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1 Layman’s summary

DNA is a set of instructions that tells an organism how to build and operate. For example, the
leaf of a plant does not look the same as the root. As such, DNA is not interpreted in the same
way by every cell of an organism. Cells can interpret DNA in different ways through DNA
methylation. DNA methylation is a modification of the DNA where molecules are attached to
it. These modifications do not change the information encoded in the DNA, but they control
how the information is used.

To study DNA methylation, we must first be able to detect it. The standard for detection is
a chemical process called bisulfite conversion. In this process, a chemical is used to physically
convert parts of the DNA that are not affected by these modifications, revealing their locations.
Another approach to detect DNA methylation is Nanopore sequencing. In this method, DNA
is pulled through a tiny pore and every time a part of the DNA is pulled through, a signal
is recorded. To understand this signal, we train machine learning models. Most researchers
are interested in methylation in humans and for that purpose, models are trained to detect
methylation. However, it has not been tested how well these models apply to fungi, where the
modifications on the DNA look very different.

We investigated how appliable these models are for detecting methylation in fungi by analysing
the Verticillium dahliae. This fungus is a plant-pathogen that poses a threat to over 400
different plant species. It lives in the soil and infects plants through their roots, leading to
significant crop losses. We found that these models are comparable to bisulfite conversion at
the global level, but not at the local level in fungi. This implies that current models are not
applicable to fungi.

2 Abstract

The DNA of an organism encodes the blueprint necessary for all cellular functions. However, the
expression of this code varies in each cell. This variation is, in part, attributed to DNA methy-
lation. Which is a modification of the DNA where methyl groups are added on top of it. These
modifications influence the expression and regulation of the genetic code. DNA methylation
has been studied in a limited number of fungi, usually through bisulfite sequencing. Nanopore
sequencing is a third-generation sequencing method that can detect methylation through the
use of deep learning models. Thus far, it has not been studied how well these models apply
to fungi. In this study, we investigated Nanopore methylation detection in Verticillium dahliae
by comparing it to bisulfite sequencing. Verticillium dahliae is a plant-pathogen that infects
over 400 plant species and causes significant crop loses. Both bisulfite and Nanopore tools
are capable of detecting 5mC methylation. Analysis at the global level shows agreement be-
tween different Nanopore tools and bisulfite data, with Nanopore demonstrating higher levels
of methylation over longer stretches of repeating areas in the genome. Nanopore basecalls from
different tools have similar quality but were not shown to agree with each other or with bisulfite
data on the exact locations of methylated cytosines. An analysis of a human Nanopore sample
showed a significant improvement in local methylated cytosine overlap between Nanopore tools.
Overall, our study demonstrates that various Nanopore tools and bisulfite data align on the
location of methylation when observed from a global perspective, with Nanopore tools hav-
ing the advantage. However, discrepancies arise among Nanopore tools themselves and when
compared to bisulfite data at the level of specific cytosines. Subsequent analysis of Nanopore
tools with human data suggests that Nanopore models may not be sufficiently generalized for
precise methylation position detection in fungi. As such, Nanopore currently cannot be used
to analyse exact methylated cytosine locations in fungi. Revealing a need for tools designed
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specifically for methylation detection in fungi.

3 Introduction

3.1 DNA Methylation is important for genome regulation and func-
tioning

The DNA of an organism encodes the blueprint necessary for all cellular functions. Although
the genetic code across all cells is the same, its interpretation varies from one cell to another
and from tissue to tissue. This variation in expression can be attributed, in part, to DNA
methylation. At a fundamental level, DNA methylation can be considered “tags” that effec-
tively “sit” atop specific regions in the genome. The addition or removal allows or obstructs
the binding of enzymes to these regions. Therefore, cells are capable of differential expression
of the genetic information encoded in this locus. By studying this mechanism, we can gain an
understanding of DNA regulation and its role in various biological processes, including disease
susceptibility, development, and evolution.

Research over the last decade has shown that DNA methylation does not randomly occur,
but is associated with specific genomic regions such as promoters, gene bodies, transposable
elements (TEs), and centromeres. Methylation on promoters and gene bodies play a role in
gene regulation [Jjingo et al., 2012] [Jones and Takai, 2001]. Gene promoters are specific DNA
sequences located near the beginning of a gene; they provide a binding site for RNA poly-
merase and other regulatory proteins, enabling the transcription of genes. Methyl groups on
DNA can prevent the binding of transcription factors and RNA polymerases. The methy-
lation of promoters is often associated with gene silencing [Jjingo et al., 2012]. The gene
body refers to the coding region of a gene, from the transcription start site to the stop
site. In contrast to promotor methylation, methylation on gene bodies has been observed
on actively transcribed genes [Jones, 2012]. It has been suggested that gene body methyla-
tion may have an impact on splicing [Laurent et al., 2010]. Methylation on genes also plays
a role in genomic imprinting, where specific parental alleles can be methylated to silence
them. Contrary to promoters and gene bodies, methylation on centromeres and TEs play
a role in genome integrity [Deniz et al., 2019] [Scelfo and Fachinetti, 2019]. Centromeres, are
repeat rich regions important for chromosomal stability; they play roles in chromosome seg-
regation and cell division [Moarefi and Chédin, 2011]. Methylation of centromeres has been
suggested to contribute to genome stability, and controlling the binding of centromeric proteins
[Moarefi and Chédin, 2011] [Scelfo and Fachinetti, 2019]. The last region, TEs, are mobile ge-
netic elements that can duplicate and change their position throughout a genome. Methylation
of TEs contributes to genome integrity by preventing them from uncontrollably duplicating
throughout the genome [Deniz et al., 2019] [Jones and Takai, 2001].

DNA methylation consists of a spectrum of chemical modifications that can occur on different
bases and in various contexts. DNA Modifications can be added to both cytosine and adenine
molecules in the DNA, but typically occur on cytosine bases in eukaryotes. The most well-known
type of modification is 5-methylcytosine (5mC) Other known types of methylation include
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fc), 5-caboxylcytosine (5caC) and N6-
methyladenine (6mA) (Fig. 1). The function of 5mC has been well researched and plays roles
in processes such as genomic imprinting, and tissue-specific gene expression [Moen et al., 2014].
The roles of the other modifications, such as 6mA, 5fC and 5caC, are less clear and represent
an active area of research [Xie et al., 2023] [Neri et al., 2015].

While various forms of cytosine methylation exist, a distinction can also be made within the
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context of a DNA strand. These contexts are symmetric CG (also referred to as CpG), sym-
metric CHG, and asymmetric CHH where H stands for A, C, or T [Law and Jacobsen, 2010].
In these contexts, Symmetric and asymmetric refer to the presence or absence of a cytosine on
the opposite strand at the site of this motif. Symmetric contexts are stable over cell division as
a cytosine is present on the replicated strand, allowing for replication of the methylation, while
in an asymmetric context there would be no cytosine present to methylate [Ming et al., 2021].
With the understanding that methylation occurs in varied genomic regions and comes in diverse
forms, we might wonder if certain methylation patterns are unique to specific organisms.

3.2 Genomic methylation varies greatly between eukaryotes

In mammals, methylation predominantly occurs in inter- and intra- genic regions, while oc-
curring less often on promoters [Suzuki and Bird, 2008] [Jin et al., 2011]. Mammals are par-
ticularly well studied in the context of DNA methylation and their genomes exhibit high
levels of methylation, largely restricted to CG sites, where 60% to 80% are methylated
[Hernando-Herraez et al., 2015]. These sites are not uniform across the genome and are of-
ten found on “CpG islands” which are regions with a high frequency of CG dinucleotides
[Han et al., 2008]. To give an example, the genome of the house mouse (Mus musculus) has a
methylated cytosine composition of 74.2% CG, 0.30% CHG, and 0.12% CHH [Feng et al., 2010].
Looking beyond mammals, however, the extent of genome methylation varies in the an-
imal kingdom, as honey bees are known to only have 1% of their genome methylated
[Feng et al., 2010]. In contrast to animals, plants do not only have methylation present on the
gene body, but also a significant amount on transposons (Fig. 2) [Zemach and Zilberman, 2010]
[Zemach et al., 2010]. The extent of genome methylation in plants varies from species to species.
The model organism thale cress (Arabidopsis thaliana), a mustard plant, has a methylated cy-
tosine composition of 22.3% CG, 5.92% CHG, and 1.51% CHH, whilst the black cottonwood
(Populus trichocarpa), a broadleaf tree, has a composition of 41.9% CG, 20.9% CHG, and
3.25% CHH [Feng et al., 2010]. Taking a look at fungi, it has been observed that methylation
occurs predominantly on highly repeating areas of the genome such as centromeres and on
transposable elements [Nai et al., 2021]. They lack any gene body methylation, and the levels
of methylation across fungi are very low and occur in all cytosine contexts [Bewick et al., 2019]
[He et al., 2020]. Why do animals, plants, and fungi exhibit such different patterns of methy-
lation, and why do methylation levels vary so much even within their kingdoms?

Methylation has been mainly studied in a few model animals and plants, and the general
trends reported above have been derived from there. Importantly, however, the organisms
that are studied are not a representative set. For example, many model organisms such as
the larvacean (Oikopleura dioicam), roundworm (Caenorhabditis elegans), fruit fly (Drosophila
melanogaster), and bakers yeast (Saccharomyces cerevisiae) lack known DNA methyltrans-
ferases (Fig. 2) [Zemach and Zilberman, 2010] [Suzuki and Bird, 2008]. Lastly, many impor-
tant species have not been studied at all. For example, the fungal kingdom contains millions
of species whose DNA methylation has never been studied [Wu et al., 2019]. Even though our
understanding is limited by this, there must be drivers behind such variation.

3.3 DNMT1 and DNMT3 methylate cytosines in animals and
plants, while DIM2 methylates cytosines in fungi

DNA methylation on cytosine residues is catalysed by DNA methyltransferases, which trans-
fer methyl groups to bases in the DNA. DNMT1 and DNMT3 are families of eukaryotic
DNA methyltransferases that existed before the divergence of plants and animals (Fig. 2)
[Goll and Bestor, 2005]. The DNMT1 family are maintenance methyltransferases, that methy-
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late the strand of asymmetrically methylated CG sites (hemimethylated) after DNA replication
[Željko M. Svedružić, 2011]. This process is achieved in partnership with the protein UHRF1,
which contains a domain that has been shown to prefer binding to hemimethylated CG sites
[Bostick et al., 2007]. DNMT3 enzymes perform de novo methylation by methylating previ-
ously unmethylated sequences in plants and animals (Fig. 2) [Zemach and Zilberman, 2010].
In animals, the DNMT3 family methylates CG sites, while in land plants DNMT3s can methy-
late cytosine in all contexts [Goll and Bestor, 2005].

In contrast to animals, cytosine methylation in fungi is performed by the CMT/DIM2 family,
which is present in both fungi and plants [Kouzminova, 2001] [Zemach and Zilberman, 2010].
CMT/DIM2s perform both maintenance and de novo methylation and are homologues to
DNMT1s [Kouzminova, 2001] [Goll and Bestor, 2005]. Most knowledge about DNA methy-
lation in fungi is derived from a single species, the Neurospora crassa [Honda et al., 2016]
[Adhvaryu et al., 2015] [Gessaman and Selker, 2017].

DIM2 methylates by forming a complex with HP1, which is a family of proteins that are associ-
ated with chromatins [Lewis et al., 2010]. HP1 acts both in heterochromatic regions associated
with centromeres and in shorter methylated regions within euchromatin [Freitag et al., 2004].
It recognizes sites marked by H3K9me3 and guides DIM2 to these sites, enabling methyla-
tion [Lewis et al., 2010]. H3K9me3 is a modification of histone proteins where three methyl
groups are added to the lysine 9 residue of histone H3, these modifications are placed by DIM5
[Tamaru and Selker, 2001] [Lewis et al., 2010].

In Cryptococcus neoformans DNMT5 (not to be confused with DIM5) is required for the main-
tenance of methylation [Catania et al., 2020]. However, DNMT5 has not been shown to methy-
late in the Verticillium dahliae [Kramer et al., 2021]. There is also a protein belonging to the
DNMT4 class, called RID. It plays an important role in the operation of the RIP mechanism,
which is a defence mechanism against TEs [Lewis et al., 2008] [Cambareri et al., 1989]. In this
process, RID induces mutations in TEs and repetitive regions, thereby preventing duplication
and preserving genome integrity [Lewis et al., 2008] [Cambareri et al., 1989]. Importantly, RID
has not been demonstrated to engage in DNA methylation activity [Cambareri et al., 1989]
[Lewis et al., 2008]. Given the diversity of methyltransferases across eukaryotes and the de-
sire to study them, what techniques are most effective in detecting and characterizing DNA
methylation types and patterns?

3.4 Bisulfite conversion and Oxford Nanopore sequencing are mod-
ern methylation detection methods that come with down-
sides

To identify DNA methylation, different techniques have been developed with the capability to
distinguish between the presence and absence of methyl groups attached to specific individual
bases within a DNA molecule.

In the past, restriction enzymes were used for methylation detection. These restriction en-
zymes can recognize and cut DNA at specific sequences [Lippman et al., 2005]. By digesting
DNA with these enzymes and then analysing the resulting fragments, the presence of DNA
methylation at specific sites could be determined [Lippman et al., 2005]. This method is lim-
ited to known recognition sites, restriction enzyme bias, and a low resolution [Oakeley, 1999].
Another older method is methylated DNA immunoprecipitation, this method employs antibod-
ies by raising them against 5m-cytosines which results in 5m-cytosines being pulled down. This
separates the methylated regions from the unmethylated ones, allowing them to be analysed
[Jacinto et al., 2008]. Similarly to restriction enzyme use, this method suffers from, low reso-
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Figure 1: Overview of methylation types and contexts. a) Chemical structures of cytosine,
adenine, and types of modifications. b) The three cytosine contexts highlighted in a DNA
sequence.
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Figure 2: Phylogenetic tree showing the presence, absence, and location of methyltrans-
ferases and methylation on the genomes of several animals, fungi, and plants. Figure from
[Zemach and Zilberman, 2010].

lution, bias in enrichment, and loss of information due to the loss of the non-methylated DNA
[Oakeley, 1999].

Due to the advent of whole-genome sequencing, we have been able to investigate and determine
the biological functions of DNA and RNA at genetic-, transcriptomic- and epigenetic- layers
[Zhong et al., 2021]. An application of this in epigenetics is whole-genome bisulfite sequencing
(Fig. 3). In this method, bisulfite converts cytosine residues to uracil in DNA, while leaving
methylated cytosines unaffected. This results in information on single-nucleotide resolution on
the 5m-cytosine methylation status of a segment of DNA in all contexts. Most of the knowledge
about DNA methylation has been discovered through this method. The drawbacks, however,
are that it is limited to read lengths typically shorter than 500 base pairs and can only detect
5mC methylation.

Third-generation sequencing techniques like PacBio and Oxford Nanopore sequencing en-
able, long-read sequencing with single-base, single-molecule sensitivity, allowing for the
distinction between modified bases and unmodified ones (Fig. 5) [Rang et al., 2018]
[Rhoads and Au, 2015]. PacBio uses a polymerase enzyme to add nucleotides with a fluo-
rescent label to a DNA strand. By capturing the flashes that occur upon the addition of these
nucleotides to the DNA strand, the sequence can be resolved (Fig. 4) [Rhoads and Au, 2015].
PacBio distinguishes modified bases from unmodified ones by the differences in time lengths
between base incorporations, which are indicated by these flashes [Rhoads and Au, 2015].

In contrast, Nanopore can directly detect DNA or RNA by pulling nucleotides of a sequence
through a pore. When a nucleotide is pulled through, a signal is produced and recorded, which
can be translated into a base. The differences in these “squiggles” are used to distinguish
bases from each other [Liu et al., 2021]. Relating this electric current back to a base is not
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Figure 3: Schematic of the bisulfite conversion process. Unmodified cytosines in the DNA
strand are converted to uracils, while leaving modified cytosines the same. After PCR, the
uracils are now thymines in the copied strand, regular cytosines in the copied strand now
indicate methylated ones. Figure adapted from [Xu and Seki, 2019].

Figure 4: Schematic of the PacBio sequencing process. The addition of “tagged” nucleotides
to the DNA strand causes a flash of light. Through the duration of pauses between these flashes
of light, the sequence is determined. Figure adapted from [Rhoads and Au, 2015].

trivial, as there is more signal than there are bases in the sequence that is pulled through the
pore. Additionally, we do not know how many bases are present in the pore at a given time.
There are currently two pore types, R9 and R10. The R10 type is a more recent iteration
that features two sites for recording base signal, rather than the R9 pore type’s single site.
Complex Neural Networks are employed to translate squiggles to sequence, but this process
of basecalling is error-prone. It has been shown that Nanopore sequencers are capable of
discriminating between 5mC, 5hmC, 6mA, 5caC, and 5fC [Wescoe et al., 2014]. However, the
ability to detect and discriminate between these types of methylation are completely depended
on the basecaller and the neural network model used to decode the signal. Models capable of
detecting certain types of methylation or contexts are often not available for each pore type,
or available at all. Additionally, models are typically tailored for human methylation analysis,
potentially causing incompatibility in organisms that exhibit different methylation patterns.
Thus, it is currently unknown to which extent these models can be applied to non-model
systems such as fungi.
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Figure 5: Two strands of DNA with modified and unmodified bases being pulled through
two Nanopores, producing squiggles. Squiggles from modified bases can be distinguished from
squiggles from unmodified bases. Figure adapted from [Xu and Seki, 2019].

3.5 Aim of this project

Verticillium dahliae is a fungal plant pathogen that lives in the soil, and it is responsible for
causing Verticillium wilt in plants [Berlanger and Powelson, 2000]. It is presumed to be asexual
and targets a broad spectrum of over 400 plant species [Usami et al., 2009] [Song et al., 2020]
[Berlanger and Powelson, 2000]. Our understanding of its genome is that it is characterized
by a scarcity of methylation, TE-rich regions such as centromeres, and lineage-specific regions
that contain TEs marked by H3K9me, which can be found across different Verticillium dahliae
strains [Cook et al., 2020] [Seidl et al., 2020] [Kramer et al., 2021]. A complex of DIM2 and
HP1 are responsible for all methylation on its genome. This methylation predominantly occurs
in highly repetitive genomic regions and TEs. Our understanding of its methylation originates
from gene knockout experiments and the analysis of bisulfite data, providing valuable insights
[Kramer et al., 2021]. We are going to test Nanopore methylation detection in Verticillium
dahliae with the goal of assessing its applicability in fungi. We will achieve this by 1) establish-
ing a baseline with bisulfite data from previous studies, 2) detecting methylation with several
Nanopore tools and comparing them against each other, and 3) comparing the Nanopore and
bisulfite results.

4 Results

4.1 De novo genome assembly of V. dahliae JR2 as a reference for
DNA methylation studies

The current Verticillium dahliae reference genome assembly was created using PacBio technol-
ogy eight years ago [Faino et al., 2015]. To be able to test Nanopore methylation detection, we
generated Nanopore data of the Verticillium dahliae JR2 strain with the R9 pore type. Even
though our new Nanopore data originates from the same JR2 strain, there is a potential for
differences between the two datasets due to technological advancements and inherent variations
in biological samples. Such disparities could introduce unexpected variability into our analy-
ses. Thus, we created a new assembly of the Verticillium dahliae JR2 genome using Oxford
Nanopore R9 reads.

The raw data was basecalled with Guppy [Oxford Nanopore PLC., 2023b], the Nanopore data
consists of 301,479 reads with 2,605,587,933 bases, with a median read quality of 14.6 and a
N50 of 14,368 bp. After internal quality checks and corrections by Canu [Koren et al., 2017],
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2,720,69 reads consisting of 2,588,578,378 bases with genome-wide coverage of 51.77 reads, were
used for the assembly. The de novo genome assembly was assembled with Canu using an esti-
mated genome size of 50mb, which generated 21 contigs with a total length of 36,637,128 bp
(Fig S1). Of the 21 contigs, 11 contigs smaller than 50kb were discarded. Contig 15 was at-
tached to 16 and contig 14 attached to contig 3, placing 100 N bases between them, resulting in
8 chromosomes. The contigs were combined based on manual curation with Tapestry and dot
plots, which revealed that these contigs aligned and that each contig contained a single telomere
(Fig. 6a) [Davey et al., 2020]. Chromosomes were reverse complemented where necessary and
renamed according to the reference genome assembly. The new assembly was corrected with
short Illumina reads of the same JR2 strain, using six iterations of Pilon [Walker et al., 2014]
to compensate for the higher error rates found in Nanopore reads. In total, 19,703 changes were
made to the genome, with the last iteration only making 6 changes. The corrections range from
single base insertions to insertions of entire reads. A separate copy of the same assembly was
corrected with Nanopolish [Loman et al., 2015] using the same R9 Nanopore reads. Nanopolish
made corrections per chromosome, with a total of 19,727 changes. The identities of the assem-
blies were determined with Mummer [Marçais et al., 2018], the identity of the non-corrected
assembly to the public reference genome was 99.8989%, the identity of the Nanopolish corrected
assembly was 99.9301%, and the identity of the Pilon corrected assembly was 99.9345%. This
indicates the high similarity of all the assemblies to the reference, with the Pilon corrected
one having a slight edge. The TE annotations and gene annotations of the publicly available
reference genome assembly were transferred to the new assembly (non-corrected, Nanopolish
corrected, and Pilon corrected) using Liftoff [Shumate and Salzberg, 2021] and polished after.
In the Pilon corrected assembly, 1 gene “VDAG JR2 Chr3g00010a” failed to transfer, while
no genes failed to transfer in the other assemblies. To check for changes in the genes, protein
sequences of the original gene annotation were compared with the protein sequences of the
transferred genes. This resulted in 8,284 identical proteins and 3,120 changed proteins in the
non-corrected assembly, 8,099 identical proteins and 3,305 changed proteins in the Nanopolish
correction, and 11,117 identical proteins and 286 changes, with 1 not being transferred in the
Pilon correction. To give an example, of the 286 changed sequences, 81 have a different length
and 205 had at least one amino acid change. Thus, we concluded that the Pilon corrected
assembly was the best, and we decided to move forward with the Pilon corrected assembly for
use in the downstream analysis (Fig. 6b).

4.2 DIM2 and HP1 knockouts lead to reduced methylation in repet-
itive sequences and TEs

As a framework for the assessment of DNA methylation patterns in V. dahliae JR2 we first
utilized a publicly available bisulfite dataset of the V. dahliae JR2 strain [Kramer et al., 2021],
serving as a positive control. The dataset comprises six samples, including the wild type,
as well as knockouts for RID1, HP1, DNMT5, DIM2, and a double knockout DIM2DNMT5
[Kramer et al., 2021]. The six bisulfite samples were all processed twice, once with Bismark
[Krueger and Andrews, 2011] and once with BSmapz [Greg Zynda, 2020]. The number of
aligned reads for all samples hovered around 14 million, which was reduced to 12 million
after deduplication. The median coverage for all samples ranged from 31 to 34. The per site
methylation of the wild type was plotted as a histogram, revealing an unimodal distribution,
where most of the cytosines have no methylation (Fig. 7). Because the fraction modified is so
low, we cannot perform a bimodal test to determine the methylation status of an individual cy-
tosine, which is the standard in organisms with higher methylation levels [Schultz et al., 2012].
Instead, we considered cytosines to be methylated if it has minimum coverage of four and a
minimum of three reads that indicate methylation.
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Figure 6: De novo genome assembly of the Verticillium dahliae genome with Nanopore R9
data. a) Contigs shown in Tapestry after combining and correcting with six iterations of
Pilon. b) Dot plot of the final de novo assembly aligned against the reference genome assembly
[Faino et al., 2015], indicating high similarity.

Figure 7: Per site methylation distribution of the Verticillium dahliae. The distribution is
unimodal and visibly ranges from 0.0% to 0.2%, indicating low levels of methylation.
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The wild type sample with Bismark detected 18,758,324 cytosines (10,099,428 CHH, 4,904,882
CG, 3,754,014 CHG) of which, 11,860 (4,978 CHH, 4,843 CG, 2,039 CHG) are methylated.
The wild type sample with BSmapz detected 19,307,970 cytosines (10,413,535 CHH, 5,034,482
CG, 3,859,953 CHG) of which, 9,307 (3,224 CHH, 4,321 CG, 1,762 CHG) are methylated.
The total fraction of methylated cytosines is 0.06% in Bismark and 0.05% in BSmapz. The
methylated fraction per total context is similar across the two tools, with the most considerable
difference in CHH context (0.05% vs 0.03%). Overall, the tools called comparable numbers of
cytosines.

The weighted methylation score was calculated for each sample by dividing the genome into
windows of 10kb, and subsequently the score was calculated by dividing the sum of methylated
reads in the window through the total number of reads in that window. Only reads that were
covering a cytosine in the given window were considered in the calculation. Hypo-methylated
windows were determined by comparing the wild type windows to the windows of the other
samples, respectively. The weighted methylation scores were then plotted over the chromosomes
alongside the TE and gene annotations (Fig. 8). The overall weighted methylation scores across
all samples range from 0 to 0.03, these low scores are as expected in fungi [Bewick et al., 2019]
[He et al., 2020] [Kramer et al., 2021]. As expected, we observed that the wild type shows peaks
at areas of the chromosome where TEs and repeats are located [Kramer et al., 2021]. The score
over areas where genes are located is zero or close to zero. The DNMT5 and RID1 knockouts fol-
low the same methylation pattern as the wild type, indicating that there was no significant loss
of methylation in these mutants [Kramer et al., 2021]. In contrast, the DIM2, DIM2DNMT5,
and HP1 knockout samples show a significant loss of methylation over TE and repeat areas of
the chromosome, as indicated by the hypo-methylated windows (Fig. 8), confirming that DIM2
and HP1 are essential for methylation. Next, taking a look at the total number of methylated
cytosines per sample, we can see that the DIM2, DIM2DNMT5, and HP1 knockouts show a
decreased number of methylated cytosines which are in line with the results from the weighted
methylation scores (Fig. 9a). Lastly, we used Deeptools [Ramı́rez et al., 2016] to collapse the
annotated genome features into a length of 3000 bp and plotted the per site methylation score
over this area for each sample. The per site methylation score goes as high as 0.8% over the
TE and repeat features in the wild type, DNMT5, and RID samples. While the scores over the
genes do not go higher than 0.3% in these same samples (Fig. 9b). In the DIM2, DIM2DNMT5,
and HP1 knockouts the per site methylation over TE features was reduced to the same level
as the genes at 0.3% (Fig. 9b). Thus, further reinforcing that DIM2 and HP1 are essential for
methylation.

4.3 Dorado and Guppy basecalls are highly similar

There are many basecallers, developed both by ONT and third parties, such as Mega-
lodon, Bonito, Causacall, and Halcyon. We selected two basecallers called Dorado
[Oxford Nanopore PLC., 2023a] and Guppy because these basecallers are directly developed
and recommended by Oxford Nanopore Technologies. They can perform both basecalling and
modified basecalling having various models available for 5mC methylation detection and other
types of methylation. Additionally, DeepSignalPlant, which is a methylation calling tool trained
for plant methylation detection [Ni et al., 2021], recommends Guppy for its basecalling. This
tool will be used in the downstream analysis.

To ensure a fair comparison when evaluating Nanopore methylation calls from different tools, we
benchmarked the basecallers with Nanopore benchmark [Pagès-Gallego and de Ridder, 2023].
This benchmarking method considers the reference genome as the truth, evaluating how ef-
fectively the basecallers generate reads that align to the genome. We used the V. dahliae
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Figure 8: Global view of methylation across chromosome five of the wild type and knockouts of
the bisulfite data. The weighted methylation score is shown in 10kb windows over chromosome
5. Grey squares highlight hypo-methylated windows. At the bottom, genes are represented in
blue, while transposable elements and repeats are highlighted in yellow.

Figure 9: Counts and percent methylation shown across the different bisulfite samples. a)
Percentage of cytosines methylated on chromosome 5 per mutant and cytosine context. b)
Methylation percentage plotted over genome features with Deeptools.
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Figure 10: Benchmarking results of Dorado & Guppy basecallers. a) Comparison of alignment
event rates. b) Passed reads, alignment failure rates and number of bases aligned to N bases
in the genome. c) AUC scores of the match rate, sorted by average read Q-score d) Q-score of
correctly and incorrectly predicted bases.

Nanopore R9 reads for this benchmark. The median coverage resulting from both tools is 33.
The alignment event rates for both basecallers show highly similar results, with box plot medi-
ans indicating a rate of 0.4. The median mismatch rates are between 0.5 and 0.6. The insertion
median rates are at 0.01 while the deletions are between 0.01 and 0.02. In Guppy, 2,996,79
reads passed the quality check, while 2,995,84 reads passed in Dorado. In Dorado, 200 more
reads failed to map than the Guppy reads. The AUC scores of the match rate are the same,
at 0.614. The mean Q-scores for incorrectly predicted bases in both tools ranges from 1 to 40
with the median at 16, while the Q-score for the correctly predicted bases ranges from 16 to
28 with a mean of 23. Overall, the basecalls by Guppy and Dorado demonstrate a high degree
of similarity (Fig. 10).

4.4 Nanopore captures methylation patterns identified through
bisulfite treatment on a global level, displaying higher levels
of methylation.

To evaluate methylation calls in all contexts and a model trained for plant methylation, we also
performed methylation calling with DeepSignalPlant. DeepSignalPlant is a tool for methyla-
tion calling that uses a combination of raw ONT signal and basecalls from Guppy to determine
methylation status in all contexts [Ni et al., 2021]. The tool was trained for methylation call-
ing in plants, where methylation mostly occurs in TEs, which is more similar to methylation
patterns in fungi [Ni et al., 2021] [Zemach et al., 2010].

Before comparing methylated cytosines, the exact positions of basecalled cytosines were com-
pared, resulting in an overlap of 5,054,454 cytosines with 1,100 positions being unique to Do-
rado and 1,276 positions unique to Guppy. Comparing positions from Dorado and Guppy to
the CG positions of DeepSignalPlant resulted in overlaps of 5,055,421 (combined remainder:
2134) and 5,055,665 (combined remainder: 1822) respectively. Having established that Dorado
and Guppy basecalls are similar, we examined their methylation calling capabilities. Guppy
detected 5,055,730 cytosines (after filtering) of which 31,452 are methylated, Dorado detected
5,055,554 cytosines (after filtering) of which 34,888 are methylated. As the R9 models for Guppy
and Dorado are only capable of detecting 5mCG, all cytosines are in CG context. DeepSig-
nalPlant detected 19,497,234 cytosines (10,562,997 CHH, 5,057,422, CG, 3,876,815 CHG) of
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Figure 11: Global methylation levels for bisulfite data and multiple Nanopore methylation
callers. The red lines depict the baseline noise level established by the bisulfite knockout of
HP1. At the bottom, genes are represented in blue, while transposable elements and repeats
are highlighted in yellow. Grey boxes highlight hyper-methylated windows.

which 150,729 (44,463 CHH, 94,436 CG, 11,830 CHG) are methylated.

To compare the Nanopore tools to each other and to the bisulfite data on a global level, the
genomes were split into windows of 10kb and weighted methylation scores were calculated for
all tools. In this instance, the hyper-methylated windows were calculated instead of hypo-
methylated ones. Which was done by comparing the scores of the windows from the bisulfite
HP1 knockout to all other windows. On the global level, the three Nanopore tools agree with
each other, the weighted methylation scores peak over the same areas where transposable el-
ements are located (Fig. 11). The height of the peaks differ between the tools, with the
highest score being 0.03 in Dorado, 0.05 in Guppy, and 0.024 in DeepSignalPlant. DeepSig-
nalPlant shows that a couple of windows at the beginning and end of the chromosome are
hyper-methylated, but these windows are not shown as such in Dorado or Guppy.

Having compared the Nanopore tools, we now make a comparison to the bisulfite data to see
if Nanopore sequencing detects similar methylation patterns and levels. The three Nanopore
tools highlight all the peaks present in the bisulfite track. Additionally, the Nanopore tools
show peaks at the end of the chromosome not present in the bisulfite track, over an area where
genes and TEs occur alternately (Fig. 11). Nanopore peaks are higher and not interrupted
over highly repeating areas, as opposed to the bisulfite track, which has a peak score of 0.022.
These trends occurred over all eight chromosomes of the genome (Fig. S2-S9). This suggests
that Nanopore is capable of detecting methylation identified by bisulfite conversion and that it
might have an advantage over it, thanks to its longer reads.

4.5 Methylation calls disagree on exact methylated cytosine loca-
tions

Since we globally observed that Nanopore can detect the same patterns as bisulfite conversion,
possibly having an advantage. We now sought to establish a similar pattern on the level of ex-
act cytosines. Zooming in on individual cytosines called by all tools, the overlap of methylated
cytosines between Dorado and Guppy is 16.4%. The overlap between Dorado and Deepsig-
nalPlant 9.9% (CG only), and the overlap between Guppy and DeepSignalPlant is 10.4% (CG
only) (Fig. 12b). The overlap between DeepSignalPlant and the bisulfite wild type resulted in
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Figure 12: Overlap of methylated cytosine positions across different tools. a) Upset plot of
all tools in 5mCG context. b) Venn diagram of Dorado, Guppy, and DeepSignalPlant in 5mCG
context. c) Venn diagram of Bismark, BSmapz, and DeepSignalPlant in 5mC all contexts.

Table 1: Scores of methylated cytosine location overlap between tools

Precision Recall F1 AUC ROC

Bismark vs DeepSignalPlant 0.0162 0.290 0.0307 0.644
DeepsignalPlant 5mCG vs Dorado 0.345 0.123 0.181 0.561

Guppy vs Dorado 0.277 0.304 0.290 0.651

a 1.1% overlap with Bismark (all context), and a 0.62% overlap with BSmapz (all context) (Fig.
12c). To put a more precise number on the performance of the methylation calling, we used
machine learning scoring metrics (Table 1) (Figs S10-S14). The precision, recall, and F1 scores
are extremely low across the board. To ensure that there was no cut-off issue in terms of defin-
ing methylated cytosines, parameter sweeping was done, but scores virtually stayed the same.
These results show that exact methylated cytosines positions disagree among Nanopore tools
and when compared to the bisulfite data. Which suggests that the Nanopore tools are incapable
of capturing the methylation indicated by bisulfite data at the exact cytosine level.

4.6 Guppy and Dorado have better local overlap in human data

On the exact methylated cytosine level, we saw that the overlap between Dorado and Guppy was
very low at 16.4% and inconsistent with the global methylation view. To narrow down possible
causes of this discrepancy, we basecalled a low coverage public human R9 Nanopore dataset with
Dorado and Guppy. The human data set has 747,475,084 bases of which 709,920,532 aligned, a
total of 126,897 reads, N50 of 8,184, and a median Q-score of 14. The coverage over the genome
ranged from 1 to 32 with a mean of 1. After filtering, Dorado called 23,324 cytosines of which,
12,127 are methylated and Guppy called 20,197 cytosines with 9,884 methylated cytosines. The
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per site methylation was plotted, which shows a bimodal distribution. Methylated cytosines
are either fully methylated or not methylated (Fig. 13), there is a small peak at 50% most
likely due to heterozygous sites. The overlap of Dorado and Guppy for the human dataset
is 56.1% compared to the 16.4% overlap in the fungal data (Fig. 14). This suggests that the
discrepancy between methylated cytosine overlap in the fungal data is caused by the models not
being generalised enough for methylation calling in fungi. As, the human is a model organism
with high levels of methylation.

Figure 13: Per site methylation distribution of the human. Peaks can be seen at 0% and
100%, which indicates that positions are often completely methylated or not methylated at all.
The small peak at 50% possibly originates from heterozygous sites.

Figure 14: Methylated cytosine overlap of Guppy and Dorado with human data. Of the total,
14104 cytosines indicated as methylated between Dorado and Guppy, 56% are overlapping.
Dorado has more methylated cytosines of which 34% are not overlapping.

5 Discussion

We tested Nanopore methylation detection in Verticillium dahliae with the goal of assessing
its applicability in fungi. To achieve this we completed three objectives 1) establishing a base-
line with bisulfite data from previous studies, 2) detecting methylation with several Nanopore
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tools and comparing them against each other, and 3) comparing the Nanopore and bisulfite
results.

Using the bisulfite data, we set a baseline, allowing us to evaluate the Nanopore methylation
calls. Our results showed low levels of methylation in the V. dahliae, which peaked at TE and
repeat-rich regions in the wild type. Using the gene knockouts, we reproduced results from
[Kramer et al., 2021] that showed that an absence of DIM2 and HP1 leads to reduced levels of
methylation over these areas. This demonstrates that DIM2 and HP1 are essential for methy-
lation in V. dahliae, while also showing that the biological signal occurs over TEs and repeats.
The DNMT5 and RID1 knockouts mirrored the wild type methylation pattern, indicating their
limited impact on overall methylation. These findings were found on the global level, the per
site methylation level, and at the total number of methylated cytosines which shows that the
findings are consistent across different metrics. Additionally, the HP1 knockout established a
baseline noise level. These characterizations of the methylation pattern in Verticillium dahliae
set an overall expectation, which allowed us to test and compare the Nanopore data to it.

Nanopore basecalling is a quickly evolving field, with many basecalling/methylation calling
tools developed by first and third parties alike. By selecting multiple Nanopore basecallers,
we were able to compare performance between Nanopore tools, giving us a better idea of
what to expect when comparing Nanopore to bisulfite data. The comparison of Dorado and
Guppy revealed a high degree of similarity in basecalling performance. There was a substantial
overlap of exact cytosine positions between Dorado and Guppy, and the number of cytosines
and methylated cytosines were all comparable. Unexpectedly, the methylation calling results
at the local level had little to no overlap. Checking the overlapping positions between Dorado,
Guppy, and DeepSignalPlant revealed that not all overlapping positions necessarily occurred
over TEs and repeats. The unique calls for each tool also partially overlapped TE and repeat
positions. Meaning that the unique methylation calls in each tool cannot be disregarded as
noise, and overlapping calls cannot be assumed to be the truth.

We were only able to detect methylation in CG context with Dorado and Guppy, highlighting a
disadvantage of the R9 pore type. In the case of DeepSignalPlant, there were more methylated
cytosines, but this did not result in an increased overlap. Similarly, to the Nanopore tools,
little overlap was found when comparing to the local view of the bisulfite tools.

The small (16.4%) overlap between exact methylated cytosine positions in Dorado and Guppy,
despite basecalling similarities, prompted us to test the tools with human data. The human
sample showed higher overlap at 56%, while you would expect a higher overlap of such similar
basecallers, it was still significantly higher than the 16.4% in V. dahliae. This suggests that the
models used in Nanopore methylation calling are not generalized well enough for application
in fungi. Perhaps if a bigger human sample was used with more coverage, the overlap could
have been higher in the human test. For example, in the study from [Liu et al., 2021], they
performed a benchmark of many Nanopore methylation callers in human where they showed
that Guppy has a high Pearson Correlation on the per site methylation status with both bisulfite
data (0.901) and other Nanopore methylation callers such as DeepSignal (not to be confused
with DeepSignalPlant) (0.938) and Megalodon (0.947).

The global methylation analysis, by use of weighted methylation score, demonstrated overall
agreement among the three Nanopore tools. They exhibited peak methylation scores over TEs
rather than genes. Still, small differences in peak heights were observed, with DeepSignalPlant
having the lowest and Guppy the highest scores. The peaks in the Nanopore tools aligned with
the peaks in the bisulfite tools. However, the peaks in the Nanopore tools displayed heightened
methylation levels, often extending over entire TEs where bisulfite did not. This increase can
be attributed to the advantage of long reads. Aligners often face challenges when attempting
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to align short reads in densely repeating areas, resulting in sparser methylation levels. Starting
this project, we had assumed that the bisulfite data would be our positive control. However,
as highly repeating areas are precisely the regions where methylation is expected to occur in
fungi, assuming that the bisulfite data is the ground truth here would be incorrect. Which
means that bisulfite data is not the ground truth and a comparison of bisulfite and Nanopore
at exact cytosine positions may lead to many false negatives.

By adding DeepSignalPlant to the comparison, we hoped to gain insight into the differences
between more specialized methylation callers and generalized methylation callers such as Dorado
and Guppy. However, no such advantage was apparent, even when considering that DSP calls
cytosines in all contexts. This is not conclusive evidence, however. While plant methylation is
more similar to fungi than mammals, the level of methylation in fungi is still significantly lower
than in plants, possibly affecting DSP’s performance in V. dahliae.

Nanopore technology has demonstrated its capability to distinguish various types of methy-
lation, a distinguishing feature from bisulfite conversion. Although the potential for discrim-
inating between different methylation types has been demonstrated in general, our specific
study faced limitations due to the absence of applicable models for the older Nanopore variants
utilized in our analysis.

While bisulfite conversion cannot detect 5hmC, limiting our knowledge of the presence of
this modification, our use of ONT enabled the detection of its presence. Specifically, the
5hmCG 5mCG model exhibited significantly higher scores across the entire chromosome (Fig.
S15). Upon isolating the 5mCG and 5hmCG tracks from the 5hmCG 5mCG model, it be-
came evident that the majority of the signal originated from 5hmCG modifications (Fig. S15).
Nevertheless, the inability of bisulfite to detect 5hmC prevented the comparison of these re-
sults.

Nanopore sequencing has recently been used in different studies in fungi such as
the studies by [Li et al., 2023], [Dvorianinova et al., 2021], [Sperschneider et al., 2021], and
[Gusa et al., 2023]. They used Nanopore for methylation analysis in Beauveria bassiana, Fusar-
ium oxysporum, Puccinia graminis, and Cryptococcus deneoformans respectively. These stud-
ies did not report benchmarks of the methylation calling tools they used. Their findings, on a
global level, are similar to ours, with low methylation levels that occur mainly over centromeres
and TEs. In [Li et al., 2023] basecalling was done with Guppy and methylation analysis was
done with DeepSignalPlant. The other studies used Guppy and Nanopolish. We did not
test Nanopolish which remains a popular tool among researchers for methylation calling. It
uses a Hidden Markov Model that is limited to only detecting 5mCG methylation in groups
[Simpson et al., 2017]. Its inability to call CG sites individually was the reason for us to not
include it in the tested Nanopore tools. As Nanopolish calls CG sites in groups, no fair com-
parison of individual cytosines can be made to other tools. This raises the question if the tools
used in these studies are accurate enough for use in fungi, as our results suggest that individual
methylated cytosine calling with Nanopore in fungi is not accurate enough.

6 Conclusion

Our results demonstrate that various Nanopore tools and bisulfite data align when observed
from a global perspective. However, discrepancies arise among Nanopore tools themselves and
when compared to bisulfite data at the level of specific cytosines. In the global context, longer
reads from Nanopore exhibit a distinct advantage over the short reads from bisulfite. Testing
Dorado and Guppy with human data revealed a significantly higher overlap of methylated
cytosines, suggesting that Nanopore models may not be sufficiently generalized for precise
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methylation position detection in fungi. Revealing a need for tools designed specifically for
methylation detection in fungi.

7 Methods

7.1 De novo genome assembly

Nanopore Fast5 files were basecalled with Guppy v6.5.7 using the dna r9.4.1 450bps hac model.
Resulting files were concatenated and passed to Canu v2.2. From the resulting contigs, all con-
tigs under 50kb were discarded and four contigs were combined into two separate chromosomes,
resulting in eight chromosomes total. The assembled genome was corrected with six iterations
of Pilon v1.24 using short Illumina reads of the JR2 strain. Annotations were transferred to
the new de novo genome using Liftoff v1.6.3. Analysis of the protein sequences from trans-
ferred genes was done by changing nucleotide sequences to protein sequences using Gffread
v0.12.7. Subsequently, the protein sequences were compared to each other using the “com-
pare proteins.py” script.

7.2 Bisulfite analysis

The genome was converted using Bismark v0.24.1, then the paired reads were aligned using
Bowtie2 v2.5.1. After alignment, the resulting BAM files were deduplicated and the methylation
was extracted from the BAM files per context. The three files were first converted to BedGraph
format and then to a cytosine coverage report, resulting in the final methylation BED file.

BSmapz v1.1.3 was run for every bisulfite sample in paired read alignment mode. The resulting
BAM files were deduplicated and the methylation extracted with the methratio.py script from
BSmapz.

Minimum coverage of four was used to filter the reported cytosines from both
tools. The weighted methylation scores were calculated in windows of 10kb using the

“weighted methylation score.py” script with the following formula:
n∑

i=1

Ci/
n∑

i=1

Ci + Ti .

The calculated scores were then passed to MethylKit v1.12.0 where hypo/hyper-methylated
windows were determined by use of a fast fisher test with a q value of 0.01 and then extracted
to separate BED files. All the resulting data was then imported into the “Plot scores.Rmd”
script where the data was plotted over all chromosomes using karyoploteR v3.18.

Additional statistics such as the per site distribution were calculated with the “Bismark”,
“BSmapz” Jupyter notebooks. Lastly, Deeptools v3.5.4 was used to plot the collapsed feature
plots using calculate matrix and plotProfile.

7.3 Nanopore analysis

7.3.1 Guppy

Guppy v6.5.7 was run with the dna r9.4.1 450bps hac model with methylation detection set
to 5mCG. The BAM files that passed the internal quality check were concatenated and then
passed to Modkit [Oxford Nanopore PLC., 2023c] v0.2.2. Using Modkit with the pileup –CpG
–reference options, only CG cytosines that matched the reference genome were extracted.
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7.3.2 Dorado

Dorado v0.4.2 was run with the dna r9.4.1 e8 sup@v3.3 basecalling model with methylation
calling set to 5mCG. The resulting BAM file was then aligned to the genome using Minimap2
v2.26. The resulting BAM file was sorted and indexed, after which it was passed to Modkit.
Using Modkit only CG cytosines matching the reference genome were extracted.

7.3.3 DeepSignalPlant

The fungal Fast5 files were first converted to single Fast5 files. The single Fast5 files
were then basecalled with Guppy v6.5.7 using the dna r9.4.1 450bps hac model. The
FASTQ files that passed the quality check were concatenated together and passed to
Tombo v1.5.1 alongside the Fast5 files. Tombo v1.5.1 was used to combine the basecalls
from the FASTQ files with the raw signal from the Fast5 files. Then the signal in the
Fast5 files were re-squiggled with Tombo v1.5.1 by referencing the genome. Modifications
were called afterwards with DeepSignalPlant v0.1.6 using the “model.dp2.CNN.arabnrice2-
1 120m R9.4plus tem.bn13 sn16.both bilstm.epoch6.ckpt” model.

7.3.4 Downstream

The resulting BED files were all passed to “weighted methylation score.py” where cytosines
were filtered on minimum coverage of four and the weighted methylation scores were calculated
like the bisulfite data. The hyper/hypo-methylated windows were also calculated in the same
manner.

The exact position overlap of regular cytosines and machine learning metrics for methylation
overlap were all calculated with the “check c overlap.py” script. The Venn diagrams and upset
plot were created with the “methylated c overlap.py” script. Additional statistics such as the
per site distribution were calculated with the “Dorado”, “Guppy”, “DeepSignalPlant” Jupyter
notebooks.

7.4 Automation

The steps involving Bismark, Dorado and DeepSignalPlant were automated with bash scripts
(supplementary Fig. S16). The downstream analysis for calculating and plotting the weighted
methylation score was automated using a Snakemake pipeline (Fig. S17).

7.5 Code availability

The scripts and pipelines developed for this project are publicly available at https://github.
com/bayraktar1/Fungi_methylation_calling
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Supplementary figures

Supplementary Figure 1: All contigs assembled by the de novo genome assembly.

Supplementary Figure 2: Global methylation levels for bisulfite data and multiple Nanopore
methylation callers over chromosome 1. The red lines depict the baseline noise level established
by the bisulfite knockout of HP1. At the bottom, genes are represented in blue, while trans-
posable elements and repeats are highlighted in yellow. Grey boxes highlight hyper-methylated
windows.
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Supplementary Figure 3: Global methylation levels for bisulfite data and multiple Nanopore
methylation callers over chromosome 2. The red lines depict the baseline noise level established
by the bisulfite knockout of HP1. At the bottom, genes are represented in blue, while trans-
posable elements and repeats are highlighted in yellow. Grey boxes highlight hyper-methylated
windows.

Supplementary Figure 4: Global methylation levels for bisulfite data and multiple Nanopore
methylation callers over chromosome 3. The red lines depict the baseline noise level established
by the bisulfite knockout of HP1. At the bottom, genes are represented in blue, while trans-
posable elements and repeats are highlighted in yellow. Grey boxes highlight hyper-methylated
windows.
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Supplementary Figure 5: Global methylation levels for bisulfite data and multiple Nanopore
methylation callers over chromosome 4. The red lines depict the baseline noise level established
by the bisulfite knockout of HP1. At the bottom, genes are represented in blue, while trans-
posable elements and repeats are highlighted in yellow. Grey boxes highlight hyper-methylated
windows.

Supplementary Figure 6: Global methylation levels for bisulfite data and multiple Nanopore
methylation callers over chromosome 5. The red lines depict the baseline noise level established
by the bisulfite knockout of HP1. At the bottom, genes are represented in blue, while trans-
posable elements and repeats are highlighted in yellow. Grey boxes highlight hyper-methylated
windows.
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Supplementary Figure 7: Global methylation levels for bisulfite data and multiple Nanopore
methylation callers over chromosome 6. The red lines depict the baseline noise level established
by the bisulfite knockout of HP1. At the bottom, genes are represented in blue, while trans-
posable elements and repeats are highlighted in yellow. Grey boxes highlight hyper-methylated
windows.

Supplementary Figure 8: Global methylation levels for bisulfite data and multiple Nanopore
methylation callers over chromosome 7. The red lines depict the baseline noise level established
by the bisulfite knockout of HP1. At the bottom, genes are represented in blue, while trans-
posable elements and repeats are highlighted in yellow. Grey boxes highlight hyper-methylated
windows.
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Supplementary Figure 9: Global methylation levels for bisulfite data and multiple Nanopore
methylation callers over chromosome 8. The red lines depict the baseline noise level established
by the bisulfite knockout of HP1. At the bottom, genes are represented in blue, while trans-
posable elements and repeats are highlighted in yellow. Grey boxes highlight hyper-methylated
windows.

Supplementary Figure 10: Confusion matrix of Bismark vs DeepSignalPlant methylated
cytosine positions.
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Supplementary Figure 11: Confusion matrix of Bismark vs Dorado methylated cytosine
positions.

Supplementary Figure 12: Confusion matrix of DeepSignalPlant vs Dorado methylated
cytosine positions.
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Supplementary Figure 13: Confusion matrix of Guppy vs Dorado methylated cytosine
positions.

Supplementary Figure 14: Confusion matrix of DeepsSignalPlant vs Guppy methylated
cytosine positions.
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Supplementary Figure 15: Weighted methylation scores of Dorado 5mCG and 5hmCG
models. The red lines depict the baseline noise level established by the bisulfite knockout of
HP1. At the bottom, genes are represented in blue, while transposable elements and repeats
are highlighted in yellow. Grey boxes highlight hyper-methylated windows.
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Supplementary Figure 16: Flowchart of the Dorado, DeepSignalPlant, and Bismark auto-
mated pipelines.
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Supplementary Figure 17: Flowchart of the Snakemake pipeline for calculating and plotting
the weighted methylation score.
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