
Bringing GPU Parallelization and
Complex Boundaries to a

Computational Fluid Dynamics
Solver

MSc thesis in Game and Media Technology
for Utrecht University

Author
Valentijn van Zwieten
(6260691)

Supervisors
Dr. Deb Panja

Dr. Joost de Graaf

November 30, 2023

Abstract

We present optimizations and flexibility improvements to an existing computa-
tional fluid dynamics solver based on fast Fourier transforms. The existing solver
was implemented partly on the CPU and partly on the GPU, leading a large
performance overhead due to context switches. This, among other performance
issues, made it unfeasible for practical application. Additionally, the grid-based
manner in which the boundaries for solids were implemented limited the range
of problems it could accurately depict and solve. Moreover, the abundance of
hard-coded features made it cumbersome to use. In this thesis, these problems
are resolved as follows: Nearly the entire solver has been ported to the GPU,
eliminating the performance overhead introduced by context switches. A host
of additional runtime and memory optimizations are implemented into the pro-
gram. The implementation of boundaries has been improved to handle arbitrary
geometries. Finally, a basic command-line interface has been introduced to set
a range of solver parameters when launching the program. In optimal situations
the runtime is decreased by a factor exceeding 1000ˆ and the memory footprint
is reduced by up to a petabyte. In more general cases the runtime decrease is
often in the triple digits and the footprint is reduced by many gigabytes. With
the introduced improvements the way is paved for the solver to be a tool that
is used by researchers in the field of fluid dynamics.

Cover figure: Visual output of the solver. Four cylinders, indicated by the black
cells, are submerged in a fluid. The cylinders rotate around their axis which
creates a flow. How fast the fluid flows is indicated by a color spectrum, with
blue being slowest and red being fastest.

1

Contents

1 Introduction 4
1.1 Physics Background . 4
1.2 Solver Overview . 7
1.3 Research Questions . 8

2 Methodology 9
2.1 Velocities and Forces . 9
2.2 Boundaries . 10
2.3 Solids and Virtual Forces . 11
2.4 Cost and Gradient Descent . 12

3 Implementation 14
3.1 Tools and Libraries . 15
3.2 Launch . 15
3.3 System Initialization . 17
3.4 Force Field to Velocity Field . 18
3.5 Cost Calculation . 19
3.6 Stopping Conditions . 19
3.7 Gradient Descent Step . 20
3.8 Learning Rate Update . 22
3.9 Result Logging . 22
3.10 Memory Usage . 22

4 Results 23
4.1 Base . 26
4.2 NUIDFT . 28
4.3 Limiting Virtual Forces . 29
4.4 Improved Initialization . 30
4.5 Complete . 31
4.6 Research Questions . 32
4.7 Relation to other Solvers . 33

5 Conclusion 33

6 Future Work 34

A Program flow 36

B Relative relation between forces and velocities 37

2

Summary of Notations

Notation Definition
N , M , L Width, height, and depth of system, respectively

U⃗a Velocity field (on axis a)

F⃗b Force field (on axis b)
rUa, rFb Fourier Transformed velocity and force fields
B Set of boundary points
V Set of virtual forces
C Cost function

Ga,b
BU
BF (on combination of axis a, b)

U⃗
p1q

a,b Unit force velocity field (on combination of axis a, b)

γt Learning rate at iteration t

The exact definition of the above quantities is given in the upcoming sections.

3

1 Introduction

In the field of fluid dynamics, research is often carried out using a tool known
as a “solver”. This refers to a program that is able to solve for the flow of
a fluid given a certain configuration. These configurations may, for example,
contain solids around which the fluid is to flow or external forces that pull or
push the fluid in a certain direction. Using this, researchers may model a variety
of scenarios such as blood flowing through an artery or magma flowing through
the earth. This can aid research into these topics and lead to new insights that
can be applied in the real world.

In this thesis, we build our work on the research carried out by Bart Stam[6]
and Florian Gaeremynck[4]. They created a novel solver that is capable of find-
ing a solution to the Stokes equation in systems containing incompressible fluids,
solids, and point forces. This solver is intended to be used in a scientific-research
setting in upcoming projects in the groups of Dr. Deb Panja and Dr. Joost de
Graaf. To be suitable for use in the field, further development is required,
specifically on the fronts of speed and flexibility. A brief overview of the ex-
isting solver’s methodology and the corresponding physics is provided below to
give background to our research questions. An in-depth explanation will be
provided in Sec. 2.

1.1 Physics Background

The Navier-Stokes equations are central to the field computational fluid dynam-
ics. When describing incompressible fluids these are as follows:

∇ ¨ u⃗ “ 0⃗; (1)

´∇p⃗ ` f⃗ ` µ∇2u⃗
loooooooooomoooooooooon

9 F

“ ρ
loomoon

9 m

ˆ

Bu⃗

Bt
` u⃗ ¨ ∇u⃗

˙

loooooooomoooooooon

9 a

, (2)

where:

• u⃗ is the velocity of the fluid,

• f⃗ is the external force acting on the fluid,

• p⃗ is the pressure in the fluid,

• µ is the viscosity of the fluid,

• ρ is the density of the fluid, and

• t is time.

Equation 1 describes the incompressibility by stating that there is no divergence
in the flow. This implies that for any volume in the fluid the amount of fluid
flowing in is exactly the same as the amount of fluid flowing out. As such, there

4

Figure 1: A visual comparison between non-Stokes flow (left [1]) and Stokes flow
(right [7]). The surface of the ocean near a beach is usually highly turbulent
while magma has no turbulence whatsoever.

is no point where the fluid is amassing, which would in turn imply compres-
sion. Equation 2 is an application of Newton’s second law of motion, F “ ma
(force is mass times acceleration), describing the flow. Solving the Navier-Stokes
equations is not a simple task, due to the non-linear partial differential in the
acceleration term of Eq. 2. Usually analytical approaches are not possible and
and iterative methods are required, such as those shown in Ref. [3].

Under specific circumstances, however, the acceleration term becomes in-
creasingly less significant when calculating the flow, such that it may be ig-
nored on physical grounds. This phenomenon occurs when the inertial forces
in the fluid are substantially smaller than the viscous ones. As a consequence
non-linearities, such as turbulence, do not occur. Fluid flow under these condi-
tions is known as Stokes flow. An intuition for the difference between non-linear
Navier-Stokes flow and linear Stokes flow is provided in Fig. 1. A more math-
ematical definition of when fluid flow is considered a Stokes flow can be giving
using what is known as the fluid’s Reynolds (Re) and Strouhal (St) numbers.
These are defined as:

Re “
ρUL

µ
; (3)

St “
L

UT
, (4)

where L is a characteristic length – a dimension that defines the scale of the sys-
tem – T is a characteristic time (of an external effect), and U is a characteristic
velocity.

Re and St are both dimensionless. The Reynolds number describes the
ratio between inertial and viscous forces. At high Reynolds numbers, the inertial
forces dominate and the flow becomes turbulent, while at low Reynolds numbers,

5

the viscous forces dominate and the flow becomes “laminar”. The Strouhal
number describes the ratio between inertial forces due to localized acceleration
and inertial forces due to global acceleration. At high Strouhal numbers, there
is a competition between the time it takes for the fluid to move and the time
at which it is driven, while at low Strouhal numbers, the fluid conforms to the
driving (nearly) instantaneously. Stokes flow occurs when Re ! 1 and ReSt ! 1.
It is described by the linear Stokes equations, which are defined as follows:

∇ ¨ u⃗ “ 0⃗; (5)

´∇p⃗ ` f⃗ ` µ∇2u⃗
loooooooooomoooooooooon

9 F

“ 0⃗
loomoon

9 ma

. (6)

Here, the acceleration term (and thus the mass term) are no longer present.
From the linear, time-independent Stokes equations (LTIS), we can much

more easily obtain a velocity field given a force field. This is because what
remains to be solved is a set of linear partial differential equations. Solving these
is still not a simple task, however. In essence we need to get the derivative of a
very intricate function. The method by which operations on intricate functions
are usually done, involves breaking the function up into separate parts that are
individually simple and orthogonal to each other. When this is the case we can
apply our operation of choice to all the simple parts instead, after which we can
re-combine them.

For this a Fourier transform is used. This linear transformation brings a
function into the frequency domain, where it is described by a set of sine and
cosine waves. An example of this can be seen in Fig. 2. Given that the deriva-
tive of a sine and cosine is well-known, solving the partial differential is now
elementary. Once performed, the result can be transformed back into the real
domain using an inverse Fourier transform. During this process no accuracy is
lost and we obtain the exact solution.

With LTIS we can obtain a velocity field given a force field. However, it
does not account for the presence of solid objects (which we will now refer to
as “solids”). When these exist in the system we have to accommodate for this
through other means. The key lies in what is known as the no-slip boundary
condition, which states that the velocity of a fluid on the boundary of a solid
must be 0⃗ relative to that of the solid’s surface[2]. As such, when introducing
solids into the system, we introduce a constraint on the velocity field. This con-
straint is implemented in an “immersed” way. That is, the parts of the system
that are considered solid are still modeled as a fluid by the solver. However, in
these parts, the force field is set in such a way that the resulting flow satisfies
the no-slip boundary condition. Since the solution to the LTIS is unique, a
system in which we satisfy the no-slip boundary condition is identical to the
“real” solution, where fluid does not flow inside the solid. With this we know
how our Solver should go about finding its solution.

6

x

y

“

x

y

`

x

y

`

x

y

`

x

y

Figure 2: An intricate function (left) and its simple, orthogonal components
in the frequency domain (right). The frequency components that make up any
arbitrary function can be found using the Fourier transform.

1.2 Solver Overview

The solver is build to solve for Stokes flow on a periodic discrete grid. As
mentioned in Sec. 1.1, to solve a system we use forces inside solids that direct
the fluid flow in such a way that the no-slip boundary condition is satisfied. We
call these “virtual forces”, as they are not part of the configuration as set by the
researcher, but rather placed by the solver itself to find the solution. Finding
the correct values for these virtual forces such that we obtain our solution is
a complex problem, given that every virtual force influences every cell on the
velocity field. To accomplish this we use a technique called gradient descent.
With this we minimize the distance to the solution by iteratively tweaking the
virtual forces and observing how close the resulting velocity field is to satisfying
the no-slip boundary condition. A schematic high-level overview of the solving
process is provided in Fig. 3.

Before this research took place, the existing solver was already able to con-
verge to an accurate solution for various problems. However, there are several
problems that prevent it from a tool that is useful in practice. The most major
of these is its computational efficiency. Calculating a solution can take up to
dozens of minutes in some cases, whereas other solvers on the market are able to
perform this in seconds or less. The main culprit was identified to be expensive
context switches between the CPU and GPU during execution. Fixing this de-
mands for (close to) the entire algorithm to be ported to the GPU. Other areas
of the solver that show potential for performance gains have been identified as

7

well, as will be shown in the upcoming section. Besides this, the grid-based
manner in which the boundaries for solids were implemented limited the range
of problems it could accurately depict and solve. Additionally, the abundance
of hard-coded features made it cumbersome to use. All these problems will be
addressed in this research.

1.3 Research Questions

In this thesis project, we aim to address the following question: How can we
optimize and improve flexibility of a computational fluid dynamics solver based
on fast Fourier transforms? Starting with the solver as created by Bart Stam[6]
and Florian Gaeremynck[4] we identify these subproblems:

1. The solver converges on a solution iteratively. Currently, every one of
these iteration is performed partly on the CPU and partly on the GPU.
These context switches are computationally expensive. Can we avoid or
limit expensive context switches during the iterative section of the solving
process?

2. Every iteration of the solver is performed partly in regular space and partly
in Fourier space. These transformations are computationally expensive.
Can we avoid, limit, or using domain-specific tricks, optimize expensive
(inverse) discrete Fourier transforms?

3. The solver only requires the velocities on solid surfaces in the system to
converge to a solution. Some operations performed by the solver oper-
ate on all cells in the system’s grid. Can we perform the solving process
exclusively for cells on a solid surface?

4. The solver’s degrees of freedom along which it finds a solution are the
virtual forces. Less degrees of freedom means less computations required
to find their correct values. Can we limit the amount of virtual forces in
a system while still converging to an acceptable solution?

5. The virtual forces are initiated as zero vectors. Starting with a more
representative value, even if it is only an estimation, would help our gra-
dient descent converge faster. Is there a way to determine an approximate
initialization value for virtual forces?

6. Memory usage is a major bottleneck of the solver. How can we handle the
data required by the solver most efficiently?

7. Solids currently reside on the system’s grid. To increase the solver’s ac-
curacy, arbitrary boundaries of solids are desirable. Can we introduce
arbitrary solid boundaries in the solver?

8

Calculate velocity field
from force field

Calculate distance
to solution

Tweak virtual forces
with gradient descent

Figure 3: A high-level overview of the solving process, consisting of three steps.
These steps are repeated until the desired solution is found.

2 Methodology

2.1 Velocities and Forces

The solver works on a periodic discrete N by M by L grid. On this grid exist a
velocity field U⃗ and force field F⃗ . By default there exists no fluid flow and thus
all cells in U⃗ and F⃗ are 0⃗. When a cell in F⃗ is set as non-zero, flow is created.
To calculate the velocity field corresponding to a force field, we use a discrete
Fourier space form of LTIS (Eq. 5 and 6). It is as follows:

rU “
1

µk2
pI3 ´ rk b rkq rF . (7)

For the full derivations leading to this equation, we refer the user to Stam’s
work[6]. We calculate the Fourier-space equivalent of the real force field and real
equivalent of the Fourier-space velocity field using the discrete Fourier transform
and its inverse counterpart, respectively:

rf rq, r, ss “

N´1
ÿ

n“0

M´1
ÿ

m“0

L´1
ÿ

l“0

exp

ˆ

2π

ˆ

nq

N
`

mr

M
`

ls

L

˙˙

f rn,m, ls,

rf rn,m, ls “

Q´1
ÿ

q“0

R´1
ÿ

r“0

S´1
ÿ

s“0

exp

ˆ

´2π

ˆ

nq

Q
`

mr

R
`

ls

S

˙˙

f rq, r, ss.

(8)

The full equations as given here are for reference purposes only. In reality fast
(inverse) Fourier transforms are utilized, as mentioned in Sec. 3.1.

9

2.2 Boundaries

Solids in the system are enclosed by a boundary surface. This surface is made
up of a set of points in 3D space. These “boundary points” are not restricted to
being on the solver’s grid. The boundary points themselves cannot move around
in the system, but can simulate movement on the surface they approximate.
Each boundary point has a desired velocity at which the surface is intended to
move at that point. This can be envisioned as a conveyor belt, where only the
surface of the object is in motion. A stationary boundary point has a desired
velocity of 0⃗. We denote the set of all boundary points as B. An example of
the boundary system can be seen in Fig. 4.

Solving the system means satisfying the no-slip boundary condition on the
surface of solids. This implies that for every boundary point, the difference
between their desired velocity and the actual velocity in U⃗ at that point is
0⃗. As such boundary points can be put at any point where U⃗ is desired to
have a specific value, as this is what the solver will try to converge to. To
check whether we satisfy the desired velocities in a system, we have to know
the current velocity of each boundary point. When a boundary point exists
in between cells of the discrete velocity grid the velocity at its coordinates is
linearly interpolated. Boundary points are not connected to each other in any
way; if there is too large of a gap between a pair of boundary points a fluid can
flow “through” an intended surface in the solution. The remedy is to add more
boundary points to better approximate this surface. When boundary points are
spaced close together multiple boundary points interpolate their velocity from
the same cells. On especially dense surfaces or low resolution grids this may
make it difficult for the solver to converge, as the velocity in those cells has to
satisfy the no-slip boundary condition of many boundary points.

In the original system by Stam and Florian, boundaries were defined as
all the points between pairs of neighbouring fluid and solid cells. As such the
boundaries were made up of exclusively discrete points. These “boundary pairs”
had a desired velocity as with the new boundary points. To calculate the current
fluid velocity on a boundary pair the average velocity of the two cells is taken.
An example of the original boundary system can also be seen in Fig. 4.

10

2

1

2

2

0

0

0

2

1

0

0

0

1

2

0

0

0

2

2

1

2

Figure 4: 2D examples of the current (left) and original (right) boundary sys-
tems when creating a boundary around a circular solid (the grey cells). In the
current boundary system a boundary is defined as a point in space as visualized
by the red dots. Note that this point does not have to be on the grid. In the
original boundary system a boundary is defined as a pair of neighbouring fluid
and solid cells. The boundary is localised in between these as visualized by the
red dots. Note that one solid cell may be part of multiple boundary pairs. The
number of boundary pairs a given solid belongs to is displayed in each solid cell.

2.3 Solids and Virtual Forces

To satisfy the no-slip boundary condition, we somehow have to direct the fluid
flow in such a way that the velocity at every boundary point is equal to that
boundary point’s desired velocity. LTIS (Eq. 5 and 6) tells us that the only
way to achieve this is by tweaking the force field. This is done using virtual
forces; forces that are not part of the configuration but placed by the solver
itself. For the solution to be correct these must be placed carefully. A cell
on the solver’s grid is either inside a solid or fluid. In our solution, only the
velocities of the fluid are relevant. When a non-zero virtual force exists inside
a fluid, we introduce foreign elements into the fluid which leads to an incorrect
solution. When a virtual force exists inside a solid this is not the case. As such
cells inside a solid are suitable points for our virtual forces. We denote the set
of all virtual forces as V . An example of virtual forces in action can be seen in
Fig. 5.

11

Figure 5: 2D examples of a bad (left) and good (right) choice for virtual force
values (the blue dots). Arrows protruding from the boundary points and vir-
tual forces indicate the direction of the desired velocities and forces, respectively.
Their magnitudes are ignored in these examples. In the bad example the di-
rection of the virtual force would not lead to a flow that matches the desired
velocity in the boundary points, meaning the no-slip boundary condition is not
satisfied. In the good example this would be the case.

2.4 Cost and Gradient Descent

The distance between any arbitrary situation and the solution can be expressed
through a cost function:

C “

d

ÿ

bPB

pu⃗cpbq ´ u⃗dpbqq2, (9)

where ucpbq is the current velocity at boundary point b and udpbq is the desired
velocity at boundary point b. As is custom for cost functions, the closer C is to
0 the closer the current situation is to the solution.

12

To set the virtual forces in such a way that C “ 0 we must know how a
change in any given virtual forces influences the velocity of any given boundary
point. The gradient that describes this is defined as follows:

Ga,bri, js “
BUaris

BFbrjs
, (10)

where:

• G is the gradient,

• i is the index of the velocity cell,

• j is the index of the virtual force cell,

• a is the axis of the velocity, and

• b is the axis of the force.

The vector G has a total of |B||V | entries. Given that the axis of the velocity
and the axis of the force can vary independently there are a total of 32 “ 9 of
such gradients. The methodology used to calculate how a force influences the
velocity field can be seen in Sec. 2.1.

To find our solution the Gradient Descent algorithm is used. In Gradient
Descent, a function is minimized by following its gradient in the opposite direc-
tion in a step-wise manner. An intuitive way of thinking about this is walking
downhill across the surface of a function in the hopes of finding the lowest point.
The function that is being minimized is C. While one would be quick to assume
the gradient that used to determine in which direction a step is taken is given
by G, this is not quite the case. The gradient that we concern ourselves with
in the context of gradient descent, is one that describes the change in C with
regards to a change in virtual force:

∇V “

”

BC
BV rjs

ı

, (11)

where j is the index of a virtual force.
Every iteration t, a step in direction ´V̂ of size γt is taken. Choosing

the value of γt, also known as the learning rate, is a tricky task and is highly
dependent on the properties of the problem. If the learning rate is set too small,
it can take a large number of iterations to reach the minima. If it is set too
large, the solver might “overshoot” the minima by stepping over it. For most
problems where gradient descent is used, local minima must also be accounted
for. Here, the algorithm might get stuck hovering around a local minima and
not converge to the sought after global minima. Tricks such as restarting at
random points on the function and special learning rate schemes can be used
to combat this. For us this is not a problem however, as C is convex, meaning
that there is only one minima. This does not mean our gradient is simple to
traverse and we still have to take care when selecting a learning rate scheme to
converge (fully).

13

The following learning rate schemes are available in the solver:

• Constant
The learning rate is kept at a set constant value.

γt “ γt´1 (12)

• Halving
The learning rate is initialized at a set value. Whenever the cost does not
decrease when compared to the previous step, the learning rate is halved.

γt “

$

&

%

γt´1 if Ct ă Ct´1

γt´1

2
if Ct ě Ct´1

(13)

• Polyak’s Length
Polyak’s length is designed specifically for convex optimization problems
and should theoretically always find the global minimum[5]. It is defined
as follows:

γt “
Ct

|∇V |2
. (14)

• Dynamic Polyak’s Length
An adaptation of Polyak’s Length by Florian Gaeremynck, this scheme
takes advantage of the observation that in our use cases Polyak’s length
spends the vast majority of its time converging the last few percentiles of
the solution. To remedy this attempts to take bigger steps in consistently
decreasing areas of the function are made. Polyak’s Length is calculated,
after which a multiplying factor is applied[4]. It is defined as follows:

γt “
Ct

|∇V |2
˚ mt, (15)

mt “

$

’

&

’

%

1 if t “ 0

mt ˚ 10 if Ct ă Ct´1for 100 consecutive t

mt ˚ 0.1 if Ct ě Ct´1for 2 consecutive t

(16)

3 Implementation

The program flow of the solver can be broken up into 7 distinct parts. These
parts and their relation to each other can be seen in Appendix A. Originally only
the initialization of BU

BF and transforming the force field into the velocity field
was performed partly on the GPU. Now every step of the main loop, save for
updating the learning rate, takes place on the GPU. This removes the necessity
for copying large buffers to and from the GPU in every iteration. In this section,
each of the parts of the solver will be discussed in further detail. First an
overview of the tools and libraries utilized by the program will be given.

14

3.1 Tools and Libraries

The majority of existing code on which this project is build upon is written
in C++. This will remain the programming language of choice for new addi-
tions. C++ allows for a more low-level control of the system which is beneficial
for runtime optimization. Existing GPGPU code is written using NVIDIA’s
Compute Unified Device Architecture (CUDA) language. This will similarly be
adopted. NVIDIA GPU’s are commonly used in the scientific community which
makes the language a natural choice. Several libraries are used in various parts
of the program. These are:

• argparse for better handling of launch parameters (see Sec. 3.2). This
library handles the parsing of complex launch parameters through features
such as optional and positional arguments. It also automatically generates
a help command that explains how to use the program.

• fftw and cuFFT for the execution of Fourier transforms (see Sec. 3.4).
These libraries perform Fast Fourier Transforms (FFT) on the CPU and
GPU respectively. A FFT is multiple orders of magnitude faster than a
“regular” Fourier transform and yields the same results.

• CImg for the rendering of the final flow field (see Sec. 3.9). This library
supplies a pixel buffer which can be drawn to in various ways such as with
elementary shapes. This buffer can then be displayed in a window.

• CUB to facilitate kernel programming. This library provides reusable
kernel code for common operations done in GPGPU programming.

3.2 Launch

The solver allows for several parameters to be set by the user on launch. This can
be done when the program is launched from the command line. The supported
launch parameters and commands can be seen in Tab. 1.

15

(a) 2 Moving Plates
(2mp)

(b) Couette Flow
(cou)

(c) Tilted Moving
Plates (tmp)

(d) Sinusoidal Plates
(sp)

(e) Pressure Pipe
(pp)

(f) Lid Driven Cav-
ity (ldc)

(g) 4 Roller Mill
(4rm)

Figure 6: The configurations present in the solver, depicted on a 64 ˆ 64 ˆ 1
grid.

The user can select one of several configurations. These are displayed in
Fig. 6. Among them are several well-known fluid dynamics benchmark geome-
tries. These include the following:

• Couette Flow (cou)
Two xz-plane aligned plates with the upper plate moving tangentially to
the lower plate enclose a fluid.

• Pressure Pipe (pp)
Two xz-plane aligned still plates enclose a fluid. A force field creates a
flow tangentially to the plates.

• Lid Driven Cavity (ldc)
Plates enclose a cube of a fluid. The upper plate moves tangentially to
the lower plate.

• 4 Roller Mill (4rm)
Four cylindrical “rollers” are situated in the middle of each quadrant of
the xy-plane. The upper right and lower left rollers rotate clockwise while
the upper left and bottom right rollers rotate counter-clockwise.

16

Short Form Long Form Description Default Value
-h –help Displays all the avail-

able launch parame-
ters and exits

n/a

-v –version Displays versioning
information and exits

n/a

-c –config Sets simulation con-
figuration

tmp

-d –dims Sets simulation di-
mensions

32 32 1

-l –learning-rate Sets initial learning
rate

0.05

-i –iterations Sets maximum itera-
tions

10000

-o –output Sets output path LastSimulationOutput.txt
-s –show Enables result ren-

dering
n/a

Table 1: The launch parameters and commands supported by the program.

In addition, we provide several more geometrically interesting configurations.
These are as follows:

• 2 Moving Plates (2mp)
Two xz-plane plates moving tangentially in opposite direction enclose a
fluid.

• Tilted Moving Plates (tmp)
Two xz-plane plates tilted around the z-axis moving tangentially in oppo-
site direction enclose a fluid.

• Sinusoidal Plates (sp)
Two waves on the xz-plane mirrored on the x-axis with their surfaces
moving tangentially in the same direction enclose a fluid.

3.3 System Initialization

With the desired parameters and configuration set by the user, the solver initial-
izes everything it needs to enter the main solving loop. Among others, buffers
for the real- and Fourier-space velocity and force fields are created. While vir-
tual forces behave differently than “regular” forces, there is no separate buffer
for virtual forces. We track which cells on the grid contain virtual forces and
which cells in F⃗ thus can be manipulated. For all cells that do not contain vir-
tual forces the corresponding force in F⃗ is part of the user-defined configuration
and thus must be left alone. Additionally “plans” for our Fourier transforms
are made (see Sec. 3.4) and the CUDA device is selected.

17

By default, a virtual force is placed on each cell marked as solid (see Sec. 2.3).
In an effort to reduce the amount of virtual forces, those that we believe to have
a limited impact on any of the boundary points can be omitted. This reduces
the computations required in the gradient-descent step, as well as the size of
the BU

BF gradient (see Sec. 2.4). Virtual forces are omitted by the simple metric
of whether they are at least a given distance from any boundary point.

To give the virtual forces an initial starting value, a scaled-down subsystem
may be run. By solving a smaller version of the current system we get a force
field which is similar to but not identical to the force field that our original
system will produce. We can sample this smaller force field for starting values
for our virtual forces. If the amount of processing time lost to running the
subsystem is less than the time gained from our better initial starting values we
have a net run-time improvement.

3.4 Force Field to Velocity Field

When using Eq. 7, all of F⃗ is taken and transformed into U⃗ . Since F⃗ is a
combination of user-defined forces and virtual forces, both of which must be
preserved, we cannot get around the fact that we have to do a transform over
the full force field when going into Fourier space. However, when calculating C
we only need to know the current fluid velocity in cells from which a boundary
point interpolates its own. This is illustrated in Fig. 7. As such, we only have
to do a transform over a select set of cells when going back into real space.
This allows us to perform a Non-Uniform Inverse Discrete Fourier Transform
(NUIDFT). Disregarding part of the input theoretically reflects itself in a per-
formance increase, as less data has to be processed.

The NUIDFT is implemented in matrix form. When running the solver on
the CPU this matrix will be generated on initialization. On the GPU the matrix
is calculated on the fly due to the performance impact of retrieving it from global
memory. Each row of the matrix corresponds to a cell which is present in at
least one boundary point, those being the only cells that need to be transformed
back to real space for the solver to run. The contents of the rows are such that
when multiplying the row vector with the (flattened) complex velocity field, we
obtain the real velocity in the corresponding cell (see Sec. 2.1):

NUIDFT ri, js “ exp

ˆ

2π

ˆ

cxjx
N

`
cyjy
M

`
czjz
L

˙˙

, (17)

where c is the cell corresponding to row i. This implies the NUIDFT matrix is
of size |Bcells|ˆNML. However, due to the Hermitian symmetry U⃗ki “ U⃗k|U⃗k|´i

present in the Fourier-transformed velocity field, half of the values are redun-
dant. In fact, fftw and cuFFT do not calculate these values at all when perform-
ing a Fourier transform. This means that the size of the Fourier space velocity
and force buffers are pN

2 ` 1qML. In the NUIDFT matrix this is accounted for
by cutting all columns in the reflected part and multiplying all columns that
correspond to a cell in the reflected part by a factor of 2. The NUIDFT matrix
is thus of size |Bcells| ˆ pN

2 ` 1qML.

18

Figure 7: 2D example indicating which cells we need to know the velocity of
to calculate C (the light red cells). The velocity of the remaining cells is only
relevant once the final solution is calculated (after the final virtual force values
have been found).

3.5 Cost Calculation

Calculating C is a simple square root over the sum of the squared difference
between each boundary point’s current velocity and its desired velocity. Ob-
taining the current velocity requires interpolation over U⃗ . Since we also need
the current velocity in the gradient descent step (Sec. 3.7) this value is cached.

3.6 Stopping Conditions

The user specifies how many iterations the solver is allowed to run when launch-
ing the program. Usually running this exact amount of iterations is not the goal
when attempting to solve a configuration. Instead an attempt is made to reach
a point where the current solution is “sufficiently” converged. What is sufficient
depends on the use case. When this point is reached the solver gets to stop early
and skip the remaining iterations. The solver provides two metrics to measure
how far the current solution has converged; the total percentile reduction in C
and the maximum difference between any boundary point’s desired and actual
velocity. For example, one can opt to stop iterating once C has been reduced
by 99.99% or the velocity error of each boundary points is below 0.01. Another
stopping condition exists which is based on the amount of iterations that have
been performed since a decrease in C has occurred. As this number grows larger
it becomes more likely that the system will not be able to converge any further
and has gotten “stuck”. For example, one can opt to stop iterating once there
has not been a decrease in C for 500 iterations straight. Finally, the system al-
ways stops when γt ă 10´7. At this point the learning rate has shrunk below the
margin of error for a floating point and thus no more meaningful progress can

19

Figure 8: 2D examples of two virtual force - boundary point pairs with differ-
ent absolute coordinates but identical relative coordinates, meaning that BU

BF is
identical as well.

be made. Of the stopping conditions mentioned, only the percentile reduction
was present in the old solver.

3.7 Gradient Descent Step

To perform a gradient descent step we first need a way to access G. As described
in Sec. 3.4, calculating BU

BF requires a Fourier transform of the entire real force
field and at least a partial inverse Fourier transform of the complex velocity field.
At first glance this is a process that must be performed for every entry in G;
from every virtual force to every boundary point on every combination of axes.
This would lead to a total of 9|B||V | Fourier transforms. For configurations
with a larger grid size this quickly becomes unfeasible.

This can be avoided through the observation that a change in velocity in
one cell on the grid from a change in force in another depends on the relative
distance between the two cells, not the absolute distance. Proof for this is given
in Appendix B. This is visualised in Fig. 8. With this in mind it becomes
apparent that for most configurations BU

BF contains many duplicate values. This
can be seen in Fig. 9. What we really only need to know is the velocity in a
(boundary) point that is a certain distance away from a point force. Because of
this we only need to calculate the velocity fields resulting from a singe unit force
at the origin, on every combination of axes. From this BU

BF can be reconstructed.

For example: U⃗ ri, j, ks contains the velocity in a boundary point as a result
from a virtual force with a relative distance of pi, j, kq. We call these unit force

velocity fields U⃗
p1q

a,b , where a, b is the combination of axis.

With U⃗
p1q

a,b all of G can be constructed. When running the solver on the GPU,

G is not explicitly saved in memory however. Instead U⃗
p1q

a,b is read directly. This

20

Figure 9: 2D examples of the relative distances of two virtual forces to all
boundary points in a configuration, showing that these are all identical and
thus would lead to many duplicate values in BU

BF . The same symmetry exists
for the other virtual forces as well.

leads to a significant decrease in memory footprint, as saving all of G would

require 9|B||V | floats. In contrast, all of U⃗
p1q

a,b requires only 9NML floats. An
intuitive way to look at this memory gain is that each boundary point that

accesses the same coordinates of U⃗
p1q

a,b has an identical offset and thus an identical
value in G, meaning there are many duplicate cells. This memory optimization
is especially important on the GPU given the slow nature and relatively low
size of its global memory. Obtaining the velocity of a boundary point, which
is interpolated from U⃗ , has next to no overhead thanks to CUDA’s hardware
accelerated linear texture filtering. Hardware filtering is not present on the
CPU. Additionally, memory latency and size is less of an issue here. As such
when running the solver on the CPU G is generated on initialization. Its entries
are placed in the order in which the gradient descent step accesses them to
improve caching efficiency. That is on axis first, boundary point second and
virtual force last.

In the original system G was fully generated on initialization. It would
perform a separate Fourier transform for every entry in G leading to a total of
9|B||V | Fourier transforms and a large memory footprint (see Sec. 3.10). Using

U⃗
p1q

a,b has the additional benefit of easily enabling the implementation of moving
solids, a future goal of the project. In the original system the gradient would
have to be (partly) recalculated when a boundary point or virtual force moved
to a new cell. This scenario now has no additional overhead whatsoever.

When the chosen stopping condition has not been satisfied (or there is no
stopping condition in place) a gradient descent step will be performed by the
solver. Each virtual force is nudged in the direction in which the velocity error
in each boundary point looks to be decreased most.

21

3.8 Learning Rate Update

Following a gradient descent step γt is updated. When using the halving learning
rate scheme the previous and current costs are factored in. When using the
(dynamic) Polyak learning rate scheme the sum of the step length is used. As
such in this case the learning rate update happens during the gradient descent
step.

3.9 Result Logging

When the solver has reached its final solution the results will be displayed (if
requested) and written to disk. An example of how the system will be displayed

can be seen on the title page. U⃗ will then be written to a text file. The format
that is used can be seen in Tab. 2. Additional logging can be enabled to save γt
and Ct for every iteration as well. This allows the user to see how these values
evolve over time.

Content How often?
N M L Once
Uxris Uyris Uzris For every cell i in order of axis

Table 2: The format of the result output.

3.10 Memory Usage

To give an idea of the memory footprint of the solver on the GPU an overview
of the main buffers is provided in Tab. 3. The real memory footprint is slightly
larger than the sum of these buffers due to scalar variables and miscellaneous
data that is stored.

Buffer Count Size Type (Size)
Real velocity fields 3 NML float (4b)
Real force fields 3 NML float (4b)
Unit force velocity fields 9 NML float (4b)
Complex velocity fields 3 pN

2 ` 1qML complex (8b)
Complex force fields 3 pN

2 ` 1qML complex (8b)
Boundary Points 1 |B| BoundaryPoint (64b)
Virtual Force Indices 1 |V | unsigned int (4b) +

p60NML ` 48pN
2 ` 1qML ` 64|B| ` 4|V |qb

Table 3: The buffers used by the solver on the GPU and their memory footprint.

22

The memory footprint can be further illustrated by an example case. We
take the 2 Moving Plates configuration at a size of N “ M “ L “ x. As the
plates are essentially 2 hyperplanes existing on the xz-axis with boundary point
placed at a 1 unit distance from each other we have |B| “ 2NL. With the
hyperplanes at an offset of M

10 from the upper and lower limits of the grid we

have |V | “ 2M
10 NL. The resulting memory footprint as a function of x is plotted

in Fig. 10.

4 Results

The two points on which the solver is to perform are speed and convergence.
Both will be benchmarked and compared to the old version of the program.
First, an overview of the initialization, solving, and total runtime of the old
and “base” new solvers are given. Next, additional optimizations for the new
solver will be applied individually to observe their effects in isolation. All of the
previously mentioned will use no stopping condition unless specified otherwise
to make it easier to compare runtime. Finally, a “complete” benchmark will be
given with all the successful optimizations and a stopping condition enabled.
Benchmarking will be done on a range of configurations. These are given by
their abbreviated name, which can be seen in Sec. 3.2. Some of these are not
present in the old solver and as such these results are denoted by a dash (-).
The system used to run the benchmarks can be seen in Tab. 4.

System Specifications
CPU AMD Ryzen 5 7600
GPU NVIDIA GeForce RTX 3060 Ti GDDR6X
RAM Kingston Fury Beast KF560C36BBEK2-16

Table 4: The specifications of the system on which the benchmarks are run.

Unfortunately, 3D configurations are currently nonfunctional. As such, all
results will be run on quasi-2D configurations.

23

32 64 96 128 160 192 224 256

1KB

1MB

1GB

1TB

1PB

Gradient sampling

Gradient caching

x

M
em

or
y
F
o
o
tp
ri
n
t

32 64 96 128 160 192 224 256

2

4

6

¨105

x

R
at
io

Figure 10: The approximate memory footprint of the 2 Moving Plates config-
uration given N “ M “ L “ x, shown with the gradient caching (old) and
gradient sampling (new) methods. The upper graph shows the size of the foot-
prints while the lower graph shows the ratio between the two.

24

Old (s) New (s) Improvement (ˆ)
Init. Solv. Total Init. Solv. Total Init. Solv. Total

2mp

322 0.007 5.089 5.096 0.109 0.521 0.629 0.064 9.768 8.368
642 0.199 13.440 24.749 0.120 0.953 1.073 1.658 14.103 12.711
1282 5.835 94.199 100.034 0.117 1.578 1.695 49.872 59.695 59.017
2562 13.957 304.216 318.173 0.117 3.981 4.098 119.291 76.417 77.641
5122 - - - 0.186 31.039 31.225 - - -

tmp

322 0.059 12.715 12.774 0.108 1.037 1.145 0.546 12.261 11.156
642 1.499 76.863 78.362 0.134 1.327 1.461 11.187 57.922 53.636
1282 44.871 489.202 534.073 0.104 2.552 2.656 431.452 191.694 201.082
2562 619.039 1612.193 2231.232 0.129 24.029 24.158 4798.752 67.094 92.360
5122 - - - 0.171 130.820 130.991 - - -

sp

322 0.016 5.994 6.010 0.109 0.908 1.017 0.147 6.601 5.910
642 0.326 18.711 19.037 0.115 1.035 1.150 2.835 18.078 16.554
1282 7.810 97.890 105.700 0.112 1.592 1.704 69.732 61.489 62.031
2562 104.108 319.538 423.646 0.118 6.659 6.777 882.271 47.986 62.512
5122 - - - 0.173 47.866 48.039 - - -

4rm

322 - - - 0.093 1.112 1.205 - - -
642 - - - 0.093 1.045 1.138 - - -
1282 - - - 0.098 1.528 1.626 - - -
2562 - - - 0.102 3.547 3.649 - - -
5122 - - - 0.172 17.209 17.381 - - -

ldc

322 - - - 0.107 1.073 1.180 - - -
642 - - - 0.096 1.321 1.417 - - -
1282 - - - 0.093 1.965 2.058 - - -
2562 - - - 0.103 9.301 9.404 - - -
5122 - - - 0.171 69.651 69.822 - - -

Table 5: Overview of the runtime of the old and base new solvers. Any given
runtime is the average of 3 separate runs of 10000 iterations.

25

4.1 Base

New
10000 max

2mp

322 100.000% 100.000%
642 99.999% 99.999%
1282 99.999% 99.999%
2562 99.996% 99.996%
5122 99.984% 99.984%

tmp

322 99.612% 99.744%
642 99.763% 99.763%
1282 99.942% 99.942%
2562 99.982% 99.982%
5122 99.976% 99.976%

sp

322 98.608% 99.687%
642 98.321% 99.259%
1282 98.658% 99.207%
2562 98.783% 99.354%
5122 98.817% 99.253%

4rm

322 99.498% 99.985%
642 99.849% 99.874%
1282 99.943% 99.949%
2562 99.923% 99.966%
5122 99.811% 99.828%

ldc

322 95.824% 98.898%
642 93.196% 97.814%
1282 92.326% 96.984%
2562 91.836% 95.631%
5122 91.952% 95.767%

Table 6: Overview of the convergence of the base new system. The results given
are as calculated after 10000 iterations with no stopping condition and when
run with unlimited iterations and the “stuck” stopping conditions, respectively.

An overview of the runtime of the old and base new system is provided in
Tab. 5. This is also visualized in Fig. 11. Using the specified configurations
and dimensions, a range of speedups between 5ˆ and 200ˆ is observed. The
initialization shows a decrease in performance for a dimension of 322. However,
where the old system’s initialization time rapidly goes into dozens of seconds or
more as the dimensions increase, the new system stays consistently within the
100 to 200 millisecond range. At no point is there a decrease in performance for
the solving step. In nearly every case, a larger dimensionality leads to a greater
speedup, indicating that the system’s scalability has generally been improved.
An outlier exists in the tmp configuration, where the improvement decreases
past dimensions of 1282. This is visible as a steep slope of the blue triangle plot

26

3264 128 256 512

101

102

103 x
12
8

x
3
8

x

R
u
n
ti
m
e
(s
)

Figure 11: The run time in seconds as a function of the system size x for
a quasi-2D configuration with dimensions x ˆ x ˆ 1. The use of colors and
symbols indicates the 2mp (square), tmp (triangle), sp (circle), 4rm (plus) and
ldc (diamond) configuration for the old (red), base new (blue), and total new
(green) solvers as given in Table 5 and 10. A dashed line indicates that this
configuration is not present in the old solver.

in Fig. 11. As can be seen in Fig. 6, this configuration contains relatively many
solids, which can explain this poorer relative performance as the dimensions
increase. This theory is backed up by the significantly improved results with
limited virtual forces enabled (see Sec. 4.3 and the much flatter slope of the
green triangle plot in Fig. 11.

An overview of the convergence of the base new system is provided in Tab. 6.
Getting the old solver to properly converge proved problematic, and as such,
we cannot provide our own data for its results. Florian Gaeremynck reported
the convergence to be in the 99.000% to 100.000% range for the configurations
available at the time[4]. As for our results, with the 2mp, tmp and 4rm configu-
rations the new system never falls below 99.000% convergence with either 10000
or unlimited iterations. The latter provides only a minute improvement over the
former. In the case of the sp and ldc configurations this difference becomes a lot
more pronounced. Evidently the solver needs relatively more iterations here to
converge to its best solutions. For ldc even the maximum convergence remains
relatively low with no result reaching 99% convergence. We hypothesize that
this is due to the large difference in velocities that the different boundary points
have to satisfy. The upper lid has a velocity of p5, 0, 0q, while the others are
all 0⃗. Due to this discrepancy it might be hard to converge using one singular
learning rate. However, at this point, this is speculation and this would need to
be verified in future work.

27

Runtime (s) Convergence

2mp
322 3.901 100.000%
642 14.930 100.000%
1282 54.875 99.999%

tmp
322 5.560 99.581%
642 18.350 99.762%
1282 67.233 99.942%

sp
322 3.945 98.601%
642 12.945 98.324%
1282 49.998 98.650%

4rm
322 3.409 99.480%
642 10.554 99.834%
1282 33.723 99.943%

ldc
322 3.955 95.832%
642 12.620 93.269%
1282 49.003 92.288%

Table 7: Overview of the runtime and convergence of the new system using
NUIDFT’s. The results given are as calculated after 10000 iterations.

4.2 NUIDFT

An overview of the runtime and convergence of the new system using NUIDFT’s
is provided in Tab. 7. From the data it is abundantly clear that using NUIDFT’s
in its current form has a large detrimental effect on the runtime. Despite this, we
do not believe that the concept itself is to blame, but rather the implementation.
Modern FFT libraries have a level of optimization that is near impossible to
replicate, and even though our NUIDFT implementation is going up against a
Fourier transform over the entire grid, it is still not able to eke out a runtime
advantage. Further research is required to establish whether this statement
holds true.

28

Runtime (s) Convergence

2mp

322 1.055 100.000%
642 1.108 100.000%
1282 1.756 100.000%
2562 2.531 100.000%
5122 4.391 99.999%

tmp

322 1.302 99.551%
642 1.621 99.426%
1282 2.486 99.776%
2562 4.124 99.876%
5122 7.901 99.936%

sp

322 1.084 99.071%
642 1.280 99.006%
1282 1.680 98.952%
2562 2.695 99.193%
5122 5.049 99.491%

4rm

322 1.300 99.527%
642 1.263 99.949%
1282 1.553 99.992%
2562 1.825 99.998%
5122 2.871 99.998%

ldc

322 1.212 95.363%
642 1.672 94.110%
1282 2.791 93.895%
2562 4.719 93.359%
5122 9.823 94.068%

Table 8: Overview of the runtime and convergence of the new solver with virtual
force culling enabled. Any given runtime is the average of 3 separate runs of
10000 iterations.

4.3 Limiting Virtual Forces

An overview of the runtime and convergence of the new system with limited
virtual forces enabled is provided in Tab. 8. Once again the 2mp, tmp, and 4rm
configuration converge well and there is no major difference between their base
counterpart. For sp this difference is slightly larger, approaching 0.500%. With
ldc this becomes several percents. We suspect this has the same cause as given
for its lower convergence in Sec. 4.1. The difference in runtime is very prominent
however, going up to over 5ˆ as fast. This effect is noticeable everywhere, but
especially on configurations that have a lot of virtual forces as can be seen in
Fig. 6. The worsened runtime scaling for tmp as discussed in Sec. 4.1 has been
completely eliminated. This indicates that the optimization has the desired
effect of tempering the effect large solids have on the runtime.

29

Runtime (s) Convergence

2mp

322 1.220 100.000%
642 1.311 99.999%
1282 2.107 99.999%
2562 4.569 99.998%

tmp

322 1.576 99.561%
642 1.952 99.762%
1282 3.694 99.942%
2562 29.695 99.984%

sp

322 1.434 98.638%
642 1.668 98.368%
1282 2.309 98.789%
2562 8.287 98.810%

4rm

322 1.656 99.371%
642 1.656 99.912%
1282 2.118 99.707%
2562 4.511 99.882%

ldc

322 1.555 95.829%
642 1.906 93.234%
1282 2.810 92.044%
2562 11.676 92.162%

Table 9: Overview of the runtime and convergence of the new solver with im-
proved initialization enabled. Any given runtime is the average of 3 separate
runs of 10000 iterations.

4.4 Improved Initialization

An overview of the runtime and convergence of the new system with improved
initialization enabled is provided in Tab. 9. Convergence is not majorly im-
pacted, generally hovering at around a few tenths of a percent from the base
values. However, the runtime has increased across the board. We suspect that
the overhead of setting up and running a smaller subsystem is greater than the
time gained from the better subsequent initialization of the actual system.

30

Runtime (s) Convergence

2mp

322 0.575 100.000%
642 0.286 100.000%
1282 0.279 100.000%
2562 0.310 99.999%
5122 0.426 99.999%

tmp

322 1.183 99.551%
642 1.583 99.426%
1282 2.481 99.776%
2562 2.491 99.876%
5122 3.859 99.936%

sp

322 1.024 99.071%
642 1.180 99.006%
1282 1.675 98.952%
2562 2.573 99.193%
5122 5.051 99.491%

4rm

322 1.289 99.527%
642 1.261 99.949%
1282 1.541 99.992%
2562 1.119 99.998%
5122 0.802 99.998%

ldc

322 1.218 95.363%
642 1.649 94.110%
1282 2.699 93.895%
2562 4.733 93.359%
5122 9.811 94.068%

Table 10: Overview of the runtime and convergence of the new solver with
virtual force culling enabled. The vanished learning rate and stuck stopping
conditions are enabled. Any given runtime is the average of 3 separate runs of
10000 iterations.

4.5 Complete

An overview of the runtime and convergence of the new system with all the
successful optimizations and two stopping conditions enabled is provided in
Tab. 10. The 2mp, tmp, and 4rm configurations all see improvements with the
added stopping conditions as compared to using limited virtual forces. These
are up to 10ˆ, 2ˆ and 3ˆ respectively, which brings the first two up to a total
improvement of 1026ˆ and 895ˆ over their old counterparts. Interestingly, the
runtime for 4rm goes down as the dimensions increase. We currently have no
good explanation for this phenomenon.

31

4.6 Research Questions

Due to the many subproblems that are posed in Sec. 1.3 and covered in this
research, it can be tough to find a concrete answer to any specific one of them.
Each one will be briefly covered using the previously presented results.

1. Can we avoid or limit expensive context switches during the iterative sec-
tion of the solving process?
By executing nearly the entire algorithm on the GPU and leaving all the
relevant data in its device-side memory, the overhead of context switching
has been reduced to a minimum. The usage of the GPU additionally pro-
vides an inherent performance gain. Speedups of up to 200ˆ are observed
for tested configurations and dimensions utilizing no further optimizations
aside from memory improvements. Described in Sec. 3 and benchmarked
in Sec. 4.

2. Can we avoid, limit, or using domain-specific tricks, optimize expensive
(inverse) discrete Fourier transforms?

While this is possible using an NUIDFT on rU , in its current form it does
not lead to an increase in performance. We believe this to be due to the
implementation rather than the theory itself. Described in Sec. 3.4 and
benchmarked in Sec. 4.2.

3. Can we perform the solving process exclusively for cells on a solid surface?
Partly, using the NUIDFT described in the previous question. Besides
this, we have not discovered an operation that acts on the entire grid and
can be performed in such a way where this is not the case. Described in
Sec. 3.4.

4. Can we limit the amount of virtual forces in a system while still converging
to an acceptable solution?
Omitting virtual forces that are relatively far removed from any boundary
point in the system, and thus most likely have only a minute influence
over the solution, has shown to be a viable approach. Speedups of up to
5ˆ are observed for tested configurations and dimension and no notable
convergence problems arise on configurations that did not already have
those to begin with. Described in Sec. 3.3 and benchmarked in Sec. 4.3.

5. Is there a way to determine an approximate initialization value for virtual
forces?
While this is possible using a scaled-down subsystem, in its current form
it does not lead to an increase in performance for any configuration and
metric. We consider it unlikely that a better implementation would lead
to better results. Described in Sec. 3.3 and benchmarked in Sec. 4.4.

32

6. How can we handle the data required by the solver most efficiently?
Data no longer gets copied between the host and device during runtime.
Additionally the highly inefficient method in which gradients were saved
has been replaced by one that has a much more manageable footprint,
especially with regards to scaling. An example is given where the old
system would approach a petabyte of memory versus a gigabyte for the
new system. Described in Sec. 3 and Sec. 3.7 and illustrated in Sec. 3.10.

7. Can we introduce arbitrary solid boundaries in the solver?
Arbitrary solid boundaries have been introduced using an interpolation
system over the discrete grid. This allows for smoother and more complex
boundaries. Described in Sec. 2.2.

4.7 Relation to other Solvers

Comparing the performance of different fluid dynamics solvers is generally done
using a metric which is known as Lattice (or cell) Updates per Second (LUPS).
However, due to the novel nature of this solver, a direct comparison would not
give an accurate representation of its relative performance. Other solvers tend
to employ a time-dependent strategy, while we converge to our solution directly.
The consequence of this is that even if other solvers have higher LUPS, this does
not necessarily mean they obtain their solution faster. This is because our solver
requires less total LUPS to reach its solution. Properly determining this solver’s
performance relative to other solvers thus requires more in depth research into
the characteristics of both methods.

5 Conclusion

We have presented our work on the Stokes solver built by Bart Stam [6] and
Florian Gaeremynck [4]. A variety of strategies are utilized in an attempt to
reduce the solver’s runtime and memory usage. Not all of these are successful
(see Sec. 4.6). Nonetheless, through the remaining strategies large improve-
ments are achieved in both runtime and memory usage. A decrease in overall
runtime by a factor exceeding 1000ˆ is observed in optimal situations. In more
general cases this number is often in the triple digits. As the dimensions of the
system grow, these factors only increase. Similarly, memory usage has been de-
creased by up to a petabyte of data for larger dimensions. Improvements have
also been made to the solver’s flexibility. A more versatile boundary system
has been implemented which allows the solver to handle arbitrary geometries.
Furthermore, a new command-line interface removes the need to deal with a set
of hard-coded simulation parameters. Through the optimizations and improved
flexibility obtained with this research the solver becomes a much more viable
tool for use in a research environment, paving the way for practical application.

33

(a) 15 ˆ 15 ˆ 1 (b) 60 ˆ 60 ˆ 1

Figure 12: A visualization of U1
x{xyz, translated by pN

2 ,
M
2 , L

2 q for clarity. When

not transformed the highest velocity is at p0, 0, 0q, the location of the point force.

6 Future Work

While the use of NUIDFT’s did not provide a runtime improvement, we believe
this is due to the implementation more than the concept itself. Time can be
invested into creating a better implementation or a (CUDA-based) NUIDFT
library can be used. However, at the time of writing the latter does, to our
knowledge, not exist.

One of the major breakthroughs in improving performance and memory

usage is the removal of a full representation of G in favor of sampling U⃗
p1q

a,b .
Intuitively and when judged by eye there appears to be a vertical and horizontal

symmetry present in U⃗
p1q

a,b as can be seen in Fig. 12. If these symmetries are

mathematically proven the memory footprint of U⃗
p1q

a,b can be reduced by 75%.
Moving solids are intended to be implemented in the project and with the

new gradient system (see Sec. 3.7) this is made much easier. To implement this
feature boundary points would have to be grouped internally so they can move
through the fluid as a single object. The forces acting on the object can be
calculated from U⃗ .

The additions made to the project include both high level algorithmic and
structural changes and low level code optimizations. On the low level side, while
care has been put into creating GPU code that runs efficiently there are indu-
bitably performance gains to be made purely by optimizing the existing code.
One promising avenue that can be taken is consolidating the entire algorithm
into one mega-kernel. By doing this several global memory loads can be elim-
inated by keeping the relevant data in thread and shared memory during the
entire solving process.

34

To make working with the solver easier a graphical user interface could be
developed. Not everyone is adept with working from the command line and this
could increase accessibility. In similar vein a Python wrapper could be created.
Python is a language that many researchers are familiar with and it would make
it easier for external programs to interact with the solver.

All configurations are hard-coded aside from their dimensionality. To make
the solver usable in real research scenarios a much more flexible configuration
system is required. This includes more pre-made configurations of common
problems as well as ways to create custom configurations. If a graphical user
interface is made the option could be given to have users “draw” their desired
boundaries by hand. Another option is to give the user the ability to import
an image of a configuration from which the solver infers the boundaries through
edge-detection algorithms.

Different configurations can benefit from different learning rate schemes. To
better find solutions for a wide variety of configurations additional learning rate
schemes can be implemented. More tricks can be used to improve convergence;
For instance, adding weighting to the error in each boundary points so virtual
forces prioritise the most important parts of a configuration.

Visualizing the solution is done on the CPU using CImg. This is fine in the
current context of “static” simulations where the output is a single flow field.
However, once moving solids are implemented, having an animated window is
preferable. In this scenario it would be better to draw the visualization on the
GPU. Otherwise, the flow field would have to be copied back to the CPU at
every frame which would re-introduce the context switching bottleneck. Besides,
all the data required for the visualization is already on the GPU, and GPU’s
are naturally equipped to handle these sorts of tasks. Making the visualizer 3D
would be especially great for interpreting the systems that are being run and
their solutions.

35

A Program flow

Start
System ini-
tialization

Velocity
field from
force field

Cost
calculation

Satisfied
stopping
condi-
tion?

Result
logging

Stop

Gradient
descent
step

Learning
rate

update

yes

no

Figure 13: The program flow of the solver. Round red nodes indicate the entry
and exit points. Square blue nodes indicate steps in the program flow. Diamond
blue nodes indicate a conditional branching.

36

B Relative relation between forces and veloci-
ties

U rq, r, ss “
1

NML

N´1
ÿ

n“0

M´1
ÿ

m“0

L´1
ÿ

l“0

exp

ˆ

2π

ˆ

nq

N
`

mr

M
`

ls

L

˙˙

rU rn,m, ls, (18)

rU rn,m, ls “ Anml
rF rn,m, ls, (19)

rF rn,m, ls “

N´1
ÿ

q1“0

M´1
ÿ

r1“0

L´1
ÿ

s1“0

exp

ˆ

´2π

ˆ

nq1

N
`

mr1

M
`

ls1

L

˙˙

F rq1, r1, s1s, (20)

B rU rq, r, ss

B rF rq1, r1, s1s
“

1

NML

N´1
ÿ

n“0

M´1
ÿ

m“0

L´1
ÿ

l“0

N´1
ÿ

q1“0

M´1
ÿ

r1“0

L´1
ÿ

s1“0

exp

ˆ

2π

ˆ

npq ´ q1q

N

˙˙

exp

ˆ

2π

ˆ

mpr ´ r1q

M

˙˙

exp

ˆ

2π

ˆ

lps ´ s1q

L

˙˙

Anml.

(21)

where A is a matrix containing the transformation from rF to rU as described in
Eq. 7.

37

References

[1] Yinan Chen. Free stock photos and public domain pictures of beach, ocean,
and the City of Daytona Beach, Florida Waves come crashing in from the
Atlantic Ocean. 2013. url: https://commons.wikimedia.org/wiki/
File:Gfp-florida-daytona-beach-ocean-waves.jpg.

[2] Michael A. Day. “The no-slip condition of fluid dynamics”. In: Erkenntnis
33.3 (Nov. 1990), pp. 285–296. issn: 1572-8420. doi: 10.1007/BF00717588.
url: https://doi.org/10.1007/BF00717588.

[3] Sergey V Ershkov et al. “Towards understanding the algorithms for solv-
ing the Navier–Stokes equations”. In: Fluid Dynamics Research 53.4 (July
2021), p. 044501. doi: 10.1088/1873-7005/ac10f0. url: https://dx.
doi.org/10.1088/1873-7005/ac10f0.

[4] Florian Gaeremynck. Improved methods on GPU based versatile and effi-
cient hydrodynamics code for scientific applications. Dec. 2022.

[5] Boris Polyak. Introduction to Optimization. July 2020.

[6] Bart Stam. A GPU-based versatile and efficient hydrodynamics code for
scientific applications. July 2021.

[7] www.Pixel.la.Molten lava flowing. 2016. url: https://commons.wikimedia.
org/wiki/File:Molten_lava_flowing.jpg.

38

https://commons.wikimedia.org/wiki/File:Gfp-florida-daytona-beach-ocean-waves.jpg
https://commons.wikimedia.org/wiki/File:Gfp-florida-daytona-beach-ocean-waves.jpg
https://doi.org/10.1007/BF00717588
https://doi.org/10.1007/BF00717588
https://doi.org/10.1088/1873-7005/ac10f0
https://dx.doi.org/10.1088/1873-7005/ac10f0
https://dx.doi.org/10.1088/1873-7005/ac10f0
https://commons.wikimedia.org/wiki/File:Molten_lava_flowing.jpg
https://commons.wikimedia.org/wiki/File:Molten_lava_flowing.jpg

	Introduction
	Physics Background
	Solver Overview
	Research Questions

	Methodology
	Velocities and Forces
	Boundaries
	Solids and Virtual Forces
	Cost and Gradient Descent

	Implementation
	Tools and Libraries
	Launch
	System Initialization
	Force Field to Velocity Field
	Cost Calculation
	Stopping Conditions
	Gradient Descent Step
	Learning Rate Update
	Result Logging
	Memory Usage

	Results
	Base
	NUIDFT
	Limiting Virtual Forces
	Improved Initialization
	Complete
	Research Questions
	Relation to other Solvers

	Conclusion
	Future Work
	Program flow
	Relative relation between forces and velocities

