are hard to describe using only the descriptions of parametric indexed induc-
tive types U-ix. In order to keep things running smoothly for the generic programmer, we
present an extension of U-ix incorporating metadata, parameter transformation, description
composition, and variable transformation.

3.1 Numerical Representations
Before we start rebuilding our universe, let us look at the construction of the simplest
numerical representation Vec from ℕ. At first, we defined Vec as the length-indexed variant
of List, so that lookup becomes total and satisfies nice properties like lookup-insert. Later,
we gave another description of Vec as an ornament on top of List. More abstractly, Vec is
an implementation of finite maps with domain Fin. Here finite maps are simply those types
with operations like insert, remove, lookup, and tabulate17, satisfying relations or laws like
lookup-insert and lookup ∘ tabulate ≡ id.

For comparison, we can define a trivial implementation of finite maps, by reading lookup

as a prescript:
Lookup : Type → ℕ → Type

Lookup A n = Fin n → A

Since lookup is simply the identity function on Lookup, this immediately satisfies the laws
of finite maps, provided we define insert and remove correctly.

17The function tabulate : (Fin n → A) → Vec A n collects an assignment of elements f into a vector tabulate

f.
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Unsurprisingly, Vec is representable. That is, we have that Lookup and Vec are equivalent,
in the sense that there is an isomorphism between Lookup and Vec:18

record _≃_ A B : Type where

constructor iso

field

fun : A → B

inv : B → A

rightInv : ∀ b → fun (inv b) ≡ b

leftInv : ∀ a → inv (fun a) ≡ a

An Iso from A to B is a map from A to B with a (two-sided) inverse19. In terms of elements,
this means that elements of A and B are in one-to-one correspondence.

Rather than deriving them ourselves, we can also establish properties like lookup-insert

from this equivalence. Instead of finding the properties of Vec that were already there, let
us view Vec as a consequence of the definition of ℕ and lookup. By turning the Iso on its
head, and starting from the equation that Vec is equivalent to Lookup, we derive a definition
of Vec as if were solving an equation [HS22].

As a warm-up, we can also derive Fin from the fact that Fin n should contain n elements,
and thus be isomorphic to Σ[ m ∈ ℕ ] m < n. To express such a definition by isomorphism,
we define

Def : Type → Type

Def A = Σ' Type λ B → A ≃ B

defined-by : {A : Type} → Def A → Type

by-definition : {A : Type} → (d : Def A) → A ≃ (defined-by d)

using:
record Σ' (A : Type) (B : A → Type) : Type where

constructor _use-as-def

field

{fst} : A

snd : B fst

The type Def A is deceptively simple, after all, there is (up to isomorphism) only one unique
term in it! However, when using Definitions, the implicit Σ' extracts the right-hand side of
a proof of an isomorphism, allowing us to reinterpret a proof as a definition.

To keep the isomorphisms readable, we construct them as chains of simpler isomorphisms
using a variant of equational reasoning [The23; WKS22], which lets us compose isomorphisms
while displaying the intermediate steps. In the calculation of Fin, we will use the following
lemmas:

⊥-strict : (A → ⊥) → A ≃ ⊥

<-split : ∀ n → (Σ[ m ∈ ℕ ] m < suc n) ≃ (⊤ ⊎ (Σ[ m ∈ ℕ ] m < n))

If we allow reading isomorphisms as “is”, then the terminology of Section 2.3, ⊥-strict

states that “if A is false, then A is empty”, while <-split states that the set of numbers
18Since lookup is an isomorphism with tabulate as inverse, as we see from the relations lookup ∘ tabulate

≡ id and tabulate ∘ lookup ≡ id. Without further assumptions, we cannot use the equality type ≡ for this
notion of equivalence of types: a type with a different name but exactly the same constructors as Vec would
not be equal to Vec.

19Compare this to the other notion of equivalence: there is a map f : A → B, and for each b in B there is
exactly one a in A for which f(a) = b.
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below n + 1 has one more element than the set of numbers below n. Using these, we can
calculate:20

Fin-def : ∀ n → Def (Σ[ m ∈ ℕ ] m < n)

Fin-def zero =

Σ[ m ∈ ℕ ] (m < zero) ≃⟨ ⊥-strict (λ ()) ⟩

⊥ ≃-∎ use-as-def

Fin-def (suc n) =

Σ[ m ∈ ℕ ] (m < suc n) ≃⟨ <-split n ⟩

(⊤ ⊎ (Σ[ m ∈ ℕ ] m < n)) ≃⟨ cong (⊤ ⊎_) (by-definition (Fin-def n)) ⟩

(⊤ ⊎ defined-by (Fin-def n)) ≃-∎ use-as-def

This gives a different (but equivalent) definition of Fin compared to FinD; the description
FinD describes Fin as an inductive family, whereas Fin-def describes Fin equivalently as a
type-computing function [KG16]. From this Def we can extract a definition of Fin:

Fin : ℕ → Type

Fin n = defined-by (Fin-def n)

To derive Vec, we use the isomorphisms
⊥→A≃⊤ : (⊥ → A) ≃ ⊤

⊤→A≃A : (⊤ → A) ≃ A

⊎→≃→× : ((A ⊎ B) → C) ≃ ((A → C) × (B → C))

which one can compare to the familiar exponential laws. With these laws, we calculate the
type of vectors

Vec-def : ∀ A n → Def (Lookup A n)

Vec-def A zero =

(Fin zero → A) ≃⟨⟩

(⊥ → A) ≃⟨ ⊥→A≃⊤ ⟩

⊤ ≃-∎ use-as-def

Vec-def A (suc n) =

(Fin (suc n) → A) ≃⟨⟩

(⊤ ⊎ Fin n → A) ≃⟨ ⊎→≃→× ⟩

(⊤ → A) × (Fin n → A) ≃⟨ cong (_× (Fin n → A)) ⊤→A≃A ⟩

A × (Fin n → A) ≃⟨ cong (A ×_) (by-definition (Vec-def A n)) ⟩

A × (defined-by (Vec-def A n)) ≃-∎ use-as-def

yielding a definition of vectors and the Iso to Lookup in one go:
Vec : Type → ℕ → Type

Vec A n = defined-by (Vec-def A n)

Vec-Lookup : ∀ A n → Lookup A n ≃ Vec A n

Vec-Lookup A n = by-definition (Vec-def A n)

In conclusion, we computed a type of finite maps (the numerical representation Vec) from a
number system (ℕ), by cases on the number system and making use of the values represented
by the number system.

20Making non-essential use of cong for type families. In the derivation of Vec we use function extensionality,
which has to be postulated, or can be obtained by using the cubical path types.
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3.2 Room for Improvement
We could now carry on and attempt to generalize this calculation to other number systems,
but we would quickly run into dead ends for certain numerical representations. Let us give
an overview of what bits of U-ix are still missing if we are going to generically construct all
numerical representations we promised.

3.2.1 Number systems

In the calculation Vec from ℕ, we analyzed and replicated the structure of ℕ. There, we used
the meaning of these constructors as numbers assigned to them by our explanation of ℕ in
words21. Based on that interpretation of constructors as numbers, we deliberately choose
to add zero fields in the case corresponding to zero and choose to add one field in the case
of one.

However, if we want to compute numerical representations generically, we also have to
convince Agda that our datatypes indeed represent number systems. As a first step, let us
fix ℕ as the primordial number system, so that we can compare other number systems by
how they are mapped into ℕ. Trivially, ℕ can be interpreted as a number system via id : ℕ

→ ℕ.
The binary numbers, as described in the introduction, can be mapped to ℕ by:

toℕ-Bin : Bin → ℕ

toℕ-Bin 0b = 0

toℕ-Bin (1b n) = 1 + 2 * toℕ-Bin n

toℕ-Bin (2b n) = 2 + 2 * toℕ-Bin n

As a more exotic example, we can describe a number system
data Carpal : Type where

0c : Carpal

1c : Carpal

2c : Phalanx → Carpal → Phalanx → Carpal

toℕ-Carpal : Carpal → ℕ

toℕ-Carpal 0c = 0

toℕ-Carpal 1c = 1

toℕ-Carpal (2c l m r) = toℕ-Phalanx l + 2 * toℕ-Carpal m + toℕ-Phalanx r

which consists of smaller “number systems”:
data Phalanx : Type where

1p 2p 3p : Phalanx

toℕ-Phalanx : Phalanx → ℕ

toℕ-Phalanx 1p = 1

toℕ-Phalanx 2p = 2

toℕ-Phalanx 3p = 3

We could now define a general number system as a type N equipped with a map N → ℕ, but
this would both be too general for our purpose and opaque to generic programs. On the
other hand, allowing only traditional positional number systems excludes number systems

21More accurately, the meaning of ℕ comes from Fin, which gets its meaning from our definition of _<_.
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like Carpal, which would otherwise still have valid numerical representations, as we will see
later.

Across the above examples, the interpretation of a number is computed by a simple fold.
In particular, leaves have associated constants, recursive fields correspond to multiplication
and addition, while fields can defer to another function. We can thus modify Con-sop to
encode each of these systems. The modified constructor descriptions Con-num associate a
single number to each 𝟙 and ρ, and a function to each σ:

data Con-num : Type where

𝟙 : ℕ → Con-num

ρ : ℕ → Con-num → Con-num

σ : (S : Type) → (S → ℕ) → Con-num → Con-num

This essentially encodes number systems as trees that evaluate nodes by linearly combining
values of subnodes, generalizing dense representations of positional number systems22.

We can encode the examples we gave as follows:
Nat-num : U-num

Nat-num = zeroD ∷ sucD ∷ []

where

zeroD = 𝟙 0

sucD = ρ 1

( 𝟙 1 )

The binary numbers admit a similar encoding, but multiply their recursive fields by two
instead:

Bin-num : U-num

Bin-num = 0bD ∷ 1bD ∷ 2bD ∷ []

where

0bD = 𝟙 0

1bD = ρ 2

( 𝟙 1 )

2bD = ρ 2

( 𝟙 2 )

Finally, the Carpal system can be encoded by using the interpretation of Phalanx
Carpal-num : U-num

Carpal-num = 0cD ∷ 1cD ∷ 2cD ∷ []

where

0cD = 𝟙 0

1cD = 𝟙 1

2cD = σ Phalanx toℕ-Phalanx -- : Phalanx

( ρ 2 -- → Carpal

( σ Phalanx toℕ-Phalanx -- → Phalanx

( 𝟙 0 ))) -- → Carpal

3.2.2 Nested types

If our construction is going to cast Random, as defined in Section 1, as the numerical repre-
sentation associated to Bin, then Random needs to have a description to begin with. However,

22As a consequence, this excludes the sparse number systems, as we discuss in Section 7.8.
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the recursive fields of Random are not given the parameter A, but A × A. This makes Random

a nested type, as opposed to a uniformly recursive type, in which the parameters of the
recursive fields would be identical to the top-level parameters. Consequently, Random has no
adequate description in U-ix23.

Due to the work of Johann and Ghani [JG07], we can model general nested types as
fixpoints of higher-order functors (i.e., endofunctors on the category of endofunctors):

Fun = Type → Type

HFun = Fun → Fun

{-# NO_POSITIVITY_CHECK #-}

data HMu (H : HFun) (A : Type) : Type where

con : H (HMu H) A → HMu H A

By placing the recursive field Mu F under F, the functor F can modify Mu F and A to determine
the type of the recursive field. We can encode Random by a HFun as:

data HRandom (F : Fun) (A : Type) : Type where

Zero : HRandom F A

One : A → F (A × A) → HRandom F A

Two : A → A → F (A × A) → HRandom F A

However, this definition is unsafe24, so we settle for the weaker but safe inner nesting instead.
Rather than placing the function that describes the nesting around the fixpoint like in HMu,
we precisely emulate nested types which only modify their parameters.

When a type has parameters Γ, we can describe a change in parameters by a map g :

Cxf Γ Γ from Γ to itself. So, we modify the recursive field ρ of U-ix to be
ρ : V ⊢ I → Cxf Γ Γ → Con-nest Γ V I → Con-nest Γ V I

and update the interpretation of ρ to g before passing p to the recursive field X:
⟦ ρ j g C ⟧C-nest X pv@(p , v) i = X (g p) (j pv) × ⟦ C ⟧C-nest X pv i

With this modification, Random can be directly transcribed
RandomD : U-nest (∅ ▷ λ _ → Type) ⊤

RandomD = ZeroD ∷ OneD ∷ TwoD ∷ []

where

ZeroD = 𝟙 _ -- : Random A

OneD = σ (λ { ((_ , A) , _) → A }) -- : A

( ρ _ (λ { (_ , A) → (_ , A × A) }) -- → Random (A × A)

( 𝟙 _ )) -- → Random A

TwoD = σ (λ { ((_ , A) , _) → A }) -- : A

( σ (λ { ((_ , A) , _) → A }) -- → A

( ρ _ (λ { (_ , A) → (_ , A × A) }) -- → Random (A × A)

( 𝟙 _ ))) -- → Random A

using the map A 7→ A×A to describe its nesting as usual.
Uniformly recursive types then simply become the nested types which only use the

identity as a parameter transformation:
23Here, the “inadequate” descriptions either hardly resemble the user defined Random, use indices to store

the depth of a node (which we work out in C Appendix C), or only have a complicated isomorphism to
Random.

24As you might have deduced from the pragma disabling the positivity checker. Consider HBad F A = F A →

⊥.

28



ρ0 : ∀ {V} → V ⊢ I → Con-nest Γ V I → Con-nest Γ V I

ρ0 v C = ρ v id C

3.2.3 Composite types

In Section 3.2.1, we defined the number system Carpal-num as a composite type, in the
sense that its description references another concrete type Phalanx. By the same argument
as there, the description Carpal-num which relies on toℕ-Phalanx to describe the value of
Phalanx, turns out to be too imprecise to recover the complete numerical representation
generically.

In comparison, generic programming facilities like the deriving-mechanism in Haskell
allow for code like:
{-# LANGUAGE DeriveFunctor #-}

data Two a = Two a a deriving Functor

data Even a = Zero | More (Two a) (Even a) deriving Functor

In this example, we can define lists of even numbers of elements as lists of pairs of elements,
and the Functor instance for Even can be derived generically, using that Two has a (derived)
Functor instance. This would not work for U-ix or U-num, as a generic function would not
be able to decide whether a field is of the form μ D to begin with.

Inlining the constructors of Phalanx into Carpal does allow generic constructions to see
the structure of Phalanx, but is undesirable in this case and in general. Here, it would yield
a type with two of the original constructors of Carpal, and 9 more constructors for each
combination of constructors of Phalanx25.

In order to make the descriptions of fields that have them visible to generics, we sim-
ply add a more specific former of fields to U-ix and call the resulting universe U-comp for
now. The new former δ in U-comp is specialized to adding composite fields from provided
descriptions:

δ : (R : U-comp Δ J) (d : Cxf Γ Δ) (j : I → J)

→ Con-comp Γ V I → Con-comp Γ V I

This former then also has to take functions d and j to determine the parameters and indices
passed to R. A composite field encoded by δ is then interpreted identically to how it would
be if we used σ and μ instead26:

⟦ δ R d j C ⟧C-comp X pv@(p , v) i = μ-comp R (d p) (j i) × ⟦ C ⟧C-comp X pv i

Using δ rather than σ allows us to reveal the description of a field to a generic program.
Instead of inserting a plain field containing Phalanx and toℕ-Phalanx, we can use δ to directly
add Phalanx-num to Carpal-num.

3.2.4 Hiding variables

With the modifications described above, we can describe all the structures we want. How-
ever, there is one peculiarity in the way U-ix handles variables. Namely, each field S added

25If working with 11 constructors sounds too feasible, consider that defining addition on types like Carpal

(or concatenation on its numerical representation) is not (yet) generic and, if fully written out, will instead
demand 121 manually written cases.

26The omission of μ R from the variable telescope is intentional. While adding it is workable, it also
significantly complicates the treatment of ornaments.
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by a σ is treated as a bound or dependent argument: Even if the value (s : S) is then
unused, all fields afterwards have to be treated as types depending on S. This only poses a
minor inconvenience, but this does mean that two subsequent fields referring to the same
variable will have to be encoded differently. Furthermore, adding fields of complicated types
can quickly clutter the context when writing or inspecting a generic program.

With a simple modification to the handling of telescopes in U-ix, we can emulate both
bound and unbound fields, without adding more formers to U-ix. By accepting a transfor-
mation of variables Vxf Γ (V ▷ S) W after a σ S in the context of V, the remainder of the fields
can be described in the context W:

σ : (S : V ⊢ Type) → Vxf id (V ▷ S) W → Con-var Γ W I → Con-var Γ V I

Of course, it would be no use to redefine σ in an attempt to save the user some effort, while
leaving them with the burden of manually adding these transformations. So, we define
shorthands emulating precisely the bound field

σ+ : ∀ {V} → (S : V ⊢ Type) → Con-var Γ (V ▷ S) I → Con-var Γ V I

σ+ S C = σ S id C

and the unbound field
σ- : ∀ {V} → (S : V ⊢ Type) → Con-var Γ V I → Con-var Γ V I

σ- S C = σ S fst C

3.3 A new Universe
Using the modifications described above we define a new universe based on U-ix, in which
the descriptions are again lists of constructors:

data DescI (Me : Meta) (Γ : Tel ⊤) (I : Type) : Type where

[] : DescI Me Γ I

_∷_ : ConI Me Γ ∅ I → DescI Me Γ I → DescI Me Γ I

The universe DescI is also parametrized over the metadata Meta, generalizing the annotations
from Section 3.2.1 which we will use later to encode number systems in DescI.

The constructors of described datatypes can be formed as follows:
data ConI (Me : Meta) (Γ : Tel ⊤) (V : ExTel Γ) (I : Type) : Type where

𝟙 : {me : Me .𝟙i}

→ (i : Γ & V ⊢ I)

→ ConI Me Γ V I

ρ : {me : Me .ρi}

→ (g : Cxf Γ Γ) (i : Γ & V ⊢ I) (C : ConI Me Γ V I)

→ ConI Me Γ V I

σ : (S : V ⊢ Type) {me : Me .σi S}

→ (w : Vxf id (V ▷ S) W) (C : ConI Me Γ W I)

→ ConI Me Γ V I

δ : {me : Me .δi Δ J} {iff : MetaF Me′ Me}

→ (d : Γ & V ⊢ ⟦ Δ ⟧tel tt) (j : Γ & V ⊢ J)

→ (R : DescI Me′ Δ J) (C : ConI Me Γ V I)

→ ConI Me Γ V I

Remark that 𝟙 is the same as before, but ρ now accepts the transformation Cxf Γ Γ to encode
non-uniform parameters. Likewise, σ takes a transformation w from V ▷ S to W, allowing us
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to replace the context V ▷ S after a field with a context W of our choice. Finally, δ is added
to directly describe composite datatypes by giving a description R to represent a field μ R.

Let us take a fresh look at some datatypes from before, now through the lens of DescI.
We will leave the metadata aside for now by using:

Con = ConI Plain

Desc = DescI Plain

Like before, we use the shorthands σ+, σ-, and ρ0 to avoid cluttering descriptions which do
not make use of the corresponding features.

In DescI, we can encode ℕ and List as before, replacing σ with σ- and ρ with ρ0:
NatD : Desc ∅ ⊤

NatD = zeroD ∷ sucD ∷ []

where

zeroD = 𝟙 _ -- : ℕ

sucD = ρ0 _ -- : ℕ

( 𝟙 _) -- → ℕ

ListD : Desc (∅ ▷ λ _ → Type) ⊤

ListD = nilD ∷ consD ∷ []

where

nilD = 𝟙 _ -- : List A

consD = σ- (λ ((_ , A) , _) → A) -- : A

( ρ0 _ -- → List A

( 𝟙 _)) -- → List A

If we define Vec, we bind the length as a (implicit) field, for which we use σ+ instead, so we
can extract the length n in ρ0 and 𝟙:

VecD : Desc (∅ ▷ λ _ → Type) ℕ

VecD = nilD ∷ consD ∷ []

where

nilD = 𝟙 (λ _ → 0) -- : Vec A zero

consD = σ- (λ ((_ , A) , _) → A) -- : A

( σ+ (λ _ → ℕ) -- → (n : ℕ)

( ρ0 (λ (_ , (_ , n)) → n) -- → Vec A n

( 𝟙 (λ (_ , (_ , n)) → suc n)))) -- → Vec A (suc n)

By passing a recursive field ρ the function taking A to A × A, we can almost repeat the
definition of Random from U-nest:

RandomD : Desc (∅ ▷ λ _ → Type) ⊤

RandomD = ZeroD ∷ OneD ∷ TwoD ∷ []

where

ZeroD = 𝟙 _ -- : RandomD A

OneD = σ- (λ ((_ , A) , _) → A) -- : A

( ρ (λ (_ , A) → (_ , (A × A))) _ -- → Random (A × A)

( 𝟙 _)) -- → Random A

TwoD = σ- (λ ((_ , A) , _) → A) -- : A

( σ- (λ ((_ , A) , _) → A) -- → A

( ρ (λ (_ , A) → (_ , (A × A))) _ -- → Random (A × A)

( 𝟙 _))) -- → Random A

Binary finger trees (as opposed to 2-3 finger trees [HP06]) are the numerical representation

31



associated to Carpal. Like Random, they are a nested datatype, but instead store their
elements in variably sized digits on both sides instead. In DescI, we can then first define
digits as a datatype which holds one to three elements:

DigitD : Desc (∅ ▷ λ _ → Type) ⊤

DigitD = OneD ∷ TwoD ∷ ThreeD ∷ []

where

OneD = σ- (λ ((_ , A) , _) → A) -- : A

( 𝟙 _) -- → Digit A

TwoD = σ- (λ ((_ , A) , _) → A) -- : A

( σ- (λ ((_ , A) , _) → A) -- → A

( 𝟙 _)) -- → Digit A

ThreeD = σ- (λ ((_ , A) , _) → A) -- : A

( σ- (λ ((_ , A) , _) → A) -- → A

( σ- (λ ((_ , A) , _) → A) -- → A

( 𝟙 _))) -- → Digit A

Then, we can use δ to include them into a separate description of finger trees:
FingerD : Desc (∅ ▷ λ _ → Type) ⊤

FingerD = EmptyD ∷ SingleD ∷ DeepD ∷ []

where

EmptyD = 𝟙 _ -- : Finger A

SingleD = σ- (λ ((_ , A) , _) → A) -- : A

( 𝟙 _) -- → Finger A

DeepD = δ (λ (p , _) → p) _ DigitD -- : Digit A

( ρ (λ (_ , A) → (_ , (A × A))) _ -- → Finger (A × A)

( δ (λ (p , _) → p) _ DigitD -- → Digit A

( 𝟙 _))) -- → Finger A

These descriptions can be instantiated as before by taking the fixpoint
data μ (D : DescI Me Γ I) (p : ⟦ Γ ⟧tel tt) : I → Type where

con : ∀ {i} → ⟦ D ⟧D (μ D) p i → μ D p i

of their interpretations as functors
⟦_⟧C : ConI Me Γ V I → ( ⟦ Γ ⟧tel tt → I → Type)

→ ⟦ Γ & V ⟧tel → I → Type

⟦ 𝟙 i′ ⟧C X pv i = i ≡ i′ pv

⟦ ρ g i′ D ⟧C X pv@(p , v) i = X (g p) (i′ pv) × ⟦ D ⟧C X pv i

⟦ σ S w D ⟧C X pv@(p , v) i = Σ[ s ∈ S pv ] ⟦ D ⟧C X (p , w (v , s)) i

⟦ δ d j R D ⟧C X pv i = Σ[ s ∈ μ R (d pv) (j pv) ] ⟦ D ⟧C X pv i

⟦_⟧D : DescI Me Γ I → ( ⟦ Γ ⟧tel tt → I → Type)

→ ⟦ Γ ⟧tel tt → I → Type

⟦ [] ⟧D X p i = ⊥

⟦ C ∷ D ⟧D X p i = (⟦ C ⟧C X (p , tt) i) ⊎ (⟦ D ⟧D X p i)

inserting the transformations of parameters g in ρ and the transformations of variables w in
σ.

Like U-ix, we can define a generic fold for DescI

fold : ∀ {D : DescI Me Γ I} {X} → ⟦ D ⟧D X →₃ X → μ D →₃ X

which comes in equally handy when using ornaments.
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3.3.1 Annotating Descriptions with Metadata

We promised encodings of number systems in DescI, so let us explain how number systems
can be described as metadata and how this lets use DescI in the same way we used U-num

to describe type and numerical value in the same description.
By generalizing DescI over Meta, rather than coding the specification of number systems

into the universe directly, we give ourselves the flexibility to both represent plain datatypes
and number systems in the same universe. The specific Meta passed to DescI determines the
types of information to be queried (in the implicit me fields) at each of the type-formers. A
term of Meta simply lists the type of information to be queried at each type former27:

record Meta : Type where

field

𝟙i : Type

ρi : Type

σi : (S : Γ & V ⊢ Type) → Type

δi : Tel ⊤ → Type → Type

In composite fields δ, the metadata on the other description is not necessarily the same
as the top-level metadata. When this happens, we ask that both sides are related by a
transformation

record MetaF (L R : Meta) : Type where

field

𝟙f : L .𝟙i → R .𝟙i

ρf : L .ρi → R .ρi

σf : {V : ExTel Γ} (S : V ⊢ Type) → L .σi S → R .σi S

δf : ∀ Γ A → L .δi Γ A → R .δi Γ A

making it possible to downcast (or upcast) between the different types of metadata. This,
for example, allows one to include an annotated type DescI Me into an ordinary datatype
Desc without duplicating the former definition in Desc first.

The encoding of number systems by associating numbers to 𝟙 and ρ, and functions to σ,
can be summarized as:

Number : Meta

Number .𝟙i = ℕ

Number .ρi = ℕ

Number .σi S = ∀ p → S p → ℕ

Number .δi Γ J = (Γ ≡ ∅) × (J ≡ ⊤) × ℕ

We let the composite field δ, which was not described when we discussed encoding number
systems in U-num, act similar to ρ, also multiplying the value in its field by a constant. The
equalities in the metadata of a δ ensure that number systems have no parameters or indices.

Using Number, we describe the binary numbers Bin-num in DescI as:
BinND : DescI Number ∅ ⊤

BinND = 0bD ∷ 1bD ∷ 2bD ∷ []

where

0bD = 𝟙 {me = 0} _

1bD = ρ0 {me = 2} _

27One can compare this to how generic representations of datatypes in Haskell can be (optionally) anno-
tated with metadata making the names of datatypes, constructors and fields available on the type level.
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( 𝟙 {me = 1} _)

2bD = ρ0 {me = 2} _

( 𝟙 {me = 2} _)

The metadata transformations help us when we represent Carpal-num in its more accurate
form, by first defining

PhalanxND : DescI Number ∅ ⊤

PhalanxND = 1pD ∷ 2pD ∷ 3pD ∷ []

where

1pD = 𝟙 {me = 1} _

2pD = 𝟙 {me = 2} _

3pD = 𝟙 {me = 3} _

and directly including it into Carpal

CarpalND : DescI Number ∅ ⊤

CarpalND = 0cD ∷ 1cD ∷ 2cD ∷ []

where

0cD = 𝟙 {me = 0} _

1cD = 𝟙 {me = 1} _

2cD = δ {me = refl , refl , 1} {id-MetaF} _ _ PhalanxND

( ρ0 {me = 2} _

( δ {me = refl , refl , 1} {id-MetaF} _ _ PhalanxND

( 𝟙 {me = 0} _)))

where we can use the identity function to indicate both sides have metadata of type Number.
The metadata on a DescI Number can then be used to define a generic function sending

terms of number systems to their value in ℕ

value : {D : DescI Number Γ ⊤} → ∀ {p} → μ D p tt → ℕ

which is defined by generalizing over the inner metadata and folding using:
value-desc : (D : DescI Me Γ ⊤) → ∀ {a b} → ⟦ D ⟧D (λ _ _ → ℕ) a b → ℕ

value-con : (C : ConI Me Γ V ⊤) → ∀ {a b} → ⟦ C ⟧C (λ _ _ → ℕ) a b → ℕ

value-desc (C ∷ D) (inj₁ x) = value-con C x

value-desc (C ∷ D) (inj₂ y) = value-desc D y

value-con (𝟙 {me = k} j) refl

= ϕ .𝟙f k

value-con (ρ {me = k} g j C) (n , x)

= ϕ .ρf k * n + value-con C x

value-con (σ S {me = S→ℕ} h C) (s , x)

= ϕ .σf _ S→ℕ _ s + value-con C x

value-con (δ {me = me} {iff = iff} g j R C) (r , x)

with ϕ .δf _ _ me

... | refl , refl , k

= k * value-lift R (ϕ ∘MetaF iff) r + value-con C x

Furthermore, also possible to use Meta to encode conventionally useful metadata such as
field names:
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Names : Meta

Names .𝟙i = ⊤

Names .ρi = String

Names .σi _ = String

Names .δi _ _ = String

On the other extreme, we can also declare that a description has no metadata at all by
querying ⊤ for all type-formers:

Plain : Meta

Plain .𝟙i = ⊤

Plain .ρi = ⊤

Plain .σi _ = ⊤

Plain .δi _ _ = ⊤

Because the queries for metadata are implicit in DescI, descriptions from U-ix can be im-
ported into Desc, without having to insert metadata anywhere.

4 Ornaments
In the framework of DescI of the last section, we can write down a number system and its
meaning in one description, and we can use this as the starting point for constructing nu-
merical representations. To write down a generic construction of numerical representations
from number systems, we will need a language in which we can describe modifications on
the number systems.

In this section, we will describe the ornamental descriptions for the DescI universe, and
explain their working by means of examples. As we will be constructing new datatypes,
rather than relating pre-existing ones, we omit the definition of the ornaments.

4.1 Ornamental descriptions
The ornamental descriptions for DescI take the same shape as those in Section 2.6, gener-
alized to handle nested types, variable transformations, and composite types. These orna-
mental descriptions are defined such that a OrnDesc Me′ Δ re-par J re-index D represents
a patch from a base description D to a description with metadata Me′, parameters Δ and
indices J.

Note that metadata, as a non-structural property, has no direct influence on ornaments.
So, we simply generalize over the metadata on D, querying the metadata for the new de-
scription without imposing constraints.

As always, we start off by defining ornamental descriptions as lists of constructor orna-
ments :

data OrnDesc {Me} (Me′ : Meta) (Δ : Tel ⊤)

(re-par : Cxf Δ Γ) (J : Type) (re-index : J → I)

: DescI Me Γ I → Type where

[] : OrnDesc Me′ Δ re-par J re-index []

_∷_ : ConOrnDesc Me′ {re-par = re-par} ! re-index {Me = Me} CD

→ OrnDesc Me′ Δ re-par J re-index D

→ OrnDesc Me′ Δ re-par J re-index (CD ∷ D)
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Most of the modifications in DescI are reflected in the constructor ornaments, and as a
consequence this is also where we pay the price for the flexibility we built into ConI. For
example, because ConI allows us to transform variables, ConOrnDesc has to relate the trans-
formations on both sides in order for ornForget to exist. We (have to) dedicate a lot of lines
to such commutativity squares of variables, but these squares involving Vxf can generally
be ignored; this is witnessed by the Oσ+ and Oσ- variants of the σ ornament, automatically
filling those squares in the usual cases of binding or ignoring fields.

The structure-preserving ornaments are defined as usual
data ConOrnDesc (Me′ : Meta) {re-par : Cxf Δ Γ}

(re-var : Vxf re-par W V) (re-index : J → I)

: ConI Me Γ V I → Type where

𝟙 : {i : Γ & V ⊢ I} (j : Δ & W ⊢ J)

→ re-index ∘ j ∼ i ∘ var→par re-var

→ {me : Me .𝟙i} {me′ : Me′ .𝟙i}

→ ConOrnDesc Me′ re-var re-index (𝟙 {Me} {me = me} i)

ρ : {g : Cxf Γ Γ} (d : Cxf Δ Δ)

→ {i : Γ & V ⊢ I} (j : Δ & W ⊢ J)

→ g ∘ re-par ∼ re-par ∘ d

→ re-index ∘ j ∼ i ∘ var→par re-var

→ {me : Me .ρi} {me′ : Me′ .ρi}

→ ConOrnDesc Me′ re-var re-index CD

→ ConOrnDesc Me′ re-var re-index (ρ {Me} {me = me} g i CD)

σ : (S : Γ & V ⊢ Type) {g : Vxf id (V ▷ S) V′}

→ (h : Vxf id (W ▷ (S ∘ var→par re-var)) W′) (v′ : Vxf re-par W′ V′)

→ (∀ {p} → g ∘ Vxf-▷ re-var S ∼ v′ {p = p} ∘ h)

→ {me : Me .σi S} {me′ : Me′ .σi (S ∘ var→par re-var)}

→ ConOrnDesc Me′ v′ re-index CD

→ ConOrnDesc Me′ re-var re-index (σ {Me} S {me = me} g CD)

δ : (R : DescI If″ Θ K) (t : Γ & V ⊢ ⟦ Θ ⟧tel tt) (j : Γ & V ⊢ K)

→ {me : Me .δi Θ K} {iff : MetaF If″ Me}

→ {me′ : Me′ .δi Θ K} {iff′ : MetaF If″ Me′}

→ ConOrnDesc Me′ re-var re-index CD

→ ConOrnDesc Me′ re-var re-index (δ {Me} {me = me} {iff = iff} t j R CD)

where ρ has a new field relating the old and new nesting transforms g and d. Likewise, σ

now has a field relating the old and new variable transforms, which for example prevents
us from unbinding a field in the new description which was used in the old description.
The ornament δ now represents the direct copying of a δ in descriptions (up to re-par and
re-var).

Where only Δσ could add fields before, we can now also add fields described by δ using
Δδ:

Δσ : (S : Δ & W ⊢ Type) (h : Vxf id (W ▷ S) W′) (v′ : Vxf re-par W′ V)

→ (∀ {p} → re-var ∘ fst ∼ v′ {p = p} ∘ h)

→ {me′ : Me′ .σi S}

→ ConOrnDesc Me′ v′ re-index CD
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→ ConOrnDesc Me′ re-var re-index CD

Δδ : (R : DescI If″ Θ J) (t : W ⊢ ⟦ Θ ⟧tel tt) (j : W ⊢ J)

→ {me′ : Me′ .δi Θ J} {iff′ : MetaF If″ Me′}

→ ConOrnDesc Me′ re-var re-index CD

→ ConOrnDesc Me′ re-var re-index CD

Again, Δσ requires the relation of old and new variables.
Now, if we have a description D' with a composite field δ R d j R D referencing R, then

we expect that a patch on R also induces a patch on D'. We generalize this by defining a
kind of sequential composition of ornaments28, taking two ornamental descriptions, one on
R and one on D, and producing an ornamental description on D':

∙δ : {R : DescI If″ Θ K} {c′ : Cxf Λ Θ} {fΘ : V ⊢ ⟦ Θ ⟧tel tt}

→ (fΛ : W ⊢ ⟦ Λ ⟧tel tt) {k′ : M → K} {k : V ⊢ K} (m : W ⊢ M)

→ (RR′ : OrnDesc If‴ Λ c′ M k′ R)

→ (p₁ : ∀ q w → c′ (fΛ (q , w)) ≡ fΘ (re-par q , re-var w))

→ (p₂ : ∀ q w → k′ (m (q , w)) ≡ k (re-par q , re-var w))

→ ∀ {me} {iff} {me′ : Me′ .δi Λ M} {iff′ : MetaF If‴ Me′}

→ (DE : ConOrnDesc Me′ re-var re-index CD)

→ ConOrnDesc Me′ re-var re-index (δ {Me} {me = me} {iff = iff} fΘ k R CD)

If we try to forget ∙δ, the parameters to R can be computed in two ways. Namely, we can
first convert back to the context of CD according to DE and compute the parameter for R

there with the original fΘ, or we can first compute the parameter in the new context using
the new fΛ and then convert this back to the parameter for R according to RR′. To avoid any
ambiguity that arises from this, we require that both ways around this square are equal:

W&∆ Λ

V &Γ Θ

re−var×re−index

fΛ

fΘ

c′

Using these and the other new commutativity squares, we can again define ornForget from
an ornamental algebra analogous to the one for U-ix:

ornForget : {re-var : Cxf Δ Γ} {re-index : J → I} {D : DescI Me Γ I}

→ (OD : OrnDesc Me′ Δ re-var J re-index D)

→ μ (toDesc OD) →₃ λ d j → μ D (re-var d) (re-index j)

ornForget OD = fold (ornAlg OD)

The precise meaning of ornamental descriptions as descriptions is given by the conversion
toDesc : {re-var : Cxf Δ Γ} {re-index : J → I} {D : DescI Me Γ I}

→ OrnDesc Me′ Δ re-var J re-index D → DescI Me′ Δ J

toDesc [] = []

toDesc (CO ∷ O) = toCon CO ∷ toDesc O

toCon : {re-par : Cxf Δ Γ} {re-var : Vxf re-par W V}

→ {re-index : J → I} {D : ConI Me Γ V I}

→ ConOrnDesc Me′ re-var re-index D → ConI Me′ Δ W J

28As opposed to Ko’s parallel composition [Ko14], which composes two ornaments on the same description
D, producing something that incorporates changes from both.
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toCon (𝟙 j _ {me′ = me})

= 𝟙 {me = me} j

toCon (ρ j h _ _ {me′ = me} CO)

= ρ {me = me} j h (toCon CO)

toCon {re-var = v} (σ S h _ _ {me′ = me} CO)

= σ (S ∘ var→par v) {me = me} h (toCon CO)

toCon {re-var = v} (δ R j t {me′ = me} {iff′ = iff} CO)

= δ {me = me} {iff = iff} (j ∘ var→par v) (t ∘ var→par v) R (toCon CO)

toCon (Δσ S h _ _ {me′ = me} CO)

= σ S {me = me} h (toCon CO)

toCon (Δδ R t j {me′ = me} {iff′ = iff} CO)

= δ {me = me} {iff = iff} t j R (toCon CO)

toCon (∙δ fΛ m RR′ _ _ {me′ = me} {iff′ = iff} CO)

= δ {me = me} {iff = iff} fΛ m (toDesc RR′) (toCon CO)

which makes use of the implicit metadata fields in the constructor ornaments to reconstruct
the metadata on the target description.

Like DescI, the ornaments support variable transformations and nesting, of which we
rarely utilize the full potential. In the common use-cases the commutativity squares the
ornaments require are trivial, such as copying or adding (non-)dependent fields, and copying
a uniformly recursive field. This means that we will mostly rely on the following shorthands
to hide those trivial proofs:

Oσ+ S CO = σ S id _ (λ _ → refl) CO copy dependent field
Oσ- S CO = σ S fst re-var (λ _ → refl) CO copy non-dependent ”
OΔσ+ S CO = Δσ S id (re-var ∘ fst) (λ _ → refl) CO insert dependent ”
OΔσ- S CO = Δσ S fst re-var (λ _ → refl) CO insert non-dependent ”
Oρ0 j q CO = ρ id j (λ _ → refl) q CO uniformly recursive ”

With OrnDesc we can reproduce the examples of the ornamental descriptions for U-ix,
such as Vec from List:

VecOD : OrnDesc Plain (∅ ▷ λ _ → Type) id ℕ ! ListD

VecOD = nilOD ∷ consOD ∷ []

where

nilOD = 𝟙 (λ _ → zero) (λ _ → refl)

consOD = OΔσ+ (λ _ → ℕ)

( Oσ- (λ ((_ , A) , _) → A)

( Oρ0 (λ (_ , (_ , n)) → n) (λ _ → refl)

( 𝟙 (λ (_ , (_ , n)) → suc n) (λ _ → refl))))

Rather than defining Random on its own, we can use the new flexibility in ρ and describe
random access lists as an ornament from binary numbers:

RandomOD : OrnDesc Plain (∅ ▷ λ _ → Type) ! ⊤ id BinND

RandomOD = ZeroOD ∷ OneOD ∷ TwoOD ∷ []
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where

ZeroOD = 𝟙 _ (λ _ → refl)

OneOD = OΔσ- (λ ((_ , A) , _) → A)

( ρ (λ (_ , A) → (_ , Pair A)) _ (λ _ → refl) (λ _ → refl)

( 𝟙 _ (λ _ → refl)))

TwoOD = OΔσ- (λ ((_ , A) , _) → A)

( OΔσ- (λ ((_ , A) , _) → A)

( ρ (λ (_ , A) → (_ , Pair A)) _ (λ _ → refl) (λ _ → refl)

( 𝟙 _ (λ _ → refl))))

Likewise, we can give an ornament turning phalanges into digits
DigitOD : OrnDesc Plain (∅ ▷ λ _ → Type) ! ⊤ id PhalanxND

DigitOD = OneOD ∷ TwoOD ∷ ThreeOD ∷ []

where

OneOD = OΔσ- (λ ((_ , A) , _) → A)

( 𝟙 _ (λ _ → refl))

TwoOD = OΔσ- (λ ((_ , A) , _) → A)

( OΔσ- (λ ((_ , A) , _) → A)

( 𝟙 _ (λ _ → refl)))

ThreeOD = OΔσ- (λ ((_ , A) , _) → A)

( OΔσ- (λ ((_ , A) , _) → A)

( OΔσ- (λ ((_ , A) , _) → A)

( 𝟙 _ (λ _ → refl))))

and assemble these into finger trees with δ•

FingerOD : OrnDesc Plain (∅ ▷ λ _ → Type) ! ⊤ id CarpalND

FingerOD = EmptyOD ∷ SingleOD ∷ DeepOD ∷ []

where

EmptyOD = 𝟙 _ (λ _ → refl)

SingleOD = OΔσ- (λ ((_ , A) , _) → A)

( 𝟙 _ (λ _ → refl))

DeepOD = ∙δ (λ (p , _) → p) _ DigitOD (λ _ _ → refl) (λ _ _ → refl)

( ρ (λ (_ , A) → (_ , (A × A))) _ (λ _ → refl) (λ _ → refl)

( ∙δ (λ (p , _) → p) _ DigitOD (λ _ _ → refl) (λ _ _ → refl)

( 𝟙 _ (λ _ → refl))))

5 Generic Numerical Representations
The ornamental descriptions together with the descriptions and number systems from before
complete the toolset we will use to construct numerical representations as ornaments.

In summary, using DescI Number to represent number systems, we paraphrase calcula-
tions like in Section 3.1 as ornaments, rather than direct definitions. In fact, we have already
seen ornaments to numerical representations before, such as ListOD and RandomOD. Gener-
alizing those ornaments, we construct numerical representations by means of an ornament-
computing function, sending number systems to the ornamental descriptions that describe
their numerical representations.
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5.1 Unindexed Numerical Representations
In this section we demonstrate the generic computation of numerical representations. We
proceed differently from the calculation of Vec from ℕ. Indeed, we will give ornamental
descriptions, rather than deriving direct definitions via step-by-step isomorphism reasoning.
Nevertheless, the choices we make when inserting fields depending on the analysis of a
number system follow the same strategy.

We will first present the unindexed numerical representations, explaining case-by-case
which fields it adds and why. In the next section, we will demonstrate the indexed numerical
representations as an ornament on top of the unindexed variant.

The unindexed representations are computed by TreeOD in the form of ornamental de-
scriptions, sending a number system to the corresponding type of (nested) full trees over it.
The ornament is computed by cases on the number system, and in each case the size of the
numerical representation has to match up with the value of the number system.

Let us refer to the sole parameter of a numerical representation as A, and consider the
case of a leaf of value k:

𝟙-case : ℕ → ConI Number ∅ V ⊤

𝟙-case k = 𝟙 {me = k} _

In this case, the leaf contributes a constant k to the value, so a numerical representation
should accordingly have k fields of A before this leaf, or equivalently a field containing k

values of A. A recursive field of weight k

ρ-case : ℕ → ConI Number ∅ V ⊤ → ConI Number ∅ V ⊤

ρ-case k C = ρ0 {me = k} _ C

multiplies the value contributed by the recursive part by k. Hence, the numerical represen-
tation should have a recursive field, in such a way that a recursive value of size x actually
represents k * x values of A. On the other hand, an ordinary field S containing s, of which
the value is computed as f s

σ-case : (S : V ⊢ Type) → (∀ p → S p → ℕ)

→ ConI Number ∅ V ⊤ → ConI Number ∅ V ⊤

σ-case S f C = σ- S {me = f} C

is simply represented in the numerical representation by adding a field with f s values of A.
Finally, a field containing another number system R with weight k

δ-case : ℕ → DescI Number ∅ ⊤ → ConI Number ∅ V ⊤ → ConI Number ∅ V ⊤

δ-case k R C = δ {me = refl , refl , k} {id-MetaF} _ _ R C

directly contributes values of R multiplied by k. The outer numerical representation should
then replace R with its numerical representation NR, which should, like the recursive field,
let its values weigh k times their size.

To describe the numerical representation, we encode these fields of weight k with k-
element vectors, and in the same way, the multiplication by k in the cases of ρ and δ is
modelled by nesting over a k-element vector. Combining all these cases and translating
them to the language of ornaments we define the unindexed numerical representation:

TreeOD : (ND : DescI Number ∅ ⊤) → OrnDesc Plain (∅ ▷ λ _ → Type) ! ⊤ ! ND

TreeOD ND = Tree-desc ND id-MetaF

module TreeOD where mutual

Tree-desc : (D : DescI Me ∅ ⊤) → MetaF Me Number

→ OrnDesc Plain (∅ ▷ λ _ → Type) ! ⊤ ! D
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Tree-desc [] ϕ = []

Tree-desc (C ∷ D) ϕ = Tree-con C ϕ ∷ Tree-desc D ϕ

Tree-con : {re-var : Vxf ! W V} (C : ConI Me ∅ V ⊤) → MetaF Me Number

→ ConOrnDesc {Δ = ∅ ▷ λ _ → Type} {W = W} {J = ⊤} Plain re-var ! C

Tree-con (𝟙 {me = k} j) ϕ -- ...

= OΔσ- (λ ((_ , A) , _) → Vec A (ϕ .𝟙f k)) -- → Vec A k

( 𝟙 _ (λ _ → refl)) -- → Tree ND A

Tree-con (ρ {me = k} _ _ C) ϕ -- ...

= ρ (λ (_ , A) → (_ , Vec A (ϕ .ρf k))) _ -- → Tree ND (Vec A k)

(λ _ → refl) (λ _ → refl)

( Tree-con C ϕ) -- ...

Tree-con (σ S {me = f} h C) ϕ -- ...

= Oσ+ S -- → (s : S)

( OΔσ- (λ ((_ , A) , _ , s) → Vec A (ϕ .σf _ f _ s)) -- → Vec A (f s)

( Tree-con C ϕ)) -- ...

Tree-con (δ {me = me} {iff = iff} g j R C) ϕ

with ϕ .δf _ _ me

... | refl , refl , k -- ...

= ∙δ (λ { ((_ , A) , _) → (_ , Vec A k) }) ! -- → Tree R (Vec A k)

(Tree-desc R (ϕ ∘MetaF iff))

(λ _ _ → refl) (λ _ _ → refl)

( Tree-con C ϕ) -- ...

In most cases, we straightforwardly use OΔσ- to insert vectors of the correct size. However,
in the case of ρ, we can trivially change the nesting function to take the parameter A and
give Vec A k as a parameter to the recursive field instead. In the case of δ, we similarly
place the parameters in a vector, but these are now directed to the recursively computed
numerical representation of R. This case is also why we generalize the whole construction
over ϕ : MetaF Me Number, as R is allowed to have a Meta that is not Number, as long as it is
convertible to Number. Consequently, everywhere we use the “weight” represented by k in
the construction, we first apply ϕ to compute the actual weights and values from Me.

As an example, let us take a look at how TreeOD transforms CarpalND to its numerical
representation, FingerOD. Applying TreeOD sends leaves with a value of k to Vec A k, so
applying it to PhalanxND yields

DigitOD : OrnDesc Plain (∅ ▷ λ _ → Type) ! ⊤ id PhalanxND

DigitOD = OneOD ∷ TwoOD ∷ ThreeOD ∷ []

where

OneOD = OΔσ- (λ ((_ , A) , _) → Vec A 1)

( 𝟙 _ (λ _ → refl))

TwoOD = OΔσ- (λ ((_ , A) , _) → Vec A 2)

( 𝟙 _ (λ _ → refl))

ThreeOD = OΔσ- (λ ((_ , A) , _) → Vec A 3)

( 𝟙 _ (λ _ → refl))

which, after expanding vectors of k elements into k fields, is equivalent to the DigitOD from
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before. The same happens for the first two constructors of CarpalND, replacing them with an
empty vector and a one-element vector respectively. The last constructor is more interesting:

FingerOD : OrnDesc Plain (∅ ▷ λ _ → Type) ! ⊤ id CarpalND

FingerOD = EmptyOD ∷ SingleOD ∷ DeepOD ∷ []

where

EmptyOD = OΔσ- (λ ((_ , A) , _) → Vec A 0)

( 𝟙 _ (λ _ → refl))

SingleOD = OΔσ- (λ ((_ , A) , _) → Vec A 1)

( 𝟙 _ (λ _ → refl))

DeepOD = ∙δ (λ ((_ , p) , _) → (_ , Vec p 1)) !

DigitOD (λ _ _ → refl) (λ _ _ → refl)

( ρ (λ (_ , A) → _ , Vec A 2) _ (λ _ → refl) (λ _ → refl)

( ∙δ (λ ((_ , p) , _) → (_ , Vec p 1)) !

DigitOD (λ _ _ → refl) (λ _ _ → refl)

( OΔσ- (λ ((_ , A) , _) → Vec A 0)

( 𝟙 _ (λ _ → refl)) )))

The PhalanxND in the last constructor gets replaced with DigitOD via O∙δ+, and the recursive
field gets replaced by a recursive field nesting over vectors of length. Again, this is equivalent
to FingerOD, up to wrapping values in length one vectors and inserting empty vectors.

5.2 Indexed Numerical Representations
Like how List has an ornament VecOD to its ℕ-indexed variant Vec, we can also construct
an ornament, which we will call TrieOD D, from the numerical representation TreeOD D to its
D-indexed variant:

TrieOD : (N : DescI Number ∅ ⊤)

→ OrnDesc Plain (∅ ▷ λ _ → Type)

id (μ N tt tt) ! (toDesc (TreeOD N))

TrieOD N = Trie-desc N N (λ _ _ → con) id-MetaF

To continue the analogy to VecOD, we can use that TreeOD already sorts out how the pa-
rameters should be nested and how many fields have to be added. As a consequence, this
ornament only has to add fields reflecting the recursive indices, which are used to report
indices corresponding to the number of values of A contained in the numerical representation.

We accomplish this by threading the partially applied constructor n of the number system
N through the resulting description; by feeding it all the sizes of the fields added by TreeOD,
we can use n to compute the total size of an ornamented constructor.

In addition to generalizing over Me to facilitate the δ case as we did for TreeOD, we now
also generalize over the index type N'. When mapping over the lists of constructors (i.e.,
descriptions), the choice of constructor also selects the corresponding constructor of N':

Trie-desc : ∀ {Me} (N' : DescI Me ∅ ⊤) (D : DescI Me ∅ ⊤)

(n : ⟦ D ⟧D (μ N') →₃ μ N') (ϕ : MetaF Me Number)

→ OrnDesc Plain (∅ ▷ λ _ → Type)

id (μ N' tt tt) ! (toDesc (Tree-desc D ϕ) )

Trie-desc N' [] n ϕ = []

Trie-desc N' (C ∷ D) n ϕ = Trie-con N' C (λ p w x → n _ _ (inj₁ x)) ϕ

∷ Trie-desc N' D (λ p w x → n _ _ (inj₂ x)) ϕ
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We define Trie-con by induction on C, binding the sizes of the subtries, to be fed as arguments
to the selected constructor n. Since we are continuing where Tree-con left off, we can copy
most fields:

Trie-con : ∀ {Me} (N : DescI Me ∅ ⊤) {re-var : Vxf id W V}

→ {re-var′ : Vxf ! V U} (C : ConI Me ∅ U ⊤)

→ (n : ∀ p w → ⟦ C ⟧C (μ N) (tt , re-var′ (re-var {p = p} w)) _

→ μ N tt tt)

→ (ϕ : MetaF Me Number)

→ ConOrnDesc {Δ = ∅ ▷ λ _ → Type} {W = W} {J = μ N tt tt} Plain

{re-par = id} re-var ! (toCon (Tree-con {re-var = re-var′} C ϕ))

Trie-con N (𝟙 {me = k} j) n ϕ -- ... n : N

= Oσ- _ -- → Vec A k

( 𝟙 (λ { (p , w) → n p w refl }) (λ _ → refl)) -- → Trie ND A n

Trie-con N (ρ {me = k} g j C) n ϕ -- ... n : N × ⟦ C ⟧C N → N

= OΔσ+ (λ _ → μ N tt tt) -- → (i : N)

( ρ (λ { (_ , A) → _ }) (λ { (p , w , i) → i }) -- → Trie ND (Vec A k) i

(λ _ → refl) (λ _ → refl)

( Trie-con N C (λ { p (w , i) x → n p w (i , x) }) ϕ)) -- ... curry n i

Trie-con N (σ S {me = f} h C) n ϕ -- ... n : S × ⟦ C ⟧C N → N

= Oσ+ (S ∘ var→par _) -- → (s : S)

( Oσ- _ -- → Vec A (f s)

( Trie-con N C (λ { p (w , s) x → n p w (s , x) }) ϕ)) -- ... curry n s

Trie-con N (δ {me = me} {iff = iff} g j R C) n ϕ

with ϕ .δf _ _ me

... | refl , refl , k -- ... n : R × ⟦ C ⟧C N → N

= OΔσ+ (λ _ → μ R tt tt) -- → (r : R)

( ∙δ (λ ((_ , A) , _) → (_ , Vec A k)) -- → Trie R (Vec A k) r

(λ { (p , w , i) → i })

(Trie-desc R R (λ _ _ → con) (ϕ ∘MetaF iff))

(λ _ _ → refl) (λ _ _ → refl)

( Trie-con N C (λ { p (w , i) r → n p w (i , r) }) ϕ)) -- ... curry n r

We only have to add fields in the cases for ρ and δ, and in both they are promptly passed as
expected indices to the next field using λ { (p , w , i) → i }. The only difference is that
for δ, since Trie-desc R will be R-indexed, we add a field of R rather than N'. The values of
all fields, including σ are passed to n. Since n starts as a constructor C of N', when we arrive
at 𝟙, the final argument of n can be filled with simply refl to determine the actual index.

Since the N'-index i bound in the ρ case forces the number of elements in the recursive
field to i, the value in the σ case corresponds to the number of elements added after this
field. Likewise, the R-index i bound in the δ case forces the number of elements in the
subdescription to be i. Hence, when we arrive at a leaf 𝟙, we know that the total number of
elements is exactly given by n, and thus Trie-con is correct. In turn, we find that Trie-desc

and TrieOD correctly construct indexed numerical representations.
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6 Conclusion
In conclusion, we formulated a universe encoding DescI, adapted the language of ornamen-
tal descriptions OrnDesc to it, and implemented generic programs to calculate numerical
representations from number systems in DescI Number.

With the program TreeOD, we can describe all datastructures we used as examples in
other sections: List, Random, Finger, and many more. For example, we can also replicate
(nested variants of) the constructions of binomial heaps as an ornament on binary numbers
by Ko [Ko14], (dense) skew binary random-access lists and heaps, and their variants in
higher bases than binary [Oka98].

On top of this, TrieOD lets us describe indexed variants of those datastructures, such
as Vec, and lets us replay part of the argument to derive indexed random-access lists from
binary numbers due to Hinze and Swierstra [HS22].

In turn, the numerical representations immediately enjoy both the generic programs we
get for all descriptions (such as fold), and the functions we get from their nature as or-
naments over number systems (like length or toList). Furthermore, due to their specific
construction, we could also define a kind of extensional equality for numerical represen-
tations: We only need decidable equality of the element type, as all other fields are only
relevant up to numerical value. Similarly, we can generalize the “forall” and “exists” predi-
cates for W-types29 to all numerical representations, using that TreeOD only ever nests over
Vec.

The treatment of numerical representations as ornaments on number systems also makes
it easier to ask when operations on the number system induce or inspire operations on the
datastructure. For example, if we define addition on a number system such that it agrees
with _+_ on ℕ, we can use this as inspiration to define concatenation on the datastructure.
The work of Dagand and McBride on functional ornaments [DM14] makes it clear when
function types can be related by ornaments, which coherences this induces between func-
tions, and how this can help the programmer to directly write functions satisfying those
coherences. Effectively, this lets us give a number system and its addition, and get the
specification of concatenation on the numerical representation for free.

7 Discussion
Our implementation does have some drawbacks, and also leaves some open questions, which
we try to outline in the following sections.

For example: While it is possible to write down a direct proof of correctness for TrieOD

by comparing it to Lookup via value, and from this extract a proof of correctness for TreeOD,
one might expect there to be a more useful and less laborious angle of attack.

Namely, we expect that if we define PathOD as a generic ornament from a DescI Number

to the corresponding finite type (such that PathOD ND n is equivalent to Fin (value n)), then
we can show that TrieOD ND n has a tabulate/lookup pair for PathOD ND n. This proves that
TrieOD ND n A is equivalent to PathOD ND n → A, and in consequence TrieOD ND corresponds to
Vec.

29See the Agda standard library □ predicate for containers.
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Due to the remember-forget isomorphism [McB14], we have that TreeOD ND is equivalent to
Σ (μ ND) (TrieOD ND), and in turn we also find that TreeOD ND is a normal functor (also referred
to as Traversable). This yields traversability of TreeOD ND, with as corollaries toList30 and
properties such as that toList is a lifting of value (again in the sense of [DM14]).

However, it turns out that PathOD is not so easy to define, as we can see by the following.

7.1 Σ-descriptions are more natural for expressing finite types
Due to our representation of types as sums of products, representing the finite types of
larger number systems quickly becomes much more complex. Consider the binary numbers
from before:

data Bin : Type where

0b : Bin

1b_ 2b_ : Bin → Bin

Suppose FinB is the finite type associated to Bin. Since the value of 1b n is 2n + 1, the
type FinB (1b n) should be isomorphic to FinB n ⊎ FinB n ⊎ ⊤. While we can reorganize the
first two summands into a product with Fin 2 instead, the last summand has a different
structure.

For a general number system N, the number and structure of constructors of the finite type
FinN associated to N depends directly on the interpretation of N, preventing the construction
of FinN by simple recursion31 on DescI.

Since ornaments preserve the number of constructors, there cannot be an ornament from
number systems to their finite types32.

The apparent asymmetry between number systems and finite types stems from the def-
inition of σ in DescI. In DescI and similar sums-of-products universes [EC22; Sij16], the
remainder of a constructor C after a σ S simply has its context extended by S. In contrast, a
universe with Σ-descriptions [eff20; KG16; McB14] (in the terminology of [Sij16]) encodes
a dependent field (s : S) by asking for a function C assigning values s to descriptions.

Compared to Σ-descriptions, a sums-of-products universe keeps out some more exotic
descriptions which do not have an obvious associated Agda datatype33.

However, this also prevents us from writing down the simpler form of finite types. If
we instead started from Σ-descriptions, taking functions into DescI to encode dependent
fields, we could compute a “type of paths” in a number system by adding and deleting the
appropriate fields. Consider the universe:

data Σ-Desc (I : Type) : Type where

𝟙 : I → Σ-Desc I

ρ : I → Σ-Desc I → Σ-Desc I

σ : (S : Type) → (S → Σ-Desc I) → Σ-Desc I

30Note that the foldable structure we get from the generic fold is significantly harder to work with for
this purpose.

31That is, without passing up lists of ConI to be assembled at the level of DescI again.
32An “intuitive” ornament anyway. It is possible to insert a Three field in 0b of Bin, and then compute the

index using λ { one → 1b_ ; two → 2b_ ; three → 2b_ }. However, this shoves the responsibilities of 1b_ and
2b_ onto 0b, is as awkward as passing up lists of ConI, and destroys the useful property that ornForget x lines
up with the index of x.

33Consider the constructor σ ℕ λ n → power ρ n 𝟙 which takes a number n and asks for n recursive fields
(where power f n x applies f n times to x). This description, resembling a rose tree, does not (trivially) lie in
a sums-of-products universe.
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In this universe we can present the binary numbers as:
BinΣD : Σ-Desc ⊤

BinΣD = σ (Fin 3) λ

{ zero → 𝟙 _

; (suc zero) → ρ _ (𝟙 _)

; (suc (suc zero)) → ρ _ (𝟙 _) }

The finite type for these numbers can be described by:
FinBΣD : Σ-Desc Bin

FinBΣD = σ (Fin 3) λ

{ zero → σ (Fin 0) λ _ → 𝟙 0b

; (suc zero) → σ Bin λ n → σ (Fin 2) λ

{ zero → σ (Fin 1) λ _ → 𝟙 (1b n)

; (suc zero) → σ (Fin 2) λ _ → ρ n ( 𝟙 (1b n)) }

; (suc (suc zero)) → σ Bin λ n → σ (Fin 2) λ

{ zero → σ (Fin 2) λ _ → 𝟙 (2b n)

; (suc zero) → σ (Fin 2) λ _ → ρ n ( 𝟙 (2b n)) } }

Since this description of FinB largely has the same structure as Bin, and as a consequence
also the numerical representation associated to Bin, this would simplify proving that the
indexed numerical representation is indeed equivalent to the representable representation
(the maps out of FinB). In a framework of ornaments for Σ-descriptions [KG16; McB14], we
can even describe the finite type as an ornament on the number system.

7.2 Branching numerical representations
A numerical representation constructed by TrieOD looks like a finger tree: the structure
typically has a central chain, which rather than directly storing elements directly in nodes,
stores the elements in trees of which the depth increases with the level of the node.

For contrast, compare this to structures like Braun trees, as Hinze and Swierstra [HS22]
compute from binary numbers, and to the binomial heaps [Ko14] Ko constructs. These
structures reflect the weight of a node using branching rather than nesting. Because this
kind of branching is uniform, i.e., each branch looks the same, we can still give an equivalent
construction. By combining TreeOD and TrieOD, and using to apply ρ k-fold in the case of
ρ {if = k}, rather than over k-element vectors, we can replicate the structure of a Braun
tree from BinND. However, if we use the Σ-descriptions we discussed above, we can more
elegantly present these structures by adding an internal branch over Fin k.

7.3 Indices do not depend on parameters
In DescI, we represent the indices of a description as a single constant type, as opposed to
an extension of the parameter telescope [EC22]. This simplification keeps the treatment
of ornaments and numerical representations more to the point, but rules out some useful
types.

Allowing indices to depend on parameters lets us describe some types that could be com-
puted generically for numerical representations like the membership relation: It is essential
that the List A is an index, since each constructor constructs the relation at a different list.
If we do not want to rely on --type-in-type, the variable A must be a parameter, as it would
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otherwise push _∈_ up one level. Moreover, the sort of a type can depend on its parameters,
but not its indices, so the level of A must also be a parameter.

Likewise, indices have to depend on parameters in order to formulate algebraic ornaments
[McB14] in OrnDesc in their fully general form. This is also the case for singleton types, which
can be used to compute the additional information needed to invert ornForget.

By replacing index computing functions Γ & V ⊢ I with dependent functions
_&_⊧_ : (Γ : Tel ⊤) (V I : ExTel Γ) → Type

Γ & V ⊧ I = (pv : ⟦ Γ & V ⟧tel) → ⟦ I ⟧tel (fst pv)

we can allow indices to depend on parameters in our framework. As a consequence, we have
to modify nested recursive fields to ask for the index type ⟦ I ⟧tel precomposed with g :

Cxf Γ Γ, and we have to replace the square like i ∘ j′ ∼ i′ ∘ over v in the definition of
ornaments with heterogeneous squares.

7.4 No RoseTrees
In DescI, we encode nested types by allowing nesting over a function of parameters Cxf Γ Γ.
This is less expressive than full nested types, which may also nest a recursive field under a
strictly positive functor. For example, rose trees

data RoseTree (A : Type) : Type where

rose : A → List (RoseTree A) → RoseTree A

cannot be directly expressed as a DescI34.
If we were to describe full nested types, allowing applications of functors in the types

of recursive arguments, we would have to convince Agda that these functors are indeed
positive, possibly by using polarity annotations35. Alternatively, we could encode strictly
positive functors in a separate universe, which only allows using parameters in strictly
positive contexts [Sij16]. Finally, we could modify DescI in such a way that we can decide
if a description uses a parameter strictly positively, for which we would modify ρ and σ, or
add variants of ρ and σ restricted to strictly positive usage of parameters.

7.5 No levitation
Since our encoding does not support higher-order inductive arguments, let alone definitions
by induction-recursion, there is no code for DescI in itself. Such self-describing universes
have been described by Chapman et al. [Cha+10], and we expect that the additional features
of DescI, i.e., parameters, nesting, and composition, would not obstruct a similar levitating
variant of DescI. Using the concept of functional ornaments [DM14], ornaments might even
be generalized to inductive-recursive descriptions.

If that is the case, then modifications of universes like Meta could be expressed internally.
In particular, rather than defining DescI such that it can describe datatypes with the infor-
mation of, e.g., number systems, DescI should be expressible as an ornamental description
on Desc, in contrast to how Desc is an instance of DescI in our framework. This would allow
treating information explicitly in DescI, and not at all in Desc.

34And, since DescI does not allow for higher-order inductive arguments like Escot and Cockx [EC22], we
can also not give an essentially equivalent definition.

35See https://github.com/agda/agda/pull/6385.
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Furthermore, constructions like TrieOD, which have the recursive structure of a fold over
DescI, could be expressed by instantiating fold to DescI.

7.6 Metadata more tasteful externally than internally
On the other hand, while incorporating general metadata into DescI works out neatly in our
case, and in general seems to work out if we think about one use-case at a time, it might not
work so nicely in other situations. For example, if we are working with Number, but we are
given a DescI Plain (i.e., Desc), then we would have to duplicate that description in DescI

Number before we could use it. Even worse, if we want to give the constructors of a number
system nice names using Names, we would have to rewrite our code and descriptions to use
something like the product of Number and Names.

It might be more portable to take the same approach in handling metadata as True
sums of products [VL14], where metadata is described externally to the universe and only
combined again if needed by a generic function. From this point of view, a type of metadata
can simply be a convenient function from Desc to Type. If Number was presented in this way,
then TreeOD would not have to ask for DescI Number, but rather for a D of Desc paired with
Number D.

7.7 δ is conservative
We define our universe DescI with δ as a former of fields with known descriptions, and this
makes it easier to write down TreeOD, even though δ is redundant. If more concise universes
and ornaments are preferable, we can actually get all the features of δ and ornaments like
∙δ by describing them using σ, annotations, and other ornaments.

Indeed, rather than using δ to add a field from a description R, we can simply use σ to
add S = μ R, and remember that S came from R in the information:

Delta : Meta

Delta .σi {Γ = Γ} {V = V} S

= Maybe (

Σ[ Δ ∈ Tel ⊤ ] Σ[ J ∈ Type ] Σ[ j ∈ Γ & V ⊢ J ]

Σ[ g ∈ Γ & V ⊢ ⟦ Δ ⟧tel tt ] Σ[ D ∈ DescI Delta Δ J ]

(∀ pv → S pv ≡ liftM2 (μ D) g j pv))

We can then define δ as a pattern synonym matching on the just case, and σ matching on
the nothing case.

Recall that, leaving out some details, the ornament ∙δ lets us compose an ornament from
D to D' with an ornament from R to R', yielding an ornament from δ D R to δ D' R'. This
ornament can equivalently be modelled by first adding a new field μ R', and then deleting
the original μ R field. The ornament ∇ [Ko14] allows one to provide a default value for a
field, deleting it from the description. Hence, we can model ∙δ by binding a value r' of μ

R' with OΔσ+ and deleting the field μ R using a default value computed by ornForget.
This also partially explains why we did not refer to algebraic ornaments at all in our

construction of TrieOD; We can see that TrieOD looks very similar to the algebraic ornament
over TreeOD, which sends ornaments from D to E to an ornament to a D-indexed variant of
E. However, the case of δ requires TrieOD to step in and re-index the subdescription. In
contrast, the algebraic ornament would simply treat a δ like its equivalent σ. Even though
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this would produce a correct numerical representation, this amounts to presenting a Vec as
a tuple of a length n, a List xs, and a proof that n is equal to length xs.

Thus, while it would be possible to present TrieOD as a kind of algebraic ornament, this
would require redefining algebraic ornaments from algebras that are rather specific about
how they treat a σ.

7.8 No sparse numerical representations
The encoding of number systems in a universe we explained in Section 3.2.1 corresponds
to a generalization of dense number systems. Consequently, this excludes the skew binary
numbers [Oka95] in their useful sparse representation.

Representations of sparse number systems can be regained by allowing addition and
variable multiplication in a σ. In such a setup, skew binary numbers and other sparse repre-
sentations could be described by adding their gaps as fields, and computing the appropriate
multiplier from there. While not worked out in this thesis, this extension is compatible with
the construction of numerical representations.

Another notable extension of Number is to let some recursive and composite fields be
interpreted by multiplication, with which we could equip U-fin with its obvious interpreta-
tion into ℕ. This can be compared to the last exponential law we did not use in Section 3.1,
which is that ABC = (AB)C . Furthermore, any indexed numerical representation acts as a
representable functor F. If F and G are numerical representations corresponding to number
systems N and M, then the multiplication of N and M just corresponds to composition F ∘ G.
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Appendices
A Folding
In Section 2.4.6 and Section 2.5 we used fold as a concept to explain a bit of generic
programming. We give its definition here, but for DescI instead, since the fold of U-ix can
be seen as a simplification of it.

fold : ∀ {D : DescI Me Γ I} {X} → ⟦ D ⟧D X →₃ X → μ D →₃ X

As fold f is the algebra map con ⇒ f, the following commutes:

FµF FA

µF A

f

fold f

F (fold f)

con

However, by defining fold f (con x) as f (map (fold f) x), we prevent the termination checker
from seeing that fold is only applied to terms strictly smaller than x (much like our fellow
universe constructions find out somewhere along the line). To help out the termination
checker, we inline fold into map, which gives us an equivalent definition:

mapDesc : ∀ {D' : DescI Me Γ I} (D : DescI Me Γ I) {X}

→ ∀ p i → ⟦ D' ⟧D X →₃ X

→ ⟦ D ⟧D (μ D') p i → ⟦ D ⟧D X p i

mapCon : ∀ {D' : DescI Me Γ I} {V} (C : ConI Me Γ V I) {X}

→ ∀ p i v → ⟦ D' ⟧D X →₃ X

→ ⟦ C ⟧C (μ D') (p , v) i → ⟦ C ⟧C X (p , v) i

fold f p i (con x) = f p i (mapDesc _ p i f x)

mapDesc (C ∷ D) p i f (inj₁ x) = inj₁ (mapCon C p i tt f x)

mapDesc (C ∷ D) p i f (inj₂ y) = inj₂ (mapDesc D p i f y)

mapCon (𝟙 j) p i v f x = x

mapCon (ρ g j C) p i v f (r , x) = fold f (g p) (j (p , v)) r

, mapCon C p i v f x

mapCon (σ S w C) p i v f (s , x) = s , mapCon C p i (w (v , s)) f x

mapCon (δ d j R C) p i v f (r , x) = r , mapCon C p i v f x

Here mapDesc (and mapCon) simply peel off and reassemble all non-recursive structure, ap-
plying fold to the recursive fields; fold is then defined in the usual way by applying its
algebra f to itself mapped over x.

B Folding without Axiom K
The axiom of univalence (or cubical type theory) gives us another interesting context to
study ornaments in. In the way we presented it, the theory of ornaments produces a lot of
isomorphisms from relations between types, which are not yet as powerful as they could be
when comparing properties between related types. Univalence gives us the means to turn
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equivalences36 into equalities, allowing us to put an isomorphism between types to work by
transporting properties over it.

Unfortunately, a direct port of ornaments into --cubical is quickly thwarted by the
absence of Axiom K, as one would discover that the definitions of mapDesc and mapCon

illegally pattern match on the types calculated by interpretations37.
This can be remedied by presenting interpretations as datatypes38. Effectively, we are

applying the duality between type computing functions and indexed types. Since Desc and
Con are unindexed types, they cannot accidentally carry equational content, and pattern
matching on them does not generate transports in ⟦_⟧D and ⟦_⟧C. Hence, the definition of
fold is (morally speaking) safe.

With that out of the way, we can define the interpretations as indexed types:
mutual

data μ (D : Desc Γ I) (p : ⟦ Γ ⟧tel tt) : I → Type where

con : ∀ {i} → IntpD (μ D) p i D → μ D p i

data IntpC (X : ⟦ Γ ⟧tel tt → I → Type)

(pv : ⟦ Γ & V ⟧tel) (i : I)

: Con Γ V I → Type where

𝟙-i : ∀ {i′}

→ i ≡ i′ pv → IntpC X pv i (𝟙 i′)

ρ-i : ∀ {g i′ D}

→ X (g (pv .fst)) (i′ pv) → IntpC X pv i D

→ IntpC X pv i (ρ g i′ D)

σ-i : ∀ {S D} {w : Vxf id (V ▷ S) W}

→ (s : S pv) → IntpC X (pv .fst , w (pv .snd , s)) i D

→ IntpC X pv i (σ S w D)

δ-i : ∀ {d j D} {R : Desc Δ J}

→ (s : μ R (d pv) (j pv)) → IntpC X pv i D

→ IntpC X pv i (δ d j R D)

data IntpD (X : ⟦ Γ ⟧tel tt → I → Type)

(p : ⟦ Γ ⟧tel tt) (i : I)

: Desc Γ I → Type where

∷-il : ∀ {C D} → IntpC X (p , tt) i C → IntpD X p i (C ∷ D)

∷-ir : ∀ {C D} → IntpD X p i D → IntpD X p i (C ∷ D)

⟦_⟧D : Desc Γ I → (⟦ Γ ⟧tel tt → I → Type) → ⟦ Γ ⟧tel tt → I → Type

⟦_⟧D = λ D X p i → IntpD X p i D

⟦_⟧C : Con Γ V I → (⟦ Γ ⟧tel tt → I → Type) → ⟦ Γ & V ⟧tel → I → Type

⟦_⟧C = λ C X pv i → IntpC X pv i C

36Equivalences can be considered as a correction to isomorphisms for types which are not sets (in the sense
of being discrete); since all types we describe here are sets, equivalences and isomorphisms coincide.

37The Without K documentation explains why pattern matching on non-datatypes is not safe in general.
38Albeit a bit dubiously; at the time of writing, this is also how you can circumvent a restriction on pattern

matching emplaced by --cubical-compatible, see the relevant GitHub issue.
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Since the interpretations are datatypes now, we can pattern match on them to define mapDesc

and mapCon in a way that is accepted:
mapDesc : ∀ {D' : Desc Γ I} (D : Desc Γ I) {X}

→ ∀ p i → ⟦ D' ⟧D X →₃ X → ⟦ D ⟧D (μ D') p i → ⟦ D ⟧D X p i

mapCon : ∀ {D' : Desc Γ I} {V} (C : Con Γ V I) {X}

→ ∀ p i v → ⟦ D' ⟧D X →₃ X → ⟦ C ⟧C (μ D') (p , v) i → ⟦ C ⟧C X (p , v) i

fold f p i (con x) = f p i (mapDesc _ p i f x)

mapDesc (C ∷ D) p i f (∷-il x) = ∷-il (mapCon C p i tt f x)

mapDesc (C ∷ D) p i f (∷-ir y) = ∷-ir (mapDesc D p i f y)

mapCon (𝟙 j) p i v f

(𝟙-i x) = 𝟙-i x

mapCon (ρ g j C) p i v f

(ρ-i r x) = ρ-i (fold f (g p) (j (p , v)) r) (mapCon C p i v f x)

mapCon (σ S w C) p i v f

(σ-i s x) = σ-i s (mapCon C p i (w (v , s)) f x)

mapCon (δ d j R C) p i v f

(δ-i r x) = δ-i r (mapCon C p i v f x)

C Nested types as uniformly recursive indexed types
Although U-ix has no direct support for expressing nested types, we can actually give
equivalent encodings for some of them.

Indeed, indices are readily repurposed as parameters. If we apply this to random-access
lists, we can write:

RandomD-1 : U-ix ∅ Type

RandomD-1 = σ (λ _ → Type)

( 𝟙 λ { (_ , (_ , A)) → A })

∷ σ (λ _ → Type)

( σ (λ { (_ , (_ , A)) → A })

( ρ (λ { (_ , ((_ , A) , _)) → A × A })

( 𝟙 λ { (_ , ((_ , A) , _)) → A } )))

∷ σ (λ _ → Type)

( σ (λ { (_ , (_ , A)) → A × A })

( ρ (λ { (_ , ((_ , A) , _)) → A × A })

( 𝟙 λ { (_ , ((_ , A) , _)) → A } )))

∷ []

More interestingly, perhaps, the depth of a random-access list determines the types of its
fields. Namely, One will ask for 1 element at the highest level, one level down it asks for 2, and
one more it asks for 4, and so on. Hence, in a way that vaguely resembles defunctionalization,
we can define
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power : ℕ → (A → A) → A → A

power zero f x = x

power (suc n) f x = f (power n f x)

data Pair (A : Type) : Type where

pair : A → A → Pair A

and describe a field at depth n by power n Pair A. This can be applied to describe random-
access lists which track their depth in their index instead:

RandomD-2 : U-ix (∅ ▷ const Type) ℕ

RandomD-2 = σ (λ _ → ℕ)

( 𝟙 λ { (_ , (_ , n)) → n })

∷ σ (λ _ → ℕ)

( σ (λ { ((_ , A) , (_ , n)) → power n Pair A })

( ρ (λ { (_ , ((_ , n) , _)) → suc n })

( 𝟙 λ { (_ , ((_ , n) , _)) → n } )))

∷ σ (λ _ → ℕ)

( σ (λ { ((_ , A) , (_ , n)) → power (suc n) Pair A })

( ρ (λ { (_ , ((_ , n) , _)) → suc n })

( 𝟙 λ { (_ , ((_ , n) , _)) → n } )))

∷ []

Since we cannot (yet) construct path types generically (Section 7.1), we cannot make this
construction generic. If we did have such constructions, the argument for random-access
lists generalizes to an operation that splits a nested datatype D into three parts:

1. a type of paths in D (not necessarily pointing to a field)

2. a lookup function that sends a path to the accumulated parameter transformation

3. the (uniform) datatype, indexed over the paths, using the lookup function to calculate
the types of its fields.
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