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ABSTRACT 

Soil texture is an important soil physical property that determines water availability, nutrient 

availability and growth of vegetation. The growth of plant species and development of high-alpine 

soils are shifting in alpine catchments due to changes in conditions as a result of e.g. warming at higher 

elevation, shorter periods of snow cover and less precipitation falling as snow. Hence, understanding 

hydrological behaviour in high alpine catchments is crucial. Therefore, insight in the spatial 

distribution scale of soil texture and vegetation in an alpine catchment is required. In this research, 

field data obtained during 3 weeks of fieldwork in the Meretschibach catchment was used in 

combination with remotely sensed data for statistical modelling. The Random Forest model was used 

to predict soil textures and vegetation classes on a catchment scale including accuracies and variable 

importance for all models. The soil textures in the study area both determined and predicted were 

dominated by high sand fractions: sandy loam, loamy sand and sand. The most important variables 

for prediction of soil properties were slope and elevation. In contrary, the most important variables 

for predicting vegetation and rock cover percentage on surface were spectral bands and NDVI. The RF 

classification model for predicting vegetation showed the best performance and poorer performance 

for soil textural classification with a misclassification rate of 19.5% and 61.1% respectively. The 

performance of RF regression model was most accurate for prediction of rock cover percentages with 

an R2 of 0.57 and a NRMSE of 0.17. The results demonstrate that field data in combination with RF 

models can be used to determine the spatial distribution of surface characteristics. However, it 

suggests that discovering statistical trends for in-soil parameters is challenging. The findings did 

suggest that there is potential in narrowing the training data to the most important prediction 

variables. Future research could also use different models to see which model is superior for upscaling 

soil texture for this specific site.   
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1. INTRODUCTION 

1.1 THE GREENING OF ALPINE REGIONS DUE TO CLIMATE CHANGE 

Effect of climate change on hydrology and ecology 

The colonization of new species has accelerated during this century in the European Alps (Steinbauer 

et al., 2018), revealing change in ecosystems. The vegetation zone belts in mountainous ecosystems 

are shifting upwards. The vegetation zones represent climate conditions where specific plant species 

will thrive. Therefore, shifts in vegetation type provide evidence for climate change impact on 

mountainous ecosystems (Hagedorn et al., 2019). The European Alps experience greening (Beniston, 

2012; Choler et al., 2021; Hagedorn et al., 2019; Körner, 2021; Rumpf et al., 2022; Steinbauer et al., 

2018; Viviroli et al., 2011). According to Rumpf et al. (2022), 77% of the Alpine areas above the tree 

line undergo greening over the last four decades. Also, tree lines are advancing to higher altitudes at 

52% of the 166 sites discussed by Harsch et al. (2009).  

Climate change has a great impact on ecology and hydrology in alpine catchments. The general retreat 

of mountain glaciers is already perceptible through the last decades. An increase in temperature of 2 

°C since 1900 is arising at high elevations in the European Alps (Beniston, 2012). Regional climate 

models including different greenhouse-gas emissions scenarios suggest that winters in Switzerland 

may warm up to 3-5 °C and summers by 6-7 °C by 2100 (Beniston, 2012). The greening of the alpine 

areas occurred predominantly in warmer areas of the Alps experiencing strong winter warming 

(Harsch et al., 2009; Rumpf et al., 2022). The precipitation is projected to increase in winter,  (Beniston, 

2012; Rumpf et al., 2022), suggesting that the average snowline will rise by 150 m for each warming 

degree indicating that the possible snowline could shift 450-750 m (3-5 °C) upward during winter. This 

upward shift of the snowline reduces precipitation falling as snow, leading to a snow mass reduction 

in the European Alps (Rumpf et al., 2022). According to the study of Viviroli et al. (2020), it is projected 

that approximately 1.5 billion people (24% of the world’s lowland population) will have a critical 

reliance on runoff originating from mountains by 2050 assuming a moderate scenario. Therefore 

reduced snow mass and melt has a direct impact on people living downstream that are dependent on 

freshwater resources.  

Despite warmer temperatures during spring, vegetation development in alpine and sub-alpine belts 

(>1800 m) is still hindered by snow until late spring. As a result, greening in these alpine regions 

primarily acts during summer and autumn (Filippa et al., 2019). In alpine catchments, sparsely 

vegetated areas like screes, talus and glacial forelands can potentially be invaded with pioneer species 

due to changes in climatic conditions (Choler et al., 2021). The pioneer species in sparsely vegetated 

areas contribute to a feedback loop between snow and vegetation, since the growth of species will 

trap blowing snow and increase radiation exchange resulting in faster snowmelt and reduced snow 

cover (Mazzotti et al., 2021; Sturm et al., 2001). Therefore, an increase in vegetation and a decrease 

in snow cover seems to contribute to the alpine snow mass buffer decrease during winter. 

The effect of climate change on alpine regions will impact generation of hydropower, agriculture, 

natural habitats, (glacial) tourism and also an increase of potential natural hazards impacts inhabitants 

but also leaves an indirect impact on insurance companies (Beniston, 2012; Salim et al., 2021). Water 

supply changes influencing hydropower generation and therefore energy supply. The productivity for 

agriculture will change when water supply changes. The consequences of the greening and glacial 

retreat for tourism include issues related to proposed activities and attractiveness of a site, itineraries 

and glacier access (Salim et al., 2021). The thawing of permafrost may cause rock falls and landslides 

Field Code Changed
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due to changes in physical properties of the ground, increasing the risks of natural hazards. Also, 

thawing of permafrost might release greenhouse gases and will result in loss of specific habitats 

(Rumpf et al., 2022). All these discussion points are related to change in morphology, vegetation, 

hydrology and soil development in these alpine zones. Therefore understanding these relations 

between terrain characteristics, ecology, soil properties and hydrology by upscaling spatial data on 

alpine catchments is crucial.  

Impact on high elevation soil development 

A schematic sketch on the soil-vegetation-elevation relation is shown in Figure 1. In the boundaries of 

this research, less attention given to the underground fungi and bacteria and the focus will lay on the 

soil, hydrology, vegetation and terrain relation. The soil texture will be different for zones with larger 

vegetation and deeper soil structures compared to zones where there is only grass with relatively 

small root systems. A shift in vegetation and soil texture will indirectly indicate a shift in alpine 

underground ecosystems and vice versa.  

 

Figure 1: A sketch of mountain ecosystems above and below the ground. The legend already describes the belowground 
organisms. The aboveground vegetation represents from right to left: deciduous forest, large coniferous forest, smaller 
coniferous forest, shrublands, grasslands, bare soil. Image adapted from Hagedorn et al. (2019) 

Soil development on high elevation soils change as the environmental conditions change for certain 

elevations. Yet, the process of soil formation in high altitude regions is challenging. Insufficient water 

retention and low nutrient availability in poorly developed, high elevation soils can limit the expanses 

of specific species that have the potential to advance upward (Henne et al., 2011), resulting in other 

specific species that are more likely to advance.  

On higher elevations bare rocks, climate conditions and erosion play a vital role and can hinder soil 

development. Nevertheless, the soil organic matter (SOM) build-up in topsoil of glacier forelands is 

proceeding at the global scale (Khedim et al., 2021). The previously barren rock surfaces, once covered 

in ice and snow, are now becoming conducive to the growth of plant species and the habitation of 

various organisms. For example, an upward shift of the forest in the Ural mountains leads to changes 

in soil organic material (SOM) quality, an increase in net nitrogen mineralization and accelerates 

carbon cycling, which in turn may stimulate vegetation to grow and increasing carbon sequestration 

in biomass (Kammer et al., 2009). A benefit of the high-elevation soil development is the gain of carbon 

in early successional ecosystems (Hagedorn et al., 2019). 
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1.2 PEDOGENIC VARIABLES IN ALPINE ENVIRONMENTS 
The shifts in hydrology, soil properties, vegetation and terrain in mountainous areas should be 

monitored and analyzed to understand this everchanging landscape. However, field measurements 

and trips to high elevation areas come with high costs. Since these changes in hydrology are critical 

for a lot of people and many countries rely on freshwater resources from mountainous areas it is 

important to expand our knowledge on mountainous hydrologic behavior, including soil and 

vegetation changes. This can potentially be achieved by using remotely sensed data to predict 

pedogenic variables, hydrologic parameters and classify vegetation. When prediction by UAV or 

satellites becomes more reliable the field costs could potentially be less and time management could 

be more efficient.  

The input parameters for prediction modelling may vary for each predictive variable. The parameters 

derived from satellite or UAV imagery are topography, terrain attributes and hydrological parameters. 

Landscape topography is an important factor when considering landscape distribution of soil variables 

since it impacts the transport of water and nutrients through overland and lateral flow. From UAV 

imagery multiple terrain attributes can be derived with high-resolution DEMs (Digital Elevation 

Models). Imagery alone is sometimes already sufficient to build a reasonable model mapping soil 

organic carbon (SOC), its relative importance was 65% compared to 20% climate variables and 15% 

topography (Yang et al. 2021). Probably because of the strong dependence of SOC on native 

vegetation intensity and environmental covariables derived from primary DEM terrain analysis 

(including elevation, profile and plan curvature, slope angle, aspect and position).  

Besides, there are secondary terrain attributes that are often of indirect impact on soil property 

prediction. Several studies have used secondary terrain attributes representing hydrological processes 

on soil development. Secondary attributes like upslope contributing area, topographic wetness index 

(TWI), stream power index (SPI) and accumulated flow index (Bishop & Minasny, 2006) may 

strengthen prediction models. The TWI characterizes the flow of water across a landscape. Higher TWI 

values suggest wetter conditions and vice versa with drier conditions. Wetter conditions may suggest 

more erosion and sediment deposition which impacts soil texture. The SPI is used to quantify and 

analyse the energy of flowing water within a river or stream. Therefore this index takes into account 

different factors, including streams discharge and gradient of the stream channel. Accumulated flow 

is influenced by precipitation, runoff, inflow from tributaries and losses due to evaporation and 

infiltration and represents the total amount of water that flows through a particular point over a 

specified period of time.  

Moore et al. (1993) found that both slope and the TWI are the terrain attributes that correlate most 

highly with surface soil attributes. In addition, Li et al. (2020) also subjected the TWI as the most 

influential topographic metric on Soil Organic Carbon density and increasing SOC density often 

correlates with an increase in clay and silt content, thus changing soil texture. Furthermore, the 

saturated hydraulic conductivity (ksat) dictates how water moves within the soil, ultimately influencing 

the dispersion of soil moisture and, consequently, the availability of water for plants (Maier et al., 

2020).  The TPI shows whether a position is higher or lower than its surroundings and can therefore 

be of indirect influence on soil texture due to water flow, erosion, sediment deposition and soil 

development. The TRI values correspond to terrain steepness, higher values means steeper terrain. 

Therefore has an impact on the potential of sediment distribution. 
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1.3 MODELLING METHODS FOR PREDICTING PROPERTIES ON CATCHMENT SCALE 
Digital maps of field data can be developed using statistical models. Statistical models use input or 

training data to predict data. Field data can be used for construction of a model and also for validation 

of the model. There are several models to estimate field data from spatial terrain analysis. For 

example, in the research of Ließ et al., (2012) two methods were applied to estimate terrain 

parameters including kriging and the mean value method (Inverse distance weighing). Kriging is a 

spatial interpolation method used to estimate parameters at unobserved locations and kriging also 

provides an estimate of the uncertainty associated with the prediction. The mean value method is a 

simpler technique relies on a weighted average of the values nearby an unobserved location. This 

method is therefore useful when there is limited amount of data available. For Ließ et al., (2012) the 

mean value method performed best, probably because of the small size of the dataset.  

Kriging can be subdivided into multiple variants. Li et al. (2020) used Ordinary Kriging (OK); analyses 

of spatial relations (field sample data) for estimation of soil organic carbon (SOC). OK is only a valid 

method for soil texture predictions with a large dataset of field measurements (Li et al., 2020). 

However, ordinary kriging does not include covariation when predicting soil variables from terrain 

attributes (Odeh et al., 1995). Hence, to overcome the ordinary kriging limitations regression is often 

combined with kriging (RK) for better performance (Li et al., 2020; Odeh et al., 1995). However, these 

techniques are limited as the prediction could only be based on continuous variables.   

Likewise, predictions of soil properties can also be achieved by machine learning (ML) techniques, for 

example tree-based methods. Multiple tree-based methods are widely used already (Farooq et al., 

2022; Ließ et al., 2012; Pahlavan-Rad et al., 2020; Peters et al., 2007; Pouladi et al., 2019; Veronesi & 

Schillaci, 2019). Regression tree (RT) and Random Forest (RF) are tree-based models that can assign 

particular soil parameters to typical landscape positions. The RT and RF models use machine learning 

techniques and are known as a popular classification algorithm and relatively easy to understand and 

interpret.  

RT models are only based on one decision tree. The one decision tree splits into binary nodes with one 

predictor variable and therefore this tree contains multiple decisions. RT model is relatively simple 

and can be limited in predictive performance and prone to overfitting. RF models are based on 

multiple decision trees. The multiple decision trees reduce overfitting and have stronger 

generalization capacities (Karabadji et al., 2023). A RF model will be less sensitive to the original 

training data as it uses bootstrapping which ensures that the same data will not be used for every tree. 

The random feature selection helps to reduce the correlation between the trees. 

Several studies already used RT models and RF models to predict soil properties. For instance: 

McKenzie & Ryan (1999) used RT model for spatial predictions of soil variables by using digital terrain 

and gamma radiometric survey data as explanatory data. Peters et al. (2007) applied a multiple linear 

regression model and a RF model to predict ecohydrological distributions of groundwater-dependent 

vegetation types in Belgium. Pahlavan-Rad et al., (2020) implemented the multiple linear regression 

and RF models for soil water infiltration in a dry flood plain in eastern Iran. Ließ et al. (2012) used both 

RTs and RF models as statistical models to predict spatial distribution of soil texture from terrain 

parameters. Multiple studies reveal that RF models optimize the outcome compared to other tree-

based models applied in the study (Ließ et al., 2012; Pahlavan-Rad et al., 2020; Peters et al., 2007; 

Prasad et al., 2006). Therefore, in boundaries of this research it is expected that the soil parameter 

prediction based on Random Forest models will have the potential to estimate field parameters based 

on a moderate to large dataset. 
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Furthermore, random forest models are a promising technique to predict soil properties because of 

covariation in field data. In addition, prediction of both nominal as continuous variables can be 

constructed by using RF models. In combination with terrain attributes, hydrologic parameters and 

vegetation inputs the decision trees will be larger and potentially decrease the uncertainty for the 

random forest model. 

The prediction uncertainty is crucial for every statistical modelling method. In the research of 

Takoutsing & Heuvelink (2022) the prediction uncertainty for continuous variables was less accurate 

for machine learning algorithms than for regression kriging. However, in the study of Song et al. (2021) 

the RF model shows a higher accuracy for the prediction of pressure ulcer compared to SVM, ANN and 

RT models. The prediction uncertainty can be determined by using the coefficient of determination 

(R2) and the Root Mean Square Error (RMSE) for RF regression modelling (Chicco et al., 2021). For RF 

classification models, the prediction uncertainty can be determined by determination of the out-of-

bag (OOB) Brier score, AUC and a confusion matrix (Brier, 1950; Farooq et al., 2022; Ishwaran et al., 

2021). 

1.4 RESEARCH GAPS AND AIM OF THIS STUDY 
Climate change is contributing to the upward shifts in vegetation and earlier annual snowmelt in alpine 

regions. As a result, soil texture could potentially change resulting in different hydrological behaviour 

of alpine regions. Important hydrological factors like run-off, infiltration capacity and water uptake by 

root systems impact the local environment. Therefore, to expand knowledge on high-elevation 

catchments it is crucial to apply field measurements and spatial analyses. This study will narrow the 

knowledge gap on high-elevation soil property prediction and discusses multiple ways to estimate 

field parameters on catchment scale based on sampling and UAV imagery. Statistical models will be 

used for prediction of both classified and continuous data. 

This yielded the following main research question and several sub questions: 

- What is the spatial distribution of soil properties and vegetation in the Meretschibach 

catchment?  

- How are these soil properties linked to terrain characteristics?  

- How could field data and UAV imagery be applied to estimate soil properties? 

- What field parameters could be accurately predicted by statistical modelling? 

- What variables have the greatest impact on soil and vegetation predictions on a high elevation 

area? 
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2 STUDY SITE AND METHODS  

2.1 MERETSCHIBACH CATCHMENT, SWITZERLAND 
This study contributes to this research gap by implementing field research in an alpine catchment in 

the Swiss Alps. The Meretschibach catchment is a small catchment of the Rhone river located in the 

southwestern Swiss Alps. The Meretschibach catchment is about 9 km2 and stretches from Bella Tolla 

mountain peak (3025 m) northward toward the Rhone valley (600-700 m). The study area ranges from 

Bella Tolla till past the treeline and has its border at ~1800 m where patches of forest are already 

present representing the upper half of the Meretschibach catchment (Figure 2). Frank et al. (2017) 

modelled debris-flow at the lower part of the Meretschibach catchment. Not any research has been 

done in the upper part of the catchment yet. The upper part of the Meretschibach catchment has a 

yearly mean precipitation rate of 80 mm per month and has a mean maximum temperature of 8° C 

and a minimum temperature of 1° C over the period 2010 till 2022 (Appendix 14). Also, a small glacial 

remnant (Bella Tolla glacier) is present near the top of the study area on a northward facing slope. The 

basins and slopes are covered with older and younger moraines and debris slope deposits; in addition 

a rock glacier covers a large part of the middle basin. Three lakes are present; Oberer Märetschisee, 

Unterer Märetschisee and the smaller lowest two are nameless. There are two anthropogenic factors; 

hydropower dams at all three lakes and grazing by cows; dominant in the morphology and ecosystems 

of the landscape. The lakes are used for generation of hydropower.  

 

Figure 2: The outline of the upper part of the Meretschibach catchment 
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2.2 ACQUISITION OF UAV IMAGERY 

2.2.1 UAV characteristics  

A fixed-wing UAV eBee X (Figure 3) was used for mapping and surveying applications. Similarly, UAV’s 

of the eBee series were widely used in previous studies for mapping of alpine regions (Gaffey & 

Bhardwaj, 2020; Ramsankaran et al., 2021; Revuelto et al., 2021). The eBee X UAV has a wingspan of 

116 cm and a maximum take-off weight of 1.6 kg. A maximum flight time of 40 minutes was considered 

(to remain in the safe zone of battery). The nominal coverage of this UAV is smaller than the 

Meretschibach catchment area. Therefore, multiple flights missions were carried out.  

The UAV’s wind resistance is up to 46 km/h and UAV missions were only performed when there was 

no precipitation. The UAV contains a MicaSense RedEdge-MX sensor measuring the visual as well as 

red edge and near-infrared bands and the UAV has a Ground Sampling Distance (GSD) of 8 cm per 

pixel on 120 m height. The eBee X UAV collects data during a flight using this sensor and a Global 

Navigation Sattilite System (GNSS) receiver. This raw GNSS data was corrected by using data from a 

base station and therefore post-processed after the flights. The Post-Processing Kinematic (PPK) 

technique was used to improve the accuracy of the geospatial data and to georeferenced the imagery. 

The collected GNSS data was PPK corrected by using the Continuous Operating Reference Station 

(CORS) installed in Leuk, Switzerland (HOH2).  

 

Figure 3: Fixed-Wing UAV eBee X (eBee X Mapping UAV - Drones).  

2.2.2 UAV flight missions 

Multiple UAV flights were performed at the Meretschibach catchment in Switzerland. The planning 

and construction of the flight missions was done by using the eMotion 3 software. A simplified 

planning of a flight mission features a take-off, a selected area that could potentially be covered by 

the UAV and an optimal landing spot. The take-off of a UAV eBee X mission was done by holding the 

UAV and releasing it after activation of a flight mission. In contrast, an ideal landing spot has to be 

somewhere on surface. Ideal landing positions are relatively flat areas covered with grass with no 

rocks on the surface. The selection of optimal take-off and landing spots is vital to minimize the risks 

correlated with take-off and landing on steep slopes and debris.  

The aim of the UAV flight missions was to capture the entire upper Meretschibach catchment. 

However, due to UAV malfunction, the resulting area covered by UAV missions was subsequently 

reduced. The UAV experienced a crash after several missions. Consequently, the study area for 

parameter prediction now extents to the region that had been covered by the UAV up to that point, 

see Figure 4. The grid cell size was depicted at a size of 4x4 meters. As a result, the area covered by 

the UAV contains 77136 cells. This results in a study area of approximately 1.23 km2. The study area 
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includes the Unterer Märetschisee and two small lakes near the hydropower company. These lakes 

are clearly visible in the southwest corner on the high resolution orthophoto (10x10 cm) derived from 

the flight missions (Figure 4). Therefore, parameters calculated for these waterbodies are excluded as 

they do not represent valid predictive data. 

 

Figure 4: The completed UAV flights during fieldwork in the Meretschibach catchment, background are RGB bands derived 
from Sentinel-2 and the orthophoto on the right image is high-resolution orthophoto obtained from the UAV missions. 

2.3  ACQUISITION OF GROUND MEASUREMENTS 
Two types of ground measurements were conducted in this research: purckhauer measurements 

and the establishment of plots. The primary focus of this research was achieving a large database of 

specific soil, vegetation and surface parameters. The purckhauer measurements imply fewer 

measured variables of soil properties and vegetation descriptions and exclude hydrological 

parameters. Therefore, these measurements were less time consuming in comparison to the 

establishments of plots. 

The plots involve more extensive measurements, providing detailed descriptions of vegetation, soil 

properties (horizon, color, organic matter) and hydrologic measurements at fewer locations divided 

in different vegetation belts. The plots were established for research in microtopography, hydrology, 

vegetation and soil properties in different vegetation belts. Van de Lisdonk (2023) studied the 

relation between hydraulic and physical properties of alpine soils concerning terrain properties and 

vegetation at these plot locations.  

For the scope of this research, further elaboration of plot measurements was exclusively focused on 

plot location parameters that were also measured at purckhauer locations. 
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2.3.1 Purckhauer measurements 

After completion of the UAV missions the outline of the study area was clear. Several parameters were 

measured in boundaries of this study area. For instance: soil texture, soil depth, organic matter depth 

and rock fragments in soil. A purckhauer tool was employed to measure soil depth, depth of organic 

matter and to determine the soil texture. The purckhauer has a length of 101 cm which in turn will be 

the minimum soil depth when this depth is reached at a certain point. The purckhauer had the shape 

of a large pin and was driven into the ground using a sledge hammer (Figure 5A & C). A mechanical 

extraction tool is necessary to allow easy extraction at difficult environments (Figure 5B). Alpine soils 

often contain rock fragments and a purckhauer is recommended for alpine soil measurements as it 

has the potential to penetrate small pieces of rock.  

 

Figure 5: (A) is purckhauer with core, (B) is mechanical extraction tool and (C) is a large synthetic hammer. Image adapted 
from Skaling (2008). 

The purckhauer (Figure 5A) is smashed into the soil until a certain depth is reached which is noted as 

the soil depth. A tape is used on the purckhauer to indicate soil depth while extracting the purckhauer. 

The purckhauer features a core (Figure 5A) where soil particles might adhere, allowing for the 

measurement of both soil texture and the presence and depth of organic layers (if present). Soil 

texture was determined in the field using a standardized soil determination flowchart (Appendix 1). 

The determined soil texture consist of different sand, silt and clay percentages. The proportions could 

vary within a classified soil texture as visible in the U.S. Department of Agriculture (USDA) textural 

triangle (Figure 6). To tackle this variation a strategy was used based the standardized flowchart 

(Appendix 1). For instance, if a sandy clay felt smoother, it might contain a higher clay content 

compared to a coarser sandy clay. As a result, all percentages of sand, silt and clay were also recorded 

for each purckhauer measurement. 

Furthermore,  vegetation type was observed at each purckhauer location. Vegetation types were 

described within various vegetation classes and within these classes specific species were identified 

and recorded. The specific species within a class include different species of tree, shrub, grass and 

herbs. However, for simplification all specific species are classified and in boundaries of this research 
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only the classified vegetation was treated. The vegetation classes included: Forest, Shrubs, Grass and 

Bare areas (vegetational cover below 15% (Anderson, 1976)). Since purckhauer measurements could 

not be performed in areas with bare soil, descriptions of bare soil areas were not included in the 

purckhauer database. 

In addition, other surface properties as rock surface cover, slope and aspect were determined at all 

locations. Rock surface cover was estimated on a 1 by 1 meter scale around the hole created by the 

extraction of the purckhauer. An estimation diagram was used based on rock size and percentages for 

in-field estimation (Appendix 2). Slope and aspect were both measured by using a slope measurement 

tool and a compass (Appendix 3).   

 

 

Figure 6: USDA textural triangle including percentages of sand, silt and clay for 12 different textural classes (Soil Survey 
Manual, 2017) 

2.3.2 Plot construction  

The measurements at plots consist of surface characteristics, vegetation descriptions, soil profile 

descriptions (up to 30 cm) and hydrological parameters.  

Rock cover percentage and vegetation were described at each plot. Rock cover percentage was 

estimated by using a rock cover estimation diagram of rock size and percentages (Appendix 2). 

Vegetation descriptions classification was done by identifying different species in the field. A plot 

vegetation description comprises of both plant recognition and classification of dominant vegetation 

present (with aerial photographs as back-up). In support of on-site vegetation descriptions and to 

enhance data reliability, photographs were taken at all plot locations. In this research, rock cover 

percentage and vegetation class were both applied in statistical modelling.  
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If possible, soil profile and soil moisture was measured and described at three different depths (e.g. 

5, 10, 30 cm). This was done by excavation of holes near the plot. Each plot comprises a general profile 

description. A general profile description of e.g. the upper 30 cm (if possible) was made in pits close 

to the vegetation plot, describing horizons, texture, colour and depth. Soil texture was estimated 

based on the estimation protocol to classify soil texture in-field (Appendix 1). Undisturbed soil samples 

were taken from the shallow soil in proximity to the plots (10 cm depth, 3 per plot) as well as for 3 

depths for those with a moisture profile for the soil hydraulic properties.  

The soil samples taken at the plots were brought back to the University of Utrecht for further analysis. 

Here the ksat, infiltration capacity and SOM will be measured using various methods (van de Lisdonk, 

2023). In boundaries of this research, only the measured ksat values were used as a potential 

hydrological prediction parameter. The ksat measurements in the UU Lab were performed using a 

permeameter and elaborately discussed by van de Lisdonk (2023). The Ksat holds significance as it 

governs surface infiltration rates and the lateral and vertical movement of water within the soil. An 

increase in vegetation cover is expected to increase microporosity and thus increase Ksat (Maier et 

al., 2020).  

Van de Lisdonk (2023) determined ksat by using Darcy’s Law (Hendriks, 2010). Therefore, 

determination of the pressure head (dh) and travel distance (dx) was necessary. The water of volume 

passing through the sample in a specific timeframe was quantified. The pressure head equals the 

vertical distance between the air inlet of the compact water cylinder and the top of the soil sample. 

The travel distance corresponds to the height of the sample. By weighing the buckets collecting water 

before and after each time span and recording the duration, the water flux (Q in m3/day) can be 

computed. For Darcy’s Law, Q must be divided by the surface area of the sample which is 20 cm2.  

𝑄 =  −𝐴 𝑘𝑠𝑎𝑡  
𝑑ℎ

𝑑𝑥
       (1) 

Eq. (1) Darcy’s Law (Hendriks, 2010), with discharge Q in m3/day, surface area of soil sample A in m2, 

saturated hydraulic conductivity Ksat in m/day, pressure head dh in cm and travel distance dx in cm.  

The discussion of measured plot parameters was mainly focused on the attributes that were used in 

this study and summarized in Table 1. An elaborate description of plot construction and 

measurements was executed in the research of van de Lisdonk (2023). The amount of data of in-situ 

ksat data is relatively small as purckhauer measurements excluded measurements of ksat values. 

Table 1. Attributes derived from plot measurements employed in this study 

 

2.3.3 Distribution of ground measurements 

Primarily to conducting fieldwork at the Meretschibach catchment. A RF model classified 5 vegetation 

classes (forest, shrubs, grass, pioneer and bare soil areas) by using Sentinel-2  imagery as training data 

(Appendix 4). Within these 5 classes, 8 plots per class had to be distributed randomly across the upper 

Meretschibach catchment. This was done by using random stratified sampling of locations within each 

class. In contrast to purckhauer measurements, the plot construction included bare soil descriptions 

and analyses.  

Type of measurement Characteristic Technique 

Vegetation Vegetation classes and description  Photographs / field 

Soil Profile description (soil texture, rock 
fragments and depth) 

Field 

Hydrology Ksat UU Lab 
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All measurement locations, both plots and purckhauers, were surveyed using an Emlid Reach RS. This 

device is a Global Navigation Satellite System (GNSS) and is used for Real Time Kinematic (RTK) and 

Post Processed Kinematic (PPK) surveying and geospatial software for data collection and processing. 

The Emlid tracks signals from GPS, GLONASS, BeiDou, QZSS and Galileo and is centimetre-accurate. 

The reference station used in this research was a Continuous Operating Reference Station (CORS) 

installed in Leuk, Switzerland (HOH2). All locations were georeferenced by post-processing the Emlid 

data with the CORS.  

As a result, a total of 42 plots were established and 111 purckhauer measurements were assessed. 

The research on plot parameters encompasses the entire upper Meretschibach catchment (van de 

Lisdonk, 2023). As a consequence, not all plot locations lay within the area covered by the UAV 

missions. Hence, 11 purckhauer data points and 19 plot data points were excluded from this research 

since the location of these measurements were beyond the outline of the study area. As a result, a 

total of 23 plots and 100 purckhauer measurements were used for statistical modelling. The 

distribution of plot and purckhauer data within the study area is illustrated in Figure 7. 

 

Figure 7: Spatial distribution of field measurements in boundaries of the area captured by UAV missions, on DEM elevation 
raster (25 x 25 cm). 
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2.4  STATISTICAL MODELLING 

2.4.1 Random Forest model 

Random Forest (RF) models were used as statistical models in this research. Random Forest creates 

an ensemble of decision trees, each trained on a random subset of training data, a process known as 

bootstrap aggregating (Ali et al., 2012). As a result, different trees were created with multiple 

bootstrap samples which ensures diversity among the trees. A tree initiates from the roots and is 

build-up of nodes and leaf nodes or terminals (Appendix 5). A random subset of training data features 

was considered for each tree at each node which in turn decorrelates the trees. Hence, RF models are 

less sensitive to outlier data and are prone to overfitting due to bootstrap aggregating (Ali et al., 2012). 

Each tree was trained on a subset of training data. Therefore, some sample data was not used in the 

RF model, also known as out-of-bag (OOB) sample data (Ishwaran et al., 2021). The OOB sample data 

was used for predicting accuracy of RF models and generated automatically by the randomForest() 

package in R.  

In addition, prediction of both nominal as continuous variables could be constructed by using RF 

models. Furthermore, variable importance and accuracy were generated automatically for both 

continuous and nominal data. Random Forest (RF) modelling was considered as a promising technique 

to predict soil properties (Ließ et al., 2012; Pahlavan-Rad et al., 2020; Peters et al., 2007; Prasad et al., 

2006). Therefore, statistical modelling was generated by Random Forest modelling in this research.  

2.4.2 Random forest training data 

The decision trees of the RF models were build-up of different nodes representing a random subset 

of training data. The training data consists of  attributes derived from UAV, Sentinel-2 and Swiss 

ALTI3D terrain data (Table 2).  

The UAV data includes high resolution ortho imagery and DEM terrain indices. Ortho imagery was 

already sufficient to build a reasonable model for SOC prediction (Yang et al., 2021). DEM terrain 

attributes as for example slope correlated most highly with surface soil attributes in research of Moore 

et al. (1993). In addition, it is important to consider statistical differences of pixel values within a 

prediction grid cell. For UAV data, pixel size was smaller than the grid cell size (Figure 8).  

A gray-level co-occurance matrix (GLCM) is a statistical method used to describe spatial relations 

between pixels in a greyscale image. A GLCM can be used to extract various texture features from UAV 

imagery. This variation in image texture is expressed in GLCM mean value, variance, homogeneity, 

contrast, dissimilarity, entropy and second moment (Özkan et al., 2023). All features of GLCM were 

considered in this study as statistical operators in prediction and to analyse variable importance of 

each feature. Hence, gray-level co-occurance matrix (GLCM) attributes were added to the training 

data (Table 2).  

The Sentinel-2 data includes difference in NDVI from 2019 to 2022 (for the months May, June, July 

and August), snow persistence and day of the year snow free (Table 2). Monthly NDVI data from 2019 

to 2022 for these months could reveal patterns of growth and NDVI intensity at different elevations 

which could be closely correlated to vegetation patterns in the study area. Also, day of the year snow 

free correlates with a value for each pixel that is closely related to the start of the growing season. 

Snow persistence correlates with a time period for the presence of snow in the study area, indicating 

for example no vegetation growth during that period. Therefore, these Sentinel-2 data has been added 

to the training data as all attributes could be of impact on vegetation, hydrology and soil texture (Table 

2).   
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SwissALTI3D data includes terrain attributes (Table 2). These terrain attributes were derived from 

SwissALTI3D as this data covers the entire Meretschibach catchment. Therefore attributes dependent 

on flow accumulation had to be derived from datasets that covered the entire upper Meretschibach 

catchment. Hence, UAV data could not be used to calculate these secondary terrain attributes as it 

covers just a segment of the catchment. The attributes derived from SwissALTI3D data have a direct 

or indirect impact on soil texture and hydrology (Bishop & Minasny, 2006; Li et al., 2020; Maier et al., 

2020; Moore et al., 1993) and were hence considered as training data.  

Table 2: Training data for generating decision trees of random forest models for predicting soil properties and vegetation. 

Source Training data 

DEM (25 x 25 cm), 
eBee UAV missions 

Mean & standard deviation: 
- Slope 
- Aspect  
- Elevation  

Ortho (10 x 10 cm), 
eBee UAV missions 

Bands, mean & standard deviation:  
- Red 
- Blue 
- Green 
- Re 
- NIR 

Gray-Level Co-occurrence Matrix (GLCM) 
- Mean 
- Variance 
- Homogeneity 
- Contrast 
- Dissimilarity 
- Entropy 
- Second moment 

Sentinel-2 (10 x 10 m) - Difference in NDVI for monthly data over 2019-2022 

• May 

• June 

• July 

• August 
- Day of the Year Snow Free 
- Snow Persistence. 

SwissALTI3D (2 x 2 m) - Flow accumulation 
- Terrain Wetness Index (TWI) 
- Stream Power Index (SPI) 
- Length Slope Factor (LS)  
- Terrain Ruggedness Index (TRI) 
- Topographic position index (TPI) 
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2.4.3 Random Forest model prediction 

The random forest model was derived from the randomForest package in R (Breiman et al., 2022). The 

trained RF model was applied to a regular 4 by 4 m grid contained by the UAV, Sentinel-2 and Swiss 

ALTI3D terrain data (Figure 8). A total of 77136 grid cells conceal the area covered by the UAV missions. 

As a result, 77136 grid cells were predicted by RF models for both continuous and ordinal data. 

Besides, soil textural classes were assigned to three fractions of clay, silt and sand. The sum of the 

fractions should be equal to 100% to assign a soil textural class (Figure 6). These three fractions were 

predicted by three independent RF regression models. Hence, the three fractions had to be corrected 

to sum up to a total of 100%. This was done by scaling the percentages while preserving the relative 

proportions of the individual values. After this correction, soil textural classes were assigned in R based 

on all fractions of sand, silt and clay of the soil textural triangle of Figure 6. As a result, an indirect 

classified soil textural result based on RF regression model predictions (Table 3). 

Table 3: Overview of field variables predicted by RF modelling 

Predicted data type Variable obtained during fieldwork Unit 

Continuous  - Sand  
- Silt  
- Clay  

o Soil textural classification (USDA) 
- Rock cover  
- Soil depth 
- Rock fragments  
- Ksat on surface 
- Ksat on 10 cm depth  

% 
% 
% 
 
% 
cm 
% 
m/day 
m/day 

Classified  - Soil texture 
- Vegetation  

12 classes 
4 classes 
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Figure 8: Flowchart delineating the steps for predicting parameters on Meretschibach catchment scale. Left vertical segment 
of the chart is comprised of yellow boxes that describe the sequential stages of the process, while the right segment offers a 
visual representation of the methods. 
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2.5 UNCERTAINTY PREDICTION IN DIFFERENT MODELS 

2.5.1 Variable importance (VIMP) of RF models 

Variable importance (VIMP) is a measure that quantifies the contribution of each feature to the 

accuracy of the model. The accuracy was measured on the out-of-bag (OOB) instances before and 

after permuting the values of a specific variable. The VIMP was based on the decrease in model 

accuracy when the values of a particular variable were randomly permuted (Ishwaran et al., 2021). 

Hence, a high decrease in accuracy indicated a more important variable. Thus, variables with higher 

importance values were of greater impact on the overall predictive performance of the model.  

The RF models were predicted by different variables. Some variables may be more important 

compared to other prediction variables to predict a certain parameter. The findings from Fox et al. 

(2017) study propose that variable predictors with moderate to low importance could be incorporated 

into the model with minimal impact on the predicted probabilities. It will be investigated whether the 

prediction accuracy could be enhanced by creating different scenarios. After determination of VIMP 

in scenario 1, two other scenarios were tested to check accuracy differences for prediction of 

continuous data. 

- Scenario 1 includes all training data for RF model prediction.  

- Scenario 2 includes the top 10 most important variables of scenario 1 as training data for RF 

model prediction.  

- Scenario 3 excludes the top 10 least important variables of scenario 1 as training data for RF 

model prediction.  

2.5.2 Uncertainty prediction for random forest classification 

For validation of classification by a random forest model, a confusion matrix is generated by the 

randomforest() package, which describes the accuracy using a portion of the data that is not used for 

prediction also known as out-of-bag (OOB) samples.  

(𝑂𝑂𝐵) 𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4) 

In Eq. (4) (Maria Navin & Pankaja, 2016), 𝑇𝑃: true positive, 𝑇𝑁: true negative, 𝐹𝑃 = false positive and 

𝐹𝑁 = false negative and Table 3 reveals the condition for each variable. 

Table 4: Confusion matrix (Maria Navin & Pankaja, 2016)  

 

In addition, the examination of other metrics to assess the performance of the RF models include the 

(OOB) Area Under Curve (AUC) and the (OOB) Brier score (Brier, 1950; Holmes et al., 2021; Ishwaran 

et al., 2021), since the randomforest() package in R incorporates the computation of these values. 

The AUC measured the area under the Receiver Operating Characteristic (ROC) curve and is 

independent of threshold selection for classification and a useful method for evaluating the 

classification accuracy of a model (Fawcett, 2006). An example of a ROC curve was attached for 

clarification of an area under a ROC curve (Appendix 6). The AUC of a classifier is equivalent to the 
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probability that a classifier, when assigning classes, will assign a higher probability to a randomly 

chosen positive instance than to a randomly chosen negative instance (Fawcett, 2006).  

The positive instance corresponded to the class of interest and the negative instance correlates with 

the classes that should not be assigned to this instance. Therefore, a higher AUC indicates that the 

classifier is more likely to assign higher predicted probabilities to classes of interest than to the wrong 

class. An AUC of 0.5 indicates classifying at random whereas 1.0 indicates perfect classification. The 

higher the AUC the better the classifier (Holmes et al., 2021).  

Furthermore, the Brier score is a useful metric for assessing the probabilistic predictions. However, in 

comparison to the AUC, the Brier score did not consider the specific decision threshold for 

classification.  

(𝑂𝑂𝐵) 𝐵𝑟𝑖𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =  
1

𝑁
∑ (𝑝𝑖 − 𝑎𝑖)2𝑁

𝑖=1      (5) 

In Eq. (5) 𝑁: number of instances, 𝑝: the predicted probability for instance i and 𝑎: is the actual 

outcome for instance i (Brier, 1950). The Brier Score is a measure of accuracy of probabilistic 

predictions ranging from 0 to 1. A perfect classifier has a Brier Score of 0.  

2.5.3 Uncertainty prediction for random forest regression 

The accuracy of predicted RF regression models was determined by calculating the out-of-bag (OOB) 

coefficient of determination (R2) and the Root Mean Square Error (RMSE) for RF regression. A very low 

coefficient of determination can be observed in a completely linear model (RMSE close to 1), and 

conversely, a high R2 can occur in the presence of a non-linear model (RMSE close to 0) (Chicco et al., 

2021).  

(𝑂𝑂𝐵) 𝑅2 = 1 −  
∑ (𝐹𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝐹𝑖−𝐹̅)2𝑛
𝑖=1

      (2) 

In Eq. (2), 𝐹𝑖: the value measured in the field, 𝑃𝑖: the predicted value from the RF model, 𝐹̅: the 

measured average of field values and n: the number of observations. The coefficient of determination 

can be understood as the fraction of the variance in the dependent variable that can be predicted by 

the independent variables (Chicco et al., 2021). The coefficient of determination is optimal for value 

1 and could mathematically have a negative infinite value representing the worst coefficient. Hence, 

values close to 0 suggest poor predictive performance. Negative values suggest that the model’s 

prediction was worse than the mean of the response variable. Therefore, negative values suggest that 

the model was not capturing the patterns in data effectively.  

Moreover, to further evaluate the models performance an additional validation technique was 

performed. The RMSE was calculated separately from the generated (OOB) R-squared by the 

randomforest() package. Then, two third of the field data was used to train the model. As a result, the 

remaining one third was predicted by this RF model. The one third that was not used for prediction, 

could now be cross-validated with the predicted one third to calculate the RMSE.   

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝐹𝑖 − 𝑃𝑖)2𝑛

𝑖=1      (3) 

In Eq. (3), 𝐹𝑖: the value measured in the field, 𝑃𝑖: the predicted value from the RF model and 𝑛 = the 

number of observations. To obtain more stable results and better estimations for the RMSE the same 

calculation was repeated a 100 times for each dataset. The RMSE has value 0 if the model fits the data 

perfectly and could mathematically have an infinite positive value for the worst fit of the model. 
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3 RESULTS 

3.1 IN-SITU GROUND MEASUREMENTS 
The soil textural classes and vegetation types classified by purckhauer measurements and 

establishment of plots in the study area were plotted in Figure 9. Soil textures were determined in 10 

different soil texture classes (Figure 9a). The most dominant soil texture classes acquired in the high 

alpine study area comprised high sand fractions like sandy loam, sandy clay loam and loamy sand (75% 

of soil textural findings). The vegetation classes in the study area consist of 1 bare soil area, 67 shrubs, 

28 grass and 19 forest classes (Figure 9b). 

 

Figure 9: The amount of different soil textural classes (a) and vegetation classes (b) determined by in-situ field measurements. 

The relation between vegetation and soil texture was plotted in Figure 10. Forest areas correlate with  

sandy soil textures (sandy loam and sandy clay loam, sand and loamy sand). Sandy clay and clay were 

only measured at locations where shrubs were the dominant species. Silty clay loam, silty clay, sandy 

loam, sandy clay loam, sand, loamy sand, loam and clay loam were all determined at both grass and 

shrubs.  

 

Figure 10: A stacked bar plot visualizing the relation between soil textural classes and vegetation classes. 
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3.1.1 Relations between soil textures and statistical variables 

Figure 11 illustrates soil textural relations between important parameters derived from the field data. 

Figure 11a is a boxplot of soil texture versus elevation in meters. Loam and silty clay are only classified 

at lower elevations (roughly <2300 m) compared to the other soil textural classes.  

The soil texture-slope relation is plotted in Figure 11b. Loamy sand, sandy loam and sandy clay loam 

were determined on the steepest slopes > 45° of the study area. Sand was measured at moderate 

slopes ranging from 10° till approximately 35°.  Sandy clay, clay, clay loam, silty clay and silty clay loam 

were determined at slopes smaller than 25°. Silty clay and silty clay loam were both determined at 

flattest slopes < 15°.  

Figure 11c shows the relation between the soil texture and the TWI. The average TWI value for clay 

loam, loam, loamy sand, sand, sandy clay, sandy clay loam, sandy loam and silty clay were all between 

2 and 6. For silty clay and clay the TWI was measured at ~6.5. Sitly clay loam had the highest TWI value 

> 12 and the lower TWI value of silty clay loam was ~5.0.   

Figure 11d shows the relation between soil depth and soil texture. The sandy soil textures (sand, sandy 

loam, sandy clay loam, loamy sand) were present at locations with soil depths deeper than 60 cm. 

Clay, clay loam, loam, sandy clay, silty clay and silty clay loam all had a less deeper soil varying from 

10 cm depth till 55 cm depth.  

Figure 11e shows the soil texture versus the rock cover percentage at the surface. Sandy loam includes 

the highest rock cover percentage which represents a bare soil area > 85%. Clay was also determined 

at a location with a high rock cover percentage of 60%. Sand, sandy clay loam and sandy loam all vary 

from 0% up to 60% rock cover. Clay loam and loamy sand range from 0% to 40%. Loam, sandy clay and 

silty clay loam were rock cover percentages only determined below 10%.  

Figure 11f visualizes the rock fragments versus the soil texture. The percentages of rock fragments 

were relatively high (some values higher than 40%) for loamy sand, sandy clay, sandy clay loam and 

sandy loam. Loam, silty clay and silty clay loam almost excluded rock fragments in the soil as rock 

fragment percentages were < 5%.  
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Figure 11: (a) shows the elevation in meters related to the soil texture determined in field, (b) shows mean slope vs soil textural 
class and (c) shows calculated TWI vs soil textural class. (a), (b) and (c) are all related to UAV derived parameters. (d) shows 
the soil textural class versus the soil depth (m), (e) soil texture vs soil depth and (f) soil texture vs rock fragments. (d), (e) and 
(f) are all parameters measured or estimated in the field.  
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3.1.2 Relations between vegetation and statistical variables 

Figure 12a shows a boxplot of vegetation type vs elevation. The plot showed that the forest class is 

located on lower elevations (< 2300 m). Different shrubs were growing on all elevation levels in 

boundaries of this study area (2100 m till 2550 m) with a few outliers below 2100 m. The alpine 

grasslands were situated at higher elevations (>2200 m till ~2520 m). The bare class was measured at 

an elevation of 2388 m. 

Figure 12b reveals the steepness of the slopes compared to the vegetation type. The slope was 

relatively high for the forest classes (32° < gradient < 65° ). Shrubs were growing on slopes varying 

from 10° degrees to 40°. The slope was relatively low (30° < gradient < 4°) for locations dominated by 

grass. The bare class had a slope of ~21°.  

Figure 12c shows the boxplot of vegetation type versus topographic wetness index (TWI), the TWI 

values for grass, shrubs and forest show similar spreads (2 < TWI < 9) with forest reaching the highest 

TWI values up to ~11. All classes had the median TWI value between 4 and 6. The bare plot had a TWI 

of 4.8.  

Figure 12d reveals the boxplot of vegetation versus soil depth. Forests had the deepest soils according 

to the box plot ranging from 20 cm up to a minimal depth of 101 cm (max. length purckhauer). 

Whereas grass and shrubs had smaller soil depths ranging from ~15 cm to ~68 cm for grass and ~10 

cm to ~60 cm for shrubs. The bare class had a soil depth of 39 cm.  

Figure 12e shows the rock cover percentage for each vegetation type. As expected, the bare class rock 

cover percentage was 85%. For forest the rock cover percentage was relatively low ranging from 0% 

to 20%. The grass and shrubs had a similar range in rock cover percentages from 0% to 60%. Grass had 

the highest median (25%), shrubs had a moderate median (15%) and forest had the lowest median 

(5%). 

Figure 12f shows the boxplot relation between rock fragments in the soil versus the vegetation type. 

For shrubs and forests the measured rock fragments percentages were quite similar (0% < Rock 

fragments < 60 %). For grass the rock fragments were ranging from 0% to 70%. The rock fragments in 

the soil determined at the bare plot was equal to 10%.  
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Figure 12: a, b and c represent boxplots of vegetation type versus UAV derived parameters whereas d, e and f boxplots of 
vegetation type versus in situ measurements 
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3.2 RF MODEL PREDICTION MAPS  
The RF classification model and RF regression model predictions were visualized in different maps. All 

results of RF models were based on scenario 1 and therefore including all training data in the RF 

models. Water bodies were excluded as primarily land parameters were predicted. Therefore, all maps 

include 3 white areas in the south eastern corner of the UAV flight area. These areas were assigned 

NoData values as they represent the Unter Meretschisee and the two small lakes near the hydropower 

company. All maps shown in section 3.2 contain a hill shade layer (2 x 2 m) derived from SwissALTI3D 

data. The hill shade layer enhances visual appeal of the maps and provides valuable information to 

better understand the topography, including slopes and elevations of the landscape. 

3.2.1 Maps classified using Random Forest 

The soil texture and vegetation were predicted using RF models for classification prediction. Both 

maps were visualized in Figure 13.  

The vegetation map (Figure 13a) represents 4 different classes: bare soil, grass, shrubs and forest. The 

bare soil class is scarcely present and only evident in the southwestern part on the talus slopes. The 

grass was classified mainly in the southeastern, the relatively higher part of the study area. The shrub 

class was the most dominant class predicted and covered a large part of the area. The forest class 

covered the northern lower part of the area. Despite a few predicted forest classes south of the 

Unterer Märetschisee.  

The RF classification model for soil texture based the prediction on the soil textures determined in the 

field (Figure 9a). Figure 13b shows the predicted distribution of soil textures throughout the study 

area. The predicted classes that were highly present in the soil texture maps are sandy loam, sandy 

clay loam, loamy sand and sand. The predicted classes that were barely present are clay, clay loam, 

loam and silty clay.  
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Figure 13: RF classification model predicted vegetation map (a) and soil texture map (b).  

3.2.2 Regression maps generated by using Random Forest 

The first RF regression models were based on the soil textural field data. Figure 14 includes sand, silt 

and clay percentages and a soil textural classification.  

Figure 14a shows the sand percentages predicted throughout the study area. The predicted sand 

percentages range from 34% to 75%. Hence, based on the sand percentages soil textures with higher 

sand percentages (>75%) like sand or lower sand percentages (<34%) like silt, silty clay and silty clay 

loam were excluded in the RF regression model prediction (Figure 6). Sand percentages were high in 

the northern part of the study area and relatively low near the three lakes in the south-eastern part. 

Figure 14b shows the silt percentages predicted in the study area. The predicted silt percentages range 

from 10% to 40%. Likewise, soil textures with higher silt percentages (>40%) and lower silt percentages 

(<10%) were not predicted. Therefore, silt loam was also not predicted in addition to the soil textural 

classes already excluded by sand percentage prediction (Figure 6). The silt percentages were relatively 

high near the three lakes in the south-eastern part and lower values were present across the entire 

study area (Figure 14b). Moderate silt percentages were mainly visual at the talus slopes in the south-

eastern corner of the study area. 

Figure 14c shows the clay percentages predicted across the study area. The predicted clay percentages 

range from 11% up to 31%. Similarly, soil textural classes with higher clay percentages (> 31%) and 

lower clay percentages (<11%) were not predicted. Thus, based on the USDA textural triangle (Figure 

6), sandy clay and clay were not predicted as soil textural classes in addition to the other excluded 

classes. The clay percentages were relatively low in the northern part, moderate in the south-western 

part and highest near the three lakes in the south-eastern part of the study area. 
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Figure 14d shows a classified soil textural map. The combination of sand, silt and clay percentages 

represent a certain soil texture. This classification was based on the USDA textural triangle (Figure 6). 

The most dominant soil texture in the study area was predicted as sandy loam and sandy clay loam 

(Figure 14d). In addition, loam and clay loam were predicted near the Unter Märetschisee. Loamy sand 

was mainly predicted in the northern forestry part of the study area.   
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Figure 14: (a) sand, (b) silt and (c) clay show predicted soil textural percentages for the study area. Map (d) shows the classified 
soil texture by combining map (a), (b) and (c). Map (d) was derived from the USDA textural triangle (Soil Survey Manual, 
2017).  
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Likewise, three predicted maps were shown in Figure 15 displaying rock cover percentage, soil depth 

and percentage of rock fragments in soil.  

Figure 15a shows the rock cover percentages were higher in the southern part of the study area and 

lower in the northern part of the study area. Rock cover percentage ranges from 3% to 75%. Highest 

values were visible on talus slopes in the south-eastern part. Also, high rock cover percentages were 

visible in segments in the upper south-western part. Rocks and vegetated areas could be easily 

identified on the high resolution ortho photo (Figure 4). Similar patterns visible in the ortho photo and 

the rock cover percentage map were noticeable throughout the study area. Figure 15a also shows that 

the rock cover percentage were mostly visible in the green colour (3% – 15%) or red colour (63% – 

75%).   

Figure 15b reveals a map of the predicted soil depth in the study area. The predicted soil depth ranges 

from 25 cm till 70 cm. The soil depth was deepest is the northern part which correlates with forested 

areas. The southern part west of the Upper Märetschisee reveals the shallowest soil depths where 

grass is mostly predicted.  

Figure 15c shows a predicted map of rock fragments in the soil. The predicted rock fragment 

percentages in soil range from 8% till 44%. Higher rock fragments were predicted on talus slopes, on 

higher rock cover percentages and in the forest. Therefore, in contrast with rock cover percentages, 

rock fragments were found in deeper soils and where vegetation is classified as forest.  
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Figure 15: Map (a) shows rock cover prediction by the random forest model. Map (b) shows soil depth and map (c) contains 
the percentage of rock fragments in the soil.  
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RF model prediction of ksat 

The resulting ksat maps were displayed in Figure 16. Figure 16a shows the ksat surface values ranging 

from 14 m/day up to 54 m/day. The ksat surface values were higher at locations with high rock cover 

percentages and at the northern part of the study area were forest was located. Figure 16b shows the 

ksat on 10 cm revealing a wider range from 4 m/day up to 92 m/day. The ksat on 10 cm map shows 

higher values on the talus slopes in the southeastern corner of the study area and higher values in the 

northern part.  

 

Figure 16: Maps of predicted values for saturated hydraulic conductivity (ksat)  on surface (a) and on 10 cm depth (b).  
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3.3 RANDOM FOREST VARIABLE IMPORTANCE AND MODEL ACCURACY 

3.3.1 Variable importance of RF models 

The variable importance (VIMP) is a measure that quantifies the contribution of each feature to the 

accuracy of the RF model. The top 10 most important variables of scenario 1 were plotted for the RF 

regression models (Appendix 8). As a result, the most important variables for scenario 1 were 

summarized below.  

VIMP for RF classification models:  

- Prediction of soil textural classes: LSF and SPI, feature derived from SWISSALTI 3D data 

o In addition, elevation, slope and green spectral bands from UAV data.  

- Prediction of vegetation: slope and elevation, derived from UAV data 

o Spectral bands, day of the year snow free, difference in NDVI of July, June, August, 

May. Features from UAV data and Sentinel-2 data. 

VIMP for RF regression models: 

- Sand and silt prediction: mean slope and the standard deviation in elevation, features from 

UAV data.  

- Clay prediction: terrain ruggedness index (TRI) and the Length Slope factor (LSF), features from 

SWISSALTI 3D data.  

o The important variables for sand, silt and clay prediction were closely related to 

erosional variables. Features of the SWISSALTI 3D data like TRI, LSF, TWI and SPI 

were all important for prediction of soil textural percentages (Appendix 8).  

- Rock cover percentage: the mean values of the blue band and the difference in NDVI for the 

month June, features from UAV and Sentinel-2 data respectively.  

o The important variables for rock cover percentage prediction were dominated by 

visual band features (Blue, Green, Red, NIR) from the UAV data. In addition, snow 

persistence was also an important predictor for mapping rock cover percentage of the 

study area.   

- Soil depth prediction: TPI and the standard deviation in elevation, features from the UAV and 

SWISSALTI 3D data.  

o The prediction of soil depth was dominantly predicted by Topographic Position Index 

(TPI), elevation, snow persistence (A3) and day of the year snow free. Additionally, 

the spectral bands (Blue, Green and NIR) and the mean slope were important 

features that contributed to the accuracy of the model.  

- Rock fragment percentage in soil: NIR mean and standard deviation in Re band, features from 

UAV data. 

o The important variables for predicting rock fragment percentages were the mean of 

the near infrared (Nir) band, the green spectral band and the standard deviation of 

the red edge (Re). In addition, aspect parameters and snow persistence were also 

important features.  

In further analyses of accuracies of the different RF regression models different scenarios were 

analysed. The RF regression model prediction of scenario 2 included the features present in the top 

10 of most important variables of scenario 1 (Appendix 8) and excludes all other features as training 

data. The RF regression model prediction of scenario 3 excluded the top 10 least important variables 

of scenario 1 (Appendix 9).  
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3.3.2 RF classification model performance 

The accuracy of both soil texture and vegetation was determined using a confusion matrix. The 

misclassification rate of soil texture was 61.1% and the vegetation map had a misclassification rate of 

19.5%.  The correlating confusing matrix for vegetation and soil texture was shown in Figure 17 and 

Appendix 13 respectively.  

The bare soil areas were incorrectly classified as 100% was of the bare classes was misclassified. Only 

one forest class was misclassified resulting in a prediction accuracy of approximately 95% for forest. 

15 grass classes were wrongly predicted resulting in a accuracy of 46% correct predicted grass classes. 

The shrubs had a high percentage of approximately 95% of classes that were accurately predicted. A 

misclassification rate  of 19.5% indicated that 99 classes were correctly predicted and only 24 classes 

were incorrectly predicted. 

Confusion matrix: 
 
          predicted 
  observed Bare Forest Grass Shrubs class.error 
    Bare      0      0     1      3      1.0000 
    Forest    0     18     0      1      0.0526 
    Grass     1      0    13     14      0.5357 
    Shrubs    1      2     1     68      0.0556 
 
      (OOB) Misclassification rate: 0.195122 
Figure 17: Confusion matrix of observed vegetation classes vs predicted vegetation classes 

The confusion matrix of soil texture (Appendix 13) revealed highest percentage of correctly classified 

sandy loam classes of approximately 79%. Followed by sand with 40% correctly classified and sandy 

clay loam had 24% correctly classified. revealed misclassification rate of 100% for clay, clay loam, 

loam, loamy sand, sandy clay, silty clay and silty clay loam.  

The errors of both soil texture and vegetation were summarized in Table 5. The Brier scores of both 

vegetation and soil texture were relatively low indicating low probabilistic predictions. The AUC for 

vegetation is 0.931 and for soil texture just above 0.5. Therefore, AUC for vegetation indicates almost 

perfect classification (1.0) and for soil texture the (OOB) AUC reveals that classifying was almost done 

at random (0.5).  

The RF model for classification of vegetation had the highest overall accuracy. A low brier score close 

to 0. The closer the AUC is to 1.0, the better the classifier (Holmes et al., 2021) and the RF vegetation 

model shows an AUC value of 0.931 indicating almost perfect classification. In addition, the 

misclassification rate of vegetation is only 19.5% indicating that only 24 out of 123 classes where 

incorrectly predicted from the RF model. Therefore, the vegetation classification prediction was 

superior to the RF model prediction of soil textural classes.   

Table 5: The Out Of Bag (OOB) accuracies for the RF classification models. Requested performance error = Misclassification 
rate 

  

Classification (OOB)  
Brier score 

(OOB) AUC (OOB) Requested performance error 

Vegetation 0.0705 0.931 0.195 

Soil texture 0.0769 0.537 0.611 
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3.3.3 RF regression model performance 

The RF regression model performance was assessed using both the root mean square error (RMSE) 

and the out-of-bag (OOB) coefficient of determination (R2). Table 4 summarizes the accuracy values 

of the different  RF regression models and different scenarios.  

The RF regression model for predicting the rock cover percentage has the highest R2 of 0.57. All other 

RF models show low R2 values (< 1.0). The accuracies were also determined for scenario 2 and scenario 

3 (Appendix 11). Both scenarios show minor variations in R2 outputs compared to scenario 1. Scenario 

2 showed slightly more variations compared to scenario 3. The (OOB) R2 of rock cover increased from 

0.57 to 0.60 for scenario 2.   

The predicted values versus the observed values were plotted in Figure 18. The red line signifies the 

one-to-one line, where points would align if all predicted parameters were accurately estimated. All 

RF regression models show RMSE values larger than or equal to 10. The observed and predicted values 

of the sand percentage show the smallest dispersion with the red line (RMSE = 1) indicating perfect 

prediction (Figure 18). It is evident that the various regression models pose distinct performance 

accuracy. All RMSE were derived from different parameters and therefore different scales (Figure 18). 

Normalization of the RMSE was necessary to facilitate the comparison of these RMSE values. This was 

done by dividing the RMSE by the range between the maximum and the minimum observed values 

obtained from Figure 18 and Appendix 7 (for ksat).  

The Normalized RMSE (NRMSE) revealed that sand percentage had the most accurate value of 0.13 

followed by 0.17 of the prediction of rock cover percentage. The NRMSE for ksat revealed the highest 

error indicating the least accurate results.  

The predicted ksat values in the RF model were derived from a limited dataset comprising only 20 field 

parameters. The variable importance exhibited inconsistencies while re-evaluating the model. 

Consequently, the filtering of important variables for scenario 2 and 3 was inconsistent and as a result 

excluded from this research, noted as x in Appendix 10. 

Table 6: Random Forest (RF) regression model accuracies for scenario 1 which included all input parameters. 

 

 

 

 

 

 

 

 

 

 

RF Models Data Train Predict RMSE NRMSE (OOB) 
R2  

Sand (%) 115 77 38 10.0 0.13 -0.035 

Silt (%) 115 77 38 11.2 0.25 0.011 

Clay (%) 115 77 38 11.5 0.29 0.010 

       

Rock cover (%) 123 82 41 14.8 0.17 0.57 

Rock 
fragments (%) 

121 80 41 17.8 0.25 -0.102 

Soil depth (cm) 100 67 33 20.6 0.29 0.054 

UU lab:        

Ksat_surface 
(m/day) 

19 15 4 29.6 0.37 -0.078 

Ksat_10 
(m/day) 

17 12 5 9.6 0.34 0.016 



39 
 

          

Figure 18: Predicted vs observed values plotted for continuous data. Red line shows the one-to-one line for the best fit 
(observed = predicted). 
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4 DISCUSSION 

4.1 SPATIAL DISTRIBUTION OF SOIL PROPERTIES AND TERRAIN CHARACTERISTICS 
The study area in the Meretschibach was comprised of different vegetation and soil textural classes. 

The dominant vegetational class determined in the study area was shrubs and the dominantly present 

soil textural class was sandy loam. In line with the expectations, soil textures were relatively coarse in 

this study area. Overall, the dominant soil textural classes (75% of total classes determined) had a 

relatively high sand percentage e.g. sandy loam, sandy clay loam and loamy sand.  

The alpine soils in the study area were considered as young soils as grain size was relatively large. The 

grain size distribution depends on the parent material, with more recently weathered material being 

coarser and alpine soils being generally younger (Körner, 2021). This is primarily caused by the 

comminution of soil particles through the process of congelifraction (Oztas & Fayetorbay, 2003).  

Various sandy soil textures were measured on the steepest slopes of the study area. In the Alps, soil 

patterns are primarily influenced by microtopography, particularly in areas above the timberline 

(Baruck et al., 2016). The soil texture on hill slopes are generally coarser due to erosion and 

transportation processes, whereas valleys and plains typically exhibit finer soil texture because of 

sediment deposition  (Dharumarajan & Hegde, 2022). The concept of shallow subsurface flow (Bauer, 

2010), results in a higher sand/clay ratio as altitude increases. This phenomenon occurs on steeps 

slopes and with overland flow distance to the channel network, where finer particles were transported 

downslope directly beneath the soil surface. The forest class revealed the steepest slopes, lowest rock 

cover percentages and the deepest soils. Hagedorn et al. (2019) suggested that vegetation below the 

timberline have a thick organic layer and deeper root zones at lower elevations. Thus, forest growing 

on steeper slopes had developed strong and extensive root systems in stable soils and therefore 

maintain a secure foothold.  

Coarser soils with higher sand fractions have a higher porosity. Moreover, the measured sandy soil 

textures did contain a higher amount of rock fragments compared to silty soils, which enhances the 

porosity. The growth of vegetation and the release of root exudates advance chemical weathering, 

involving the leaching and breakdown of primary minerals and the formation of secondary minerals 

like clay minerals (Maier et al., 2020). Hence, fine substrates like clay could accumulate through the 

soil to deeper levels of the soil (Körner, 2021). Therefore, it is expected that in areas with deeper soils 

a more clayey soil texture could be determined on a deeper level.  

In contrast, flatter slopes correlated with finer soil particles and less deeper soils in this study area. 

Silty soils were only determined on flatter gradients of the study area. Furthermore, grass was also 

primarily developed on less steeper slopes and had a high rock cover percentage. Therefore, soil 

textures measured on flatter parts of the study area correlated with finer soil particles and less deeper 

soils. The cohesive clay minerals could stabilize soil particles (Lado et al., 2004). In addition, the soils 

with higher silt and clay fractions also revealed low rock fragment percentages and shallower soil 

depth.  

Vegetation cover shifted from forest on lowest elevations to shrubs and grass on higher elevations. 

The vegetation cover is highest in forestry areas (as it included trees, shrubs and grass) and lowest for 

bare soil areas. Ksat was expected to decrease with higher elevation and less vegetation, as vegetation 

cover is expected to increase microporosity and thus increase ksat (Maier et al., 2020). As a result, the 

ksat was expected to increase in the northern part of the study area since this segment is covered by 

forest, which it did as seen in Figure 16a. The predicted ksat surface value were also high for high rock 
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cover percentages (Figure 15a). The talus slopes have a high rock cover percentage describing bare 

soil areas. Areas covered by rocks have a complex hydrology. The presence of rock debris covering 

soils has a positive impact on moisture retention in the root zone of alpine vegetation, this is achieved 

by interrupting the capillary continuity of soil moisture (Körner, 2021). Large rocks may create 

macropores that enhance water movement and drainage, which potentially increase ksat. Conversely, 

densely packed rock debris may hinder water movement and reduce ksat.  

In conclusion, high surface ksat values on areas correlated with relatively high rock cover percentage 

and forestry areas. In contrast, soils with lower microporosity will decrease ksat. In the research of 

Maier et al. (2020), soil texture had a bigger impact on ksat than vegetation growth. he arrangement 

of soil particles, involving both aggregation and capillary water retention, is predominantly influenced 

by the interaction between clay minerals and organic matter (Velde & Meunier, 2008). Organic matter 

and clay play a dominant role in cation exchange and retention, providing favourable conditions for 

plant growth (Egli & Mirabella, 2021). Therefore, using soil texture as input for ksat predictions could 

increase the performance of such a prediction model. Furthermore, the amount of input data on ksat 

was minor as 19 locations on surface and 15 locations on 10 cm depth included average ksat 

measurements. The prediction of ksat based on RF models can potentially be more accurate if more 

ksat measurements were conducted in this study area. In addition, Furthermore, a different method 

could be applied to predict these values such as the mean value method. The mean value method 

could be useful when there is limited amount of data available (Ließ et al., 2012). Nevertheless, the 

average ksat values that are known for these locations could potentially be included RF models as 

input for predicting other parameters.  

4.2 RANDOM FOREST CLASSIFICATION MODEL PERFORMANCE  
Field data and UAV imagery were applied to estimate soil properties and vegetation by using Random 

Forest (RF) classification models. Both soil textural prediction and vegetation prediction had a low 

(OOB) Brier score correlating with low probabilistic predictions (Brier, 1950).  

The RF classification model for prediction of vegetation classes was superior in prediction 

performance. The results showed that 81.5% of the vegetation classes was correctly classified. In 

addition, the (OOB) AUC of vegetation was close to 1 representing almost perfect classification. The 

accuracy of predicting shrubs and forests was the highest. Previous studies revealed an overall 

accuracy rate of 65% for vegetation map data (Zhou et al., 2016). 

The RF classification model for prediction of soil texture was less accurate. The results suggested that 

39.9% of the soil textural classes was correctly classified. The sandy loam class was most accurately 

predicted. Also, soil texture classification had an (OOB) AUC close to 0.5 which corresponded to 

random classification. Previous studies revealed an overall accuracy rate of 50-65% for prediction of 

soil textural classes at different depths (Dharumarajan & Hegde, 2022).  

4.3 RANDOM FOREST REGRESSION MODEL PERFORMANCE 
The RF regression model performed best for prediction of rock cover percentages in the study area. 

The (OOB) R-squared represents the variance of the dataset. The (OOB) R-squared was determined 

with out-of-bag (observed) data that were excluded from the prediction. The (OOB) R-squared value 

is a statistical measure that represents the proportion of variance between the predicted values and 

the observed values. The (OOB) R-Squared ranges from 0 to 1, with 1 indicating a perfect fit (Chicco et 

al., 2021). The (OOB) R-squared of the rock cover percentage prediction was highest for all scenarios, 

with a moderate R-squared of 0.57. Indicating that the RF regression model for rock cover prediction 
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performance revealed the largest proportion of variance that is explained by independent variables, 

in contrast to the other models. Hence, this suggests that this RF model was moderate in capturing 

and predicting the variability in the data. The model performance for rock cover prediction showed 

minor improvements of higher (OOB) R-squared values (up to 0.60) for scenario 2 and 3. 

The (OOB) R-squared for silt, clay, soil depth and ksat at 10 cm depth was low (R2 < 0.1). A significant 

proportion of the variability in the dependent variable was not explained. The RF model may not be 

capturing important factors that were of influence on the dependent variable. All model prediction 

models show small improvements from scenario 1 to 2 (Table 4), for example R-squared of silt 

prediction changed from 0.011 to 0.075. 

The RF regression model predictions of sand, rock fragments in soil and hydraulic conductivity (ksat) 

on surface all show negative coefficients of determination. A negative R-squared indicates that the 

model’s predictions were worse than a simple horizontal line which represents the mean of the 

dependent variable (Chicco et al., 2021). Therefore, the RF model failed to capture the patterns or 

trends in the data, and its predictions are less accurate than a basic model that merely predicts the 

mean.  

In addition, the Root Mean Square Error (RMSE) was calculated to gain a comprehensive 

understanding of the model’s performance. The RF regression model predictions all showed RMSE 

values larger than 9.0. As the range of RMSE stretches from 0 to +∞ as upper bound, it is hard to 

quantify the quality of such a result (Chicco et al., 2021). The plot of the observed sand values showed 

the best visual fit compared to the other plots. However, the RMSE of sand percentage was higher 

than the RMSE of ksat on 10 cm depth. The scale of each plot is different and therefore the RMSE 

values could not be compared. Normalization was necessary to compare the accuracies of the RF 

regression models.  

The models performance was considered good for NRMSE values between 0.10 and 0.20, fair for 

values between 0.20 and 0.30, and deemed poor for values greater than 0.30 (Ge et al., 2021). As a 

result, the models performance for prediction of sand and rock cover percentage was considered 

good. The models performance of for prediction of silt, clay, rock fragments and soil depth was 

considered fair and the NRMSE of ksat prediction were largest (> 0.30) indicating poor model 

simulation.   

4.3 VARIABLE IMPORTANCE OF RANDOM FOREST MODELS 

4.4.1 Variable importance of soil texture 

The mean slope and the standard deviation in elevation were the most important variables for 

predicting sand and silt percentages. For clay percentages the most important variables were Terrain 

Ruggedness Index (TRI) and the Length-Slope Factor (LSF). In addition, erosional features (e.g. TRI, LSF, 

TWI and SPI) were also important for the accuracy of soil texture predictions. These results were in 

line with previous studies that revealed that terrain indices were of major importance for soil textural 

predictions (Dharumarajan & Hegde, 2022; Jena et al., 2023; Kaya et al., 2022; Moore et al., 1993).  

The relation between slope and soil textures revealed that sandy soil textures were dominant on 

steeper slopes. Length-Slope Factor (LSF) is a measure of the sediment transport capacity of overland 

flow (Moore & Burch, 1986). The LSF was higher for sand, sandy loam and sandy clay and suggested 

that these soil textures had a higher soil erosional risk potential (Appendix 11). This indicated that 

these soil textural classes contained steeper and/or longer slopes. Furthermore, higher sand 

percentages correlated with higher SPI values (Appendix 11). SPI was an important feature for 



43 
 

predicting sand, silt and clay percentages. SPI is a parameter to quantify power of flowing water, low 

SPI indicating less power. In the research of Jena et al. (2023) coarser soil fractions indicated higher 

SPI values. Moreover, The TRI values were larger for sandy textures compared to the other soil 

textures (Appendix 11). Terrain Ruggedness Index (TRI) offered a comprehensive assessment of the 

overall ruggedness of the landscape by considering elevation variations over a larger area. Higher TRI 

values correlate with more rugged terrain and lower TRI values suggest smoother or flatter terrain.  

In contrary, higher clay percentages were observed and predicted on flatter areas in this study area. 

TWI indicates the spatial distribution of soil moisture, high TWI values indicate wetter conditions. 

Flatter areas often correlate with higher TWI values, consequently TWI has the potential to serve as 

an indicator for augmentation of clay content within a flood plain (Jena et al., 2023).  

4.4.2 Variable importance for rock cover & vegetation prediction 

The most important variables for rock cover prediction and vegetation were closely related. The most 

important variables included spectral bands, difference in NDVI for month June over 2019-2022 and 

snow persistence. The most important variables were in line with the expectations, as rocks were 

clearly visible due to the reflection of different wavelengths compared to vegetation and can therefore 

be visually distinguished. Also, a high NDVI value indicates a greater abundance of healthy vegetation. 

NDVI indices ranging from -1 to 0 represent non-vegetated surfaces (Xu et al., 2012). The difference 

in NDVI for the month June over the period of 2019-2022 could be of great impact due to timing and 

potentially a peak of vegetation growth and therefore showing largest variation in NDVI in June to 

differentiate between bare rock surfaces and vegetational cover compared to the importance of NDVI 

for the other months.  

Another important variable for rock cover prediction was the snow persistence variable. Therefore 

snow persistence value separates between bare soil and vegetated area. In Appendix 12 the snow 

persistence input map is included. The map visualizes higher snow persistence values on higher 

elevations and especially in the southeastern corner of the map the values are high. Talus slopes were 

present in the south eastern corner of the study area.  

Timing and duration of snowpacks influence initial growth of different vegetation species. The soil is 

cooled during the growing period with increasing canopy height of shrubs and trees, as indicated by 

(Körner, 2021). Conversely, during winter periods, the canopy height warms the soil in winter by 

advancing the accumulation of an insulating snow cover (Myers-Smith & Hik, 2017). Early snowmelt 

may stimulate vegetation development and growth. Therefore, rock cover percentage and vegetation 

will be influenced by changes in the timing or duration of snowpack development. The timing and 

duration impacts different facets of the soil-vegetation systems in regions experiencing temporary 

snow cover (Edwards et al., 2007).  

Other studies also revealed that elevation and temperature were the most important variables for 

vegetation prediction (Zhou et al., 2016). As alpine catchments can be subdivided into different 

vegetation belts on different elevations, it was expected that elevation would be of greater impact on 

prediction of vegetation.  
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4.4.3 Variable importance for prediction of soil depth 

The prediction of soil depth throughout the study area, the most important variables were TPI, 

elevation, snow persistence and day of the year snow free. This could be coupled to the vegetation 

belts. Larger vegetation growth indicate increasing soil depths (Hagedorn et al., 2019). As vegetation 

decreases in size for higher elevations, soil depth potentially decreases as well. The observed data also 

revealed deeper soils for the forest class and for lower elevations. Therefore,  elevation and the 

Topographic Position Index (TPI) features were of major importance for estimating soil depth.  

The Topographic position index indicated whether a pixel is higher or lower than its surrounding pixels. 

However, due to the resolution (2 x 2 m), the values of TPI could be less representative for 

microtopographic variations within a grid cell with a size of 4 x 4 m. The TPI could have been derived 

from the UAV imagery (25 x 25 cm) if the malfunction did not occur which could increase 

interpretation of microtopographic differences within a prediction grid cell and potentially be better 

for predicting variables.  

4.5 FUTURE STUDY MODEL PREDICTIONS 
The accuracies of multiple RF model in this research for different parameters were diverse. Other 

statistical methods could be tested since not all RF model predictions showed accurate results. 

Likewise, several studies have compared the linear regression methods and machine learning 

techniques to see which model is superior in spatial soil properties prediction. Farooq et al. (2022) 

found that RF models performed better than RK (and OK) for SOC mapping in Himalayan region of 

Kashmir. In contrast, Veronesi & Schillaci (2019) demonstrate that the OK model performs slightly 

better as predictor for topsoil organic carbon than the RF model. For fields with high sampling 

densities kriging and regression kriging are promising compared to random forest models to map SOM 

(Pouladi et al., 2019). Takoutsing & Heuvelink (2022) state that no universal model works best and 

therefore RK or RF could perform better for a specific case. Thus, the optimal technique depends on 

spatial distribution and size of soil samples data, terrain attributes, elevation, climate conditions and 

vegetation. Hence, multiple methods have to be tested to find the optimal soil prediction mapping 

result for a specific study site. Therefore, it could be tested whether the Random Forest method is 

superior for this specific study area by testing other models for this specific site.    
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5 CONCLUSION 

This research used remote sensing and statistical modelling to potentially upscale vegetation and soil 

properties to an alpine catchment scale. The remotely sensed data consisted of high resolution UAV 

data and satellite data. The application of field data and UAV imagery for estimation of soil properties 

was done by using Random Forest (RF) models as statistical models. The randomForest() package in R 

was used to build numerous RF models. Both RF regression models and RF classification models 

applied training data obtained from remotely sensed data in combination with field data to upscale 

field data to the size of the study area. The spatial distribution of soil properties and vegetation in the 

Meretschibach catchment and its link to terrain characteristics was summarized below.   

- Soil textural predictions resulted in maps with sandy loam as dominant soil textural class. The 

dominant soil textures (75% of total), both measured and predicted, established high sand 

fractions (> 50% sand). In summary, sandy soil textures were determined on relatively steep 

slopes and were determined at deeper soils. Whereas silty soils were only determined on 

flatter parts of the study area. Sandy soil textures did contain a higher amount of rock 

fragments compared to silty soils. Sandy soil textures were relatively covered by a higher 

amount of rocks on the surface compared to silty soils.   

- Vegetation predictions resulted in maps with shrubs as dominant vegetation class. Shrubs 

were found at a wide range of elevations, had a moderate slope, a maximum soil depth of 60 

cm and were moderately covered by rocks. Grass was determined at the higher elevations, 

less steeper slopes and grass had the highest median of rock cover percentage. Shrubs and 

grass correlated with almost all soil textural classes present in this alpine catchment. In 

contrary, soil textures determined in the forest were all sandy soils. Forest was found at the 

lower elevations with steepest slopes, lowest rock cover percentages and the deepest soil 

depth.  

Multiple field parameters were predicted by RF models. The accuracy of the RF model was studied. 

The vegetation map showed the highest accuracy for prediction of classes, with a misclassification rate 

of 0.195. The RF regression model for rock cover prediction showed the highest (OOB) R-squared 

(0.57) capturing a moderate proportion of the variance in combination with a low NRMSE (0.17) 

reflecting good RF model performance. The regression models for sand, silt, clay, rock fragments, soil 

depth and both ksat outputs failed to capture important factors influencing the dependent variable 

(OOB R-squared < 0.10). However, sand percentage reflected good model performance by 

determination of NRMSE. The NRMSE of silt, clay, rock fragments and soil depth predictions reflected 

fair model performance. At last, the NRMSE of ksat predictions reflected poor model performance.  

In general, the RF model predictions were better for larger data quantities compared to predictions 

with lower data availability (ksat values). However, future studies could potentially involve ksat values 

for plot locations to increase the potential of predicting other variables. Random Forest (RF) was 

suggested as most suitable for this research, though other methods could still be tested to see 

whether another method is superior for upscaling by statistical modelling. 

At last, the most important prediction variables were identified. The variable importance of soil 

texture classes and sand, silt and clay percentages was dominated by variables like slope, elevation 

and secondary terrain attributes. The erosional indices were important variables for predicting soil 

parameters as they are of great influence on soil textural composition. The variable importance of 

rock cover percentages and vegetation classes was dominated by spectral bands, NDVI, snow cover, 
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elevation and day of the year snow free. Distinguishing between vegetation and rock cover can already 

be done visually as they both contain very different reflectance values. 

This research could be used as a set-up on conducting parameter prediction based on field work 

measurements in alpine catchments. In addition, UAV imagery derived from eBee X show high 

potential for accurate mapping of vegetation and rock cover percentages. The soil textural classes 

could be used as indication of soil composition in the Meretschibach catchment. The maps created in 

this research could be useful for spatial analysis of the plot composition and catchment behaviour. As 

microtopography is of major importance for soil texture analysis in alpine catchments, future studies 

could perform research on microtopography in the Meretschibach catchment to potentially improve 

soil texture data and understand the local developments at the plots.  
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8 APPENDIX 

 

Appendix 1: protocol to classify the soil texture in-field estimation 
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Appendix 2: Estimation diagram of rock size and percentages for in-field estimation. 

Topography property How to characterize How to measure 

Slope Use the in-field tool to 
estimate the slope angle. 

Estimation of slope in degrees 
and classify the slope. 

Aspect Use the compass to assess the 
aspect of the slope 

Estimation of the major wind 
direction of the slope. 

Appendix 3: Protocol for the in-field measurements of the topography properties. 
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Appendix 4: RF model vegetation classification based on Sentinel-2 imagery attributes only 

 

Appendix 5: Decision Tree structure, image obtained from Ali et al. (2012) 
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Appendix 6: ROC graph shows the area under two ROC curves (A) and (B). Image adjusted from Fawcett (2006) 

 

 

Appendix 7: Ksat plots, left plot representing the surface plot and right plot on 10 cm depth. 
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Appendix 8: Top 10 most important variables for soil textural factors,  for rock cover percentage, rock fragments in soil and 
soil depth. 
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Appendix 9: Top 10 least important variables for regression predictions 
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Appendix 10: Accuracies for scenario 2 and 3 

RMSE2 RMSE3 (OOB) 
R2 2 

(OOB) 
R2 3 

10.5 10.0 0.018 0.005 

10.7 11.0 0.075 0.023 

11.0 11.2 0.068 0.027 

    

14.5 14.7 0.60 0.58 

17.3 17.7 -0.032 -0.060 

19.9 20.6 0.084 0.081 

    

x x x x 

x x x x 
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Appendix 11: soil texture vs erosional features 
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Appendix 12: Snow persistence map 

 

Appendix 13: Confusion matrix of RF classfication model of soil texture prediction 



62 
 

 



63 
 

 

Appendix 14: Climate information derived from climateengine.org, polygon was drawn and from the polygon precipitation 
and temperature information was derived from the TerraClimate dataset (Huntington et al., 2017). 


