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Abstract

At the request of the Ministry of Health, Welfare and Sport, during the COVID-19 pandemic, The
National Institute for Public Health and the Environment (RIVM) conducted a model study into
the effectiveness of contact tracing, with the focus on effectiveness of the CoronaMelder. A model
was created to simulate the epidemic with and without tracing and the use of the CoronaMelder
app. In that model an assumption was made to take the effect of clustering in contact networks
into account, not based on earlier publications. In our project we wanted to investigate if this
assumption on how to implement the effect of clustering on the effectiveness of contact tracing is
justified. Two models were created to simulate clustering in contact networks. The first model is
a simplified version of the model used in the CoronaMelder study. In the second model epidemics
spread on a clustered contact network to represent the process closer to reality. With these models
contact tracing was simulated and compared. We found that the model based on the CoronaMelder
study overestimates the effect of clustering in the contact network on the effectiveness of contact
tracing.
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1 Introduction

The first cases of COVID-19 pandemic, caused by the SARS-CoV-2 virus, were reported in Decem-
ber 2019. In March 2020 the COVID-19 outbreak was declared a global pandemic by the World
Health Organisation. In absence of a vaccine, other interventions had to be used to contain the
spread of the virus. Besides measures like lockdowns, travel restrictions and social distancing,
contact tracing was used to contain the spread of the virus. Contact tracing was a critical strat-
egy to identify and isolate individuals who had been exposed to the virus. Research showed that
containing the spread of the SARS-CoV-2 virus by manual contact tracing was infeasible, but the
use of a contact tracing app could stop the spread if used by enough people [1].

In April 2020 the Dutch minister of Health, Welfare and Sport announced that the government
was considering to introduce a contact tracing app for COVID-19 in The Netherlands. Companies
could send in their proposal for the app. Seven of these proposals were considered for the final
version. However the ministry decided to develop the app themselves, because of concerns about
the use and protection of the personal data of the users. After multiple phases of testing, in October
2020 the CoronaMelder app was launched in The Netherlands. Users of the app got notified when
they had been in close or extended contact with an infected user. This allowed more people to act
accordingly, i.e., to quarantine and get tested.

At the request of the ministry of Health, Welfare and Sport a model study into the effectiveness
of contact tracing, with the focus on effectiveness of the CoronaMelder app, was conducted by The
National Institute for Public Health and the Environment (RIVM) [2], [3]. A model was created
to simulate the epidemic with and without contact tracing and the use of the CoronaMelder app.
The results were used to calculate the number of infections prevented by the app and the reduction
in the reproduction number.

Both the spread of infectious diseases and contact tracing takes place over physical contacts
within social networks. Research indicates that social networks are fundamentally different from
other types of networks [4]. One of the things that distinguishes social networks from other types,
is that they are known to be highly clustered. The degree of clustering in a network indicates
the probability that contacts of a node are also contacts of each-other. Because of these clusters
it is possible that infected people can be traced over a contact which wasn’t the source of the
infection. Thus when modeling a form of contact tracing, clustering in the contact network should
be considered.

A contact network is often represented by a graph, where the nodes represent the individuals and
the links the contacts between the individuals. Over this network an epidemic can be simulated. A
transmission network describes the spread of the infectious agent. This can also be represented by
a graph, where the nodes represent the infected individuals and the edges the infectious contacts,
i.e. the contacts over which transmission took place. A transmission network has no clustering if
individuals can be infected only once.

When modelling a social network like a contact network clustering should be incorporated.
Multiple papers have been written about different ways to incorporate clustering when modelling
social networks. The search is for a mathematical model of a clustered network which is a good
representation of a social network and which properties can be expressed analytically. Standard
random graph models, like the configuration model, can be adjusted to incorporate clustering [5],
[6], [7]. Another type of models are the so-called household models [8], [9], where individuals within
the same group form a cluster, and have additional contacts outside the group that may be of a
different kind. These groups can for example represent households, schools or work.

The CoronaMelder study takes a different approach to incorporate clustering into the model.
Instead of creating a contact network with clustering and which is used to simulate an epidemic and
contact tracing, clustering in the contact network is modeled by adding contacts to the network of
transmission contacts. These extra contacts represent the social contacts between infected nodes
which are used for contact tracing. These contacts are added in three steps. In the first step, a
contact is added between the nodes at distance 2 with a probability c, where the distance between
two nodes represents the minimum number of edges in the network to go from one node to the
other. In the next step, between every pair of nodes that are at distance 2 after step 1 a connection
is added with a probability c2. In the third step, again between every pair of nodes that are at
distance 2 after step 2 a connection is added with a probability c3. The question that arises is if
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adding the clustering to the transmission network instead of using a contact network is a suitable
manner of studying the effect of clustering on contact tracing.

In this thesis we want to investigate if a model which adds contacts to the transmission network
approaches the effect of clustering on contact tracing. We do this by introducing two new models:
a simplified version of the model used in the CoronaMelder study, and a similar model but in which
first a contact network is formed. We want to answer the following questions:

1. What is the effect of clustering in the contact network on the spread of an epidemic?

2. What is the effect of clustering on the effectiveness of contact tracing?

3. What are the differences and similarities of the effectiveness of contact tracing with the two
models?

This thesis has the following structure. In Chapter 2 we introduce the two models used in
this thesis and compare their structures. In Chapter 3 we give some analytical results describing
the properties of the networks that arise form our models. In Chapter 4 we discuss the effect of
clustering in a contact network on a epidemic. In Chapter 5 we introduce contact tracing to the
networks and discuss the effect of clustering on the effectiveness of contact tracing. In Chapter
6 we compare the effectiveness of contact tracing with both models. We end with the conclusion
and discussion in the last two chapters.
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2 Models

In this project we compare the effectiveness of contact tracing during an epidemic on a network
resulting from 2 different models. Both models contain a form of clustering, i.e., contacts along
which tracing takes place without transmission, but they are different. The first model is based
on the model used in the study for the contact tracing app where extra contacts were added after
simulating the epidemic so that tracing can take place across contacts that did not play a role in
the spread of the epidemic. The second model uses an approach closer to the process in reality, by
simulating the epidemic on a clustered network.

The networks are realisations of a stochastic process. The nodes in the networks represent
the individuals in the population and the edges represent the contacts between these individuals.
During this project we looked at multiple network properties. The degree distribution of a network
is the probability distribution describing the number of contacts the nodes in the network have.
The offspring distribution of a branching process is the distribution describing the number of
offspring of a single node. The clustering coefficient is a measure of the degree to which nodes tend
to cluster together. All the networks used are static.

We simulate an epidemic with permanent immunity on a generation basis. When describing an
epidemic, we are mostly interested in the basic reproduction number, R0. The basic reproduction
number of an epidemic is the expected number infections caused by a typical infected individual
in a susceptible population. R0 is often used in epidemiology for assessing the potential spread of
an infectious disease within a population.

When denoting the network properties, we use a subscript to denote to which network a property
belongs and a superscript to denote which model was used to create this network. For example,

D
(1)
t is used to denote the degree distribution of the network used for contact tracing, the tracing

network, obtained with model 1.

2.1 Model 1

We first describe the model based on the model used during the study of the contact tracing app.
The first step of this model describes the transmission of the pathogen. We assume each individual
can be infected only once. Hence, if we start with a single infected individual, the transmission
network can be represented by a tree. This means that a branching type process is a natural way
to describe the transmission process. If we assume that depletion of susceptible individuals in the
population is negligible, each infected individual has the same offspring distribution. The offspring

distribution O
(1)
e is based on the epidemic it aims to describe, i.e., E(O

(1)
e ) = R0.

Next we add extra connections to this transmission network. Between every pair of nodes
at distance 2 we add independently a connection with probability p(1), denoted as the clustering
probability. These extra connections represent contacts between infected nodes which did not lead
to transmission. This resulting network is called the tracing network as contact tracing is simulated

over this network. This tracing network has a clustering coefficient, C
(1)
t , and degree distribution,

D
(1)
t .
So, the input parameters for this model are the offspring distribution of the transmission net-

work, O
(1)
e , and the clustering probability, p(1). The outcome is the resulting tracing network with

its properties such as C
(1)
t and D

(1)
t .

Note that only infected individuals are part of the tracing network. Consequently, this model
cannot be used to assess the amount of effort needed to preform the contact tracing, as individuals
who did have contact with infectious individuals but did not get infected are not part of the
network, but may be traced in reality.

2.2 Model 2

With the second model we want to stay closer to the process as it happens in reality. In this
model a clustered contact network is created over which an epidemic is simulated and from this
the transmission and tracing network are obtained.

In this model, we start by creating the contact network. For simplicity we use a branching

process with offspring distribution O
(2)
b . Then clustering is added to this branching process in a

3



(a) Transmission Network (b) Tracing network

Figure 1: Example of networks obtained using model 1 with an fixed offspring of 2. The arrows
represent the transmission contacts and the dashed lines the added connections.

similar way as in model 1. Connections are added between each pair of nodes at distance two.
These connections are added independently with probability p(2), the clustering probability. The

resulting network is the contact network with a degree distribution, D
(2)
c , and clustering coefficient,

C
(2)
c .
Over this resulting contact network we simulate the epidemic. For simplicity we simulate the

epidemic as follows. For each edge, during a generation transmission occurs with probability q,
denoted as the transmission probability, if one of the endpoint of the edge is infectious and the other
is susceptible. A node is only infectious during one generation. Every infected node in the contact
network independently infects each susceptible neighbour with the transmission probability. We
start the epidemic with one infected node as the initial case.

The epidemic over the contact network is described in a transmission network. In the trans-
mission network the connections represent the contacts over which the infections took place. This

network has a offspring distribution, O
(2)
e , from which we can obtain the basic reproduction number

of the simulated epidemic, as R
(2)
0 = E(O

(2)
e ).

After simulating the epidemic we can obtain the tracing network. The tracing network in this
model is the sub-network of the contact network consisting of all the infected nodes and connections
between them, as susceptible nodes do not have an effect on contact tracing if one neglects that
in reality effort is taken to detect all contacts, also the ones which were not infected. The tracing

network has degree distribution D
(2)
t and clustering coefficient C

(2)
t .

So, the input parameters for model 2 are the offspring distribution of the branching process,

O
(2)
b , and the clustering and transmission probabilities, p(2) and q. The outcome of this network

are the resulting contact, transmission and tracing networks with their properties.

2.3 Structural Differences

The biggest difference between these two models is that in model 1 the transmission tree is directly
simulated and thus the transmission path is fixed, while in model 2 the epidemic is simulated over
a contact network and thus multiple realisations of the epidemic are possible. The tracing network
obtained with model 1 has two different kinds of connections. The connections describing the
transmissions and the added connections. Both connections can be used for contact tracing, but
transmission is only possible over the transmission contacts.

The connections in the tracing network obtained with model 2 are all equal. Some are used
for transmission, but unlike in model 1 the transmission path is not fixed. If any intervention
is modeled on these networks, in model 1 the transmission path is stopped, while in model 2
alternative infection paths may become available.

Another difference is that in model 1 the extra connections are always between nodes at distance
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two. If we look at the tracing network of model 2 as the transmission tree with added connections,
it is possible that the added connections are between nodes at distance larger than two.

(a) Contact Network (b) Simulated epidemic (c) Tracing network

Figure 2: Example of networks obtained using model 2 with with a fixed offspring of 2 used for
the branching process. The dashed lines represent the added connections and the red arrows the
path of the infection.
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3 Network Properties

In both models connections are added between nodes at distance 2 with a clustering probability.
We want to know if we can analytical express some properties of a network after these connections
are added. The properties discussed in this section are the degree distribution and clustering
coefficient.

3.1 Degree Distribution

Let the degree of an individual in the branching process be distributed according to distribution
X. In a branching type network every individual has one parent, hence we assume P(X = 0) = 0.
Our aim is an expression for the resulting degree distribution Y when connections at distance 2
are added with probability p:

P(Y = k) =

k∑
i=1

P(Y = k,X = i).

The new degree distribution Y depends on the number of nodes at distance 2. Let L be the
sum of all these nodes, i.e., the sum of the number of siblings, grandchildren and grandparents in
a branching process.

P(Y = k) =

k∑
i=1

∞∑
l=k−i

P(Y = k,X = i, L = l)

=

k∑
i=1

∞∑
l=k−i

P(Y = k|X = i, L = l)P(X = i, L = l)

=

k∑
i=1

∞∑
l=k−i

P(Y = k|X = i, L = l)P(L = l|X = i)P(X = i).

When a node has degree i and has l nodes at distance 2 the probability that its degree after
adding the connections is k is the probability that of the l possible connections k − i are added.
Each connection is independently added with probability p, so we have that the number of added
edges is binomial distributed:

P(Y = k|X = i, L = l) =

(
l

k − i

)
pk−i(1− p)l−k+i,

where we use the standard conventions that
(
i
j

)
= 0 if j < 0 or j > i.

So the last step is to calculate P(L = l|X = i). Note that if the degree of a node in a branching
process equals i, there are i − 1 children and 1 parent. Let S be the number of siblings of a
node. The probability that a node has s siblings is the same as the probability that the parent has
degree s+ 2, its own parent, the node itself and the s other children. The degree of the parent is
size-biased. So, we have

P(S = s) = P(parent degree = s+ 2) =
(s+ 1)P(X = s+ 2)∑
s′(s

′ + 1)P(X = s′ + 2)
=

s+ 1

E(X)− 1
P(X = s+ 2).

Let G be the number of grandchildren of a node. The probability to have g grandchildren,
given that there are i− 1 children is

P(G = g|X = i) = P(X1 +X2 + · · ·+Xi−1 = g + (i− 1)).

Here X − 1, . . . , Xi−1 are independent copies of X. The number of siblings and the number of
grandchildren are independent and the number of siblings does not depend on the degree of that
node. Therefore we have that:

P(L = l|X = i) =

l−1∑
g=0

P(G = g, S = l − g − 1|X = i) =

l−1∑
g=0

P(S = l − g − 1)P(G = g|X = i).
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The sum is from 0 to l − 1, because one of the nodes at distance 2 is the grandparent and every
node has exactly one grandparent.

So, we get that the probability that after adding the extra connections with probability p a
uniformly at random chosen node has degree k equals:

P(Y = k) =

k∑
i=1

∞∑
l=k−i

l−1∑
g=0

P(Y = k|X = i, L = l)P(S = l − g − 1)P(G = g|X = i)P(X = i).

3.1.1 Fixed Offspring

We start by looking at a branching process with a fixed number of offspring. We say that every
node has λ offspring. This can be described as a offspring distribution: assume that the number
of offspring is distributed according to Z, then

P(Z = k) = δk,λ =

{
1 if k = λ

0 if k ̸= λ
,

where δi,j is the Kronecker delta.
So, we have that P(X = k) = P(Z = k − 1) and thus

P(X = k) =

{
1 if k = λ+ 1

0 otherwise
.

When the number of offspring is fixed, the number of nodes at distance 2 is easily found:
every node has λ − 1 siblings, 1 grandparent and λ children, which all have λ children, thus λ2

grandchildren. So, in total there are (λ+ 1)λ nodes at distance 2.

P(L = l|X = λ+ 1) =

{
1 if l = (λ+ 1)λ

0 otherwise
.

This gives us the following expression for the degree distribution after adding the connections
at distance 2 with probability p:

P(Y = k) = P(Y = k|X = λ+ 1, L = (λ+ 1)λ)

=

(
(λ+ 1)λ

k − (λ+ 1)

)
pk−(λ+1)(1− p)(λ+1)λ−k+(λ+1).

3.1.2 Poisson Distribution

Now we assume that the number of offspring is Poisson distributed, i.e. P(X = k) = P(Z = k− 1)
where Z follows a Poisson distribution with rate λ, thus

P(X = k) = P(Z = k − 1) =
λk−1e−λ

(k − 1)!
.

For calculating the chance to have g grandchildren, given degree i we use the fact that the sum
of j idd random variables all with rate λ is a Poisson random variable with rate jλ.

P(G = g|X = i) = P(Z1 + Z2 + · · ·+ Zi−1 = g) = P(Pois((i− 1)λ) = g) =
((i− 1)λ)ge−(i−1)λ

g!

here Z1, . . . , Zi−1 are idd copies of Z.
Now we look at the number of siblings:

P(S = s) =
s+ 1

E(X)− 1
P(X = s+ 2) =

s+ 1

λ
P(Z = s+ 1) =

s+ 1

λ

λs+1e−λ

(s+ 1)!
=

λse−λ

s!
= P(Z = s)
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Figure 3: The degree distribution of a network when adding contacts to nodes at distance 2
with probability p to a branching process with a constant offspring of 2.

So, the number of siblings is also Poisson distributed with rate λ
Using that each of the (i−1) children have children distributed according to Z, and the number

of siblings is also distributed as Z, and that there is always 1 grandparent, we have that, if there
are i− 1 children, L will be distributed as 1 + Z1 + · · ·+ Zi. Hence we have that:

P(L = l|X = i) = P(Z1 + Z2 + · · ·+ Zi = l − 1) = P(Pois(iλ) = l − 1) =
(iλ)l−1e−iλ

(l − 1)!

and thus

P(Y = k) =

k∑
i=1

∞∑
l=k−i

P(Y = k|X = i, L = l)P(L = l|X = i)P(X = i)

=

k∑
i=1

∞∑
l=k−i

(
l

k − i

)
pk−i(1− p)l−k+i (iλ)

l−1e−iλ

(l − 1)!

λi−1e−λ

(i− 1)!
.

This can be further simplified, as for the inner summation we have

∞∑
l=k−i

(
l

k − i

)
pk−i(1− p)l−k+i (iλ)

l−1e−iλ

(l − 1)!

λi−1e−λ

(i− 1)!
=

e−λ(1+ip)λi−2(ipλ)k−i(k + i(−1 + λ(1− p)))

i!(k − i)!

and hence, we have that

P(Y = k) =
e−λ

λ2

k∑
i=1

(λe−λp)i(ipλ)k−i(k − i+ iλ(1− p)))

i!(k − i)!
.

3.1.3 Negative Binomial Distribution

Now assume that the number of offspring is Negative Binomial distributed, i.e. P(X = k) =
P(Z = k − 1) where Z follows a negative binomial distribution with parameters r and π, where
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Figure 4: The degree distribution of a network when adding contacts to nodes at distance 2
with probability p to a branching process with offspring distributed according to a Poisson
distribution with rate 2.

r ∈ R is the number of successes and π ∈ [0, 1] the probability of success. In this section we only
consider the situation where r ∈ N. We get that the probability that a node has degree k is

P(X = k) = P(Z = k − 1) =

(
k + r − 2

k − 1

)
(1− π)k−1πr.

Use the fact that if Y1 ∼ NB(r1, π) and Y2 ∼ NB(r2, π), then Y1 + Y2 ∼ NB(r1 + r2, π) to get
that the chance to have g grandchildren is

P(G = g|X = i) = P(Z1 + Z2 + · · ·+ Zi−1 = g) = P(NB((i− 1)r, π) = g)

=

(
g + (i− 1)r − 1

g

)
(1− π)gπ(i−1)r.

here Z1, . . . , Zi−1 are idd copies of Z.
For the number of siblings we get:

P(S = s) =
s+ 1

E(X)− 1
P(X = s+ 2) =

s+ 1

r(1− π)/π
P(Z = s+ 1) =

(s+ 1)π

r(1− π)

(
s+ r

s+ 1

)
(1− π)s+1πr

=
(s+ 1)

r
πr+1(1− π)s

(
s+ r

s+ 1

)
=

(
s+ r

s

)
πr+1(1− π)s =

(
s+ (r + 1)− 1

s

)
πr+1(1− π)s

= P(NB(r + 1, π) = s).

So, we see that the number of siblings is negative binomial distributed with size r+1 and probability
π. And thus it follows that

P(L = l|X = i) = P(NB((ir + 1, π) = l − 1) =

(
l − 1 + (ir + 1)− 1

l − 1

)
(1− π)l−1πir+1

=

(
l + ir − 1

l − 1

)
(1− π)l−1πir+1.
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When we combine all these probabilities we get that

P(Y = k) =

k∑
i=1

∞∑
l=k−i

P(Y = k|X = i, L = l)P(L = l|X = i)P(X = i)

=

k∑
i=1

∞∑
l=k−i

(
l

k − i

)
pk−i(1− p)l−k+i

(
l + ir − 1

l − 1

)
(1− π)l−1πir+1

(
i+ r − 2

i− 1

)
(1− π)i−1πr

=

k∑
i=1

∞∑
l=k−i

(
l

k − i

)(
l + ir − 1

l − 1

)(
i+ r − 2

i− 1

)
pk−i(1− p)l−k+i(1− π)l+i−2π(i+1)r+1.

Figure 5: The degree distribution of a network when adding contacts to nodes at distance 2
with probability p to a branching process with offspring distributed according to a negative
binomial distribution with size 2 and probability 0.5.

3.2 Expected Degree

It is also interesting to look at how the expected degree changes after adding the extra connections
with the clustering probability p.

Lemma 3.1. Consider a branching process with offspring distribution Z, and thus degree distri-
bution X = Z + 1. If connections are independently added with probability p between all pairs of
nodes at distance 2, the expected degree E(X) in the resulting network equals:

E(Y ) = E(X) + p

(
E(Z)2 + E(Z) +

Var(Z)

E(Z)

)
.

Proof. The new degree is the old degree and p times the number of nodes at distance 2, hence for
the expected degree we get

E(Y ) = E(X) + pE(L)

= E(X) + p (E(G) + E(N) + E(S))

= E(X) + p
(
E(Z)2 + 1 + E(S)

)
,

where G is the number of grandchildren, N the number of grandparents and S the number of
siblings.

10



Hence, we rewrite E(S):

E(S) =

∞∑
s=0

sP(S = s)

=

∞∑
s=0

s
s+ 1

E(X)− 1
P(X = s+ 2)

=

∞∑
s=0

s
s+ 1

E(Z)
P(Z = s+ 1)

=
1

E(Z)

∞∑
k=1

k(k − 1)P(Z = k)

=
1

E(Z)

( ∞∑
k=2

k2P(Z = k)−
∞∑
k=1

kP(Z = k)

)

=
1

E(Z)

( ∞∑
k=0

k2P(Z = k)− P(Z = 0)−
∞∑
k=0

kP(Z = k) + P(Z = 0)

)

=
1

E(Z)

(
E(Z2)− E(Z)

)
=
E(Z2)

E(Z)
− 1.

Substituting this in to the term for E(Y ) gives the desired result:

E(Y ) = E(X) + p

(
E(Z)2 + 1 +

E(Z2)

E(Z)
− 1

)
= E(X) + p

(
E(Z)2 +

E(Z2)

E(Z)

)
= E(X) + p

(
E(Z)2 + E(Z) +

Var(Z)

E(Z)

)
.

Figure 6 shows that for the three offspring distributions the obtained expressions for the new
degree distribution agree with the found expression for the expected degree.

3.3 Clustering Coefficient

The addition of the connections at distance 2 to a branching type network adds clustering to the
network. A way to measure this is by calculating the clustering coefficient of the network.

The clustering coefficient of a network can be defined as

C =
3N△

N3
,

where N△ is the number of triangles and N3 is the number of connected triplets. A triplet is a set
of three nodes that are connected by either two or three connections. If the triplet is connected by
three connections it is also a triangle.

While the clustering coefficient is an important property of the network, it doesn’t describe the
network. It is not possible to replicate the network only from the clustering coefficient. Networks
with very different structures can have the same clustering coefficient, so while it is nice to know
this property of a network, we should remember its shortcomings.

Our aim is to find the clustering coefficient in a branching type network where individuals
have a degree X (offspring X - 1) and where we added additional connections at distance 2 with
probability p. The clustering coefficient is the expected number of triangles a random node in the

11



Figure 6: The expected degree of a network when adding contacts to nodes at distance 2 with
probability p to a branching process with offspring distributed with distributions Pois(2) and
NB(2,0.5), and a fixed offspring of 2 calculated using the expressions for P(Y = k).

network is part of divided by the expected number of triplets this node is the central node of. This
node has degree distributed according to X, i.e., X−1 children, it has S siblings, G grandchildren,
1 parent and 1 grandparent. The number of connections after we add connections at distance 2
with probability p is given by Y . Hence an individual is the central node of a triplet between

(
Y
2

)
pairs. We want to find out how many of these pairs are also directly connected to each other, such
that there is a triangle in the network. Let an individual has s siblings (s), x − 1 children (c), g
grandchildren (g), 1 parent (p) and 1 grandparent (n). These are all individuals at distance at
most 2 in the original network.

We obtain the expected number of triangles by calculating the number of triangles of a random
node given its number of siblings, children and grandchildren, △(s, c, g), and then multiplying it by
the probability of the node having that number of siblings, children and grandchildren, P(s, c, g).
The expected number of triplets can be calculated in the same manner, instead of the number
of triangles, we calculate the number of triplets a random node is the central node of, given its
number of siblings, children and grandchildren.

C =

∑
s,c,g P(s, c, g)△(s, c, g)∑
s,c,g P(s, c, g)T(s, c, g)

.

We have already seen that an individual is the central node of a triplet between
(
Y
2

)
pair, hence

∑
s,c,g

P(s, c, g)T(s, c, g) =
∑
k

(
k

2

)
P(Y = k).

To calculate △(s, c, g) we consider all possible combinations of triplets a node can make with
nodes at distance at most 2 in the original network. For every triplet, we look at the number of
those triplets exists, the probability the triplet exists and the chance that the triplet is a triangle.
The results are shown in Table 1.

For example a triple consisting of a random node its parent and one of its children, a pic triple,
exists with probability 1, as connections are at distance 1. There are c of these triples. The
probability that this triple is a triangle is the chance that a child is connected to its grandparent,
which is p.

12



There are two kinds of triples where the probability of forming a triangle is a bit more compli-
cated: gig and cig triples. For the gig triples, there exist g(g−1)/2 triples and the triple exist with
probability p2. The chance that two nodes of of type g are connected, and thus form a triangle,
is more complicated. If the two grandchildren have the same parent, this probability is p. If they
have different parents, this probability is 0. The chance that the second g has the same parent as
the other g is denoted by P(cg1 = cg2 |c, g), here cg1 denotes the child which is the parent of the
first

For the cig triples, there are cg triples. These triples exist with probability p. The chance that
c and g are connected is again more complicated. If g is a child of c, this probability is 1. If g is a
child of a sibling of c, the probability is 0. Hence we need the chance that g is a child of c, which
is 1/c.

triple # triples triple probability triangle probability
pic c 1 p
pig g p 0
pis s p 1
pin 1 p 1
nic c p 0
nig g p2 0
nis s p2 p
sis s(s− 1)/2 p2 p
sig sg p2 0
sic sc p 0
cic c(c− 1)/2 1 p
gig g(g − 1)/2 p2 pP(cg1 = cg2 |c, g)
cig cg p 1/c

Table 1: Table showing the number of triplets, the probability the triplet exist and the
probability that it forms a triangle for the different kinds of triplet.

Now the only thing left to do to obtain the number of triangles a random node is part of, is to
obtain an expression for P(cg1 = cg2 |c, g).

P(cg1 = cg2 |C = c,G = g) =
∑

γ∈Γc,g

P(γ|G = g, C = c)P(cg1 = cg2 |C = c,G = g, γ), (1)

here Γc,g is the set of all possible combinations of dividing g grandchildren over c children.
The second probability in the expression 1 is the probability that two grandchildren have the

same child as parent, when the number of grandchildren per child are given. This probability is
given by

P(cg1 = cg2 |C = c,G = {g1, g2, . . . , gc},
∑

i gi = g) =

c∑
i=1

gi
g

gi − 1

g − 1
=

1

g(g − 1)

c∑
i=1

gi(gi − 1),

here gi is the number of children of child i. First there is a chance gi
g that the first grandchild is

from child i and then a chance gi−1
g−1 that the second grandchild is also from child i. As we only

want the two grandchildren to have the same parent and not that the parent is a specific child, we
sum this chance over all children.

Now we rewrite the first probability of expression 1:

P(γ|G = g, C = c) =
P(γ)

P(G = g, C = c)
=

∏c
i=1 f(gi)

P(G = g|C = c)P(C = c)
.

here f(gi) is the density function. The probabilities in the denominator are obtained in Section
3.1.
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P(cg1 = cg2 |C = c,G = g) =
1

g(g − 1)

1

P(G = g|C = c)P(C = c)

∑
γ∈Γc,g

c∏
i=1

f(gi)

c∑
j=1

gj(gj − 1),

(2)

We look at the resulting clustering coefficient for a fixed number of offspring and offspring
distributed according to the Poisson and negative binomial distributions.

3.3.1 Fixed Offspring

Again, we start with the situation of a branching process where every node has to same number
of offspring λ, i.e.,

P(X = k) =

{
1 if k = λ+ 1

0 otherwise
.

For this offspring distribution we know that every node has λ children, λ2 grandchildren and
λ−1 siblings. This makes it easy to calculate P(cg1 = cg2 |c, g), as Γc,g has only one element, which
is g1 = λ, g2 = λ, . . . , gλ = λ. Hence

P(cg1 = cg2 |c, g) =
1

g(g − 1)

c∑
j=1

gj(gj − 1) =
cg1(g1 − 1)

g(g − 1)
.

Thus, the number of triangles a random node is part of is∑
s,c,g

P(s, c, g)△(s, c, g) = λp+ (λ− 1)p+ p+ (λ− 1)p3 + (λ− 1)(λ− 2)p3/2 + λ(λ− 1)p/2

+ λ2(λ2 − 1)p3
λ2(λ− 1)

2λ2(λ2 − 1)
+ λ3p/λ

=
1

2
λp(3λ+ λ2p2 − p2 + 3).

Using the degree distribution obtain in Section 3.1.1 we get∑
k

(
k

2

)
P(Y = k) =

1

2
λ(1 + λ)(1 + 2(1 + λ)p+ (−1 + λ+ λ2)p2.

Combining our results we get that the clustering coefficient after adding the extra connections
becomes

C =
1
2λp(3λ+ λ2p2 − p2 + 3)

1
2λ(1 + λ)(1 + 2(1 + λ)p+ (−1 + λ+ λ2)p2)

=
p((λ− 1)p2 + 3)

(λ2 + λ− 1)p2 + 2(λ+ 1)p+ 1
.

3.3.2 Poisson Distribution

For a branching process for which the offspring which is Poisson distribution with rate λ we have
shown in Section 3.1.2 that the number of children is Poisson distributed with rate λ and the
number of grandchildren given i children is Poisson distributed with rate iλ and the number of
siblings is again Poisson distributed with rate λ. Because of this the probability that a second
grandchild has the same parent as the other grandchild given the number of grandchildren and
children, P(cg1 = cg2 |c, g) equals to 1/c.

We obtain that the number of triangles a random node is part of is 1
2λp(3λ+(λ2+λ+2)p2+4)+p.∑

s,c,g

P(s, c, g)△(s, c, g) = λp+ λp+ p+ λp3 + λ(λ− 1)p3/2 + λ(λ− 1)p/2

+ λ2(λ2 − 1)p3/2λ+ λ3p/λ

=
1

2
λp(3λ+ (λ2 + λ+ 2)p2 + 4) + p.
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The number of triplets with the node as central node is
∑

k

(
k
2

)
P(Y = k), which equals for the

offspring distribution obtained in Section 3.1.2 to 1
2 (λ(λ+ 2) + λ(λ+ 2)(λ2 + λ+ 1)p2 + 2(λ(λ+

1)(λ+ 2) + 1)p). Hence the clustering coefficient C equals to

C =
p(λ(3λ+ (λ2 + λ+ 2)p2 + 4) + 2)

(λ(λ+ 2) + λ(λ+ 2)(λ2 + λ+ 1)p2 + 2(λ(λ+ 1)(λ+ 2) + 1)p)
.

Figure 7: The clustering coefficient of a network when adding contacts to nodes at distance 2
with probability p to a branching process with a fixed offspring and a offspring distributed
according to a Poisson distribution.

3.3.3 Negative Binomial Distribution

To be able to express the clustering coefficient for a network where connections are added to a
branching process which offspring follows a negative binomial distribution, we have to calculate
P(cg1 = cg2 |C = c,G = g). Equation 2 states that we need Γc,g, which is the set of all possible
combinations of dividing g grandchildren over c children. The number of offspring of a single node
in a branching process which offspring is distributed according to the negative binomial distribution
has no upper bound, thus it is not possible obtain Γc,g. Because of this, we weren’t able to express
the clustering coefficient when the number of offspring is negative binomial distributed.
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4 Epidemic

In model 2 an epidemic is simulated on the contact network. In this chapter we look into the effect
of the clustering added to the contact network on the epidemic. We do this by determining the
basic reproduction number, R0, of the epidemic simulated for different values of the transmission
and clustering probabilities.

As stated in Chapter 2, we simulate a generation based epidemic. Every infected node inde-
pendently infects each susceptible neighbour with the transmission probability q. Each node is
infectious during one generation. The epidemic is started with one initial case.

4.1 Analytical Results

Ideally we want an analytical expression for the basic reproduction number of the epidemic sim-

ulated in model 2, R
(2)
0 . Because of the structure of the contact network, we did not succeed in

obtaining this expression. The added contacts make it possible for the infection to climb back up
the tree like structure of the contact network after multiple infection generations.

However we are able to give an expression for R
(2)
0 for some values of q and p. For the trivial

case q = 0, it is obvious that R
(2)
0 = 0.

In the case of p(2) = 0, the contact network has a branching type structure. This makes it easy

to calculate R
(2)
0 . An infected node will infect its susceptible contacts with probability q. In a

branching type network, the number of susceptible contacts is the number of offspring a node has.
This is because one of its contacts is the contact over which the node is infected. Because of the
structure none of its other contacts will be infected by another node. Thus we get that if p(2) = 0,

R
(2)
0 = qE(O

(2)
b )

It is also possible to get an analytical expression for R
(2)
0 if q = 1. In this case every individual

will become infected. We want to know the expected number of individuals a single individual
infects. Because of the added contacts, it is possible that a susceptible node has multiple possible
sources of infection. The possible infectors are always the parent and grandparent in the contact
tree, as sibling contacts do not play a role when q = 1.

Suppose that the grandparent is always assigned to be the infector of their grandchild if the
connection between them exists. Then, a node will infect one of its grandchildren with probability
p(2), i.e., if that connection is added, and a child with prob 1 − p(2), i.e., if the child does not

have a connection with their grandparent. A node is expected to have E(O
(2)
b )2 grandchildren and

E(O
(2)
b ) children. Thus, we get that if q = 1 for all values of p(2)

R
(2)
0 = E(O

(2)
b )2p(2) + E(O

(2)
b )(1− p(2)).

4.2 Simulation Results

In this section we will look at the simulation results. From the simulations the reproduction number
can be estimated by dividing the number of infected nodes of each generation i with the number of
infected nodes in generation i− 1. When multiple simulations are used, the reproduction number
is estimated by

R
(2)
0 =

∑M
j=1 Inf

(j)
i∑M

j=1 Inf
(j)
i−1

,

where M is the number of iterations and Inf
(j)
i the number of infected in generation i in iteration

j.

To know from which generation the estimated R
(2)
0 is stable, we looked at the behaviour of R

(2)
0

per generation. This is shown in Figure 8. This figure shows that after infection generation 5 the
estimates are stable. Based on these findings, we decided to take the result of infection generation
7 and use 10000 iterations of the simulation to estimate the reproduction number for all the results
in this project.
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Figure 8: R
(2)
0 estimated for every epidemic generation using model 2 with p(2) = 0.5, q = 0.326

and O
(2)
b = Pois(2) using 1000 iterations of the simulation.

We simulated epidemics on networks created with three offspring distributions O
(2)
b : fixed 2,

Pois(2) and NB(2, 0.5), all with an expected value of 2 and a variance of 0, 2 and 4, respectively.
Figures 9, 10 and 11 show the reproduction numbers for different values of the transmission and
clustering probability.

First it is good to take note of that the simulation results depicted in Figures 9, 10 and 11 agree
with our analytical findings for p = 0 or q = 1, which are independent of the offspring distribution

O
(2)
b . Note that when q = 1, R

(2)
0 = 2+2p(2) for all three offspring distributions. This agrees with

our analytical finding, as

R
(2)
0 = E(O

(2)
b )2p(2) + E(O

(2)
b )(1− p(2)) = 22p(2) + 2(1− p(2)) = 2 + 2p(2).

These analytical results create boundaries for R
(2)
0 with other values of p(2) and q. As a

consequence, the differences between results for the different offspring distributions are not that
large. Looking at Figures 9b, 10b and 11b, we see that the curve of the reproduction number
initially grows faster when increasing the transmission probability if the variance of the offspring
is larger.
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(a) (b)

Figure 9: The basic reproduction number of the simulated epidemics over a contact network
resulting from model 2 with clustering probability p, transmission probability q and a branching
process with a fixed number of offspring of 2. The highlighted nodes agree with our analytical
findings.

(a) (b)

Figure 10: The basic reproduction number of the simulated epidemics over a contact network
resulting from model 2 with clustering probability p, transmission probability q and a branching
process with offspring distributed according to the Poisson distribution with rate 2. The
highlighted nodes agree with our analytical findings.

(a) (b)

Figure 11: The basic reproduction number of the simulated epidemics over a contact network
resulting from model 2 with clustering probability p, transmission probability q and a branching
process with offspring distributed according to a negative binomial distribution with size 2 and
success probability 0.5. The highlighted nodes agree with our analytical findings.
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5 Contact Tracing

5.1 Description

Contact tracing is a strategy used to contain the spread of a infectious agent. When an infected
individual is detected, they report their contacts to find potentially infected individuals. Those
contacts get warned and take the needed measures to prevent further spread. In previous publi-
cations it has been shown that the effectiveness of contact tracing depends on testing and tracing
delays [10],[11], [12]. These publications state that the effectiveness improves if these time delays
are short.

Contact tracing can be modeled in various ways. Taking account of these time delays, and other
aspects such as adherence to isolation, requires a detailed model and additional assumptions. We
chose to implement a very simplified form of contact tracing. The main reason for this that
within this project we wanted to focus on the differences between the networks resulting from the
different models, instead of aspects such as time delays and adherence which are already known to
be important.

For the implementation of contact tracing we introduce two new probabilities: a detection
probability, d, and a tracing probability, t. The detection probability is the chance that an infected
node will be detected, for example if a infected individual will show symptoms after infection. The
tracing probability is the probability that a contact of a detected node will be successfully traced.

We implemented contact tracing in our models as follows. An infected node will be detected
with the detection probability, d. The contacts of this node will be traced. Tracing is successful
with the tracing probability, t, and all tracing successes are independent. The successfully traced
contacts will be warned and won’t infect any new contacts. So, detection is not fast enough to
prevent a detected node from infecting its contacts, but tracing prevents secondary cases from the
traced contacts.

We assumed that a successfully traced node will have zero new contacts, i.e., the individual
will be in perfect quarantine. A natural extension would be to add imperfect quarantine by
introducing another probability which will determine the chance that a contact of a traced node
will be prevented by the quarantine of a traced individual.

5.2 Results

In this section we look at the simulation results of contact tracing on both models separately. We
do this, because the networks resulting from both models are not similar and thus their results can
not be compared.

5.2.1 Model 1

The first thing to note is that in model 1 sibling contacts have no impact on tracing as they are in
the same infection generation. In our implementation of tracing, when tracing a node in the same
infection generation, the traced node will be found after it already has infected its contacts.

If there is no clustering in the network, i.e. p(1) = 0 , we can find an expression for the
reproduction number under tracing. In this case the fraction d of infected nodes will be detected
and the fraction t of their contacts will be traced. Thus further spread is halted in a fraction td of
the secondary cases. So, we get that if p(1) = 0 for all values of t and d,

R
(1)
tracing = R

(1)
0 (1− td).

Suppose t = 1, then all contacts of a detected node will be traced. The added contacts in this
situation will not add to preventing more infections, because these added contacts are with nodes
of whose infection will be prevented, as their infector will be traced before infecting this node (see
Figure 12). Thus the fraction d of infections will be prevented. So, if t = 1 we have for all values
of p(1),

R
(1)
tracing = R

(1)
0 (1− d).
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Figure 12: Contact tracing on a tracing network created with model 1 when t = 1.
Transmission contacts depicted with solid lines and possible added contacts depicted with dashed
lines. The node circled in red is infected and detected. This node infects its contacts, circled in
blue. If the red case is detected, these contacts are traced. The contacts of the traced nodes are
prevented, depicted in blue. Tracing over added contacts (dashed lines) will not prevent any
infections, because the nodes traced using these contacts are not infected. Thus clustering has no
effect on the effectiveness of contact tracing.

The simulation results for contact tracing with model 1 are depicted in Figures 13 and 14.
In Figure 13 the reproduction number is shown when contact tracing is simulated for different
values of t and d with model with the offspring distribution fixed 2, Pois(2) and NB(2, 0.5) all
with clustering probability 0.5. The dashed lines show the reproduction number when there is no
clustering.

(a) Offspring distributed with a fixed number of 2 (b) Offspring distributed according to Pois(2)

(c) Offspring distributed according to NB(2, 0.5)

Figure 13: The reproduction number with contact tracing for different tracing and detection
probabilities using model 1 with different offspring distributions. The solid lines depict the
situation with p(1) = 0.5 and the dashed lines the situation without clustering.

First we notice that the results depicted in Figures 13 and 14 agree with our analytical findings
for p(1) = 0 or t = 1 . We also see that the figures look really similar for the different offspring
distributions. Based on our simulations we can not rule out that there are no differences between
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the results for different offspring distributions.
We know from the analytical results that there is no effect of the clustering on contact tracing

when t = 1 and we also know that per definition there is no tracing effect at all when t = 0. These
results show that the clustering has an effect when t is intermediate.

In Figure 14 the reproduction number under tracing is depicted for different values of p(1) and
t. The detection probability is 0.5 in all cases and the results for the three different offspring
distributions are shown. Again, based on our simulations we can not rule out that there are no
differences between the results for different offspring distributions.

(a) Offspring distributed with a fixed number of 2 (b) Offspring distributed according to Pois(2)

(c) Offspring distributed according to NB(2, 0.5)

Figure 14: The reproduction number with contact tracing for different tracing and clustering
probabilities using model 1 with different offspring distributions. The detection probability is
fixed at 0.5.

5.2.2 Model 2

In model 2 we also have that if p(2) = 0 then R
(2)
tracing = R

(2)
0 (1 − td). This is because if there is

no clustering in the contact network, the tracing and transmission network are equal and have a
branching type structure. So, the network has the same structure as with model 1, and thus the
same arguments apply when p(2) = 0.

The simulation results for contact tracing with model 2 are shown in Figures 15 and 16. In
Figure 15 contact tracing is simulated for different values of t and d with model with the offspring
distribution fixed 2, Pois(2) and NB(2, 0.5) all with p(2) = 0.5 and q = 0.5. Also the case in absence
of clustering but with the same reproduction number is depicted with the dashed lines.

In Figure 16 the reproduction number under tracing is depicted for different values of clustering
and tracing probability. The detection and transmission probability are both 0.5 in all cases. The
simulations are done for the three different offspring distributions.

Where we see in Figure 14, which describes the reproduction number using model 1, that for
t = 0 and t = 1 the reproduction number remains constant for increasing p(1) and the other

21



(a) Offspring distributed with a fixed number of 2 (b) Offspring distributed according to Pois(2)

(c) Offspring distributed according to NB(2, 0.5)

Figure 15: The reproduction number with contact tracing for different tracing and detection
probabilities using model 2 using different offspring distributions creating the branching process.
The solid lines depict the situation with p(2) = 0.5 and q = 0.5. The dashed lines the situation for
a network with the same reproduction number without clustering.

lines decrease within these boundaries, we see in 16 that the reproduction number increases for all
values of t. This difference can be explained by the fact that when clustering probability in model
2 increases, the number of contacts in the contact network also increases and thus the number of
transmissions increases, while if the clustering probability increases in model 1, only the number
of contacts used for tracing will increase.

Unlike the results using model 1, we do see some differences between the effect on the repro-
duction number using different offspring distributions. This can be due to the effect of the variance
of the offspring distributions on the reproduction number without tracing (see Chapter 4).
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(a) Offspring distributed with a fixed number of 2 (b) Offspring distributed according to Pois(2)

(c) Offspring distributed according to NB(2, 0.5)

Figure 16: The reproduction number with contact tracing for different tracing and clustering
probabilities using model 2 with different offspring distributions. The detection and transmission
probabilities both fixed at 0.5.
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6 Comparing the Models

In this chapter we we want to answer the main question: Does a model that adds contacts to
the transmission network approach the effect of clustering in the underlying contact network on
contact tracing as seen in a model in which the infection spreads on a clustered contact network?

6.1 Choosing parameters

The main objective was to compare the effectiveness of tracing in models 1 and 2 that were
introduced and analysed in the previous sections. To this end, we need to simulate epidemics in
both models that are identical in some aspects and differ almost only in how the networks are
created. We wanted the resulting network of model 1 to have a similar tracing network as model
2, as to be able to compare the effectiveness of contact tracing in both models. Thus we chose the
input parameters of model 1 based on the resulting networks of model 2.

6.1.1 Parameters Model 1

Model 1 has two input parameters: the offspring distribution of the transmission network O
(1)
e and

the clustering probability p(1). We try to choose the parameters such that some properties of the
transmission and tracing networks of model 1 are identical to those of model 2.

First we look at the offspring of the transmission network O
(1)
e . A logical way to assign an

offspring distribution to model 1 is using the empirical offspring distribution of the transmission

network resulting from model 2, O
(2)
e . This would result in the most similar network. A downside

of this method is that we do not have an analytical expression for this distribution and thus we
will not have any analytical results to compare with.

We assign a distribution to O
(1)
e by estimating the mean and variance of the empirical distri-

bution and choosing a known probability distribution with that mean and variance. With this
method we obtain a offspring distribution for model 1, which results in a similar network and we
can use all the known relations and properties of this distribution. After looking at the simulation
results of model 2, we found that a good approximation of the empirical offspring distribution
of the transmission network resulting from model 2 depends on the chosen offspring distribution
used for making the contact network. When a Poisson or negative binomial distribution is used
for obtaining the contact network in model 2, a negative binomial distribution can be chosen for

O
(1)
e with the mean and variance equal to those of O

(2)
e . If a fixed offspring is used, a binomial

distribution is a better choice.
We fit the negative binomial distribution by expressing the success probability and number

of successes in terms of the mean and variance of the distribution of the transmission network
in model 2. The mean µ and variance σ2 of a random variable following a negative binomial

distribution can be expressed in terms of the parameters: µ = r(1−π)
π and σ2 = r(1−π)

π2 , where π is
the success probability and r the number of successes. Hence, the parameters can be expressed in
terms of the mean and variance:

π =
µ

σ2
, r =

µ2

σ2 − µ
.

We use these expressions to fit the negative binomial distribution such that the distribution has
the same mean and variance as the empirical distribution.

We fit the binomial distribution in a similar way. The mean µ and variance σ2 of a random
variable following a binomial distribution can be expressed in terms of the parameters: µ = nπ
and σ2 = nπ(1 − π), where π is the success probability and n the number of trials. Hence, the
parameters can be expressed in terms of the mean and variance:

n =
µ2

µ− σ2
, π = 1− σ2

µ

However, using the mean and variance from our empirical distribution, we obtain n /∈ N. We
prioritized that the mean of the distribution is equal to the empirical distribution, thus we assign
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the parameters with

n =

[
µ2

µ− σ2

]
, π =

n

µ
.

The other input parameter in model 1 is the clustering probability p(1). We calculate this value
using Lemma 3.1. We find that

p =
E(Y )− E(X)

E(Z)2 + E(Z) + Var(Z)
E(Z)

,

where E(Y ) is the expected degree of the tracing network, E(X) the expected degree of the
transmission network and E(Z) and Var(Z) the expected degree and variance of the offspring of
the transmission network. The offspring distribution of the transmission network of model 1 is
chosen such that its mean and variance equals those of the transmission network of model 2, thus

E(O
(1)
e ) = E(O

(2)
e ) = R

(2)
0 , Var(O

(1)
e ) = Var(O

(2)
e ), and E(D

(1)
e ) = R

(2)
0 +1. We want the degree of

the tracing network resulting from model 1 to be similar to the degree of tracing network resulting
from model 2.We obtain this by setting the expected degree of the tracing network in model 1 to

be equal to the expected degree of the tracing network in model 2, so we have E(D
(1)
t ) = E(D

(2)
t ).

This gives us the following value for the clustering probability used for model 1,

p(1) =
E(D

(2)
t )− (R

(2)
0 + 1)

(R
(2)
0 + 1)R

(2)
0 + Var(O

(2)
e )

R
(2)
0

,

where E(D
(2)
t ), Var(O

(2)
e ) and R

(2)
0 are obtained from the simulations of model 2.

6.1.2 Parameters Model 2

Model 2 has three input parameters: the offspring distribution of the generating network O
(2)
g , the

clustering probability p(2) and the transmission probability q. We want to assign values to these
parameters such that the effects of different aspects of the networks are shown in the results of the
two models.

We want to examine the effect of the variance in the offspring distribution. In Section 3.2 we
saw that the variance has an effect on the expected degree of the contact network and its clustering
coefficient, so it is interesting to see how it influences the effectiveness of contact tracing. Hence,
we choose three different offspring distributions all with the same mean, but different variances.
Namely, a fixed offspring of 2, which variance equals 0, an offspring which is Poisson distributed
with rate 2, which variance equals 2, and an offspring which is distributed according to the negative
binomial distribution with size 2 and probability 0.5, off which the variance equals 4.

Another effect we want to examine is the effect clustering has on the effectiveness of contact
tracing. Hence, we want networks with different degrees of clustering. This way we see what
happens if there is no clustering, moderate clustering and high clustering. When there is no
clustering the contact network of model 2 is a branching process and thus the transmission network
and tracing network will be the same. The offspring of the transmission network in model 1 will
be based on the offspring of this transmission network and no clustering will be added. Thus the
resulting tracing networks of model 1 and 2 will be very similar. So, we don’t have to compare the
networks for the case p(2) = 0. Thus, we want to choose two values of p(2) for which there is some
clustering and a lot of clustering.

To be able to compare the effect these parameters have on the effectiveness of the contact
tracing, we want that the reproduction number of the simulated epidemics is constant over all sim-
ulations. We aimed for a reproduction number of 1.5, as an epidemic with a reproduction number
under 1 is already dying out, hence contact tracing is not necessary. To obtain this reproduction
number we used simulations to find the transmission probability matching each combination of
offspring distribution and clustering probability for the clustering probability and offspring distri-
bution.

So, the simulations will be done for the three different O
(2)
b and for each offspring distribution

two different (p(2), q)-pairs are used, where p(2) = 0.5, 1 and q such that R
(2)
0 equals 1.5. Thus, in

total the results of 6 different simulations will be compared.
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6.2 Simulation Results

O
(2)
b p(2) q R

(2)
0 Var(R

(2)
0 ) C

(2)
c E(D

(2)
t ) C

(2)
t R

(2)
tracing p(1) E(D

(1)
t ) C

(1)
t R

(1)
tracing

Fixed 2 0.5 0.358 1.5019 1.2417 0.3098 4.2186 0.3795 1.1003 0.3745 4.2217 0.3160 1.0642
1 0.224 1.5009 1.2431 0.3333 4.8121 0.4238 1.0935 0.5044 4.8185 0.3368 1.0364

Pois(2) 0.5 0.326 1.5071 2.1040 0.2776 4.6876 0.3883 1.0937 0.4214 4.7014 0.3097 1.0497
1 0.201 1.5061 2.1135 0.3354 5.7781 0.4876 1.0862 0.6319 5.7956 0.3435 1.0081

NB(2, 0.5) 0.5 0.301 1.5003 2.7576 0.2676 5.1920 0.4016 1.0893 0.4816 5.2097 0.3151 1.0490
1 0.182 1.5000 2.7158 0.3535 6.8771 0.5470 1.0643 0.7872 6.9012 0.3731 0.9886

Table 2: Table showing the results for the six different simulations of the matched models.
Contact tracing simulated using t = 0.5 and d = 0.5. Results are based on 10000 generated
networks on which we ran an epidemic with contact tracing.

In Table 2 the results are summarised. We see that we did succeed in getting similar expected
degrees of the resulting tracing networks. To obtain this, p(1) is assigned a smaller value than p(2),
but p(1) does increase when an offspring distribution with a higher variance is used.

It is interesting to note that with a similar expected degree, C
(1)
t is significant lower then C

(2)
t .

This could be explained by the fact that the nodes in the tracing network from model 2 are nodes
that got infected during the simulated epidemic, so these nodes are not equal to the nodes in the
tracing network from model 1.

For the reproduction numbers with tracing in the table t = 0.5 and d = 0.5 are used. To
obtain more information about the difference between the effectiveness of tracing, we simulated
tracing over the obtained networks for more values of t. In Figure 17 the reproduction number
with contact tracing for the 6 different situations is depicted for different values of t while the
detection probability is fixed at 0.5.

These results show that contact tracing is more effective using model 1 for almost all tracing
probabilities. This difference gets bigger when the clustering probabilities are higher.
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Figure 17: The reproduction number with contact tracing using the 6 different simulations of
the matched models for different tracing probabilities. Detection probability is fixed at 0.5. The
dotted line depicts the situation without clustering.
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7 Discussion

In this project we introduced two models with the aim to compare the effectiveness of contact
tracing using these models. Model 1 is based on the model used in the CoronaMelder study and
adds extra connections to the transmission network to include the effect of clustering on contact
tracing. Model 2 creates a clustered contact network by adding connections to a branching process.
Over this contact network an epidemic is simulated.

We succeeded in expressing some network properties of a branching process with added contacts
at distance 2 with probability p. We obtained an expression for the degree distribution and the
expected degree. We were also able to express the clustering coefficient if the offspring is a fixed
number or distributed according to a Poisson distribution.

Model 2 simulates an epidemic over its clustered contact network. We were able to obtain
some analytical and simulation results on the effect of the added clustering on the reproduction
number of this epidemic. When the clustering probability increases, the reproduction number
also increases, as more contacts are added to the network, but the increase in the reproduction
number is not linear in the clustering probability. We also found that for a offspring distribution
with a higher variance but equal mean, the reproduction number is greater or equal then when a
offspring distribution wit a lower variance is used for equal values of the transmission and clustering
probability.

We introduced and implemented a simplified form of contact tracing that captured only the
essential factors, namely detection and tracing of contacts. We saw that the added clustering does
have an effect on the effectiveness of contact tracing using both models. Using model 1, we saw
that the effect was largest for an intermediate tracing probability and based on the results we could
not rule out that there are no differences between the results for different offspring distributions.
Using model 2, we saw a more conservative effect, which could be explained by the possibility
of alternative infection paths. There were also some differences between the results for different
offspring distributions, which could be due to the effect the variance of the offspring distribution
has on the reproduction number without tracing.

To be able to compare the effectiveness of contact tracing using both models, we matched the
resulting transmission and tracing networks. We assigned the input parameters for model 1 such
that the offspring distribution of the transmission network has a similar mean and variance and
the tracing network has a similar expected degree as the respective networks of model 2.

The results showed that the effectiveness of contact tracing was higher using model 1 for almost
all values of the tracing probability. This difference increases when more clustering is introduced
into the networks. This suggest that model 1 overestimates the effect of clustering in the contact
network on the effectiveness of contact tracing. This could be due to that in model 2 clustering
causes alternative infection paths to become available when an intervention is introduced.

In the CoronaMelder study it was found that the effectiveness of contact tracing was strongly
dependent on the degree of clustering: the inclusion of clustering resulted for a additional decrease
in the reproduction number of approximately 5% in the baseline analysis [3]. Our results show that
the effect of clustering on the effectiveness of contact tracing using model 1 is on average 0.0960 for
the six simulated situations using t = 0.5 and d = 0.5, and 0.0338 using model 2. Thus using model
1 instead of model 2 leads to an overestimation of the effect of clustering, in these simulations it
is more than 100% This suggests that results obtained in the study into the effectiveness of the
CoronaMelder contact tracing app are too optimistic.

The CoronaMelder study did take into account that clustering in the contact network makes it
possible to trace infected nodes from a contact which is not the source of infection, but it did not
include the possibility of alternative infection paths. Our results suggest that the effect of these
other infection paths is significant on the effectiveness of contact tracing. However, during this
project we made multiple simplifying assumptions and it would be interesting to know how these
assumptions affected our results.

With model 2 a clustered contact network is created by adding extra connections at distance
2 to a branching process. Using a branching process as underlying structure suggest that one
contact of a node, the contact with its parent in the tree, is different from its other contacts.
Instead of using a branching process, a configuration model could be used. Another extension to
this project could be to create a clustered contact network according to a model from publications
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about incorporating clustering in social networks.
We did not succeed in expressing the reproduction number of an epidemic over the clustered

contact network. This is because the infection generations do not correlate to the generations of
the branching process, due to the added connections. It could be possible that choosing a different
model to create the contact network, makes it possible to express the reproduction number. An
analytical expression of the reproduction number contributes to the understanding of the dynamics
of the spread of a virus and might even lead to obtaining an expression for the reproduction number
under contact tracing.

Another simplifying assumption we made was that we modelled the epidemic and contact
tracing using discrete time steps. Because of this simplifying assumption, it was easier to obtain
the analytical results and create the simulations, this gave us the opportunity to concentrate on
the effect of the clustering, but this simplifying assumption is not realistic. It would be interesting
to see if the effect of clustering changes when continuous time is introduced into the models.

Besides the discrete time steps, we made other simplifying assumptions when implementing
contact tracing. We assumed that contact tracing is fast enough to prevent secondary cases of the
traced nodes and that the quarantine of the traced nodes is 100% effective. We also did not take
into account the amount of effort needed to perform contact tracing. It is difficult to assess how
these assumptions did influence our conclusions, thus additional research is needed to determine
how the results would change if these assumptions were not made.

We suggested that the difference between model 1 and model 2 could be due to the possibility
of alternative infection paths when contact tracing is introduced when using model 2. A possible
solution could be to adjust model 1 such that other infection paths will be possible over the added
contacts in the tracing network when simulating contact tracing. This adds new complexities to
model 1. The alternative transmission paths have to take place and thus the added contacts with
grandchildren cannot be transmission contacts. It also remains that model 1 and 2 are different.

In conclusion, this project has shown that the model based on the CoronaMelder study does
not approach the effect of clustering in the contact network on the effectiveness of contact tracing.
The model based on the study overestimates effectiveness of contact tracing. This suggests that
results obtained on the effectiveness of the contact tracing app in the CoronaMelder study are
too optimistic. However, further research is needed to determine how the assumptions we made
affected our results.
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A Definitions and Notations

Table 3: Definitions

Basic reproduction number expected number of infections caused by one infected node
Clustering coefficient measure of the degree to which nodes in the network tend to

cluster together
Contact network network describing the contacts in the population
Degree distribution probability distribution of the number of edges from a node
Offspring distribution probability distribution of the number of offspring of a node in

a branching process
Transmission network network describing the transmission process
Tracing network network used to simulate the contact tracing

Table 4: Notations

Parameters model 1:

C
(1)
t clustering coefficient of tracing network of model 1

D
(1)
t degree distribution of tracing network of model 1

p(1) clustering probability in model 1

R
(1)
0 basic reproduction number of the epidemic used model 1

O
(1)
e offspring distribution of transmission network of model 1

Parameters model 2:

C
(2)
c clustering coefficient of contact network of model 2

C
(2)
t clustering coefficient of tracing network of model 2

D
(2)
c degree distribution of contact network of model 2

D
(2)
t degree distribution of tracing network of model 2

p(2) clustering probability in model 2
q transmission probability used in model 2

R
(2)
0 basic reproduction number of transmission network of model 2

O
(2)
b offspring distribution of the branching process used for creating contact network in

model 2

O
(2)
e offspring distribution of transmission network in model 2

Parameters contact tracing:
d detection probability
t tracing probability
Rtracing Reproduction number of the epidemic when contact tracing is used
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B Code

All simulations used in this thesis was done in R and can be found using the following link:
https://github.com/IsisMarsman/MasterThesis-IsisMarsman-01112023.
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