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Abstract

In this thesis, we describe spectral sequences from the perspective of ∞-categories. We
focus on the approach using ’décalage’ taken by Hedenlund in her PhD-thesis, that
describes multiplicative structures on these spectral sequences. We use these results to
show that the Leray-Serre-Atiyah-Hirzebruch spectral sequence admits a multiplicative
structure.
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1 INTRODUCTION 1

1 Introduction

Spectral sequences were introduced by Jean Leray in 1946. He developed this technique to
compute sheaf cohomology. It was realized that the concept of a spectral sequence was some-
thing more general. A major next step was Serre’s thesis, where he introduced a spectral
sequence related to fibrations. This allowed him to compute the mod 2 cohomology of the
Eilenberg-Mac Lane spaces. The thesis had great impact on spreading the use of spectral
sequences [16].

Given the prevalence of spectral sequence, it makes sense to study them from a categorical
perspective. The Grothendieck spectral sequence is an example of this approach for some
spectral sequences in algebraic geometry. Ordinary category theory fails to capture all the
structure that is present on topological spaces. The concept of∞-categories seeks to remedy
this problem, and has proven useful in studying general structures in algebraic topology.
In Higher Algebra [13], Lurie introduces a spectral sequence of a filtration in a stable ∞-
category. In her thesis [8], Hedenlund shows that a multiplication on filtrations induces a
multiplicative structure on the spectral sequence.

In this thesis, we give an overview of these results. We start by introducing spectral sequences
in Section 2, and show how they make up a category. We then give a construction of the
Atiyah-Hirzebruch spectral sequence as an example. In Section 3 we give an exposition of
selected topics in higher category theory that are needed to understand spectral sequences
in this context. The basic theory of ∞-categories is not treated here, we refer to [12] for
an introduction. In Section 4 we demonstrate how a filtration or tower of spectra induces a
spectral sequence, and investigate multiplicative properties of this procedure. In the last sec-
tion, Section 5, we use these results to show that the Leray-Serre-Atiyah-Hirzebruch spectral
sequence admits a multiplicative structure.
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2 Spectral sequences

In this section we introduce the concept of spectral sequences. They are general tools in
homological algebra, and can be seen as a generalization of exact sequences. In this section,
we study them from a classical perspective, and define the associated notions. Afterwards
we give an example: the Atiyah-Hirzebruch spectral sequence.

2.1 An introduction

Spectral sequences come in all shapes and sizes. To be more specific, they can have no
grading, single grading or a bigrading. When the spectral sequence is graded, it can be
homological and cohomological. Generally speaking, the more grading is present, the more
structure is represented by the spectral sequence.

2.1.1 Definitions

We start with the definition of a spectral sequence without grading structure.

Definition 2.1. LetR be a ring. A spectral sequence is a collection of triples (Er, dr, ϕr)r≥1,
where for all r

1. Er is an R-module,

2. dr : Er → Er is a homomorphism of R-modules and a differential, i.e. dr ◦ dr = 0,

3. ϕr : Er+1 → H(Er, dr) =
ker dr
im dr

is an isomorphism or R-modules.

As the isomorphisms ϕr are fixed, they are sometimes taken to be an equality in the defini-
tion. As we will be working in a categorical context, using isomorphisms makes more sense.
It is common to call Er the rth page of the spectral sequence, and by taking (co)homology
we turn the page to Er+1.

The structure of a grading on the spectral sequence allows a spectral sequence to contain
more information. In fact, the most common used spectral sequences are the bigraded ones,
that we will introduce shortly. Often, we will call all these just spectral sequences and the
notation will make it clear what type of spectral sequence is used.

Definition 2.2. A grading on a module is a decomposition into a direct sum of abelian
subgroups M =

⊕
i∈IMi, where I = Z or N. A morphism f :M → N is said to have degree

p if f(Mi) ⊆ Ni+p for all i ∈ I. Repeating this process results in a bigrading of the module,
and a morphism f :M → N has bidegree (p, q) if f(Mi,j) ⊆ Ni+p,j+q.

There are three major grading conventions that are used for bigraded spectral sequences. In
the literature, the notation often differs to reflect the type of grading present on the spectral
sequence.

commonly
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Definition 2.3. Let R be a ring and let (Er, dr, ϕr)r≥1 be a spectral sequence. Furthermore,
assume that Ep,q

r is a bigraded R-module. We say that the spectral sequence is

1. homologically graded if dr has bidegree (−r, r − 1),

2. cohomologically graded if dr has bidegree (r,−r + 1),

3. Adams graded if dr has bidegree (r, r − 1).

Remark 2.4. We can shift between grading conventions using linear transformations on the
indices. One common example is to present an Adams spectral sequence Es,t

r with degree
t− s on the horizontal axis and degree s on the vertical axis. The (Adams) bidegree of the
differentials is then (−1, r).

Remark 2.5. Notice that the difference of homology and cohomology only appears when
grading is present. In Section 2.2 we will see that spectral sequences can easily be constructed
without looking at grading, and later uncovering the grading structure that is present.

For our purposes, we want to encapsulate this information in an ordinary category. To do
this, we need morphisms of spectral sequences.

Definition 2.6. A morphism of spectral sequences f : (D, dD, ψ) → (E, dE, ϕ) is a se-
quence of morphisms fr : Dr → Er of fixed degree, which satisfies the commutation relations
fr ◦ dr = dr ◦ fr and H(fr) ◦ ψr = ϕr ◦ fr+1

The spectral sequences combined with these morphisms give an ordinary category of spectral
sequences, which we denote by SSeq.

2.1.2 Convergence

To compute with a spectral sequence, it is useful to know what it converges to. The intu-
itive picture behind convergence is best understood when looking at a first-quadrant spectral
sequence, that is a sequence with Ep,q

r = 0 if either p < 0 or q < 0. In homological grad-
ing, the differential has bidegree (−r, r − 1). Therefore, the incoming differential at Ep,q

r

starts at 0 if q < r − 1 and ends at 0 if p < r. Then Ep,q
r+1 = ker dr

im dr
∼= Ep,q

r , so the spectral
sequence stabilizes at this point. We denote the collection of these stabilized modules by E∞.

Example of an E3-page of a homological spectral sequence

−2 −1 0 1 2

0

1

2

•

•

•

•

•

•

0
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The first-quadrant spectral sequence is only one example where convergence occurs. By dif-
ferent assumptions we can also get a certain stability which allows us to define an infinity
page E∞. For other types of convergence, we refer to [15] or [2]. We only describe one type of
convergence which is most suited for our applications, namely in the setting of cohomological
spectral sequences.

To describe convergence we first introduce the necessary background on filtrations.

Definition 2.7. Let R be a ring. A descending filtration of an R-moduleM is a sequence
{F pM}p

M ⊇ . . . F−1M ⊇ F 0M ⊇ F 1M ⊇ · · · ⊇ 0

of submodules ofM . It is said to be convergent if the union
⋃
F pM =M and the intersection⋂

F pM = 0.

Definition 2.8. Let {F pM}p be a descending filtration on an R-moduleM . The associated
graded is defined to be Grp(M) := F pM/F p+1M .

We can now define what it means for a spectral sequence to converge. This consists of two
parts. The first is that the spectral sequence should stabilize in some way, this might even
be in the limit. The second is that the stabilized spectral sequence is isomorphic to the
associated graded of the chosen filtration.

Definition 2.9. [3, Definition 9.21] Let (Ep,q
r , dr, ϕr) be a cohomological spectral sequence

and M∗ a graded R-module. Then Er converges to M∗ if

1. for each (p, q) there exists an r0 such that dr : E
p−r,q+r−1
r → Ep,q

r is zero for all r ≥ r0;
in particular there is an injection Ep,q

r+1 ↪→ Ep,q
r for all r ≥ r0,

2. there is a convergent filtration of M∗, so that for each n, the limit Ep,q
∞ = ∩r≥r0Ep,q

r is
isomorphic to the associated graded Grp (M∗).

We commonly denote this convergence as Ep,q
2 =⇒ Mp+q

Strictly speaking a spectral sequence does not ’converge’, but has a ’convergence structure’.
This structure is then given by the chosen isomorphisms.

2.1.3 Multiplication

There are multiple examples of spectral sequences being multiplicative. However, the cate-
gory of spectral sequences as we defined above is not monoidal (we introduce this notion in
the next section). The notion of a bilinear map is well-defined.

Definition 2.10. Let (Cr, d
C
r , ϕ

C
r ), (Dr, d

D
r , ϕ

D
r ) and (Er, d

E
r , ϕ

E
r ) be spectral sequences. A

bilinear map/pairing of spectral sequences ψ : (C∗, D∗)→ E∗ is a collection of

ψr : C
p,q
r ⊗Dp′,q′

r → Ep+p′,q+q′

r

such that
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1. dEr ψr = ψr(d
C
r ⊗ 1 + 1⊗ dDr ),

2. the following diagram commutes

Cr+1 ⊗Dr+1 Er+1

H(Cr)⊗H(Dr)

H(Cr ⊗Dr) H(Er)

ψr+1

ϕEr

ϕCr ⊗ϕDr

H(ψr)

Here the unnamed map is from the Künneth theorem.

Remark 2.11. In general, the lower left map of the second condition fails to be an isomor-
phism. This is why the category of spectral sequences is not expected to be monoidal.

2.2 Example: The Atiyah-Hirzebruch spectral sequence

We give a construction of the Atiyah-Hirzebruch spectral sequence as an example. This
spectral sequence will be a corollary of the main result of this thesis.

2.2.1 Exact couples

The construction we give uses the concept of exact couples. This is one of the main ways
of constructing spectral sequences in general. However, it is difficult to use this method for
giving multiplicative structures. Therefore, the general approach we take in the rest of the
thesis is not a generalization of the approach using exact couples. Because of the frequent
use of exact couples in the literature, we still want to give this example using this approach.

Definition 2.12. An exact couple is a pair of R-modules (A,E) with maps

A A

E

i

jk

such that the triangle is exact.

Note that jk ◦ jk = j(kj)k = 0, so jk is a differential.

Lemma 2.13. From an exact couple (A,E) arises a new exact couple (A2, E2), called the
derived exact couple, with

� E2 = H(E, jk) and A2 = im(i)

� i2 is the restriction of i

� k2([e]) = k(e)
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� j2(a) = j(b) for some b ∈ A with i(b) = a

The composition j2k2 is a differential at E2.

The proof consists of checking that everything is well-defined and that the derived couple is
exact, see [15, Proposition 2.7]. We can iterate this process to get a exact couples En with
differentials dn. Note that En+1 = H(En, dn), so this sequence of exact couple actually form
a spectral sequence.

For later use, we give an explicit description of En+1 in terms of the original exact couple
using induction.

Lemma 2.14. Let
A A

E

i

jk

be an exact couple. Then

En+1 =
k−1(inA)

j(ker in)
.

Proof. We give a proof by induction. For the base case n = 1, notice that ker jk =
k−1(ker j) = k−1(im i) = k−1(iA) and im jk = j(im k) = j(ker i) by exactness. It follows

that E2 =
k−1(iA)
j(ker i)

.

Now assume that En = k−1(in−1A)
j(ker in−1)

. By definition, En+1 = ker jnkn
im jnkn

. Notice that An = in−1A so

im in = in(A). Again by exactness ker jnkn = k−1
n (im in) = k−1

n (inA), and as kn([e]) = kn−1(e)

it follows by the induction hypothesis that ker jnkn = k−1(inA)
j(ker in−1)

⊆ En, which is the image of

k−1(inA) under the quotient map.

By exactness we have

im(jnkn) = jn(ker in)

= {jn(c) | c ∈ An : in(c) = 0}

=
{j(a) | a ∈ A : in(c) = 0}

j(ker in−1)

=
j(ker in)

j(ker in−1)

It follows that

En+1 =
k−1(inA)

j(ker in)
.
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2.2.2 Cohomology theories

The Atiyah-Hirzebruch spectral sequence relates (co)homology theories to ordinary homology
with local coefficients. There are many types of (co)homology, such as singular (co)homology,
K-theories and even cobordism classes of manifolds. These all satisfy certain properties,
like homotopy invariance and having exact sequences. This has led to the axiomatization
of general (co)homology theories. The set of these axioms that describes these is called
the Eilenberg-Steenrod axioms. We present reduced generalized cohomology theories and
cohomology with local coefficients in this way.

Definition 2.15. A reduced generalized cohomology theory is a collection of functors(
h̃s : Top∗ → Abop

)
s∈Z

from pointed topological spaces to abelian groups, together with natural isomorphisms δs :
h̃s ◦ Σ ≃ h̃s−1 called the suspension isomorphism, that satisfy the following properties:

1. (Homotopy invariance) If f1, f2 are two pointed homotopic morphisms in Top∗, then
f ∗
1 = f ∗

2 ,

2. (Exactness) For a morphism f : X → Y , let Cf be the mapping cone and i : Y ↪→ Cf
the inclusion. Then

h̃s(Cf ) h̃s(Y ) h̃s(X)
h̃s(i) h̃s(f)

is exact,

3. (Additive) Given a collection of pointed spaces Xi, then the natural maps induced by
including each space combine to an isomorphism h̃s(

∨
i∈I Xi) ∼=

∏
i∈I h̃

s(Xi).

Furthermore, the cohomology theory is called

4. Ordinary, if it has the dimension axiom: h̃s(S0) = 0.

When we restrict our attention to CW-complexes, these axioms also produce long exact
sequences in the following way. Let (X,A) be a relative CW-complex, and f : A ↪→ X be
the inclusion, then Cf ≃ X/A. Then we get a sequence

A→ X → X/A→ ΣA→ ΣX → ΣX/A

where every three terms form a cofiber sequence. Applying the cohomology theory to this
sequence for different s we get the following long exact sequence

. . . h̃s−1(X/A) h̃s−1(X) h̃s−1(A) h̃s(X/A) h̃s(X) h̃s(A) . . .

where the boundary map is induced by the composite of the suspension isomorphism with
the map induced by X/A→ ΣA.

The Brown representability theorem states that every generalized cohomology theory is rep-
resented by a spectrum

for s\neq 0
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Theorem 2.16 (Brown). [6, §4.E] Let h̃∗ be a reduced generalized cohomology theory of
pointed CW-complexes. Then there exists an Ω-spectrum h such that h̃s(X) ≃ [X, hs].

Similarly, every spectrum defines a generalized homology theory by h̃s(X) ≃ πs (Σ
∞X ∧ h).

The following lemma is a tool that allows us to use the degree of a map in generalized
cohomology.

Lemma 2.17. [9, Lemma 2.3] Let f : Sn → Sn be a continuous map for some n ≥ 1, and
let h̃ be a reduced generalized cohomology theory. Then the induced map f ∗ : h̃(Sn)→ h̃(Sn)
is multiplication by deg(f).

We now define cohomology with local coefficients in a similar axiomatic way. In all coming
definitions we follow [19]. The general idea is that the coefficient group of the cohomology
can vary along the space. We make the notion of varying coefficients precise in the following
definition.

Definition 2.18. Let X be a topological space. A local coefficient system on X is a
functor Π1(X)→ Ab from the fundamental groupoid of X to the category of abelian groups.
Local coefficient systems form a functor category.

To define cohomology with local coefficients axiomatically, we first need a correct category
to map out of. In [19] this is defined for pairs of compactly generated spaces (X,A), we take
the slightly more general stance with arbitrary topological spaces.

Definition 2.19. We define L∗ to be the category with objects triples (X,A,G), where
(X,A) is a pair of topological spaces, and G is a local coefficient system on X. A morphism
(ϕ1, ϕ2) : (X,A,G)→ (Y,B,H) consists firstly of a morphism of pairs ϕ1 : (X,A)→ (Y,B).
Taking fundamental groupoids is a functor, hence we get a functor Π1(ϕ1) : Π1X → Π1Y .
Taking composition, we get a new local system ϕ∗

1H := H ◦ Π1(ϕ1) : Π1X → Ab.

Π1X Ab

Π1Y Ab

Π1(ϕ1)

G

H

ϕ∗1H

Then ϕ2 is a natural transformation ϕ∗
1H =⇒ G.

We note that the order of H and G is switched in the requirements for ϕ2, and this results
in the contravariance of cohomology. The notion of homotopy on L∗ is quite intuitive.

Definition 2.20. Let it : X → I × X be the map it(x) = (t, x) and p : I × X → X the
projection p(t, x) = x. We define I × (X,A,G) = (I × X, I × A, p∗G) and jt = (it, 1). Let
ϕ, ψ : (X,A,G) → (Y,B,H) be morphisms in L∗. A homotopy between them is a map
h : I × (X,A,G)→ (Y,B,H) such that h ◦ j0 = ϕ and h ◦ j1 = ψ.

We can now define the cohomology axiomatically.

Theorem 2.21. [19, §VI.2] There exists a collection of contravariant functors Hn : L∗ →
Ab, called cohomology with local coefficients, that satisfies the following properties:
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1. (Homotopy invariance) If f1, f2 are homotopic morphisms in L∗, , then the induced
morphisms on cohomology groups are equal f ∗

1 = f ∗
2 .

2. (Exactness) If (X,A,G) ∈ L∗ and i : (A, ∗) → (X,A), j : (X, ∗) → (X,A) inclusion
maps, then there is a boundary morphism such that

. . . Hq−1(A;G|A) Hq(X,A;G) Hq(X;G) Hq(A;G|A) . . .δq−1 Hq(j) Hq(i)

is exact.

3. (Excision) Let X,X1, X2 be compactly generated spaces such that X = int(X1)∪int(X2)
and G a local coefficient system in X. The inclusion induces an isomorphism for all q

Hq(X,X2;G) ∼= Hq(X1, X1 ∩X2;G|X1)

4. (Additive) Given a collection of pairs of spaces (Xi, Ai) and G a local coefficient system
in

⋃
iXi, then

Hq(
⋃
i∈I

Xi,
⋃
i∈I

Ai, G) =
⊕
i∈I

Hq(Xi, Ai, G|Xi
)

5. (Dimension) For all q ̸= 0 Hq(∗;G) = 0 and H0(∗;G) = G(∗).

The construction can be found in [19, §VI.2], together with a similar construction for homol-
ogy with local coefficients. In particular, they are generalizations of ordinary (co)homology.
While they are interesting in their own right and have applications such as in characteristic
classes, we will only use this in the Atiyah-Hirzebruch spectral sequence.

2.2.3 The spectral sequence

We are now ready to prove the theorem on the spectral sequence.

Theorem 2.22. Let X be a finite dimensional CW-complex and let h be an Ω-spectrum.
Then there exists a spectral sequence

Es,t
2 = Hp(X; π−qh) =⇒ hp+qX

We only prove the cohomological version, but a similar statement holds for homology. This
proof takes inspiration from [18], [20] and [9].

Proof. As X is a finite dimensional CW-complex, it has a skeletal filtration

∅ = X−1 ⊆ X0 ⊆ . . . Xn = X

.
These fit in a short exact sequence

Xs−1 → Xs → grsX

Serre
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where grsX = Xs/Xs−1 This in turns gives us a long exact sequence, which we directly grade
with Serre grading. That is, for every s there is an exact sequence

· · · → h̃s+t (grsX)
k−→ h̃s+t (Xs)

i∗−→ h̃s+t
(
Xs−1

) j−→ h̃s+t+1 (grsX)→ · · ·

From the long exact sequence we construct an exact couple with terms A =
⊕

s,t h̃
s+t(Xs),

E1 = E =
⊕

s,t h̃
s+t(grsX), and direct sums of all the maps in the sequence. We therefore

have a resulting spectral sequence, where we grade the first page Es,t
1 = h̃s+t(grsX).

The differential on each page is dr = jr ◦ kr. We describe this differential in terms of the
original maps, we start with an element a ∈ Et,s

r , which is the domain of ds,tr . Then a has
a representative b in h̃s+t(grsX), to which we apply k : h̃s+t(grsX) → h̃s+t (Xs). Then we
write k(b) = (i∗)r−1(c) for some representative c from the image of (i∗)r−1 : h̃s+t(Xs+r−1)→
h̃s+t(Xs) and then apply j : h̃s+t(Xs+r−1)→ h̃s+t+1(grs+rX) to c, and j(c) is a representative
for an element in Es+r,t+1−r

r , so the differential has bidegree (r, 1− r).

We now calculate the E2-page. As the Xs form the skeletal filtration of a CW-complex, it
holds that grsX = Xs/Xs−1 ∼=

∨
e∈Cs

Ss, where Cs indexes all the s-cells of X. Then

Es,t
1 = h̃s+t(grsX)

∼= h̃s+t(
∨
e∈Cs

Ss)

∼=
⊕
e∈Cs

h̃s+t(Ss)

∼=
⊕
e∈Cs

π−t(h0)

where the last step follows from Brown’s representability theorem. By [19, Theorem 4.1*]
this is the cellular cochain complex of degree s of X with values in π−th. If the differentials of
the spectral sequence match the differentials of this complex, then the E2-page is as claimed,
by [19, Theorem 4.4*].

The differentials can be written as a matrix, decomposed on cells in the domain and image,
as is common for differentials of cellular cochain complexes. The coefficients of this ma-
trix for cellular cochain complexes are then given by the mapping degrees of the following
compositions

fα,β : ∂Ds+1
α

ϕα−→ Xs π−→ Xs/Xs−1 gβ−→ Ds
β/∂D

s
β

∼=−→ ∂Ds+1
β

In words, this means that we get the coefficients that determine the differential in the cellular
complex as follows. We first take the attaching map ϕα : ∂Ds+1

α → Xs of the s + 1-cell α,
then collapse the (s − 1)-skeleton Xs−1, with a quotient map π. Then collapse all (s)-cells
except β, thus picking out this single cell, with a quotient map gβ. Lastly we identify the
resulting space Ds/∂Ds with ∂Ds+1 using a fixed homeomorphism ψ. The degree of this map
then gives the coefficient dαβ.

or rather by the procedure by which you define a cohomology theory from an Omega-spectrum

name chapter!
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The differential of the spectral sequence is given by d1 = j ◦ k. We look at the (α, β)-
component of this map, as depicted in the following diagram.

h̃s+t(grsX) h̃s+t(Xs) h̃s+t+1(grs+1X)

h̃s+t(Ds
β/∂D

s
β) h̃s+t(∂Ds+1

α ) h̃s+t+1(Ds+1
α /∂Ds+1

α )

k=π∗ j

ϕ∗αg∗β

∼=

i∗α

The lower right isomorphism results from the suspension isomorphism with the isomorphism
ψ. Hence it is a connecting homomorphism in a long exact sequence, and by naturality
of long exact sequences the lower right square is commutative. Now i∗α ◦ j ◦ k ◦ g∗β is the
(α, β)-component of d1 and coincides with f ∗

α,β. By Lemma 2.17 this map is multiplication

by deg(fα,β), which proves that the differentials are the same. Hence Es,t
2 = Hs(X, π−t)

We now show the convergence of this sequence. Note that by the finiteness assumption on X,
the first page Es,t

1 = h̃s+t(grsX) is trivial for s > n and s < 0. Hence, the spectral sequence
stabilizes on E∞ = En+1. By Lemma 2.14

E∞ =
k−1(inA)

j(ker in)
.

Note that in maps out of the strip 0 ≤ i ≤ n, so the kernel is everything. Hence, the
denominator is im j = ker k. The numerator is inh̃s+t(Xs+n) = im(h̃s+t(X) → h̃s+t(Xs)) as
Xs+n = X. Hence, the ∞-page becomes

Es,t
∞ =

k−1(im(h̃s+t(X)→ h̃s+t(Xs)))

ker k : (h̃s+t(Xs/Xs−1)→ h̃s+t(Xs))

There is an exact sequence by the first isomorphism theorem,

0→ ker k → k−1(im(h̃s+t(X)→ h̃s+t(Xs)))
γ−→ im(h̃s+t(X)→ h̃s+t(Xs)) ∩ im k → 0

which shows, combined with the fact that im k = ker i, that

Es,t
∞
∼= im(h̃s+t(X)→ h̃s+t(Xs)) ∩ ker i

.
We now have to provide a graded module with a convergent filtration, such that its associated
graded is isomorphic to the E∞-page. We will use the skeletal filtration on the CW-complex
to construct this filtration. The inclusions in the skeletal filtration induce a sequence of maps
on the cohomology groups

h̃t (X) = h̃t (Xn)
i∗→ . . .

i∗→ h̃t
(
X2

) i∗→ h̃t
(
X1

) i∗→ h̃t
(
X0

)
= h̃t

(
X−1

)
= 0

which stabilizes by the finiteness assumption. We define a filtration on h̃t (X) by declaring

F sh̃t (X) = ker(i∗)n−s : h̃t (X)→ h̃t (Xs) .
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This gives us a descending filtration

h̃t (X) = F−1h̃t (X) ⊇ · · · ⊇ F n−1h̃t (X) ⊇ F nh̃t (X) = 0

We define a map

F s−1h̃s+t(X) = ker
(
h̃s+t (X)→ h̃s+t

(
Xs−1

))
→ im(h̃s+t(X)→ h̃s+t(Xs)) ∩ ker i ∼= Es,t

∞

that takes an element of h̃s+t(X) by application of i∗ multiple times, to an element of
h̃s+t(Xs). This map is surjective and its kernel is F sh̃s+t(X) ker(h̃s+t(X) → h̃s+t(Xs)).
It follows by the first isomorphism theorem that

Es,t
∞
∼=
F s−1h̃s+t(X)

F sh̃s+t(X)

Remark 2.23. The Atiyah-Hirzebruch spectral sequence has a generalization to fiber bundles
F → E → B. This spectral sequence also generalizes the well known Serre spectral sequence.
The statement is as follows: Let F → E → B be a fibration, with B a path-connected finite-
dimensional CW-complex. Let h∗ be a generalized cohomology theory. There is a spectral
sequence

Ep,q
2 = Hp(B;hqF ) =⇒ hp+q(E)

It is this spectral sequence that will be the main application of the theory we develop in
the rest of the thesis. In particular, we will prove that is has a multiplicative structure in
Section 5.
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3 Higher Category Theory

In this chapter, we give an exposition of concepts from higher category theory that are rel-
evant to our goal of describing multiplicative spectral sequences. As such, we first look at
how higher category theory tries to capture essential concepts from homotopy category, us-
ing stable ∞-categories and t-structures, among others. The main goal is to understand the
category of spectra. Afterwards we describe how multiplicative structures are viewed from a
categorical perspective.

To give a description of all prerequisites would be unnecessary. For an introduction to ∞-
categories, we refer to [12] and [5]. All throughout, we use the word spaces for what is
sometimes called ∞-groupoids or anima.

3.1 Stable ∞-categories

In this section we give an exposition of stable ∞-categories and of t-structures on such
categories. The guiding example in this theory is the ∞-category of spectra, denoted Sp.

3.1.1 Foundations

There are multiple equivalent ways to define the ∞-category of spectra. Lurie gives four
equivalent definitions in [13, §1.4]. We quickly work towards a definition which does not re-
quire development of the theory of stable ∞-categories, so that we can use it as an example
throughout this section.

Recall that a spectrum is a sequence of pointed spaces (Xi)i∈Z such that there are continuous
maps ΣXi → Xi+1. By the loop-suspension adjunction there is a map Xi → ΩXi+1. If this
map is a weak equivalence, then we call X an Omega-spectrum.

We want to generalize this notion to the setting of ∞-categories. We start with determining
what a pointed ∞-category is, and how to add a point.

Definition 3.1. [13, Definition 1.1.1.1] Let C be an∞-category. A zero object is an object
of C that is both initial and terminal. An ∞-category is pointed if it admits a zero object.

We can also add a zero object in most cases.

Definition 3.2. [12, p. 7.2.2] Let C be an ∞-category with a terminal object ∗. A pointed
object is a morphism X+ : ∗ → X in C. The full subcategory of Fun(∆1, C) spanned by
the pointed objects is denoted by C∗. Equivalently we can define this as the under category
C∗ = C∗/.

The∞-category of pointed objects has ∗ → ∗ as zero object, and is therefore pointed. Adding
a basepoint is left adjoint to the forgetful functor + ⊣ − : C ⇄ C∗. Note that the∞-category
S of spaces has as terminal object, namely the one point space ∗. From this we get the
category of pointed spaces S∗.

Definition 3.3. Let C be a pointed ∞-category.
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� A triangle in C is a diagram ∆1 ×∆1 → C

X Y

0 Z

f

g

with 0 a zero object in C.

� The triangle is a fiber sequence if it is a pullback square, and in this case we call it
(or only X) the fiber of g.

� Similarly, the triangle is a cofiber sequence if it is a pushout square, and in this case
we call it (or only Z) the cofiber of f .

The information of a triangle also includes a composition h : X → Z of g ◦ f which is null-
homotopic. We say that a pointed ∞-category admits (co)fibers if every morphism has a
(co)fiber.

In stable homotopy theory fibers and cofibers are the same. We can capture this idea now
in ∞-categories.

Definition 3.4. An ∞-category C is stable if

1. C is pointed.

2. Every morphism of C admits a fiber and cofiber.

3. Every triangle in C is a fiber sequence if and only if it is a cofiber sequence.

We will define suspension and loop functors using this terminology. Let C be a pointed ∞-
category, and assume that it admits cofibers. We denote by CΣ ⊆ Fun(∆1 ×∆1, C) the full
subcategory spanned by pushout diagrams

X 0

0′ Y

⌟

which are cofibers of maps X → 0.

Evaluation at the initial vertex induces a trivial fibration CΣ → C [13, pp. 23-24]. A trivial
fibration has a section s : C → CΣ. Denoting evaluation at the final vertex by e : CΣ → C, we
then define the suspension functor Σ := e ◦ s : C → C. In the depicted diagram, ΣX = Y .
Dually, if C is pointed and admits fibers we define CΩ to be spanned by the fibers of 0→ Y .
We take a section s′ of the evaluation at the final vertex and compose this with evaluation
at the initial vertex e′ to define Ω := e′ ◦ s′ : C → C.

Proposition 3.5. Let C be a stable ∞-category. Then Σ and Ω are inverse equivalences.

The suspension and loop functors actually give another characterization of stable∞-categories

more references
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Theorem 3.6. [5, Theorem 5.12] Let C be an finitely complete, finitely cocomplete and
pointed ∞-category. The following are equivalent:

1. The ∞-category C is stable.

2. The functors Σ and Ω are inverse equivalences.

3. A square in C is a pullback square if and only if it is a pushout square.

Definition 3.7. We denote by X[n] := ΣnX if n ≥ 0 and X[n] := Ω−nX if n ≤ 0. We call
this functor the translation functor.

We look at operations under which stability is conserved, which will be needed later in the
thesis.

Proposition 3.8. [13, p. 1.1.3] Let C be a stable ∞-category.

� Let K be a simplicial set. Then Fun(K, C) is stable.

� Let C ′ ⊆ C be a full subcategory with a zero object and stable under formation of fibers
and cofibers. Then C ′ is a stable subcategory.

� Let C ′ ⊆ C be a full subcategory which is stable under formation of cofibers and trans-
lations. Then C ′ is a stable subcategory.

We will now define the main example of a stable ∞-category, namely the ∞-category of
spectra.

Definition 3.9. [13, Remark 1.4.2.25] Let S be the ∞-category of spaces. The ∞-category
of spectra Sp is given by the limit in Cat∞ of the diagram

. . . S∗ S∗ S∗Ω Ω Ω

Now we have an example for the rest of the concepts we introduce in this section. We want
to look into ways of creating spectra.

First, we define Ω∞ : Sp→ S as the forgetful functor on degree 0. This is an accessible functor
that preserves small limits, and hence as a left adjoint, that we denote by Σ∞

+ : S → Sp.

Example 3.10. Let ∗ ∈ S be the final object. The sphere spectrum is S := Σ∞
+ (∗). This

is an example of a suspension spectrum of a space X ∈ S, namely Σ∞
+ (X).

3.1.2 The structure of the homotopy category

In this subsection we explore the structure of the homotopy category of a stable ∞-category
C. It is shown in [13, Theorem 1.1.2.14] that hC has the structure of a triangulated category.
In this subsection, we will explore some implications of the fact that hC is a triangulated
category, but will not spell out every detail.

A triangulated category is additive, has a translation functor and a collection of distinguished
triangles satisfying certain axioms. We look at each of these properties in the case of hC.

which
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Definition 3.11. A category is additive if it admits finite products and coproducts, has a
zero object and for every pair of objects there is an isomorphism X ⊔ Y → X × Y given by
the identities. Both are often denoted by X ⊕ Y . Given two morphisms f, g : X → Y , we
can define addition as a composite

f + g : X → X ×X f,g−→ Y × Y → Y ⊔ Y → Y.

The last requirement for the category to be additive is that for every morphism f , there
exists an inverse −f .

From the axioms it follows that composition in an additive category is bilinear. The axioms
of an additive category can be rephrased to say that it is a finitely complete category enriched
over abelian groups.
Let C be a stable ∞-category. Then hC is an additive category [13, Lemma 1.1.2.9]. The
suspension functor is characterized by natural homotopy equivalences MapC(Σ(X), Y ) →
ΩMapC(X, Y ). This implies that π0MapC(Σ

2(X), Y ) ≃ π2MapC(X, Y ) is abelian. As
the suspension functor is an equivalence, we can choose for every Z ∈ C an X such that
Σ2(X) ≃ Z. Hence π0MapC(Z, Y ) is abelian. It can also be shown that hC admits finite
coproducts.

The translation functor needed on a triangulated category is given by suspension X 7→ X[1].
The triangles are meant to generalize the notion of fiber, cofiber and short exact sequences.
Given a triangle in C, we can extend it to

X Y 0′

0 Z X[1]

f

g

h

and in the homotopy category this gives a sequence X
f−→ Y

g−→ Z
h−→ X[1]. In this context

we sometimes write cofib f for Z. General sequences like this are called distinguished or
exact triangles. We present some of the axioms, that are satisfied in hC (for all axioms,
see [13, Definition 1.1.2.5]):

1. Every morphism f : X → Y can be extended to a distinguished triangle

2. We can rotate X
f−→ Y

g−→ Z
h−→ X[1] to Y

g−→ Z
h−→ X[1]

−f [1]−−−→ Y [1].

3. Given a commutative diagram

X Y

X ′ Y ′f ′

f

and extend f, f ′ to distinguished triangles, then we can form a map cofib(f)→ cofib(f ′)
making the whole diagram commute.

4. Given three distinguished triangles extending f, g and g◦f , then there is a distinguished
triangle cofib f → cofib g ◦ f → cofib g → cofib f [1].
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3.1.3 t-structures

On stable∞-categories, we can axiomatize homotopical properties by t-structures. The idea
is that we define subcategories C≥0 and C≤0 that reflect the degrees in which the homotopy
groups are trivial.

Definition 3.12. Let D be a triangulated category. A t-structure consists of a pair of full
subcategories D≥0,D≤0 ⊆ D satisfying the following properties:

1. The subcategories are stable under translations in one direction: D≥0[1] ⊆ D≥0,D≤0[−1] ⊆
D≤0

2. For X ∈ D≥0 and Y ∈ D≤0 the mapping space MapD(X, Y [−1]) ≃ 0

3. For any Y ∈ D, there exists a fiber sequence X → Y → Z with X ∈ D≥0 and
Z ∈ D≤0[−1]

We write D≥n = D≥0[n] and D≤n = D≤0[n].

Remark 3.13. As the name suggests, a t-structure is not a property but a structure. Hence,
it is possible to define t-structures that suit the situation.

Most of the ∞-categories we are interested in are stable. As the homotopy category of a
stable ∞-category is triangulated, it is possible to define t-structures on them.

Definition 3.14. Let C be a stable ∞-category. Then a t-structure on C is a t-structure
on the homotopy category hC, and we denote by C≤n, C≥n the full subcategories of C spanned
on the objects of (hC)≤n, (hC)≥n.

The inclusions C≤n ⊆ C and C≥n ⊆ C admit a left adjoint τ≤n and a right adjoint τ≥n
respectively (see [13, p. 1.2.1.6]). These are called the truncation functors, and sometimes
τ≥n is called a cover functor. Because C≤n ≃ C≤0[n], it follows that τ≤nX ≃ τ≤0(X[−n])[n],
and similarly for the cover functors.

Remark 3.15. [13, Remark 1.2.1.8] Let C be a stable ∞-category and X an object. Then
for each n there is a fiber sequence τ≥n → X → τ≤n−1X.

It can be shown that for all n,m there is an equivalence θ : τ≤m ◦ τ≥n → τ≥n ◦ τ≤m. These
functors are core in the definition of homotopy groups.

Definition 3.16. Let C be a stable ∞-category. The intersection C♡ := C≤0 ∩ C≥0 is called
the heart or core of the t-structure.

We define the n-th homotopy group functor πn : C → C♡ to be πn := τ≥0 ◦ τ≤0 ◦ [−n].

Note that we can recover the classical result πn−1(X[−1]) = τ≥0 ◦ τ≤0 ◦ [−n+1− 1] = πn(X)
almost by definition.

Let X, Y ∈ C♡. We can identify HomhC(X[n], Y ) ≃ πnMapC(X, Y ). By the second axiom
for t-structures, this vanishes for n > 0, and hence C♡ is equivalent to its homotopy category
hC♡, and we will often refer to hC♡ by C♡. Moreover, the homotopy category hC♡ is an
abelian category [13, Remark 1.2.1.12].
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Example 3.17. We demonstrate these concepts by looking at the ∞-category of spectra as
an example. The t-structure may be defined by stating that Sp≤−1 is spanned by the objects
for which Ω∞(X) is contractible [13, Proposition 1.4.3.6].

Alternatively, the t-structure can be characterized by the full subcategory Sp≥0, generated
under extensions and colimits by the essential image of the functor Σ∞

+ [13, Remark 1.4.3.5].

The notation of a t-structure hints to localization to non-negative or non-positive degrees.
In Sp this mirrors the notion of n-connected spaces. Precisely, the following equations hold
[13, Proposition 1.4.3.6]:

Sp≥0 = {X ∈ Sp | πnX ≃ 0 ∀n < 0}
Sp≤0 = {X ∈ Sp | πnX ≃ 0 ∀n > 0}

The heart of the t-structure is equivalent to the category of abelian groups Sp♡ ≃ N(Ab)[13,
Proposition 1.4.3.6].

Example 3.18. Recall that Eilenberg-Mac Lane spectra associate to an abelian group a
certain spectrum that represents (co)homology. We can also construct this for the∞-category
of spectra. Using the results from this section, we can construct a functor

H : Ab
N−→ N(Ab) ≃ Sp♡ ↪→ Sp,

that we call the Eilenberg-Mac Lane functor. Reversing this construction, we see that
π0HA = A.

3.2 Monoidal structures

One of the main goals of this section is to understand the symmetric monoidal structure on
the ∞-category of spectra Sp given by the smash product. We first give some intuition by
giving the classical definitions of all the concepts we are going to introduce. Afterwards, we
define symmetric monoidal ∞-categories, strong and lax symmetric monoidal functors and
algebra objects. We focus our definitions only on the symmetric monoidal case instead of
the more general ordinary monoidal case, as the concepts are very similar. At the end of this
thesis, we want to prove that certain functors are symmetric monoidal.

3.2.1 Symmetric monoidal (∞-)categories

To give some intuition for monoidal structures, we first give the definition in the classical
case. The definitions reflect that of a monoid (M, ·, 1), that is a set M with a multiplication
· : M ×M → M that is associative and a unit 1 ∈ M . We call the monoid a commutative
monoid in the case that the multiplication is commutative, and commonly write (M,+, 0).

In category theory it is unnatural to require strict equality, so we introduce natural isomor-
phisms in that place.
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Definition 3.19. Let C be a category. A monoidal structure on C is a tuple (⊗, I, α, λ, ρ)
where

� ⊗ : C × C → C is a bifunctor, called the tensor product,

� I is an object of C, called the unit,

� α is a natural isomorphism in three variables, αA,B,C : A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C,
expressing associativity,

� λ, ρ are natural isomorphisms, λA : I ⊗ A ∼= A and ρA : A⊗ I ∼= A expressing left and
right unitarity respectively.

In addition there are two coherence conditions, namely that the following diagrams commute

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B
1A⊗λB ρA⊗1B

αA,I,B

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D) (A⊗ (B ⊗ C))⊗D

((A⊗B)⊗ C)⊗D

1A⊗αB,C,D

αA,B⊗C,D

αA,B,C⊗1D

αA,B,C⊗D

αA⊗B,C,D

The monoidal category is symmetric if there is is a natural isomorphism in two variables
σ with σA, B : A ⊗ B → B ⊗ A expressing commutativity. It has to satisfy the following
coherence conditions

� ρA = λA ◦ σA,I ,

� 1B⊗σA,C◦αB,A,C◦σA,B⊗1C = αB,C,A◦σA,B⊗C◦αA,B,C as maps (A⊗B)⊗C → B⊗(C⊗A),

� 1A⊗B = σB,A ◦ σA,B.

Remark 3.20. The coherence conditions are necessary to make sure that whichever way
brackets are moved, the result is the same. It has been shown by Mac Lane [14] that these
conditions are enough to guarantee that every way of applying associativity is the same.

Remark 3.21. In higher category theory, for a suitable notion of monoidal ∞-categories
we expect that all coherence equations for associativity hold only up to homotopy. This
induces an infinite sequence of coherence polyhedra, called the Stasheff associahedra. As this
method is unwieldy in practice, a different definition of monoidal ∞-categories is given by
generalizing a defining property of monoidal categories.

Definition 3.22. Let C be a monoidal category with tensor product ⊗. We define a new
category C⊗.
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1. The objects of C⊗ are, possibly empty, sequences of objects of C, denoted [C1, . . . , Cn].

2. The morphisms of C⊗ from [C1, . . . , Cn] to [C ′
1, . . . , C

′
m] consist of a non-strictly order-

preserving map f : [m] → [n] and a corresponding (possibly empty) collection of
morphisms Cf(i−1)+1 ⊗ · · · ⊗ Cf(i) → Ci for all 1 ≤ i ≤ m

3. Composition follows from composition of order preserving maps, composition in C and
the constraints given by the monoidal structure on C.

We can define a forgetful functor p : C⊗ → ∆op by p([C1, . . . , Cn]) = [n], which turns out
to be an op-fibration of categories. Moreover, if we denote C⊗[n] to be the fiber of p over

[n] ∈ ∆op then C⊗[1] ≃ C, and the inclusions {i − 1, i} ⊆ [n] for all 1 ≤ i ≤ n induce

an equivalence C⊗[n] ≃ (C)×n. These two properties actually capture all the information of

the monoidal structure [10, p. 5]. We choose this notion as our starting point for a definition.

The correct notion of fibration that is needed is the coCartesian fibration. These are intro-
duced in Appendix A.1

Definition 3.23. A monoidal ∞-category is a coCartesian fibration p : C⊗ → N(∆op)
such that for all n ≥ 0 the functors C⊗n → C⊗{i,i+1} determine an equivalence

C⊗[n] → C
⊗
{0,1} × · · · × C

⊗
{n−1,n} ≃

(
C⊗[1]

)×n
.

The fiber C = C⊗[1] is the underlying ∞-category of the monoidal ∞-category,

The projection [1] → [0] induces a functor 0 ≃ C⊗[0] → C
⊗
[1] ≃ C, which determines the unit

object in C, unique up to equivalence.

The tensor product is given by the diagram

C × C ≃ C⊗{0,1} × C
⊗
{1,2}

θ←− C⊗[2] → C
⊗
{0,2} ≃ C

where θ is an equivalence. Taking a homotopy inverse, we obtain a functor ⊗ : C × C → C,
defined up to equivalence.

We now want to define a symmetric monoidal∞-category. The lack of commutativity comes
from the order-preserving structure in ∆op. To remedy this, we introduce an alternative base
for the fibration.

Definition 3.24. Let F in denote the category of pointed finite sets. We denote an element
by ⟨n⟩ = {0 < 1 < · · · < n}, with 0 the chosen basepoint. Morphisms from ⟨n⟩ to ⟨m⟩ only
preserve the basepoint, they do not need to be order-preserving.

Denote by ρj,⟨n⟩ : ⟨n⟩ → ⟨1⟩ the unique pointed map with

ρj,⟨n⟩(i) =

{
1 if i = j

0 otherwise

why do you stress the order?
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Definition 3.25. A symmetric monoidal∞-category is a coCartesian fibration p : C⊗ →
N(F in) such that for all n ≥ 0 the functors ρ

j,⟨n⟩
! : C⊗⟨n⟩ → C

⊗
⟨1⟩ determine an equivalence

C⊗⟨n⟩ →
(
C⊗⟨1⟩

)×n
.

From here on, we will focus on the symmetric case. However, all concepts also have a pure
monoidal variant. For these results, we refer to [5] and [10].

One handy example is that the identity functor N(F in)→ N(F in) is a symmetric monoidal
∞-category [5]. The next example is the tensor product we will use the most.

Example 3.26. The∞-category of spectra Sp admits a symmetric monoidal structure, that
is characterized by the two properties [11, p. 6.10]

1. The bifunctor ⊗ : Sp× Sp→ Sp preserves small colimits in each variable.

2. The unit object is the sphere spectrum S.

Example 3.27. The ∞-category of pointed spaces S∗ also admits a monoidal structure.
Analogous to the ∞-category of spectra it conserves colimits in each variable.[10, p. 4.2.9]

Example 3.28. Let p : C⊗ → N(F in) be a symmetric monoidal ∞-category.

1. Let K be a simplicial set. Then Fun(K, C⊗) is a symmetric monoidal∞-category where
the tensor product is defined pointwise [11, Remark 1.24].

2. Let D ⊆ C be a full subcategory that is stable under equivalence. Define D⊗ ⊆ C⊗ to
be the full subcategory on the following objects: C ∈ C⊗⟨n⟩ belongs to D⊗ if and only

if ρ
j,⟨n⟩
! : C⊗⟨n⟩ → C

⊗
⟨1⟩ sends it to an element of D. Then D⊗ is a symmetric monoidal

∞-category and the inclusion D⊗ ⊆ C⊗ is a symmetric monoidal functor.

3.2.2 Monoidal functors

Symmetric monoidal ∞-categories can be compared using a suitable notion of functor be-
tween them. Intuitively, such a functor F : C → D has to send products to products, so there
is a map

F (C1 ⊗ · · · ⊗ Cn)→ F (C1)⊗ · · · ⊗ F (Cn).

Loosely speaking, this gives us three types of monoidal functors

� strict if the map is an equality,

� strong if the map is an equivalence,

� lax if this map exists.

For completeness we give the exact definition of these functors. We call a morphism α :
⟨m⟩ → ⟨n⟩ in F in inert or collapsing if α−1(i) is a singleton for every 1 ≤ i ≤ n. Note that
the ρj are inert.

should explain that this refers to the fiber above 1

for all...
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Definition 3.29. Let p : C⊗ → N(F in) and q : D⊗ → N(F in) be symmetric monoidal
∞-categories. Let F : C⊗ → D⊗ be a functor such that the diagram commutes

C⊗ D⊗

N(F in)
p q

F

We say that F is a

� (strong) symmetric monoidal functor if it sends p-coCartesian morphisms to q-
coCartesian morphisms,

� lax symmetric monoidal functor if it sends p-coCartesian lifts of inert morphisms
to q-coCartesian morphisms.

We can organize these in∞-categories, namely as the full subcategories in MapN(F in)(C⊗,D⊗),
that is, the ∞-category of functors that satisfy the above diagram. We denote these by
FunMon(C⊗,D⊗) ⊆ FunLax(C⊗,D⊗). The opposite F op : (C⊗)op → (D⊗)op

It will turn out that having a lax symmetric monoidal functor will be enough in most cases.
This is due to the fact that algebra objects play nicely with these functors.
We now sum up some useful properties of lax symmetric monoidal functors. The opposite
category of a symmetric monoidal ∞-category also has a symmetric monoidal structure.
Given a lax symmetric monoidal functor, its opposite functor is called oplax symmetric
monoidal, which is lax symmetric monoidal on the opposite categories.

Proposition 3.30. 1. The composition of two symmetric monoidal functors is again sym-
metric monoidal.

2. The extraction of adjoints gives inverse equivalences between lax symmetric monoidal
right adjoints and oplax symmetric monoidal left adjoints. [7, Proposition A]

Proof. 1. Let F : C⊗ → D⊗ be a lax symmetric monoidal functor of symmetric monoidal
∞-categories p : C⊗ → N(F in) and q : D⊗ → N(F in). Let α be a p-coCartesian morphism
such that p(α) is inert. By commutativity of p = q◦F , we know that F (α) is also projected to
p(α) by q, and is therefore a q-coCartesian lift of an inert morphism. Another lax symmetric
monoidal functor G will hence send p(α) to another coCartesian morphism.

We now look at the interaction between t-structures and symmetric monoidal structures on
stable ∞-categories.

Definition 3.31. Let F : C → D be a functor between stable ∞-categories. It is exact if it
carries fiber sequences to fiber sequences.

Definition 3.32. Let C be a stable symmetric monoidal∞-category with a t-structure. The
t-structure is compatible with the symmetric monoidal structure if for every C ∈ C the
functor C ⊗− is exact, and C≥0 contains the unit and is closed under tensor products.

lax vs srong
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Example 3.33. The standard t-structure on the ∞-category of spectra is compatible with
the smash product [10, Lemma 4.3.5].

When a t-structure is compatible with the symmetric monoidal structure, the full subcategory
C≥0 is also a symmetric monoidal ∞-category.
The heart inherits a monoidal structure [10, Proposition 1.3.12 and Lemma 4.3.5]

Proposition 3.34. The homotopy group functor

π∗ : Sp→
∏
Z

Ab

is lax symmetric monoidal.

Intuition. We give some intuition behind this statement. The homotopy groups of a spectrum
E are given by homotopy classes of maps [Sk, E]. These fit together to a map

[Sk, E]⊗ [Sl, F ]→ [Sk+l, E ⊗ F ]

3.2.3 Algebra objects

To do algebra in category theory we need more multiplicative structure than just a tensor
product on a category. It turns out to be useful to look at objects that possess their own
multiplication. Multiple structures, like rings and R-algebras can be described in this way.
We generalize this concept to ∞-categories, and conclude with the definition of an E∞-ring.

Definition 3.35. An algebra object in a monoidal category C is an object X together with
a multiplication map µ : X ⊗ X → X and an identity map η : I → X, that satisfy the
associativity and identity conditions. It is a commutative algebra object if this multiplication
commutes.

Example 3.36. The category of abelian groups with tensor product over Z is a monoidal
category with unit Z. An algebra object in this category is a ring.

We want to define this notion for the context of symmetric monoidal ∞-categories using
coCartesian fibrations. The idea of the definition is that a section of p picks out a tuple of
objects of C. Maps in N(F in) lift to maps between different tuples. We then add conditions
to ensure that all these objects are isomorphic, and the maps between tuples describe the
algebra structure.

Definition 3.37. Let p : C⊗ → N(F in) be a symmetric monoidal ∞-category, with under-
lying ∞-category C. A commutative algebra object of C is a section A : N(F in) → C⊗
of p, such that it sends inert morphisms to p-coCartesian morphisms of C⊗.

The definition resembles that of a lax monoidal functor closely. We can even define the ∞-
category of commutative algebra objects to be CAlg(C⊗) = FunLax(N(F in), C⊗).
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As we showed before, lax monoidal functors can be composed. Combined with the previous
statement this implies that lax monoidal functors conserve commutative algebra objects. Let
F : C⊗ → D⊗ be a lax monoidal functor and A : N(F in) → C⊗ be an algebra object of C.
Then F ◦ A : N(F in)→ D⊗ is an algebra object of D⊗.

Just as an algebra object is a lax monoidal functor, we can define a coalgebra object to be
an oplax monoidal functor N(F in)→ C⊗.
Algebra objects in the stable ∞-category of spectra have their own name.

Definition 3.38. An E∞-ring is a commutative algebra object in the∞-category of spectra.
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4 From towers of spectra to spectral sequences

In this section we explore how the theory of∞-categories that we gave an exposure of in the
previous section can be used to construct spectral sequences.

The general idea is that we start with a sequence of spectra

· · · → X i+1 → X i → X i−1 → . . .

We will use the tower convention in this thesis, that means that the morphisms go in de-
creasing order.

Definition 4.1. A tower or filtration on an∞-category C is the functor category Fun(Zop, C).

From such a tower we construct a spectral sequence. This spectral sequence starts at the
homotopy groups of the cofibers πp+q(cofib f

p) and converges (under suitable conditions) to
the homotopy group of the colimit πp+q colimX i.

There are multiple general methods of going from a filtration on a space to an associated
spectral sequence. In Section 2.2 we used the theory of exact couples. Another approach is
that of Cartan-Eilenberg systems, this is the approach that Lurie generalizes in [13, §1.2.2].
We will sometimes take inspiration from this approach.

We will mostly focus, however, on giving a summary of the approach of [8] using ’décalage’.
In this method, we construct the next page of our spectral sequence by constructing a new
filtration, called the décalée. Loosely speaking, we turn the page already on the level of the
filtration. The approach is in some places similar to the approach with Cartan-Eilenberg
systems, but is more functorial. This makes it easier to show multiplicativity, one ’only’
needs to show that the used functors are lax symmetric monoidal.

The end-goal of this section is the following statement:

Theorem 4.2. There exists a functor E∗,∗
∗ : Tow(Sp) → SSeq which preserves the multi-

plicative structure.

This will be made explicit in Theorems 4.22 and 4.24.

4.1 Towers of spectra

As we have seen in Section 2, the concept of the associated graded is very useful in talking
about spectral sequences. We generalize the notion of the associated graded to a functor.

Definition 4.3. Let X ∈ Tow(Sp) be a filtration. We denote for p < q the cofibers by
X(p)/X(q) := cofib(X(q)→ X(p)).

The qth associated graded functor is Grq : Tow(Sp) → Sp defined by Grq(X) =
X(q)/X(q + 1). The (total) associated graded functor Gr : Tow(Sp) →

∏
Z Sp is

given by Gr(X) = (X(n)/X(n+ 1))n∈Z
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We will often encounter the associated graded in a pushout diagram together with other
cofibers X(p)/X(q). These are related to each other in the following way.

Proposition 4.4. Let X ∈ Tow(Sp) be a filtration and let i ≥ j ≥ k ≥ l. Then the square

X(k)/X(i) X(l)/X(i)

X(k)/X(j) X(l)/X(j)

is a pushout square.

Proof. Let X ∈ Tow(Sp) be a filtration. Let i ≥ j ≥ k and denote f : X(i) → X(j) and
g : X(j) → X(k). From the fact that we can ’compose’ triangles in a stable ∞-category
[13, Theorem 1.1.2.14], we have a triangle cofib(f) → cofib(g ◦ f) → cofib(g). Using the
shorthand notation cofib(f) = X(j)/X(i), this means that the diagram

X(j)/X(i) X(k)/X(i)

0 X(k)/X(j)

⌟

is a pushout. Let l ≤ k, and apply the procedure again to construct the diagram

X(j)/X(i) X(k)/X(i) X(l)/X(i)

0 X(k)/X(j) X(l)/X(j)

⌟

where the left square and the outer rectangle are pushouts. By the pasting lemma for
pushouts, the right square is also a pushout.

We now want to look at multiplicative properties of the associated graded. First we need to
define a symmetric monoidal structure on Tow(Sp).

Definition 4.5. [8, p. 197] Let C be a symmetric monoidal ∞-category with unit I. The
Day convolution product of two filtrations X, Y ∈ Tow(C) is degree-wise given by

(X ⊗ Y )(n) ≃ colimi+j≥nX(i)⊗ Y (j).

The unit is the tower

ITow(C)(n) =

{
I if n ≤ 0

0 otherwise

For more details on the coherence of the Day convolution, we refer to [17].

reference in infinity-cats?
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We will mostly be interested in the information that exists in the homotopy category, as that
is what factors through to the category of spectral sequences. To that end, we will define
functors that preserve this structure.

Definition 4.6. Let C be a symmetric monoidal ∞-category and let X, Y, Z ∈ Tow(Sp). A
map X ⊗ Y → Z is called a pairing of filtered objects.

We can now state how the associated graded interacts with Day convolution.

Proposition 4.7. [8, Proposition II.1.13 and pp. 198-199] The total associated graded func-
tor Gr : Tow(Sp) →

∏
Z Sp is strong symmetric monoidal. Here we equip every degree of∏

Z Sp with the symmetric monoidal structure of Sp. Degreewise, there is an equivalence

Grq(X ⊗ Y ) ≃
⊕
i+j=q

Gri(X)⊗Grj(Y ).

Moreover, let ϕ : X ⊗ Y → Z be a map of filtrations. This induces pairings Gri,j(ϕ) :
Gri(X)⊗Grj(Y )→ Gri+j(Z) for all integers i, j.

There is also a notion of differential up to homotopy on the associated graded. This will later
be used to define the differentials in our spectral sequence.

Proposition 4.8. Let Y ∈ Tow(Sp) be a filtration. We then define the map δr to be the map
in the following diagram of pushouts

Gri+1(Y ) Y (i)
Y (i+2)

0

0 Gri(Y ) Gri+1(Y [1]δr

Then δr ◦ δr is zero up to homotopy.

Proof. Using Proposition 4.4 we extend the defining diagram to the four central squares in
the following diagram

Y (i+1)
Y (i+3)

Y (i)
Y (i+3)

0

Y (i+1)
Y (i+2)

Y (i)
Y (i+2)

0

0 Y (i)
Y (i+1)

Y (i+1)
Y (i+2)

[1]

Y (i+1)
Y (i+3)

[1]

δrϵ

⌟ ⌟

⌟

β

α1

α2

γ

No!
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. Taking the pushout of 0← Y (i+1)
Y (i+3)

→ 0, we get Y (i+1)
Y (i+3)

[1], together with the maps α1, α2 and
β.
The left rectangle is also a pushout square, inducing by the universal property the map γ
with γ ◦ ϵ ≃ α1.
We shift the entries in this diagram around to draw attention to the outer pushout square.

Y (i+1)
Y (i+3)

Y (i)
Y (i+3)

0

0 Y (i)
Y (i+1)

Y (i+1)
Y (i+3)

[1]

Y (i+1)
Y (i+2)

[1]
δr

ϵ

β
α1

α2

γ

⌟

Note that the whole rectangle is the outer pushout diagram from the previous picture. By the
pasting lemma for pushouts, the right square is also a pushout. This implies that β ◦ γ ≃ δr.
We fit this triangle in the following diagram

Y (i)
Y (i+1)

Y (i+1)
Y (i+3)

[1] Y (i+3)
Y (i+3)

[2] ≃ 0

Y (i+1)
Y (i+3)

[1] Y (i+1)
Y (i+3)

[2]

δ

γ

β ⌟

which is constructed using Proposition 4.4. We see that δ ◦δ is zero up to homotopy. Passing
to homotopy groups, it follows that dr ◦ dr = 0.

The pairings and differentials satisfy the following Leibniz rule.

Proposition 4.9 (Leibniz rule). [8, Theorem II.1.21] Given a pairing of filtrations ϕ : X ⊗
Y → Z, the diagram

Gri(X)⊗Grj(Y )
(
Gri+1(X)⊗Grj(Y )⊕Gri(X)⊗Grj+1(Y )

)
[1]

Gri+j(Z) Gri+j+1(Z)[1]

Gri,j(ϕ)

δrZ

Gri+1,j(ϕ)⊕Gri,j+1(ϕ)

δrX⊗1⊕1⊗δrY

commutes for all integers i, j.

Given a spectrum, we can construct a tower by killing homotopy groups over or under a
varying degree. These are called the Postnikov and Whitehead tower respectively. We will
only make use of the latter one. To describe this tower, we introduce the induced t-structure
on filtrations. Later, we define another t-structure on Tow(Sp), namely the Beilinson t-
structure. Therefore, we call this the canonical t-structure.
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Definition 4.10. Let C be a stable ∞-category with a t-structure. Then there is a functor
τ can≥0 : Tow(C)→ Tow(C) given by τ can≥0 (X)(n) = τ≥nX(n).
The essential image of this functor is Tow(C)can≥0 = {X ∈ Tow(C) | X(n) ∈ C≥n} This
determines a t-structure on Tow(C), called the canonical t-structure.

This t-structure is well-defined, for the proof we refer to [8, Proposition II.1.22]. The essence
is that any (co)localization functor satisfying certain stability properties determines a t-
structure, see also [13, Proposition 1.2.1.16]. We use this t-structure to define the Whitehead
filtration.

Definition 4.11. Let X ∈ Sp be a spectrum. The Whitehead filtration of X is a filtration
τ≥•X ∈ Tow(Sp) given in each degree by (τ≥•X)(n) ≃ τ≥nX.

It can be shown that the canonical t-structure is compatible with the Day convolution product
[8, Proposition II.1.23]. This implies the lax monoidality of the Whitehead filtration.

Proposition 4.12. [8, p. II.1.26] The Whitehead filtration τ≥• : C → Tow(C) is lax symmet-
ric monoidal.

Proof. As the t-structure is compatible, by [11, Propositions 1.26 and 1.31] not only the
truncation functors are lax symmetric monoidal, but also the inclusion I : Tow(Sp)≥0 →
Tow(Sp) is symmetric monoidal. By [1, Proposition 2.21], the colimit functor Tow(Sp)→ Sp
is left adjoint to the symmetric monoidal functor Sp → Tow(Sp) sending each spectra to a
constant tower on that spectra. Therefore, the colimit functor is also lax monoidal. The
Whitehead filtration is the right adjoint of colim ◦I, so it is lax monoidal by part 2 of
Proposition 3.30.

Definition 4.13. The Beilinson t-structure on Tow(Sp) is defined by

Tow(Sp)Bei
≥n := {X ∈ Tow(Sp) | Grq(X) ∈ Sp≥n−q ∀q}

Tow(Sp)Bei
≤n := {X ∈ Tow(Sp) | X(q) ∈ Sp≤n−q ∀q}

The Beilinson t-structure is well-defined [8, Proposition II.2.1] and is also compatible with
Day convolution, see [1, Proposition 6.13].

Theorem 4.14. [8, Theorems II.2.10 and 11] There is a equivalence of categories Tow(Sp)Bei,♡ ≃
Ch(Ab). Explicitly, a filtration X ∈ Tow(Sp)Bei,♡ is sent to the chain complex

· · · −→ π1
(
Gr−1(X)

)
−→ π0

(
Gr0(X)

)
−→ π−1

(
Gr1(X)

)
−→ · · ·

Moreover, this equivalence is symmetric monoidal, where Ch(Ab) has the standard tensor
product and Tow(Sp)Bei,♡ has the symmetric monoidal structure given by X ⊗Bei,♡ Y =
τBei
≤0 (X ⊗ Y ).

Definition 4.15. Let X ∈ Tow(Sp). The décalée of X is the filtration

· · · → colimi(τ
Bei
≥n+1X)(i)→ colimi(τ

Bei
≥nX)(i)→ colimi(τ

Bei
≥n−1X)(i)→ . . .

obtained by applying the colimit to every term of the Beilinson-Whitehead tower of X. This
gives a functor Déc : Tow(Sp)→ Tow(Sp). Degree wise this reduces to

Déc(X)(n) = colimi(τ
Bei
≥nX)(i).

have you?

why?

oplax?

where the maps are....
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Proposition 4.16. [8, Proposition II.2.19] The functor Déc is lax symmetric monoidal.

Proof. The Beilinson-Whitehead filtration τBei
≥• : Tow(Sp)→ Tow(Tow(Sp)) is lax symmetric

monoidal, similarly to the proof of Proposition 4.12. By [10, Proposition 1.5.10] the whole
functor is lax symmetric monoidal.

The next construction needs the definition of coherent cochain complexes.

Definition 4.17. [1, Definition 2.1] Define Ch to be the ordinary category with as objects
Z ∪ {∗} where {∗} is a zero object and as morphisms

Ch(n,m) =


{∂n, 0} if m = n− 1

{id, 0} ifm = n

{0} otherwise

Let C be a pointed ∞-category. The ∞-category of coherent cochain complexes is the
full subcategory Ch∗(C) ⊆ Fun(Chop, C) spanned by pointed functors.

Construction 4.18. We construct an Eilenberg-Mac Lane functor H : Ch(Ab) → Sp ac-
cording to the theory of [1]. There is a symmetric monoidal functor I : Ch(Sp)→ Tow(Sp)
defined as IC• = MapCh(Sp)(S•

[•], C), where Sn[n](m) = S[n] if m = n and 0 otherwise [1, pp.

2, 13–14].
Then define the Eilenberg-Mac Lane functor H : Ch(Ab)→ Sp as H := colim ◦I.

We will need the following two properties of the Eilenberg-Mac Lane functor.

Proposition 4.19. The Eilenberg-Mac Lane functor is lax symmetric monoidal

Proof. As stated in the construction, I is symmetric monoidal. We showed in the proof of
Proposition 4.12 that the colimit functor is lax symmetric monoidal. The result follows.

Proposition 4.20. Homotopy groups of Eilenberg-Mac Lane complexes give cohomology
groups [1, Proposition 8.10]. Let A• be a cochain complex of abelian groups, then

π−nHA
• ≃ Hn(A•)

Theorem 4.21. [8, Theorem II.2.20 and II.2.22] There is an equivalence

Gr ◦Déc ≃ H ◦ Σtot ◦ πBei
∗

of functors Tow(Sp) →
∏

Z Sp, where we apply H :
∏

ZCh(Ab) →
∏

Z Sp levelwise and
Σtot :

∏
ZCh(Ab) →

∏
ZCh(Ab) is defined by Σtot(C•

n)n∈Z = (C•
n[n])n∈Z. Moreover, this

equivalence is lax symmetric monoidal.
Degreewise, this equivalence is expressed as Grq Déc(X) ≃ H(πBei

q (X)[q]).

does not apply as you're using a Day convolution

is this just the inclusion of the heart?

your earlier argument only implies oplax, which would cause a problem here. But in fact, the colimit functor is strong symmetric monoidal (as can be checked on generators). 

Fishy to cite [8] for a statement where you use a construction from [1]
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4.2 Spectral sequences

We have now defined all necessary ingredients for the construction of the spectral sequence
of a filtration. Moreover, all involved functors are lax symmetric monoidal. In this section
we combine all these results to show that a filtration gives rise to a multiplicative spectral
sequence.

Theorem 4.22. Let X ∈ Tow(Sp) be a filtration. There is a spectral sequence where the
elements of each page are determined by

Er
n,s = πnGr(r−1)n+s(Décr−1(X))

The differential is induced by the indicated connecting homomorphism in the following pushout
diagram:

Gri+1(Décr−1(X)) Décr−1(X)(i)

Décr−1(X)(i+2)
0

0 Gri(Décr−1(X)) Gri+1(Décr−1(X)[1]δr

where i = (r − 1)n + s. Taking homotopy groups πn gives a homological Adams graded
differential dr : Er

n,s → Er
n−1,s+r of bidegree (−1, r).

Proof. We first check that dr ◦ dr = 0. This is the result of Proposition 4.8, applied to
Y = Décr−1(X).

We now show the existence of the required isomorphisms Er+1
n,s
∼= H(Er

n,s, d
r).

By Theorem 4.21 it holds that Grq Déc(X) ≃ H(πBei
q (X)[q]). We use Proposition 4.20 to

compute the homotopy groups of this formula. Note that we are now applying H to a chain
complex instead of a cochain complex, which reverses the indexing. Taking the homotopy
groups we get

πn(Grq Déc(X)) = πn(H(πBei
q (X)[q]))

=
ker δ : πn(Grq−n(X))→ πn−1(Grq−n+1(X)))

im(δ : πn+1(Grq−n−1(X))→ πn(Grq−n(X)))

We apply this formula to an element of the Er+1-page.

Er+1
n,s = πnGrrn+s(Décr(X))

=
ker(δ : πn(Gr(r−1)n+s(Décr−1(X)))→ πn−1(Gr(r−1)n+s+1(Décr−1(X))))

im(δ : πn+1(Gr(r−1)n+s−1(Décr−1(X)))→ πn(Gr(r−1)n+s(Décr−1(X))))

=
ker dr : Er

n,s → Er
n−1,s+r

im dr : Er
n+1,s−r → Er

n,s

= H(Er
n,s, d

r)

made more complicated than necessary
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Note that E1
n,s = πnGrs(X). Up to grading, this is the same first page as is constructed in [13,

§1.2.2]. We can therefore expect that these two constructions of spectral sequences actually
lead to the same result. In that same section it is shown that, under certain conditions,
the spectral sequence converges. This leads us to conjecture that this spectral sequence
also converges. We mirror the statement [13, Proposition 1.2.2.14], and compare with the
convergence statements in [4]. A very similar convergence statement is shown in [1, Theorem
9.1], and in [1, Remark 9.2] it is said that future work by Hedenlund-Krause-Nikolaus might
shine more light on convergence statements.

Conjecture 4.23. Let X ∈ Tow(Sp) be a filtration such that X(n) ≃ 0 for n ≪ 0. Then
the spectral sequence converges strongly

Er
n,s =⇒ πn+s(colimX)

We now show that the spectral sequence is multiplicative, in the sense of Definition 2.10.

Theorem 4.24. Let ϕ : X ⊗ Y → Z be a pairing of filtrations. Then there exists an induced
pairing on spectral sequences

ϕ : E(X)⊗ E(Y )→ E(Z)

Proof. Let ϕ : X ⊗ Y → Z be a pairing of filtrations. By Proposition 4.7, this induces
a map Gri(X) ⊗ Grj(Y ) → Gri+j(Z). We then apply the homotopy group functor, which
is lax symmetric monoidal by Proposition 3.34. This results in the pairing πnGri(X) ⊗
πn′ Grj(Y )→ πn+n′ Gri+j(Z).
Recall that Déc is a lax monoidal functor by Proposition 4.16, so when we apply it repeatedly
to the pairing ϕ we get a new pairing Décr−1(ϕ) : Décr−1(X)⊗Décr−1(Y )→ Décr−1(Z). We
substitute this in place of our original pairing, and let i = (r− 1)n+ s, j = (r− 1)n′ + s′, to
get a pairing

ψr : πnGr(r−1)n+s(Décr−1(X))⊗ πn′ Gr(r−1)n′+s′(Décr−1(Y )) (4.1)

→ πn+n′ Gr(r−1)(n+n′)n+s+s′(Décr−1(Z))

which is a pairing of our spectral sequence.

We now check that the pairing satisfies the required conditions from Definition 2.10. First
we check that drψ = ψ(dr ⊗ 1 + 1⊗ dr). Applying Proposition 4.9 to the pairing Décr−1(ϕ),
and afterwards applying the lax monoidal homotopy group functor πn from Proposition 3.34
results in the wanted equation.
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The second condition is that

E(X)r+1 ⊗ E(Y )r+1 E(Z)r+1

H(E(X)r)⊗H(E(Y )r)

H(E(X)r ⊗ E(Y )r) H(E(Z)r)

ψr+1

ϕrE

ϕrE(X)⊗ϕrE(Y )

H(ψr)

commutes.
Applying the lax symmetric monoidality of π∗ 3.34, the equivalence Gr ◦Déc ≃ H ◦ΣTot◦πBei

∗
4.21 and of the Eilenberg-Mac Lane functor H 4.19 to the pairing ψr+1 4.1

πn(GrpDécrX)⊗ πj(Grq Décr Y ) πn+n′(Grp+q Décr Z)

πn+n′(H(πBei
p Décr−1X ⊗ πBei

q Décr−1 Y )[p+ q]) πn+n′(H(πBei
p+q Déc

r−1 Z)[p+ q])

∼=

where p = rn+ s and q = rn′ + s′

Remark 4.25. The information of this theorem can be neatly packaged in the context of
∞-operads. Every (symmetric) monoidal ∞-category is an ∞-operad, and the category of
spectral sequences can be thought of as a multicategory, which is also an operad. In this
setting, the theorem would be as follows: the functor E∗

∗,∗ : Tow(Sp) → SSeq admits the
structure of a map of ∞-operads. As SSeq is a 1-category, it is not necessary to check the
higher coherences. As Tow(Sp) is symmetric monoidal, every multilinear map is a composite
of bilinear map. Hence, this statement reduces to the theorem we have just proven.

sentence not easy to follow. 
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5 Multiplicative generalized Serre spectral sequence

One of the classical examples of spectral sequences has been the Serre spectral sequence.
This spectral sequence is used to describe the singular (co)homology of a the total space of
a (Serre) fibration in terms of the base space and the fiber

Ep,q
2 = Hp (B,Hq(F )) =⇒ Hp+q(X)

The spectral sequence we want to construct is a common generalization of the Serre spectral
sequence and the Atiyah-Hirzebruch spectral sequence that we constructed in Theorem 2.22.
We will do this using the theory of the previous sections. We already stated this result in
the classical context before Remark 2.23, but now we are equipped to prove that it has a
multiplicative structure.

5.1 Some definitions

To describe this spectral sequence, we first need to understand all the ingredients. In this
section we look at the coalgebra structure on a space and cohomology with values in spectra.
The starting point of our spectral sequence is the ∞-category of spaces. We explore how
every space is a coalgebra object.

Definition 5.1. A monoidal structure on C is Cartesian if the unit object is final and
C ⊗ 1← C ⊗D → 1⊗D exhibits C ⊗D as the product of C and D for all objects C,D ∈ C

Existence of Cartesian structures is guaranteed in categories with finite products.

Proposition 5.2. [11, Proposition 2.8 (5)] Let C be an ∞-category that admits finite prod-
ucts. Then C has a Cartesian monoidal structure that is symmetric.

A Cartesian structure on C induces a coCartesian structure on Cop. Then [11, Corollary 2.18]
implies that the forgetful functor CAlg(Cop)→ Cop is a trivial Kan fibration.

Example 5.3. The∞-category of spaces S admits finite products. It follows that we can see
every space as a coalgebra object. Intuitively, we can see the diagonal map as this coalgebra
structure.

The following concept is explored more in [12, §4.4.4]. Note that the ∞-category of spectra
Sp admits small colimits [13, Corollary 1.4.4.2 and Proposition 1.4.4.4].

Definition 5.4. Let h ∈ Sp be a spectrum and X ∈ S a space. We define the tensor
product to be h⊗X+ = colimX consth

We will mostly be interested in the adjoint of this operation.

Proposition 5.5. Let X ∈ S be a space. Then the tensor operation −⊗X+ : Sp→ Sp has
a right adjoint, which we denote by (−)X+.
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Proof. This is by the Adjoint functor theorem, [12, Corollary 5.5.2.9]. Both S and Sp are
presentable.
Note that we can write

h⊗X+ = colimX consth = colimX consth⊗S

= colimX h⊗ constS

= colimX h⊗ Σ∞
+ S = h⊗ Σ∞

+X

by the generating properties of the sphere spectrum S, see [13, Corollary 1.4.4.6]. We can
therefore factor the tensor operation as follows

Sp Sp

Sp×S Sp× Sp

−⊗X+

idSp×{X}

idSp×Σ∞
+

−⊗−

All these functors preserve colimits, and hence −⊗X+ preserves colimits. By applying the
Adjoint functor theorem we get the result.

We can think of (−)X+ as hom(X,−), just as in the ordinary tensor-hom adjunction. We
want to use this construction to define cohomology. Recall from Brown’s theorem 2.16 that
reduced generalized cohomology theories have the shape h̃s(−) ≃ [−, hs], so cohomology is
like the contravariant hom-functor.

We now define h(−)+ : Sop → Sp and show it is lax monoidal if h is a ring spectrum.

Construction 5.6. Note that taking mapping spaces forms a functor MapSp(−,−) : Spop× Sp→
S. We fix a spectrum h ∈ Sp for the second component, and take the n-fold suspension.
Then we precompose with Σ∞

+ : S → Sp to form the functor MapSp(Σ
∞
+ (−),Σnh) : Sop → S

for each n. Taken together, they form a functor to spectra, as for each X ∈ S

ΩMapSp(Σ
∞
+ (X),Σnh) ≃ MapSp(ΣΣ

∞
+ (X),Σnh)

≃ MapSp(Σ
∞
+ (X),Σn−1h)

We denote this functor as h(−)+ := limnMapSp(Σ
∞
+ (−),Σnh).

Proposition 5.7. Let h ∈ Sp be an E∞-ring spectrum. We view the ∞-category of spaces
with the coalgebra structure that comes from the product. Let ∆ : X → X×X be the diagonal
map on X. Then there exists a map h(∆)+ : hX+ ⊗ hX+ → h(X×X) .

Proof. As h ∈ Sp is an E∞-ring spectrum, we have a map h ⊗ h → h. When we apply the
adjunction − ⊗ X+ ⊣ (−)X+ to the identity hX+ → hX+ , we get a map hX+ ⊗ X+ → h.
Applying this map two times, we get

hX+ ⊗ hX+ ⊗ (X ×X)+ → h⊗ h→ h

?

argument not very clear. 

that's the idea, but one has to argue a bit more carefully

why do you need Prop 5.5 then?
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where the last map comes from the ring spectrum. When we take the adjoint of this com-
posite, we get a map

hX+ ⊗ hX+ → h(X×X)+

Proposition 5.8. Let X ∈ S be a space and h ∈ Sp be a spectrum. Then πnh
X+ = hn(X)

is a reduced generalized cohomology theory.

Proof. By the adjunction Ω∞ ⊢ Σ∞
+ , it holds for every n that

MapSp(Σ
∞
+ (X),Σnh) ≃ MapS(X,Ω

∞Σnh)

Now

πnh
X+ ≃ π0MapSp(Σ

∞
+ (X),Σnh)

≃ π0MapS(X,Ω
∞Σnh)

By Brown’s representability theorem 2.16, this is a reduced generalized cohomology theory.

Remark 5.9. As a last preparation, we look at cohomology with local coefficients in this
setting. Let X ∈ S be a space and F : X → Sp be a functor. Note that Fun(X, Sp)♡ ≃
Fun(X, Sp♡) ≃ Fun(X,Ab). Since Ab is a 1-category, higher coherences are suppressed, and
we can identify this with Fun(τ≤1X,Ab) and τ≤1X can be identified with Π1X. Under these
identifications, we recover the original definition of a local coefficient system.

We can also describe cohomology with local coefficients in a categorical way. Let X ∈ S be
a space and G : X → Ab a functor. Then we define the cohomology of X with local
coefficients in G to be Hs(X;G) := π−s(limX G).
Note that we can form a local coefficient system by applying the homotopy group to the
composition h(−)+ ◦ F for h ∈ Sp and F ∈ Fun(X,S). It is precisely this local coefficient
system that we will use in the next section. We write hs(F ) := π−s(h

(−)+ ◦ F ).

5.2 The spectral sequence

We construct the Leray-Serre-Atiyah-Hirzebruch spectral sequence using the tools developed
until this point.

Theorem 5.10. Let B ∈ S be a space, F ∈ Fun(B,Sop) be a functor classifying a right
fibration p : E → B in S. Furthermore, let h ∈ Sp be a spectrum. If the filtration

Y (•) = lim
B
(τ≥• ◦ h(−)+ ◦ F )

exists, then it induces a spectral sequence

Ep,q
1 = Hp(B;hq(F ))

Brown's representability theorem is really about the harder converse....

?

you're not coming back to the earlier axioms.
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Proof. By Theorem 4.22, a filtration induces a spectral sequence

Er
n,s = πnGr(r−1)n+s(Décr−1(Y )).

Taking r = 1 we get

E1
n,s = πnGrs Y

= πn(cofib(Y (s+ 1)→ Y (s)))

We calculate the cofibers. Note that for a general object X, we can construct a fiber sequence
around τ≥sX using Remark 3.15. This fiber sequence is τ≥s+1X = τ≥s+1τ≥sX → τ≥sX →
τ≤sτ≥sX. Moreover τ≤sτ≥sX ≃ τ≤s(τ≥0(X[−s])[s]) ≃ (τ≤0τ≥0X[−s]) ≃ πsX[s]. These facts
imply that,

cofib(lim
B
(τ≥s+1 ◦ h(−)+ ◦ F )→ lim

B
(τ≥s ◦ h(−)+ ◦ F ))

= lim
B
(cofib(τ≥s+1 ◦ h(−)+ ◦ F → τ≥s ◦ h(−)+ ◦ F ))

= lim
B
πs(h

(−)+ ◦ F )[s]

So the E1-page becomes

E1
n,s = πn lim

B
πs(h

(−)+ ◦ F )[s] = πn−s lim
B
πs(h

(−)+ ◦ F )

Now h(−)+ ◦ F : B → Sp is a local system.

E1
n,s = πn−s lim

B
πs(h

(−)+ ◦ F )

= Hs−n(B; πs(h
(−)+ ◦ F ))

= Hs−n(B;h−s(F ))

with differentials of bidegree (−1, r). We regrade this spectral sequence as p = s−n+1 and
q = −s− 1, to get a cohomologically graded spectral sequence Ep,q

1 = Hp(B;hq(F )).

5.3 Multiplicativity

Theorem 5.11. Let B ∈ S be a space, F ∈ Fun(B,Sop) be a right fibration and let h ∈ Sp
be a ring spectrum. Then the spectral sequence is multiplicative.

Proof. The spectral sequence is induced by the filtration Y = limB(τ≥•◦h(−)+◦F ) ∈ Tow(Sp).
By Theorem 4.24 we need to exhibit a pairing Y ⊗ Y → Y . The first step will be to show
that τ≥• ◦ h(−)+ ◦ F is a diagram valued in Alg(Tow(Sp)).

By Example 5.3 it holds that every space in S is a coalgebra object in CAlg(Sop). This means
that F : B → Sop is valued in coalgebra objects Alg(Sop). We can define F ⊗ F pointwise,
and the coalgebra structure on the image of F gives a map F (x) → F (x) ⊗ F (x) for every

since cofib = fib[1]

waarom de +1 en -1?

this should be E_2

naturally!



5 MULTIPLICATIVE GENERALIZED SERRE SPECTRAL SEQUENCE 38

x ∈ B. Now h is a ring spectrum, and if we apply h(−)+ : Sop → Sp to this map, then by
Proposition 5.7 we get a pairing hF (x)+ ⊗ hF (x)+ → h(F (x)×F (x))+ .
By Proposition 4.12, τ≥• : Sp → Tow(Sp) is lax symmetric monoidal, so it preserves the
pairing.
In Theorem 5.10 we have seen that the limit exists in Tow(Sp). By [11, Proposition 4.17]
it also factors over algebra objects. This means that Y has a pairing, and thus we get a
multiplicative spectral sequence.
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A Some results on fibrations

In this appendix we state some results that we use in the main text on (co)Cartesian fi-
brations, and left/right fibrations. The theory is mostly taken from [12], chapters 2-4. We
remark already that every left fibration is a coCartesian fibration, so all results that are
stated for the first also hold for the latter.

In higher category theory it is often difficult to give a concrete description of an∞-category.
Therefore, we often use certain fibrations to prove higher categorical statements. The notion
of (co)Cartesian fibrations will allow us to talk about fibers that are ∞-categories, while left
and right fibrations have fibers in spaces.

A.1 coCartesian and Cartesian fibrations

coCartesian fibrations are also inner fibrations, so we first define these.

Definition A.1. An inner fibration of simplicial sets is a morphism f : X → S that has
the right lifting property with respect to all inner horn inclusions Λni ⊆ ∆n for all 0 < i < n.

We now define (co)Cartesian fibrations, this is done in two steps.

Definition A.2. Let q : X → S be an inner fibration of simplicial sets, and e : x → y an
edge in X. The edge e is q-cartesian if for all n ≥ 2 there exists a lift in all diagrams of the
form

∆1

Λnn X

∆n S

i
e

σ

q

σ′

where i is the inclusion into the n− 1, n edge.

Dually, the edge e is q-cocartesian when we take the left outer horn inclusion Λn0 and include
e on the first edge.

Remark A.3. Looking at the bottom square, this would be the property that q has the
right lifting property with respect to right outer horn inclusions. The top triangle adds the
restriction that the ’last’ edge of the horn is send to e. The condition that n ≥ 2 comes from
the fact that otherwise we would can not include the edge into the horn.

Definition A.4. Let q : X → S be an inner fibration of simplicial sets, it is a (co)Cartesian
fibration if for every edge e : s → t in S and every lift t̂ of t (ie q(t̂) = t) there is a
q-(co)cartesian edge ê : ŝ→ t̂ which is a lift of e (ie q(ê) = e).

These notions are dual, an inner fibration q : X → S is a Cartesian fibration if and only if
qop is a coCartesian fibration.
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Given a coCartesian fibration p : X → S, we have for each point s ∈ S a fiberXs := X×S{s},
which is an ∞-category. We now also want that each edge s → t determines a functor
Xs → Xt on the fibers. This is made explicit in the straightening theorem, which is one of
the most important uses of (co)Cartesian fibrations.

Theorem A.5. Let C be a small ∞-category. There is an equivalence of categories

coCart(C) ∼−→ Fun(C,Cat∞)

By coCart(C) we mean the full subcategory of sSet/C spanned by coCartesian fibrations.
Fibers in the context of geometry have an important application. Given a curve on a manifold,
one can lift this to a map of fibers. An example is the parallel transport on a vector bundle
along a smooth curve. A similar lifting problem can also be solved for (co)Cartesian fibrations.

Proposition A.6. [Kerodon][Proposition 5.2.2.4]
Let q : X → S be a a coCartesian fibration, and let e : s → t in C be an edge. Then there
exists a functor e! : Xs → Xt, called the covariant transport.

Dually, if q : X → S is a Cartesian fibration, there exists a contravariant transport functor
e∗ : Xt → Xs. These functors occur in the definition of a monoidal∞-category in section 3.2

A.2 Left and right fibrations

The theory of (co)Cartesian fibrations is most usefull in its generality, and is the prefered
notion of fibration in Cat∞. However, this generality can also make them more difficult to
work with. When working in the ∞-category of spaces S, we can make use of left and right
fibrations instead. While most results that we state also hold for (co)Cartesian fibrations,
the statements often have a simpler form for left and right fibrations.

Definition A.7. A left fibration of simplicial sets is a morphism f : X → S that has the
right lifting property with respect to all horn inclusions Λni ⊆ ∆n for all 0 ≤ i < n. A right
fibration has this property for all 0 < i ≤ n.

We denote for a simplicial set S ∈ sSet by LFib(S) the full subcategory in sSet /S spanned
by left fibrations X → S, and similarly Rfib(S). Note that by duality LFib(S) ≃ RFib(Sop).

We remark that if q is a right fibration, then every edge is q-cartesian, so q is a Cartesian
fibration. Dually, every left fibration is a coCartesian fibration. In this sense, the notion of
right fibration is stronger than that of a Cartesian fibration, which in turn is stronger than
that of an inner fibration.

The straightening theorem becomes easier in the setting of left fibrations.

Corollary A.8. Let C be a small ∞-category. There is an equivalence of categories

LFib(C) ∼−→ Fun(C,S)

Now left fibrations over spaces are actually Kan fibrations

more or less a special case of Theorem A.5
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Proposition A.9. [12][2.1.3.3] Let X be a simplicial set and S ∈ S a space. Then for a
morphism of simplicial sets f : X → S, the following are equivalent

1. f is a left fibration,

2. f is a right fibration,

3. f is a Kan fibration.

As every morphism in S factors as an equivalence and a Kan fibration, the full subcategory
of left fibrations over B ∈ S are just all morphisms in S/B. The straightening theorem in
this setting is as follows.

Corollary A.10. Let B ∈ S be a space. There is an equivalence of categories

S/B ∼−→ Fun(Bop,S)

The straightening theorem allows us to define a universal left fibration q : S∗ → S.
For the precise definition we refer to [12][3.3.2]. The main point is that we can write every
left fibration as a pullback of this universal fibration along a functor.

Proposition A.11. [12][3.3.2.8] Let p : X → S be a left fibration of simplicial sets. Then
there exists a map F : S → S such that p is the pullback of q along F .

X S∗

S S

qp

F

F̃

⌟

We say that p is classified by F .

Remark A.12. The notion of universal fibrations holds more generally in the context of
(co)Cartesian fibrations, with classifying functors F : S → Cat∞. If we look at classifying
functors F : S → S, then by [12][Proposition 3.3.2.5], these only classify left fibrations, so
we do not need to concern ourselves here with (co)Cartesian fibrations.

There is a nice relation between limits and colimits of diagrams in spaces and the left fibra-
tions these diagrams classify.

Proposition A.13. [12][3.3.3.4 and 3.3.4.6] Let K be a simlicial set, p : K → S a diagram
and X → K a left fibration classified by p. Then there are the following natural isomorphisms
in the homotopy category of spaces hS:

� lim p ≃ MapK(K,X)

� colim p ≃ X
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