
  

  

RECOGNIZING IRREGULARITIES IN STACKED 
NANOPORE SIGNALS FROM IN SILICO 
PERMUTED SEQUENCING DATA 

MSc major internship report 

Maarten van Elst (5673968) 

Supervised by Marc Pagès-Gallego, Jeroen de Ridder (UMC Utrecht) 
Second review by Berend Snel (Utrecht University)      



1  
 

Table of Contents 
Abstract............................................................................................................................. 3 

Plain language summary ................................................................................................... 4 

Introduction ...................................................................................................................... 5 

The tombo toolkit ...................................................................................................................... 7 

8-oxodG and DNA damage ......................................................................................................... 8 

Dynamic Time Warping .............................................................................................................. 9 

The re-squiggle algorithm .......................................................................................................... 10 

Results ............................................................................................................................. 12 

Bayesian optimization of tombo models ................................................................................... 12 
Summed MSE values ................................................................................................................................... 14 
Comparison to tombo default model .............................................................. Error! Bookmark not defined. 

Random forest modification calling ........................................................................................... 15 
Inducing re-squiggle errors ......................................................................................................................... 15 
Feature calculations, data splitting ............................................................................................................. 16 
Overall accuracy .......................................................................................................................................... 17 
Accuracy between Oligo’s ........................................................................................................................... 18 
Per-base accuracy ....................................................................................................................................... 19 
Accuracy by nucleotide and in silico mutation ............................................................................................ 20 
Attempted prediction of oxidized guanine ................................................................................................. 21 

Discussion ........................................................................................................................ 22 

Bayesian optimization of tombo models ................................................................................... 22 

Random forest modification calling ........................................................................................... 23 

Further research into irregular nanopore signals ....................................................................... 24 

Methods .......................................................................................................................... 25 
Data used .................................................................................................................................................... 25 
Raw signal to base assignment ................................................................................................................... 25 
Raw signal normalization ............................................................................................................................ 25 
Reference sequence cropping ..................................................................................................................... 25 

Bayesian optimization of tombo models ................................................................................... 26 
In silico mutation data generation .............................................................................................................. 26 
K-mer table modification ............................................................................................................................ 26 
Scoring function .......................................................................................................................................... 26 
Optimizer hyperparameters ........................................................................................................................ 26 
Prediction selection ..................................................................................................................................... 26 

Random forest modification calling ........................................................................................... 27 
In silico data generation .............................................................................................................................. 27 
Feature calculation hyperparameters ......................................................................................................... 27 
Cross-validation and balancing ................................................................................................................... 28 
Random forest hyperparameters ................................................................................................................ 28 

References ....................................................................................................................... 29 



2  
 

Appendices ...................................................................................................................... 32 

A. Software used ....................................................................................................................... 32 

B. Data used .............................................................................................................................. 33 
B1. Reference sequences ............................................................................................................................ 33 
B2. Read and re-squiggle distribution over reference sequences ............................................................... 33 
B3. Feature validation and balancing graph per experiment ...................................................................... 33 

C. Accuracy per base plot for each oligo .................................................................................... 34 

D. Result and code URLs ............................................................................................................ 36 
 

 
  



3  
 

Abstract 
Basecalling a nanopore read has been solved to an accurate degree, and this has been done similarly 
for methylation such as 5mC and 6mA. Other epigenetic modifications exist which are still hard to 
detect from a single nanopore signal. We present two approaches to solve this problem: Bayesian 
optimization of expected values used for signal-to-base assignment, and random forest classification 
of irregular signals. Due to the lack of ground truth data, we use in silico mutations in nanopore data 
to simulate such modifications. Due to a lack of information present in a single signal we use stacked 
signals to increase performance and for potential use in repeated regions of the genome. Our efforts 
in recalculating the expected signal values showed promise, but upon further inspection we found 
that the scoring function was very sensitive to local optima. With this we concluded that Bayesian 
optimization of the re-squiggle k-mer table is an ineffective method for discovering new reference 
values from irregularities in a signal. We then explored using a random forest machine learning model 
on features to classify the in silico generated mutations from a stacked signal. We showcase that this 
model is effective for high stack depth (accuracy of 98.7%), however for lower depth it returns to 
guessing-level accuracy (~50%). For further research we recommend improvements to the acquisition- 
and scoring function for k-mer table optimization and the use of deep learning for classification of 
irregularities. 
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Plain language summary  
Deoxyribonucleic acid (DNA) is a highly important molecule in most living cells, it contains inheritable 
information in the form of genes and the expression of these genes is how a cell regulates itself. In 
recent years there have been many technological advancements in the field of DNA sequencing – 
reading the information contained in a DNA molecule from some biological sample. One technique 
used for this is called nanopore sequencing. A nanopore sequencer outputs an electrical signal that 
varies based on the DNA sample that is being sequenced. Using bioinformatic techniques we can 
distinguish the four DNA nucleotides (bases) from this signal, turning the electrical signal into a 
sequence of bases consisting of ‘A’, ‘C’, ‘T’, and ‘G’. This genetic information can differ between 
individuals or cells and is relevant for research into biology, disease, and especially the mechanisms 
behind cancer. However, DNA contains more information than the sequence of these four bases. 
There are also chemically modified versions of these bases that function differently depending on the 
specific modification. Such modifications are called epigenetic modifications. They are often quite 
small, but also influence the regulation within a cell. So far it has been a challenge for scientists to 
detect such modifications in the electrical signal of a nanopore sequencer.  

In this project we try to improve the recognition of epigenetic modifications in nanopore signals. We 
attempt this in two ways: optimization and machine learning. Both approaches require a dataset that 
contains known epigenetic modifications. However, as mentioned above it is difficult to know from 
sequencing whether a modification is present. Because of this we don’t have a lot of nanopore data 
where we reliably know the presence of modifications. To solve this problem, we use data containing 
computer-simulated irregularities that represent modifications. Given that we do the simulations, we 
know for sure which parts of the data are “modified” and which are not. In addition to this simulation, 
we overlay signals corresponding to the same piece of DNA on top of each other in a “stack” to 
increase the amount of information available to the algorithms we use. 

Usually when a nanopore signal is processed and we gain the sequence of bases (ACTG) and some 
expected signal value corresponding to these bases without considering any possible modifications. 
In the first experiment we optimize this expected signal from simulated irregular data. Ideally, an 
optimization algorithm finds an expected value corresponding to a simulated modification that is 
different from the expected value for a normal base. If this works on simulated data, then we can 
move on to real-world data to discover the values corresponding to epigenetic modifications. The 
optimization algorithm works by iteratively guessing new values, and for each guess it gets feedback 
from a ‘scoring function’ that decides whether a value approaches a good result. The scoring function 
we use indicated good results. However, values corresponding to a good score were not in line with 
the expected (and correct) values of our simulated dataset. This discrepancy shows that this approach 
is ineffective, and we hypothesize that further research is required on the scoring function. 

The second experiment attempted to use machine learning on stacked signals that were either correct 
or contained irregularities. This machine learning method uses part of the data to learn how to 
recognize irregularities, and another part for testing the accuracy of what it has learned. The testing 
part achieved a maximum accuracy of ~98% with a very large stack of signals. The main problem here 
is that accuracy decreases for learning with smaller stack sizes, while ideally we recognize 
modifications in a single signal with no stacking at all. From this machine learning method, we can 
however interpret which properties of a stacked signal help in predicting modifications. And from the 
properties that work well we hypothesize that measurements of the number of peaks in stacked data 
might improve the model. Overall, this approach was effective within the context of this experiment 
but requires additional efforts to be used in real-case scenarios.   
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Introduction 
In the past decades, sequencing technologies have been developing rapidly and with great impact. 
This has enabled the human reference genome to go through many iterations since 2003 when the 
first assembly of euchromatic regions was published using Sanger sequencing (International Human 
Genome Sequencing Consortium, 2004). Sanger sequencing produces reads with a maximum length 
of approximately 1 kilobase. These reads can be assembled into longer sequences using bioinformatics 
methods. While this works well enough to assemble most of the human genome, heterochromatic 
repeat regions are more challenging. This resulted in unresolved regions of the genome (International 
Human Genome Sequencing Consortium, 2004). Specifically, heterochromatic regions of the genome 
containing higher order repeats were impossible to assemble. Due to the nature of repeats no 
unambiguous assembly can be made if reads are shorter than the length of the repeated region. 
Illumina reduced the sequencing costs providing higher sequencing throughput. However, due to the 
short nature of their reads (~200 base pairs), the repetitive regions of the genome remained a mystery. 
Third-generation sequencing technologies, such as Pacific Biosciences (PacBio) and Oxford Nanopore 
Technologies (ONT) allowed the sequencing of longer reads from native DNA (Amarasinghe et al., 
2020). By combining long and short read technologies researchers have recently made a big step 
towards ‘completing’ the telomere-to-telomere human reference genome by including 
heterochromatic repeat regions (Jain et al., 2018; Nurk et al., 2022). 

The human genome contains many different repetitive regions, the most well-known of which are the 
telomere and centromere regions. To illustrate the repetitive nature of this region, it contains higher 
order repeats (HORs) of the alpha-satellite monomers of approximately 171bp length. The centromere 
contains different HORs of lengths varying between 2 and dozens of repeats of the alpha-satellite, and 
HORs in turn can repeat in HOR arrays reaching megabase length (Hartley & O’Neill, 2019). The total 
length was impossible to determine through older sequencing methods, but they are biologically 
relevant due to the centromere’s role in cell division. Compared to alpha-satellites, the vertebrate 
telomeric repeat sequence is relatively short (TTAGGG). It is rich in guanine and therefore potentially 
rich in epigenetically modified guanine, which can lead to structural and maintenance problems 
(Fouquerel et al., 2019). Sequencing developments are now helping with understanding these regions 
of the human genome, and being able to adequately map the repeats and their epigenetic 
modifications could help in diagnostics or further our understanding of telomere dynamics. 

In addition to the length of the sequence helping with genome assembly, nanopore sequencing allows 
for detection of epigenetic modifications that are present on the native DNA. This is because it works 
by translocating a single stranded DNA (or RNA) molecule through an artificial pore. This pore is 
embedded on a membrane with a membrane potential in an ionic solution. Ions passing through the 
pore will be influenced by the molecular composition of the DNA; this results in a changing, 
measurable current that is used to distinguish sets of different nucleotides passing through the pore 
(Figure 1).  
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Figure 1 - A) Schematic view of nanopore DNA sequencing. DNA is unwound by a motor protein (†), and a single strand moves 
through the nanopore (‡) (Adapted from Heather & Chain, 2016). B) Example of a truncated nanopore signal produced by a 
single DNA with the first 2000 and last 8000 datapoints omitted. The y axis indicates electrical current in pA, the x axis 
indicates samples with a sampling frequency of 4000 Hz.  

Translating the measured electric signal back to the original DNA sequence is a challenge. Mainly 
because of noise in the signal levels and varying speed at which the DNA strand moves through the 
pore. This is a sequence-to-sequence problem and has similarities with speech recognition where 
audio is translated to text. In DNA sequencing of canonical bases this task is performed by algorithms 
called basecallers. Modern nanopore basecallers are based on deep learning models (Pagès-Gallego 
& de Ridder, 2023). Covalently modified bases and oxidized bases such as 5mC and 8-oxodG 
respectively, will also pass through the pore and can theoretically be measured. Several tools have 
already been developed to achieve what is called methylation-calling with 5mC and 6mA (Yuen et al., 
2021). 

Many nanopore-detectable epigenetic modifications exist, of which 5-methylcytosine (5mC) is the 
most abundant and can serve as an example of the importance of epigenetic modifications. 4% of 
cytosines are 5mC, making it the most frequent epigenetic modification in vertebrate cell lines 
(Liyanage et al., 2014). Because of the high occurrence, scientists oftentimes refer to 5mC as the fifth 
base (Breiling & Lyko, 2015; Lister & Ecker, 2009). 5mC usually occurs at CpG sites, which are often 
concentrated together in the genome in so-called CpG islands. Genes with 5mC in the promotor 
generally have downregulated transcription. Unusual 5mC levels are often found in different types of 
cancer, where promoters of tumor suppressor genes are hypermethylated and many other genes 
hypomethylated (Ehrlich, 2019; Nguyen et al., 2021). Other examples of native DNA modifications 
include 6-methyladenine (6mA, existing among several other methyladenines), a group of 
methylguanines, and 8-oxoguanine (8-oxoG) (Sood et al., 2019). Due to its omnipresence and 
importance, many tools have been developed to achieve accurate methylation-calling with raw 
nanopore signals. 

In general, methylation callers only require a raw or base called file of the nanopore signal (FAST5 
format). These signals are then processed by differing algorithms. Nanopolish is a tool that can achieve 
this and uses a Hidden Markov Model (HMM) to recognize 5mC from base called FAST5. Guppy is also 
used for base calling, but able to detect methylation with a Recurrent Neural Net (RNN) model. The 
same model type is used in Megalodon. Other examples include DeepSignal and DeepMod which use 
RNN and LSTM (Long-Short Term Memory) layers in a neural net, or DeepMP which uses a 
convolutional neural network. Then there is also METEORE which achieves a consensus from some of 
these models with a random forest approach. Several of the above require deep learning methods 
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that have to be trained to recognize a specific DNA modification (Y. Liu et al., 2021). Methylation 
detection is demonstrably effective for 5mC (and 5hmC and 6mA, other types of native DNA 
methylation). For preprocessing some of these tools (DeepMP, DeepSignal) also rely on the re-squiggle 
algorithm which will be discussed in more depth later.  

Table 1 – Overview of several epigenetic modification callers used for calling 5mC and the different types of algorithms 
involved. Adapted from (Y. Liu et al., 2021). 

Tool Algorithm Ref. 
Nanopolish Hidden Markov Model (Simpson et al., 2017) 
Tombo Mann-Whitney and Fisher’s exact test 

(staFsFcal tesFng) 
(Stoiber et al., 2017) 

SignalAlign HMM with Hierarchical Dirichlet Process 
(HMM-HDP), a clustering method 

(Rand et al., 2017) 

Guppy Recurrent Neural Network (RNN) (Y. Liu et al., 2021) 
NanoMod Kolmogorov-Smirnov test (staFsFcal 

tesFng) 
(Q. Liu, Georgieva, et al., 
2019) 

DeepMod BidirecFonal RNN with Long Short-Term 
Memory (LSTM) 

(Q. Liu, Fang, et al., 2019) 

DeepMP ConvoluFonal Neural Network (CNN) and 
RNN 

(Bonet et al., 2021) 

METEORE Combines 1+ other algorithm’s 
predicFons, random forest (RF) and 
mulFple linear regression are used for 
integraFon. 

(Yuen et al., 2021) 

 
The tombo toolkit 
Tombo is another one of these toolkits that can also detect modified bases from nanopore data. It 
relies on a mapping of each signal point to a nucleotide in the basecalled sequence. This mapping is 
provided by the re-squiggle algorithm in the Tombo package and does not rely on deep learning 
models like several of the tools mentioned in Table 1. Given a reference sequence (basecalls or a 
known sequence), this algorithm scores an alignment between the raw signal and the reference bases 
with dynamic programming. The scoring of individual steps in this algorithm is based on 
predetermined reference values for all possible 6-mers that could go through the nanopore. These 
values are aligned to the reference sequence to get an expected signal, and the distance between this 
expectation and the actual signal is minimized to get approximate boundaries for each base. This 
results in a segmented view of the signal (Figure 2).  
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Figure 2 - Illustration of a single (panel A) and stacked (panel B) normalized nanopore signal with the boundaries between 
bases as found by the tombo re-squiggle algorithm. The stacked data results several repeats for  the given read ID (run). The 
y-axis shows the normalized raw signal value, x-axis contains the corresponding bases according to the re-squiggle algorithm 
for reference sequence rev_mod1. The red line indicates the expected signal by the tombo model that is used in re-squiggling. 

Next to the detection of 5mC by tombo and other tools, there is a plethora of other epigenetic 
modifications that can occur on a native DNA strand that have potential to be found in a nanopore 
sequencing signal (Sood et al., 2019). One of these is 8-oxodeoxyguanine (8-oxodG), a biomarker for 
and the result of oxidative DNA damage caused by exogenous factors or inherent cell processes 
(Poetsch, 2020). This damage often occurs due to the presence of reactive oxygen species (ROS) such 
as hydroxyl radicals, hydrogen peroxide or singlet oxygen. ROS are continuously generated as a 
byproduct of aerobic cellular respiration (Hahm et al., 2022). Guanine is most frequently oxidized by 
ROS due to its low reduction potential compared to other nucleosides in the DNA, making 8-oxodG is 
the most common oxidated nucleoside in DNA.  

8-oxodG and DNA damage 
Due to the modification, 8-oxodG in its syn conformation can form a Hoogsteen base pair with adenine 
instead of a Watson-Crick base pair with cytosine (Hahm et al., 2022). This incorrect pairing eventually 
results in G>T (and corresponding C>A) transversions (Figure 2). Healthy cells defend against this via 
base excision repair, with specific 8-oxodG detection by DNA glycosylase OGG1. Higher degrees of 8-
oxodG are indicative of cell age, inflammation or age-related diseases such as cancer or 
neurodegenerative disorders (Poetsch, 2020). In addition to destructive effects, 8-oxodG also has 
epigenetic side effects by affecting transcription through allowing TET1 to initiate demethylation 
(Hahm et al., 2022) and plays a role in synaptic plasticity and memory formation (Beckhauser et al., 
2016). 
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Figure 3 – Mutagenesis from 8-oxodG. A) Hoogsteen base pair of 8-oxoguanine in syn conformation with adenine (left) and 
Watson-Crick base pair formation of 8-oxoguanine in anti conformation with cytosine (right). Result of oxidation site 
highlighted in red. Adapted from (Hahm et al., 2022). B) Mutagenesis cascade resulting in G>T and C>A transversion after 
damage by ROS followed by 2 rounds of replication.  

This project attempts to find epigenetic modifications, specifically 8-oxodG, in raw nanopore data by 
processing the repeats in a repetitive region using different algorithmic approaches. By recognizing 
the epigenetic differences among repeated sequences, we hypothesize that we can improve 
modification base calling of these regions and hopefully open avenues toward a better understanding 
of their biological function. To achieve this, we use a dataset from oligomers with known repetitive 
motifs and known in silico generated DNA modifications. These repetitive motifs are stacked using 
sequence to sequence alignment algorithm based on Dynamic Time Warping. 

Dynamic Time Warping 
Given a DNA molecule that is passing through a nanopore, tombo uses expected signal levels which 
are known for all possible 6-mers of the four canonical bases (A, C, G, T). This known ‘artificial’ signal 
is built upon the basecalls and helps in estimating where any modifications in the sequence might 
exist. Once generated, the artificial signal must be aligned to the raw nanopore signal to give a 
segmented view of the raw signal, with each segment correlating to 6-mer. Different versions of 
nanopore use different sampling frequencies, our data is sampled at 4KHz. The DNA moves at 
approximately 450 bases per second through the pore, therefore the average base has approximately 
10 datapoints in the raw signal. Combining the stretched artificial signal to the raw signal is now a 
signal alignment problem. Signal alignment problems are well-known from other fields and can be 
solved using a continuous dynamic programing approach: Dynamic Time Warping (DTW) algorithm. 
This algorithm forms the base of the more specialized re-squiggle algorithm. 

DTW was developed to align two sequences of non-discrete values of different lengths. This is the case 
for raw nanopore data because the DNA moves through the pore at varying speeds. The algorithm is 
constrained by several conditions: monotonicity and continuity conditions guarantee that the signals 
stay aligned to each other and no loops or gaps occur. Sometimes there is also a boundary condition, 
where the signals must be globally aligned – thus the warping path goes from the bottom left corner 
to the top right corner in Figure 4. This is however a manual example, tombo uses an open end and 
determines the beginning separately to get the optimal alignment. Specialized DTW implementations 
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often contain extra constraints to prevent erroneous warping paths such as the Sakoe-Chiba band that 
keeps the path constrained to a diagonal region (Müller, 2007). An ideal path should not deviate too 
much from the main diagonal or be very steep; this is why we tweak the artificial signal (Figure 4, panel 
A y-axis). 

To achieve the DTW alignment, a distance matrix and subsequent cost matrix between the two 
sequences are calculated. The distance matrix is generated by calculating the all-to-all distance 
between the signal values. To find the warping path a cost matrix is recursively calculated on the 
distance matrix from the start to end (bottom left to top right in Figure 4A) by selection of the 
minimum cost value from previous points in the alignment and adding the cost of that step. There are 
three options for how a path develops from point to point: moving one point on the index of the 
reference sequence, the query sequence, or both. This ensures monotonicity and continuity, 
preventing loops, breaks, or reversing of a signal. The alignment results from tracing the lowest values 
in this cost matrix from the end of the sequences to the start; the so-called ‘warping path’ (Figure 4A). 
Infinite values around the edges of the cost matrix satisfy the boundary condition. DTW cannot be 
parallelized due to dependency on previously calculated values. However, by using dynamic 
programming techniques this calculation is made more efficient. Dynamic programming combines 
recursion and memoization, speeding up the distance calculations by keeping track of intermediate 
results. 

 

Figure 4 - Example DTW alignment between artificial reference signal as it is generated by the tombo model (Reference) and 
a raw nanopore signal (Query). A) “Threeway” plot showing the reference (y-axis) and query (x-axis) signals as they are 
aligned, the warping path is shown in the middle. B) “Twoway” plot showing point-to-point translation of the warping path. 
The expected signal is shifted down for visualization purposes.  

The re-squiggle algorithm 
The re-squiggle algorithm included in the tombo package takes a DTW-like approach but is more 
attuned to the noisy data of nanopore sequencing. Before the warping stage, several steps are taken 
to prepare the data. Base calls from the read are mapped to a reference genome, giving a known 
reference sequence. The raw signal is normalized twice, using median shift and MAD for a first pass 
(Equation 1) and using a shift and scale parameter that are calculated after initial matching to a 
reference sequence (Equation 2). Additionally, top and bottom 5% of datapoints are winsorized per 
event before calculating the Z-score to make the algorithm more robust to outliers. 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑅𝑎𝑤	(𝑓𝑖𝑟𝑠𝑡	𝑝𝑎𝑠𝑠) =
(𝑅𝑎𝑤	𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑀𝑒𝑑𝑖𝑎𝑛)

𝑀𝑒𝑑𝑖𝑎𝑛	𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

Equation 1 – Signal normalization on the first pass. Data is shifted by the median of the raw signal and scaled to the Median 
Absolute Deviation (MAD) of the raw signal for robustness to outliers. (Re-Squiggle Algorithm — Tombo 1.5.1 Documentation, 
n.d.) 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑅𝑎𝑤	(𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒	𝑝𝑎𝑠𝑠𝑒𝑠) =
(𝑅𝑎𝑤	𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑆ℎ𝑖𝑓𝑡)

𝑆𝑐𝑎𝑙𝑒
 

 

Equation 2 – Signal normalization after the first pass. The scale parameter is calculated by correcting the MAD with the Theil-
Sen estimator between expected (From the reference genome) and observed signal levels in the read. The shift parameter is 
also corrected, using the median of intercepts over Theil-Sen estimators within the read. (Re-Squiggle Algorithm — Tombo 
1.5.1 Documentation, n.d.) 

The signal is segmented via a running-window approach that recognizes large jumps and is referred 
to as event-level data. In the warping step (also known as sequence to signal assignment), the 
normalized event-level signal is warped against the reference genomic sequence. This is initially done 
with a wide first part of the signal, to find the start of actual read data in the raw signal. Because the 
event-level data is used, this step is faster than it would be on signal level data but does not contain 
the nuanced mapping required. Once the start of the sequence is found, the algorithm utilizes a 
smaller, adaptive band like the Sakoe-Chiba band to align the segmented signal to the genomic 
sequence.  

The tombo re-squiggle algorithm relies on an expected distribution to model a given k-mer of the DNA 
strand. This is represented by a mean and standard deviation, which are used in calculating the Z-
scores used in the warping algorithm. However, this model is incomplete as it lacks entries for any 
non-canonical DNA bases or modifications. Re-squiggle is good at segmenting the bases, which allows 
us to create a stack of several signals. Tombo provides methods of recognizing methylation on such a 
stack, but these are known to be inaccurate. We hypothesize that the stack of signals or the process 
of generating it can be of value in recognizing modifications present on the DNA strand. We investigate 
this in two ways: optimization of the tombo k-mer table and classification of errors in the re-squiggle 
algorithm. 

Our first approach tries to recognize epigenetic modifications differently by learning new values 
through permutation of the old model and potentially finding a new model value in the process - re-
optimizing the k-mer table after each iteration. Then a scoring method is used to find out whether a 
re-squiggle result is accurate. The second approach uses a random forest for classification of 
irregularities in the re-squiggle stack based on features calculated from the stack data. Due to the lack 
of known truth nanopore signals for epigenetic modifications, both approaches use in silico generated 
mutations as a proxy for epigenetic modifications (Figure 5, 9).  
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Results 
Bayesian optimization of tombo models 
Here we attempt to recognize potential modified bases by optimizing the values of the expected 
canonical DNA sequence. Bayesian optimization is used to search for optimal new values because it is 
designed to optimize hard to evaluate functions, as is the case with multiple re-squiggles.  

The approach is illustrated in Figure 5. A discrepancy between the model and reference sequence is 
simulated by changing the reference sequence (Figure 5B). This emulates the presence of a non-
canonical base; the goal is to show that optimization can find the value corresponding to the original 
base (Figure 5C). Due to re-squiggle using a moving window of 6 nucleotides, 6 entries in the reference 
table are changed. Bayesian optimization from the scikit-optimize python package is used to perform 
gaussian process regression for these 6 dimensions. The Mean Squared Error (MSE) is calculated on 
event-level data, using the error between the model and re-squiggled datapoints. In Figure 5, thymine 
on position 5 is changed to adenine, indicating a large step in signal values which should be relatively 
easy to recognize by an optimizer. As seen in the MSE panels, it is difficult to quantify errors in the 
model – the emulated change is only visible in an increase in MSE on Thymine on position 6.  

The tombo package offers three methods for modified base detection, two of which rely on either 
known k-mer values or comparison of multiple samples. Ideally, we should be able to discover de novo 
modifications, which they provide in a third method that uses a hypothesis test against the reference 
model. This has a high error rate and does not give the precise location (Modified Base Detection — 
Tombo 1.5.1 Documentation).  

 

Figure 5 – Illustration of the effects of changing a reference sequence and tombo DNA model.  A) Tombo’s default DNA signal 
model (red line) is used to re-squiggle a read to the correct corresponding reference sequence. B) The default DNA model 
(green) is used with an incorrect reference sequence with adenine on position 5. Simulating behavior of the algorithm when 
values are not as would be expected by the DNA model. Red dashes on the MSE plot indicate MSE values for the reference 
sequence in panel A. C) An adapted model (purple) can be optimized to decrease MSE and find potential new signal levels 
that are different from the 4 canonical nucleotides of DNA. Panels on the right show the corresponding Mean Squared Error 
per base between datapoints and the model signals on the left. 
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Bayesian optimization was executed for most bases of all reference sequences mentioned in appendix 
2. The oligos have a length of 40 bp, 30 of which are used to optimize for. For the 4 oligo’s this results 
in 360 total permuted bases, each of which a new tombo model is optimized. Each permutation 
‘experiment’ has 6 k-mers that are optimized and have the corresponding MSE scores calculated 
(Figure 6). All optimizer results are available in the project repository (appendix 4).  

 

Figure 6 – Results for Bayesian optimization of a tombo model on a single permutation of a reference sequence. 6-dimensinal 
optimization values are shown on the left, with the original k-mer’s sequence on the y-axis and the corresponding default 
tombo DNA value (“original”) shown in red. Purple indicates the mean value of the optimizer between steps 200-250 
(“mean”). The grey region shows grid search iterations. MSE-scores corresponding to the re-squiggle result are shown in the 
panels on the right.  

The MSE score for some k-mers converges quickly, with a low MSE score and a predicted and original 
value closely together (Figure 6, k-mer CTGGGA). This is the desired behavior and several other bases 
come close to the desired original model value and show a low MSE (GGACTA, CCCTGG). Sometimes 
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we see high peaks in MSE score happening after the grid search phase (Figure 6, top panel). These 
peaks are due to re-squiggle error, which is punished with a MSE value increase of 10. There are also 
cases (CCTGGG, TGGGAC, GGGACT) where the MSE and discovered mean converge to some value but 
the original value is far from the discovered mean. 

Looking at the bottom value (GGACTA) in Figure 6, there seems to be less certainty as the optimizer 
still attempts ‘extreme’ values. This occurs often involving the first or last k-mer and could be 
contributed to this base not being of much importance to the nanopore signal and thus unrelated to 
optimizer outcome. A similar effect can be seen for CCCTGG, but only in the MSE score. The 
corresponding optimizer value seems to converge quite well. It could be that a single k-mer’s MSE 
penalty does not influence the sum of MSE’s enough compared to the improvement of the others and 
therefore the optimizer seems sure about the value.  

The optimized values converge to a point that is probably a local optimum which corresponds to a low 
MSE score. This can be seen by the differences between the purple and red lines in the optimization 
values and on the labels of Figure 6. From the tombo default DNA model, we know that ~1300 unique 
values for unique k-mers fit in the range of -4 to 4. The differences we see here are clearly larger than 
the range where a single k-mer should fall (8/1300 suggests ~2 to 3 decimals accuracy required to be 
within a reasonable range). This means that we see a local optimum, which makes this method not 
successful in recognizing wrong bases in the reference sequence.  

Summed MSE values 
The value that is passed to the optimizer is the sum of these 6 MSE’s (Figure 7). To interpret this score, 
we compare it to the summed MSE for the same k-mers for a non-modified or optimized re-squiggle. 
Based on the summed MSE score the optimizer performs well, because the sum of the MSE is lower 
compared to a ‘regular’ re-squiggle model. However, the discrepancies between model values seen in 
Figure 6 indicate that there are still issues with the optimization process. 

 

Figure 7 – Sum of MSE-scores shown in Figure 6. The red line indicates the summed MSE score of the relevant k-mers for a 
re-squiggle of this data and the default tombo DNA model. The grey area indicates grid search steps. 
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To investigate this discrepancy further, we look at the optimizations done per k-mer to see whether 
there is a general trend in optimization (Figure 8). The regression line in both plots shows no clear 
correlation between optimizer predictions and actual values, while ideally all datapoints would lie on 
the diagonal. The lack of correlation indicates that the earlier conclusion about local optima goes for 
all optimizations in the dataset, probably due to the summed MSE poorly reflecting whether an 
optimization is correct.  

 

Figure 8 – Overview of estimated values for the A7G permutation on fwd_mod1 (A) and all in silico permutations on this 
reference sequence (B). The blue line indicates a regression on the plot’s data points, the dashed grey line indicates the 
diagonal between estimated and tombo default DNA model values (identity function).   

Random forest modification calling 
We then investigated whether irregularities in the re-squiggle can be detected without any alterations 
to the tombo model. A re-squiggle result on a correct reference sequence could contain hints as to 
the location of DNA modifications. When non-canonical bases are sequenced and re-squiggled, they 
could cause misalignment of the re-squiggle results due to the signal levels being different from what 
would be expected from canonical bases. Therefore, descriptive features of this re-squiggled data can 
possibly be used to train a machine learning model to recognize native DNA modifications. To train 
and test a machine learning model for this purpose, artificial errors are induced in a re-squiggle dataset 
with known reference sequences by mutating these reference sequences in silico. This in silico 
mutation data gives complete certainty of labels being correct, allowing for a reliable accuracy 
measure within this context. Here we evaluate the performance of a random forest model for 
recognizing these in silico mutations based on their re-squiggle results. 

Inducing re-squiggle errors 
Using the oligo dataset, re-squiggle errors are introduced for each location on every reference 
sequence (in silico mutations). This is done by passing an incorrect reference sequence to the re-
squiggle algorithm alongside the default (assumed correct) tombo model. An example is shown in 
Figure 9, where G11 of rev_mod1 is re-squiggled correctly once (Figure 9) and three times for incorrect 
reference sequences (Figure 9B-D). Some of these erroneous re-squiggles are easily spotted: in silico 
mutations to cytosine and thymine clearly leave artefacts by shifting parts of the signal to other bases. 
In silico mutation to adenine is less clear, with only some slight noise visible that is hard to distinguish 
by eye. 
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Figure 9 – Stack plot examples of re-squiggle mistakes due to reference sequence modifications on position 11 (originally 
guanine). Figures of all other in silico permutations are available in the GitHub repository (appendix 4). These are normalized 
signals re-squiggled to the A) correct reference sequence, B) G>A modified sequence, C) G>C modified sequence, D) G>T 
modified sequence. 

Feature calculations, data splitting 
To quantify these re-squiggles, several features are calculated for each base. These are descriptive 
features for the ‘base of interest’ and preceding and succeeding bases. Because nanopore sequencing 
signals (and the re-squiggle algorithm) works with 6-mers. Features are calculated on the segmented 
data for all 6 bases that would be included in the tombo 6-mer and labeled individually. The ‘base of 
interest’ is located on position 3 of this 6-mer. These features are the mean, median, standard 
deviation (stdev), number of datapoints as a fraction of the whole 6-mer (len), and slope of linear 
regression. Several signals can be stacked to reduce noise, this is referred to as depth of the signal. 

Feature tables were generated based on 2 parameters: depth and sub-sampling. Depth refers to the 
number of squiggles used in a stack, and the sub-sampling factor decides how often this stack is built 
(From a different sample of squiggles) and features are calculated. Three main experiments were done 
with these datasets investigating the overall accuracy and the effect of depth, accuracy between 
oligo’s, and accuracy per base (an overview of these experiments can be found in appendix B, Figure 
B3).  

These experiments require different splits of the data. For the general accuracy experiment data was 
balanced from the original 75/25 split for in silico modifications to 50/50 and then split in a train and 
test fold. For the other experiments it was important to isolate the reference sequences to prevent 
learning a representation of the reference sequence and since balancing steps are done through down 
sampling splitting and balancing steps were as a result reversed to maximize the number of samples 
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used for model training and testing. In all experiments random forests were fitted with 1000 
estimators and a minimal sample split size of 2.  

Overall accuracy 
The maximum accuracy (98.7%) was obtained when using the complete depth of the dataset (varying 
from 3822 to 6477, Table 3), indicated as the dashed line in Figure 10. This utilizes the full dataset to 
get a view of what features of a stacked signal look like. Next, we evaluated the performance of the 
random forest model as a function of depth (Figure 10), showing that higher depth improves model 
performance towards the maximum achievable score with this data (ranging from 36% to 97%).  

 

Figure 10 – Accuracy for different sampling depths. The dashed line at the top provides accuracy when the maximum sampling 
depth is used i.e., the max number of re-squiggle hits available for the train reference sequence. Training and testing were 
done on a single sample of every base of every oligo with a 66%/33% split.  

 

For the best performing model, we then investigated the features used (Figure 11). Features are visibly 
grouped on feature type rather than on 6-mer location. The slope of regression is clearly the most 
important feature and mean the least important, possibly because these are better and worse 
measures of the visible bimodality in Figure 9 respectively. As one can imagine, a re-squiggle mistake 
is identified by horizontal shifts of datapoints to other parts of the stack. These datapoints are then at 
the beginning or end of the next base and can therefore more easily influence the slope than the 
mean. 

The re-squiggle algorithm also determines where signal points are placed based on some expected 
mean value, and due to the high density of tombo model values within the signal range it is nearly 
impossible to find a meaningful mean value that indicates some specific in silico mutation. This density 
of tombo model values also proved to be an issue when using Bayesian optimization for discovery of 
new model values. 
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Figure 11 – Feature importance for random forest with highest performance. Relative importance is shown on the y-axis, all 
used features are shown. The same model is used to calculate the dashed line in Figure 10. 

Accuracy between Oligo’s 
To investigate whether the models overfits to certain DNA sequences, we performed cross-validation 
between the different reference sequences, combinations perform better than others due to 
overfitting, their combinations were trained and tested (including to self) (Figure 12).This experiment 
again shows an increase in accuracy at different depths, with depth 1 ranging from 80%-90% accuracy, 
and maximum depth getting close to perfect accuracy for all dataset combinations. Interestingly, the 
difference in performance between testing on the same DNA sequence as trained, or a different one 
is small (max performance difference of 7% over all depths, Figure 12), suggesting that the model has 
generalized beyond the DNA sequence. 
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Figure 12 – Accuracy between different training/testing combinations of reference sequences plotted for different depths in 
panels A-D. Generated with a sub-sampling factor of 1.  

Per-base accuracy 
To calculate per-base accuracy, multiple samples of the feature data for a given base were used and 
train/test data was split based on headers instead of the mixed approach used above (note appendix 
B3). With multiple samples for a given permutation it is now possible to achieve an accuracy per base 
that is more nuanced than a binary accuracy score when classifying only a single sample. When we do 
this there seems to be an increase in accuracy when a higher re-sampling number is used (Figure 13). 
However, sub-samplings are compute intensive and therefore limited to a factor 10 for this Figure. 
The increase in accuracy for different depths is less visible in this Figure compared to Figure 10. In the 
previous experiment the model started at accuracy around 0,5 and here it starts around 0,8. An 
explanation for this could be that learning from a single reference sequence and testing on another 
one is more effective and there is some overfitting going on between reference sequences. 
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Figure 13 – Effect of re-sampling in feature calculation on accuracy, note the y-axis starting at 0.75 for better visibility of the 
difference between depths. The models were trained on rev_mod1 and tested on rev_mod2. The blue dashed line indicates 
maximum performance from Figure 10. 

Accuracy by nucleotide and in silico mutation 
To investigate whether the accuracy is uniform throughout the reference sequences, we evaluated 
the model results on a per mutation per reference base. This is displayed in Figure 14 for reference 
sequence fwd_mod1. The random forest used to generate this data was trained on the other three 
reference sequences with depth 80 and re-sampling factor 50. The plot indicates that for some bases 
the accuracy is lower (< 0.4) than for others, such as A10, T12, G18, A19, and C28. This same plot can 
be found for the other reference sequences in appendix C. This plot raises the question whether 
certain in silico mutation types are harder to detect than others, therefore corresponding accuracies 
are visualized in Figure 15. Interestingly changes from cytosine to thymine (e.g., C28 and C33 in Figure 
14) are most difficult to detect while cytosine to other bases has an accuracy of 1. Another bottleneck 
in detection seems adenine to guanine, with a near 50/50 chance of correct identification. Other 
mutations range around 0.8, which is more sensible for a depth around 80, and corresponds to the 
results obtained on the whole sequence. 

 

Figure 14 – Accuracy per index of fwd_mod1, shown for the 3 corresponding mutations for a given base at a given index (x-
axis). This test performance was generated with 50 re-samples of data with depth 80. Training was done on the other three 
reference sequences. This graph for the other reference sequences can be found in appendix C. 
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Figure 15 – Heatmap of accuracy per mutation type for the plot of fwd_mod1 in Figure 14. 

Attempted prediction of oxidized guanine 
For actual recognition of 8-oxodG or methylation we will eventually need to step away from large and 
artificially tweaked datasets. Given that two of our stacks contain 8-oxodG, we can however test the 
accuracy on a stacked squiggle. To locate one of the 8-oxodG modifications, the dataset for fwd_mod1 
with depth 1000 and re-sampling factor of 10 was used to train a random forest and predict the 
modification of 8-oxodG on position 18. This model performed with an accuracy of 0.35 for detecting 
8-oxodG on location 18 of fwd_mod2 and 0.98 on the in silico modified locations of this sequence. 
However, no method to validate this outcome is possible with the given dataset due to a risk of the 
model learning a representation of the sequence when fitting to training data. 
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Discussion 
In this project we attempted to recognize irregularities in the re-squiggle workflow by either 
optimizing values of the k-mer table used for the re-squiggle algorithm or by recognizing issues in a 
re-squiggle with machine learning (the random forest approach). The former experiment was 
ineffective, while the latter seemed to work to a reasonable degree with improvements to be made. 
The process yielded several possible improvements and opportunities for further research. There are 
also some general considerations related to the essence of this problem to be discussed. 

Bayesian optimization of tombo models 
In the attempt to re-optimize tombo’s k-mer table using Bayesian optimization it became clear that 
this was not an effective approach to recognize irregularities in raw stacked sequencing signals. There 
are several explanations and points of improvements for this. These are either related to optimizer 
hyperparameters (acquisition function, number of iterations used in grid search and optimization), or 
to the scoring method used (penalizing failed squiggles as an improvement over MSE). 

Optimization relies on a score calculated from a successful re-squiggle of the raw signal to its expected 
counterpart, which is constructed from the k-mer table. However, sometimes the re-squiggle 
algorithm fails due to large incompatibilities between the alignment of the two components. In these 
cases, we used a penalizing MSE score of 10; however, successful re-squiggles with relatively bad 
results can already achieve MSE scores around 5-8. We hypothesize that a score of 10 might not be 
stringent enough to indicate a relatively large error to the optimizer. A larger and clear indication of 
re-squiggle errors should be used here to indicate that most parts of the search space are not relevant. 
In addition to tweaking the penalty, the MSE compared to stack mean as a scoring method might not 
incorporate enough information for this specific problem. A low MSE score was achieved by the 
optimizer, but this low score does not correspond to accurate k-mer values, which could indicate that 
the optimizer gets stuck on local optima.  

There are multiple ways of solving this local optimum problem, one of which would be using a different 
scoring function. The used scoring function only considers the error between expected and measured, 
disregarding the amount of assigned datapoints. An alternative method could be adding a penalty to 
the MSE calculation that increases as the number of datapoints per base deviates from some expected 
range. A pre-calculated distribution with the expected number of datapoints per k-mer (or just one 
general distribution) could be used to generate a penalty value. The k-mer MSE score can then be 
weighted by this penalty, for example by how many standard deviations the number of bases in a 
squiggle deviates from the expected value. This would incorporate the penalty on a per-base level, 
making the method easy to adjust for different contexts.  

A downside of this scoring method is that it does not consider the DNA speed changes that occur while 
sequencing. When a re-squiggle model is penalized for assigning ‘too many’ or ‘too few’ points to a 
segment there is not a clear definition of many or few when the speed is stochastic. Therefore, the 
distribution of DNA speeds needs to be investigated to help define how stringent the proposed scoring 
method should be. There is a tradeoff to be considered between accuracy of model values and 
accuracy in correctly recognizing segments (which in turn influences model values through mis-
assignment), ideally this tradeoff can be solved by investigating squiggle data for different contexts. 

Another way to approach the local optimum problem is via the acquisition function used in the 
optimizer. The function used here is “GP Hedge”, the default function in the scikit optimize package. 
This package provides several other acquisition functions: lower confidence bound, expected 
improvement, and probability of improvement. GP Hedge uses a portfolio strategy approach where a 
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hedge algorithm decides which of the aforementioned acquisition functions is used in every iteration, 
giving better performance overall than individual acquisition functions (Brochu et al., 2011). Given 
that the results of our optimization experiment have many local optima, it could be that in this case 
an acquisition function which is strictly less exploitative (since the hedge algorithm controls this 
balance for us) might be useful in our case. An example of this would be to use entropy search, where 
the goal is to minimize the uncertainty of the location of the optimal value by exploring other regions 
of the search space (Wang & Jegelka, 2018), however entropy search is known to be computationally 
intensive and would require more time to test and compare to the GP Hedge method. 

Furthermore, hyperparameter tweaking could also benefit the results obtained here. In our 
experiments, we used 200 points for grid search and 50 subsequent iterations of optimization. This 
was chosen due to a combination of calculation time constraint and the seemingly converging MSE 
scores. Several tests on a single mutation with more grid search points and optimization iterations 
showed that the MSE converged similarly to lower value parameters at the cost of more CPU time. 
For further research it might be useful to run the optimizer for more values, however the time per 
iteration steeply increased when adding optimizer steps so this is a tradeoff to keep in mind with 
further experimentation. 

In following research, multiple scoring methods should be tested with the used in silico mutation 
method to see which is most effective for finding the optimum corresponding to a base or irregularity. 
With a perfect scoring method, it should at least be possible to find a range closely corresponding to 
the original value (as these are defined by a mean and standard deviation both for the k-mer table 
and a gaussian process), and then move on to detection of novel ranges for unknown irregularities in 
the raw signal. Our results so far indicated that this approach is not valid, however aforementioned 
issues and tweaks indicate some of the many unexplored avenues towards optimizing k-mer tables 
for the tombo algorithm to recognize squiggle irregularities. 

Random forest modification calling 
To test whether irregularities can be classified using machine learning model, the in silico approach 
for making erroneous squiggles used above was further to generate labeled feature data. This data 
was used to train and test a random forest model for recognizing mutations.  The random forest model 
works well within the context of the experiment. However, the model depends on high depth or 
subsampling for training which is unachievable for a single read. For practical application in 
recognizing irregularities in a signal with depth 1 improvements are required. Several issues with the 
model should also be addressed; there seem to be irregular performances due to subsampling, the 
data only covers a small part of the k-mer space, and there are other types of models available (and 
well-known) for dealing with nanopore read data. 

A method of addressing the issue of low depth corresponding to low accuracy could be to train a 
model with a high depth dataset measure its accuracy on lower-depth data. The accuracy here could 
be different from models trained on equal depth data and it might be worth investigating the 
relationship between train data depth and test data depth. Like the experiments done here this will 
require correct splitting for overfitting of the model and possibly training on more k-mer contexts for 
generalization to any other read dataset. 

The observed performance difference between low depth without subsampling and low depth with 
subsampling shows that sampling increases the information from reads available to the model. This 
makes sense as the features do not contain a lot of information and could be resulting from many 
different distributions. An extensive search to an effective combination of subsampling factor and 
depth factor might allow for a model with better performance on lower density data.   
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In addition to this, the information contained in the features might be improved if some measure of 
modality is added to these calculations. As was seen in the graphs of Figure 9, a stack with high depth 
can contain multiple distinct peaks of erroneous re-squiggles. Further research into new features such 
as the number of peaks can be achieved with gaussian mixture models, kernel density estimation, or 
statistical tests for unimodality of the data. Random forests allow for easy feature engineering with 
access to feature importance for every model. So varying statistics can be tested, and the best 
performing should be used for validation and improvement of the model. 

A different and very popular model type that can be used to solve these kinds of problems are deep 
learning models. Deep learning models perform well in base calling because of the high noise and high 
quantity of sequencing data. Given many genetic contexts for a known irregularity, a deep learning 
model could be trained to recognize a modification in a base caller-like fashion. An example of this 
would be the base caller Guppy, which is now able to detect 5mC, a prevalent epigenetic marker. As 
most basecallers are, this is developed for single signals. The experiments we attempted are aimed at 
repetitive data that allows for stacking of signals and resulting extra ability of recognizing irregularities. 
Therefore, it might be an interesting avenue to adapt or develop a basecaller method to work with 
stacked signals. 

Further research into irregular nanopore signals 
For further experimentation with epigenetic modifications, it is useful to consider there are many 
nucleotide modifications to consider and these all have different properties and frequency of 
occurrence – which can also vary in health versus disease (Sood et al., 2019). The oligonucleotides 
used here contained 8-oxodG on 2 locations. A final accuracy test on this modification was performed 
to see whether the most accurate random forest model could distinguish them. This test worked to 
some degree (accuracy of 0.35), which is a hopeful result given that the model was only trained on in 
silico mutated data. If this approach is further developed, it can be useful to keep in mind any tradeoffs 
unique to the irregularity that should be detected. For example, a major problem with 8-oxodG (and 
several other epigenetic mutations/modifications) remains unaddressed; due to a low frequency of 
occurrence and the possibly tiny changes in signal level corresponding to them it remains difficult to 
achieve high true positive and true negative rates when detecting modifications in human genetic 
material. Due to the biological and clinical relevance of 8-oxodG, 5mC, and other epigenetic markers, 
it remains important to develop methods for detecting these from nanopore sequencing data despite 
their individual difficulties.  
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Methods 
Data used 
Four oligonucleotides (oligos) were sequenced to obtain a dataset that can be used for re-squiggling 
evaluation. Two oligos contain oxidized guanine (8-oxodG), the other two are free of modifications or 
damage (appendix B1). For each oligo we have approximately between 500 and 1500 sequenced reads 
(appendix B2), containing repetitions of the reference sequence. In total the dataset contains 4000 
reads.  

Reads were assigned to a reference sequence using the scikit-bio SSW (Smith-Waterman) alignment 
implementation. This allows local sequence alignment between a read’s base calls and the reference 
sequence. The read is assigned to the reference sequence with the highest score, with a cutoff of any 
scores below 50. Some reads were therefore not assigned to a reference sequence; these are 
categorized as ‘None’. These reads do however contain regions that are recognized by the re-squiggle 
algorithm (76 regions in 33 reads) that are used in stacking (appendix B2).  

Raw signal to base assignment 
The raw signals were re-squiggled using tombo version 1.4, via a custom script that interfaces with the 
tombo API (link in appendix D). The re-squiggle algorithm outputs segmentation values that map the 
raw signal values to a reference sequence). These segmentation values describe the start position in 
a read, and the number of raw values corresponding to each base. Due to DNA speed changes the 
number of datapoints per base differ, thus the segmentation values allow us to stack squiggles and 
use them for further experimentation.  

A reference sequence (or: genomic sequence) is required to align a squiggle. Raw reads are only 
aligned from the 3rd to the 3rd to last location of this sequence due to 6-mers in the re-squiggle table 
giving the value corresponding to their 3rd base. Given that the reference sequences are repeated in a 
read, reference sequences are padded with the 2 last bases of the repeat before it and the 3 first bases 
of the repeat after it. This allows for a stacked squiggle for the complete reference sequence instead 
of just base 3 through 37. 

Raw signal normalization 
To prevent irregularities between reads each raw signal is normalized by its mean and standard 
deviation (Equation 3). After normalization and given the re-squiggle segments, reads are stacked (or: 
placed in ‘bins’) by their segments. 

 

normalized(X) =
(𝐱 − µ)
σ

 

Equation 3 – Normalization of read data by the mean and standard deviation of a read. 

Reference sequence cropping 
For the two following mutation experiments, mutations were made from the sixth until the sixth to 
last position of reference sequences. This is to prevent any signal effects from outside of a known re-
squiggle result window. Re-squiggles are organized by the start and end values in the raw signal that 
corresponds to the reference sequence, a small buffer ensures that effects of changes to the k-mer 
table that occur earlier/later in the sequence than the mutated base are found in the region of a stack. 
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Bayesian optimization of tombo models 
In silico mutation data generation 
For the optimization experiment a single nucleotide of a reference sequence was chosen and mutated 
to a different base. This was then assumed as the new reference sequence and all reads in the dataset 
were re-squiggled again to this new read. This re-squiggle result is scored, and the process is repeated 
using varying permutations of the tombo k-mer table as decided by the optimizer. The optimization 
process was then repeated for each nucleotide in the reference sequence and its corresponding 
possible mutations, resulting in 360 mutated re-squiggle datasets and 4 wildtype re-squiggle datasets 
containing all optimizer suggestions. 

K-mer table modification 
The tombo k-mer table (model) contains a standard deviation and a mean for each k-mer. The 6 k-mer 
values corresponding to a mutation are modified in this model during optimization. We did not re-
calculate a standard deviation, therefore only the mean values for relevant k-mers are replaced for a 
new optimizer iteration and this model is then passed to the re-squiggle algorithm. This was done 
using the default DNA model found in tombo version 1.4. 

Scoring function 
Each iteration a new k-mer model was generated from the six-dimensional optimizer suggestion, this 
model was used to re-squiggle the dataset, and the summed MSE score (Mean Squared Error relative 
to the stack mean, equation 4) was calculated and returned to the optimizer. To calculate the MSE 
score the reads are stacked, to combine all the raw values of the same base. These values are then 
used to calculate the MSE for this given base relative to the expected value in the suggested tombo 
model. The summed MSE score is the sum of the 6 relevant MSE scores surrounding the mutated base; 
2 bases in upstream, the base itself, and 3 bases downstream in the reference sequence.  

𝑀𝑆𝐸 =
1
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Equation 4 – Mean-Squared-Error calculation relative to the mean of the stacked data. Yi indicates the datapoint within a 
stacked squiggle, ymean  indicates the mean of all datapoints in a stack of squiggles for a given base. The MSE scores are 
calculated per base, and the sum of 6 relevant bases is used for the summed MSE. 

Optimizer hyperparameters 
The optimizer used is the default Optimizer from scikit-optimize version 0.9.0, conFigured to search 
for float values ranging from -5.0 to 5.0 in six dimensions. For reproducibility the random state was 
initialized to 1. The base estimator is set to ‘GP’, the gaussian process estimator. 200 initial grid search 
points were used after which optimization was done for 50 iterations. This number of iterations was 
chosen after some experimentation with up to 1000 points of grid search and 100 points of optimizer 
steps for a single mutation. This resulted in similar convergence of the resulting MSE score but with 
significantly higher computational time involved, therefore it was decided that 200 grid search points 
and 50 iterations of optimization suffice for the full experiment with all possible mutations. 

Prediction selection 
To get the best possible model estimation from the iterations, they are ranked by the total MSE score 
and 3-fold validation was used to determine the top-N optimizer suggestions to use in calculating an 
accurate mean value that best reflects a low total MSE. This 3-fold validation uses the possible 
permutations of a base in each fold and calculate the Euclidean norm between the mean of two 
permutations against the third permutation for a range of n values (Equation 5). These values are 
aggregated by summing them for a given N, and the N value with the lowest distance was selected 
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(Equation 6). This suggested that N=50 (highest possible, since there are 50 iterations) is most accurate 
to determine a vector that most closely resembles other permutation results on the same site. This 
value is used to calculate the average predicted model values for the k-mers (purple line in Figure 1). 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝑛𝑜𝑟𝑚(𝑃)) = 	 ||
(𝑃*−𝑃+)

2
−	𝑃,|| 

Equation 5 – Distance between 2 groups and the third group as used in fold validation of n. Different P’s represent the 
vector of suggestions for a given base of a given permutation. In this example a cytosine is mutated and A is left out of the 
results for fold validation. 

min
[(,/0]	

( Q 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝑛𝑜𝑟𝑚	(𝑃))
34567
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Equation 6 – Minimal of the sum Euclidean norm to determine the optimal n value. The range [1,50] is determined by the 
number of optimization iterations. The number of folds is decided by the number of optimization experiments included, for 
this validation 30 optimization experiments (90 groupings) were used. 

Random forest modification calling 
In silico data generation 
In silico mutations are induced in the reference sequence, then the raw data is re-squiggled against 
this modified reference sequence using the default tombo model. From this re-squiggled data, 
features are generated which are then used to train a random forest model.  

Features for the random forest are calculated for the in silico mutated base and for relevant 
neighboring bases. Relevant neighboring bases are the two bases before and three bases following 
the in silico mutated base. This total of 6 bases is selected because these are part of the 6-mer present 
in the nanopore. 5 features are calculated per base (a total of 30 features) and defined as follows: 

• Mean: The mean value of all datapoints in a stacked signal. 
• Median: The median value of all datapoints in a stacked signal. 
• Relative length: The number of datapoints in a stacked signal of a given base, divided by the 

total number of datapoints for the 6 bases of interest. 
• Standard deviation: The standard deviation of all datapoints in a stacked signal. 
• Slope of regression: The slope of regression after the datapoints for each raw signal in the 

stack are evenly spaced over an x-axis range of 0 to 1. 

Feature calculation hyperparameters 
To simulate training data, we create in silico re-squiggle mistakes by inserting an incorrect base in the 
used reference sequence. Re-squiggle and feature gathering steps are repeated for all mutations. This 
results in a dataset with 25% correct bases’ features and 75% incorrect bases’ features.  

Feature values can be calculated at different depths (number of squiggles used in the calculation). The 
depths used are 1-10 with increments of 1, 10-100 with increments of 10, and 100-1000 with 
increments of 100. We also calculate the features corresponding to maximum depth, which depends 
on the number of available re-squiggles results and thus varies per reference sequence from 3882 to 
6477 (Table 3).  

 

In addition to this, other feature tables were generated with subsampling. This was done by randomly 
selecting the squiggles used and adding their results to the feature table, resulting in more entries to 
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train/test on. Different combinations of sub-sampling and depth are used in different experiments 
and are further described below.  

Cross-validation and balancing 
Three experiments were done with different data splits and balancing steps (Figure B3). First, to 
establish the maximum achievable accuracy, the feature dataset was first label balanced by down 
sampling. Afterwards it was split using 66% samples for training and 33% for testing. This was done 
for all available depths and without any sub-sampling.  

To calculate the accuracy between oligonucleotides the data was first split on reference sequence; 
then, combinations of two reference sequences were selected for training and testing data. Finally, 
label balancing was applied. This is done for all combinations of reference sequences and with 
subsampling factor 5 and with depth 1, 10, 100, 1000 and maximum depth.  

For the accuracy per nucleotide first a test oligo is selected, and then the dataset is balanced by 
sampling from a mix of the three remaining (train) oligos. This was done with a depth of 80 and re-
sampling of 50 to maximize the information available per-base. The same random forest was used to 
determine the accuracy per mutation type (For each oligo to another, Figure [X]).  

Random forest hyperparameters 
The random forests used are built from the RandomForestClassifier class from the scikit-learn 
package, version 1.2.2. All forests are conFigured with 1000 estimators, no maximum tree depth, and 
a minimum sample split of 2. 
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Appendices 
A. Software used 

Package Version 
ont-tombo 1.4 
parasail 1.2.4 
scikit-bio 0.5.6 

This is not an extensive list, .yml files containing conda environments can be found in the GitHub 
repository for this project. This repository is hosted at: https://github.com/maartenvanelst/nano. 
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B. Data used 
B1. Reference sequences 
Table B1 – Reference sequences used. 8-oxodG modifications are present for two sequences at position 18, bold and in red. 

Header Sequence 
fwd_mod1 AACCCTGAGACTATCATGACAGTGAGTCATGACAGACGCT 
fwd_mod2 AACCCTGACTCATCTGAGCATGTGAGCTGAGCATGACTCA 
rev_mod1 TCAGGGTTAGCGTCTGTCATGACTCACTGTCATGATAGTC 
rev_mod2 TCAGGGTTTGAGTCATGCTCAGCTCACATGCTCAGATGAG 

B2. Read and re-squiggle distribution over reference sequences 
Table B2 – Read and re-squiggle counts of each oligonucleotide sequence.  

Header Associated number of reads Re-squiggle results 
fwd_mod1 942 5395 
fwd_mod2 1409 6477 
rev_mod1 957 5621 
rev_mod2 659 3882 
None 33 76 
Total 4000 21375 

 

B3. Feature validation and balancing graph per experiment 

 

Figure B3 – Visualization of data flow for three random forest experiments. Feature datasets are generated based on 2 
parameters; depth defined the number of squiggles used for feature calculations, and sub-sampling how often these 
squiggles are sampled and features calculated. Balancing steps always indicate a 50/50 balance of modified and unmodified 
data, splitting steps differ based on the experimental setup. 
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C. Accuracy per base plot for each oligo 
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D. Result and code URLs 
Results and code are available in the GitHub repository hosted here: 
https://github.com/maartenvanelst/nano 

Optimizer Figures can be found here: 
https://github.com/maartenvanelst/nano/tree/master/optimize_tombo/Figures/sixplot 

Custom script for re-squiggle using the tombo API: 
nano/src/resquiggle_tombo.py at master · maartenvanelst/nano (github.com) 

 

 


