
Utrecht University

Master’s Thesis
Mathematical Sciences

A Formalization of the Algebraic Small
Object Argument in UniMath

Author:
Dennis Hilhorst

Supervisor:
Dr. Paige North

Second Reader:
Dr. Jaap van Oosten

November 30, 2023

Graduate School of Natural Sciences

i

Abstract

Model categories, introduced by Quillen in 1967, form the cornerstone of modern ho-
motopy theory, providing a language and tools for this branch of mathematics. They
consist of two interacting weak factorization systems. Quillen defined a transfinite con-
struction to generate weak factorization systems and thereby model structures on a
category, given sufficiently well-behaved classes of maps: the small object argument.
Weak factorization systems, lacking algebraic structure, suffer some defects from a
categorical point of view. Grandis and Tholen introduced the notion of natural weak
factorization system to rectify these issues. Garner pointed out some problematic as-
pects of the small object argument: that it is not convergent, that it is not related to
other known transfinite constructions and that it satisfies no universal property. He
refined the small object argument to generate natural weak factorization systems in a
more algebraically coherent way.

In this thesis, we elaborate, rephrase and formalize Garner’s ‘algebraic’ small object
argument. The formalization is written using the Coq proof checker, using the UniMath
library. This is a formalization framework based on Homotopy Type Theory (HoTT).
The formalization provides an air-tight confirmation of the theory through computer
verified proofs.

We fill in the details in Garner’s construction, add much needed intuition and
redefine parts of the construction to be more direct and accessible. We rephrase the
theory in more modern language, using constructions like displayed categories and a
modern, less strict notion of monoidal categories, so that it is fit for formalization. We
point out the interaction between the theory and the HoTT foundations, and describe
some of the constructive issues we come across.

The formalization can be found at
https://github.com/DenSinH/unimath-small-obj-arg.

https://github.com/DenSinH/unimath-small-obj-arg

ii

Acknowledgements

First and foremost, I would like to thank my supervisor Paige North for the many
helpful meetings and her valuable feedback on my work. I would also like to thank
Sina Hazratpour for his time and insight during some of these meetings. Additionally,
I would like to thank the second reader Jaap van Oosten for taking the time to evaluate
this thesis.

I would like to thank Merel for her support and without whom I would probably
be starving or dehydrated. I would also like to thank Marco for his support, as well as
my parents and brothers for always being by my side.

Contents

1 Introduction 1

2 Homotopy Type Theory and Formalization 5
2.1 Types . 5

2.1.1 Formalization . 6
2.1.2 Homotopy Type Theory . 8

2.2 Constructions on Types . 9
2.2.1 Function Types . 9
2.2.2 Type Universes . 10
2.2.3

∏
-types . 10

2.2.4
∑

-types . 12
2.2.5 Summary . 15

2.3 n-types . 15
2.3.1 Mere Propositions . 16
2.3.2 Sets . 17
2.3.3 Propositional Truncation . 17

2.4 Univalence . 19
2.5 Category Theory . 19

3 Displayed Categories 21
3.1 Definitions . 21
3.2 Constructions . 24
3.3 The Structure Identity Principle . 25
3.4 Examples . 26

3.4.1 The Arrow Category . 26
3.4.2 The Three Category . 27

4 Model Categories 28
4.1 Preliminaries . 29

4.1.1 Retracts . 29
4.1.2 Lifting Problems . 30

4.2 Weak Factorization Systems . 31
4.3 Model Categories . 36

4.3.1 The Homotopy Category . 38

5 Natural Weak Factorization Systems 40
5.1 Functorial Factorizations . 40
5.2 Natural Weak Factorization Systems . 42
5.3 Properties of NWFSs . 44

5.3.1 Monads . 44
5.3.2 Categorical Properties . 46
5.3.3 Properties of the (Co)multiplication 47

iii

CONTENTS iv

5.3.4 An NWFS is a WFS . 48

6 The Classical Small Object Argument 52
6.1 The Small Object Argument . 52
6.2 Cofibrantly Generated Model Structures . 56

7 The Algebraic Small Object Argument 58
7.1 The One-Step Comonad . 59
7.2 The Iterative Step . 62

7.2.1 Monoidal Categories . 63
7.2.2 The Monoidal Structure on FfC . 64
7.2.3 The Monoidal Structure on LNWFSC 67
7.2.4 The Transfinite Sequence . 69
7.2.5 Convergence of the Sequence . 73
7.2.6 Obtaining the Free Monoid . 75
7.2.7 Cocompleteness of LNWFSC . 80
7.2.8 Right-closedness of LNWFSC . 83
7.2.9 Reducing the Smallness Requirement 85

7.3 The Small Object Argument . 89

8 Discussion 90
8.1 Conclusion . 90
8.2 Remarks on the Coq Formalization . 91
8.3 Future Work . 92

Chapter 1

Introduction

Model categories, first introduced by Quillen [1], form the foundation of modern homotopy
theory [2]. They provide a language and tools for this branch of mathematics, placing re-
sults from the homotopy theory of topological spaces in a more general context. This has
expanded the concept of homotopy theory to one that describes a more general methodology,
applicable in a much broader range of subjects. In this way, model category theory plays a
role in homotopy theory analogous to that of category theory in mathematics. It facilitates
comparisons and allows for common proofs of seemingly unrelated results [3].

Let us sketch the problem that model categories solve. In traditional homotopy theory,
meaning that of topological spaces, one commonly studies properties that are invariant under
homotopy. There is a class of morphisms in the category TOP of topological spaces, called
weak equivalences, which preserve these invariants. One might like to consider these weak
equivalences to be isomorphisms, even though they are not. This is but one example of a more
general problem in category theory. Model category theory provides a way to construct a
well-behaved homotopy category, solving this more general problem. The homotopy category
describes the category ‘up to homotopy’, in which case the weak equivalences are in fact
isomorphisms. The construction provides results analogous to those in traditional homotopy
theory, placed in a more generic context. It also allows for a global study of homotopy
theoretical concepts, contrasting the more local nature of traditional homotopy theory.

The theory has been applied in many other areas of mathematics, such as derived algebraic
geometry [4], condensed mathematics [5] and of course in homological algebra and K-theory
as subfields of algebraic topology [2]. It even has applications in computer science [6]. Fur-
thermore, model categories are also used to present (∞, 1)-categories, which are categories
admitting higher structure, in the form of morphisms between morphisms (2-morphisms),
morphisms between those (3-morphisms) and so on [7]. This is a relatively young field of
mathematics, and is still very actively studied.

Model categories describe the behavior of two interacting weak factorization systems, related
through the weak equivalences. Weak factorization systems in turn consist of two classes
of maps (the left and right class) which satisfy a dual lifting property, such that any map
in the category can be factored as a left and right map. The notion of weak factorization
system may be a familiar one to topologists, though perhaps not in name. In topology, the
Homotopy Extension Property and the Homotopy Lifting Property define two weak factoriza-
tion systems, forming a well-known model structure on TOP known as the Hurewicz model
structure [3].

In a weak factorization system (WFS), neither the lifting property nor the factorization is
defined to satisfy any additional properties, and the factorization need not be unique. Hence
the adjective ‘weak’. Though they have been studied extensively by category theorists, these
points make it so WFSs suffer from some defects from a categorical point of view.

Grandis and Tholen aimed to rectify these defects, introducing the notion of natural weak

1

2

factorization system (NWFS) [8]. An NWFS is based on a functorial factorization whose
functors underlie a comonad and a monad. This allows one to construct a canonical solution
to any lifting problem between (the corresponding notion of) a left and right map, in a natural
way. The added algebraic structure resolves the defects Grandis and Tholen saw in ‘plain’
WFSs.

In his formulation of model category theory, Quillen also described a way of cofibrantly
generating a WFS, starting from a sufficiently well-behaved class of maps: the small object
argument [1]. The construction may even be used to generate model structures. Useful as it
is, this construction has some problematic aspects, like the notion of WFS itself.

Richard Garner remarks that the transfinite construction Quillen describes does not con-
verge, has no universal property and is not related to any other known transfinite construc-
tions [9]. He refined Quillen’s small object argument so that it produces an NWFS in an
algebraically coherent way, resolving these problematics aspects. Further extending this the-
ory, Emily Riehl introduced the notion of algebraic model structures [10], which form an
equivalent to model structures using NWFSs instead of WFSs.

In this thesis, we focus mostly on Garner’s ‘algebraic’ small object argument. The goal is to
elaborate and rephrase the construction in a more modern and accessible way, as well as to
formalize it using UniMath, based on the Coq proof checker. We will also point out some more
constructive issues in the theory of WFSs and in Quillen’s ‘classical’ small object argument,
which were not mentioned by Garner.

We aim to elaborate his argument, filling in the gaps and providing much needed intuition
using important examples such as the standard model structure on the category TOP of
topological spaces or SSET of simplicial sets, as well as a much simpler example on the
category SET of sets. Though very extensive, the UniMath library still limits us in the use of
high level arguments, forcing us to use more direct arguments, indirectly making for a more
accessible and detailed description of the construction. Limitations in formalization also force
us to use more modern constructions, such as the notion of displayed categories [11] and an
adapted, slightly weaker notion of monoidal categories [12] [13].

The Coq proof checker in conjunction with the UniMath library is a formalization frame-
work that is built on Homotopy Type Theory (HoTT), or univalent foundations. HoTT is
a young field of mathematics, and provides a new foundation of mathematics that is funda-
mentally different from set theory, upon which the mathematical education of most readers
is likely based. The theory combines concepts from type theory and homotopy theory, and
is a foundation that is very fit to underlie a computer proof assistant [14].

Since the constructions by Quillen and Garner are built on set-theory based mathematics,
reformulating them in HoTT provides new insights and perspectives on the theory. It will
point out where we are limited, or where we in fact require less strict assumptions than in
the set-theory based counterpart. The formalization removes any ambiguities and provides
an air-tight confirmation of the theory through a computer verified proof.

Describing the theory of model categories in HoTT is in fact a very ‘meta’ thing to do. In
HoTT, types can be described as ∞-groupoids, which may be presented as topological spaces
or simplicial sets [14]. A well-known model structure on SSET, one that can be generated
with the (algebraic) small object argument, can be used to present type theory itself [15].

In this thesis, we first introduce the reader to HoTT and proof checking in UniMath in
Chapter 2. This should provide a sufficient understanding of HoTT to read the type theoretic
definitions that are sprinkled throughout the thesis. We highlight some of the main differences
between HoTT and set theory as a foundation. The chapter also aims to give the reader an
idea of what formalization entails.

We then introduce displayed categories in Chapter 3. These provide a very natural frame-
work for defining functorial factorizations and NWFSs in a way that interacts well with HoTT.

3

In Chapter 4, we introduce the reader to weak factorization systems and model categories.
We introduce some examples and explain why model categories are useful following existing
literature, but we also give new insights into some of the limitations of this theory. In
Chapter 5 we describe how these limitations can be fixed by using natural weak factorization
systems instead, after introducing their basic algebraic properties, as well as some examples.

We then get to the small object argument. We first introduce Quillen’s ‘classical’ small
object argument in Chapter 6, following a detailed description by Hovey [2]. As we go along,
we follow two important examples in TOP and SSET. Though again mostly expository in
nature, we also point out a constructive issue in Quillen’s classical small object argument.

Finally, we get to the main part of the thesis: the ‘algebraic’ small object argument by
Garner. In Chapter 7, we follow Garner’s construction, fill in the details that he leaves out
and point out the problems we run into when formalizing the theory. We add intuition in
the form of examples in TOP and SSET, as well as a more trivial, but computable example
in SET. We also redefine part of the construction to be more direct and intuitive, further
making the argument accessible to those unfamiliar with the construction.

The formalization that accompanies this thesis can be found at https://github.com/

DenSinH/unimath-small-obj-arg.

https://github.com/DenSinH/unimath-small-obj-arg
https://github.com/DenSinH/unimath-small-obj-arg

4

Preliminaries

In this thesis, we write X : C to denote that X is an object of a category C, following HoTT
conventions [14]. We write f : X → Y (following UniMath notation) or f : Hom(X,Y)
to denote that f is a morphism from X to Y in C. Following the choice adopted for the
UniMath library, we write compositions in ‘diagrammatic order’, meaning that the composite
of f : X → Y and g : Y → Z is written as f · g : X → Z.

Definitions and lemmas often correspond to formalized definitions and lemmas. Whenever
this is the case, the corresponding definition or lemma is linked, and in the case of definitions,
the formalized definition has often been included in the thesis. To distinguish definitions and
lemmas that have been formalized in the existing UniMath library from those that are new
in the formalization accompanying this thesis, we underline links to those from the UniMath

library. For example, category leads to the definition of a category in the UniMath library,
whereas LNWFS_tot_monoidal leads to a lemma in the new formalization. Code samples of
definitions that are included in the thesis are always original definitions, unless explicitly
stated.

As a last preliminary remark, since the thesis has been accompanied by a formalization,
many proofs have either been stripped down or omitted entirely. Sometimes, a sentence is
written to describe the idea of a proof, and sometimes a (usually incomplete) proof is given.
These proofs serve mostly as an aid in understanding the ideas behind the formalization or
are meant to clarify where proofs might differ from existing literature. They should not be
taken as complete or formal proofs.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Core/Categories.v#L161
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L1012

Chapter 2

Homotopy Type Theory and
Formalization

One of the main components of this thesis is the formalization that comes along with it.
This formalization is to be part of the UniMath library, based on the Coq proof checker.
The UniMath library is based on univalent foundations. In other words, the mathematics it
formalizes is based on Homotopy Type Theory (HoTT) as opposed to set theory, upon which
the mathematical education the reader might have followed is likely based. More formally,
the Coq proof checker is based on the Calculus of Inductive Constructions, which is a closely
related dependent type theory [15]. For all intents and purposes though, we may just consider
it to be based on HoTT, or univalent foundations.

The idea of HoTT is that mathematical objects are not just ‘things that might be in
one or more sets’, but rather ‘things of a certain type’. A major difference being that an
object can only be of one type. Even lemmas and theorems are types, and a term of such a
type corresponds to a proof of the statement. The beauty in this is that the theory becomes
purely constructive: if one proves a theorem, one immediately gets an object that satisfies
the statement. This idea will be made more clear throughout this chapter.

The reason that the theory is called ‘Homotopy’ Type Theory, is because we can also view
types as spaces, and terms of a certain type as points of a certain space. Equalities become
paths, equalities of equalities (indeed, not all equalities are the same) are homotopies, etc.
When reading this chapter, it may be helpful, at least at the beginning, to keep this view in
mind when learning about types for the first time.

This chapter is fully expository, aiming to give an introduction to HoTT, alongside an
introduction to formalization in Coq / UniMath, starting with the most basic constructions.
Later we review some theory about category theory in univalent foundations, which we will
need later on in this thesis. We introduce this theory following the HoTT book [14].

2.1 Types

First of all, it is good to clarify what distinguishes (homotopy) type theory from set theory.
The HoTT book makes this very clear by noting that set theory has two ‘layers’. There is
a deductive system of logic, and within this system, the axioms of a theory like set theory.
“Set theory is not only about sets, but rather about the interplay between sets (the objects
of the second layer) and propositions (the objects of the first layer)” [14]. Type theory, on
the other hand, is its own deductive system. Instead of the two separate notions of logic and
sets, there is only one basic notion: types. Everything can be formulated as a type. Even
propositions (things we can prove, assume, negate etc.) are just specific types. In this way,
proving a theorem becomes the same thing as constructing an element of a specific type.

5

2.1. TYPES 6

This leads to another major difference between the logic in the two theories. It concerns so-
called ‘judgements’, which are the conclusions we draw using the rules defined in a deductive
system. In set theory, there is only really one type of judgement, namely that ‘a proposition
P has a proof’. We use rules like ‘P and Q implies P ∧Q’ to deduce other judgements, which
are of this same form. In the example, that would be the deduction that ‘P ∧Q has a proof’.

In type theory, this basic judgement is written as p : P , and is pronounced ‘the term p
has type P ’, or ‘p is an element of P ’. If P is a proposition, we sometimes call p a ‘witness’
of P . However, types can also behave more like sets in set theory. Suppose A is a type,
then one might think of the type theoretical statement a : A to mean something like a ∈ A
in set theory. These things are fundamentally different though, since a : A is a judgement,
it is not something we can prove or disprove, it just is. In contrast, a ∈ A is a proposition
about two pre-existing objects a and A, which we can prove to be true or false. It is good
to think about it in precisely that way: in type theory the statement a : A is no relation
between pre-existing objects. We cannot consider a isolated from its type A. I personally
like to compare this to strongly typed programming languages, where one might declare a
variable int x; declaring that x is a term of type int. Here too, there is no way to consider
x in isolation: it is an int, and it is not something else. It may be useful to keep this idea
in mind when reading about formalization. We will introduce other useful interpretations of
HoTT in this chapter as well.

Then we get to the last major difference between set theory and type theory, which is
the treatment of equality. Effectively, there are two notions of equality: propositional and
definitional. The first one is something that is in line with what we commonly do in (set
theory based) mathematics: these types of equalities are something that we can prove. For
example, in set theory, one might have two objects a, b which are in a set A. One can,
possibly using some hypotheses, prove that a = b. Similarly, in type theory, suppose a, b : A.
Then one might show that the identity type a =A b is inhabited. We say that a and b are
propositionally equal.

The second form of equality is much stronger. The notion of definitional equality is an
equality judgement, at the same level as a : A. Meaning that this is not something that
we can show to be true or not, it just is. One simple example is the following: suppose
f : N → N is a function that is defined as f(x) := x2, then just by evaluating the expression,
we know that f(3) is definitionally equal to 32. After all, if we define x to be 3, then the
expression f(x) is just a ‘relabelling’ of the expression x2, which in turn is just a relabelling
of the expression 32. Notice how we do not say that f(3) is definitionally equal to 9? That is
because it is in fact not! From the way one defines the natural numbers N, and the way one
defines multiplication, one can deduce that, indeed, 32 =N 9, but this is not a definitional
equality.

We can also relate this back to programming for those familiar, specifically object-oriented
programming. One might consider a comparison which evaluates to a boolean as a proposi-
tional equality, whereas a definitional equality corresponds with two variables pointing to the
same object. In the second case, the variables are fundamentally the same, though perhaps
labelled differently, whereas in the first, the compared variables may have been constructed
entirely differently.

2.1.1 Formalization

By formalization, we mean the process of proving theory using proof assistant software on a
computer. A nice quote on the nLab explains what this entails precisely: “Generally, people
tend to speak of formal arguments when referring to arguments by formalism, hence by purely
symbolic manipulations following syntactic rewrite rules [16, proof].” Indeed, when writing
proofs using the Coq proof assistant, we use tactics to rewrite our current goal step by step,
until we finish the proof we are working on.

https://ncatlab.org/nlab/show/proof

2.1. TYPES 7

The formalization that accompanies this thesis is written with the Coq proof assistant,
using the UniMath library. The Coq proof assistant is based on the Calculus of Inductive
Constructions, which is closely related to HoTT [15]. Many important theorems have been
proven using the Coq proof assistant already [17]. The UniMath library is an actively devel-
oped library that already formalizes lots of theory from many branches of mathematics [18].
From this point onwards, we will refer to the formalization framework simply as UniMath.

Similar to the type theoretic notation, in UniMath, one denotes type membership as

x : nat or x y : nat

where nat is the type of natural numbers, and one denotes definitional equalities as

x := 3 or x := 3 : nat.

Propositional equalities between terms of the same type are denoted simply as x = y. As
mentioned before, propositions are simply just specific types. When formalizing a theory,
one denotes them as

Lemma add_comm (x y : nat) : x + y = y + x.

Proof.

...

Qed.

where Lemma could be any of Lemma, Definition, Proposition, Theorem... This defines a
term add_comm, of type ∏

x,y:N
x + y =N y + x.

The precise meaning of this will become clear in this chapter, but it is important to remember
that lemmas denoted like this in UniMath are effectively just definitions of terms in large

∏
-

types. These types allow us to construct terms of a certain type (such as x + y = y + x)
given terms of another type (such as x y : nat).

When formalizing a proposition or lemma like this, we try to prove a certain goal. In the
example this is x + y = y + x. We prove a goal using tactics. These are very small steps in
a proof, or a very simple construction one could do to obtain a term of a type. Some tactics
use hypotheses, which are just terms that we may have been given in the statement of the
lemma, or which we may obtain from previously shown lemmas.

We give another example to further clarify what propositional and definitional equalities
are, as well as to introduce the very first, basic tactic. Suppose we have a hypothesis x :

nat. Then the statement x = x is a propositional equality. It is something we may want to
prove. However, it is trivial to prove this equality, since x is equal to x in the definitional
sense as well. A proof for this in a formalization would look like

Lemma eq_refl (x : nat) : x = x.

Proof.

reflexivity.

Qed.

where the tactic reflexivity is the most basic tactic available. The reflexivity tactic
does exactly what we want in the lemma, as it gives a term of type a = a for any term a

: A for any type A. Effectively, it turns a definitional equality into a propositional one. One
more important tactic we introduce right away is the rewrite tactic. This tactic takes a
(propositional) equality, and rewrites the equality in the goal we are trying to prove. For
example, suppose we were trying to prove a goal

x + y = x + x

2.1. TYPES 8

for x y : nat, and we have a hypothesis H : y = x. The tactic rewrite H turns the goal
from x + y = x + x into x + x = x + x, which we can prove simply with reflexivity.
As we introduce more type theoretical concepts, we will also introduce some of the tactics
used in formalization.

As one might expect, it is much easier to work with definitional equalities than with
propositional equalities in formalization. For example, consider the example goal x + y = x

+ x from before. Had we known that y := x, meaning that y is definitionally equal to x, we
would be able to finish the proof with a single reflexivity statement. After all, y is just a
different label for x.

The proof assistant will be able to reduce expressions on a judgemental level. It may
even compute that two expressions are equal on a judgemental level. In our example, the
definitional equality y := x allows us to finish the proof of x + y = x + x with a single
reflexivity tactic, rather than having to deal with rewrite. This explains why we would
much rather define types in a way that any equalities we might need are definitional rather
than propositional, especially in formalization.

In set-based mathematics, one often defines sets using predicates, so for example in ge-
ometry, one might define the set of sections of a trivial bundle A×B → B of sets as

{ σ : B → A×B | σ·pr2 = idB } .

It corresponds with the idea of pre-existing objects for which some proposition holds: I have
a σ, and it has this property. One could do something similar in HoTT and UniMath, but
proving statements involving such sections would involve a lot of rewriting. We prefer to define
these sections in a way that the predicate becomes something ‘baked into the definition’. For
example, we might define some sort of helper type

Definition triv_bundle_section_data (A B : UU) := B -> A.

This allows us to define a section as

Definition section {A B : UU} (s : triv_bundle_section_data A B)

: B -> A Ö B := λ (b : B), (s b,, b).

where composition with the projection yields identity in a definitional way instead. Using
definitional data in this way allows the proof checker to simplify terms on a judgemental
level, saving us a lot of work. This idea is more in line with the HoTT approach: I have a σ
of a certain type, and the type has this property.

2.1.2 Homotopy Type Theory

So far, what we have discussed mostly boils down to type theory, not specifically homotopy
type theory. The central idea in homotopy type theory is that we can view types as spaces,
and terms of types as points in the corresponding space. With this interpretation in mind,
(propositional) equalities between terms of a certain type correspond with paths in the corre-
sponding space. See for example Figure 2.1 where an equality p : a =A b is depicted for terms
a, b : A. These types are commonly referred to as identity types. With this interpretation
in mind, it may be easier to see why equalities form their own type, corresponding with the
path space of a certain type. In this type of equalities, we can again consider the type of
equalities, i.e. the type p =a=Ab q for terms p, q : a =A b. Terms of this type correspond with
homotopies, see Figure 2.2. We can actually repeat this process with higher homotopies, and
keep iteratively constructing higher identity types.

Using this interpretation, the rewrite tactic introduced above effectively allows us to
procedurally concatenate paths to obtain the desired equality. For example, if we have a goal
x = z, with hypotheses H0 : x = y and H1 : y = z, a proof might look like

rewrite H0. rewrite H1. reflexivity.

2.2. CONSTRUCTIONS ON TYPES 9

p

a

b

A

Figure 2.1: Propositional equality p of two terms a, b : A.

p

qa

b

A

Figure 2.2: Example of a term of type p =a=Ab q for a, b : A and p, q : a =A b.

This concatenates the paths H0 and H1 to form a path of type x = z.
The more basic reflexivity tactic gives us a constant path refla for any term a : A for

any type A. Another operation one might want to do is inverting paths. This is done with
the symmetry tactic, which turns a goal of the form x = y into y = x.

Example 2.1. One of the most basic examples of a type is the unit type, defined as unit in
UniMath. It is a type that has only one term, tt in UniMath. It may be interpreted as the
one-point space ∗.

Example 2.2. Another basic example is the empty type. It is a type that contains no
elements, denoted empty in UniMath. It corresponds with the empty space ∅.

2.2 Constructions on Types

We now have a (very) basic understanding of what (homotopy) type theory entails, the differ-
ences with set theory, some basic introduction to formalization in UniMath and the homotopic
interpretation of types and (propositional) equalities. We go on to discuss some construc-
tions on types, as well as their corresponding concepts in UniMath and their interpretation
in HoTT. Firstly though, in order to be able to properly define these constructions, we first
introduce simple function types, as well as the idea of type universes, allowing us to construct
dependent types.

2.2.1 Function Types

We have already seen an example of this before, when we introduced the function f : N → N
mapping x to x2. A function type f : A → B is exactly what one might expect it to be: it
is a map from A to B. The interpretation in HoTT is also what one expects it to be, f is a
continuous map from A to B. When formalizing, we can use the apply tactic in combination
with a term f : A -> B to turn a goal of the form B (prompting us to construct a term of
type B) into the goal A (prompting us to construct a term of type A). We simply tell the proof

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Preamble.v#L28
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Preamble.v#L22

2.2. CONSTRUCTIONS ON TYPES 10

assistant apply f. After all, if we can construct a term of type A, we can use f to obtain a
term of type B. This allows us to kind of ‘work backwards’ in a proof. There is also a tactic
that we can use to take a more ‘forward’ route: exact. If we have a hypothesis a : A, the
tactic exact (f a) then tells to proof assistant that we have found a term of type B (which
was our goal) and finishes the proof.

It is important to note that function types act functorially on paths (or equalities). In
other words, the image of a path p : a =A b under a function f : A → B is again a path.
This allows for even more useful constructions, such as the maponpaths lemma in UniMath,
which says the following.

Lemma 2.3 (maponpaths). Given a function f : A -> B between types A and B, we have

a = a' -> f a = f a'.

Note that in this lemma, the conclusion was a function type, giving a term of type f a

= f a', when passed a term of type a = a'. This leads to the third interpretation of type
theoretical constructions: the logical interpretation. In this interpretation, types can be seen
as propositions, terms of types as proofs, and functions as implications. In this interpretation,
the empty type may be seen as the proposition that is always false, and the unit type as that
which is always true.

2.2.2 Type Universes

So far, we have just been saying ‘A is a type’ to introduce types. Formally though, one should
say that A : U , or in words: A is in the universe U . Simply put, a universe is a type whose
elements are types. Similar to set theory, we might have a desire for a universe of types U∞
that contains all types including U∞ itself. This would give rise to all sorts of problems, like
being able to encode Russell’s paradox [14].

Instead, we introduce a hierarchy of universes

U0 : U1 : U2 : . . .

where every universe Ui is an element of the next universe Ui+1. One has to be careful with
this definition, but for the purposes of this thesis, it is enough to just think of a single universe
U . Formally, one could take this to mean that the judgement A : U means that A : Ui for
some i, or one could just think of it as if we have a ‘large enough universe U ’, or a ‘universe
of small types’ that is sufficient for our purposes in this thesis. In UniMath, this judgement
is denoted as A : UU.

Universes are an important tool to construct type families, or dependent types. They are
function types A → U for some A : U . They correspond with families of sets in set theory.
Homotopy theoretically, we may think of a type family B : A → U as a fibration with base
space A with fiber B(a) over any a : A, see Figure 2.3. Logically, we could view it as a
predicate B on a type A.

2.2.3
∏
-types

Much more interesting than plain function types are
∏
-types, or dependent function types.

Simply put, these types are functions from a domain type to a variable codomain type,
dependent on the term in the domain on which the function is applied. Set theoretically, one
may interpret this as a product of sets, hence the name

∏
-type.

Given a type A : U and a type family B : A → U , we construct the type of dependent
functions ∏

a:A

B(a).

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartA.v#L450
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartA.v#L450

2.2. CONSTRUCTIONS ON TYPES 11

As mentioned, these types are like functions with variable codomains. It says that given a
term a : A, we can use a term of a

∏
-type like this to obtain a term b : B(a). This may be

clarified with the homotopy theoretical interpretation of
∏

-types: the space of sections, as
drawn in Figure 2.3. Types like this are extremely useful, as most lemmas in formalization
will actually just be large

∏
-types. Recalling the example add_comm from before, of type∏

xy:N
x + y =N y + x,

which in fact is a ‘nested’
∏

-type ∏
x:N

∏
y:N

x + y =N y + x.

The term add_comm of this type gives us a term of type x + y =N y + x when passed terms
x, y : N. Unpacking the nested

∏
-type notation, given an x : N, we get a term of type∏

y:N
x + y =N y + x,

which, given any y : N, gives us a term of type x + y =N y + x. Indeed, note that the
codomains here depend on the term of the domain type that we pass in:∏

y:N
x + y =N y + x

depends (only) on the x : N that we passed in, and the type x + y =N y + x depends on the
y : N that we passed in. In this second case, we did not explicitly mention that x+y =N y+x
depends on x. This is because this term is ‘captured’ when applying the outer

∏
-type to x.

This concept may be familiar to people who have programmed in a programming language
that has ‘lambda functions’, which allow one to define functions that ‘capture’ variables in
the current context or scope that one is programming in. Effectively, the term x is fixed in
the term inside the

∏
-type.

Just as another example, the maponpaths lemma, or Lemma 2.3, may be written as a∏
-type. In UniMath, this is written as∏

(a1 : A1) (a2 : A2) ..., B a1 a2 ...

We get a judgement

maponpaths :∏
(A B : UU),

∏
(f : A -> B),∏

(a1 a2 : A), a1 = a2 -> f a1 = f a2.

This judgement reflects the idea that ‘by proving a theorem, we immediately get an object
that satisfies the statement’, exhibiting the purely constructive nature of HoTT.

Logically, one may interpret a
∏

-type as a ‘for all’ statement, or we may see the
∏

notation as a ∀ clause. After all, a
∏

-type∏
a:A

B(a)

for A : U and B : A → U gives a term of type B(a) for all a : A. In other words, we may
interpret the

∏
-type above as the logical statement

∀(a : A), B(a).

Example 2.4. Plain function types are just
∏
-types with a constant type family. That is to

say, the type A → B is just the type ∏
a:A

B.

2.2. CONSTRUCTIONS ON TYPES 12

B(a)

a

f :
∏

a:AB(a)

A

Figure 2.3: An example of a section f :
∏

a:AB(a) from A into the fiber bundle B : A → U .

Equalities in
∏
-types

Traditionally, one would expect two functions f, g : A → B to be the same whenever they are
equal on all values. In HoTT, we can not simply do this. We define the notion of a homotopy
f ∼ g.

Definition 2.5. Let f, g : A → B for two types A,B : U . We define

(f ∼ g) :=
∏
a:A

f(a) =B g(a).

We say that f and g are homotopic.

Indeed, since all constructions in HoTT are defined to be continuous, this defines a ho-
motopy. We could in fact do the same for more general

∏
-types. For a type A : U and a

type family B : A → U , let f, g :
∏

a:AB(a). Then we define

(f ∼ g) :=
∏
a:A

f(a) =B(a) g(a).

The fact that (f ∼ g) can be identified with f = g is not a trivial thing. We commonly
just assume this to hold. This is what we refer to as the function extensionality axiom. For
details, we refer to [14, Section 2.9]. It is not uncommon to assume this axiom though. It is
assumed in many places in the UniMath library itself [18], as well as in other formalization
frameworks [19].

2.2.4
∑

-types

The other class of dependent types are the
∑

-types, or dependent pair types. Set theoretically,
they correspond with disjoint sums of sets, hence the name

∑
-types. This correspondence

will be clear shortly.
Given a type A : U and a type family B : A → U , a dependent pair type is written as∑

a:A

B(a),

2.2. CONSTRUCTIONS ON TYPES 13

and terms consist of pairs (a, b) where a : A and b : B(a). We define the canonical projections

pr1 :
∑
a:A

B(a) → A : (a, b) 7→ a

and
pr2 :

∑
a:A

B(a) → B : (a, b) 7→ b,

defined as pr1 and pr2 in UniMath. We refer to A as the base type and the types B(a) as the
fiber types.

In formalization,
∑

-types are very useful to define types that indicate the existence of
terms of a certain type, that satisfy certain properties. This leads us to the logical interpre-
tation of the

∑
-type: the existence statement, or the ∃ clause. Effectively, one could read

terms of the type ∑
a:A

B(a)

as ‘I have an a : A, for which b : B(a)’. In UniMath, they are denoted as∑
(a1 : A1) (a2 : A2) ..., B a1 a2 ...

using the same ‘nested’ notation as we did for
∏

-types. Commonly in formalization, one
wants to define a certain property on a type, and then a ‘type of objects that have this
property’. This is usually done using a

∑
-type. For example, one might define a type

isaprop that indicates whether some type A is a ‘proposition’ (this will be defined later).
One can then define the ‘type of propositions’ as

hProp :=
∑
A:U

isaprop A.

In HoTT, we may interpret
∑

-types as a fiber bundle, as drawn out in Figure 2.4.

Example 2.6. The most basic examples of dependent pair types are the product types. Given
A,B : U , we define the product type A × B as the type consisting of pairs (a, b) with a : A
and b : B. This is the same as a

∑
-type with a constant type family:∑

a:A

B.

We use the same notation for the canonical projections on product types. Logically, one may
read a product type as a logical conjunction A ∧B.

Equalities in
∑

-types

Like other types, we want to be able to compare terms of
∑

-types. In this case, it may
be interesting to see how equalities of

∑
-types interact with equalities of terms in the base

type. It should be clear that the canonical projection pr1 projects an equality of terms
(a1, b1), (a2, b2) :

∑
a:AB(a) down to an equality a1 =A a2, just from looking at Figure 2.5.

We cannot however do this with pr2, since b1 and b2 are, in general, not of the same type.
This makes it tough to compare (a1, b1) and (a2, b2).

We can still define a way to do this though. Let us first introduce the transport lemma [14,
Lemma 2.3.1], corresponding to the types transportf and transportb in UniMath, which
stand for ‘transport forwards’ and ‘transport backwards’. This lemma forms a parallel with
the path lifting property in topology [14].

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L493
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L80
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartA.v#L629
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartA.v#L635

2.2. CONSTRUCTIONS ON TYPES 14

B(a)

(a, b)

a

∑
a:AB(a)

A

Figure 2.4: An example of a
∑

-type
∑

a:AB(a).

B(a1) B(a2)

(a1, b1)

(a2, p∗(b1))

(a2, b2)

a1

a2
p

∑
a:AB(a)

A

Figure 2.5: A homotopy theoretical interpretation of the transport lemma.

Lemma 2.7 (Transport). Given a type A : U and a type family B : A → U , a path p : a1 =A

a2 allows us to transport a pair (a1, b1) :
∑

a:AB(a) to obtain a term (a2, p∗(b1)) :
∑

a:AB(a).

Or, in UniMath:

Lemma transportf {A : UU} (B : A -> UU) {a1 a2 : A} (p : a1 = a2) :

B a1 -> B a2.

Homotopically, the idea of the proof is that a path in A lifts to one in
∑

a:AB(a), see
Figure 2.5.

Note that p∗(b1) and b2 are of the same type: B(a2). This allows us to (indirectly)
compare b1 and b2, by using a path in B(a2) from (a2, p∗(b1)) to (a2, b2) in Figure 2.5. In
this way, one can show the following.

Lemma 2.8 (two_arg_paths_b, two_arg_paths_f). Suppose (a1, b1), (a2, b2) :
∑

a:AB(a)
for a type A : U and a type family B : A → U . Then we get a term

pΣ : (a1, b1) =∑
a:A B(a) (a2, b2)

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartA.v#L780
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartA.v#L770

2.3. n-TYPES 15

if and only if we have terms
pA : a1 =A a2

and
pB : (pA)∗(b1) =B(a2) b2.

To make it clear that equalities are dependent in this way, we might denote them as

(a1, b1) =∗ (a2, b2).

2.2.5 Summary

To finish off the introduction to basic HoTT, let us summarize the constructions we intro-
duced, alongside their set theoretical analogue and their logical and homotopic interpretations
in a table [14, Table 1].

Types Sets Logic Homotopy

A set proposition space
a : A element proof point
B : A → U predicate family of sets fibration
unit,empty { ∅ }, ∅ true, false ∗, ∅
A×B set of pairs A ∧B product space
A → B set of functions A =⇒ B function space∑

a:AB(a) disjoint sum ∃(a : A), B(a) total space∏
a:AB(a) product ∀(a : A), B(a) space of sections

a =A b { (a, a) | a ∈ A } equality path space

There are some more constructions on types, such as the disjoint union A⊔B or inductive
types. There are also more techniques we can use on types, such as induction or recursion.
For these ideas, we refer to the HoTT book. The constructions from this chapter should be
sufficient to read and understand the HoTT aspects of this thesis.

2.3 n-types

One of the basic notions of homotopy theory is that of a homotopy n-type: a space containing
no interesting homotopy above dimension n. For example, a 0-type is effectively a set (with
contractible path components), while a 1-type may contain non-trivial paths (like the circle).
These types of spaces are often referred to as n-truncated spaces. We can define a similar
notion in HoTT, though it turns out to be convenient to start two levels below 0, with
(−1)-types being mere propositions and (−2)-types being contractible types.

For the latter of these two, we define a type iscontr as

Definition iscontr (A : UU) : UU :=∑
(cntr : A), (

∏
a : A, a = cntr).

Interpreting this definition, it says that there is a point contr in A, such that there is a path
from a to contr for any a : A. Indeed, this corresponds with the notion of a contractible
space in topology, as all constructions in HoTT are defined to be continuous. We define the
notion of n-type recursively. In UniMath, this type is called isofhlevel:

isofhlevel (n : N) (A : U) :=

{
iscontr A if n = −2∏

a,b:A isofhlevel n′ (a =A b) if n = n′ + 1.

Let us interpret the most important cases: n = −2 through 0. For n = −2, we ask that the
type is contractible. In other words, that it is non-empty and there is a path from any point
to any other point. Types like this behave like the unit type unit.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartA.v#L991
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L148
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L148

2.3. n-TYPES 16

2.3.1 Mere Propositions

More interesting and much more important are the (−1)-types: the mere propositions. The
definition isofhlevel tells us that the path space is contractible for types of this truncation
level. Effectively, this means that a type like this is either empty or contractible. After all,
if a (−1)-type A : U is not empty, then the canonical point contr yields a path between any
a, b : A, and any other path is the same as contr in a continuous way. Types like this can
be interpreted as something that is either true or false: a logical proposition! This family
of types is so important that isofhlevel for the level of propositions has its own name in
UniMath: isaprop. This allows us to define a ‘type of propositional types’:

hProp :=
∑
A:U

isaprop A.

Propositional types have a few important properties in formalization. The first one be-
ing the way they interact with

∑
-types, and the second in the way one saves proofs in

formalization.
It is very useful to define a

∑
-type where the fiber types are all propositional. In UniMath,

we call a type family P : A → U over A : U for which every fiber is propositional a predicate
(isPredicate), i.e.

Definition isPredicate {A : UU} (P : A -> UU) :=
∏

a : A, isaprop (P a).

A
∑

-type with propositional fibers, i.e. a type∑
a:A

P (a),

can be used to mimic sets that are defined through predicates in set theory: { a ∈ A | P (a) }.
Most importantly though, it is very easy to compare terms of

∑
-types like this, as we only

have to compare the projections on the first coordinate. After all, Lemma 2.8 combined with
the contractibility of the path space of the fibers, tells us the following.

Lemma 2.9 (subtypePath). Suppose we have terms (a1, p1), (a2, p2) of a
∑

-type∑
a:A

P (a)

with a type A : U and a predicate P : A → U , then we get a term

(a1, p1) =∑
a:A P (a) (a2, p2)

whenever we have a term
a1 =A a2.

Example 2.10 (isapropempty, isapropunit). The most basic examples of propositional
types are the empty type empty and the unit type unit.

Furthermore, knowing that types are propositional allows us to optimize the proofs in
the proof assistant a lot. In UniMath, there are two ways to finish a proof: with Defined

and with Qed. The former makes the proof transparent, allowing us to see how exactly some
term is built up. This may be useful when defining a function or a specific composition of
morphisms in a category for example. Suppose we want to define a map square : nat ->

nat. We would want the proof to be transparent, since it may allow the proof assistant to
deduce that square 0 is definitionally equal to 0 for example.

Saving a proof with Qed makes the proof opaque. Basically, when using the term corre-
sponding to a lemma saved this way in another proof, the proof checker will know that a term

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L493
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L80
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L495
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L814
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L657
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L497
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Preamble.v#L22
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Preamble.v#L28

2.3. n-TYPES 17

like this exists, but it will not be able to ‘unfold’ the term. This makes it so that the terms
that the proof checker constructs and checks are a lot smaller and simpler. If the type of a
lemma or definition is of a propositional type, we in fact do not care what the term looks like,
since the type will be contractible anyway. We just want to know that such a term exists!
This allows us to optimize our proofs in a way that the proof checker becomes much faster,
and the produced terms become easier to comprehend as a human. For comparison, a proof
term constructed with only 6 tactics may already take up over 60 lines to print when saved
with Defined, whereas saving a term with Qed constructs a term that is always only a single
line.

2.3.2 Sets

The last n-type that we will discuss in more detail is the level 0. As mentioned before, these
correspond to sets, and the corresponding instance of isofhlevel also has its own name in
UniMath: isaset. Like hProp, we define a ‘type of sets’:

hSet :=
∑
A:U

isaset A.

Interpreting what it means for a type A : U to be of this truncation level: for any terms
a, b : A the path space is propositional. That is to say, there is either no path, or the path
space is contractible. This means that a type like this consists of contractible connected
components: it is a set!

The most important property of sets we use in formalization is that the path spaces are
propositional. This is useful when defining

∑
-types of the form∑

a:A

B1(a) =B(a) B2(a)

for a type A : U , a type family B : A → U and dependent functions B1, B2 :
∏

a:AB(a), where
every B(a) is a set. This makes it so the fiber types of this

∑
-type are all propositional, like

in the previous section.

Example 2.11 (isasetaprop). Any proposition type is a set. More generally, any n-type is
also a n′-type for any n′ ≥ n.

Example 2.12 (isasetnat). The type N (or nat in UniMath) of natural numbers is a set.

Other n-types, though interesting in their own right, are not very interesting for the
purposes of this thesis. What is interesting and useful though, is the concept of propositional
truncation, allowing us to define propositional types from any other type.

2.3.3 Propositional Truncation

Sometimes, instead of needing a term of a certain type A, it is sufficient (or perhaps even
necessary!) to only know of the mere existence of a term of A. That is to say, we may only
want to know that ‘a term of type A exists’, and do not need to know exactly what this term
is or how it is constructed. We can do this by propositionally truncating A. The idea is to
define a (propositional) type that indicates whether A is inhabited.

Definition 2.13 (ishinh_UU, isapropishinh). Let A : U , we define the propositional trun-
cation of A by

∥A∥ :=
∏

P :hProp

((A → P) → P) : hProp.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L866
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L887
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/NaturalNumbers.v#L176
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L170
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L172

2.3. n-TYPES 18

Definition ishinh_UU (A : UU) : UU :=∏
P : hProp, ((A -> P) -> P)

Remark. The fact that this type is indeed propositional uses function extensionality
(isweqtoforallpathsAxiom, used in the proof of impred).

The type says that for any propositional type P (which we can interpret to mean either
empty or unit), we have a term of type

(A → P) → P.

Now if we take P to be unit, this tells us that we can find a term (A → unit) → unit. This
is simple, we just map any f : A → unit to the canonical element tt : unit. This makes
sure that any two elements in ∥A∥ are equal.

More interesting is the case of the empty type. It tells us that we can map any term
f : A → empty to a point in empty. Obviously, such a point does not exist, so this is only
possible if A → empty is the empty type as well, which true only if A is not empty. After all,
if A is the empty type, the identity function idempty : empty → empty is still defined. This
case makes sure that A is not empty.

Remark. It is important to remember that we can not (in general) obtain a term of type A
given a term of type ∥A∥.

Remark. In fact, we can define a function empty → A for any type A : U . This corresponds
with the idea of proof by contradiction: a false assertion implies anything! It can also be
interpreted as the unique map from the initial object ∅ in the category of topological spaces.
In a similar vein, A → empty is how one defines logical negation in HoTT.

The propositional truncation has a universal property.

Lemma 2.14 (hinhuniv). Let A : U and P : hProp and let f : A → P . Then we can
construct a term of type P if we have a term a : ∥A∥.

Intuitively, this tells us that we can show that a proposition is true if it holds for all a : A
and we know that A is not empty. A more general statement also holds, giving us an easy
way to work with propositional truncations.

Lemma 2.15 (hinhfun). Let A,B : U and let f : A → B. Then we can construct a term of
type ∥B∥ if we have a term a : ∥A∥.

This statement tells us that B is not empty if A is not empty and we have a function
f : A → B. This, in combination with the canonical projection

hinhpr : A → ∥A∥,

give us a way to ‘unpack’ the propositional truncation in some proofs. In formalization, this
allows us to work with ‘actual terms a : A’, as opposed to just the mere existence of such
terms.

A common construction using propositional truncation is that of mere existence. The
truncation of a

∑
-type effectively tells us that ‘there is some’ term of the base type, for

which there is a term of the fiber type. This is useful, since
∑

-types are in general, and in
fact almost never, propositional. Like for other types, we may just want to know that there is
such a term, and we do not really care what it is precisely. This construction is so common,
that it is denoted using the logical notation, as

∃a:AB(a) :=

∥∥∥∥∥∑
a:A

B(a)

∥∥∥∥∥ .
Remark. One can define a more general notion of truncated types, allowing one to truncate
a type at any homotopy level, not just −1 [14, Chapter 7].

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/UnivalenceAxiom.v#L369
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartD.v#L492
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L197
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L189
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Propositions.v#L186

2.4. UNIVALENCE 19

2.4 Univalence

Perhaps one of the most powerful axioms one may assume in HoTT is the Univalence Axiom.
It provides a simple notion of equality of types to work with. Generally though, one does not
want to assume this axiom. Let us first introduce a basic notion of type equivalence.

Definition 2.16 (isweq). Given two types A,B : U , we say that A is equivalent to B if there
is a map f : A → B such that

isweq f :=

 ∑
g:B→A

g· f ∼ idB

×

(∑
h:B→A

f ·h ∼ idA

)
.

We say that f is a weak equivalence. We denote this as A ≃ B.

This gives some notion of ‘isomorphisms’ between types. Obviously, we can find a term

eqweqmap : (A =U B) → (A ≃ B).

The Univalence Axiom says that this map eqweqmap is itself a weak equivalence.

Definition 2.17 (The Univalence Axiom). The map eqweqmap is an equivalence.

This allows us to work with equivalent types as if they are the same. This is an assumption
one would rather not use, but it is important to learn about the Univalence Axiom in order
to understand the notion of univalent categories that we are about to introduce.

The Univalence Axiom is a stronger axiom than function extensionality, used to compare
(dependent) function types. In fact, univalence implies function extensionality [14]. When
proving statements in HoTT, one would of course rather not use either of these axioms, but
function extensionality may be a necessary evil. Function extensionality is an axiom that
is assumed in many other formalization frameworks, such as the Lean proof checker [19],
and is used even in basic constructions in HoTT and UniMath, such as that of propositional
truncation.

At this point, it is good to point out another difference between HoTT and other founda-
tions, lying in the system of logic defining the foundations. The logic of types is fundamentally
different from ‘classical logic’, as the law of excluded middle (LEM) need not be true. This
law states that any proposition is either true, or its negation is true. The corresponding
statement in HoTT is in fact inconsistent with the Univalence Axiom. When stated only for
propositional types, though not necessarily true, it may be assumed and is consistent with
the Univalence Axiom, with similar consequences as in set-theory based mathematics [14].
To elaborate on this slightly: a naive type-theoretic analogue to the LEM would mean that
we would be given a term of any non-empty type A : U , providing some sort of canonical
choice operator. After all, proving ‘A’ would be the same as constructing an term of this
type, and the LEM would give such a term, knowing that A is not empty. The LEM may be
true for some types, which are called decidable (decidable in UniMath).

Similarly, the axiom of choice need not be true in general, but it may be assumed, again
with similar consequences as in set-theory based mathematics. In the theory of model cate-
gories, it turned out to be necessary to assume the axiom of choice for certain statements to
hold. The more coherent theory of natural weak factorization systems ‘fixes’ these construc-
tive issues.

2.5 Category Theory

Finally, we introduce some notions of category theory in HoTT. After all, this thesis is about
formalizing concepts in model category theory in HoTT. In set-based mathematics, a category

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartA.v#L1219
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/UnivalenceAxiom.v#L37
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/PartB.v#L1022

2.5. CATEGORY THEORY 20

consists of a set A0 of objects, and for each X,Y ∈ A0 a set of morphisms Hom(X,Y). In
HoTT, one might naively define a category as a type A0 of objects and types of morphisms.
If we allow these types to have arbitrary higher homotopies, this gives us some notion of an
(∞, 1)-category, which we call a precategory (also precategory in UniMath).

However, if we restrict the types Hom(X,Y) of morphisms to be mere sets, we get the
notion of a category (also category in UniMath). In the rest of this thesis, we will only be
considering categories. Interestingly enough, the ‘homset’ refinement is sufficient to show the
results that we want. There are even more refined notions of categories though. If one also
requires the type A0 of objects to be a set, we speak of a strict category (or a setcategory

in UniMath).

Example 2.18 (hSet). The precategory SET of sets (HSET in UniMath), defined as one
expects, is a category.

Example 2.19 (type_precat). The precategory of types, where A0 := U with morphisms
Hom(A,B) := A → B is not a category.

Example 2.20. The precategory CAT of categories, where objects are categories and mor-
phisms are functors, is not a category.

Example 2.21 (cat_of_setcategory). The precategory of strict categories (or setcategory
in UniMath), where objects are strict categories and morphisms are functors, is in fact a cat-
egory.

Perhaps the most important refinement is the notion of a univalent category. Consider
the following.

Lemma 2.22 (idtoiso). Let A be a precategory and X,Y : A0 objects. Then any path
p : X =A0 Y yields an isomorphism

idtoiso p : Hom(X,Y).

This parallels the map eqweqmap, yielding an equivalence of types given an equality. In
a univalent category, one effectively assumes the equivalent of the Univalence Axiom for this
analogue of eqweqmap.

Definition 2.23 (is_univalent). Let A be a category. Then we say that A is a univalent
category if the map idtoiso is a weak equivalence. That is to say, for any X,Y : A0, any
isomorphism X ∼= Y corresponds exactly with a path X =A0 Y .

Example 2.24 (is_univalent_HSET). The category HSET of sets is a univalent category.

A univalent category is in fact the closest notion to a category in set-based mathematics.
Interestingly enough, when formalizing model category theory and the small object argument,
we actually never need the notion of a univalent category. It is interesting to see how we
only need a weaker notion of categories in order to show that the results hold.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Core/Categories.v#L139
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Core/Categories.v#L161
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Core/Setcategories.v#L30
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Sets.v#L83
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/categories/Type/Core.v#L35
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/categories/CategoryOfSetCategories.v#L109
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Core/Univalence.v#L26
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Core/Univalence.v#L43
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/categories/HSET/Univalence.v#L56

Chapter 3

Displayed Categories

One tool we will use extensively in our formalization is the theory of displayed categories.
Displayed categories provide a simple way to construct new categories from existing ones,
usually by adding some sort of data or properties to the objects and morphisms. This
theory has been developed and formalized in UniMath quite recently by Benedikt Ahrens
and Peter LeFanu Lumsdaine [11]. We will introduce the necessary theory that we will be
using in our rephrasing and formalization of model category theory and the small object
argument. Throughout this chapter, we will introduce the concepts following their article
and their formalization. We also introduce a new construction that is not in their article or
the UniMath library, as well as some very useful and important examples which we will use
in the rest of this thesis.

3.1 Definitions

It is common practice to construct a new category D out of another category C by adding
data to the objects and morphisms. This can be expressed in terms of a (forgetful) functor
F : D −→ C. Instead of having a mapping from the objects and morphisms of D to those of
C, it may be useful to instead index them as families of objects and morphisms ‘lying over’
those of C, see Figure 3.1. We define a displayed category as follows.

Definition 3.1 (disp_cat). A displayed category D over a category C consists of the fol-
lowing data:

(i) For each object X : C, a type DX of ‘objects over X’.

(ii) For each morphism f : X → Y with X,Y : C, and for each displayed object X : DX

and Y : DY a set of ‘morphisms from X to Y over f ’, denoted X →f Y .

(iii) For each object X : C and each X : DX , a morphism 1X : X →idX X.

(iv) For all X,Y, Z : C, X : DX , Y : DY , Z : DZ and f : X → Y , g : Y → Z, a composition
function (

X →f Y
)
×
(
Y →g Z

)
→
(
X →f ·g Z

)
,

denoted like the usual composition, (f, g) 7→ f · g.

such that, for suitable inputs,

(i) f · 1Y =∗ f .

(ii) 1X · f =∗ f .

(iii) f · (g·h) =∗ (f · g)·h.

where the equalities =∗ are not actual equalities, since the equality would be ill-typed. Rather,
one of the sides of the equation has to be transported along the corresponding equality in C
(right identity, left identity or associativity), as explained in Chapter 2.

21

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/DisplayedCats/Core.v#L184

3.1. DEFINITIONS 22

f
X Y

DX DY

X Y
f

Figure 3.1: Intuitive picture of a displayed category D over C. A morphism f : X → Y of C
is drawn, together with families DX and DY of displayed object and a displayed morphism
f : X →f Y .

This definition allows us to easily define an ‘actual’ category from a displayed category,
simply by forming (dependent) pairs of objects and morphisms of C with corresponding
objects and morphisms of D. We call this category Dtot, or the total category of D.

Definition 3.2 (total_category). Given a category C and a displayed category D over C,
we define the total category of D, denoted Dtot as

� Objects a type
∑

X:C DX .

� Morphisms from the dependent pair (X,X) to the dependent pair (Y, Y) as the set∑
f :X→Y X →f Y .

with the obvious unit and composition.

Remark. It is easy to verify that the morphisms in Dtot indeed form a set, since it is a∑
-type of sets over a set. This makes it so Dtot is indeed a category, and not merely a

precategory.

Example 3.3. Perhaps the most basic displayed category one could think of is a category as
a displayed category over itself, where both displayed objects and morphisms are simply the
unit type unit. In other words, DX := unit, as well as X →f Y := unit for any choice of
(displayed) objects and morphisms. This makes it so the total category has objects

∑
X:C unit

and morphisms
∑

f :X→Y unit, making it, in some sense, ‘equal’ to C itself.

Example 3.4 (arrow). We define the ‘arrow category’ C2 of a category C, where the objects
are morphisms in C and arrows are commutative diagrams, as a displayed category over the
product category C × C. We simply define it as

� Displayed objects over (X,Y) : C × C as the type X → Y .

� Displayed morphisms between displayed objects f : X → Y and g : A → B over a
morphism (h, k) : (X,Y) → (A,B) as the propositional type f · k =(X→B) h· g.

Example 3.5 (three). We define the ‘three category’ C3 of a category C, where the objects
are diagrams of shape 0 → 1 → 2 and morphisms are commutative diagrams as a displayed
category over C2. We define it as

� Displayed objects over f : X → Y : C2 as the type∑
(Ef :C)

∑
(f01:X→Ef)

∑
(f12:Ef→Y)

f01· f12 =(X→Y) f.

� Displayed morphisms between displayed objects (Ef , f01, f12) and (Ef ′ , f ′
01, f

′
12) over

a morphism (g00, g22) as the type∑
g11:Ef→Ef ′

(
f01· g11 =(X→Ef ′)

g00· f ′
01

)
×
(
f12· g22 =(Ef→Y ′) g11· f ′

12

)
,

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/DisplayedCats/Total.v#L93
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L48
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Three.v#L112

3.1. DEFINITIONS 23

providing a morphism g11 between the ‘middle objects’ such that the following diagram
commutes

X X ′

Ef Ef ′

Y Y ′

f01

g00

f ′
01

f12

g11

f ′
12

g22

Let us also define equivalents to constructions like functors and natural transformations
on displayed categories, in a way that they ‘lift’ to functors and natural transformations on
the total categories. We do this by defining them on the displayed objects and morphisms,
with analogous constraints.

Definition 3.6 (disp_functor). Given categories C, C′, displayed categories D,D′ over C, C′

respectively and a functor F : C −→ C′, a displayed functor over F , denoted as G : D −→F D′,
consists of

� A map of displayed objects, i.e. for each X : C, a map GX : DX → D′
F (X), where the

object X is commonly omitted.

� A map of displayed morphisms, i.e. for each morphism f : X → Y in C, and dis-
played objects X and Y over X and Y respectively, a map of displayed morphisms(
X →f Y

)
→
(
G(X) →F (f) G(Y)

)
.

such that the evident analogues of the axioms for normal functors hold. Again, one has to
account for the displayed types using transports.

In a similar fashion, we define displayed natural transformations, providing a way to
transform between displayed functors, similar to how one transforms between functors with
normal natural transformations.

Definition 3.7 (disp_nat_trans). Let F, F ′ : C −→ C′ be functors, and α : F =⇒ F ′ a
natural transformation. Let G,G′ be displayed functors from D to D′ lying over F and F ′

respectively. Then a displayed natural transformation over α consists of a dependent function

β :
∏
X:C

∏
X:DX

G(X) →α(X) G
′(X),

such that for any f : X → Y and f : X →f X, we have that the following diagram commutes

G(X) G(X ′)

G′(X) G′(Y)

β(X)

Gf

β(Y)

G′f

These definitions allow us to rephrase a lot of category theoretical language in simpler
terms, at least for formalization. For example, a common construction Garner uses in his
paper [9] is defining morphisms between structures that lie over the arrow category C2 in
terms of morphisms in the slice category CAT/C2, like in the diagram below

L-Map L′-Map

C2
UL

τl

UL′

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/DisplayedCats/Functors.v#L19
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/DisplayedCats/NaturalTransformations.v#L65

3.2. CONSTRUCTIONS 24

For now, the exact meanings of the categories in this diagram are irrelevant, but the diagonal
maps are forgetful functors. Instead, if we defined the categories as proper displayed cate-
gories, we could define this as a displayed functor τl : L-Map −→idC2

L′-Map. Along with
an easier definition, it is also much easier to reason with something like this, as equalities in
C2 that one obtains by tracing Garner’s diagram need not be definitional, whereas a similar
construction using displayed categories will always yield definitional equalities. This is de-
sirable, as definitional equalities are much easier to work and reason with than propositional
ones, as explained in Chapter 2.

3.2 Constructions

Given a category C and a displayed category D over C, there is a canonical projection
(pr1_category in UniMath), which is a functor πD

1 : Dtot −→ C projecting a pair (X,X) :∑
X:C DX down to X. It turns out to be very useful to define sections of this canonical projec-

tion. This is something we will be using extensively when defining functorial factorizations.
We define a type of sections of a displayed category to do this.

Definition 3.8 (section_disp). Given a category C and a displayed category D over C, a
section from C to D consists of a dependent function of objects F :

∏
X:C DX and a corre-

sponding dependent function, also denoted by F , of type
∏

f :X→Y F (X) →f F (Y), such that
F (idX) = 1F (X) and F (f · g) = F (f)·F (g) for compatible morphisms f and g in C.

Remark. The two maps in the definition of a section are essentially just two choice functions.
One could also view the section as a displayed functor from the category C as displayed category
over itself to D. We do not define them in this way though, since the formalization would
become riddled with canconical projections.

Remark (section_functor). Like displayed functors, a section C −→ D of a displayed
category D over C lifts to a functor C −→ Dtot to the total category.

In formalization, this makes it so that for any section F : C −→ D, and any X : C, the
composite F ·πD

1 (X) is in fact definitionally equal to X. Note that we do not say that the
functors themselves are definitionally equal (they are in fact only propositionally equal), but
the images of any object or any morphism are. If we were to define displayed categories
and sections in a more naive way, like the classical approach of using a forgetful functor
D −→ C to define displayed categories, there is no way to obtain this definitional equality, at
least not without explicitly knowing both functors. This would make things very hard and
inconvenient to reason with, especially in a formalization.

Now we will define a hand-crafted notion of natural transformations between sections.
We prefer this over using natural transformation between the lifted functors, since the data
for a section lies in the section itself, and definitional information is lost in the lifted functor
that arises from it. If we were to use natural transformations between the lifted functors as
morphisms between sections, we would not be able to turn the image of a section (through
its lifted functor) back down to a section, since we have lost this necessary definitional infor-
mation, witnessing that it is in fact a section, not just any functor.

Definition 3.9. section_nat_trans_disp Let F and F ′ be sections of a displayed cate-
gory D over C. A natural transformation of sections from F to F ′ is a family of displayed
morphisms ∏

X:C
F (X) →idX F ′(X),

such that ‘the appropriate diagrams’ commute.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/DisplayedCats/Total.v#L111
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/DisplayedCats/Constructions.v#L413
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/DisplayedCats/Constructions.v#L501
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/natural_transformation.v#L50

3.3. THE STRUCTURE IDENTITY PRINCIPLE 25

Remark. In this definition, ‘the appropriate diagrams’ again involves some dependent equal-
ities. To explain this a bit more, for a general morphism f : X → Y in C, the following
diagram is not well-typed:

F (X) F (Y)

F ′(X) F ′(Y)

Ff

F ′f

This is because going around the left and bottom yields a displayed morphism over idX · f ,
whereas going around the top and right yields a displayed morphism over f · idY . This is
a subtle difference, and it can be solved by transporting this diagram along the appropriate
equalities (relating idX · f and f , and f · idY and f) to allow for a well-typed naturality axiom:

Definition section_nat_trans_disp_axioms

{C : category}

{D : disp_cat C}

{F F': section_disp D}

(nt : section_nat_trans_disp_data F F') : UU :=∏
x x' (f : x --> x'),

transportf _

(id_right _ @ !(id_left _))

(section_disp_on_morphisms F f ;; nt x') =

nt x ;; section_disp_on_morphisms F' f.

where we transport the composite on the left-hand side along the path

id_right _ @ !(id_left _)

to obtain a well-typed equality.

3.3 The Structure Identity Principle

The HoTT book introduces the ‘Structure Identity Principle’ (SIP), which expresses that
isomorphic structures on a precategory are identical. It turns out that we can use the data
from a standard structure to allow for an easier way of defining displayed categories, in case
the structure we wish to add to our base category allows for it. In fact, the formulation of the
SIP in the HoTT book effectively states that displayed categories (produced from structure
data) indeed provide a category.

Definition 3.10. A notion of structure (P,H) over a precategory C consists of the following
[14].

� A type family P : C0 → U .
� For each A,B : C and X : P (A) and Y : P (B) and f : A → B, a proposition HX,Y (f).

such that H is closed under identity and composition.

Providing this data allows us to define a displayed category on C without having to
explicitly provide a displayed identity and composition, as this can be produced from the
propositional type H [11, disp_cat_from_SIP_data].

Example 3.11. In fact, the arrow category C2 can be defined in this way as a displayed
category over the binary product of a category C with itself. This is because the added data
to the morphisms is a propositional type, as C is a category and a commutative diagram is
simply an equality between morphisms.

Example 3.12. The three category C3 can not be defined in this way, as the data we add to
the morphisms is both an extra morphism (between the ‘middle objects’), and the commuta-
tivity constraint of the two relevant diagrams. This type is not propositional in general.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/DisplayedCats/SIP.v#L42

3.4. EXAMPLES 26

3.4 Examples

We have seen two important examples of displayed categories in this chapter: the arrow
category C2 and the three category C3. These two categories will play an important role in
this thesis. This section clarifies some notation that we will be using on these categories, and
contains some basic results about them.

3.4.1 The Arrow Category

Given f : X → Y as object in the arrow category, we label the objects X and Y in a by
dom f and cod f respectively. Given a morphism γ : f → g in the arrow category, we will
label the morphism on the domains as γ00 and the morphism on the codomains as γ11. As a
diagram, this looks like

X A

Y B

f

γ00

g

γ11

.

From the definition of the total category, morphisms between arrows f : X → Y and
g : A → B are a type

f → g :=
∑

(γ00,γ11):(X,Y)→(A,B)

f · γ11 = γ00· g.

Now, since we assume C to be a category, the fiber type is propositional. The subtypePath

lemma (Lemma 2.9) then tells us that

Lemma 3.13 (arrow_mor_eq, arrow_mor00_eq, arrow_mor11_eq). Given two morphisms
γ, γ′ : f → g of C2, we get a term γ =f→g γ′ if and only if we have terms

γ00 =dom f→dom g γ′00

and
γ11 =cod f→cod g γ′11.

One other common property we will use later on in this thesis is that

Lemma 3.14 (arrow_colims). Suppose C is a cocomplete category, then the arrow category
C2 is cocomplete.

The colimits are defined as one would expect. The colimit of a diagram in the arrow
category is the canonical arrow between the colimits of the projected diagrams on the domain
and codomain respectively. Just to clarify this idea, one could think of the colimit of a diagram
{ fv : Xv → Yv }vin the arrow category as the following diagram

. . . Xv Xv+ Xv++ . . . colimXv

. . . Yv Yv+ Yv++ . . . colimYv

fv fv+ fv++ colim fv

By the diagram projected on the domain (project_diagram00) we mean the diagram {Xv }v
in C, and the diagram projected on the codomain (project_diagram11) is the diagram { Yv }v
in C. One can also show the following.

Lemma 3.15 (project_colimcocone00, project_colimcocone11). Suppose { fv : Xv → Yv }
is a diagram in C2, and f : X∞ → Y∞ is a colimit for this diagram. Then X∞ is a colimit
for the diagram projected on the domains, and similarly, Y∞ is a colimit for the diagram
projected on the codomains.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L60
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L95
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L102
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L189
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L252
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L255
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L272
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L301

3.4. EXAMPLES 27

3.4.2 The Three Category

In the three category C3, we commonly denote an object that lies over an arrow f : X → Y
as

X
f01−−→ Ef

f12−−→ Y.

A morphism γ : f → g, for objects f : X → Ef → Y and g : A → Eg → B is denoted as

X A

Ef Eg

Y B

γ00

f01 g01

f12

γ11

g12

γ22

.

We denote the canonical projection C3 −→ C2 by

d1 := πC3

1 : C3 −→ C2.

We define two more ‘face maps’ d0, d2 (practically ‘forgetting’ about the object in the sub-
script) as

d0 :
(
X0

f01−−→ X1
f12−−→ X2

)
7→ X1

f12−−→ X2

d2 :
(
X0

f01−−→ X1
f12−−→ X2

)
7→ X0

f01−−→ X1.

One can show the following, similar to the arrow category.

Lemma 3.16 (three_colims). Suppose C is a cocomplete category, then the three category
C3 is cocomplete.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Three.v#L363

Chapter 4

Model Categories

As briefly motivated in the introduction, model categories provide a language and tools
to study homotopy theory in a more global and generic way than the traditional study
of topological spaces. A model structure on a category C consists of three related classes
of morphisms (W,K,F), called the weak equivalences, the cofibrations and the fibrations.
These classes of maps are related through two weak factorization systems. Weak factorization
systems are in turn comprised of two interacting classes of maps: L and R. These two classes
are related through a dual lifting property, such that any map in the category can be factored
as a map in L and a map in R.

These weak factorization systems (WFS) are called weak, because there is no additional
structure on them. Neither the lifts nor factorizations need to have any structure in any way,
nor does the factorization have to be unique. This leads to some issues from a categorical
point of view. Grandis and Tholen introduced the notion of natural weak factorization system
to resolve these issues [8]. In this chapter, we figure out that there are some additional
constructive issues. It turns out that some of the properties one wishes a WFS to have,
depend on the axiom of choice. Natural weak factorization systems will satisfy analogues to
these properties, without the need for the axiom of choice.

This chapter will build up some definitions, needed to define the notion of a WFS and of a
model category. We go over some of the most important properties of WFSs, and provide
important examples. We give some new insight into constructive issues that arise when
trying to show some of their desired properties, while motivating that these issues cannot
be circumvented by changing the way one defines a WFS. We then introduce the notion
of a model category, and give a basic introduction to the homotopy category construction,
motivating the usefulness of model category theory.

In this chapter, and in the rest of this thesis, we will always assume that the category
C we are working with is a category, not a precategory or a univalent category. This means
that the only assumption we make on the category is that the type of morphisms between
any pair of objects is a set.

First of all, let us formally define the notion of a morphism class.

Definition 4.1 (morphism_class). A class of morphism is a collection of subsets of (X → Y)
for all objects X,Y : C. We write f ∈ S to denote that a morphism f : X → Y is contained
in a morphism class S.

Definition morphism_class (C : category) : UU :=∏
(X Y : C), hsubtype (X --> Y).

Here, hsubtype is defined as

hsubtype :=
∏

X : UU

X -> hProp.

28

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/MorphismClass.v#L17
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/Foundations/Sets.v#L277

4.1. PRELIMINARIES 29

The term hsubtype (X --> Y) indicates for each morphism of type X --> Y whether it is
or is not included in the morphism class.

Example 4.2. A basic example is the morphism class containing all morphisms of C, we will
call this univ. Another example is the morphism class containing all isomorphisms of C, we
will call this isos.

4.1 Preliminaries

We will need some preliminary constructions on morphism classes before we continue on to
weak factorization systems. First of all, let us define retracts.

4.1.1 Retracts

Definition 4.3 (retract, morphism_class_retract_closed). A class S of maps in a cat-
egory C is closed under retracts, if given a commutative diagram

X ′ X X ′ iX · rX = id

Y ′ Y Y ′ iY · rY = id

iX

f ′

rX

f f ′

iY rY

with f ∈ S, it follows that f ′ ∈ S. We say that f ′ is a retract of f .

Definition is_retract {x y x' y' : C} (f : x --> y) (f' : x' --> y')

(ix : x' --> x) (rx : x --> x') (iy : y' --> y) (ry : y --> y') : UU :=

(ix · rx = identity x') Ö (iy · ry = identity y')

Ö (ix · f = f' · iy) Ö (rx · f' = f · ry).

Definition retract {x y x' y' : C} (f : x --> y) (f' : x' --> y') : UU :=∑
(ix : x' --> x) (rx : x --> x') (iy : y' --> y) (ry : y --> y'),

is_retract f f' ix rx iy ry.

Definition morphism_class_retract_closed

{C : category} (S : morphism_class C) : UU :=∏
x y (f : x --> y) x' y' (f' : x' --> y'),

(S _ _ f') Ö (retract f' f) -> (S _ _ f).

It may be useful to think of the diagram as a composition of arrows in the arrow category
C2, where the diagram simply says that (iX , iY)· (rX , rY) = idf ′ in the arrow category C2.

Given a morphism class, we define its closure under retracts.

Definition 4.4 (morphism_class_retract_closure). Given a morphism class S of maps
in C, we define its closure under retracts as the class of all morphisms f ′ in C such that there
exists an f ∈ S such that f ′ is a retract of f . We denote this class by Scl.

Definition morphism_class_retract_closure

{C : category} (S : morphism_class C) : morphism_class C :=

λ x y (f : x --> y), ∃ x' y' (f' : x' --> y'), (S _ _ f') Ö (retract f' f).

In fact, an alternative definition to a morphism class being closed under retracts is simply
that it is equal to its closure under retracts.

Lemma 4.5 (morphism_class_retract_closed_iff_eq_cl). A morphism class S is closed
under retracts if and only if it is equal to its retract closure.

Retracts have some basic properties, without elaborating on them too much, we list a
few. A retract of an isomorphism is again an isomorphism (retract_is_iso). Retracts are
preserved under the action of functors (functor_on_retract). A retract from a morphism
f ′ to f yields a retract from f ′opp to fopp in the opposite category (opp_retract). Finally, for
any morphism f the type retractff is inhabited at least by a diagram where the horizontal
morphisms are all identity (retract_self).

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Retract.v#L44
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/MorphismClass.v#L104
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/MorphismClass.v#L98
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/MorphismClass.v#L153
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Retract.v#L56
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Retract.v#L82
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Retract.v#L97
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Retract.v#L115

4.1. PRELIMINARIES 30

4.1.2 Lifting Problems

Weak factorization systems describe how two morphism classes interact with each other, in
terms of a dual lifting property, as well as a factorization on the whole category. To define
this dual lifting property, we first introduce the notion of lifting problems.

Definition 4.6. A lifting problem in a category C is a morphism in the arrow category C2.
More precisely, for two morphisms f, g in C, an (f, g)-lifting problem is a diagram

X A

Y B

f

h

g

k

We can also denote a lifting problem as the corresponding morphism (h, k) : f → g in the
arrow category C2.

We would like these lifting ‘problems’ to have ‘solutions’, which we call fillers.

Definition 4.7 (filler). Given morphisms f, g in C, an (f, g)-lifting problem has a filler l
if the dashed arrow exists.

X A

Y B

f

h

g

k

l

Definition filler {x y a b : C} {f : x --> y} {g : a --> b}

{h : x --> a} {k : y --> b} (H : h · g = f · k) :=∑
l : y --> a, (f · l = h) Ö (l · g = k).

The morphism classes in a WFS are related to each other through the lifting property.

Definition 4.8 (lp, elp). Given morphisms f, g in C, we say that that (f, g) has the lifting
property if each (f, g)-lifing problem has a (not necessarily unique) filler.

Definition lp {x y a b : C} (f : x --> y) (g : a --> b) : hProp :=

∀ (h : x --> a) (k : y --> b) (H : h · g = f · k), ∥filler H∥.

Now, we use the truncation here because we want to make sure that lp is actually a property,
as we want to use it to define morphism classes. We could also have defined it without, in
which case it is no longer a property. Even with the truncation, we are able to prove lemmas
using the universal property of the propositional truncation, Lemma 2.14. However, defining
the lifting property without truncation allows us to actually ‘access’ the filler for every lifting
problem in any context, not just when we are trying to prove something proprositional. This
is something that will be useful later on. We define it as the existential lifting property.

Definition elp {x y a b : C} (f : x --> y) (g : a --> b) : UU :=∏
(h : x --> a) (k : y --> b) (H : h · g = f · k), filler H.

This may seem like a subtle difference, but it makes a big difference in formalizing the theory.
This will be made clear later on in this chapter.

An interesting and useful fact is that retracts preserve the lifting property in the following
way.

Lemma 4.9 (elp_of_retracts, lp_of_retracts). Let f and g be two morphisms in C and
let f ′ be a retract of f and g′ a retract of g. If (f, g) has the (existential) lifting property,
then so does (f ′, g′).

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Lifting.v#L22
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Lifting.v#L31
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Lifting.v#L35
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Lifting.v#L125
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Lifting.v#L151

4.2. WEAK FACTORIZATION SYSTEMS 31

One can show this for both the lifting property and the existential lifting property, simply
by pasting the retract diagram next to any lifting problem. The lifting property allows us to
define certain constructions on morphism classes, defining the relation between the morphism
classes in a WFS.

Definition 4.10 (rlp). For a class of maps L, we say that g satisfies the right lifting property
(RLP) with respect to L if (f, g) has the lifting property for all f ∈ L. We let L□ denote the
class of all such maps g.

Definition rlp (L : morphism_class C) : (morphism_class C) :=

λ {a b : C} (g : a --> b), ∀ (x y : C) (f : x --> y), ((L _ _) f ⇒ lp f g).

Dually, we define the left lifting property.

Definition 4.11 (llp). For a class of maps R, we say that f satisfies the left lifting property
(LLP) with respect to R if (f, g) has the lifting property for all g ∈ R. We let □R denote the
class of all such maps f .

Definition llp (R : morphism_class C) : (morphism_class C) :=

λ {x y : C} (f : x --> y), ∀ (a b : C) (g : a --> b), ((R _ _) g ⇒ lp f g).

4.2 Weak Factorization Systems

We are now equipped to define weak factorization systems. We first define the factorization
axiom that describes one of the ways the two classes in a weak factorization system interact.

Definition 4.12 (wfs_fact_ax). We say that a pair of morphism classes (L,R) factors C
if every morphism f : X → Y factors as a composite

X
λ−→ Ef

ρ−→ Y

with Ef : C, λ ∈ L and ρ ∈ R.

Definition wfs_fact_ax {C : category} (L R : morphism_class C) :=∏
x y (f : x --> y),

∃ ef (l : x --> ef) (r : ef --> y),

(L _ _) l Ö (R _ _) r Ö l · r = f.

Definition 4.13 (wfs). A weak factorization system (WFS), is an ordered pair (L,R) of
classes of maps in C that factors C and satisfies

L = □R and R = L□.

Definition is_wfs {C : category} (L R : morphism_class C) :=

(L = llp R) Ö (R = rlp L) Ö (wfs_fact_ax L R).

Definition wfs (C : category) :=∑
(L R : morphism_class C), is_wfs L R.

Remark. This definition of WFS shows why we cannot use the existential lifting property
instead, as the equalities L = □R and R = L□ would be ill-typed. A corresponding notion
of □R or L□ would not simply be a morphism class, but rather a morphism class with extra
data, containing information about the lifts in any appropriate lifting problem.

Example 4.14 (wfs_isos_univ). The morphism class consisting of all isomorphisms isos,
and the morphism class containing all morphisms in C, univ, form a weak factorization
system (isos, univ). The choice for the factorization is obvious. Dually, (univ, isos) also
forms a WFS.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Lifting.v#L52
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Lifting.v#L50
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L28
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L41
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L291

4.2. WEAK FACTORIZATION SYSTEMS 32

Example 4.15. One can define the notion of strong factorization system as a WFS for
which the lifts between L- and R-maps are unique. Any strong factorization system is a weak
factorization system.

Example 4.16. The pair (Complemented Mono,Split Epi) forms a WFS on SET [9], fac-
toring a morphism f : X → Y as

X
in⊔X−−−→ X ⊔ Y

f⊔idY−−−−→ Y.

Example 4.17. The more general (Mono,Epi) is a WFS on SET if and only if the axiom
of choice holds [16, Weak Factorization System on Set].

Example 4.18. Perhaps the most important examples of weak factorization systems are
those on TOP. Let W denote the class of weak homotopy equivalences in TOP. Let F
denote the class of Serre fibrations, and K the class of retracts of relative CW complexes. In
other words, K consists of maps r : Y → X where Y is a relative CW complex on X, such
that i· r = idX for i : X → Y the canonical inclusion. Then both (W ∩F ,K) and (F ,W ∩K)
form weak factorization systems on TOP [2].

Example 4.19. Again in TOP, let W denote the class of homotopy equivalences, and let
F now denote the class of Hurewicz fibrations. Let K = (W ∩F)□, the closed Hurewicz
cofibrations. Then the pairs (W ∩ F ,K) and (F ,W ∩ K) form weak factorization systems
[20]. In these examples, the lifting property corresponds with the Homotopy Lifting Property
and the Homotopy Extension Property in topology.

Example 4.20. Other important examples of weak factorization systems are those on SSET.
Let W again denote the class of weak homotopy equivalences, now in SSET. Let F denote the
class of Kan fibrations, and K the class of monomorphisms f : X → Y which are levelwise
injections, i.e. fn : Xn → Yn is injective, then the pairs (W ∩ F ,K) and (F ,W ∩ K) form
weak factorization systems [2].

One important fact about WFSs is that one does not have to show that a morphism f has
the right lifting property with respect to any R-map in order to show that it is an L-map.
It is in fact equivalent to show that (f, ρ) has the lifting property with respect to some given
R-map ρ that factors f . This is a property that shows some parallels between WFSs and
NWFSs which we define in the next chapter. Dually, the following holds.

Lemma 4.21 (llp_iff_lift_with_R). Let (L,R) be a WFS on C and let f be a morphism
in C. Let λ be an L-map and ρ be an R-map such that f = λ· ρ. Then f is an R-map if and
only if (λ, f) has the lifting property.

Proof. The forward direction is obvious. For the converse, let g be any L-map, and consider
a lifting problem

A X

B Y

g

h

f

k

using the factorization of f , we rewrite this as

A X Ef

B Y

g

h λ

ρ

k

lg,ρ

https://ncatlab.org/nlab/show/weak+factorization+system+on+Set
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L664

4.2. WEAK FACTORIZATION SYSTEMS 33

where we find a lift lg,ρ since g is an L-map and ρ an R-map. By assumption, there is a lift

X X

Ef Y

λ f

ρ

lλ,f

The composite lg,ρ· lλ,f is a lift for the (g, f) lifting problem.

We go over some more interesting properties of WFSs. They are summarized in the notion
of left- or right saturated morphism classes. We claim that the class L of left maps is left
saturated and the class R of right maps is right saturated [3, Prop 14.1.8].

Definition 4.22. Let L be a class of maps in a category C. We say that L is left saturated
if the following closure properties hold.

(i) L contains all isomorphisms of C.
(ii) L is closed under retracts.

(iii) Any pushout of a map in L is in L. That is, if the following diagram is a pushout and
f is in L, then so is p1.

X Z

Y P

f p1

(iv) Any coproduct of maps in L is in L.
(v) L is closed under transfinite composition. In other words, if we have a chain

X0 → X1 → X2 . . .

for which every Xv → Xv+1 is in L, then the composite X0 → colimXv is in L.

The notion of a right saturated class of morphisms in C is dual. In this case, pushouts
and coproducts should be replaced with pullbacks and products.

Remark. A transfinite composition is actually defined on any limit ordinal, not just for
the first limit ordinal ω. In our definition of left saturated, we choose to only ask for the
transfinite composition of chains, so diagrams corresponding with the first limit ordinal ω.
We do this because, even though some work has been done very recently [21], the theory of
ordinals has not been developed far enough in HoTT and UniMath to be able to formalize a
more general definition. In the rest of this thesis, we will also consider transfinite composites
to mean transfinite composites for ω, for precisely this reason.

Showing these properties for a WFS may not be very hard on paper, but requires some
work in UniMath. We briefly go over the statements and possibly some proofs and issues we
run into with the way WFSs are defined.

To show that L (respectively R) contains all isomorphisms, it is useful to note the follow-
ing.

Lemma 4.23 (llp_anti). For two classes J ⊆ S in C, we have that S□ ⊆ J □. Similarly,
we also have □S ⊆ □J .

Proof. The proof is simple, simply note that if f ∈ □S, then f has the left lifting property
with maps in S, and since J ⊆ S, it has the left lifting property with all maps in J .

The previous lemma, combined with the example of the (isos, univ) WFS, pretty much
directly imply the following lemma.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Lifting.v#L58

4.2. WEAK FACTORIZATION SYSTEMS 34

Lemma 4.24 (wfs_L_contains_isos). Given a WFS (L,R), isos ⊆ L, and dually, isos ⊆
R as well.

Proof. This follows simply from the fact that

R ⊆ univ

and so
isos = □univ ⊆ □R = L.

and dually for R.

Lemma 4.9 directly implies the next point.

Lemma 4.25 (wfs_L_retract). A WFS (L,R) is closed under retracts, meaning that if
f ∈ L, and f ′ is a retract of f , then f ′ ∈ L as well, and similar for R.

Next, we want to show that a WFS is closed under pushouts. Instead, we show that
a WFS is closed under pullbacks, and since a WFS gives a canonical WFS in the opposite
category, it follows that dually, a WFS is closed under pushouts. This is where the power of
the Coq proof assistant really becomes clear: the proof checker accepted

apply (wfs_closed_pullbacks (opp_wfs _))

as a complete proof for showing closedness under pushouts.

Lemma 4.26 (wfs_closed_pullbacks, wfs_closed_pushouts). A WFS (L,R) is closed
under pullbacks, meaning that if we have a pullback diagram

P X

Z Y

p2

p1

f

p

where f is in R, then p2 is in R.

Proof. Given a lifting problem

A P

B Z

g p2

with g ∈ L, we paste the pullback diagram onto the above diagram to obtain the following.

A P X

B Z Y

g p2 f

This yields a lift B → X. The universal property of the pullback then gives a morphism
B → P , which forms a lift in the (g, p2) lifting problem.

Then finally, we want to show that a WFS is closed under coproducts and transfinite
composition. These points are where we run into issues with the way we need to define the
lifting property. The propositional truncation makes it so we are not able to reason about
all lifts for a whole range of lifting problems at once, forcing us to use the axiom of choice to
show these two properties.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L337
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L88
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L372
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L440

4.2. WEAK FACTORIZATION SYSTEMS 35

Lemma 4.27 (wfs_closed_coproducts). A WFS (L,R) is closed under coproducts, mean-
ing that for any two families of objects {Xi }i:I , { Yi }i:I with some type I and any family of
maps { fi }i:I such that fi ∈ L for all i : I, the coproduct f :

⊔
i:I Xi →

⊔
i:I Yi of the fi is

also in L.

Proof. Firstly, consider a lifting problem⊔
Xi A

⊔
Yi B

f

h

g

k

with g ∈ R. Using the properties of the coproduct, this gives diagrams for the individual fi,
where we obtain the existence of a lift li through the lifting properties of the individual fi.

Xi A

Yi B

fi

h

g

k

li

Now this is where the propositional truncation of the lifting property becomes readily appar-
ent. Using the axiom of choice, we obtain a morphism⊔

li :
⊔

Yi → A

such that the diagram of the coproducts commutes [16, Weak Factorization System].

Lemma 4.28 (wfs_closed_transfinite_composition). Suppose (L,R) is a WFS and let
d := {Xv }v:N be a chain in C, for which every

Xv → Xv+1

is in L, then the canonical map

in→0 : X0 ↪→ colimXv

is in L.

Proof. Suppose g ∈ R for some g : A → B, and consider a lifting problem

X0 A

colimXv B

h

in→0 g

k

The idea is to inductively define maps Xv → A using the lifting property. For X0, the map
X0 → A is clear: the map h. Then suppose we have a map hv : Xv → A. We get a lifting
problem

Xv A

Xv+1 colimXv B

hv

g

in→v+1 k

where the left map is in L and the right map is in R. This gives us a filler hv+1 : Xv+1 → A.
Using the axiom of choice, this allows us to construct a cocone on d with vertex A, giving us
the morphism colimXv → A we need to fill our original lifting problem.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L451
https://ncatlab.org/nlab/show/weak+factorization+system
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/WFS.v#L570

4.3. MODEL CATEGORIES 36

The Axiom of Choice in these proofs

As emphasized in the previous two proofs, we need the axiom of choice to finish the argument.
The reason for this is that we know the mere existence of a lift in individual diagrams, indexed
by an indexing type I, but we need to put all the lifts together to get the mere existence of a
lift in a ‘combined’ diagram. For example, in the proof of the closedness under coproducts,
we have a hypothesis of type

∏
i:I

∥∥∥∥∥∥
∑

li:Yi→A

fi· li = h× li· g = k

∥∥∥∥∥∥
telling us that we know of the mere existence of a lift for every individual diagram. We want
to show that there is a ‘combined lift’, i.e. a term of type∥∥∥∥∥∥

∑
l:
∏

i:I Yi→A

∏
i:I

fi· l(i) = h× l(i)· g

∥∥∥∥∥∥ ,
asking for the mere existence of a lift in the ‘total diagram’. This is precisely the statement of
the axiom of choice in HoTT, which says that for any set X and any family of types L : X → U
such that L(x) is a set for all x : X, and any family of predicates P :

∏
x:X L(x) → hProp,

we have [14] ∏
x:X

∥∥∥∥∥∥
∑

lx:L(x)

P (x, lx)

∥∥∥∥∥∥
→

∥∥∥∥∥∥
∑

l:
∏

x:X L(x)

∏
x:X

P (x, l(x))

∥∥∥∥∥∥ .
In our example, X was the indexing set I, L mapped the lifting problem corresponding to
index i : I to the lift li : Yi → A and P was the proposition that the i-th diagram commutes
with the given lift. Indeed, this is a mere proposition, since we assumed our category to be a
category (i.e. where all homsets are small) and not a precategory. We would be able to show
that a WFS is closed under coproducts assuming the type theoretical version of the axiom
of choice, or at the very least assuming that our indexing type I is a ‘choice base’, which
effectively assumes the axiom of choice only for our indexing type I.

One might think that we could perhaps change our definition of a WFS to use the existen-
tial lifting property, which arguably would fix the problem. The issue is that the existential
lifting property is actually not propositional, so the axiom

L = □R

in a WFS would not make sense anymore. After all, in this equality, L is a morphism class,
whereas □R is now a morphism class with extra data. The term □R now holds data about
all lifts for any lifting problem with a right map. This is no longer ‘just a morphism class’.
There would be no nice way of defining such a thing in a sensible way, unless we simply use a
morphism class and pass along a choice function that gives a lift for any lifting problem with
an R-map. This would not accomplish much though, since it would only move the ‘issue’ of
the axiom of choice into the assumptions of the lemma anyway, and we might as well require
our indexing type I to be a choice base.

4.3 Model Categories

With the definition of WFSs, we can now define the notion of a model structure. As men-
tioned before, a model structure describes the behavior of three related classes of morphisms
(W,K,F), called the weak equivalences, the cofibrations and the fibrations. As the names

4.3. MODEL CATEGORIES 37

suggest, these classes correspond with their namesakes in the category of topological spaces.
After defining what a model structure is, we give some important examples including some
on the category of topological spaces. We then give a brief introduction to the homotopy
category, which is perhaps the most important tool arising from model category theory.

Definition 4.29 (is_model_category). A model structure on C consists of classes (W,K,F)
of morphisms of C, where W are the weak equivalences, K the cofibrations and F the fibra-
tions, such that

(i) W has the two out of three property.

(ii) (K,F ∩W) is a WFS.

(iii) (K ∩W,F) is a WFS.

We split the definition for the two out of three property into 3 separate axioms, giving us
a type

Definition weq_comp_ax {C : category} (W : morphism_class C) : UU :=

∀ x y z (f : x --> y) (g : y --> z),

(W _ _) f ⇒ (W _ _) g ⇒ (W _ _) (f · g).

Definition weq_cancel_left_ax {C : category} (W : morphism_class C) : UU :=

∀ (x y z : C) (f : x --> y) (g : y --> z),

(W _ _) f ⇒ (W _ _) (f · g) ⇒ (W _ _) g.

Definition weq_cancel_right_ax {C : category} (W : morphism_class C) : UU :=

∀ (x y z : C) (f : x --> y) (g : y --> z),

(W _ _) g ⇒ (W _ _) (f · g) ⇒ (W _ _) f.

Definition is_weak_equivalences {C : category} (W : morphism_class C) : UU :=

weq_comp_ax W Ö weq_cancel_left_ax W Ö weq_cancel_right_ax W.

Definition weak_equivalences (C : category) : UU :=∑
(W : morphism_class C), is_weak_equivalences W.

The type theoretic definition of a model structure simply becomes

Definition is_model_category {C : category} (W K F : morphism_class C) :=

is_weak_equivalences W Ö is_wfs K (F ∩ W) Ö is_wfs (K ∩ W) F.

Example 4.30. Every category C that is both complete and cocomplete admits the trivial
model structure, where the weak equivalences are the class isos of isomorphisms and both the
fibrations and the cofibrations are the class univ of all maps [16, trivial model structure].

Example 4.31. Perhaps the most well-known example of a model structure is on the category
TOP of topological spaces, where the fibrations are the Serre fibrations, the cofibrations are
retracts of relative CW-complexes and weak equivalences are the weak homotopy equivalences
[2]. This model structure is referred to as the classical model structure on TOP, and was
hinted at in previous examples.

Example 4.32. The other examples of WFSs on TOP also form a model structure: with
homotopy equivalences as weak equivalences, Hurewicz fibrations as fibrations and the closed
Hurewicz cofibrations as cofibrations. This model structure is sometimes referred to as the
Hurewicz or Strøm model structure [20].

Example 4.33. In the category of SSET, there is a model structure with weak homotopy
equivalences as weak equivalences, the class of Kan fibrations as fibrations, and with cofi-
brations the class of monomorphisms f : X → Y which are levelwise injections [2]. This
model structure is known as the Quillen model structure on SSET, and can in fact be used
to present type theory itself [15].

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/ModelCategory.v#L16
https://ncatlab.org/nlab/show/trivial+model+structure

4.3. MODEL CATEGORIES 38

Example 4.34. A very modern example where model structures are used is in the study of
(∞, 1)-categories. These can be seen as a more modern generalization of model categories.
Regardless of the way (∞, 1)-categories are represented, there is always a model structure on
them [7].

There are many more examples of model structures, such as model structures on R-Mod,
the category of R-Modules for a Frobenius ring R [2], or model structures on the category of
R chain complexes, where R is any ring [3].

To finish off this chapter, we give a very brief introduction to the construction of the
homotopy category from a model structure. This category allows one to work with homotopy
invariant concepts, and use certain important homotopy theoretical results and constructions
in a more generic and global setting, serving as an important tool in homotopy theory.

4.3.1 The Homotopy Category

Perhaps the most important property of model categories is that they allow one to define
‘well-behaved homotopy categories’. The idea behind homotopy categories is that the weak
equivalences in the category become actual isomorphisms, as well as being able to consider
maps up to homotopy. This is something we commonly want in topology for example, as
many constructions are preserved by weak equivalences and homotopies.

For a brief introduction of homotopy categories of model categories, we follow [3]. For
this section, we assume that C is a complete and cocomplete model category with (W,K,F)
the classes of weak equivalences, cofibrations and fibrations. We denote the initial object of
C by ∅ and the terminal object by ∗.

Firstly, we define morphisms in W ∩F to be acyclic fibrations, and morphisms in W ∩K
to be acyclic cofibrations. We introduce the notion of (co)fibrant objects.

Definition 4.35. Suppose X : C. Then X is cofibrant, if and only if the unique morphism
∅ → X form the is a cofibration. Any morphism q : QX → X which is an acyclic fibration
where QX is cofibrant is called a cofibrant replacement of X. Dually, we define X to be
fibrant if and only if the unique morphism X → ∗ is a fibration, and any morphism r : X →
RX is called a fibrant replacement of X if and only if r is an acyclic cofibration and RX is
fibrant. X is bifibrant if it is both fibrant and cofibrant.

Remark. Note that we can always obtain (co)fibrant replacements for X by factoring either
(∅ → X) or X → ∗ with the appropriate WFS in the model structure.

Remark. If the factorization is functorial, which we will define in the next chapter, there is
a canonical (functorial) choice for the (co)fibrant replacements (QX) and RX of an object
X : C. We in fact find two bifibrant replacements: QRX and RQX.

We can define general notions of cylinders and path objects in a model category, similar
to cylinders and paths in TOP.

Definition 4.36. A cylinder object CylX for an object X : C is an object together with
maps i0, i1 : X → CylX and p : CylX → X such that i0· p = idX = i1· p and p is a weak
equivalence. By the two out of three property, then i0 and i1 are also weak equivalences.

Example 4.37. Indeed, in TOP with the Hurewicz model structure, any X × [0, 1] is a
cylinder object.

Cylinder objects allow us to define a general notion of (left) homotopy:

Definition 4.38. A left homotopy between maps f, g : X → Y is a map h : CylX → Y such
that i0·h = f and i1·h = g. We say that f and g are left homotopic.

4.3. MODEL CATEGORIES 39

Indeed, this notion of left homotopy corresponds with that in TOP with the Hurewicz
model structure. Path objects and right homotopy are a dual notion. One can show that a
map is a weak equivalence if it is either left or right homotopic to a weak equivalence.

Definition 4.39. Let X be cofibrant and Y be fibrant. Then two maps f, g : X → Y are
said to be homotopic if and only if they are left or right homotopic. In this case, left and
right homotopic is equivalent. We denote π(X,Y) for the set of homotopy classes of maps
X → Y .

The model structure allows us to define the following notion of the homotopy category.

Definition 4.40. The homotopy category Ho C of a category C is a category with the same
objects as C, with morphism sets Hom(X,Y) := π(RQX,RQY).

It turns out that the isomorphisms in this category are precisely the image of the weak
equivalences W under the RQ functor. It is also true that the homotopy category constructed
on a model category is in fact independent of the choice of (co)fibrant replacements, and even
independent even of the classes of fibrations and cofibrations [7].

This construction yields various interesting results from homotopy theory, but in a more
general context. One example is the well-known Whitehead theorem.

Lemma 4.41 (Whitehead). The following dual versions of the Whitehead theorem hold:

1. A map p : Z → Y between fibrant objects is a weak equivalence if and only if p∗ :
π(X,Z) → π(X,Y) is a bijection for all cofibrant objects X.

2. A map i : W → X between cofibrant objects is a weak equivalence if and only if i∗ :
π(X,Y) → π(W,Y) is a bijection for all fibrant objects Y .

The homotopy category obtained from a model structure also provides the necessary tools
to study homotopy (co)limits.

The general conclusion of this theory is that model categories indeed provide a more
general and global way of doing homotopy theory. Instead of working locally, perhaps con-
sidering only a single space, or a specific set of spaces, they allow one to study the homotopy
theoretical properties in a more global setting, considering the whole category.

Chapter 5

Natural Weak Factorization
Systems

Natural weak factorization systems (NWFSs) are a sort of ‘algebraic refinement’ of WFSs.
In the theory of WFSs, being an L-map or R-map was a property of morphisms. An NWFS
is based on a functorial factorization, giving a canonical, well-behaved choice for the factor-
izations. We also impose additional structure, making it so that being an L- or R-map is
now no longer a property, but a (co)algebraic structure on the morphisms. This may seem
like a subtle difference, but it has major consequences. For example, we are able to ‘fix’ the
issues with the axiom of choice that we ran into when proving certain closedness properties
of WFSs. Still, we are able to show that it has nearly the same closedness properties that we
want a WFS to have. We will also show that an NWFS gives us a WFS in a canonical way.

The main thing we are interested in though, is Garner’s refinement of Quillen’s small object
argument, allowing us to construct cofibrantly generated NWFSs. This is a construction that
allows one to define NWFSs in a category given a sufficiently well-behaved morphism class.
Garner’s construction fixes some of the problematic aspects he saw in Quillen’s theory, like
the way NWFSs ‘fix’ the problems in WFSs. This chapter builds up the necessary theory to
understand this construction.

We will follow two articles by Garner on cofibrantly generated natural weak factoriza-
tions and the small object argument [9] [22]. Since these articles were published, a lot of
work has been done on the theory of displayed categories [11]. Displayed categories form
a very natural framework for developing the theory of functorial factorizations and natural
weak factorization systems, so we will be redefining some constructions in terms of displayed
categories. We will explain why this is the most natural, and possibly the only workable way
to define these notions in formalization.

5.1 Functorial Factorizations

We have seen before how C3 is defined as a displayed category over C2. This allows us to
define a functorial factorization as a section of this displayed category.

Definition 5.1 (functorial_factorization). A functorial factorization F over a category
C is a section of the canonical projection

d1 : C3 −→ C2.

Definition functorial_factorization (C : category) := section_disp (three_disp C).

We will commonly denote the image of a morphism f : X → Y under a functorial factorization
as a composite, consisting of two morphisms λf and ρf , factoring through a ‘middle object’ Ef

X
λf−−→ Ef

ρf−−→ Y.

40

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L234

5.1. FUNCTORIAL FACTORIZATIONS 41

Interchangably, we may denote the morphisms as f01 and f12 respectively. We will use the
notation that we have introduced for the three category when we talk about a functorial
factorization applied to a morphism γ : f → g in the arrow category C2:

X A

Ef Eg

Y B

F (γ)00

λf λg

ρf

F (γ)11

ρg

F (γ)22


=

X A

Ef Eg

Y B

γ00

λf λg

ρf

F (γ)11

ρg

γ11


And when we are considering multiple functorial factorizations, the λ(−), ρ(−) and E(−) nota-
tions will be made distinguishable using superscripts (like λ′

(−) for the left map corresponding

to a functorial factorization F ′).
Besides the canonical projection d1, recall the two other projections d0, d2 : C3 −→ C2,

which are defined in Chapter 3 as

d0 :
(
X0

f01−−→ X1
f12−−→ X2

)
7→ X1

f12−−→ X2

d2 :
(
X0

f01−−→ X1
f12−−→ X2

)
7→ X0

f01−−→ X1.

Postcomposing a functorial factorization F with these projections d0 or d2 picks out the
right and left map respectively. We obtain functors R,L : C2 −→ C2, sending a morphism f
to its right map ρf or left map λf respectively.

Definition fact_R {C : category} (F : functorial_factorization C) :

arrow C −→ arrow C :=

F • face_map_0.

Definition fact_L {C : category} (F : functorial_factorization C) :

arrow C −→ arrow C :=

F • face_map_2.

Defining a functorial factorization as a section in this way, the left and right functors L and
R are automatically compatible. That is to say, for any morphism f : X → Y , we have

L(f)·R(f) =X→Y f

This equality is well-typed because the domains and codomains of L(f) and R(f) are what
they should be, in a definitional way. One might try to define a functorial factorization in a
more naive way, say something like

Definition functorial_factorization' (C : category) :=∑
F : (arrow C −→ three C),

F • face_map_1 = functor_identity (arrow C).

This is a definition which is more in line with a set theoretical approach: I have an
object, which satisfies this proposition. Whereas in HoTT, we would much rather want to
define these constraints to be baked in directly, as explained in Chapter 2. Of course, defining
functorial factorizations as sections achieves precisely this.

Constructively, from a HoTT point of view, the set theoretical approach does not make
much sense at all, since the requirement

F • face_map_1 = functor_identity (arrow C)

5.2. NATURAL WEAK FACTORIZATION SYSTEMS 42

is an equality of functors. The first problem is that this relation is not propositional, com-
plexifying comparisons between terms of this notion of functorial factorizations. However,
there is a bigger problem with this definition. With this naive definition, though the compos-
ite L(f)·R(f) is defined, it may not have the same domain and codomain as f . We merely
know that their domains and codomains are propositionally equal by the requirement on the
functorial factorization. This makes it so the equality L(f)·R(f) = f is ill-typed. We can
find terms

p : dom(L(f)) =C dom f and q : cod(R(f)) =C cod f

and use the fact that propositional equalities give isomorphisms through idtoiso to get a
well-typed equality

f =X→Y (idtoiso p)−1 ·L(f)·R(f)· idtoiso q.

We might still be able to build a theory on this, though the whole theory would become
messy and riddled with these sorts of isomorphisms.

Example 5.2 (cop_functorial_factorization). The factorization facotring f : X → Y
as

X
in⊔X−−−→ X ⊔ Y

f⊔idY−−−−→ Y.

from the previous chapter is in fact a functorial factorization.
In fact, this forms a functorial factorization in any category with binary coproducts, not

just SET.

We define two natural transformations Φ : L =⇒ idC2 and Λ : idC2 =⇒ R with components

Φf :=

X X

Ef Y

λf f

ρf

and Λf :=

X Ef

Y Y

f

λf

ρf

These natural transformations turn L and R into pointed endofunctors:

Definition 5.3. A pointed endofunctor (T, η) on a category C is a functor T : C −→ C
together with a natural transformation η : idC =⇒ T .

Remark. A pointed endofunctor is like a monad without its multiplication. It is a pointed
object in the category of endofunctors.

To define a natural weak factorization system, we require these pointed endofunctors to be
extended to a monad / comonad pair. With this (co)monad pair, we define classes of left and
right maps as their (co)algebras. The (co)monad (co)multiplication will guarantee us that
for any morphism f , the morphisms (λf) and ρf are indeed left and right maps respectively,
i.e. that they are (co)algebras.

5.2 Natural Weak Factorization Systems

Definition 5.4 (nwfs). A Natural Weak Factorization System (NWFS) on a category C
is given by a functorial factorizaton F : C2 −→ C3, together with an extension of the cor-
responding pointed endofunctor (R,Λ) to a monad R = (R,Λ,Π) and the extension of the
corresponding copointed endofunctor (L,Φ) to a comonad L = (L,Φ,Σ). Such a natural weak
factorization system (L,R) is said to lie over F .

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Examples.v#L106
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L299

5.2. NATURAL WEAK FACTORIZATION SYSTEMS 43

Later on, it becomes useful to split this definition into two halves: LNWFS and RNWFS,
the former containing only data concerning the left comonad, and the latter only containing
data concerning the right monad.

Definition 5.5 (lnwfs_over). A left half of an NWFS (LNWFS) on a category C is given
by a functorial factorization F , together with an extension of the corresponding copointed
endofunctor (L,Φ) to a comonad L = (L,Φ,Σ).

Definition lnwfs_over {C : category} (F : functorial_factorization C) :=∑
(Σ : (fact_L F) =⇒ (fact_L F) • (fact_L F)), Monad_laws (L_monad_data F Σ).

Similarly, we define the right half of an NWFS (RNWFS).

Definition rnwfs_over {C : category} (F : functorial_factorization C) :=∑
(Π : (fact_R F) • (fact_R F) =⇒ (fact_R F)), Monad_laws (R_monad_data F Π).

together, we use these to form the definition of an NWFS:

Definition nwfs_over {C : category} (F : functorial_factorization C) :=

(lnwfs_over F) Ö (rnwfs_over F).

Definition nwfs (C : category) :=∑
(F : functorial_factorization C), nwfs_over F.

Example 5.6. All WFSs introduced on TOP in the previous chapter, from the model struc-
tures with fibrations being either Serre fibrations or the Hurewicz fibrations, are in fact natural
weak factorization systems [9].

Example 5.7. The WFSs introduced on SSET in the previous chapter, from the Quillen
model structure on SSET, are in fact natural weak factorization systems [9].

Example 5.8. Any strong factorization system gives rise to a functorial factorization. The
left and right functor of this factorization can always be extended to an idempotent comonad
and an idempotent monad respectively, giving rise to a natural weak factorization system [9].

Example 5.9 (cop_nwfs_over). The functorial factorization in SET factoring

X
in⊔X−−−→ X ⊔ Y

f⊔idY−−−−→ Y

admits an NWFS structure. Note that in this case, λλf
is the map

X
in⊔X−−−→ X ⊔ (X ⊔ Y).

The map

X ⊔ Y
idX ⊔in⊔Y−−−−−−→ X ⊔ (X ⊔ Y)

is the map on codomains Σf 11 for the component of the comultiplication Σf : λf → λλf
, and

something similar can be done for ρf .
In fact, this functorial factorization admits an NWFS in any category with binary coprod-

ucts, not just SET.

Similar to a plain WFS, an NWFS has left- and right maps. These are defined to be
precisely the (co)algebras to the (L) and R (co)monad. We denote the (displayed) categories
of left- and right maps of an NWFS as (L-Map) and R-Map respectively.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L290
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Examples.v#L466

5.3. PROPERTIES OF NWFSS 44

Definition nwfs_L_maps {C : category} (n : nwfs C) :=

MonadAlg_disp (nwfs_L_monad n).

Definition nwfs_R_maps {C : category} (n : nwfs C) :=

MonadAlg_disp (nwfs_R_monad n).

5.3 Properties of NWFSs

Further solidifying the categorical coherence of NWFSs versus plain WFSs, we form the
entities we have defined so far into categories. We then show that the (co)multiplications (Σ)
and Π which define the NWFS structure on a functorial factorization have to be of specific
shapes. These results come in useful in our formalization. Finally, to relate NWFSs back to
plain WFSs, we show that an NWFS allows one to construct a WFS. Firstly though, let us
recall some theory on monads.

5.3.1 Monads

As a short interlude, we recall some theory about monads. We will write out some of the
laws for the case we are most interested in: endofunctors on the arrow category C2. A more
extensive account on monads can be found in many books on category theory, such as [23].

Definition 5.10 (Monad). A monad (T, η, µ) in a category C consists of an endofunctor
T : C −→ C, together with natural transformations η : idC =⇒ T and µ : T 2 =⇒ T , called the
unit and multiplication, such that the following diagrams commute:

idC ·T T 2 T · idC

T

ηT

∼=
µ

Tη

∼=

T 3 T 2

T 2 T

µT

Tµ

µ

µ

where ηT denotes the natural transformation with components (ηT)X := ηTX and Tη that
with components (Tη)X := T (ηX). This concept is known as whiskering.

The first diagram contains the ‘left unit law’ and the ‘right unit law’ and the second
diagram contains the ‘associativity law’. A comonad is a monad in the opposite category. In
the upcoming chapters, we will be looking at comonads a lot more than monads. Just for
illustration, let us draw out the diagrams for (the duals of) these three laws for a functorial
factorization F for which the left functor has been extended to a comonad (L,Φ,Σ) in the
arrow category C2. We draw the diagrams for the components at an arrow f : X → Y . The
‘left unit law’ says that

X X X

Ef Eλf
Ef

λf

Σf 00

λλf

Φλf 00

λf

Σf 11
Φλf 11

= idλf

The ‘right unit law’ says that

X X X

Ef Eλf
Ef

Ef Y

Σf 00

λf λλf

F (Φf)00

λf

Σf 11

ρλf

F (Φf)11
ρf

F (Φf)22

= idλf

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monads/Monads.v#L135

5.3. PROPERTIES OF NWFSS 45

where the equality is only on the composition of the solid horizontal arrows, as morphisms
in C2. The ‘associativity law’ says that

X X X

Ef Eλf
Eλλf

Ef Eλf

Σf 00

λf λλf

F (Σf)00

λλλf

Σf 11

ρλf

F (Σf)11
ρλλf

F (Σf)22

=

X X X

Ef Eλf
Eλλf

λf

Σf 00

λλf

Σλf 00

λλλf

Σf 11
Σλf 11

where again the equality is only on the composition of the solid horizontal arrows, as mor-
phisms in C2. We define morphisms of (co)monads as well.

Definition 5.11 (Monad_Mor). A morphism between monads (T, η, µ) and (T ′, η′, µ′) is a
natural transformation τ : T =⇒ T ′ such that at any X : C, τ ‘preserves the unit’

ηX · τX = η′X .

and τ ‘preserves the multiplication’,

µX · τX = τTX ·T ′(τX)·µ′
X .

The definition for a comonad morphism is of course dual. Again, let us draw out the
diagrams for this in the case of functorial factorizations F and F ′, for which the left functors
were extended to comonads (L,Φ,Σ) and (L′,Φ′,Σ′) respectively. The unit preservation law
says that, for any f : X → Y in C2, we have

X X X

E′
f Ef Y

λ′
f

τf 00

λf

Φf 00

f

τf 11 Φf 11

=

X X

E′
f Y

λ′
f

Φ′
f 00

f

Φ′
f 11

and the multiplication preservation law says that

X X X

E′
f Ef Eλf

λ′
f

τf 00

λf

Σf 00

λλf

τf 11 Σf 11

=

X X X X

E′
f E′

λ′
f

E′
λf

Eλf

E′
f Ef

λ′
f

Σ′
f 00

λ′
λ′
f

F ′(τf)00

λ′
λf

τλf 00

λλf

Σ′
f 11

F ′(τf)11

ρ′
λ′
f

ρ′λf

τλf 11

F ′(τf)22

Again, the equality is only on the compositions of the solid arrows, as morphisms of C2. Some
information can be derived from these diagrams pretty easily for (L)NWFSs. Lastly though,
before we do that, we recall the definition of a (co)monad (co)algebra, which we used to
define the (L-Map) and R-Map categories.

Definition 5.12 (MonadAlg_disp). Given a monad (T, η, µ) on C, a T -algebra is an object
X of C together with an arrow α : TX → X for which the following diagrams commute

T 2X TX

TX X

µX

Tα

α

α

X TX

X

ηX

α

Monad algebras form a displayed category over C.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monads/Monads.v#L279
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/MonadAlgebras.v#L62

5.3. PROPERTIES OF NWFSS 46

Yet again, the definition for a coalgebra of a comonad is dual, also forming a displayed
category over C. Let us draw out the unit axiom for an extended left functor (L,Φ,Σ) of a
functorial factorization F , witnessing f as a retract of λf :

X X X

Y Ef Y

α00

f λf

Φf 00

f

α11 Φf 11

= idf .

Example 5.13 (cop_nwfs_r_map_iff_split_epi). For the factorization on SET which
factors f : X → Y through X ⊔ Y , an R-Map structure on g : A → B corresponds with
a splitting for g. That is, the existence of a morphism g∗ : B → A such that g∗· g = idB.
Indeed, the unit axiom of the algebra map α says that

A A ⊔B A

B B B

g

λg

ρg

α00

g

is identity on g, implying that

α00

∣∣∣
A
· g = idB .

An L-Map structure on f : X → Y exists just when f is a complemented monomorphism
[9]. Indeed, we get the (Complemented Mono,Split Epi) (N)WFS [24].

Example 5.14. For a strong factorization system (L,R), the L-Maps and R-Maps from
the corresponding NWFS reduce back to L-maps and R-maps [9].

5.3.2 Categorical Properties

In order to form the entities we have defined so far into categories, we define morphisms
them.

Definition 5.15 (fact_mor). A morphism of functorial factorizations τ : F → F ′ between
functorial factorizations F, F ′ over C is a natural transformation between sections.

Definition fact_mor {C : category} (F F' : functorial_factorization C) :=

section_nat_trans_disp F F'.

Recall that this means that all the components τf : F (f) →idC2
F ′(f) of τ lie over the identity

morphism.
This allows us to define a category FfC of functorial factorizations over C (Ff). Since

we defined NWFSs in terms of functorial factorizations ‘with added structure’, we can easily
define the category of NWFSs on C as a displayed category over FfC . We again split this con-
struction into LNWFSs and RNWFSs, giving us two separate displayed categories LNWFSC
(LNWFS) and RNWFSC (RNWFS) over FfC . Together they yield a displayed category NWFSC
(NWFS) over FfC .

In order to do this, we need some added structure on the morphisms in FfC . Suppose F
and F ′ are two functorial factorizations underlying NWFSs (L,R) and (L′,R′) respectively.
Whiskering a morphism τ : F → F ′ with the other face maps d0 and d2 gives natural
transformations τl : L =⇒ L′ and τr : R =⇒ R′ respectively.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Examples.v#L577
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L605
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L670
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L847
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L860

5.3. PROPERTIES OF NWFSS 47

Definition lnwfs_mor {C : category} {F F' : functorial_factorization C}

(n : lnwfs_over F) (n' : lnwfs_over F')

(τ : fact_mor F F') : (lnwfs_L_monad n') =⇒ (lnwfs_L_monad n) :=

post_whisker (op_nt τ) (functor_opp face_map_2).

Definition rnwfs_mor {C : category} {F F' : functorial_factorization C}

(n : rnwfs_over F) (n' : rnwfs_over F')

(τ : fact_mor F F') : (rnwfs_R_monad n) =⇒ (rnwfs_R_monad n') :=

post_whisker τ face_map_0.

Definition 5.16 (lnwfs_mor_axioms). We say that a morphism τ : F → F ′ of functorial
factorizations, where F and F ′ underly LNWFSs, is a morphism of LNWFSs if the induced
natural transformation τl is a comonad morphism.

Definition lnwfs_mor_axioms {C : category} {F F' : functorial_factorization C}

(n : lnwfs_over F) (n' : lnwfs_over F')

(τ : fact_mor F F') :=

Monad_Mor_laws (lnwfs_mor n n' τ).

Similarly, we define

Definition 5.17 (rnwfs_mor_axioms). We say that a morphism τ : F → F ′ of functorial
factorizations, where F and F ′ underly RNWFSs, is a morphism of RNWFSs if the induced
natural transformation τr is a comonad morphism.

Definition rnwfs_mor_axioms {C : category} {F F' : functorial_factorization C}

(n : rnwfs_over F) (n' : rnwfs_over F')

(τ : fact_mor F F') :=

Monad_Mor_laws (rnwfs_mor n n' τ).

Together, this gives us

Definition 5.18 (nwfs_mor_axioms). We say that a morphism τ : F → F ′ of functorial
factorizations, where F and F ′ underly NWFSs, is a morphism of NWFSs if τ is both a
morphism of LNWFSs and of RNWFSs.

Definition nwfs_mor_axioms {C : category} (n n' : nwfs C) (τ : fact_mor n n') :=

lnwfs_mor_axioms n n' τ Ö rnwfs_mor_axioms n n' τ.

Now, since all of the ..._mor_axioms types are propositional, we can use the Structure
Identity Principle to easily define LNWFSC , RNWFSC and NWFSC , the categories of left
halves, right halves, and full natural weak factorization systems on C, as displayed categories
over FfC .

5.3.3 Properties of the (Co)multiplication

The multiplication and comultiplication that define an NWFS structure on a functorial fac-
torization can be shown to be of specific shapes, and have certain useful properties in proofs
later on. Grandis and Tholen elaborated a bit on this in their paper [8]. These shapes fol-
low pretty much directly from the (co)monad axioms, in combination with the known shape
of the unit Λ and the counit Φ for any given functorial factorization. In all of these lem-
mas, we assume we are given an NWFS (L,R) with monad multiplication Π and comonad
comultiplication Σ and we consider the components at some morphism f : X → Y .

Lemma 5.19 (nwfs_Σ_top_map_id, nwfs_Π_bottom_map_id). The multiplication and co-
multiplication are of the following shapes:

Σf =

X X

Ef Eλf

λf λλf

σf

Πf =

Eρf Ef

Y Y

ρρf

πf

ρf

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L681
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L694
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L707
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L338
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L373

5.3. PROPERTIES OF NWFSS 48

Furthermore, we can show some relations on the morphisms σf and πf [8, 2.2].

Lemma 5.20. Let F : C2 −→ C3 be the underlying functorial factorization of (L,R). The
maps σf and πf have the following properties:

σf · ρλf
= idEf

σf ·σλf
= σf ·F (Σf)11

λρf ·πf = idEf

πρf ·πf = F (Πf)11·πf

Now we can in fact show similar lemmas when we are given only an LNWFS or an RNWFS
(lnwfs_Σ_top_map_id, lnwfs_Σ_bottom_map_inv), since we do not use any information
about the other half.

5.3.4 An NWFS is a WFS

One of the most important properties of an NWFS is that it in fact gives us a WFS. We
follow the proof from [9, Section 2.15]. First of all, let f : X → Y be a morphism, and
consider potential (co)algebra maps (αλ : f → λf) and αρ : ρf → f . The (co)algebra axioms
force these maps to be of a particular shape. By the coalgebra axioms, we have

αλ·Φf =

X X X

Y Ef Y

f λf f

s ρf

=

X X

Y Y

f f

and so we see that the map on domains of αλ must be identity. Similarly, the map on
codomains of αρ is identity. We also obtain a section s of ρf , and similarly, a retraction p of
λf from the monad algebra axioms.

Lemma R_map_section {C : category} {n : nwfs C} {a b : C} {f : a --> b}

(hf : nwfs_L_maps n f) :∑
s, f · s = arrow_mor (fact_L n f) Ö

s · arrow_mor (fact_R n f) = identity _.

Lemma L_map_retraction {C : category} {n : nwfs C} {c d : C} {g : c --> d}

(hg : nwfs_R_maps n g) :∑
p, p · g = arrow_mor (fact_R n g) Ö

arrow_mor (fact_L n g) · p = identity _.

Using this, we can construct a (specific) lift given a lifting problem (h, k) between L-map f
and an R-map g.

Lemma 5.21 (L_map_R_map_elp). Let (L,R) be an NWFS over a functorial factorization
F , then there exists a lift for every (f, g)-lifting problem (h, k) where f is an L-Map and g
an R-Map.

Proof. Let f : X → Y and g : A → B. Consider the diagram obtained by applying the
functorial factorization F to (h, k) and attaching the (co)monad algebra morphisms.

X X A

Y Ef Eg A

Y B B

f

h

λf λg

s

ρf

F (h,k)11 p

ρg g

k

The lift can be simply read off as s·F (h, f)11· p.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSHelpers.v#L53
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSHelpers.v#L64
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFS.v#L526

5.3. PROPERTIES OF NWFSS 49

It is important to note that we in fact prove the existential lifting property, meaning
that we obtain the actual lift, and not just the mere existence of one. This is an important
difference with plain WFSs, where we only know of the mere existence of a lift. The lemma we
just proved shows that the existence of a lift between an L-Map and an R-Map corresponds
precisely with the existence of their (co)algebra maps. After all, the existence of a coalgebra
map is basically an algebraic way of saying that ‘(f, ρf) has the lifting property’ and dually
for the existence of an algebra map. In this way, the (co)algebra maps and the lifting property
correspond precisely with Lemma 4.21 in the theory of plain WFSs, providing a lift of an
L-Map f against its right map ρf and a lift of an R-Map against its left map λf .

We will show that an NWFS actually gives us a plain WFS in a canonical way. First note
that λf can be given an L-Map structure for any morphism f . This structure comes directly
from the comultiplication of the NWFS. The coalgebra laws follow directly from the lemmas
in the previous section.

Lemma 5.22 (nwfs_Lf_is_L_map). Let (L,R) be an NWFS. Then for any morphism f , the
corresponding morphism λf can be given an L-Map structure.

Similarly, one can show that ρf can be given an R-Map structure. The previous two
lemmas pretty much tell us how to construct a WFS from an NWFS.

Theorem 5.23 (nwfs_is_wfs). Given an NWFS (L,R), the pair (L-Mapcl,R-Mapcl) is a
WFS.

Proof. We have to show a couple of things. Firstly, we show that L-Mapcl ⊆ □
(
R-Mapcl

)
.

In fact, we can show something stronger, which is that L-Map ⊆ □R-Map. This follows
directly from Lemma 5.21. It follows that L-Mapcl ⊆ □

(
R-Mapcl

)
, since retracts preserve

the lifting property, from Lemma 4.9.
Next we show that □

(
R-Mapcl

)
⊆ L-Mapcl. In this case, we can not (in general) prove a

stronger statement, as is explained in the remark after the proof. Now let f ∈ □
(
R-Mapcl

)
.

Note that since f has the left lifting property with respect to any morphism in R-Mapcl, it
has the left lifting property with respect to any map in R-Map as well, and in particular
with ρf , since ρf is an R-map. We obtain a filler l for the following lifting problem.

X Ef

Y Y

f

λf

ρf
l

Reshaping this diagram a bit, we see that f is a retract of λf , which has an L-Map
structure, as shown in Lemma 5.22.

X X X

Y Ef Y

f λf f

l ρf

Dually, one can show that R-Mapcl =
(
L-Mapcl

)□
. The factorization axiom for the WFS

follows precisely from the facts that λf is an L-map, and that ρf is an R-map.

Remark. It is not true in general that □R-Map ⊆ L-Map. Suppose f ∈ □R-Map, then
f has the lifting property with respect to any g ∈ R-Map. In order to show that f is an
L-Map, we need to find the L-Map-structure map (the coalgebra morphism). The only tools
we have to construct this map are the lifts with respect to the R-Maps, but these lifts (as given
from the assumption) do not necessarily have to be natural, or correspond with a coalgebra

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFSisWFS.v#L102
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFSisWFS.v#L253

5.3. PROPERTIES OF NWFSS 50

structure in any way. In his article, Garner merely mentions that all the laws for a WFS
are satisfied ‘except possibly for closure under retracts’ [9, Remark 2.17]. However, for a
general case like this in a formalization, we will always have to assume that we have to take
the retract closures.

And so we see that an NWFS indeed gives us a WFS. But NWFSs are better behaved
in many ways. They have algebraic structure and provide a canonical and natural choice
for fillers in lifting problems. As we will see, they allow for a much more elegant version
of the small object argument, used to generate WFSs. Before that, we show that they ‘fix’
the problems we had with plain WFSs. We no longer need the axiom of choice to show
equivalents of the lemmas we were not able to before.

Lemma 5.24 (nwfs_closed_coproducts). Given families of objects {Xi }i:I , { Yi }i:I for
some type I. Suppose we have a family of maps { fi }i:I such that fi is an L-Map for all
i : I. Then the coproduct f :

⊔
i:I Xi →

⊔
i:I Yi of the fi also has an L-Map structure.

The proof for this lemma is very similar to the proof we tried to use for plain WFSs (in
Lemma 4.27). We get coalgebra maps for every individual fi, and we can put this together
to obtain coalgebra data for f .

We can also show the following.

Lemma 5.25 (nwfs_closed_transfinite_composition). Let d := {Xv }v:N be a chain in
C, for which every

fv : Xv → Xv+1

has an L-Map structure, then the canonical map

in→0 : X0 ↪→ colimXv

is a retract of an L-Map.

Proof. The strategy for this proof is similar to the analogue for WFSs. We want to show
that we have a map α∞ that fills the following diagram:

X0 X0

X∞ Ein→0

in→0 λin→0

α∞

The map α∞ that we construct indeed shows that in→0 is a retract of λin→0 . We claim that
for any v : N, we have a map αv such that

Xv Ein→0

Xv+1 X∞

fv

αv

ρin→0

in→v+1

We set α0 := λin→0 . Then suppose we have a map αv that fills the above diagram. For v + 1,
we obtain a map αv+1 by finding a lift from fv against ρin→0 , using the algebra map obtained
from the multiplication Π for the latter. We get a diagram

Xv Xv Ein→0

Xv+1 Ev Eρin→0
Ein→0

Xv+1 X∞ X∞

fv λfv

αv

λρin→0

αfv

ρfv

F (σv ,in→v+1)11

ρρin→0

πρin→0

ρin→0

in→v+1

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFSisWFS.v#L283
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/NWFSisWFS.v#L655

5.3. PROPERTIES OF NWFSS 51

where we can read off αv+1 : Xv+1 → Ein→0
. Indeed, these morphisms define α∞, and one

can show that in→0 is a retract of λin→0 , which is an L-Map.

Remark. We would much rather show that in→0 is an L-Map itself. We are almost able to
do so, as the retract with λin→0 is in fact the same as the unit axiom of an L-Map. Sadly,
the multiplication axiom requires some specific interaction between the comultiplication Σ and
the multiplication Π of our NWFS. A common assumption is distributivity [9], which may
be sufficient.

Remark. It is important to note that these two proofs do not show that the WFS one obtains
from an NWFS is closed under coproducts and transfinite compositions. After all, we would
run into the same issue as before: we would only know the mere existence of a lift in the
‘individual diagrams’ in both proofs. We would still not be able to ‘put them together’, yielding
a lift for the full problem. These lemmas do show that we can assume such statements to
hold when we build a theory on the more refined notion of an NWFS.

Remark. These algebraic analogues to weak factorization systems can be used to define
an algebraic analogue to model structures: algebraic model structures [10]. Like for weak
factorization systems, these solve some of the issues one runs into with plain model structures,
such as the functoriality of NWFSs providing a canonical choice of lifts.

Chapter 6

The Classical Small Object
Argument

Quillen’s (classical) small object argument [1] is a powerful technique that allows one to
construct weak factorization systems given a sufficiently well-behaved class of morphisms. It
can even be used to construct model structures on categories, known as cofibrantly generated
model structures. Garner improved on this construction to allow one to generate NWFSs
instead, in an algebraically coherent way. His construction also resolves some problematic
aspects he saw in the classical small object argument, being that it has no universal property,
it does not converge and it does not seem to be related to other transfinite constructions in
categorical algebra [9].

In this chapter, we introduce the classical small object argument, following Hovey’s book
on model categories [2]. When defining the argument, we generally keep the examples of
topological spaces (TOP) or simplicial sets (SSET) in mind, to gain some intuition behind
the construction. We also point out a constructive issue in this construction. In the next
chapter, we will discuss Garner’s ‘algebraization’ of this argument, elaborating on his articles
[9][22] and drawing parallels with the classical counterpart discussed in this chapter.

There is no formalization of the theory in this chapter, so we will be using notation closer
to that of set-theory based mathematics, in order to stay closer to the original theory.

6.1 The Small Object Argument

We define what exactly a ‘small object’ is.

Definition 6.1. Suppose C is a category with all small colimits, and J is a class of morphisms
of C. Let A be an object of C and κ a cardinal. We say that A is κ-small relative to J if, for
all κ-filtered ordinals γ and γ-sequences

X0 → X1 → . . . → Xα → . . .

where each map Xα → Xα+1 is in J for α + 1 < γ, the map of sets

colimα<γ(A → Xα) → (A → colimα<γ Xα)

is an isomorphism. We say that A is small relative to J if it is κ-small relative to J for some
cardinal κ. We say that A is small if it is small relative to all morphisms in C.

Remark. As mentioned before, the theory of ordinals in HoTT has not been developed very
far, even with recent developments [21]. For this reason, we will only consider transfinite
composites for chains, so for the first limit ordinal ω (i.e. γ is ω, and κ is some finite value).
Since this chapter will not be formalized, we leave the definition as it is in Hovey’s book [2],

52

6.1. THE SMALL OBJECT ARGUMENT 53

but one may keep in mind that the limit ordinal is ω, the sequence is a chain and smallness
means small relative to ω. These assumptions will still be sufficient for the construction to
work in important examples such as topological spaces and simplicial sets [2].

Intuitively, this means that an object is small relative to J if a map to a long enough
composition of maps in J factors through some stage of this composition [2].

Example 6.2. Any set is small. We show that if A is a set, then A is |A|-small. Suppose γ is
an |A|-filtered ordinal, and X is a γ-sequence of sets. For any map f : A → colimα<γ Xα, we
find for each a ∈ A an index αa such that f(a) is in the image of Xαa. Then let β = supa∈A αa.
Since γ is |A|-filtered, β < γ, and so f factors through some map A → Xβ.

Before we get into the small object argument construction, we introduce some terminology
and some technical Lemmas.

Definition 6.3. Given a class of morphisms J in a category C, we call a map a J-cofibration

if it is in □
(
J□
)
. Dually, we call it a J-fibration if it is in

(
□J
)□

.

Like the names suggest, these classes will end up being the (co)fibrations in our weak
factorization system. We specify a special subclass of □

(
J□
)
.

Definition 6.4. Let J be a class of morphisms in a category C. A relative J-cell complex is
a transfinite composition of pushouts of elements of J . We denote this class by J-cell. That
is, if g : A → B is in J-cell, then there is an ordinal γ and a γ-sequence X(−) : γ −→ C such
that g is the composition of X(−), and such that for each α with α+ 1 < γ, there is a pushout
square

Aα Xα

Bα Xα+1

gα

⌜

such that gα is in J . We say that A : C is a J-cell complex if the map 0 → A is a relative
J-cell complex for an initial object 0.

Example 6.5. In the case of the categories TOP and SSET of topological spaces, the class
J will be the class of boundary inclusions of spheres into the corresponding disks

J := { jn : Sn ↪→ Dn+1 | n = −1, 0, 1, . . . }

Note that in this case, these pushout squares correspond precisely to the gluing of cells. This
means that maps in J-cell correspond precisely with relative CW complexes on the domain,
and J-cell complexes are precisely the absolute CW-complexes, since we take S−1 to be the
empty space, which is the initial object of TOP and SSET.

It can be shown that all isomorphisms are in J-cell, since we can take them to be the
composition of the 1-sequence on their domain. After all, for any other colimit on this
sequence, the isomorphism itself gives us a (unique) ismorphism to this colimit.

Remark. From the definition of J-cell, it need not be a subclass of □
(
J□
)
. This fact follows

from the fact that □
(
J□
)
is closed under pushouts of coproducts and transfinite compositions.

However, that proof required the axiom of choice. This is a constructive issue in the small
object argument that is easily overlooked.

We need some results about J-cell. More detailed proofs of these Lemmas can be found
in [2, Section 2.1.2].

Lemma 6.6. Suppose C is a category with all small colimits, and J is a class of morphisms
of C. Then J-cell is closed under transfinite compositions.

6.1. THE SMALL OBJECT ARGUMENT 54

Proof Idea. Let X(−) be a γ-sequence of relative J-cell complexes. Then every map Xα →
Xα+1 is a relative J complex, i.e. the composition of an ordinal sequence Yα : γα −→ C. We
define a new ordinal, consisting of pairs of ordinals Γ :=

∑
α:γ γβ and define a new order on

Γ. This gives a new sequence Z : Γ −→ C such that every map Zα → Zα+1 is either a map
Yγ → Yγ+1 or an isomorphism. It is possible to ‘collapse’ these isomorphisms by taking an
equivalence class on the ordinal Γ, giving again a new ordinal sequence, where every map is
in fact a pushout of a map of J . By definition, this composition is then again in J-cell.

In the category of topological spaces, this corresponds with the fact that a transfinite
composition of relative CW complexes still yields a relative CW complex.

Lemma 6.7. Suppose C is a category with all small colimits, and J is a class of morphisms
of C. Then any pushout of (set-indexed) coproducts of maps of J is in J-cell.

Proof Idea. Suppose K is a set and gk : Ak → Bk is a map of J for all k in K. Suppose g is
the pushout in the diagram ⊔

k∈K Ak A

⊔
k∈K Bk B

⊔
k∈K gk

⌜
g

The idea is that we convert this coproduct of cell attachments into a transfinite composition of
sequential cell attachments of the individual gk, which ends up giving the same pushout.

As was hinted at in the proof idea, in the category of topological spaces or simplicial sets,
this lemma shows that instead of gluing cells individually, we can also glue many cells at
once.

With these technical Lemmas, we are equipped to prove that the small object argument
construction works.

Theorem 6.8 (Small object argument). Suppose C is a category containing all small colimits,
and J is a class of morphisms in C. Suppose the domains of all the maps in J are small
relative to J-cell. Then there is a functorial factorization (L,R) on C such that, for all
morphisms f in C, L(f) is in J-cell and R(f) is in J□.

Proof. Choose a cardinal κ such that every domain of J is κ-small relative to J-cell, and
let γ be a κ-filtered ordinal. Given f : X → Y we will define a functorial γ-sequence

Zf
(−) : γ −→ C such that Zf

0 = X and a natural transformation Zf
(−)

ρf
(−)

===⇒ Y factoring f .

Each map Zf
α → Zf

α+1 will be a pushout of maps in J . Then L(f) will be the composition
of Zf , and R(f) will be the map Ef := colimZf → Y , induced by ρf . It follows from
Lemma 6.6 and Lemma 6.7 that L(f) is in J-cell.

We define Zf
α and ρfα : Zf

α → Y using transfinite induction. Firstly, we set Zf
0 = X and

ρf0 = f . Now assume we have defined Zf
α and ρfα for all α < β for some limit ordinal β. We

define Zf
β = colimα<β Z

f
α and ρfβ to be the map induced by the ρfα.

Having defined Zf
β and ρfβ, we define Zf

β+1 and ρfβ+1. This is called the ‘limit ordinal
step’. Let Sf be the set of all commutative squares (i.e. lifting problems)

A Zf
β

B Y

g ρfβ

6.1. THE SMALL OBJECT ARGUMENT 55

with g in J . For any lifting problem x in Sf , denote by gx : Ax → Bx the corresponding map

of J . We take Zf
β+1 to be the pushout in the following diagram

⊔
x∈S Ax Zf

β

⊔
x∈S Bx Zf

β+1

Y

⊔
x∈S gx

⌜
ρfβ

ρfβ+1

and set ρfβ+1 to be the unique map given from the universal property of the pushout.

It remains to show that R(f) = colim ρfβ : Ef → Y has the right lifting property with
respect to J . To show this, we use the smallness property of the domains of the maps in J .
Suppose we are given a commutative square

A Ef

B Y

h

g R(f)

k

where g is in J . From the smallness of A, it follows that there is a β < γ such that h is the
composite

A
hβ−→ Zf

β → Ef .

If we consider the pushout diagram corresponding to this step in the transfinite sequence, we
get a map kβ : B → Zf

β+1 by construction that makes this diagram commute.

A Zf
β

B Zf
β+1

Y

f

hβ

⌜ ρfβ
kβ

k

ρfβ+1

Factoring ρfβ and ρfβ+1 through the colimit, we get that the following diagram commutes:

A Zf
β Ef

Zf
β+1

B Y

g

hβ

ρf

ρfβ+1

k

kβ

The diagonal map here is precisely the lift we are looking for.

Example 6.9. In the category TOP of topological spaces and SSET of simplicial sets, this
construction boils down to the following: Every step in the transfinite sequence, we glue all

6.2. COFIBRANTLY GENERATED MODEL STRUCTURES 56

possible cells to the current stage. This means that every step of the way, we glue duplicate
cells, as we can glue all the cells that we have glued before, as well as any new ones that
attach to the cells from the previous step.

This is what Garner means with the fact that this construction ‘does not converge’. The
idea is that we just stop whenever we have gone far enough. This again implies some sort of
choice, as well as possibly requiring us to work with massive ordinals.

Unpacking the requirement of the smallness of the domains of maps in J with respect to
J-cell in TOP, we simply mean that including a sphere into a CW-complex factors through
some stage in the construction of the CW-complex. A simple argument could be that any
compact subset of a CW-complex intersects only finitely many cells. We can in fact prove
something stronger though. The following Lemma allows us to use the small object argument
in the category of topological spaces, with J the class of sphere inclusions [2, Lemma 2.4.1].

Lemma 6.10. All topological spaces are small with respect to inclusions.

Proof. Suppose X(−) is a γ-sequence of topological spaces for some ordinal γ. Then every
map Xα → Xα+1 is an inclusion, and by transfinite induction, so is any map Xα → Xβ for
limit ordinals β > α. So the map Xα → colimX is an inclusion. So if we can factor any
map A → colimX from a space A through a map of sets A → Xα, this map is automatically
continuous. This follows from the fact that any set is small, as shown in Example 6.2.

Even stronger though, is the following lemma [2, Proposition 2.4.2], which allows us to
use the small object argument with a truncation at the first limit ordinal ω.

Lemma 6.11. Compact topological spaces are finite with respect to closed T 1 inclusions.

In his algebraization of the small object argument, Garner introduces two smallness re-
quirements. The first one is a much simpler, but much stronger one. This smallness require-
ment in fact does not hold in TOP, as it requires smallness relative to all morphisms in the
category, not just relative to those in J . This is not a problem in the category SSET of
simplicial sets, as we have the following result [2, Lemma 3.1.2].

Lemma 6.12. All finite simplicial sets are finite in SSET.

6.2 Cofibrantly Generated Model Structures

With the small object argument, we can generate model structures on a category C. Consider
the following theorem [2, Theorem 2.1.9].

Theorem 6.13. Suppose C is a category with all small limits and colimits. Suppose W is a
class of morphisms in C, and I and J are morphism classes of C. Then there is a cofibrantly
generated model structure on C with W as the class of weak equivalences, I□ as the class of
fibrations, and J□ = W ∩ (I□) if and only if the following conditions are satisfied.

1. The class W has the two out of three property and is closed under retracts.

2. The domains of I are small relative to I-cell.

3. The domains of J are small relative to J-cell.

4. I-cell ⊆ W ∩ □
(
J□
)
.

5. J□ ⊆ W ∩ (I□).

6. Either W ∩ □
(
J□
)
⊆ □

(
I□
)
or W ∩ (I□) ⊆ J□.

Effectively, we use two classes I and J to generate two weak factorization systems. The
other requirements make sure the weak factorization systems interact properly.

6.2. COFIBRANTLY GENERATED MODEL STRUCTURES 57

Example 6.14. The classical model structure on TOP, where the weak equivalences are
the weak homotopy equivalences, fibrations are Serre fibrations and cofibrations are retracts
of relative CW-complexes, is generated By

J := { jn : Sn ↪→ Dn+1 | n = −1, 0, 1, . . . }

and
I := { in : Dn ↪→ Dn × [0, 1] | n = 0, 1, . . . }

where in maps Dn to Dn × {0}. Indeed, I□ is the set of Serre fibrations by definition.

Example 6.15. In SSET, the class of canonical boundary inclusions

J := { jn : ∂∆[n] ↪→ ∆[n] | n ≥ 0 }

and the class of canonical inclusions

I := { ir,n : Λr[n] ↪→ ∆[n] | n > 0, 0 ≤ r ≤ n }

generate the Quillen model structure on SSET. The fibrations are the Kan fibrations, and
the cofibrations are the monomorphisms f : X → Y which are levelwise injections.

Hovey describes even more examples of cofibrantly generated model structures, such as
that on the category R-Mod of modules for a Frobenius ring R, or on the category of R chain
complexes for a ring R [2].

Chapter 7

The Algebraic Small Object
Argument

Now that we have seen the classical small object argument, we can move on to the most
interesting part of this thesis: generating natural weak factorization systems with Garner’s
algebraic small object argument. The construction is inductive like its counterpart. The
general idea is that for a class J of morphisms in our category C, we want to construct some
LNWFS. This LNWFS will have certain properties that will allow us to apply a transfinite
construction, generalized from one by Kelly [25], giving us a full NWFS.

The initial LNWFS we construct will correspond to the first step in the classical small
object argument. Similar to that construction the ‘left part’ will already obey the properties
we want it to, but the ‘right part’ still needs to be fixed. The transfinite construction then
‘fixes’ the right half. In this way, we are able to generate an NWFS (L,R) from only a
morphism class J . There will be many similarities between the constructions, but also some
obvious differences. The construction also resolves the issues with the axiom of choice that
we encountered before.

In fact, the NWFS that is generated this way will be cofibrantly generated. That is to say,
all the morphisms in J are L-Maps, and the class of R-Maps corresponds with an algebraized
notion of J□ [9]. Unfortunately, this is out of scope for this thesis, and we will be focussing
on the existence of an NWFS.

We will be following Garner’s articles [9] [22], rephrasing the theory using univalent foun-
dations, filling in details where he left them out and providing intuition using important
examples in TOP and SSET, as well as a computable example in SET. We also redefine
part of the construction to be more direct and intuitive.

In the rest of this chapter, we will always assume that C is the category we are working in,
and J is a given class of morphisms, which are using to generate our NWFS. Some examples
in this chapter will provide intuition about the construction in the case of topological spaces
(TOP) or simplicial sets (SSET). Just like the previous chapter, the class J in these cases
consists of boundary inclusions of disks

J = { jn : Sn ↪→ Dn+1 | n = −1, 0, 1, . . . } .

Another, simpler example that we consider in examples is that of the factorization on SET,
factoring f : X → Y through X ⊔ Y . It turns out that the corresponding NWFS is obtained
by choosing J to be the set containing the single morphism from the empty set to the one
point set [9]

J = { ∅ → ∗ } .

58

7.1. THE ONE-STEP COMONAD 59

7.1 The One-Step Comonad

As mentioned, we want to construct an NWFS from and appropriate morphism class J . This
is an iterative process, which is very similar to the classical small object argument. The first
step is to produce the one-step comonad. This is an object of LNWFSC , which we will then
use to construct a full NWFS. The one-step comonad corresponds the very first step of the
classical small object argument.

Firstly though, at this point the morphism class J is not a category in our formalization,
but just a class of morphisms. Classically, we could choose to turn J into a category by
simply taking it to be the discrete subcategory of C2 containing precisely the maps of J as
objects. In our case, it is easier to define the full subcategory of J as a displayed category
over C2 where the objects over g : C2 are the propositional type g ∈ J .

Definition morcls_disp (J : morphism_class C) : disp_cat (arrow C) :=

disp_full_sub (arrow C) (λ g, J _ _ g).

Giving us a total category J tot where the objects are precisely
∑

g:C2 g ∈ J . We use this to
define the type of lifting problems with respect to J .

Definition 7.1 (morcls_lp). Given a morphism class J and a morphism f in C, we denote
the type of (g, f)-lifting problems as g ranges over J by Sf .

This means that any x : Sf is a lifting problem of the form

A X

B Y

g f

with g ∈ J . We denote by gx the map in J corresponding to a lifting problem x : Sf , and by
hx and kx the top and bottom map respectively.

Definition morcls_lp (J : morphism_class C) (f : arrow C) : UU :=∑
(g : total_category (morcls_disp J)), (pr1 g) --> f.

Consider the diagram corresponding to the first step of the classical small object argument:

⊔
x:Sf

Ax X

⊔
x:Sf

Bx Y

⊔
x:Sf

gx

⊔
x:Sf

hx

f

⊔
x:Sf

kx

Like before, we take a pushout to obtain the following diagram.

⊔
x:Sf

Ax X X

⊔
x:Sf

Bx E1
f Y

⊔
x:Sf

gx

⊔
x:Sf

hx

⌜
λ1
f

ρ1f

Now we write R1 : C2 −→ C2 for the functor sending f to ρ1f . We also define Λ1 for the

natural transformation idC2 =⇒ R1, with components at f : X → Y

Λ1
f

X E1
f

Y Y

λ1
f

f ρ1f

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LiftingWithClass.v#L134

7.1. THE ONE-STEP COMONAD 60

In a similar fashion, we define a pointed endofunctor (L1,Φ1), sending f to λ1
f with the

appropriate counit Φ1. Our first goal will be to show that the copointed endofunctor (L1,Φ1)
extends to a comonad, giving us an object of LNWFSC . The pointed endofunctor (R1,Λ1)
does not, in general, extend to a monad though, explaining why we do not yet obtain an
object of NWFSC .

To relate this back to the classical small object argument, the fact that (L1,Φ1) extends
to a comonad corresponds with the fact that at every step in the transfinite construction of
the classical small object argument, the left map is in J-cell. After all, the comultiplication
witnesses that λ1

f lifts against ρ1
λ1
f

for any morphism f . The absence of a monad multiplication

means that ρ1f need not be an R1-Map, similar to how the right map we obtain after just
any step in the classical small object argument need not be a fibration.

Firstly though, we show that the objects we introduced are indeed functors and natural
transformations. The first step is to turn the assignation L1 : f 7→ λ1

f into the object part of
a functor. We need to define how the functor acts on morphisms.

In order to do this, we first define a functor

K : C2 −→ C2 : f 7→
⊔
x:Sf

gx.

We need to define what this functor does on morphisms. Note that given a morphism γ :
f → f ′ in C2, we can simply postcompose any lifting problem x : Sf with γ to obtain a lifting
problem in Sf ′ . We get a map Sγ : Sf → Sf ′ , which in turn allows us to define K on γ as
the inclusion of the coproduct

Kγ :=
⊔
x:Sf

in⊔Sγ(x)
:
⊔
x:Sf

gx →
⊔
y:Sf ′

gy,

where in⊔(−) denotes the inclusion into the coproduct of the object at the given index. Veri-

fying that this is indeed a functor is fairly straightforward (morcls_coprod_functor).
The maps

⊔
x:Sf

hx and
⊔

x:Sf
kx become the components for a natural transformation

ϕ : K =⇒ idC2 . We consider part of the naturality square of ϕ (which is a cube since it is a
square in the arrow category)

⊔
x:Sf

Ax X

⊔
y:Sf ′

Ay X ′

⊔
x:Sf

Bx

⊔
y:Sf ′

By

Kf

⊔
x:Sf

hx

γ00

Kf ′

⊔
y:Sf ′

hy

where the left face is Kγ. We push out the front face to obtain Kf ′ → λ1
f ′ , and the rear

face yields Kf → λ1
f . We define L1γ to be the right-hand face, with the map on codomains

induced by the universal property of the pushout. In the diagram below, the pushed out
arrows are dashed, and the dotted arrow, the map

(
L1γ

)
11

, is the map obtained using the

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonad.v#L218

7.1. THE ONE-STEP COMONAD 61

universal property of the pushout.⊔
x:Sf

Ax X

⊔
y:Sf ′

Ay X ′

⊔
x:Sf

Bx E1
f

⊔
y:Sf ′

By E1
f ′

⌜

⌜

L1γ

We can show that this construction is functorial.

Lemma 7.2 (one_step_comonad_functor). L1 as defined above is a functor.

This follows from the properties of pushouts. After all, identity must be the unique map
making this construction commute when γ = idf and the composition of the pushout maps
must be the same as the unique map making the composition of two cubes commute. Indeed,
we also have the following.

Lemma 7.3 (one_step_monad_functor). R1 as defined above is a functor.

Lemma 7.4 (one_step_factorization). L1 and R1 form a functorial factorization F 1,
called the one-step factorization.

Lemma 7.5 (one_step_monad_unit, one_step_comonad_counit). The objects Λ1 and Φ1

are in fact natural transformations.

Example 7.6. It may be useful to think about this ‘commuting cube construction’ intuitively.
Thinking about it in terms of topological spaces, we are simply mapping the cells that are glued
to one relative CW-complex to those in another, in the way defined by the map Sγ : Sf → Sf ′.

Note that this construction immediately gives us a natural transformation

ξ : K =⇒ L1

where the components are the pushouts

ξf :=

⊔
x:Sf

Ax X

⊔
x:Sf

Bx E1
f

⊔
x:Sf

gx

⊔
x:Sf

hx

⌜
λ1
f

⊔
x:Sf

kx

We get a copointed endofunctor (L1,Φ1), but we want to extend it to a comonad. To find the
multiplication, we use the same construction as for L1γ, with f ′ = λ1

f and a different map of

lifting problems Sf → Sλ1
f
. We get this map directly from the construction of λ1

f , since for a

lifting problem x : (gx → f) in Sf with gx ∈ J , we compose the inclusion of gx into Kf with
ξf to obtain a morphism

Ax
⊔

x:Sf
Ax X

Bx
⊔

x:Sf
Bx E1

f

gx

in⊔x

⊔
x:Sf

gx λ1
f

in⊔x

Since the rest of the construction is the same as before, functoriality follows. It turns out
that, indeed

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonad.v#L464
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonad.v#L613
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonad.v#L555
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonad.v#L713
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonad.v#L682

7.2. THE ITERATIVE STEP 62

Lemma 7.7 (one_step_comonad, one_step_comonad_as_LNWFS). The comultiplication Σ1

obtained from this construction indeed extends (L1,Φ1) to a comonad, giving us an object of
LNWFSC, lying over the one-step factorization F 1.

Example 7.8. Before we continue, let us think about the comultiplication intuitively. In
the TOP and SSET examples, the maps gx : Ax → Bx are boundary inclusions of spheres
into disks, making the pushout of the coproduct the same as gluing all possible cells to the
domain X of f . The map from Sf to Sλ1

f
effectively tells us that if we can factor f through

a cell attachment on X, then we can factor λ1
f through the same cell attachment. This

seems sensible, as λ1
f is defined precisely as this cell attachment. The comultiplication map

λ1
f → λ1

λ1
f
, together with the comonad axioms then tell us that this factoring of λ1

f adds no

new information, as everything can be collapsed back into the codomain of λ1
f .

Example 7.9. In the category SET, where we chose J = { ∅ → ∗ }, the one-step factoriza-
tion is in fact already the factorization [22, Examples 34]

X
f−−→ Y 7→ X

in⊔X−−−→ X ⊔ Y
f⊔idY−−−−→ Y.

For this choice of J and any f : X → Y , the possible lifting problems can be indexed by Y ,
as there is precisely one map ∗ → Y for every y : Y . This yields the following pushout:

∅ X X

⊔
y:Y ∗ E1

f Y⌜
λ1
f f

⊔y:Y consty ρ1f

Indeed, since
⊔
y : Y ∗ ∼= Y , we get that E1

f = X ⊔ Y , and the factorizations indeed coincide.

7.2 The Iterative Step

Now that we have found an object in LNWFSC , we want to ‘fix’ the right part using a
transfinite construction. We can use a transfinite construction defined on general monoidal
categories to find a monoid in the category. We will define a monoidal structure on FfC , which
can be extended to LNWFSC . We define it in such a way, that a monoid F in this monoidal
structure corresponds with an object of RNWFSC over F , or, when lifted to LNWFSC ,
a monoid L over F : FfC corresponds to an object of NWFSC over F . In other words,
the monoid structure gives us the extension of the right functor of the underlying functorial
factorization to a monad. Afterwards, we define the transfinite construction on a general
monoidal category V, using some smallness assumptions, which we will show for LNWFSC
in the subsequent sections, completing the argument.

Firstly though, we briefly introduce the theory of monoidal categories, following the def-
initions found in UniMath [12] [13]. These definitions are similar to those found in more
classical literature [23], but are adapted to be more fit for formalization. This notion is
less strict in the sense that equalities in the traditional definition are replaced by (natural)
isomorphisms.

In their articles, Ahrens, Matthes and Wullaert describe the need for this adapted def-
inition, partly relating to a common theme in this thesis: propositional versus definitional
equalities. For example, in the category of endofunctors on a category C, one might like to
use that idC ·F = F for any endofunctor F . These objects are not convertible in formaliza-
tion though, making this equality propositional and not definitional. The adapted notion of
monoidal categories works around this issue, providing a simple and performant way to work

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonad.v#L1085
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/SmallObjectArgument.v#L60

7.2. THE ITERATIVE STEP 63

with monoidal categories in formalization. It uses isomorphisms in places where existing def-
initions use equalities, making it a less strict notion than its counterpart. This more modern
notion of a monoidal structure will prove to be sufficient for Garner’s algebraic small object
argument.

7.2.1 Monoidal Categories

A monoidal structure on a category defines a genercal notion of a product on the category,
like the direct product ×, the direct sum ⊕ or the tensor product ⊗. In Ahrens, Matthes
and Wullaert’s adapted notion of monoidal categories, this product comes in the form of a
whiskered bifunctor.

Definition 7.10 (bifunctor). A whiskered bifunctor on a category V is a bifunctor ⊗ :
V × V −→ V, such that A⊗ (−) and (−) ⊗X are endofunctors for any A,X : V, such that

(A⊗ f)· (g ⊗ Y) = (g ⊗X)· (B ⊗ f)

for any A,B,X, Y : V, f : X → Y and g : A → B. We refer to this identity as the
commutativity of whiskering.

Remark. The endofunctor requirement on A ⊗ (−) and (−) ⊗ X means they provide the
following whiskering data:

� For any A : V and f : X → Y in V, a morphism

A⊗ f : A⊗X → A⊗ Y.

This is called leftwhiskering.

� For any g : A → B in V and X : V, a morphism

g ⊗X : A⊗X → B ⊗X.

This is called rightwhiskering.

with the following compatibility with identity and composition in V:

A⊗ idX = idA⊗X

idA⊗X = idA⊗X

A⊗ (f · f ′) = (A⊗ f)· (A⊗ f ′)

(g· g′) ⊗X = (g ⊗X)· (g′ ⊗X)

for objects A,X and compatible morphisms f, f ′, g, g′.

Example 7.11 (monendocat_tensor). Functor composition in endofunctor categories can be
extended to form a whiskered bifunctor. Whiskering for this whiskered bifunctor corresponds
with the notion of whiskering briefly mentioned in Definition 5.10.

Definition 7.12 (monoidal). A monoidal structure on a category V consists of a quintuple
(⊗, I, lu, ru, α) consisting of the following data.

� A whiskered bifunctor ⊗ : V × V −→ V, referred to as the tensor product.

� A unit I : V.
� A left unitor lu, which is a natural isomorphism I ⊗ (−) =⇒ idV , i.e. a family of
isomorphisms

lu X : I ⊗X → X

for X : V, such that
(I ⊗ f)· lu Y = (lu X)· f

for any f : X → Y . We denote the inverses by luinv. That is to say,

luinv X : X → I ⊗X

is an inverse to lu X.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monoidal/WhiskeredBifunctors.v#L146
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monoidal/Examples/EndofunctorsMonoidalElementary.v#L45
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monoidal/Categories.v#L412

7.2. THE ITERATIVE STEP 64

� A right unitor ru, which is a natural ismorphism (−) ⊗ I =⇒ idV . We denote the
inverse by ruinv.

� An associator α, which is a natural isomorphism ((−)⊗(−))⊗(−) =⇒ (−)⊗((−)⊗(−)).
We denote the inverse by αinv.

such that the triangle identity holds

(X ⊗ I) ⊗ Y X ⊗ (I ⊗ Y)

X ⊗ Y

α

(ru X)⊗Y X⊗(lu Y)

and the pentagon identity holds

((W ⊗X) ⊗ Y) ⊗ Z (W ⊗ (X ⊗ Y)) ⊗ Z W ⊗ ((X ⊗ Y) ⊗ Z)

(W ⊗X) ⊗ (Y ⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

α⊗Z

α

α

W⊗α

α

for appropriate instances of α. We say that V is a monoidal category.

Example 7.13 (monendocat_monoidal). One can define a monoidal structure on any end-
ofunctor category, where the tensor product is functor composition, together with appropriate
whiskering data.

Finally, we introduce the notion of monoid in this adapted version of monoidal categories.

Definition 7.14 (monoid). A monoid in a monoidal category V is an object M : V together
with a map µ : M⊗M → M , reffered to as the multiplication and a map η : I → M , referred
to as the unit, such that the following diagrams commute

I ⊗M M ⊗M M ⊗ I

M
lu M

η⊗M

µ
ru M

M⊗η
(M ⊗M) ⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M

α

µ⊗M

M⊗µ

µ

µ

Example 7.15 (monoid_to_monad_CAT, monad_to_monoid_CAT). Indeed, “a monad is just
a monoid in the category of endofunctors” [23].

Remark. As will be remarked a few times, we often leave out unitors and associators for
readability, though they must be present in a formal proof. Because of their properties, they
are usually simple, yet cumbersome to deal with. We will henceforth denote a monoidal
structure only by its multiplication and unit, i.e. as (⊗, I).

Dually, one may define the notion of a comonoidal structure as a monoidal structure in
the opposite category.

7.2.2 The Monoidal Structure on FfC

To reiterate, the next step is to define a monoidal structure on FfC , such that a monoid
corresponds with an object in RNWFSC . We will lift this monoidal structure to one on
LNWFSC , so that a monoid in LNWFSC corresponds with an object of NWFSC . We define
the unit of the monoidal structure on FfC to be the functorial factorization I (Ff_lcomp_unit)
sending

X
f−−→ Y 7→ X

idX−−→ X
f−−→ Y.

https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monoidal/Examples/EndofunctorsMonoidalElementary.v#L98
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monoidal/CategoriesOfMonoids.v#L68
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monoidal/Examples/MonadsAsMonoidsElementary.v#L56
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/Monoidal/Examples/MonadsAsMonoidsElementary.v#L79

7.2. THE ITERATIVE STEP 65

For two functorial factorizations F, F ′, we define their tensor product F ′ ⊗ F to be

X
f−−→ Y 7→ X

λf ·λ′
ρf−−−−→ K ′

ρf

ρ′ρf−−→ Y.

To phrase it differently, F ′⊗F factors f with F , and then factors the resulting right map
again using F ′.

Lemma 7.16 (Ff_monoidal). The pair (⊗, I) defines a monoidal structure on FfC.

It is easy to define (though a lot of work to formalize) the required natural isomor-
phisms that turn FfC into a monoidal category (the left and right unitors Ff_l_id_left,
Ff_l_id_right and the associator Ff_l_assoc and their inverses). This is because for all
these transformations, the relevant data, being the middle morphism of the components of
the natural transformations, is always identity. Since we usually do not care about what
exactly the middle object is, let us use denote it with a □, simply to make it clear which
object exactly is the middle object. For example, consider the right unitor F ⊗ I → F :

X X

□ □

Y Y

idX

λf

λf

ρf ρf

We also define the whiskering of morphisms (Ff_l_leftwhisker, Ff_l_rightwhisker).
Given functorial factorizations F,G,G′ and a morphism τ : G → G′, we define τ ⊗ F :
G⊗ F → G′ ⊗ F to be

X X

□ □′

Y Y

λF
f λF

f

λ
ρF
f

λ′
ρF
f

ρ
ρF
f

τ
ρF
f

ρ′
ρF
f

Leftwhiskering, so F ⊗ τ : F ⊗G → F ⊗G′ is a bit more complex. Consider F ((τr)f), i.e.
F applied to the component of the induced natural transformation τr : RG =⇒ R′

G at f

(τr)f :=

Ef E′
f

Y Y

ρf

(τf)11

ρ′f

giving us

Ef E′
f

□ □′

Y Y

λF
ρf

λF
ρ′
f

ρFρf

F ((τ ·d0)f)11

ρF
ρ′
f

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/FFMonoidalStructure.v#L760
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/FFMonoidalStructure.v#L182
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/FFMonoidalStructure.v#L247
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/FFMonoidalStructure.v#L544
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/FFMonoidalStructure.v#L435
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/FFMonoidalStructure.v#L329

7.2. THE ITERATIVE STEP 66

which is precisely the morphism we need, to give us

X X

□ □′

Y Y

λf λ′
f

λF
ρf

λF
ρ′
f

ρFρf

F ((τ ·d0)f)11

ρF
ρ′
f

Lemma 7.17 (Ff_monoidal). These morphisms define a monoidal structure (⊗, I) on FfC.

As defined in Definition 7.14, a monoid in FfC is an object F with a unit η : I → F and
a multiplication µ : F ⊗F → F , such that the appropriate diagrams commute. In fact, those
diagrams look the same as those that should commute for a monad. After all, “a monad is
just a monoid in the category of endofunctors” [23]. One important thing to note is that we
should verify that the unit for the monad and the monoid correspond. This follows from the
fact that I is initial.

Lemma 7.18. Ff_l_point, Ff_point_unique The monoidal unit I is initial in FfC.

Proof. We can simply look at what the diagram for a morphism I → F should look like for
any F in FfC :

X X

X Ef

Y Y

λf

f ρf

By commutativity of the top square, there is precisely one map to make this diagram com-
mute.

The diagram for the monoid multiplication µ looks like

X X

□ □ρ

Y Y

λf

λf

λρf

ρρf ρf

The bottom square combined with the monoid axioms that µ satisfies allow us to extend
the right functor of F to a monad. And so, we conclude the following:

Lemma 7.19 (Ff_monoid_is_RNWFS). A monoid F in FfC corresponds with an object of
RNWFSC, lying over F .

In fact, the converse also holds [9], but this is not relevant for us.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/FFMonoidalStructure.v#L760
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/FFMonoidalStructure.v#L895

7.2. THE ITERATIVE STEP 67

Example 7.20. Before we show that this monoidal structure lifts to one in LNWFSC, let
us think about what this tensor product does a bit more intuitively. We again consider the
example of topological spaces, and think about left tensoring with L1, which sends a map
f : X → Y to a factorization

X
λ1
f−−→ E1

f

ρ1f−−→ Y.

This is an operation that effectively glues (all possible) cells to X to obtain a relative CW-
complex E1

f , and then tells us how to factor f through it.

Tensoring L1 with itself factors the right map with L1 again, glueing more cells to the
middle object E1

f , and factoring the right map through this new relative CW-complex.

X
λ1
f−−→ E1

f

λ1
ρ1
f−−→ E1

ρ1f

ρ1
ρ1
f−−→ Y.

Of course, since E1
f already had all possible cells on X glued to it, these cells are now in E1

ρ1f
twice. The transfinite construction we will define aims to correct for this, by collapsing those
cells into each other with coequalizers.

Example 7.21. Let us also consider what tensoring does for the one-step factorization

X
f−−→ Y 7→ X

in⊔X−−−→ X ⊔ Y
f⊔idY−−−−→ Y

in SET. Since the middle object is of such a simple structure, we can write out that L1 ⊗L1

gives us the factorization

X
f−−→ Y 7→ X

in⊔X−−−→ X ⊔ Y
in⊔X⊔Y−−−−→ (X ⊔ Y) ⊔ Y

(f⊔idY)⊔idY−−−−−−−−→ Y.

Indeed, the tensor product effectively adds no new data. As will be clear from the application
of the tensor product in the transfinite construction, this is to be expected, as the one-step
factorization already admits an NWFS (or monoid) structure.

7.2.3 The Monoidal Structure on LNWFSC

We want to extend this monoidal structure to LNWFSC , making it so that a monoid in
LNWFSC gives us a full NWFS. After all, an NWFS is just a LNWFS and a RNWFS over
the same functorial factorization. There is already some theory in UniMath that allows us
to define a ‘displayed monoidal structure’ on LNWFSC [12], saving us some work. After
all, we want the monoidal unit to lie over I, and given LNWFSs L and L′ over F and F ′

respectively, we want L′ ⊗ L to lie over F ′ ⊗ F .

Lemma 7.22 (LNWFS_tot_monoidal). Given L,L′ : LNWFSC over F, F ′ : FfC respectively,
there is an LNWFS structure on F ⊗ F ′. In addition, there is also an LNWFS structure on
I, such that (⊗, I) lifts to a monoidal structure on LNWFSC.

Using the displayed monoidal category construction we are left to show the following three
things.

� There is a comonad structure on the left functor of I (LNWFS_tot_lcomp_unit). This
is simple, since the left functor of I simply maps an arrow f to identity on its domain.
In the comonad structure, all relevant maps are also identity.

� The relevant monoidal operations preserve comonad structures (i.e. the left and right
unitors, the associator and left- and rightwhiskering). Though simple on paper, this re-
quires some work in a formalization (LNWFS_tot_l_id_left, LNWFS_tot_l_id_right,

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L1012
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L431
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L468
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L536

7.2. THE ITERATIVE STEP 68

LNWFS_tot_l_assoc, LNWFS_tot_l_rightwhisker, LNWFS_tot_l_leftwhisker). For
the unitors and associator, the relevant morphisms (so the middle morphisms of the
natural transformations) are all identity. Showing that left- and rightwhiskering with
an LNWFS preserves the comonad morphism axioms can be done using naturality.

� There is a comonad structure on the left functor of the tensor product F ′ ⊗ F for any
F, F ′ : FfC . We elaborate on this point.

Let us denote the comultiplication on LF ′⊗F by Σ⊗. Firstly, let us consider the diagram
we are trying to fill

Σ⊗
f =

X X

□ □2

λf

LF ′⊗F f

λλf ·λ′ρf

L2
F ′⊗F f

λ′
ρf

λ′
ρ
λf ·λ′ρf

σ⊗
f

It is important to note here, that we are composing the left functor of F ′⊗F with itself, and
we are not tensoring F ′ ⊗ F with itself, and then taking the left functor. In order to better
understand what is going on, it might be useful to think of the diagram in a different way,
where we apply the construction used to define the tensor product F ′ ⊗ F twice, once to f ,
and once to the resulting left map. To reiterate this process for an arrow f , we first factor
f with F , and then factor the right map with F ′, where the resulting left functor sends f to
the composite of the two left maps. The resulting diagram becomes

X

□ □2

Y

λf

λλf ·λ′ρf

f λ′
ρf

l1

ρλf ·λ′ρf

λ′
ρ
(λf ·λ′ρf)

l2

ρ′ρf
ρ′ρ

(λf ·λ′ρf)

Now, the dotted lines do not really matter, we just left them there for completeness, but
the dashed lines are very important. Note that the domain and codomain of l2 are the ones
we are looking for in σ⊗

f . We can think of l1 and l2 as fillers of the following lifting problems:

X

□

λf

λλf ·λ′ρf

ρλf ·λ′ρf

λ′
ρf

l1

□2

□ □

λ′
ρf

l1

λ′
ρ
λf ·λ′ρf

ρ′ρ
λf ·λ′ρf

l2

And so, in order to define l1 and l2, we can try to fill these lifting problems. Obviously,
we are considering LNWFSs, so we do not have all the data for a full NWFS. We do not

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L687
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L756
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L870

7.2. THE ITERATIVE STEP 69

‘know what a right map’ is. Furthermore, we only really know that maps of the form λ(...) or
λ′
(...) are left maps for F or F ′ respectively, recalling Lemma 5.22. We adapt the diagram we

drew to find a lift between an L-Map and an R-Map in Lemma 5.21 so that it only contains
things we ‘know’, given arrows f and g, for the LNWFS L. A similar diagram may be drawn
for L′.

X X A

Ef □ Eg

Ef B

λf

h

λλf λg

σf

ρλf

F (h,k)

ρg

k

We can read off that the middle arrow still gives a lift for any lifting problem of the form

X A Eg

Ef B

λf

h λg

ρg

k

or the analogue for L′. Both of our lifting problems are of this form. Now note that all
the operations done to obtain the lifts l1 and l2 are natural, allowing one to show that our
candidate comultiplication is indeed a natural transformation. In fact, we can show the
following.

Lemma 7.23 (LNWFS_lcomp_comul_axioms, LNWFS_lcomp_comul_monad_laws). The ‘can-
didate comultiplication’ on LF ′⊗F defined above is a natural transformation, and gives rise
to a comonad structure on LF ′⊗F .

And so, we have lifted the monoidal structure on FfC to one on LNWFSC . Just to give
an idea of how much work a formalization may be compared to the arguments on paper:
Garner leaves out the fact that the monoidal structure on FfC lifts to one on LNWFSC ,
though it took almost 1000 lines of formalization to show this.

Given a monoid L in LNWFSC over a functorial factorization F , we obtain a monoid
structure on F in FfC by forgetting the LNWFSC data. The monoid in FfC will still yield an
object of RNWFSC lying over F . Together with the original monoid L over F , we obtain the
two monad structures we need to define an NWFS over F . In short, we have the following:

Lemma 7.24 (LNWFS_tot_monoid_is_NWFS). Let L be a monoid in LNWFSC over an object
F in FfC. Then F is a monoid in FfC, and L gives an object of NWFSC lying over F .

And so, in order to generate an NWFS, our next goal becomes to find a monoid in
LNWFSC . We do this using a transfinite construction, which Garner generalized from an
article by Kelly [25]. We go over the construction in detail, providing intuitive examples
and redefining how the monoid is obtained. We show that the construction holds, assuming
certain ‘smallness requirements’. We show that these smallness requirements hold in our
situation after introducing the construction.

7.2.4 The Transfinite Sequence

As mentioned, Garner generalized a transfinite construction by Kelly [25] to allow one to
generate a monoid in a monoidal category on a specific object, given certain smallness re-
quirements on this object. The construction defines a sequence on arbitrary ordinals, con-
verging at some limit ordinal. Since the theory of ordinals has not been developed very much

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L175
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L341
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSMonoidalStructure.v#L1062

7.2. THE ITERATIVE STEP 70

in UniMath, we will only be limiting ourselves to the case where the sequence converges at
ω, i.e. the first limit ordinal. This should still be sufficient for the construction to work for
interesting examples, such as that of topological spaces or simplicial sets [2].

For this section, we assume V to be a monoidal category that has all connected colimits
and T to be a pointed object in V, with point t : I → T .

Definition pointed : UU :=∑
T, I_{V} --> T.

Througout the construction, we assume certain properties on V or T . These are the assump-
tions we need to show on LNWFSC and L1 in order for this construction to work in our
situation. The assumptions are the following.

V1 The monoidal category V has colimits of chains and coequalizers. This is a slightly
weaker assumption than being cocomplete, which would of course also be sufficient.

V2 The rightwhiskering functor (−) ⊗ A preserves all colimits in V for any A : V. In
particular, it preserves colimits of chains and coequalizers. In other words, V is right-
closed.

V3 The leftwhiskering functor T ⊗ (−) preserves colimits of chains in V.

For any A : V, we will define a transfinite sequence that will give us the free T -algebra on
A, given that T satisfies the smallness assumption V3 and that V satisfies assumptions V1
and V2.

Definition 7.25 (Mon_alg_data). Given a pointed object (T, t) of V, a T -algebra is a pair
(A, a : T ⊗A → A) satisfying

(t⊗A)· a = idA .

We say that a pair (A, a) is a T -algebra on A.

Definition Mon_alg_data (T : pointed) (A : C) : UU :=∑
(a : T ⊗_{V} A --> A),

(luinv_{V} _) · ((pointed_pt T) ⊗^{V}_{r} A) · a = identity _.

We will not look into what it means exactly for a T -algebra to be free, since all we care about
is constructing a monoid.

When applying the construction we are about to define, we will choose V to be LNWFSC ,
and T to be L1 with the obvious, unique point. It is easier to define this sequence on an
abstract monoidal category, especially in formalization, but it may be useful to keep this
example in mind.

Given X0 := A,X1 := T ⊗A : V and σ0 := idT⊗A : T ⊗X0 → X1, we define a transfinite
sequence, also called the free T -algebra sequence for A, inductively. For a successor ordinal
α+ := α + 1 we define Xα++ and σα+ : T ⊗Xα+ → Xα++ as the following coequalizer:

Xα+

T ⊗Xα T ⊗Xα+ Xα++

T ⊗ (T ⊗Xα)

t⊗Xα+

T⊗(t⊗Xα)

σα

σα+

T⊗σα

and for any step α, we define xα : Xα → Xα+ to be (t ⊗ X)·σα. Notice that the bottom
arrow of the coequalizer diagram is just T ⊗ xα.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoid.v#L35

7.2. THE ITERATIVE STEP 71

Remark. Whenever we write something like Xα
t⊗Xα−−−−→ T ⊗Xα, we actually leave out some

morphisms. After all, the morphism t ⊗ Xα is actually of type I ⊗ Xα → T ⊗ Xα. In our
formalization, we actually define this map as (luinvV Xα)· (t⊗Xα).

Remark. The transfinite sequence can be defined on any A in V, but generally we only care
about the case where A = I. Garner defines the sequence more generally to construct an
adjunction yielding a monoid. The way this adjunction is obtained turned out to be hard
to formalize. We take a more direct approach and construct the monoid directly from the
transfinite sequence on I. Therefore, the reader may keep in mind that we will be using
A = I for the rest of this section, unless specified. In the case where A = I, we call the
sequence the free monoid sequence, as it will allow us to construct a monoid.

Example 7.26. Before we continue, let us first ponder a bit on what this diagram means.
Suppose V is the category of topological spaces, and our object T is the one-step comonad L1.
Then Xα is the result of a repeated process of gluing cells to the domain of ρAf , where duplicate
cells are removed. The maps σα are continuous maps that collapse any new, duplicate cells to
the ones that were attached before. Inductively, we can show this intuition to be consistent.
Indeed, in the first step, σ0 : T ⊗ A → T ⊗ A does not collapse anything, since there are no
duplicate cells to collapse yet. For any successive step, xα := (t⊗X)·σα defines how we glue
cells to Xα, and then collapse any cells that we have already attached before, including Xα

into Xα+. In this way, the bottom arrow of the coequalizer basically includes ‘Xα with cells
attached’ into ‘Xα+ with cells attached’, whereas the top morphism collapses the ‘old cells’
into Xα+ and then includes it into ‘Xα+ with cells attached’. The coequalizer arrow σα+
then associates the two ways of adding cells to Xα twice, giving us Xα++, which will have no
duplicate cells.

Example 7.27. Let us also consider the pushout in the case of J = { ∅ → ∗ } in SET
for the transfinite sequence on I. We consider what happens to the middle object of the
factorizations applied to f : X → Y . Recall that for X0 := I, the middle object is just X,
and for X1 := L1 ⊗ I, the middle object is X ⊔ Y . The first map σ0 acts as identity. The
diagram on the middle objects in the coequalizer of the first step in the sequence becomes

X ⊔ Y

X ⊔ Y (X ⊔ Y) ⊔ Y X ⊔ Y

(X ⊔ Y) ⊔ Y

in⊔X⊔Y

in⊔X⊔idY

idX⊔Y

[(σ1)f]
11

id(X⊔Y)⊔Y

where the pushout σ1 just collapeses the two copies of Y into each other. Indeed, this sequence
becomes a constant sequence of L1 (up to isomorphism) right after the first step.

Example 7.28. In fact, one can show a more general statement. Consider the transfinite
sequence on I : V, and suppose that T is already a monoid (T, η, µ), as is the case for L1

from our example in SET. Assume that the point is the unit η : I → T . In this case, let us
‘follow the T s’ in the coequalizer diagram of the first step:

T ⊗ T T ⊗ (T ⊗ T) (T ⊗ T) ⊗ T T ⊗ T

η⊗(T⊗T)

T⊗(η⊗T)

µ⊗T

7.2. THE ITERATIVE STEP 72

we see that the ‘left T ’ gets mapped to either the leftmost or the middle T in the codomain
of the arrows in the coequalizer. One can show, using the monoid axioms and the coequalizer
properties, that the coequalizer simply becomes T ⊗ T , and the coequalizer morphism (the
dashed arrows) is the associator of V composed with µ ⊗ T , where µ : T ⊗ T → T is the
monoid multiplication. Again, like the example in SET, this sequence becomes a constant
sequence after the 0th step.

The full sequence looks something like

T ⊗X0 T ⊗X1 . . .

X0 X1 X2 . . .

σ0 σ1
t⊗X0

x0 x1 x2

The sequence is defined inductively, but we need the previous two objects and the previous
morphism to define what the next morphism and object are. In order for us to define this
sequence properly in our formalization, with nice definitional equalities, we introduce some
helper type, dubbed ‘pair diagrams’.

Definition 7.29 (pair_diagram). A ‘pair diagram’, corresponding to step α in the sequence,
is a diagram of the form

T ⊗Xα

Xα Xα+

σα

where the only real data are the objects Xα and Xα+ as well as the morphism σα : T ⊗Xα →
Xα+. The diagonal arrow is defined as t⊗Xα, and the horizontal arrow as (t⊗Xα)·σα. We
refer to Xα as the left object and Xα+ as the right object.

Local Definition pair_diagram : UU :=∑
(x0 x1 : C), (T ⊗_{V} x0 --> x1).

And indeed, one can define the (α+1)-th pair diagram using only the α-th pair diagram. The
inductive definition allows us to make sure left object of the (α+1)-th pair diagram is in fact
definitionally equal to the right object of the α-th pair diagram. We can then easily define
the objects of the chain by taking the left object for each pair diagram, and the horizontal
arrows as the morphisms between them.

Garner and Kelly also define a ‘limit ordinal step’ in the sequence in their articles, similar
to the classical small object argument. We follow their construction, but since we will only
be considering chains, we will only define it for the first limit ordinal ω. The definition is the
similar for any other limit ordinal. Assumption V1 allows us to define Xω := colimXα, and
a map σω : T ⊗Xω → Xω+ as the following coequalizer.

colimXα+ Xω

colim(T ⊗Xα) T ⊗ colimXα = T ⊗Xω Xω+

∼=

t⊗Xω

can

colimσα

σω

Definition free_monoid_coeq_sequence_limit_ordinal_step_on (A : C) :

pair_diagram.

where can : colim(T ⊗Xα) → T ⊗ colimXα is the canonical map out of the colimit. Like the
successor ordinal steps, we define xω : Xω → Xω+ to be (t⊗Xω)·σω. The only thing we will
be using the limit ordinal step for, is to define when the sequence converges:

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L58

7.2. THE ITERATIVE STEP 73

Definition 7.30 (free_monoid_coeq_sequence_converges_on). Let (T, t) be a pointed ob-
ject of V, and A : V. We say that the free algebra sequence for A converges at ω if and only
if the limit ordinal step

xω : Xω → Xω+

is an isomorphism.

Definition free_monoid_coeq_sequence_converges_on (A : C) :=

is_z_isomorphism (

pair_diagram_horizontal_arrow

(free_monoid_coeq_sequence_limit_ordinal_step_on A)

).

Let us go over the morphisms in the limit ordinal step.

� can: Firstly, there is the canonical morphism colim(T ⊗ Xα) → T ⊗ colimXα. This
morphism is just the canonical morphism induced by the colimit, and is defined termwise
as

T ⊗ in→α : T ⊗Xα → T ⊗ colimXα,

where in→α is the map from Xα into the colimit.

� colimσ_on: Secondly, there is the map colimσα. This map is defined simply as σα
termwise, but let us verify that this colimit is indeed well-defined. For this we need any
diagram

T ⊗Xα T ⊗Xα+

Xα+ Xα++

σα

T⊗xα

σα+

xα+

to commute. This can be seen easily if we split the map xα+ back into the composite
t⊗Xα+·σα+:

T ⊗Xα T ⊗Xα+

Xα+ T ⊗Xα+ Xα++

σα

T⊗xα

σα+

t⊗Xα+
σα+

and we see that commutativity here follows from the commutativity of the coequalizer
diagram.

� chain_shift_left_colim_iso: The isomorphism colimXα+
∼= Xω is one that may be

easily overlooked when writing classical mathematics, but in a formalization it definitely
still takes some work to define this morphism (about 150 lines of work).

Now that we have defined the sequence, there are two things that we want to show.
Firstly, we want to show that the sequence converges using the smallness requirement V3 on
our pointed object T . Secondly, we want to show that we can indeed construct a monoid in
V when this sequence converges.

7.2.5 Convergence of the Sequence

Before we show when the sequence converges, we give an important definition for ‘smallness’,
which will be used throughout the rest of the argument.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L429
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L395
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L346
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L321

7.2. THE ITERATIVE STEP 74

Definition 7.31. We say that a functor F : C −→ C′ is ω-small if and only if it preserves
colimits for any chain d in C. In other words, if for any chain d := {Xv }v:N in C, we have
that

colimFXv
∼= F colimXv.

This is equivalent to saying that there is an inverse

F colimXv → colimFXv

to the canonical map out of the colimit.

Lemma 7.32 (T_preserves_diagram_impl_convergence_on). The free T -algebra sequence
for A converges for any A : V if the leftwhiskering functor T ⊗ (−) preserves the colimit.

Assumption V3 tells us precisely that T ⊗ (−) is ω-small. The following uses assumption
V3 to show convergence, following directly from the previous lemma.

Lemma 7.33 (T_preserves_chains_impl_T_preserves_diagram_on). The free T -algebra
sequence for A converges for any A : V if the leftwhiskering functor T ⊗ (−) is ω-small.

We show the first lemma. For this, we need to construct an inverse to the morphism xω,
i.e. a morphism

xω : Xω+ → Xω,

given that T ⊗ (−) preserves the colimit of the sequence for A. We can construct this
morphism using the properties of coequalizers. We get the unique morphism xω if the solid
lines commute in the following diagram.

colim(T ⊗Xα) T ⊗ colimXα = T ⊗Xω Xω+

colim(T ⊗Xα) colimXα+ Xω
can

σω

p ∃!xω

colimσα
∼=

where p is the inverse to can, which we get from the assumption that T ⊗ (−) preserves the
colimit of the transfinite sequence. We can show the following.

Lemma 7.34 (T_preserves_diagram_impl_convergence_on). If T ⊗ (−) preserves the
transfinite sequence, the above diagram commutes, and the unique arrow xω exists. In par-
ticular, xω is an inverse to xω.

We now know the sequence converges on any A given that T ⊗ (−) preserves the colimit.
We are however mostly interested in the sequence on the monoidal unit I. We call the limit
for this sequence T∞. One can show the following.

Lemma 7.35 (free_monoid_coeq_sequence_converges_gives_adjoint_mon_alg). If the
free monoid sequence for I converges at ω, the limit T∞ forms a T -algebra, with algebra
morphism

τ∞ := T ⊗ T∞ σω−−→ Xω+
xω−−→ T∞.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L651
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L443
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L651
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L665

7.2. THE ITERATIVE STEP 75

7.2.6 Obtaining the Free Monoid

We now know when the sequence converges for any A : V, and in particular, we have obtained
a T -algebra T∞ from the sequence on I. To reiterate, we used that V has all connected
colimits (assumption V1) and that the leftwhiskering functor T ⊗ (−) is ω-small (assumption
V3). In his articles, Garner uses an adjoint to the forgetful functor from the category of
T -algebras to V to get a monoid. This argument turned out to be rather hard to formalize,
so we abandoned the effort to do so. Instead, we define a way to find the monoid structure
more directly, allowing for a much more intuitive construction. There is an obvious choice
for the unit: the canonical inclusion into the colimit

η∞ := in→0 : I = X0 ↪→ T∞.

And so it remains to find a multiplication.

Example 7.36. Let us again ponder a bit on what the involved objects really mean, if we think
about them in the example of factorizations of topological spaces, where the tensor product
with T = L1 corresponds with gluing all possible cells to the middle object. In this case, the
object T∞ basically corresponds with infinite steps of glueing cells, and associating ‘older,
duplicate’ ones from the previous step. The convergence of the sequence, and in particular
the algebra map τ∞ : T ⊗ T∞ → T∞ obtained from this fact, tells us that we can collapse
any cells we glue to the middle object of T∞ back down to cells that are already in T∞. A
multiplication T∞ ⊗ T∞ → T∞ would correspond to gluing (and collapsing duplicate) cells
infinitely many times to T∞, and then associating those with ones already in T∞. Since we
inductively define how we glue cells, it makes sense that we could also inductively collapse
these glued cells back down to T∞ as we go. This seems like a sensible idea, and something
we should be able to do.

Example 7.37. The example of SET is much simpler. The sequence converges right away
to L1, as every step besides the ‘0th step’ is just identity on L1. The limit T∞ will also
just be L1. The idea of inductive collapsing simply does the same thing every step in the
sequence does: it collapses the two copies of Y in (X ⊔ Y) ⊔ Y down to only one copy in the
factorizations of a morphism f : X → Y .

By assumption V2, the rightwhiskering functor (−)⊗T∞ preserves colimits of chains and
coequalizers. In other words, we have

T∞ ⊗ T∞ ∼= colim(Xα ⊗ T∞),

as well as the preservation of coequalizers. We can then define a morphism T∞ ⊗ T∞ → T∞

if we can define compatible morphisms Xα ⊗ T∞ → T∞. That is to say, we want to find a
family of morphisms τα such that we have the following cocone.

X0 ⊗ T∞ X1 ⊗ T∞ X2 ⊗ T∞ X3 ⊗ T∞ . . .

T∞

τ0

x0⊗T∞

τ1

x1⊗T∞

τ2

x2⊗T∞

τ3

In order to do this, we will show something slightly different first.

Lemma 7.38 (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map). There is a family of
maps { τα : Xα ⊗ T∞ → T∞ } such that the following diagram commutes for any α.

T ⊗Xα ⊗ T∞ Xα+ ⊗ T∞

T ⊗ T∞ T∞

σα⊗T∞

T⊗τα τα+

τ∞

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L1040

7.2. THE ITERATIVE STEP 76

Remark. The map σα ⊗ T∞ is indeed a coequalizer arrow, since we assume that (−) ⊗ T∞

preserves coequalizers.

Remark. The observant reader may have noticed that we left out an associator in the above
diagram. Though necessary for formal proofs, associators and unitors reduce readability and
may be cumbersome to work with, so we will leave them out for the rest of this section. See
for example Tinf_mul_assoc_pointwise_associator_mess, a lemma used in a later proof.

Example 7.39. Let us just again think about this intuitively for TOP or SSET. In these
cases, the maps τα represent ‘collapsing Xα into T∞’. Let us think about what the diagrams
for τα mean: going around the top and right, we first collapse cells from T⊗Xα down to Xα+,
and then collapse Xα+ into T∞ (which has ‘all the cells’). Going around the left and bottom,
we first collapse Xα into T∞, and then collapse T (∼= X1) into T∞. It seems reasonable that
this diagram should commute.

We want to define this family of morphisms inductively, but we will need information
about the morphisms τα and τα+ in order to define τα++. Similar to the pair diagrams used
to define the free algebra sequence, we introduce a helper type

Definition Tinf_pd_Tinf_map

(n : nat)

(p := free_monoid_coeq_sequence_on I_{V} n) :=∑
(τn : pair_diagram_lob p ⊗_{V} Tinf --> Tinf)

(τn1 : pair_diagram_rob p ⊗_{V} Tinf --> Tinf),

(pair_diagram_arr p ⊗^{V}_{r} Tinf) · τn1
= α_{V} _ _ _ · (T ⊗^{V}_{l} τn) · (Mon_alg_map _ (pr2 TinfM)).

We define objects of this type inductively. Defining τ0 and τ1 is simple, we need the following
diagram to commute:

T ⊗ I ⊗ T∞ T ⊗ I ⊗ T∞

T ⊗ T∞ T∞

idT⊗I ⊗T∞

T⊗τ0 τ1

τ∞

There are some obvious choices for the maps. We set τ0 to be the left unitor luVT
∞, and we

set τ1 to be the right unitor of T , composed with τ∞:

τ1 = ((ruVT) ⊗ T∞) · τ∞.

It is easy to check that the diagram commutes. For the inductive step we use coequalizer
properties. Since we know that (−) ⊗ T∞ preserves coequalizers, the solid arrows in the
following diagram from a coequalizer diagram.

Xα+ ⊗ T∞

T ⊗Xα ⊗ T∞ T ⊗Xα+ ⊗ T∞ Xα++ ⊗ T∞

T ⊗ T ⊗Xα ⊗ T∞ T ⊗ T∞ T∞

t⊗Xα+⊗T∞

T⊗t⊗Xα⊗T∞

σα⊗T∞

σα+⊗T∞

T⊗τα+ ∃!τα++

T⊗σα⊗T∞
τ∞

We can show that the map τα++ out of the coequalizer exists if the required commutativity
relations hold.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L2173

7.2. THE ITERATIVE STEP 77

Lemma 7.40 (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map_coeqout). The com-
posites

(σα ⊗ T∞)· (t⊗Xα+ ⊗ T∞)· (T ⊗ τα+)· τ∞

and
(T ⊗ xα ⊗ T∞)· (T ⊗ τα+)· τ∞

are equal, and thus the unique map τα++ exists, and makes the diagram commute.

The required relation for τα+ and τα++ needed to construct a Tinf_pd_Tinf_map can be
read off in the diagram. We can then show the following.

Lemma 7.41 (free_monoid_coeq_sequence_colim_on_Tinf_Tinf_map). The morphisms
τα form a cocone on {Xα ⊗ T∞ } with vertex T∞.

Proof. In other words, for any α, we want that the following diagram commutes

Xα ⊗ T∞ Xα+ ⊗ T∞

T∞
τα

xα⊗T∞

τα+

Note that by the properties of the τα, we know that the right triangle commutes in the
following diagram

Xα ⊗ T∞ T ⊗Xα ⊗ T∞ Xα+ ⊗ T∞

T∞

τα

t⊗(Xα⊗T∞) σα⊗T∞

(T⊗τα)·τ∞
τα+

For the left triangle, whiskering properties give us that

(t⊗ (Xα ⊗ T∞)) · (T ⊗ τα)· τ∞ = τα· (t⊗ T∞)· τ∞ = τα.

where we used the property of the algebra map of T∞ in the last step.

And so, we have defined a map µ∞ : T∞ ⊗ T∞ → T∞ (Tinf_monoid_mul). We are left
to show that the monoid axioms hold. We briefly go over the ideas of these proofs.

Remark. It is important to keep in mind that µ∞ collapses the left copy of T∞ into the
right copy, and not the other way around. It is also important to keep the difference between
left and right tensoring with T∞ in mind. Intuitively, left tensoring with T∞ ‘glues all cells
to space on the right’. So T∞ ⊗Xα means we glue ‘all cells’ to Xα. Whereas right tensoring
with T∞ means we ‘replace the base space in the left factor with T∞’. Meaning that Xα⊗T∞

means we have effectively glued α steps of cells to the ‘space with all cells T∞’.

Lemma 7.42 (Tinf_monoid_unit_left). The left unit axiom holds for (T∞, η∞, µ∞).

Proof. That is, we wish to show that

(η∞ ⊗ T∞)·µ∞ = idT∞ .

Now, since η∞ is defined as in→0 , and µ∞ collapses the left copy of T∞ into the right copy,
this is pretty much trivial. Intuitively, η∞ ⊗ T∞ includes ‘the space with all cells T∞’ into
‘the space with all cells with all cells again T∞ ⊗T∞’. The multiplication µ∞ then collapses
this second gluing of cells back down into T∞.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L1026
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L1147
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L1176
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L1204

7.2. THE ITERATIVE STEP 78

Lemma 7.43 (Tinf_monoid_unit_right). The right unit axiom holds for (T∞, η∞, µ∞).

Proof. That is, we wish to show that

(T∞ ⊗ η∞)·µ∞ = idT∞ .

This is where the ‘order of collapsing’ for µ∞ comes into play. We need that, at any ordinal
α in the colimit, we have that

Xα Xα ⊗ T∞

T∞
in→α

Xα⊗η∞

τα

Going around the top and bottom, we include Xα into ‘the space with all cells attached with
α more steps of attaching cells’, and then collapse the last α steps back down into T∞. The
diagonal arrow just includes Xα into T∞. Again, intuitively this relation makes sense.

We show this inductively, and use the fact that the object Xα++ is a coequalizer object.
Checking for α = 0, 1 is simple. Then the uniqueness of maps out of the coequalizer makes
it so it suffices to show that the following diagram commutes.

T ⊗Xα+ Xα++ Xα++ ⊗ T∞

Xα++ T∞

σα+

σα+

Xα++⊗η∞

τα++

in→α++

Whiskering properties and the relation on τα allow us to rewrite this into

T ⊗Xα+ T ⊗Xα+ ⊗ T∞ Xα++ ⊗ T∞

T ⊗ T∞

Xα++ T∞

σα+

(T⊗Xα+)⊗η∞

T⊗in→α+

σα+⊗T∞

T⊗τα+

τα++

τ∞

in→α++

where the dashed arrow follows by induction. It now suffices to show that the bottom triangle
commutes. We use the definition of τ∞, and the fact that xω is an isomorphism. It now
suffices to show that

T ⊗Xα+ T ⊗ T∞

Xα++ T∞ Xω+

σα+

T⊗in→α+

σω

in→α++
xω

which follows from the coequalizer properties of the limit ordinal step. In this proof, we left
out a lot of monoidal unitors and associators for clarity.

For the final monoid axiom, associativity, we will make use of the transfinite sequence on
other A, not just that on I. We first note the following, using assumption V2.

Lemma 7.44 (rt_chain_colim_iso). The free T -algebra sequence on A is the same as the
free T -algebra sequence on I, rightwhiskered with A, up to isomorphism. In other words, let
Xα denote the terms in the sequence on I, and XA

α those in the sequence on A. We have that

colim(Xα ⊗A) ∼= colimXA
α .

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L1484
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L1976

7.2. THE ITERATIVE STEP 79

Remark. This may seem like a simple statement, one that may even be omitted from a
paper. However, proving this is far from trivial in formalization, taking about 500 lines of
formalization to prove in the accompanying formalization.

Lemma 7.45 (Tinf_monoid_assoc). The associativity axiom holds for (T∞, η∞, µ∞).

Proof. That is, we wish to show that

(T∞ ⊗ µ∞)·µ∞ = (µ∞ ⊗ T∞)·µ∞.

Effectively, what this tells us is that given three copies of T∞, as T∞⊗T∞⊗T∞, it does not
matter whether we first collapse the two leftmost copies, and then collapse it into the last copy,
or if we first collapse the two rightmost copies, and then collapse the leftmost copy into that
result. Intuitively, it should hold. We use a similar strategy as Tinf_monoid_unit_right to
show this formally.

By assumption V2, the rightwhiskering functor (−) ⊗ (T∞ ⊗ T∞) preserves the colimit
of the transfinite sequence, we again pass to the individual terms of the colimit. It suffices to
show that

Xα ⊗ T∞ ⊗ T∞ T∞ ⊗ T∞

Xα ⊗ T∞ T∞

τα⊗T∞

Xα⊗µ∞ µ∞

τα

We again show this inductively, where the cases for α = 0, 1 are simple to show. By as-
sumption V2, we also know that (−)⊗ (T∞ ⊗ T∞) preserves coequalizers, making it so that
Xα++ ⊗ T∞ ⊗ T∞ is a coequalizer. Using the coequalizer properties, it suffices to show that

T ⊗Xα+ ⊗ T∞ ⊗ T∞ Xα++ ⊗ T∞ ⊗ T∞ Xα++ ⊗ T∞

Xα++ ⊗ T∞ ⊗ T∞ T∞ ⊗ T∞ T∞

σα+⊗(T∞⊗T∞)

σα+⊗(T∞⊗T∞)

Xα++⊗µ∞

τα++

τα++⊗T∞ µ∞

Using whiskering properties and induction, we transform this into

T ⊗Xα+ ⊗ T∞ ⊗ T∞ T ⊗Xα+ ⊗ T∞

T ⊗ T∞ ⊗ T∞ T ⊗ T∞

Xα++ ⊗ T∞ ⊗ T∞ T∞ ⊗ T∞ T∞

(T⊗Xα+)⊗µ∞

σα+⊗(T∞⊗T∞)

T⊗τα+⊗T∞
T⊗τα+⊗T∞

T⊗µ∞

τ∞⊗T∞ τ∞

τα++⊗T∞ µ∞

where the dashed arrows follow from induction. The dotted arrow makes the bottom left-hand
‘square’ commute, as it is the relation on τα+ and τα++ rightwhiskered with T∞. It suffices to
show that the bottom right square commutes. This square boils down to the case α = 1. We
use the fact that T∞⊗T∞ is isomorphic to the colimit of the free T -algebra sequence on T∞

itself, from Lemma 7.44, combined with assumption V3, implying that T ⊗ (−) preserves the
free T -algebra sequence on any A : LNWFSC . These facts allow us to show this termwise in
the colimit of the sequence on T∞. It suffices to show that

T ⊗Xβ ⊗ T∞ T ⊗ T∞

Xβ+ ⊗ T∞ T∞

T⊗τβ

σβ⊗T∞ τ∞

τβ+

for any vertex β in our diagram. This is precisely the relation on τβ and τβ+.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L2325
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/GenericFreeMonoidSequence.v#L1484

7.2. THE ITERATIVE STEP 80

We used some properties on V and T that we need to show for the construction to
work with V = LNWFSC and T = L1. The first of which is assumption V1, saying that
LNWFSC has all connected, non-empty colimits. Secondly, we used assumption V2, saying
that (−) ⊗ T∞ and (−) ⊗ (T∞ ⊗ T∞) preserve chains and coequalizers. In fact, we can
show something stronger, which is that the rightwhiskering functor (−)⊗A : LNWFSC −→
LNWFSC preserves colimits for any A : LNWFSC . Lastly, we used assumption V3, saying
that L1 ⊗ (−) is ω-small. We will reduce this assumption to a much weaker requirement,
that only involves the morphism class J used to define L1. Garner uses high level arguments
in his article, but since these are not available to us in UniMath, we have to come up with
different, more direct arguments.

7.2.7 Cocompleteness of LNWFSC

First we show assumption V1, by showing that LNWFSC has all connected, non-empty
colimits whenever C is cocomplete. More specifically, we will only use coequalizers and chains,
but it is possible to show that LNWFSC has all connected colimits. In his article, Garner
uses some high level, category theoretical machinery to show that LNWFSC is cocomplete
whenever C is [9, Proposition 4.18]. Sadly, this machinery is not available to us in UniMath.

We take a more direct approach, and first show that FfC has all connected, non-empty
colimits. We will then use this to show that LNWFSC has all connected, non-empty colimits
as well. The colimit of a diagram in LNWFSC will then lie over the colimit of the projected
diagram in FfC , as one might expect with the displayed nature of LNWFSC over FfC . In
short, we will first show the following.

Lemma 7.46 (ColimFfCocone). The category of functorial factorizations FfC has all con-
nected, non-empty colimits whenever C is cocomplete.

For an empty diagram, we could simply take the colimit to be the monoidal unit I, as it
is initial. We do not really care about empty diagrams though, only about the following two
specific cases.

Corollary 7.47 (ChainsFf, CoequalizersFf). The category of functorial factorizations FfC
has all colimits of chains, and all coequalizers.

To show that FfC has all connected, non-empty colimits, we cannot simply use the fact
that functor categories [A,B] are cocomplete whenever B is. To illustrate why, let us take a
look at the constructive proof proof for this in UniMath (ColimsFunctorCategory).

Let g be a graph, and d = {Fv}v:g a diagram over the graph g in [A,B]. We define the
colimit F∞ pointwise, i.e. F∞(a) is defined as the colimit colimFv(a) in B for any a : A.
Consider what this pointwise diagram would look like if we take {Fv}v:g to be a chain (so a
diagram on g = N) of lifted functors corresponding to functorial factorizations, in [C2, C3], at
the point (f : X → Y) : C2:

X X X X∞

K0f K1f K2f E∞
f

Y Y Y Y ∞

Note that in this colimit, we take a colimit of objects in C3. It seems like everything is fine
here, but the domain of the colimit is defined as the colimit of the chain of all identities on X,
and similarly, the codomain is defined as the colimit of the chain of identities on Y . Obviously,

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSCocomplete.v#L337
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSCocomplete.v#L359
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSCocomplete.v#L368
https://github.com/UniMath/UniMath/blob/388b8f6a63069b350efd8359de2ee7fe599f0796/UniMath/CategoryTheory/limits/graphs/colimits.v#L554

7.2. THE ITERATIVE STEP 81

these will be isomorphic to X and Y respectively, but they need not be definitionally equal.
We could define F∞ by correcting the domain and codomain with these isomorphisms. This
would become quite cumbersome to work with, since we want to define a comonad structure
on the left functor of F∞ when defining colimits on LNWFSC , and we would rather keep
our terms simple.

Instead, we will define the colimit more constructively, in a similar fashion as the above
proof. First, let us recall what the actual data is in a functorial factorization: the middle
object. We define a sequence of middle objects, and only take the middle map of the section
transformations to form a diagram that looks like this

X

E0
f E1

f E2
f · · ·

Y

Let E∞
f be the colimit of the middle objects, which exists because C is cocomplete. We

get map E∞
f → Y using the properties of colimits. We still need the map X → E∞

f ,
which we can only define when the colimit is non-empty, namely as the canonical inclusion
of X → Ev0

f → E∞
f for an arbitrary vertex v0 : g. For this to be well-defined, we need a

transformation of sections Fvf ↪→ F∞f including any Fv(f) into the colimit, which can only
be shown to define a cocone whenever the diagram is connected.

Using this constructed colimit in FfC , we want to construct a colimit for any connected,
non-empty diagram in LNWFSC .

Lemma 7.48 (ColimLNWFSCocone). The category LNWFSC has all connected, non-empty
colimits whenever C is cocomplete.

Again, we only care about two specific cases.

Corollary 7.49 (ChainsLNWFS, CoequalizersLNWFS). The category LNWFSC has all col-
imits of chains, and all coequalizers.

Suppose we have a connected, non-empty diagram in LNWFSC . We can project this
diagram down to one in FfC and obtain the colimit F∞ of the projected diagram. We want
to define a comonad structure on LF∞ , using the comonad structures on the individual LFv .
Garner’s argument is fairly brief, stating that the forgetful functor LNWFSC → FfC creates
colimits, since LNWFSC can be defined as the category of comonoids in FfC for a certain
comonoidal structure (⊙,⊥). This comonoidal structure is dual to (⊗, I), and is defined with
unit

⊥ : X
f−−→ Y 7→ X

f−−→ Y
idY−−→ Y.

and the comultiplication on two factorizations F, F ′ is defined as

F ′ ⊙ F : X
f−−→ Y 7→ X

λ′
λf−−→ E′

λf

ρ′λf
·ρf

−−−−→ Y.

There is a more elaborate argument for this by Johnstone [26, Lemma 1.1.8]. This argument
defines the morphism LF∞ =⇒ L2

F∞
, by using the fact that the colimit distributes over the

comonoidal structure (⊙,⊥). In other words, Johnstone says that

colimv,w(Fv ⊙ Fw) = colimv(Fv ⊙ Fv)

which boils down to saying that

L2
F∞ = colimv,w LFv ·LFw = colimv L

2
Fv

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSCocomplete.v#L1065
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSCocomplete.v#L1085
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSCocomplete.v#L1094

7.2. THE ITERATIVE STEP 82

for the left functors. Sadly, the UniMath library again does not provide this type of machinery.
In fact, this second equality will not even really be an equality, but rather an isomorphism.
Let us recall again what the actual data in the comonad structure is. At any vertex v : g, at
any arrow f , it is the map σv

f in the component Σv
f of the comultiplication of the comonad

structure on LFv

Σv
f :=

X X

Ev
f Ev

λv
f

λv
f

λv
λv
f

σv
f

Again for illustration, let us assume the diagram in LNWFSC we are considering is a chain.
We define a pointwise diagram of the maps σv

f :

E0
f E1

f E2
f · · ·

E0
λ0
f

E1
λ1
f

E2
λ2
f

· · ·

σ0
f σ1

f σ2
f

The colimit of this diagram exists, since C2 is cocomplete whenever C is (Lemma 3.14 or
arrow_colims). This yields an arrow

σ∞,∗
f : E∞

f → E∞,∞
f

where the domain is definitionally equal to the middle object of F∞f , as desired. However,
the codomain E∞,∞

f is not definitionally equal to the codomain of LF∞ ·LF∞f . This problem
corresponds exactly with the distributing of the colimit over the composition of the left
functors. This is because the codomain of LF∞ ·LF∞f is definitionally equal to

colimv codLFv (LF∞f) = colimv codLFv (colimw LFwf) ,

where we take the colimits sequentially, whereas E∞,∞
f is definitionally equal to

colimv codL2
Fv
f,

where we effectively take the colimits simultaneously. We define a morphism

σ∞
cod : colimv codL2

Fv
f → colimv codLFv (LF∞f) ,

termwise, with
codL2

Fv
f → codLFv (LF∞f)

as [
LFv

(
in→LFvf

: LFvf ↪→ LF∞f
)]

11
.

This gives us the morphism

σ∞
f = σ∞,∗

f ·σ∞
cod : codλ∞

f → codλ∞
λ∞
f

that we need. One can show the following.

Lemma 7.50 (LNWFS_colim_comul_monad_ax). The morphisms σ∞
f defined above can be

used to form a natural transformation Σ∞ : LF∞ =⇒ L2
F∞

, extending the left functor of F∞
to a comonad.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/DisplayedCats/Examples/Arrow.v#L189
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSCocomplete.v#L785

7.2. THE ITERATIVE STEP 83

7.2.8 Right-closedness of LNWFSC

The other property of LNWFSC that we want to show is assumption V2, saying the follow-
ing.

Lemma 7.51 (LNWFS_rt_all_colimits). The rightwhiskering functor

(−) ⊗A : LNWFSC −→ LNWFSC

preserves colimits for any A : LNWFSC. In other words, LNWFSC is right-closed.

Here, we are again only interested in two cases.

Corollary 7.52 (LNWFS_rt_chain, LNWFS_rt_coeq). The rightwhiskering functor (−) ⊗
A : LNWFSC −→ LNWFSC preserves colimits of chains and coequalizers for any A :
LNWFSC.

Here too, Garner uses a fairly high level argument, but it is possible to take a more direct
approach. Similar to the last two proofs, we first show that (−)⊗A : FfC −→ FfC preserves
colimits. We do this by showing that there is an inverse

F∞ ⊗A → colim (Fv ⊗A)

to the canonical map out of the colimit. We then show that this inverse is also a morphism
of LNWFSC whenever the chain was projected down from LNWFSC to begin with. Firstly
though, we show the following.

Lemma 7.53 (Ff_rt_all_colimits). The rightwhiskering functor (−) ⊗ A : FfC −→ FfC
preserves colimits for any A : FfC.

We define the inverse directly. Like before, we do this pointwise on an arrow (f : X →
Y) : C2, by defining an arrow of the middle objects. From the way the tensor product is
defined, this means that we need to find an isomorphism

dom ρ∞
ρAf

→ colim dom ρvρAf

where ρ∞ corresponds with F∞, ρv with Fv and ρA with A. We simply define this termwise
as

colim iddom ρv
ρA
f

.

Though it may seem trivial that this morphism lifts to a morphism in LNWFSC whenever
the sequence in FfC was obtained from one in LNWFSC , we use the following lemma. This
strategy proved to be much more performant in the proof checker, and the lemma can be
applied in some other proofs as well.

Lemma 7.54 (Ff_iso_inv_LNWFS_mor). Suppose L and L′ are LNWFSs over functorial
factorizations F and F ′ respectively. Let τ : F → F ′ be an isomorphism which preserves
the LNWFS structrure, or in other words, there is a morphism Γ : L → L′ over τ . Then
τ−1 : F ′ → F also preserves the LNWFS structure, or in other words: Γ is an isomorphism
with inverse Γ−1 over τ−1.

Proof. We have to show that τ−1 preserves the counits and comultiplication. We first show
that it preserves the counit. This means that for any f : X → Y , we need

X X X

E′
f Ef Y

λ′
f λf f

τ−1
f 11

ρf

=

X X

E′
f Y

λ′
f f

ρ′f

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSClosed.v#L445
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSClosed.v#L495
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSClosed.v#L501
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSClosed.v#L280
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSHelpers.v#L109

7.2. THE ITERATIVE STEP 84

as morphisms in the arrow category C2. This follows pretty much directly from precomposing
with the inverse τf of τ−1

f , and using the counit preservation law of τ .
Showing that the multiplication is preserved is a bit more involved. We wish to show that

the following morphisms of the arrow category are equal:

X X X

E′
f Ef Eλf

λ′
f λf λλf

τ−1
f 11

σf

=

X X X X

E′
f □ □ Eλf

λ′
f

λ′
λ′
f

λ′
λf

λλf

σ′
f L′(τ−1

f)
11

τ−1
λf 11

We again precompose with τf to obtain

X X

Ef Eλf

λf λλf

σf

=

X X X X X

Ef E′
f □ □ Eλf

λf λ′
f

λ′
λ′
f

λ′
λf

λλf

τf 11 σ′
f L′(τ−1

f)
11

τ−1
λf 11

Rewriting the multiplication law for τ gives

X X

Ef Eλf

λf λλf

σf

=

X X X X X X

Ef □ □ □ □ Eλf

λf λλf
λλ′

f
λ′
λ′
f

λ′
λf

λλf

σf L(τf)
11

τλ′
f 11

L′(τ−1
f)

11
τ−1
λf 11

for which it suffices to show that

X X X X X

Eλf
□ □ □ Eλf

λλf
λλ′

f
λ′
λ′
f

λ′
λf

λλf

L(τf)
11

τλ′
f 11

L′(τ−1
f)

11
τ−1
λf 11

is identity on λλf
. In fact, if we look closely, this boils down to the commutativity of

whiskering in the comonoidal structure (⊙,⊥) on FfC . In other words, we want to know that

(α⊙ Λ)· (L′ ⊙ β) = (L⊙ β)· (α⊙ Λ′)

for α : L → L′ and β : Λ → Λ′ morphisms of LNWFSC . That is, for any morphism
f : X → Y , we need that

αΛf ·L′ (βf) = L (βf) ·αΛ′f .

This proof can be found in the formalization (LNWFS_comon_structure_whiskercommutes),
and it allows us to rewrite the middle two squares to obtain

X X X X X

Eλf
□ □ □ Eλf

λλf
λλ′

f
λλf

λ′
λf

λλf

L(τf)
11

L(τ−1
f)

11

τλf 11 τ−1
λf 11

where the two halves are both identity by functoriality and naturality.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSHelpers.v#L93

7.2. THE ITERATIVE STEP 85

7.2.9 Reducing the Smallness Requirement

The last thing we want to do is to reduce the smallness requirement V3 on LNWFSC to
one that only involves the morphism class J used to define L1. The smallness requirement
on LNWFSC we currently need in order to show that the free monoid exists is that L1 is
ω-small. We first generically reduce this requirement to one on FfC , then on the left functor
for a functorial factorization, then finally we reduce it to a (somewhat familiar) requirement
on J . For the generic part, we follow Garner’s proof [22, Proposition 32], which may not be
the quickest way there, but it does work. For the smallness of the one-step comonad itself
we take a slightly different route.

In this section, all diagrams we consider are chains, as they are sufficient to show the
smallness requirement, but it should be possible to prove these statements for any connected,
non-empty colimit. This is why we will still call the chains d for ‘diagram’, and label the
vertices with v for ‘vertex’, as opposed to more common labeling for natural numbers.

First, Lemma 7.54 gives us the following.

Lemma 7.55 (Ff_lt_preserves_colim_impl_LNWFS_lt_preserves_colim). Let d =
{ Lv }v:N be a chain in LNWFSC, lying over a chain δ = { Fv }v:N in FfC. Suppose
L : LNWFSC lies over F : FfC. Then the leftwhiskering functor L ⊗ (−) preserves the
colimit of d whenever F ⊗ (−) preserves the colimit of δ.

Next, we want to reduce the smallness on a factorization F : FfC to some smallness
requirement on the right functor RF . Garner notes that RF restricts to endofunctors RF

∣∣
Y

:

C/Y −→ C/Y of the slice category, and shows that it suffices to assume that every RF

∣∣
Y

is
ω-small. We take a slightly different approach. Let d = {Xv }v:N be a chain in the C, and let
ccYd be a cocone on d, i.e. a diagram

X0 X1 X2 . . .

Y
f0

f1
f2

Note that ‘F ⊗ (−) preserving the colimit of any chain’ means that there is an isomorphism

colim (Ffv) ∼= F colim fi

for any such cocone. Define R
(
ccYd
)

to be the cocone

Ef0 Ef1 Ef2 . . .

Y

ρf0
ρf1

ρf2

Definition 7.56 (FR_slice_omega_small). We say that RF is slice ω-small if and only if
for any chain d and cocone ccYd , the domain

dom (RF colim fv)

is a colimit for the chain { Efv }v:N.

Definition FR_slice_omega_small (F : Ff C) : UU :=∏
(d : chain C) (y : C) (ccy : cocone d y),

isColimCocone _ _ (dom_fact_R_colimArrow_cocone F ccy).

To reduce our smallness requirement, we show the following.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSSmallnessReduction.v#L693
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSSmallnessReduction.v#L176

7.2. THE ITERATIVE STEP 86

Lemma 7.57 (FR_lt_preserves_colim_impl_Ff_lt_preserves_colim). F ⊗ (−) is ω-
small if RF is slice ω-small.

To show this, we note that the canonical isomorphism

colim (dom (RF fv)) ∼= dom (RF colim fv)

from the smallness requirement on RF precisely gives us the middle morphism of

colim (Ffv) ∼= F colim fv

that we need.
The final ‘generic’ step is to show that for any functorial factorization F , the right functor

RF is slice ω-small whenever the left functor LF is ω-small.

Lemma 7.58 (FR_slice_omega_small_if_L_omega_small). For any functorial factoriza-
tion F , the right functor RF is slice ω-small whenever the left functor LF is ω-small.

The main point of the proof is that we note that for any chain d in C and cocone ccYd like
before, the canonical arrow

colim fv : colim(Xv) → Y

is in fact a colimit for the chain { fv }v:N in C2.
So in order to apply our free monoid construction on the one-step comonad L1 in LNWFSC ,

we are left with a smallness requirement on L1 that says that the left functor L1 is ω-small.
We recall how L1 was constructed, which is pointwise as a pushout of the functor

K : C2 −→ C2 : f 7→
⊔
x:Sf

gx.

We can show the following.

Lemma 7.59 (L1_small_if_K_small). The one-step comonad L1 is ω-small whenever K
is.

In fact, we show something even stronger.

Lemma 7.60 (L1_preserves_colim_if_K_preserves_colim). The one-step comonad L1

preserves any colimit which K does.

For this to hold, we need to find an inverse

L1 (colim fv) → colim
(
L1fv

)
to the canonical map

colim
(
L1fv

)
→ L1 (colim fv)

for any chain d = { fv }v:N in C2. To construct this inverse, first recall the natural transfor-
mation

ξ : K =⇒ L1

for which every component is the pushout Kf → L1f , and recall the counit

Φ : L1 =⇒ idC2 .

Garner then considers the following diagram [9, Proposition 4.22]

K (colim fv) colimKfv colimL1fv

L1 (colim fv) colim fv

ξcolim fv

can−1
K

∼=
colim ξfv

colimΦfv

Φcolim fv

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSSmallnessReduction.v#L607
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSSmallnessReduction.v#L343
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonadSmall.v#L1183
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonadSmall.v#L1166

7.2. THE ITERATIVE STEP 87

where canK : colimKfv → K colim fv is the isomorphism we get from the smallness of K.
Garner mentions that the left map is a pushout, and the right map is an isomorphism on
the domain, and that the corresponding two classes of maps form a (strong) factorization
system. We will not show this, nor will we show the commutativity of the full diagram, but
we will construct the lift using the properties of this diagram (and of course the necessary
commutativity). Let us draw out the left and right vertical arrows, and part of the horizontal
maps, and the idea will become more clear.

⊔
Xx X colimv X X

⊔
Yx E1

colim fv
colimE1

fv
Y

K colim fv

ξcolim fv 00

⌜
L1 colim fv

Φcolim fv 00

colimL1fv

colimΦfv 00

∼=
colim fv

ξcolim fv 11

can−1
K ·colim ξfv 11

∃! colimΦfv 11

The existence (and uniqueness) of the dashed arrow follow from the pushout property of the
left-hand square, in case the required diagrams commute (L1_colim_L1_map_ispushoutOut).
The uniqueness of this map explains why the factorization system Garner mentions is strong.
One can show that this morphism is indeed the morphism on the codomains that we need
for our inverse

L1 colim fv → colimL1fv.

The morphism on the domains is simply the composite

Φcolim fv00·
(
colim Φfv00

)−1

used to define the pushout arrow. Commutativity of our inverse then follows directly from
the properties of a pushout. Indeed, we have the following.

Lemma 7.61 (L1_colim_L1_map_is_inverse_in_precat). The morphism

L1 colim fv → colimL1fv

constructed above is an inverse to the canonical morphism

colimL1fv → L1 colim fv.

The last step is to reduce the new smallness requirement on K to one that only involves
our morphism class J . This will involve the notion of presentable objects in a category.

Definition 7.62 (presentable). Let C be a category and X and object in C. Then X is
called presentable if and only if the covariant homset functor

Hom(X,−) : C −→ SET

is ω-small.

Definition presentable {C : category} (x : C) :=

preserves_colimits_of_shape

(cov_homSet_functor x)

nat_graph.

The goal is to show the following.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonadSmall.v#L957
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonadSmall.v#L1069
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonadSmall.v#L42

7.2. THE ITERATIVE STEP 88

Lemma 7.63 (K_small_if_J_small). The functor K preserves colimits of chains whenever
every arrow g ∈ J is presentable.

Remark. In this lemma, we ask that any morphism g ∈ J is presentable. This means
that g is presentable in the arrow category C2. We do not require anything specific about
presentability in the base category C.

Again, let d := { fv }v:N be a chain. Similar to before, we want to find an inverse

K colim fv → colimKfv

to the canonical map out of the colimit. For brevity, we set

f∞ := colim fv.

Since Kf∞ is defined as the coproduct ⊔
x:Sf∞

gx

in the arrow category, it suffices to define morphisms

gx → colimKfv

for any x : Sf∞ . Now, since all g ∈ J are presentable, there is a canonical isomorphism of
sets

(gx → f∞) ∼= colimv (gx → fv) .

Unpacking the set quotient that defnies the colimit in SET, this isomorphism says that a
lifting problem x : Sf∞ corresponds with an entire equivalence class of ‘compatible’ lifting
problems Sgx

f∞
⊆
⊔

v:N(gx → fv). Here, ‘compatible’ means they correspond through compo-
sition with the edges fv → fv+ in the chain d. It tells us that we can define a morphism
gx → colimKfv if we can define morphisms

ixv : gx = gxv → colimKfv

given any lifting problem xv : gx → fv in Sgx
f∞

, preserving the equivalence relation on
colimv (gx, fv). This preservation requires that if xu and xv are in the same equivalence
class in colimv (gx → fv) in SET, then ixu and ixv are the same. Defining these morphisms
is easy to do though. We define them as the composite

ixv := gx = gxv

in⊔xv−−−→ Kfv
in→v−−−→ colimKfv.

We can show the following.

Lemma 7.64 (presentable_lp_homSet_colim_colimK_fun_iscomprel). The morphisms
ixv are compatible in the way described above.

Indeed, the coproduct of the morphisms gx → colimKfv obtained in this way yields the
inverse we are looking for.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonadSmall.v#L528
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/OneStepMonadSmall.v#L286

7.3. THE SMALL OBJECT ARGUMENT 89

7.3 The Small Object Argument

In the end, the smallness requirement we impose on our morphism class J is the following.

Definition class_presentable {C : category} (J : morphism_class C) :=∏
(g : arrow C), J _ _ g -> (presentable g).

Allowing us to prove the main theorem of interest.

Theorem 7.65 (small_object_argument). Let J be a morphism class in a cocomplete cat-
egory C, such that any g ∈ J is presentable in the arrow category C2. Then there exists an
NWFS in C.

Theorem small_object_argument

(HJ : class_presentable J) :

total_category (NWFS C).

Proof.

set (lnwfs_monoid :=

Tinf_monoid

(@LNWFS_tot_monoidal C)

(LNWFS_pointed one_step_comonad_as_LNWFS)

(ChainsLNWFS CC)

(CoequalizersLNWFS CC)

(free_monoid_coeq_sequence_converges_for_osc HJ)

(LNWFS_rt_coeq CC)

(LNWFS_rt_chain CC)

(osc_preserves_diagram_on HJ)

).

exact (_,, LNWFS_tot_monoid_is_NWFS lnwfs_monoid).

Defined.

Example 7.66. Unfortunately, we cannot finish the example in TOP this way, as the arrows
in

J = { jn : Sn ↪→ Dn+1 | n = −1, 0, 1, . . . }

are not presentable in the category TOP. In fact, the smallness requirement will not hold for
any (non-empty) class J . There is, however, another smallness requirement on the class J
that can be shown to be sufficient, that does hold for this class J . The NWFS that is generated
in this way is precisely the one with Serre fibrations as right class and left class the retracts
of relative CW-complexes, which are also weak homotopy equivalences. Indeed, this is one of
the factorization systems from the classical model structure on TOP [9].

Example 7.67. We can, however, apply the theorem on SSET, with the same class J . In
this case, the NWFS that is generated is the one with Kan fibrations as right class, and the
corresponding left class from the WFS in the Quillen model structure on SSET [9].

Example 7.68. The (trivial) example on SET, with J = { ∅ → ∗ }, generates the NWFS
with underlying factorization [9]

X
f−−→ Y 7→ X

in⊔X−−−→ X ⊔ Y
f⊔idY−−−−→ Y.

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/SmallObjectArgument.v#L120

Chapter 8

Discussion

8.1 Conclusion

We have elaborated, rephrased and formalized Garner’s algebraic small object argument. We
formalized the results, providing a computer verified proof for the construction. Addition-
ally, we have also rephrased the argument using more modern theory like that of displayed
categories and a modern notion of monoidal categories. Moreover, we filled in the gaps in the
theory and made the results more direct, intuitive and accessible. Furthermore, we pointed
out some constructive issues in the classical small object argument that Garner did not touch
upon, mainly involving the possibly unsuspected use of the axiom of choice.

Let us briefly go over some of the main differences in the argument by Garner and this
thesis. First and foremost, we filled the gaps which Garner left in his papers. The first thing
that comes to mind was the lifting of the monoidal structure on FfC to one on LNWFSC .
Something that Garner left out, but which took over 1000 lines of formalization and is in
fact the file that takes the longest to check in the entire formalization. We also went over the
transfinite construction in a lot more detail. We elaborated the construction, constructed the
free monoid in a more intuitive and detailed way, following various examples.

Secondly, we introduced more modern language, in the form of displayed categories [11]
and a more modern notion of monoidal categories [12] [13]. Furthermore, because of the
limitations of the UniMath library, we often had to take a more direct or basic approach
to proving certain statements, making the proofs more accessible, simple and often (much)
more elaborate. This makes it so the argument can now be followed in more detail. To
alleviate these limitations somewhat, we also formalized some more general theory, such as
maps between coproducts using different indexing types (CoproductOfArrowsInclusion) or
some theory on connected graphs (connected_graph_zig_zag_strong_induction).

Thirdly, we left out a lot of complex theory that Garner uses. This is, again, partly
because of the way we are limited in the available results in UniMath, but it contributes to
the accessibility of the proofs. Complex constructions such as twofold monoidal categories
are left out, and the construction of the adjoint that Garner uses to obtain the free monoid
from the transfinite sequence is replaced with a more direct and intuitive construction of the
free monoid.

Finally, we hope to have made the idea behind the construction more clear from the start.
The construction may be complex for a reader unfamiliar with the small object argument
or the theory of (N)WFSs in general. This thesis attempts to give a more streamlined
introduction to the theory of model categories, and mainly the small object argument.

The formalization gave more insight into the details of the theory, and it showed how few
assumptions Garner’s algebraic small object argument really needs. In the formalization of
the algebraic small object argument, we never had to assume any categories to be univalent.
Merely assuming we have small homsets is sufficient. The modern, HoTT compatible notion

90

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/limits/coproducts.v#L7
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/limits/colimits.v#L210

8.2. REMARKS ON THE COQ FORMALIZATION 91

of monoidal categories due to Ahrens, Matthes and Wullaert [12] [13] also proved to be
sufficient for the construction. Moreover, we never used the univalence axiom in formalizing
the algebraic small object argument. We did however use function extensionality, though
it is not uncommon to assume this axiom. We primarily used this to show the equality of
morphisms of functorial factorizations, but also in some other proofs. The formalization also
pointed out constructive issues in the theory of plain weak factorization systems, mainly
referring to the use of the axiom of choice.

8.2 Remarks on the Coq Formalization

At the end, the formalization was about 15000 LoC, and the entire formalization took about
9 minutes to compile on my (fairly old) laptop. Compiling the LNWFSMonoidalStructure.v

file, containing the definitions for the monoidal structure on LNWFSC , took up most of that
time. There are some strategies in formalization that can greatly influence the compilation
time. Some strategies that I learned while formalizing are the following.

� Use abstraction properly. That is to say, finish proofs with Qed, and not with Defined

whenever you can. This makes it so the proof terms are saved as opaque terms, which
cannot be unfolded in other proofs. Doing this makes the proof terms of other (possi-
bly non-opaque) proofs become smaller in turn. When writing proofs that should be
transparent (so which have to be finished off with Defined), one could either split out
any subterms which are propositional into opaque lemmas, or use the abstract tactic
to create an opaque term from within the proof. This strategy reduced the compilation
time of the FFMonoidalStructure.v file from a couple of minutes down to only a few
seconds.

� Do not leave cbn, simpl or unfold tactics in finished proofs. Though very useful when
writing proofs, the proof checker will ‘re-type check’ any unfolded terms upon saving the
proof, greatly increasing the compilation time. Generally, unless specifically needing
them to use the rewrite tactic, these tactics are not needed for the proof to work, and
should only be used when actively writing the proof.

� This point specific to UniMath, and not for general Coq formalization: try to use
etrans and apply instead of rewrite. The rewrite tactic produces very large terms,
called internal_paths_rew_r, which are much larger terms than any terms etrans

and apply create. Proofs involving the rewrite tactic produce much larger terms, and
take much longer to check.

� Try to prove something more generic. For example, proving statements about the trans-
finite sequence would have become very slow, would we have shown the construction
specifically for LNWFSC . The more generic approach allowed us to use much sim-
pler data and propositions. This did not only reduce the compilation time, but it also
simplified a lot of goals, making the formalization process easier and quicker.

� Try to prove something more specific. For example, Garner introduces the theory of
twofold monoidal categories. Though it may be a useful framework to get results on
paper, setting up the theory would require much more work than showing the desired
results directly.

Another example is the LNWFS_comon_structure_whiskercommutes lemma, where we
showed a property of the comonoidal structure (⊙,⊥) on FfC without explicitly in-
troducing it. Though this proof is slow and tedious in its own right, defining this
comonoidal structure would have taken much longer to do than just proving this single
result.

Of course, this point seems to contradict the previous point. It is important to decide
when to use either of these strategies. This may be done by trial and error, but gen-

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/ModelCategories/Generated/LNWFSHelpers.v#L93

8.3. FUTURE WORK 92

erally it is good to keep in mind how much extra data ‘something specific’ introduces,
increasing the compilation time and possibly making goals less comprehensible. In con-
trast, it is good to consider how much extra work proving ‘something more generic’
entails.

When actively developing parts of the theory, it is good to split the proofs up into smaller
parts. One could use the admit tactic, in combination with the Admitted vernacular to give
up on certain proofs, and do them later. It may also be useful to use a lemma like

Lemma todo {A : UU} : A. Admitted.

which allows one to apply todo in any proof, giving up on that part of the proof, but not
losing the transparency of the proof by still being able to finish it off with Defined instead
of Admitted.

When formalizing theory, it is good to work in a combination of the formalization and on
paper. Sometimes, one might recognize certain patterns in a goal that occur in other places as
well, or one can simplify the proof into something simpler, simply by using common strategies.
For example, when proving statements about colimits or pushouts, a proof involving the
colimit could often be reduced to one involving only terms in the diagram. One should not
get lost in formalization though. It is good to step back and really write out the goal you are
trying to prove on paper to see where you are going with the formalization.

It is also good to keep in mind that a library like UniMath is not complete or perfect.
Not all the proofs in the library are written optimally, with common use of the rewrite

tactic, and many leftover cbn, simpl and unfold tactics. Fortunately, the library is open
source, and one could contribute optimizations like this, or missing theory like maps between
coproducts with different indexing types (CoproductOfArrowsInclusion) or some theory on
connected graphs (connected_graph_zig_zag_strong_induction).

8.3 Future Work

There is still some obvious work to be done in the formalization. First of all, the smallness
requirement on the morphism class J used to generate the one-step comonad can be further
reduced from presentability of the arrows in J to presentability of the domains of the arrows
in J .

Secondly, Garner’s argument hypothesizes either of two smallness requirements, of which
we have only shown the construction to work with the simpler one. The classical example
of topological spaces does not satisfy this smallness requirement, though the example of
simplicial sets does. It would be valuable to formalize this second smallness requirement as
well.

The construction can also be generalized even further, by using more general ordinals,
and not just the first limit ordinal ω. Unfortunately, more work has to be done on the theory
of ordinals before being able to use them in this construction. We made a small effort to
define ordinals using set truncations, as they are defined in the HoTT book [14], but this
proved to be very cumbersome to work with, so we abandoned the effort.

Other than that, Garner’s small object argument shows that the generated NWFS is in
fact the cofibrantly generated, relating the R-Map class of the generated NWFS back to the
morphism class J used to generate it. Some theory on this has already been formalized,
but a lot is missing. If this is formalized, more examples could be worked out as well, most
importantly in SSET and TOP.

Originally, the idea for the project was to also have a parallel development of the theory
in Lean. This is still an interesting effort to pursue, since it may make the interaction
between the theory and the foundations even clearer. Lean is built on a different Calculus

https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/limits/coproducts.v#L7
https://github.com/DenSinH/unimath-small-obj-arg/blob/7abf96183867e344df682a7e449773068be69443/limits/colimits.v#L210

8.3. FUTURE WORK 93

of Constructions than Coq and UniMath, also supporting classical reasoning and defining
additional axioms, even having a built-in choice principle [19] [17].

Furthermore, it would be valuable to contribute the theory to UniMath. The formalization
has been set up in a way that this should be easy to do, as it should only require us to rename
a couple of import statements. This would be useful for any formalization efforts that build
upon this theory.

One such effort is the theory of model 2-categories. In a conversation with PhD student
Kobe Wullaert, he made clear that the formalization may be useful as inspiration or basis
for him to formalize the theory of model 2-categories. This thesis and the accompanying
formalization already give a good indication of how univalent foundations interact with the
theory, and could be a good starting point for developing such theory.

Proof finished.

94

Bibliography

[1] D.G. Quillen. Homotopical Algebra. Lecture notes in mathematics. Springer-Verlag,
1967.

[2] M. Hovey. Model Categories. Mathematical surveys and monographs. American Math-
ematical Society, 2007.

[3] J P May and K Ponto. More Concise Algebraic Topology: Localization, Completion, and
Model Categories. University of Chicago Press, Chicago, 2011.

[4] Jacob Lurie. Derived algebraic geometry iii: Commutative algebra, 2009.

[5] F. Déglise. Condensed and locally compact abelian groups. https://deglise.perso.

math.cnrs.fr/docs/2020/condensed.pdf, 2020. Expansion of lectures on Condensed
Mathematics by Peter Scholze.

[6] Philippe Gaucher. A model category for the homotopy theory of concurrency. Homology,
Homotopy and Applications, 5(1):549–599, 2003.

[7] Julia E. Bergner. A survey of (∞, 1)-categories, 2006.

[8] Marco Grandis and Walter Tholen. Natural weak factorization systems. Archivum
Mathematicum, 42, 01 2006.

[9] Richard Garner. Understanding the small object argument. Applied Categorical Struc-
tures, 17(3):247–285, apr 2008.

[10] Emily Riehl. Algebraic model structures. The New York Journal of Mathematics [elec-
tronic only], 17:173–231, 2011.

[11] Benedikt Ahrens and Peter Lefanu Lumsdaine. Displayed categories. 2018.

[12] Benedikt Ahrens, Ralph Matthes, and Kobe Wullaert. Formalizing monoidal categories
and actions for syntax with binders, 2023.

[13] Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens. Substitution for non-wellfounded
syntax with binders, 2023.

[14] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

[15] Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent foun-
dations (after voevodsky), 2018.

[16] nLab. https://ncatlab.org/nlab/. Various sub-pages.

[17] The Coq development team. The Coq proof assistant reference manual. LogiCal Project,
2004. Version 8.0.

95

https://deglise.perso.math.cnrs.fr/docs/2020/condensed.pdf
https://deglise.perso.math.cnrs.fr/docs/2020/condensed.pdf
https://homotopytypetheory.org/book
https://ncatlab.org/nlab/

BIBLIOGRAPHY 96

[18] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. Unimath — a computer-
checked library of univalent mathematics. Available at http://unimath.org.

[19] Lean. https://lean-lang.org/.

[20] Arne Strøm. The homotopy category is a homotopy category. Arch. Math. (Basel),
23:435–441, 1972.

[21] Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu. Set-theoretic
and type-theoretic ordinals coincide. In 2023 38th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). IEEE, jun 2023.

[22] Richard Garner. Cofibrantly generated natural weak factorisation systems. 2007.

[23] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New
York, 1971. Graduate Texts in Mathematics, Vol. 5.

[24] Nicola Gambino, Christian Sattler, and Karol Szumi lo. The constructive kan–quillen
model structure: Two new proofs. The Quarterly Journal of Mathematics,
73(4):1307–1373, April 2022.

[25] G.M. Kelly. A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves, and so on. Bulletin of the Australian Mathe-
matical Society, 22(1):1–83, 1980.

[26] Peter T Johnstone. Sketches of an elephant: a Topos theory compendium. Oxford logic
guides. Oxford Univ. Press, New York, NY, 2002.

http://unimath.org
https://lean-lang.org/

	Introduction
	Homotopy Type Theory and Formalization
	Types
	Formalization
	Homotopy Type Theory

	Constructions on Types
	Function Types
	Type Universes
	-types
	-types
	Summary

	n-types
	Mere Propositions
	Sets
	Propositional Truncation

	Univalence
	Category Theory

	Displayed Categories
	Definitions
	Constructions
	The Structure Identity Principle
	Examples
	The Arrow Category
	The Three Category

	Model Categories
	Preliminaries
	Retracts
	Lifting Problems

	Weak Factorization Systems
	Model Categories
	The Homotopy Category

	Natural Weak Factorization Systems
	Functorial Factorizations
	Natural Weak Factorization Systems
	Properties of NWFSs
	Monads
	Categorical Properties
	Properties of the (Co)multiplication
	An NWFS is a WFS

	The Classical Small Object Argument
	The Small Object Argument
	Cofibrantly Generated Model Structures

	The Algebraic Small Object Argument
	The One-Step Comonad
	The Iterative Step
	Monoidal Categories
	The Monoidal Structure on FfC
	The Monoidal Structure on LNWFSC
	The Transfinite Sequence
	Convergence of the Sequence
	Obtaining the Free Monoid
	Cocompleteness of LNWFSC
	Right-closedness of LNWFSC
	Reducing the Smallness Requirement

	The Small Object Argument

	Discussion
	Conclusion
	Remarks on the Coq Formalization
	Future Work

