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Abstract

Autoencoders are small encoder-decoder pair networks that learn to compress
data into a latent representation of smaller dimension. This thesis aims to
outline the benefits and drawbacks of using latent representations as a utility-
preserving data pseudonymisation method for machine learning. We consult
existing anonymisation literature and EU legislature, followed by experiments
on latent representation decoding, data utility and other latent representation
properties. We found that without a leak of the original data along with its
latent representation, it is difficult for an adversary to generate a well-performing
reconstruction of the encoded dataset. This method is more effective if the
latent representation is randomly permuted. This permutation is not easily
reversed by a clustering algorithm. A latent representation preserves its data
utility well for classification algorithms, even when permuted. Our experiments
indicate that a dataset can be represented by multiple, well-performing latent
representations, making it difficult for an adversary to discern which dataset was
originally encoded. Autoencoders are quick to train, making it a quick method
to pseudonymise data whilst retaining data utility for classification algorithms.
As a pseudonymisation method, it is possible for the data holder to obtain a
reconstruction of the data. However, latent representations would likely not
be considered anonymised data by GDPR. Furthermore, regression algorithms
perform worse than classification algorithms on latent representations. Finally,
despite the popularity of mean squared error, we find that this loss function
does not maximise data utility in latent representations.

Keywords: Data, anonymisation, pseudonymisation, GDPR, privacy-utility
trade-off, autoencoder, hidden representation, latent representation
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Chapter 1

Problem introduction

1.1 Introduction

Modern research and business are increasingly driven by data analysis and au-
tomated decision-making (Micheli et al., 2020; Yen, 2021). The cloud-based AI
market was valued at 44 billion dollars in 2022 and this market is expected to
grow exponentially (Grand View Research, 2023). Data analysis is an important
tool that also comes with its own risks. Negligent handling of big data leading to
data leaks occurs worryingly frequently (Drapkin, 2023) and can have incredibly
damaging consequences for affected individuals, such as identity theft, fraud, or
damage to one’s social standing. To ensure that companies and researchers
handle this powerful approach with appropriate care, the European Commis-
sion introduced the General Data Protection Regulation (GDPR) in 2016 which
came into effect in 2018 (European Commission, 2016c). Almost immediately
after coming into effect in 2018, the first multimillion fines were imposed on
various companies in Europe for breaching data protection agreements (Panda
Security, 2019), highlighting the need for secure data storage and handling.

In cases where the minimisation of data collection is impossible, it would at least
be ideal for sensitive data to be anonymised, or at least pseudonymised. This
way, even if the data was compromised, the persons to whom the data belong
would not be affected. The trivial solution is to remove direct identifiers, such
as names, identification numbers, phone numbers, or any other characteristics
that are unique to a natural person. The literature refers to this type of data
as Personally Identifiable Information (PII). However, a small amount of indi-
rectly identifying data has been found to be used to identify natural persons
in anonymised datasets (Sweeney, 2000). This is done through a process called
record linkage. Record linkage is the process of identifying the same person in
two separate anonymised datasets. Whilst each individual dataset on its own is
properly anonymised prior to being released or sold, when combining the two
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Chapter 1 1.1. Introduction

datasets, a person may be identified by the matching remaining (indirect) iden-
tifiers that were left in the dataset. A prominent example of this is in the work
of Sweeney, 2002 in which she identified the medical records of William Weld,
governor of Massachusetts, matching his ZIP code, birth date, and sex between
two datasets. She achieved this by linking an anonymised voter list, which was
publicly available for twenty dollars, and an anonymised medical dataset which
was distributed to researchers. Governor Weld previously assured the public
of the anonymity of the same medical dataset. This method of record linkage
is direct; more statistical approaches, such as using string similarity metrics to
attempt to deanonymise names that are partially changed or omitted, are also
used. Removing even more data to prevent indirect record linkage has a signif-
icant impact on the efficacy of data analysis, leading to the need for alternative
methods that strike a balance between privacy and data utility.

Figure 1.1: A simple example autoencoder network structure (Yang, 2020).

1.1.1 Introducing autoencoders

Anonymisation methods that involve the usage of neural networks have re-
cently attracted great interest. An example is autoencoder networks. Au-
toencoders are relatively small, unsupervised encoder-decoder pair networks.
Analogically, the encoder and decoder networks ’cooperate’ to devise a smaller,
well-representative summary of the input data. Like summarising a long text
document with fewer words, an encoder network learns to represent a higher-
dimensional dataset in fewer dimensions. In turn, the decoder network tries to
reconstruct the original data based on this summary.

An encoder network structure can be likened to a funnel. Continuing our earlier
analogy, the encoder iteratively makes a smaller summary of the input until the
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Chapter 1 1.1. Introduction

desired ’bottleneck’ size has been reached. The decoder network mirrors this
structure, progressively increasing the size until the data is returned back to the
dimensionality it originally was. This allows us to compare the reconstructed
result with the original dataset and train the network. Refer to Figure 1.1
for an illustration of the architecture of an autoencoder network. We refer to
the output of the encoder network (the summary in our analogy) as the latent
representation of the data. The maths behind autoencoders is explained in
more detail in Section 2.3. The exact origin of autoencoders is debatable, but
the ideas behind them have been discussed since 1985 (Rumelhart et al., 1985).

Autoencoder networks can be used in various ways. Autoencoders as described
above can be used for a process called feature selection, where the encoder
network is used as a feature selection method to represent higher-dimensional
data in lower-dimensionality data whilst retaining the most pertinent features
or combining multiple features into one. This can improve the performance
of classification methods that are sensitive to high dimensionality (Balın et
al., 2019; Han et al., 2018; Sun et al., 2016; Wang et al., 2017; Xu et al.,
2019). We explore this property of autoencoders in an experiment described in
Section 4.1.4.

Autoencoders can also be used the other way around. By providing a pre-
trained decoder network with a novel summary, the decoder network generates
something new based on what it has learnt (Higgins et al., 2017). Although
interesting, this use of autoencoders falls outside the scope of our research.

In the field of data anonymisation, both encoders and decoders are used. First,
the encoder network generates a latent representation of the data. The latent
representation is transformed in some way to protect the privacy of whomever
the data originally belongs to. The decoder network reconstructs this trans-
formed latent representation into an anonymised dataset. (Hajihassani et al.,
2021; Malekzadeh et al., 2019; Malekzadeh et al., 2017; Perero-Codosero et al.,
2022). We discuss some of these techniques in Section 2.1.

1.1.2 Problem statement

In this research, we aim to outline the benefits and drawbacks of using an
autoencoder’s latent representation as a method of data pseudonymisation that
retains the utility of the data for the purposes of machine learning. One factor
we investigate is whether a latent representation already innately suffices as
an anonymisation or pseudonymisation method as proposed by Yang, 2020. In
his blog post, Yang shows that a random forest classifier trained on a latent
representation scores similarly in terms of accuracy, F1 score, ROC curve, and
precision compared to using the original dataset. Furthermore, the decision
tree trained on the latent representation attached the same importance to the
features that the decision tree trained on the original dataset deemed important,
further indicating that the input data is effectively summarised by the latent
representation.

3



Chapter 1 1.1. Introduction

In terms of privacy protection, Yang argues that the data is anonymous because
it is not understandable for humans. Carrying on the analogy from above, the
shorthand that the encoder-decoder pair network developed to create the sum-
maries is incomprehensible for any outside party looking in. However, Yang’s
article lacks scientific evidence for the claim that this representation is anony-
mous. That is, Yang neither shows that the method nor the nature of latent
representations satisfy established privacy metrics in the literature and in the
legislation or that the encoding process is an irreversible function; in other
words, whether an adversary is able to decode the shorthand back into some-
thing comprehensible. Furthermore, there is no scientific literature that proves
or disproves this claim. As such, this thesis aims to investigate these claims. We
start by discussing and evaluating existing definitions and metrics of anonymi-
sation in the scientific literature and EU legislature.

Next, we experimentally evaluate anonymisation metrics and data utility per-
formance on latent representations for classification and regression algorithms
not covered by Yang’s article. We assume that we work with machine learning
training data, or data that otherwise has a distribution that is learnable by the
autoencoder. Finally, we perform a few experiments to discover properties of
latent representations, and test the average training time of autoencoders on
data of various sizes.

The practical application would be that data scientists could develop machine
learning algorithms or neural networks with a latent representation that has
a distribution similar to the original data, whilst avoiding the possibility of
leaking the original data, or exposing the data scientist to personally identifiable
information (PII).

1.1.3 Outline

We will briefly describe the structure of the remainder of the report. Section 1.2
lists the research questions addressed in this report. We dedicate Chapter 2
to establishing the background knowledge for this thesis. First, we discuss
the relevant work on anonymising autoencoders. Second, we list existing work
on anonymisation and data privacy in both the literature and EU legislature.
Third, we explain the mathematical concepts behind autoencoders in greater de-
tail. Chapter 3 relates the privacy models and metrics to the mathematical the-
ory we discussed to draw our theoretical conclusions of the pseudonymising per-
formance of autoencoders. Chapter 4 evaluates the experimental pseudonymisa-
tion performance of autoencoders. Section 4.1 describes the experimental setup
along with the measures, the datasets, and the experimental procedures used.
Section 4.2 shows the results generated by the experiments and provides a dis-
cussion. The report draws its general conclusions in Chapter 5, followed by a
discussion of the limitations of the chosen treatment, and ends with ideas for
future work.
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Chapter 1 1.2. Research questions

1.2 Research questions

This thesis aims to answer the following main research question:

• RQ: What are the advantages and disadvantages of using an autoen-
coder’s latent representation as a utility-preserving data pseudonymisation
method for machine learning?

To answer the main research question, we have devised the following sub-
questions (SQ) which, when answered, should cumulatively result in the answer
of our research question:

• SQ1: What privacy standards, models, and metrics exist in the current
literature or legislation and which of these measures apply to latent rep-
resentations?

• SQ2: What experimental measures of pseudonymity does an autoen-
coder’s latent representation have?

• SQ3: What is the utility loss incurred when using a latent representation
of the data rather than the original data?

5



Chapter 2

Related work and
background

2.1 Related work

In this chapter, we first describe existing data anonymisation methods using au-
toencoders. We then discuss existing privacy metrics both proposed in scientific
literature and established in EU legislation with a focus on GDPR. Finally, we
explain the mathematical theory of autoencoders in greater detail.

2.1.1 Latent representation manipulation

A paper by Hajihassani et al., 2020 defines the concept of a mean latent rep-
resentation. Consider data that has one or more attributes (columns) that
explicitly need to be kept private, such as which gender belongs to which sports
time series data point. Hajihassani et al. call these private variables. The au-
thors postulate that calculating the mean of all latent representations belonging
to one specific value of the private variable must inherently capture how that
value of the private variable is represented in the latent representation. For
example, taking the latent representation of a record of male sports data, sub-
tracting the mean latent representation of all male sports data from said latent
representation and adding the mean latent representation of all female sports
data should result in a record that originally belonged to a male sporter, but
in the reconstructed data is now attributed to a female sporter. Effectively,
this anonymises the distributions of male and female sports data by obfuscating
one with the other and vice versa. Experimenting with this pipeline shows that
the accuracy of attempting to identify gender in the sports data is significantly
reduced whilst largely retaining the utility of recognising the sports activity.

6



Chapter 2 2.1. Related work

2.1.2 ObscureNet

Another approach in the literature is ObscureNet (Hajihassani et al., 2021). In
this paper, the authors propose a Conditional Variable Autoencoder (CVAE)
network (Sohn et al., 2015), which is a variation on the ’standard’ autoencoder
network architecture. A variable autoencoder (VAE) learns a latent distribu-
tion of the input, rather than a direct, 1:1 latent representation of the input.
Furthermore, this distribution is assumed to be Gaussian: hence, the latent
distribution is denoted with a median and a standard deviation. This has the
benefit of being able to be used as a generative model. If one samples this learnt
latent distribution and feeds it to the trained decoder, the decoder generates
new datapoints based on its training dataset (Kingma and Welling, 2022).

Expanding on this idea, a CVAE improves this VAE network in that the latent
distribution is conditioned on an additional input (Kingma et al., 2014; Sohn
et al., 2015). During training, the latent distribution learns various modes based
on this additional input. For example, a CVAE trained on the MNIST dataset,
a popular image dataset of handwritten numbers (Deng, 2012, and see also
Figure 2.3), can be conditioned to learn which mode belongs to which number.
This results in being able to ask this network to specifically generate the number
three, rather than any of the ten numbers in its dataset.

ObscureNet reverses this result. The CVAE network is conditioned on private
variables. But instead of training the network to generate new datapoints based
on the mode provided, ObscureNet uses adversarial information factorisation.
As a result, the latent distribution is trained to be statistically independent of
the private variable on which it is conditioned. Therefore, sampling and decod-
ing from this network results in new datapoints with the conditioned private
variable obscured. Attempts to infer the private variable based on this trans-
formed data are significantly less accurate, whilst preserving data utility in
classification tasks revolving around non-anonymised variables. To anonymise
multiple private variables, the authors propose chaining these CVAE networks,
each conditioned on different private variables repeating this process. This
chained design keeps the network structure small and allows its usage in com-
putationally light Internet of Things devices.

2.1.3 Replacing autoencoder

A paper by different authors proposed a ”replacing” autoencoder (Malekzadeh
et al., 2017). This paper defines three disjoint sets of inferences: white-listed
inferences that are desired by some third party requesting the data, grey-listed
inferences that are neither requested by said third party nor considered sensitive
by the users to whom the data belongs, and black-listed inferences that are
considered sensitive by the users.

7



Chapter 2 2.1. Related work

An autoencoder is trained to learn to replace black-listed data with grey-listed
data to protect sensitive inferences. Their experiments show that their trained
autoencoder was successfully able to replace even numbers of the MNIST dataset
with zeroes whilst preserving odd numbers when black-listing even numbers from
their output.

2.1.4 Mobile sensor data anonymisation

Malekzadeh et al. later proposed a multi-objective loss function to be used in
deep autoencoder networks using an information-theoretic approach (Malekzadeh
et al., 2019). A loss function is the metric that a neural network aims to min-
imise whilst training, and in doing so learns the desired function that the creator
of the network intended for it to learn. Hence, a loss function shapes the entire
learning process of a model and should therefore be carefully designed. The
loss function Malekzadeh et al. propose has three regularisation parameters to
decide a privacy-utility trade-off: a parameter to determine the importance of
identity loss (or generalised: the attribute(s) to anonymise), a parameter for
the preservation of activity patterns (or generalised: the attribute(s) to keep),
and a parameter for the distance function that regulates the distortion between
the reconstructed dataset and the original dataset. This loss function was de-
rived from the mutual information between the reconstructed dataset and the
information of any user in the original dataset. Mutual information is a concept
defined in simple terms as the measure of how much information one distribu-
tion gives us about the nature of another distribution. Therefore, Malekzadeh
et al. aim to train an autoencoder that alters the distribution of the input
database in such a way that the resultant reconstructed distribution gives an
adversary as little data about individual users as possible. This performs well:
A network trained on the original data was unable to determine user identities
in a reconstructed dataset produced by the anonymising autoencoder network.

2.1.5 X-vector anonymisation

A technique proposed by Perero-Codosero et al., 2022 uses autoencoders to
anonymise speech data. First, an x-vector characterising the attributes of the
speech is extracted from a speech sample. Then, an autoencoder network trained
to generate a latent representation invariant to speaker characteristics is used
to remove speaker characteristics from the x-vector, anonymising it. This latent
representation is reconstructed back to an x-vector, which is then fed to a speech
synthesiser to recreate the now-anonymised speech sample.

Similar works can be found encoding raw data in a latent representation, trans-
forming the latent representation in some way, and decoding it into an anonymised
reconstructed data set (Espinoza-Cuadros et al., 2020; Nousi et al., 2020; Saun-
ders et al., 2021; Weggenmann et al., 2022).

8



Chapter 2 2.2. Privacy metrics

2.2 Privacy metrics

In this section, we describe the privacy metrics used in legislation and the lit-
erature. After explaining the functionality of an autoencoder in more detail in
Section 2.3, we will return to each of these metrics to assess whether the latent
representation produced by an autoencoder meets each of these requirements in
Chapter 3.

2.2.1 Legislation

The General Data Protection Regulation (GDPR) introduced by the European
Commission in 2016 standardises the laws and regulations on data privacy for
European countries. GDPR concerns itself with sensitive personal data, which
it defines as

”any information concerning an identified or identifiable living
natural person” (taken directly from European Commission, 2016a).

Recital 26 specifies that sufficiently anonymised data falls outside the purview
of this regulation. It defines anonymised data as

”Information which does not relate to an identified or identifiable
natural living person, or personal data rendered anonymous in such
a manner that the data subject is not or no longer identifiable”
(taken directly from European Commission, 2016d).

Additionally, the GDPR defines pseudonymization as

”the processing of personal data in such a manner that the personal
data can no longer be attributed to a specific data subject with-
out the use of additional information, provided that such additional
information is kept separately and is subject to technical and organi-
sational measures to ensure that the personal data are not attributed
to an identified or identifiable natural person” (taken directly from
European Commission, 2016a).

A simple example of pseudonymisaton is to replace names of participants in a
survey with names of animals, and to keep a table of names that links back
’rabbit’ with ’Jane Doe’ on a separate, secure location. This table linking true
names with pseudonyms is considered to be the ’additional information’ as per
this regulation stipulation. In contrast, anonymisation would be dropping the
names column in its entirety.

Up to 25 May 2018, the Article 29 Working Party (WP) was an independent
European working party that dealt with issues related to data protection and
provided advice and opinions on various topics. This working party has since
been replaced by the European Data Protection Board (EDPB) when GDPR
came into full effect. The work of the WP remains archived for future reference.
One such advisory, ’Opinion 05/2014 on anonymisation techniques’ (Art. 29
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WP, 2014), provided a critique on various anonymisation methods and popu-
lar privacy models, some of which we will discuss later in this report. These
anonymisation methods are evaluated with three metrics:

• Is it still possible to single out an individual in the anonymised dataset?

• Is it still possible to link records relating to an individual between the
same or two different databases?

• Can the value of an attribute be inferred from the values of other at-
tributes?

In addition, the WP is of the opinion that pseudonymisation is not a method
of anonymisation. Whilst acknowledging the utility of pseudonymisation as a
security measure, they claim pseudonymisation only reduces the possibility of
record linkage to retrieve the true identity of the subject. Instead, they underline
the importance of the irreversibility of an anonymisation method and whether
the anonymised data is safe against means that can reasonably be used by the
data owner or a third party to deanonymise the data. In other words: ”whether
identification has become ’reasonably’ impossible” (Cited from Art. 29 WP,
2014).

Encryption and hashing

Most crucially for our research, this Working Party lists the acts of encryption
and (keyed) hashing as pseudonymisation methods. In Section 3.1, we will use
this opinion as a precedent to determine whether autoencoder-based methods
would fall under anonymisation or pseudonymisation. We will now briefly ex-
plain encryption and hashing to later be able to discuss their similarities with
our proposed method.

Encryption is the act of making data unintelligible without access to a private
key (Kessler, 2003). The encrypted data is considered to be the pseudonym of
the unencrypted data, and the private key is seen as the ’additional information’
required to reverse the encrypted data. As such, any party who has access to
both the key and encrypted data should be considered to have reasonable access
to the full sensitive dataset (Art. 29 WP, 2014)

Hashing is a method that generates a fixed-size output from any input (which
could be one or more attributes of the dataset). A stronger requirement is
to use a collision-free hash function that (1) is one-way (irreversible) and (2)
it is unreasonably difficult to find another input that results in the same out-
put of the hash function (Russell, 1993). The WP opinion considers hashing a
pseudonymisation method rather than an anonymisation method, as the possi-
bility of brute-forcing these input values is still theoretically possible, regardless
of how negligent the probability may be. This is further corroborated by the ex-
istence of ’rainbow table attacks’, which use a look-up table of input and output
values of a certain hash function (Oechslin, 2003). A ’salted’ hash function uses
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a (not necessarily secret) random value in addition to the input to further ob-
scure the possible inputs used to generate the hash output (Gauravaram, 2012).
A ’keyed’ hash function uses a similar concept in that the function accepts an
additional (secret) ’key’ input that influences the hashed output (Bellare et al.,
1996). This key can also be deleted afterwards. Despite these adjustments to
increase the strength of hashing functions, all hashing methods are considered
a pseudonymisation method by the WP advisory opinion.

Critically, pseudonymised data is not granted the same freedom as anonymised
data, as it is still considered personally identifiable information which is thus
subject to most GDPR restrictions:

”Personal data which have undergone pseudonymisation, which could
be attributed to a natural person by the use of additional informa-
tion should be considered to be information on an identifiable natural
person.” (Taken directly from European Commission, 2016d).

However, article 6(4)(e) allows a data owner to take the pseudonymisation of
the data into account when considering the legality of using pseudonymised
data for purposes beyond what the data was originally collected for (European
Commission, 2016b).

2.2.2 Scientific literature

Majeed and Lee, 2020 created a comprehensive survey on anonymisation tech-
niques for privacy-preserving data publishing. Among other things, they men-
tion metrics used for anonymisation methods for relational data and social net-
work graph data. The scope of this thesis pertains to metrics for relational data
anonymisation. These are the following:

• Calculating a measure of anonymous and original data set linkage via
quasi-identifiers.

• Evaluation of privacy protection in combination with background knowl-
edge of one or more relevant users.

• Privacy evaluation based on privacy-sensitive rules on one or more data
columns.

Hamm, 2017 defines that the privacy of filtered (anonymised) data is measured
by the expected risk of success of adversarial algorithms in specific inference
tasks such as identification. Mathematically, they formulate this as the ex-
pected loss between a guess and the ground truth, similar to mean squared
error (see Section 2.3). However, this condition, when considered in isolation,
can be perfectly fulfilled by an algorithm that produces a random result re-
gardless of input. Therefore, this measure is counterbalanced by minimising
the disutility of anonymised data, formulated as the expected squared loss be-
tween the anonymised data and the original dataset. In his paper, they use
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these combined measures to formulate an information-theoretic approach to-
wards creating a minimax (minimum disutility, maximum privacy) filter for the
purpose of data anonymisation.

2.2.3 k-anonymity, l-diversity and t-closeness

We will now discuss three popular privacy models in the current literature.
These data anonymisation models are used to ensure k-anonymity, l-diversity,
and t-closeness in queries of a relational database.

k-anonymity is the practise of ensuring that when looking up a certain value
in a database, at least k − 1 other data points could be confused for any given
data point returned as a result of that query. Groups of records that share the
same value for a given feature are called equivalence classes. An example of
an equivalence class is the set of records that share the common value of ’age’
within the range of (25, 35). However, recent literature has shown attacks on
this metric of data anonymisation. k-anonymity is weak against an attacker
who has background information on a person they are querying about, or if
the k-anonymous data is too homogeneous (Domingo-Ferrer and Torra, 2008;
Machanavajjhala et al., 2007): If all records within the age range (25, 35) also
share the same medical condition, then an adversary who knows that (1) data
of a friend of theirs is somewhere in this database and (2) this friend of theirs is
within the age range of (25, 35), they would glean that their friend suffers from
that medical condition if they were to query this k-anonymous database. This
weakness led to the development of l-diversity that is used in conjunction with
k-anonymity.

l-diversity is a metric that ensures that there are at least l ’well-represented’
possible values in the column(s) holding sensitive data when looking up any
equivalence class. Machanavajjhala et al., 2007 propose three definitions of
’well-represented’:

• Distinct l-diversity: There exist l distinct sensitive values per equivalence
class. That is, l distinct medical conditions per age range.

• Entropy l-diversity: Entropy is a mathematical measure of surprise of a
random value. If a random variable X generally hovers around a certain
value, then a sample from X does not give us much information. It would
be more surprising or informative if X had a wider range of possibilities.
Mathematically, entropy is defined as H(X) = −

∑n
i=1 pi log pi. In the

case of entropy l-diversity, the random variable is the equivalence class,
and a sample is one of these records belonging to the equivalence class.
To continue with the example, the probability of a certain medical con-
dition occurring within the age range equivalency class is how often that
medical condition occurs within the equivalency class divided by the total
amount of records of that equivalency class. The entropy of the age-range
equivalency class increases if more distinct medical conditions occur. This
fits perfectly in the function for entropy; thus a database is defined to be
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entropy l-diverse if for every equivalence class, H(X) ≥ log(l). In other
words, there are a certain number of distinct medical conditions with such
a distribution that sampling from the equivalence class of age range is at
least as surprising as log(l).

• Recursive (c − l)-diversity. In short, ensuring recursive (c − l)-diversity
means ensuring that the most frequently occurring medical condition ap-
pears within proportion of other medical conditions, bounded by a con-
stant c.

However, l-diversity has been shown to have weaknesses depending on the dis-
tribution of the l-diversified data, or if the l-classes are distinct but insufficiently
semantically different, or if different values of an l-diverse column are values of
varying sensitivity (Domingo-Ferrer and Torra, 2008; Li et al., 2006): if the
distinct l-diverse equivalence class has l distinct instances of stomach illnesses,
then the adversary knows that his friend suffers from a stomach illness.

t-closeness obligates the data controller to ensure that the l well-represented
sensitive values within the equivalence classes reflect the distribution of the
entire data set when querying the data. However, the paper that proposes t-
closeness as a measure to further improve anonymisation (Li et al., 2006) fails
to provide a computational procedure to enforce t-closeness, and enforcing t-
closeness strongly restricts data utility (Domingo-Ferrer and Torra, 2008).

2.3 Background of autoencoders

So far in this chapter, we have described methods that use various autoencoder
networks to perform data anonymisation tasks. We also discussed privacy met-
rics used in the literature and in the legislation in the previous two sections.
In this section, we establish the background concepts and mathematical the-
ory behind autoencoders. In Chapter 3, we use these mathematical concepts
to evaluate whether autoencoders and latent representations satisfy the privacy
metrics we have discussed.

Standard autoencoders consist of two networks, an encoder and a decoder net-
work. Both networks are simple, fully connected multilayer perceptrons. The
size of the input layer of the encoder network is equal to or greater than the size
of the input data, and each successive layer shrinks in dimensionality until the
desired ’bottleneck’ size is achieved. There is no standard rate or ratio at which
encoder networks shrink in dimensionality, although a popular approach is to
halve the size of each layer. There is also no standard for how many layers these
networks should consist of, although deeper networks have been found to learn
more complicated functions than shallower networks (Rumelhart et al., 1985).
The output of the encoder bottleneck layer is called a latent representation. The
bottleneck layer of the encoder network should not exceed the dimensionality
of the input data. If that is the case, it is possible for the encoder to learn
the identity function and achieve a loss of 0, but ultimately become useless for
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dimensionality reduction, anonymisation or pseudonymisation.

To aid in our explanation we will define a few variables and functions.

• Let x be an input vector of features x = {x1, x2, ..., xd} ∈ Rd,

• y an output vector of a layer y = {y1, y2, ..., yd′} ∈ Rd′
,

• θ = {W,b} a set of parameters consisting of a weight matrix W ∈ Rd×d′

and bias vector b ∈ Rd,

• and finally ϕ an activation function.

A popular activation function is the Rectified Linear Unit (ReLU) function,
mathematically defined as ReLU(x) = max(0, x), or alternatively:

ReLU(x) =

{
0 if x < 0

x if x ≥ 0

ReLU is a simple-to-calculate activation function and gives the network a wide
range of numbers to represent the importance of features with. This is in con-

trast to the functions sigmoid (δ(x) = 1
1+e−x ) and tanh (tanh(x) = e2x−1

e2x+1 ) that
bound the output to (0, 1) and (−1, 1), respectively. See Figure 2.1 for a plot
of each of these activation functions. Features with high importance saturate
values approaching 1, and unimportant features saturate 0 or −1. Hence, the
sigmoid and tanh activation functions are also referred to as saturating acti-
vation functions, whilst ReLU belongs to the class of non-saturating activation
functions.

Saturating activation functions pose a problem when it comes to updating
weights in deep networks during backpropagation. Backpropagation multiplies
the derivative of these weights in every layer, which, for saturating activation
functions, is bound between [−2, 2] ∈ R. Backpropagation works its way from
the output layer back toward the input layer (hence the name). Successively
multiplying a small number (the result of the partial derivatives of the activa-
tion function) by a small number each layer means that there is little left to
propagate by the time the process has arrived at the first (input) layer. This
phenomenon is referred to as the vanishing gradient problem (Hochreiter, 1998),
and is mitigated by using a non-saturating activation function. This, along with
its computational simplicity, led ReLU to become a popular activation function.

The output of each layer i is defined as yi = fθi(x) = ϕ(WT
i xi+bi). The output

of the bottleneck layer is defined as the latent representation of the autoencoder,
which we will name z. Written out for an encoder network consisting of three
layers, the latent representation is calculated by:

z = fθ3(fθ2(fθ1(x))) = ϕ(WT
3 ϕ(W

T
2 ϕ(W

T
1 x+ b1) + b2) + b3)
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Figure 2.1: Plots of activation functions sigmoid (δ(x) = 1
1+e−x ) in red, tanh

(tanh(x) = e2x−1
e2x+1 ) in green, and ReLU (ReLU(x) = max(0, x)) in blue.

Hereinafter, to be able to make a distinction between an encoder network and
a decoder network of an autoencoder, we will refer to an encoder network and
its corresponding parameter set as fθ(·), and a decoder network and its corre-
sponding parameter set f ′

θ′(·).

2.3.1 Loss and mean squared error

During training, the latent representation is fed to the decoder layer as input.
The decoder network expands the latent representation back to the dimensional-
ity of the input to reconstruct the dataset. Usually, the decoder network mirrors
the architecture of the encoder network. Decoding the latent representation re-
sults in the reconstruction x′. To measure the performance of the autoencoder,
a simple and popular distance metric called the mean squared error (MSE) is
used as loss function:

MSE(x,x′) =
1

n

n∑
i=1

(xi − x′
i)

2

MSE is popular for pragmatic reasons. First, calculating the deviation of one
vector from another by subtraction is intuitive. Then, squaring this deviation
ensures that the error is always a positive number, and punishes greater devia-
tions more than smaller deviatons. Finally, taking the mean regulates the loss
numbers to not become excessively large, and spreads the error over all tested
datapoints to ensure that the network doesn’t overfit on outliers.

When comparing the MSE of a batch of multiple vectors, the MSE is either
summed, or summed and divided over the total amount of samples in the batch.
The latter method makes comparisons between two test runs with different batch
sizes possible as the loss is normalised over batch size. Notice that this function
measures the loss of the performance of both the encoder and decoder network,
with the encoder’s responsibility to create a salient latent representation, and
the decoder’s responsibility to relate this representation back to the input.
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2.3.2 Weight initialisation

Each neuron in a neural network has weights that assign importance to incoming
signals. In a traditional supervised learning network using an activation function
with output y ∈ {0, 1}, the function of these weights are more obvious; if the
sum of the incoming signal multiplied by their respective weights exceeds a
threshold, output ’yes’, or 1, otherwise ’no’, or 0. In an unsupervised use-
case such as clustering or learning a latent representation, the simple semantic
meaning of weights in a network is not as obvious, but the importance of learning
correct weights remains all the same, as learning the correct weights will make
our autoencoder function the way we desire it to.

The learning process of a neural network is finding a set of parameters
θ = {W,b} that achieves our goal of learning to turn an input into a salient
latent representation. These weights need a good starting point. The scientific
literature provides us with many ways to initialise weights, with some meth-
ods working better with saturating activation functions such as the sigmoid
and tanh activation functions, and other initialisation methods working better
with non-saturating activation functions such as ReLU (Kumar, 2017). One
such initialisation method shown to work well with ReLU is the initialisation
method proposed by He et al., 2015, which is sampling weights from a zero-
centred Gaussian distribution with a standard deviation engineered to prevent
magnifying signals exponentially, since ReLU does not provide an upper bound
for signals.

2.3.3 Stochastic gradient descent

These initialised weights can now be iteratively improved by evaluating their
performance with MSE as mentioned above. During learning, we aim to min-
imise the loss function. The first derivative of the loss function denotes its slope.
As we aim to minimise this function, we move down the slope to reduce the loss
in the next time step. The gradient of MSE is as follows:

∇MSE(x,x′) =
δMSE

δx′
1

n

n∑
i=1

(xi − x′
i)

2 =
2

n

n∑
i=1

(xi − x′
i)

Here, we observe that squaring the error serves one final function: the derivative
is simple to calculate. This simplicity is beneficial when it comes to the training
time of the network, given how often we have to calculate the error.

Given time step t, we can generate the parameters to be used in the next time
step θt+1 given learning rate η by

θt+1 = θt − η∇MSE(x,x′)

The minus in the equation is to minimise the slope of the gradient. As men-
tioned above, the output of a neural network is the result of the calculations
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of successive layers of weights and activation functions. As such, the weights
of each of these layers need to be updated accordingly. To do so, the error
gradient is fed back to the network starting from the output layer. Due to the
interdependent nature of these layers, the error is sent through the network
on a layer-by-layer basis by a process called backpropagation. Backpropagation
uses the chain rule of partial derivatives to resolve these dependencies: For a
function p which depends on q which in turn depends on r, the derivative of p
with respect to r is:

δp

δr
=

δp

δq

δq

δr

Recall that the output of each layer i is defined as yi = fθi(x) = ϕ(WT
i xi+bi).

In a network consisting of three layers, the backpropagated error to update the
weights of the initial layer (θ1) is calculated as follows:

δMSE(x,x′)

δθ1
=

δMSE(x,x′)

δx′
δx′

δy3

δy3

δy2

δy2

δy1

δy1

δθ1

By approaching this calculation on a layer-by-layer basis, the answers of the
partial derivatives of the previous layers can be re-used for a simpler computa-
tion.

As the volume of training data increases, the number of pointwise comparisons
of the reconstructed and true dataset increases along with it. Computing the
gradient descent of the full dataset is a costly operation. To combat this, the
process is modified to stochastic gradient descent (SGD): calculating the gra-
dient descent of one or a few datapoints at a time (Saad, 1999). This increases
the amount of total time-steps needed in order to converge to a minimal loss,
but each individual time-step is computationally less intense. In addition to
computational benefits, this approach has another benefit: Despite the sim-
plicity of MSE, we cannot assume that the gradient contains only one minimal
point. Stochastic gradient descent optimises towards the nearest minimising
slope. This nearest slope could be what is called a local optimum; whilst that
set of parameters results in less loss than other ’topographically close’ param-
eter sets, this local optimum may not be the lowest the loss could globally be.
The lowest overall loss is called the global optimum (or in the context of a value
to minimise, the global minimum). Stochastic gradient descent introduces a
measure of randomness in the ’walk’ on the gradient of the loss function. If the
best-performing set of parameters is stored, then there is a much higher chance
that this global optimum is achieved, as the randomness allows the SGD method
to ’escape’ a local optimum to explore other optima instead of remaining stuck
in the first optimum it finds. Refer to Figure 2.2 for an illuminating illustration
of SGD.

The last variable used in the formula of SGD is η, or learning rate. This is the
rate at which the weights adjust on the basis of the calculated gradient. If SGD
approaches an optimum, an overly large learning rate might ’overstep’ and miss
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Figure 2.2: Illustration of stochastic gradient descent (SGD) with multiple local
optima and one global optimum (Amini et al., 2019).

this optimum. Therefore, it is favourable to dynamically adjust this learning
rate to the proximity of an optimum.

One popular method to adjust learning rates is called Adam, derived from adap-
tive moment estimation (Kingma and Ba, 2017). Briefly summarised, rather
than backpropagating the loss gradient directly, it estimates (and over time, de-
cays) the first (E[g]) and second moment (E[g2]) of the gradient ∇MSE(x,x′).
This experimentally leads to a faster convergence rate than standard SGD whilst
remaining computationally light. For further details, we refer the reader to its
seminal paper, but for this thesis, it suffices to know that it is a more performant
variant of SGD to update the parameters θ of the model.

In summary, an autoencoder is an encoder-decoder pair network consisting of
layers of perceptrons. Each of these perceptrons has corresponding weights for
each input and a bias accompanying each layer. These weights and biases are
the parameters θ = {W,b} that the network trains to optimise over time. It
does so by minimising the loss between the reconstructed dataset x′ and its
ground truth x with the mean squared error as the loss function MSE(x,x′).
To optimise the parameters of the network θ, it can use a stochastic gradient
descent variant called Adam. When training is complete, the result is an encoder
network that can transform an input dataset x into a latent representation z
and a decoder network that can reconstruct a latent representation z into a
reconstruction x′.

2.3.4 Latent representations

In this section, we will discuss some properties of, and assumptions about la-
tent representations and provide an example. As mentioned above, the latent
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representation is the output of the bottleneck layer of an autoencoder network.
Usually, this bottleneck layer is of a smaller dimensionality than the input data
to force the network to learn which features are most important. Unlike most
neural network problems, an autoencoder network trained for our purposes does
not need to generalise on unseen data: it can be trained on the full input dataset
to create the most informed latent representation possible. This is under the
assumption that we are dealing with an offline data pseudonymisation prob-
lem, where the whole dataset is available to us beforehand and that no new
datapoints need to be pseudonymised later.

For any latent representation generated by a reasonably well-trained1 encoder
network, there exists a corresponding decoder network that creates the best
possible approximation of the original dataset f ′

θ′(z) = x′. This is the decoder
network that is trained in conjunction with the encoder network. For the pur-
poses of data pseudonymisation, this decoder network has the greatest chance
of re-identifying records in the latent representation and therefore forms the
baseline worst-case scenario for the data controller, or the best-case scenario for
an adversarial party.

In addition, there exists a range of parameter sets that are not the best decoder
network, but still decently reconstruct the original dataset. The measure of
which these parameter sets diverge from the original data set x or the best re-
construction x′ of the dataset can also be measured by comparing their resultant
reconstructions with mean squared error or other similar loss functions.

We also assume that due to the highly stochastic nature of weight initialisation
and gradient descent, there exist multiple well-trained latent representations for
any given dataset, each with its own corresponding best-performing decoder.
Similarly, due to the nature of representing higher-dimensional data in a lower
dimensionality, we postulate that it is possible for a latent representation to
represent multiple datasets at the same time. An encoder is a function
f : Rd → Rb

+ where, in general, b < d. Similarly, a decoder is a function
f ′ : Rb

+ → Rd. As an encoder is a function that maps a larger infinite space
to a smaller infinite space and multiple encoders can exist as per our earlier
assumption, we conclude that it is possible for any given latent representation
to represent multiple datasets at once. The chances that a collision occurs in
the latent space are extremely low, but theoretically possible. Regardless, the
consequence of these two assumptions is that the search space for an adversary
for any given latent representation is very large. Without a priori knowledge of
what kind of data is encoded into a latent representation, we assume that the
search for a decent reconstruction is a difficult task.

We experimentally evaluate these assumptions and claims in Chapter 4. Next,
we discuss an example of a latent representation.

1Poorly trained autoencoders trivially produce poorly representing latent representations
or poorly performing decoder networks and thus need not be considered. We can safely
assume that a party interested in pseudonymising data with an autoencoder would have a
vested interest in training a reasonably performing autoencoder for the task.
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Figure 2.3: A visualisation of MNIST digits, their corresponding latent repre-
sentations and their reconstructions (Yang, 2020).

Figure 2.3 shows an input data point x, the latent representation z, and the
corresponding decoded reconstruction of a handwritten number x′ of an au-
toencoder trained on the MNIST handwritten number dataset (Deng, 2012).
The MNIST dataset represents 28x28-pixel images of handwritten digits as
28 ∗ 28 = 784 features of greyscale values ranging between (0, 1) ∈ R. In his
blog post, Yang, 2020 transforms the input data into a 16-dimensional latent
representation and reconstructs this latent representation back to the original
dimensionality. As visible in the figure, the latent representation and the corre-
sponding trained decoder manage to capture the features of the digits efficiently.
Following his argument on latent representation anonymity, any human exclu-
sively reading the latent representation out of context would not be able to
discern which values correspond to the greyscale value of which pixel. However,
the latent representations of numbers written in the same way share a lot of
similarities in their latent representations, therefore, these relations evidently
still exist for the decoder network which was trained along with the encoder
network.
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Chapter 3

Theoretical investigation

3.1 Theoretical investigation

In this chapter, we discuss which privacy metrics in the literature and the leg-
islature listed in the previous chapter are relevant, allowing us to answer SQ1:
What privacy standards, models, and metrics exist in the current literature or
legislation and which of these measures apply to latent representations?

3.1.1 Legislation

First, we discuss existing legislation on data anonymisation.

As mentioned in Section 2.2, hashing and encryption-based data transformation
methods are considered pseudonymization methods rather than anonymisation
methods. We will use this ruling to determine what the legislation may rea-
sonably assert our autoencoder-based method may fall under. A characteris-
tic of pseudonymisation methods is that they retain a method by which the
pseudonymised data can be returned to the original format. True anonymi-
sation methods must be irreversible. As we have described in Section 2.3, a
decoder network is trained together with an encoder network to evaluate the
performance of both the encoder and decoder networks and to propagate a loss.
Similarly to the theoretical possibility of reversing an encryption or hash, re-
gardless of the negligible probability of doing so, it is theoretically possible to
determine this decoder network by brute force to at least be able to retrieve
the best possible reconstruction of the input x′. As such, this decoder net-
work could be considered the ’additional information’ in the same sense that
the key of an encryption method or input of a hash function are considered
the ’additional information’, making our autoencoder-based method most likely
to be considered pseudonymisation within the purview of GDPR. As such, we
refer to this autoencoder-based method as a pseudonymisation method in this
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work. Note that this conclusion is merely an extrapolation based on existing
regulatory considerations and, as such, is not intended to be actual legal advice.

To evaluate privacy metrics in both the European legislature and scientific liter-
ature, we define a semantic deanonymisation method. By a ’semantic’ method,
we refer to the act of comparing known values or their semantic meaning to
anonymised or pseudonymised data. In our case, the pseudonymised data is
the latent representation of the original dataset. Crucially, in a latent repre-
sentation, the semantic meaning of any given value is obscured or lost entirely.
To be able to discern what the original values were, one would have to either
decode the latent representation to a reconstruction or input known values into
the encoder to check for a match in the latent representation. Without access
to the original autoencoder network or an adversarial approximation thereof,
these semantic deanonymisation methods fail on latent representations.

The Working Party uses three data anonymisation metrics. The first is whether
it is possible to single out an individual in the anonymised dataset. The second
is whether it is still possible to employ record linkage between the same or
two different datasets. The third is whether it is possible to infer values of
attributes on the basis of other attributes still present in the data. All of these
metrics are what we would consider semantic deanonymisation methods. For
the first method, as the semantic meaning of pseudonymised values is obscured,
it is unlikely that even a well-informed third party would be able to single out
any individual in the latent representation. For the second method, assuming
that the two data releases are encoded by two different encoders, it is similarly
unlikely that any record linkage could successfully occur (see our results of latent
representation similarity in Subsection 4.2.5). For the third and final metric, we
have seen that the latent representation saliently encodes the input data in such
a manner that it preserves data utility for logistic regression and decision trees
(Yang, 2020) to the extent that autoencoders can be used as a feature selection
method. Therefore, it is possible to infer the value of one of the attributes of a
latent representation on the basis of the values of other attributes of the latent
representation. However, much like the argument for the first two metrics, the
semantic meaning of the inferred value is obscured.

Instead, we argue that for latent representations, the pseudonymisation guar-
antee depends on whether it is possible for an adversarial party to train an
adversarial approximation of the encoder or decoder networks used to gener-
ate the latent representation in question. As such, we extensively research this
in our experiments, specifically focussing on whether it is possible to train an
adversarial decoder network to reconstruct a latent representation into a seman-
tically meaningful format.

Finally, even if our autoencoder-based method were to be vulnerable to one of
these metrics, the opinion expects the data controller to be cognisant of the
risks and trade-offs of their chosen methods and to use multiple anonymisation
methods if possible to ensure a higher standard of anonymisation.
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3.1.2 Scientific literature

Next, we will discuss privacy metrics found in the literature on privacy-preserving
data publishing and data anonymisation algorithms. Majeed and Lee, 2020
evaluate non-graph-based anonymisation techniques by three metrics. Their
first metric is to calculate a measure of anonymous and original data set linkage
on the basis of the quasi-identifiers that remain in the anonymised the dataset.
This is yet another semantic approach towards deanonymisation. Once again,
the efficacy reduces to the adversary’s ability to decode the latent representa-
tion, which is experimentally tested in Chapter 4.

The second metric of Majeed et al., evaluating privacy protection in combina-
tion with perfect background knowledge on one or more relevant users in the
database, similarly fails due to the aforementioned reasons of features being
encoded. The same applies to the evaluation based on privacy-sensitive rules
on one or more data columns. This is the process of analysing an anonymised
dataset with rules such as ’What are the medical conditions of all patients
within the age range (25, 35)?’ similar to what we discussed in the section on
k-anonymity. Effectively, latent representations are inherently resistant against
privacy attacks based on semantic approaches, and their usage reduces to the
measure of how well an adversary can find a well-performing set of decoder net-
work parameters. The privacy models k-anonymity, l-diversity and t-closeness
similarly do not apply to latent representations.

Hamm, 2017 proposes a minimax filter to minimise data disutility whilst max-
imising data anonymity. In his approach, they formulate it as minimising the
expected loss between the anonymised data and ground truth, whilst maximis-
ing the expected loss between an adversary’s guess what the original dataset
may be based on the anonymised data and the ground truth. This measure
is difficult to incorporate in our application. We minimise the disutility of the
data by minimising the mean squared error of the decoder reproduction x′ com-
pared to the original dataset x: minMSE(x,x′). We define our pseudonymised
dataset as our latent representation. This means that to maximise the privacy
of the data, we would have to maximise the loss between the performance of a
decoder reconstruction and the ground truth: maxMSE(x,x′). To apply this
measure of privacy, we would have to minimise the performance of adversar-
ial decoders whilst preserving the performance of the decoder that is trained
together with the encoder. However, we conclude that the originally trained
decoder and adversarial decoder are too similar to fruitfully utilise this concept.

In Section 2.1 we discussed various related works using autoencoders to anonymise
data. These works discussed various implementations of encoding input data
into a latent representation, transforming the latent representation in some
way, and reconstructing the latent representation to the original dimensionality.
These articles measure the success of their anonymisation methods by the dif-
ference in the accuracy of the inference of the private value in anonymised data
by a network trained to learn the private value on raw data, whilst maintaining
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the performance of an inference model of a supplementary task to illuminate the
retention of the utility of anonymised data (Hajihassani et al., 2021; Malekzadeh
et al., 2019; Malekzadeh et al., 2017; Perero-Codosero et al., 2022). Our method
does not reconstruct the latent representation back to its original dimensional-
ity. Although it is possible to learn to infer a value of the latent representation,
this inferred value has lost its semantic meaning. Therefore, whilst this metric
is technically possible to measure, it is not meaningful.

3.1.3 Conclusion

Section 2.2 and the latter half of this chapter was dedicated to answering our
first sub-question SQ1: What privacy standards, models, and metrics exist in
the current literature or legislation and which of these measures apply to latent
representations? Accordingly, we discussed various standards used in legislation
and in the literature of privacy-preserving data publishing, algorithmic and
machine learning-based data anonymisation methods.

Most importantly, based on the precedent that encryption and hashing methods
are considered pseudonymisation methods, our autoencoder-based method may
legally be classified as a pseudonymisation method under the purview of GDPR,
rather than an anonymisation method. As such, we refer to this autoencoder-
based method as a pseudonymisation method in this work. However, article
6(4)(e) allows pseudonymised data more freedoms than nonpseudonymised data
for purposes beyond what the data was originally collected for (European Com-
mission, 2016b). Please be advised that this conclusion is merely an extrapo-
lation based on existing regulatory considerations and, as such, is not intended
to be actual legal advice.

We conclude that most of these measures fail to apply to the latent represen-
tation of our autoencoder-based method due to the violation of the assumption
that the pseudonymised data is stored in a format that preserves the semantic
meaning of the data. Moreover, the pseudonymisation guarantee of our method
depends on the ability of an adversary to successfully find a decoder network
to return a latent representation into a semantically meaningful reconstruction
of the input data. As such, we will experimentally evaluate the possibility in
Chapter 4.
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Chapter 4

Experimental investigation

4.1 Experimental setup

In Chapter 3, we concluded that the privacy guarantees provided by using an
autoencoder-based method depend on the ability of an adversary to train a
decoder to reconstruct any given latent representation into the original dimen-
sionality of the dataset. Most currently existing privacy metrics use semantic
approaches to evaluate privacy, which do not apply to our latent representations.
In this chapter, we evaluate how sensitive latent representations are to decoding
by experimentally varying parameters surrounding the dataset, encoder, and
adversarial decoder network. In addition, we measure the extent of utility loss
as a result of using latent representations as a training and test dataset, rather
than using the original dataset. In doing so, our aim is to answer our two
remaining sub-questions SQ2: What experimental measures of pseudonymity
does an autoencoder’s latent representation have? And SQ3: What is the util-
ity loss incurred when using a latent representation of the data rather than the
original data?

4.1.1 Setup

Primarily, our experiments revolve around varying properties of our data and
hyperparameters of our encoder and adversarial decoder network. To do so
in a structured manner, we use the MLflow Python library to collect and track
hyperparameters and metrics of our experiments. The plots are generated using
MatPlotLib (Hunter, 2007).

To test our experiments, our networks are trained on an Intel i7-12800H CPU
with 32GB of RAM running Windows 11 with Python 3.10.10.

In our experiments, we train a relatively simple 5-layer autoencoder network,
or 3-layer encoder and 3-layer decoder network, unless mentioned otherwise.

25



Chapter 4 4.1. Experimental setup

This corresponds with the diagram as seen in Figure 1.1. The dimensionality
of the input layer (and output layer) is equal to the total number of features
in the dataset. The dimensionality of the hidden layer is 75% of the number of
input features. The dimensionality of the bottleneck layer is 50% of the number
of input features. Hence, these dimensionalities and corresponding network
architectures are automatically adjusted on the basis of the input dataset.

4.1.2 Measures

Data protection measures

To be able to quantify the level of protection our autoencoder-based method
grants us, we measure the ability of an adversarial decoder to approximate our
original dataset. Recall that f(·) denotes the encoder network and f ′(·) the
decoder network that is trained in conjunction with the encoder network. Let x
be our input data set and f(x) = z our latent representation, and let f ′(z) = x′

be the best possible reconstruction in the original dimensionality. We measure
the Baseline Loss (BL) for a frame of reference as:

BL = MSE(x′,x)

Now, let g(·) be the adversarial decoder that attempts to reconstruct a latent
representation. We measure the mean squared error between the adversarial
approximation and the true dataset as True Loss (TL):

TL = MSE(g(z),x)

In addition, we measure the mean squared error between the adversarial ap-
proximation and the best possible reconstruction made by the decoder created
during training as Approximate Loss (AL):

AL = MSE(g(z),x′)

Naturally, approximating the true dataset x is the objective of the adversary.
Realistically, the best possible reconstruction x′ is also the best case the adver-
sary could expect, and thus exists as the baseline, ’worst-case’ scenario of our
latent representation reidentification. For the TL and AL measures, a higher
loss corresponds to a worse reconstruction g(z) generated by the adversary and
thus a higher level of protection granted by our pseudonymisation method.

Finally, we define a heterogeneity measure (HM) of a reconstructed dataset g(z).
This is to measure how well an adversarial decoder has achieved the ability to
distinguish between encoded datapoints. This is calculated as the mean of
the mean squared errors between each distinct datapoint in the reconstructed
dataset g(z). This measure is denoted mathematically as:

HM =
1

|g(z)|

|g(z)|∑
i,j=1, i ̸=j

MSE(g(z)i, g(z)j)
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Chapter 4 4.1. Experimental setup

Each of these values only has a relative meaning. The absolute value of mean
squared error loss and measurement of heterogeneity depend greatly on the
mean, standard deviation, and distribution of data. However, they are mean-
ingful in context: A decoder would have to achieve both a high (or equal to the
original dataset’s HM) measure of heterogeneity and a low amount of loss in
order to be considered well-performing. It is possible to achieve a high measure
of heterogeneity by randomly generating large numbers, but the loss would be
very large because these numbers would not at all correspond to the original
dataset. Similarly, loss could be minimised by always guessing a median data-
point, but this would substantially lower the heterogeneity measure, as none of
the datapoints would be very distinct from one another.

Utility loss measure

We utilise two sets of measures to evaluate the utility difference between using
the original dataset and a latent representation of the dataset. Classification
models are evaluated by their balanced accuracy, weighted F1 scores, the Area
Under the Receiver Operating Characteristic Curve (ROC AUC or AUROC),
and their average precision. We measure the fit of the regression models by their
r2 scores and the MSE between the predicted outcome and the ground truth. For
multiclass classification problems, we calculate the unweighted arithmetic mean
over each class, also known as macro averaging. To contextualise these results,
all classification metrics have values ranging from [0, 1] ∈ R. For regression
models, r2 is generally a value within that range as well, but can fall below 0
if the fit of the model is worse than always predicting the median value of the
result.

4.1.3 Data

As mentioned in the introduction, we assume that we work with numerical
machine learning training data or data that otherwise has a distribution that
our autoencoder can learn. This is due to our assumption that the data with
which we work is intended to be pseudonymously analysed by classification or
regression algorithms and to simplify the use of autoencoders. Experimenting
with unstructured data, such as textual data, falls outside the scope of this
thesis and is suggested as future work.

We conduct our experiments on both synthetic data generated by the Python
package Sckikit-Learn and public domain datasets sourced from Kaggle. The
synthetic dataset is generated by the make_classification function featured
in Scikit-Learn (Pedregosa et al., 2011; Scikit-learn, 2011). By default, the
generated synthetic dataset consists of 1000 generated records of 21 attributes,
where each attribute has an average of around 0 and a standard deviation of
around 1. The scale parameter of this function allows us to manipulate these
standard deviations by multiplying all values by a scalar. We explore the effect
of this in our first experiment.

27
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The public domain datasets on which we experiment are the MNIST handwrit-
ten digit dataset (Deng, 2012), the Pima Indian Diabetes dataset (Smith et al.,
1988) and the California Housing Prices dataset (Pace and Barry, 1997). The
exact contents and relations within these datasets are largely irrelevant; we are
primarily interested in whether our proposed methods behave consistently over
vastly different datasets. Regardless, to contextualise our results, we will briefly
describe the datasets.

MNIST

As mentioned in Section 2.3 and seen in Figure 2.3, the MNIST dataset consists
of 70000 records of 784 greyscale pixel features ranging from [0, 1] ∈ R depicting
handwritten digits. This dataset is commonly used to train a network to classify
which digit is written on the basis of which pixels have ink and which do not. In
our data pseudonymising context, our aim would be to make it impossible for
a network to discern which latent representation record corresponds to which
original digit.

Pima Indians Diabetes

The Pima Indians Diabetes dataset consists of 768 records of nine various medi-
cal characteristics of Pima Indian women. Traditionally, this dataset is used as a
benchmarking dataset for supervised classification algorithms to predict which
medical characteristics correlate with diabetes. Our goal is to pseudonymise
which latent record corresponds to which original record. Unlike the MNIST
data and the synthetic datasets, each attribute has a larger difference in terms of
average and standard deviation, which is more realistic for real-world datasets.

California Housing Prices

The California Housing Prices dataset consists of 20433 records of nine numer-
ical attributes and one categorical attribute describing various characteristics
of houses in California gathered from a 1990 census. Commonly, the objective
is to predict the price of a given house based on its features. Our objective
is to securely pseudonymise which encoded record maps to which house in the
original dataset.

For the sake of our experiments, we dropped the categorical attribute and dis-
carded records containing NaN in any attribute. Yang, 2020 shows that categor-
ical attributes can be encoded by means of one-hot vector encoding should it
prove necessary. However, we decided to not carry that out in our experiments
for the sake of simplicity. Our use of this dataset is to observe how well our
autoencoder method fares with vastly varying averages and standard deviations
between each column, including the average of the longitude column being a
negative number. This is to further explore how robust our proposed methods
are against various different datasets.
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Table 4.1: Two tables describing our experiments in short.
Nr. Experiment Goal Adversary has access to
1a Data Leakage Decode remainder of

non-leaked data
Full latent representation,
p% true dataset

1b Data Leakage
(permuted)

Decode remainder of
non-leaked data

Permuted latent representation,
p% true dataset

1c Data Leakage
(reconstructed)

Decode remainder of
non-leaked data

Full latent representation,
p% reconstructed dataset

2 Cluster
Matching

Undo latent representa-
tion permutation

Permuted latent representation,
p% true dataset

Nr. Experiment Goal
3 Data Utility Measure utility loss of latent representations
4 Misalignment

of MSE
Investigate misalignment of using MSE as autoencoder
loss function for the preservation of data utility

5 Measuring
latent rep.
similarity

Analyse if different autoencoders produce similar latent
representations for the same dataset

6 Runtime
Experiments

Evaluate the influence of the data shape on
autoencoder training time

4.1.4 Experimental procedure

This section describes the theory, intent, and setup of a variety of experi-
ments to verify properties of latent representations in the context of both data
pseudonymisation and utility for machine learning applications. These exper-
iments are individually elaborated in further detail below, but first, we give a
global summary.

Primarily, we are interested in the pseudonymisation capabilities of a latent
representation. We concluded in Chapter 3 that existing anonymisation met-
rics in the literature do not apply to latent representations. To enable us to
evaluate the pseudonymity granted by any given latent representation, we de-
fined measures of reidentification in Subsection 4.1.2 achieved by an adversarial
party. Experiments 1(a-c) and 2 listed in Table 4.1.4 cover this goal and are rel-
evant to our second research sub-question, SQ2: What experimental measures
of pseudonymity does an autoencoder’s latent representation have?

Secondarily, we are interested in measuring the data utility penalty incurred
when using a latent representation instead of the original data to train a super-
vised machine learning algorithm. We test the performance of the original data
of a variety of classification and regression datasets as a baseline. Afterwards,
we compare the performance of models trained on latent representations. Ex-
periments 3 and 4 in the experiment table investigate this goal are relevant to
our third research sub-question, SQ3: What is the utility loss incurred when
using a latent representation of the data rather than the original data?
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Finally, we conduct smaller experiments (number 5 and 6) to discover various
properties of latent representations to provide a well-rounded answer for our
research question RQ: What are the advantages and disadvantages of using an
autoencoder’s latent representation as a utility-preserving data pseudonymisa-
tion method for machine learning?

1. Varying levels of data leakage

Idea. In the literature, the authors of ObscureNet (Hajihassani et al., 2021)
described how their deterministic anonymisation method is rendered ineffective
if 20% of the original dataset leaks along with the anonymised dataset. As
ObscureNet is also an autoencoder-based method, we explore the same weakness
in our approach.

In this experiment, not only is the latent representation z available to the ad-
versary, but a percentage p% of distinct records belonging to the true dataset
x is leaked, denoted xp%. Naturally, since the adversary knows that these
two datasets are related, the adversary trains a decoder on the subset xp% to
attempt to retrieve the remaining (100 − p)% encoded rows from the latent
representation. The aim of the experiment is to measure how well protected a
latent representation is, should a latent representation and a part of the original
dataset be leaked to the public.

A variation of this idea is the situation where instead a subset of the best possible
reconstruction x′

p% is leaked, to test whether that helps an adversary more than
leaking the original. Another variation is if the adversary does not know which
records in the latent representation z correspond to which records in the leaked
original dataset x or not.

Bear in mind that this experiment models an already quite pessimistic situation
when it comes to data anonymisation or pseudonymisation, especially with high
(> 50%) levels of original dataset leakage.

Setup. Execution of this experiment is divided into runs and subruns. Each
run generates a synthetic dataset using make_classification as provided by
Scikit Learn. Ten autoencoders are trained, where the best performing network
is used to generate a latent representation z and a measure of the baseline
decoder loss (BL). A subrun leaks a certain percentage p% of data ranging
from 5% to 100% with increasing steps of 5%. Three different situations are
investigated: (1) The first p% rows of x are leaked in the same order as the latent
representation, allowing the adversary the advantage of a one-to-one matching of
records belonging to the latent representation and records belonging to the true
dataset. (2) The first p% rows of the original dataset are leaked, but the order of
the latent representation records is randomly permuted. (3) The first p% rows of
the best possible reconstruction x′ generated by the original decoder are leaked.
For each of these situations, ten adversarial decoders are trained on the leaked
subset of data, where the adversarial decoder that performs the best is selected
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to generate a reconstruction of the latent representation z. The training of ten
encoders and decoders is to compensate for the stochasticity of initialisation
and updating of network parameters as described in Section 2.3. Finally, the
true loss (TL) and approximate loss (AL) between the reconstruction of the
best adversarial decoder and the respective comparison dataset are calculated
as described above and stored in MLflow. In the case that the experiment varies
the standard deviation of the synthetic dataset, the standard deviation increases
each run, to experiment whether the standard deviation of a dataset has any
effect on its deanonymisation weakness.

2. Clustering permuted datasets

Idea. In the previous experiment we discussed the efficacy of permuting the
order of records as an additional measure of protection. To verify this, we
attempt to reverse this permutation. The näıve approach to do this would be
to brute-force the ordering. However, this approach quickly becomes infeasible
as the brute-force runtime increases factorially. Furthermore, for each of these
permutations, a reasonably-performing decoder network has to be trained to
evaluate the performance of a particular ordering. Instead, we approach this
by approximation. The goal of an adversarial decoder is to learn the pattern
by which the original encoder encoded the latent representation to reconstruct
the original dataset. Hence, similar original data is encoded similarly in the
latent representation. This is clearly visible in Figure 2.3, where, for example,
the handwritten digit one seems to frequently feature a high value in the third
dimension (column) of the latent representation, and the number four seems to
characteristically feature a high value in the fourteenth dimension.

Setup. To find and match such characteristics in an unsupervised manner, we
use a K-means clustering algorithm on both the latent representation and the
leaked original data. Next, multiple adversarial decoders are trained for each
possible cluster permutation. The best-performing decoder may have benefitted
from learning the relations that made the clustering algorithm put these records
together and as such is used to decode the full latent representation. This
approximation aims to reduce the computational complexity from brute-forcing
all possible permutations of records, a complexity of O(p!) with p denoting
the size of the dataset, to all possible permutations of clusters, which is still a
computational complexity of O(n!) where n is the number of clusters used.

3. Exploration of data utility loss

Idea. To be able to answer SQ3: What is the utility loss incurred when using a
latent representation of the data rather than the original data? We compare the
performance between classification models trained on baseline data and latent
representations of the data to determine the extent of utility loss.
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Setup. We test Scikit-Learn’s logistic regression algorithm and the XGBoost
classifier for classification problems, and Scikit-Learn’s linear regression and the
XGBoost regressor for regression problems. We chose these algorithms due to
the popularity of Scikit-Learn and XGBoost, and to cover different algorithms
from the ones Yang tested in his blog post. Three different data conditions
are tested, where for each condition, the data is tested in its original form as
a baseline, its latent representation, and the permuted latent representation to
measure if permuting has an effect on data utility. When testing the permuted
latent representation, the class label vector is permuted the same way as the la-
tent representation as to not lose those relations for the data controller. The first
condition is the baseline performance of the unscaled dataset as retrieved from
their respective data source. The second condition scales each feature down to
[0, 1] on a per-feature basis based on their respective minimal and maximal val-
ues, a process known as min-max scaling. The third condition min-max scales
the latent representation of the unscaled data set to [0, 1]. As mentioned in
Section 2.3, the latent representation of the unscaled dataset consists of val-
ues of z ∈ Rb

+ with bottleneck dimensionality b. This step scales this latent
representation back to [0, 1] to test whether scaling latent representations can
result in an increase in performance. Finally, the results are averaged from a
ten-fold cross-validation process. In these experiments, no extensive model se-
lection or other careful data preparation beyond min-max scaling is performed.
This means that the performance of these models could be potentially improved;
however, doing so is beyond the scope of these experiments.

We test on two additional datasets for the regression algorithms for this exper-
iment. These datasets are similar to the California House Price Dataset in that
they also feature various housing attributes and their corresponding house prices
for homes in Paris, France and King County, United States. Both datasets are
public domain datasets sourced from Kaggle (Kaggle, 2016, 2021).

4. Misalignment of MSE

Idea. We investigate the misalignment of using MSE as a loss function to train
autoencoders for the purpose of retaining data utility in their latent represen-
tations. As mentioned in Section 2.3, MSE penalises larger differences in the
reconstruction x′ more than smaller differences. Features with larger mean and
standard deviation contribute more to the loss function than small features, such
as binary labels. We hypothesise that autoencoders exhibit the following two
behaviours: First, these larger values are over-represented not only in the recon-
struction x′ created by the autoencoder, but also in the latent representation
z. Second, as a result, if the over-represented values are highly informative (or
in other words, correlate greatly with) the label vector, the data utility remains
high when training on a latent representation z compared to the original dataset
x. Conversely, if only the smaller and thus under-represented values are infor-
mative, the data utility will be significantly worse as these highly informative
variables are neglected by MSE.
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Setup. First, we use Scikit-Learn’s make_classification function to gen-
erate the informative features and corresponding y labels. These informative
features are either ’large’, or multiplied by a scalar of 100 by means of the scale
parameter, or ’small’, and kept between [0, 1] ∈ R. These informative features
are supplemented by ten similarly small or large noisy features generated by
NumPy’s random.normal function, where these noisy values are scaled simi-
larly to the informative features. (Harris et al., 2020). The large informative
features are paired with ten small noisy features to ensure that the informative
features are over-represented in the resulting latent representation z. Likewise,
small informative features are paired with large noisy features to attempt to
drown these out as hypothesised. The results of this experiment are shown in
Subsection 4.2.4.

5. Exploring similarities between latent representations

Idea. As we postulate in Subsection 2.3.4, owing to the highly stochastic
nature of weight initialisation and gradient descent, there exist multiple well-
trained latent representations for any given dataset, each with its own corre-
sponding best-performing decoder that an adversary would have to find.

Additionally, by representing higher-dimensional data in a lower dimensionality,
we surmise that certain latent representations might represent multiple datasets
at once. On top of that, that the odds of a collision occurring in the latent space
are extremely low, but theoretically possible. Regardless, the consequence of
these two assumptions is that the search space for an adversary for any given
latent representation is large. Without a priori knowledge of what kind of data
is encoded into a latent representation, we gather that the search for a decent
reconstruction is unreasonably difficult.

Assuming that a collision in latent space is hypothetically possible but extremely
rare, we do not attempt to force a collision by brute force. Instead, we generate
a multitude of latent representations of the same dataset to explore the valid-
ity of our conjecture. We acknowledge that exploring this conjecture in this
manner will never truly provide a definite answer, short of providing a definite
proof. Nonetheless, it should give us a clearer image on the nature of latent
representations for the purposes of data pseudonymisation.

Setup. We train ten autoencoders on the Pima Indians Diabetes dataset and
ten autoencoders on the default synthetic dataset as provided by Scikit-Learn’s
make_classification function, and choose the autoencoder that performs
best. These networks are used to generate latent representations of their respec-
tive dataset. The weights of the bottleneck layer of these autoencoder networks
are also stored. This process is repeated ten times. Once completed, these re-
sulting latent representations and bottleneck weight vectors are compared using
MSE.
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6. Runtime Experiments

Idea. We run an experiment to show the relatively short training time of a
simple autoencoder as defined in Subsection 4.1.1 on various data shapes, even
when trained on a CPU.

Setup. Once again we use Scikit-Learn’s make_classification. We vary the
number of features, the number of records, and both simultaneously. Whilst in-
creasing the number of features, we generate datasets of 10000 records. When
the number of records is increased, the number of features is set to 700. Specif-
ically in this experiment, we do not use our standard method of training ten
autoencoders and choosing the one that performs best. Rather, we are solely in-
terested in the training time of a single autoencoder regardless of performance.
Autoencoders stop training when the delta of validation loss between epochs
falls below 0.0001.

4.2 Results

4.2.1 Varying levels of data leakage

Synthetic data

Figure 4.1 shows six scatterplots depicting the loss achieved by adversarial de-
coders trained on a data leak of synthetic datasets. The loss is the result of
the attempt to decode the full latent representation z into a reconstruction x′.
The severity of the data leak that determines the adversarial decoder training
set is varied on the x-axis. Furthermore, the figure compares three situations of
data leakage. The first row of graphs shows the situation in which the first p%
records of the original dataset x are leaked. The second row of graphs shows the
situation in which the randomly permuted p% records of the original data set
x are leaked. The third row shows the situation in which the first p% records
of the best possible reconstruction x′ created by the initial decoder are leaked.
In each of these plots, the visualised data consist of ten runs that all run this
experiment using the same generated synthetic dataset.

First, we discuss our observations between the true loss (TL) and the approxi-
mate loss (AL). The approximate loss is lower than the true loss. Adversarial
decoders are trained to approximate the best possible decoder; it intuitively
follows that they create a similar result. However, it is interesting that the ap-
proximate loss never reaches zero: in other words, adversarial decoders fail to
perfectly replicate the best possible decoder, even when the full dataset is leaked.
In the third row, adversarial decoders are trained using the reconstruction of the
latent representation x′ as the training set. These adversarial decoders achieve
less approximate loss compared to the other situations. However, this does not
seem to affect the true loss compared to leaking the true dataset.
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Figure 4.1: Scatterplots between the percentage p% of data leaked and the
resultant loss of an adversarial decoder on 10 distinct synthetic datasets. Left
column: True Loss (TL). Right column: Approximate Loss (AL). First row:
The first p% of x has been leaked. Second row: A randomly permuted subset
p% of x has been leaked. Third row: The first p% of x′ has been leaked.
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Figure 4.2: Parallel coordinates plots showing how the percentages of data
leakage of synthetic data p% relate to resultant loss of an adversarial decoder.
Middle: Loss when a randomly permuted subset p% of x has been leaked. Right:
Loss when the first p% of x has been leaked. Note how the loss of the permuted
data is strictly higher compared to the loss of leaking the first p% of x.

Second, in all these situations, the performance of the adversarial decoder only
slightly improves when trained on larger data leaks as opposed to smaller data
leaks. To confirm this, we calculated the Pearson correlation coefficients (also
known as Pearson’s R, Freedman et al., 2007) between the percentage of data
leakage p and the true loss (TL). This resulted in a correlation coefficient of
Rp,TL = −0.53, which is a weak negative correlation between loss and data
leakage. The implication of this result is that a data leak of any size has an
effect on decoding; however, this effect does not worsen should a data leak
become larger.

Third, the simple act of permuting the order of records causes a large reduction
adversarial decoder performance. The true loss achieved by these adversar-
ial decoders trained on a permuted data set is strictly greater than the loss
achieved by adversarial decoders that benefit from being able to match latent
representation records with (reconstructed) records of x. Furthermore, the ef-
fect of decreased loss when the severity of data leakage increases, is even less
than in the aforementioned situation. This permutation results in a correlation
coefficient of Rp,TL = −0.41. Table 4.2 shows the heterogeneity measure (HM)
of the permuted dataset is much lower than the other two datasets, implying
that adversarial decoders trained on the permuted datasets lose a lot of valu-
able information to be able to learn why one encoded datapoint is different from
another. This implies that a simple permutation of the latent representation
is an effective way to further obscure which dataset is encoded in the latent
representation. The loss achieved by even a very severe data leak hovers around
or exceeds one standard deviation of the dataset.
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Figure 4.3: Scatterplots between the standard deviation of the generated syn-
thetic dataset and the resultant loss of an adversarial decoder. Left column:
True Loss (TL). Right column: Approximate Loss (AL). First row: The first
p% of x has been leaked. Second row: A randomly permuted subset p% of x
has been leaked. Third row: The first p% of x′ has been leaked.
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Figure 4.4: Parallel coordinates plot showing how the standard deviation of the
dataset relate to resultant loss of an adversarial decoder. Middle: Loss when a
randomly permuted subset p% of x has been leaked. Right: Loss when the first
p% of x has been leaked.

Figure 4.5: Scatterplots between the percentage of data leaked and the resulting
loss of an adversarial decoder. Dots of the same colour belong to the experiment
with the same dataset and its respective standard deviation. Left: linear true
loss y-axis. Right: logarithmic true loss y-axis.
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Figure 4.6: Scatterplots between when the first p% of x is leaked and the re-
sultant loss of an adversarial decoder. Additionally, a horizontal line is shown
showing the baseline loss of the best possible decoder. Left: A synthetic dataset
with a standard deviation of 1. Right: A synthetic dataset with a standard
deviation of 9.

Any information an adversary gleans from the decoder is erroneous at best, and
they are better off looking at the leaked data directly. An adversary would have
to brute force both the original permutation of the records and the original set
of decoder parameters θ. Permuting does not have an effect on data utility (see
Subsection 4.2.3).

The fourth phenomenon we observed is that the loss achieved by the adver-
sarial decoder in these experiments is around one standard deviation of the
dataset. To experiment with this, we generated datasets with standard de-
viations ranging from 1 to 10 using the scale parameter of the Sckikit-Learn
make_classification function. Figure 4.3 shows six scatterplots depicting the
relation between the standard deviation of the dataset and the resulting losses
of adversarial autoencoders trained and tested in the same way as the previ-
ous experiments. The true loss shows a nearly quadratic relation between the
standard deviation and the loss of the dataset. At low data leakage percent-
ages, the loss of an adversarial decoder is around a squared standard deviation.
We hypothesize that this is a result of the decoder network creating a lossy
reconstruction x′ where the values differ approximately one standard deviation
from the original, resulting in a measured True Loss of one squared standard
deviation due to the squaring operation in the MSE calculation. As the severity
of the data leak increases, the loss of the adversarial decoder naturally sinks
below a squared standard deviation. Similarly to the experiments discussed
above, the approximate loss is strictly lower than the true loss and does not
grow quadratically with the standard deviation. Thus, a permuted latent rep-
resentation results in a strictly higher loss than if the latent representation were
not permuted, as seen in Figure 4.4.
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Figure 4.7: Comparing the results of adversarial decoders. Left: Original
dataset x. Middle: Reconstruction of an adversarial decoder trained on a leak
of 60% of the data. Right: Reconstruction of an adversarial decoder trained on
a leak of 60% of permuted data.
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Table 4.2: Results of experiments with p = 60% data leakage. In the columns
with three values per row, each row corresponds with leaking the first p% of
data, permuted data and reconstructed data, from top to bottom, respectively.

Dataset BL TL AL Rp,TL HM(x) HM(x′)

Synthetic 0.723
0.848
1.052
0.836

0.166
0.343
0.102

-0.53
-0.41
-0.58

2.392
0.208
0.039
0.311

Pima 57.14
66.45
1250.7
76.65

13.76
1193.5
27.31

-0.34
-0.30
-0.29

3365.489
3090.593
132.677
2964.417

MNIST 0.003
0.006
0.068
0.009

0.005
0.065
0.005

-0.75
-0.84
-0.91

0.1317
0.1139
0.0003
0.1178

Housing 83657.6
85033.8
3.31e8
83650.2

2815.6
3.31e8
4.076

-0.59
-0.55
-0.70

2.91e9
2.89e9
3.03e5
2.86e9
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Figure 4.5 depicts the results of ten experiments that compare the percentage
of data leaked to the loss of an adversarial decoder. Each experiment used a
different synthetic dataset generated with a different standard deviation. Gen-
erating this scatterplot with a linear y-axis makes it seem that data sets with
higher standard deviations appear more sensitive to a more severe data leak;
however, plotting these same data against a logarithmic y-axis shows that this
was likely a result of the squaring in the loss function. Calculating Pearson’s
correlation coefficient for the leakage of the dataset and permuted dataset is
Rp,TL = −0.54 and Rp,TL = −0.46, respectively, achieving a very similar per-
formance as described earlier. This confirms that pseudonymising a dataset
with a greater standard deviation is not weaker to reidentification in this man-
ner than a dataset with a smaller standard deviation.

Finally, Figure 4.6 shows the result of two singular experiments, each with its
own data set and respective standard deviation. In these graphs, the baseline
loss of the best possible decoder obtained during training is depicted alongside
the true loss of the adversarial decoders. At higher levels of data leakage, ad-
versarial decoders achieve a lower loss but never match the performance of the
best possible decoder. Once again, the adversary is better off looking at the
leaked data directly.

Pima Indians Diabetes data

To find out whether these same observations hold for different datasets, we
repeated this experiment with the Pima Indians Diabetes dataset as described
in Subsection 4.1.3.

Figure 4.8 shows six scatterplots showing the same setup as before: True and
approximate loss of directly leaked data, permuted leaked data, and leaking the
best reconstruction of the original data.

The observation of the true loss starting at one standard deviation squared does
not hold for this dataset. We postulate that this is due to the fact that each
attribute in the Pima Indians Diabetes dataset does not share roughly the same
average and standard deviation. On account of how the networks are optimised
using MSE as a loss function, decoders prioritise more accurately reconstructing
attributes that contribute more towards the loss function as opposed to ones that
impact the loss function less. That is, correctly reconstructing values that hover
around one hundred reduces loss more than values that are binary. In fact, in
our observations of decoder reconstructions x′ of this dataset it is not uncommon
to find that such attributes with low averages and standard deviations tend to
be zeroed out completely, losing all information in those attributes even in the
best possible reconstruction as generated during training. The implications of
this are two-fold: Reconstructing data with significant differences in averages
and standard deviation is likely to lose a lot of data represented as small values,
such as binary labels. Similarly, the original autoencoder also uses MSE as the
loss function. It might therefore be possible that these small values also neglect
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to be encoded in the latent representation as well. How this affects data utility
is explored in Subsection 4.2.4.

This loss as a result of a discrepancy between attributes can be partially alle-
viated by normalising all values beforehand (however, see the effect of doing so
on data utility in Subsection 4.2.3 and Subsection 4.2.4), but this in itself also
suffers from information loss should decoding a latent representation be nec-
essary. Experiments testing the difference in performance between scaled and
nonscaled datasets are discussed in Subsection 4.2.3.

The second observation is that the effect of permuting the latent representation
on the loss and heterogeneity measure is larger than this effect observed on
synthetic data.

The loss approaches the baseline loss at extremely high levels of data leakage
as seen in Figure 4.9. This implies that not every dataset is as resistant to data
leakage as synthetic data sets as seen in Figure 4.6. Furthermore, we measured
Pearson’s R correlation coefficient between decoder loss and percentage of data
leakage of these results. Without permuting the latent representation, Pearson’s
Rp,TL = −0.34. This means that the correlation between data leakage and
improved decoder performance is even weaker; however, this is because the
baseline performance of these decoders is already much better compared to the
decoders that worked with the synthetic dataset, meaning that improvements
are harder to achieve. Permuting the latent representation results in Rp,TL =
−0.30, which is similarly a weak correlation. Nevertheless, this result is much
more optimistic: Although there is much potential to improve performance, the
networks do not achieve this potential.

MNIST handwritten digits data

Figure 4.7 shows three columns. The left column shows the handwritten digits
in the original dataset. The middle column shows the digits as reconstructed by
an adversarial decoder trained on 60% leaked data. The right column shows the
digits reconstructed by an adversarial decoder trained on 60% leaked, permuted
data. There are a few conclusions to be drawn based on this visualisation.

Whilst by our measures an adversarial decoder may achieve a higher MSE loss
than a baseline decoder, one should carefully consider when the reconstructed
data is considered depseudonymised. The reconstructed data is always lossy.
This means that when it is of critical importance that the exact value of the
data is to be hidden and that a lossy reconstruction is too imprecise to be
critical, then this method of pseudonymisation can suffice. But in the case of
the MINST dataset as illustrated by Figure 4.7, if a mere approximation of
the original already suffices as depseudonymisation, then this method proves
insufficient. This visualisation shows the nuance of using MSE in our True
Loss and Approximate Loss metrics as our metrics, as the digits are clearly
reconstructed and distinguishable from one another.

43



Chapter 4 4.2. Results

Figure 4.8: Scatterplots between the percentage p% of data leaked and the
resultant loss of an adversarial decoder on the Pima Indians Diabetes dataset.
Left column: True Loss (TL). Right column: Approximate Loss (AL). First
row: The first p% of x has leaked. Second row: A randomly permuted subset
p% of x has been leaked. Third row: The first p% of x′ has leaked.
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Figure 4.9: Scatterplot between when the first p% of x is leaked and the re-
sultant loss of an adversarial decoder on the Pima Indians Diabetes dataset.
Additionally, a horizontal line is shown showing the baseline loss of the best
possible decoder.
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However, the figure also shows the right column, which is a clear visualisation
of the implications of the heterogeneity measure. This is the work of an adver-
sarial decoder that is trained on permuted data. This visualisation shows why
permutation is such an effective way to hinder the performance of adversarial
decoders. The best the adversarial decoder could do in an effort to minimise
the mean squared error is to always predict a vague combination of three, eight,
and nine, where any given result is indistinguishable from one another. This is
because any relation between the latent representation and the original digit is
lost for the adversarial decoder.

Conclusion

In conclusion, Table 4.2 summarises our numerical results of these experiments
with a p = 60% level of data leakage. It consistently appears that, for the
(reconstructed) data leakage experiments, adversarial decoders are able to rea-
sonably approximate the baseline levels of loss and heterogeneity. The sever-
ity of this result depends on the sensitivity of the data. For instance, when
pseudonymising salaries, the exact salary figure of a given person will not be
perfectly reconstructed. However, a decently performing adversarial decoder
would be able to read a salary range of each person in the dataset. Therefore,
whether inaccurate reconstructed figures are considered a breach of sensitive
data depends entirely on the nature of the dataset in question. Adversarial
decoders trained on an unpermuted latent representation together with a data
leak are able to recreate these figures with decent accuracy, despite misrepre-
sentations as a result of using MSE (see Subsection 4.2.4). Having said that,
permuted latent representations show much more promising results, with very
low heterogeneity measures (where higher is a better reconstruction) and high
loss measures (where lower is better is a better reconstruction). In other words,
these decoders are only able to generate a roughly average reconstruction for
each of the encoded records, where each individual record is meaningless and
indistinguishable from the other. This implies that latent representations are
not secure from reidentification unless it is possible to permute the latent rep-
resentations, so adversaries lose the knowledge of which latent representation
record corresponds with which leaked data record. Both these conclusions are
best visualised in Figure 4.7.

4.2.2 Clustering permuted datasets

In the results of our previous experiment, we repeatedly and consistently showed
how randomly permuting a dataset significantly hinders the performance of ad-
versarial decoders, both in terms of our defined metrics True Loss and Approx-
imate Loss, and visually in our MNIST illustration.

Figure 4.10 depicts three scatterplots showing the results of our clustering ap-
proach. The resulting loss of using four clusters to attempt to match permuted
data tends to be equal to or greater than the loss of adversarial decoders directly
trained on the permuted data.
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Figure 4.10: Scatterplot comparing the performance between an adversarial
decoder and a decoder aided with cluster matching to attempt to reverse the
randomisation. This is done on the Pima Indians Diabetes dataset (left) and
the MNIST handwritten digits dataset (middle) and the California Housing
Prices dataset (right, Pace and Barry, 1997). There are less cluster matching
datapoints due to the increase in runtime.

This shows that the clustering approach is insufficient when using a small num-
ber of clusters. We hypothesise that increasing the number of clusters would
grant the algorithm more granularity to group together more similar representa-
tions. Doing so also makes the algorithm prohibitively expensive. For example,
the best-case scenario for the MNIST dataset is when the clustering algorithm
manages to perfectly cluster the datapoints in ten disjoint sets for both the la-
tent representation and the original dataset. Still, the adversary has to find the
only permutation of 10! that adheres to the original data set.

This results in training an adversarial decoder on this (representative sample of)
data for each of these 10! permutations. This even happens under the assump-
tion that these clusters are perfect; any imperfections add noise to this process.
In a realistic scenario, most datasets are not as heterogeneous as MNIST and
the optimal number of clusters is greater than 10.

We propose researching more efficient solutions to finding the optimal permu-
tation of clusters in future work in Section 5.3. It might be possible to devise
a method that iteratively works towards the optimal permutation, or testing
different clustering algorithms other than K-means. Doing so falls outside the
scope of this thesis. We conclude that a naive clustering algorithm does not
easily reverse the permutation of a latent representation.

4.2.3 Data utility

Table 4.3 up to and including Table 4.16 show the results of data utility ex-
periments. First, we will consider the results of the classification algorithms,
XGBoost, and logistic regression. In general, the following effects are observed:
In all cases, there exists a trade-off for training on a latent representation rather
than the original data, the severity of which differs per dataset. This could be
a natural effect of data loss as a result of dimensionality reduction.

The utility delta for using the latent representation is the greatest in the exper-
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iments with the synthetic dataset using the XGBoost algorithm. The MNIST
handwritten digits and Pima Indians Diabetes datasets suffer a smaller reduc-
tion in performance. The MNIST dataset performs nearly identical when using
logistic regression and only slightly worse when using XGBoost. The Pima
dataset performs slightly worse with both algorithms.

The permuted latent representation always performs similarly to the unper-
muted latent representation. This pattern presents itself consistently with each
data-scaling condition and classification algorithm. This implies that if the util-
ity loss of using the latent representation is already within acceptable range
to trade off for the benefits of pseudonymisation, the latent representation can
be permuted as a further measure of security without suffering any additional
penalty to data utility.

Next, we discuss the regression algorithms. Using latent representations appears
to substantially negatively affect regression algorithms. This is especially no-
ticeable in Table 4.9 where the r2 score drops from 0.545 on the original dataset
to −0.12 when using the latent representation, implying that a model trained
on the latent representation performs worse than always predicting the median
price over all houses.

To further investigate this effect on regression algorithms, we test three addi-
tional datasets. In these experiments, we observe that latent representations
consistently negatively affect regression performance worse than classification
performance.

At the other end of the spectrum, the Paris Housing Prices dataset manages
to achieve a r2 score of 1, except when trained on the latent representation of
the original scaled data set, falling to 0.44. Despite that very good r2 score,
the mean squared error score does not approach zero. Overall, the XGBoost
regressor appears to perform better than linear regression but is also negatively
affected by using the latent representation. In general, these results imply that
latent representations are better suited to pseudonymise data sets used in classi-
fication problems than datasets used for regression problems. We further explore
this in our next experiment in Subsection 4.2.4.

In terms of data-scaling conditions, we observe no large differences between
scaling original data or latent representation for most datasets. The exception
to this is the Paris Housing Prices regression, where the latent representation of
the original scaled data performed substantially worse than the other conditions.
However, this behaviour appears to be an outlier, and therefore no conclusions
could be made on these results alone.

In these experiments, no extensive model selection or other careful data prepa-
ration beyond min-max scaling is performed. This means that the performance
of these models could be potentially improved, however, doing so falls beyond
the scope of these experiments.
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Table 4.3: Results of data utility on a generated synthetic dataset predicting a
binary class label using logistic regression.
Synthetic, LogR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm

B. Accuracy 0.945 0.939 0.944 0.944 0.932 0.935 0.889 0.889

Weighted F1 0.945 0.939 0.944 0.944 0.932 0.935 0.889 0.889

ROC AUC 0.974 0.974 0.974 0.975 0.972 0.972 0.959 0.962

Avg. Precision 0.946 0.940 0.945 0.946 0.936 0.939 0.891 0.893

Table 4.4: Results of data utility on the Pima Indians Diabetes dataset predict-
ing a binary class label using logistic regression.
Pima, LogR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm

B. Accuracy 0.724 0.690 0.686 0.704 0.681 0.685 0.672 0.675

Weighted F1 0.734 0.699 0.695 0.715 0.690 0.694 0.680 0.683

ROC AUC 0.830 0.794 0.793 0.828 0.793 0.798 0.782 0.787

Avg. Precision 0.763 0.737 0.727 0.759 0.735 0.745 0.737 0.737

Table 4.5: Results of data utility on the MNIST handwritten digits dataset
predicting a multiclass label using logistic regression.
MNIST, LogR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm

B. Accuracy 0.901 0.909 0.912 0.901 0.905 0.909 0.906 0.909

Weighted F1 0.900 0.908 0.912 0.900 0.905 0.909 0.905 0.909

ROC AUC 0.987 0.988 0.990 0.987 0.987 0.990 0.988 0.989

Avg. Precision 0.902 0.910 0.913 0.902 0.906 0.910 0.907 0.910

Table 4.6: Results of data utility on a generated synthetic dataset predicting a
binary class label using XGBoost.
Synthetic, XGB Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm

B. Accuracy 0.950 0.869 0.864 0.950 0.897 0.892 0.869 0.866

Weighted F1 0.950 0.869 0.864 0.950 0.897 0.892 0.869 0.866

ROC AUC 0.968 0.922 0.916 0.968 0.943 0.933 0.922 0.912

Avg. Precision 0.953 0.871 0.865 0.953 0.901 0.895 0.871 0.867

Table 4.7: Results of data utility on the Pima Indians Diabetes dataset predict-
ing a binary class label using XGBoost.
Pima, XGB Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm

B. Accuracy 0.702 0.654 0.653 0.702 0.648 0.645 0.654 0.649

Weighted F1 0.703 0.655 0.653 0.703 0.650 0.647 0.655 0.650

ROC AUC 0.796 0.730 0.725 0.795 0.729 0.741 0.730 0.726

Avg. Precision 0.712 0.661 0.663 0.712 0.666 0.660 0.661 0.658
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Table 4.8: Results of data utility on the MNIST handwritten digits dataset
predicting a multiclass label using XGBoost.
MNIST, XGB Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm

B. Accuracy 0.978 0.957 0.958 0.978 0.953 0.956 0.957 0.958

Weighted F1 0.978 0.957 0.958 0.978 0.953 0.955 0.957 0.958

ROC AUC 1.000 0.999 0.999 1.000 0.998 0.999 0.999 0.999

Avg. Precision 0.978 0.957 0.958 0.978 0.953 0.955 0.957 0.958

Table 4.9: Results of data utility on the California Housing Prices dataset pre-
dicting the median house price using linear regression.
C. Housing, LinR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm
MSE 5.09e+09 1.19e+10 1.13e+10 5.09e+09 1.19e+10 1.09e+10 1.19e+10 1.13e+10

r2 0.545 -0.12 0.148 0.545 -0.086 0.174 -0.12 0.151

Table 4.10: Results of data utility on the King County, USA Housing Prices
dataset predicting the median house price using linear regression.
KC. Housing, LinR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm
MSE 4.10e+10 6.49e+10 6.47e+10 4.10e+10 9.30e+10 9.30e+10 6.49e+10 6.47e+10

r2 0.695 0.516 0.519 0.695 0.308 0.308 0.516 0.519

Table 4.11: Results of data utility on the Paris Housing Prices dataset predicting
the median house price using linear regression.
P. Housing, LinR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm
MSE 3.61e6 6.75e+07 7.16e+07 3.61e6 4.631933e+12 4.630512e+12 6.747248e+07 6.947615e+07

r2 1.00 1.00 1.00 1.00 0.44 0.44 1.00 1.00

Table 4.12: Results of data utility on the MNIST handwritten digits dataset
predicting the handwritten digit using linear regression.
MNIST, LinR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm
MSE 9.332e+18 2.888 2.881 4.925+20 2.484 2.476 2.888 2.882

r2 -0.000 0.654 0.655 -0.000 0.703 0.704 0.654 0.655
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Table 4.13: Results of data utility on the California Housing Prices dataset
predicting the median house price using the XGBoost Regressor.
C. Housing, LinR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm
MSE 3.49e+09 8.94e+09 8.27e+09 3.49e+09 5.51e+09 4.39e+09 8.94e+09 8.34e+09

r2 0.547 -0.230 0.123 0.547 0.264 0.535 -0.230 0.115

Table 4.14: Results of data utility on the King County, USA Housing Prices
dataset predicting the median house price using the XGBoost Regressor.
KC. Housing, LinR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm
MSE 1.56e+10 6.40e+10 6.21e+10 1.56e+10 3.45e+10 3.38e+10 6.37e+10 6.21e+10

r2 0.885 0.522 0.534 0.885 0.743 0.747 0.523 0.533

Table 4.15: Results of data utility on the Paris Housing Prices dataset predicting
the median house price using the XGBoost Regressor.
P. Housing, LinR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm
MSE 9.12e+07 1.83e+09 1.70e+09 9.12e+07 5.41e+12 5.34e+12 1.83e+09 1.81e+09

r2 1.000 1.000 1.000 1.000 0.346 0.354 1.000 1.000

Table 4.16: Results of data utility on the MNIST handwritten digits dataset
predicting the handwritten digit using the XGBoost Regressor.
MNIST, XGBR Unscaled Scaled Latent Scaled
Metric Original Latent Perm Original Latent Perm Latent Perm
MSE 1.000 1.480 1.466 1.000 1.539 1.523 1.469 1.461

r2 0.880 0.823 0.824 0.880 0.816 0.818 0.824 0.825
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4.2.4 Misalignment of MSE

Table 4.17 up to and including Table 4.20 show the results of our MSE mis-
alignment experiments. We observe the following phenomena:

Table 4.17 shows the latent representation outperforming the original unscaled
version of the synthetic dataset. This is likely due to the over-representation of
the large, informative features in the latent representation, as we had previously
hypothesised. Min-max scaling this data substantially reduces the performance
of both the original scaled data and the latent representation of the scaled data.
Likewise, scaling the latent representation of the unscaled data also greatly
reduces classification performance.

Table 4.18 shows the latent representation severely underperforming compared
to the original version which corroborates our hypothesis. As the autoencoders
are heavily incentivised by MSE as a loss function to underprioritise small losses,
which in this case are the most important features for data utility, the perfor-
mance of the classifier is substantially reduced. Interestingly, min-max scaling
helps mitigate this loss in performance much more compared to the previous
experiment conditions. Scaling the latent representation created from the un-
scaled data does not, however, implying that when this situation occurs, it is
better to min-max scale the data before generating a latent representation.

Table 4.19 shows a very poor performance of the XGBoost regression algorithm
on the dataset that combines large informative features with small noisy fea-
tures. Similar to the classification performance on this same dataset, the latent
representation of the unscaled data manages to outperform the original unscaled
data. This indicates that large, informative features are over-represented in the
latent representation. Regression performance on the scaled data, latent rep-
resentation of the scaled data and scaled latent representation of the unscaled
data is exceptionally poor, reaching negative levels of r2 fit, indicating that al-
ways predicting the mean outcome performs vastly better than models trained
on these scaled versions of the data.

Table 4.20 shows that the regression algorithm trained on the data contain-
ing small informative features exhibits a behaviour similar to the classification
algorithm, in that the original regression performance is reasonable, but a re-
gression model fit on the latent representation performs exceptionally poorly.
This implies that small features are under-represented in latent representations.
Scaling the data before generating a latent representation helps the performance
somewhat, but the resulting model remains functionally useless.

We conclude that the feature selection by autoencoders depends a lot on the
chosen loss function. MSE, as a loss function, promotes a different goal for
the autoencoder than maximal data utility preservation for latent representa-
tions. As such, we suggest investigating better alternatives as future work in
Section 5.3.
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Table 4.17: Results of data utility on a synthetic dataset with two informative
large features and ten small noise features classifying a binary label using the
XGBoost classifier.
Large, Classificaton Unscaled Scaled Latent Scaled
Metric Original Latent Original Latent Latent

B. Accuracy 0.840 0.910 0.487 0.420 0.514

Weighted F1 0.838 0.908 0.482 0.413 0.495

ROC AUC 0.924 0.968 0.546 0.356 0.482

Avg. Precision 0.852 0.930 0.489 0.413 0.527

Table 4.18: Results of data utility on a synthetic dataset with two informative
small features and ten large noise features classifying a binary label using the
XGBoost classifier.
Small, Classificaton Unscaled Scaled Latent Scaled
Metric Original Latent Original Latent Latent

B. Accuracy 0.950 0.436 0.950 0.740 0.436

Weighted F1 0.949 0.422 0.949 0.738 0.422

ROC AUC 0.984 0.459 0.984 0.820 0.459

Avg. Precision 0.958 0.427 0.958 0.751 0.427

Table 4.19: Results of data utility on a synthetic dataset with two informative
large features and ten small noise features classifying a binary goal variable
using the XGBoost regressor.
Large, Regression Unscaled Scaled Latent Scaled
Metric Original Latent Original Latent Latent
MSE 0.145 0.097 0.334 0.394 0.361

r2 0.287 0.532 -0.545 -0.837 -0.707

Table 4.20: Results of data utility on a synthetic dataset with two informative
small features and ten large noise features classifying a binary goal variable
using the XGBoost regressor.
Small, Regression Unscaled Scaled Latent Scaled
Metric Original Latent Original Latent Latent
MSE 0.036 0.327 0.036 0.260 0.327

r2 0.844 -0.525 0.844 -0.040 -0.525
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Table 4.21: A table comparing the MSE between ten different latent represen-
tations of the Pima Indians Diabetes dataset
MSE 1 2 3 4 5 6 7 8 9 10
1 0.000 20515.418 50251.199 136974.219 53319.523 37205.801 21240.037 29652.420 3823.734 8773.599
2 0.000 32153.834 84254.234 35446.617 26697.912 16774.590 22739.154 19929.461 6408.562
3 0.000 169337.812 91566.344 54978.133 74332.828 85604.352 46060.285 44344.320
4 0.000 59030.020 95154.031 107060.258 53434.461 139123.438 105024.164
5 0.000 75874.859 52387.055 42426.770 64108.891 29840.402
6 0.000 56974.543 29336.275 24094.768 35533.031
7 0.000 25068.242 27637.840 12405.395
8 0.000 27775.572 24372.621
9 0.000 11718.934
10 0.000

Table 4.22: A table comparing the MSE between ten different autoencoder
network bottleneck layer weights of the Pima Indians Diabetes dataset
MSE 1 2 3 4 5 6 7 8 9 10
1 0.000 0.745 0.657 0.542 0.856 0.371 0.605 0.503 0.619 0.591
2 0.000 0.541 0.527 0.647 0.718 0.671 0.702 0.744 0.467
3 0.000 0.947 0.685 0.846 0.602 0.657 0.896 0.429
4 0.000 0.511 0.392 0.466 0.515 0.617 0.493
5 0.000 0.712 0.440 0.604 0.752 0.448
6 0.000 0.635 0.460 0.949 0.559
7 0.000 0.538 0.575 0.277
8 0.000 0.613 0.548
9 0.000 0.798
10 0.000
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Table 4.23: A table comparing the MSE between ten different latent represen-
tations of the same synthetic dataset
MSE 0 1 2 3 4 5 6 7 8 9
0 0.000 2.691 2.469 4.709 2.855 2.676 2.321 6.030 2.876 5.254
1 0.000 2.449 4.359 2.786 2.450 2.423 4.417 2.663 7.582
2 0.000 3.814 2.821 2.060 2.238 4.180 3.083 5.955
3 0.000 4.242 5.114 4.720 7.461 3.386 7.280
4 0.000 2.910 2.638 4.250 3.386 5.839
5 0.000 1.748 4.699 3.629 6.173
6 0.000 5.285 3.716 5.133
7 0.000 5.742 9.663
8 0.000 7.310
9 0.000

Table 4.24: A table comparing the MSE between ten different autoencoder
network bottleneck layer weights of a synthetic dataset
MSE 0 1 2 3 4 5 6 7 8 9
0 0.000 0.202 0.197 0.223 0.237 0.230 0.207 0.236 0.244 0.226
1 0.000 0.200 0.192 0.205 0.248 0.210 0.220 0.216 0.173
2 0.000 0.181 0.210 0.230 0.244 0.217 0.234 0.233
3 0.000 0.183 0.224 0.185 0.218 0.226 0.216
4 0.000 0.233 0.225 0.211 0.256 0.220
5 0.000 0.283 0.243 0.274 0.232
6 0.000 0.218 0.227 0.222
7 0.000 0.229 0.193
8 0.000 0.242
9 0.000
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4.2.5 Latent representation similarity

Table 4.21 and Table 4.23 show the MSE similarity between ten different gener-
ated latent representations of the Pima Indians Diabetes dataset and the same
synthetic dataset, respectively. Table 4.22 and Table 4.24 show the MSE simi-
larity between the weight vectors of the bottleneck layers of the networks that
produced these latent representations. Redundant table cells are grayed out for
readability purposes.

Although the absolute values of these numbers are meaningless, the most im-
portant observation is that they generally do not approach zero. Instead, there
even exists a variance in how much each pair of latent representation or weight
vector differs from any other given pair. All these autoencoder networks follow
our standard procedure of choosing the best of ten, meaning that all these net-
works have reasonable performance, as well. This confirms our hypothesis in
Section 2.3; there exist multiple well-performing latent representations of any
given dataset. The implication of this is that it is difficult for an adversary
to discern what exact encoded data they might have encountered without any
further knowledge, such as a data leak, as we had assumed in our data leakage
experiments. Similarly, the weight vectors of the bottleneck layers differ greatly
between networks. Note that the weight vectors of the other layers can also be
very different, cumulatively ending up with very different parameter sets of the
networks for the same dataset.

4.2.6 Runtime

Figure 4.11 and Figure 4.12 show how long it takes to train one single autoen-
coder as defined in Subsection 4.1.1 on datasets of various sizes. The plots on
the left of Figure 4.11 show the impact of increasing the number of features.
The plots on the right show the effect of increasing the number of records in the
dataset. Finally, Figure 4.12 shows the effect of increasing both the number of
records and features on runtime in a 3D triangular surface plot.

We observe a roughly linear increase in runtime as both variables increase.
When the dataset is at its largest in this experiment (1300 features, 19800
records), the runtime averages around 35 seconds to train a single autoencoder.
Intriguingly, the combination of a low number of features and a large number of
records causes a much longer training time than when both properties increase
proportionally, as seen in the 3D plot Figure 4.12. This behaviour is consistent
over multiple runs of this experiment. Even then, the longest observed training
time was only 100 seconds.

Recall that neural network weight initialisation and iterative improvement are
highly stochastic processes, as described in Section 2.3. This stochasticity also
influences the performance of the autoencoder. Hence, the reason why in other
experiments, we train ten autoencoders and choose the network that performs
best. This experiment shows the runtime of training a singular autoencoder
network. Consequently, training ten networks should not take much more than
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ten times the reported value on average. Runtime may increase for networks that
are more complex than the networks we experimented with here, the properties
of which are described in Subsection 4.1.1.

We conclude that the runtime of training one or ten autoencoder networks
should not be the limiting factor for considering this method of data pseudonymi-
sation. It is easy to train a new network for each dataset, or to train another
network should the dataset gain additional records, retaining the property that
these networks are free to overfit on the entire dataset.

Figure 4.11: Scatter- and boxplots showing the effect of the number of features
(left) or the number of records (right) on autoencoder training time. First row:
All datapoints displayed in the scatterplot. Second row: Boxplots of the runtime
per feature or record to display outliers.
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Figure 4.12: Effect of both features and records combined on autoencoder run-
time displayed in a 3D triangular surface plot.
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4.2.7 Discussion

In this section we globally summarise the most important results from the ex-
periments and list our conclusions, as we have already discussed and drawn
conclusions for each experiment individually in their respective results sections.

Data Leakage

Without permutation, adversarial decoders can achieve relatively low levels of
data reconstruction loss if large (> 50%) amounts of data of the original dataset
is leaked. However, randomly permuting the dataset provides a great way to
counteract this attack, provided that the adversary does not know this same
permutation. As expected, if an adversary trains their adversarial decoder on
a reconstruction of the dataset rather than the original, the Approximate Loss
(AL) is lower, but this had no effect on the True Loss (TL).

How much TL/AL translates to (de)pseudonymisation depends entirely on the
sensitivity of the data in question. If the reconstruction of the data is not
considered ’leaked’ whilst the reconstruction is flawed or lossy, then this method
works as a pseudonymisation method. However, if even an approximation of the
data is close enough to leak sensitive information, then usage of this method is
not recommended, unless data permutation is possible. For example, although
the exact figure of a person’s salary may not be revealed by the reconstruction
x′, this would still leak the salary range of a given person. When permuted, the
salary ranges may become wildly inaccurate as visualised by Figure 4.7.

Cluster Matching

In order to verify whether permuting latent representations is as secure as our
data leakage experiments suggested, we experimented with a näıve attempt to
cluster representations and the corresponding data points together. As visu-
alised in Figure 2.3, latent representations for similar datapoints are encoded in
the same way. If a clustering algorithm can detect these similarities and subse-
quently feed them to the adversarial decoder network, the permutations could
be broken. Our results show that the loss of these clustered datapoints is often
equal to, or even greater than, the loss of the permuted datasets, showing that
permuting latent representations is resistant to a näıve attack of clustering.

Data Utility

In terms of data utility, there is a natural trade-off to using a latent represen-
tation to train classification or regression networks. However, for classification
algorithms, this trade-off is not large. Regression algorithms suffer a greater
loss of data utility when trained on a latent representation, implying that this
method may not be suitable for regression problems. Min-max scaling of the
dataset rarely has a substantial effect on data utility.
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Combining the results of the first two experiments with this data utility experi-
ment implies that permuting latent representations is a viable way of pseudonymis-
ing data without a significant impact on data utility.

Misalignment of MSE

In this thesis we trained autoencoders with MSE as their loss function. How-
ever, we observed that MSE leads to the over-representation of larger values
in the reconstructed dataset x′ over smaller values due to the squaring of the
error, punishing larger absolute value differences more than smaller differences,
although smaller values could be more valuable in terms of data utility. Our
experiments indicate that this over-representation is also present in the latent
representation z, implying that MSE is misaligned for the goal of data utility
retention in the latent representation. We suggest finding a better-aligned loss
function as future work in section Section 5.3.

Measuring LR Similarity

To gain further insight in the behaviour of autoencoders, we measured how
similar the latent representations and weight vectors of the bottleneck layers
are of well-performing networks. Our results show that there exist multiple
well-performing latent representations for any given dataset, making it more
difficult for an adversary to know which exact dataset they might be dealing
with when attempting to decode.

Runtime

Finally, we conclude that training autoencoders to generate well-performing la-
tent representations does not take too much time, with the longest training time
of a single autoencoder in our experiments being 100 seconds. That said, keep
in mind that training larger networks than the ones we discuss may significantly
impact training time.

Recommended practical application

We distill our experimentations into the following recommendation for a practi-
cal application of the findings this thesis. We suggest: Training ten autoencoders
on the dataset x and choosing the one that performs best; using the best trained
encoder network to generate a latent representation f(x) = z; randomly per-
muting the latent representation z along with the class label vector y to further
protect the encoded data’s privacy, whilst suffering no loss to data utility. This
pseudonymised latent representation can then be used to train a classification
algorithm or network of choice to learn P (y|z). It is up to the data controller
to decide whether to discard the encoder, decoder and original dataset as a
precaution; or to keep them in a secure, separate location if they are needed in
the future. Refer to Figure 4.13 for an illustration of this recommendation.
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Figure 4.13: Recommended practical application of our findings.
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Conclusion

5.1 Main conclusions

This work sought to outline the advantages and disadvantages of using an au-
toencoder’s latent representation as a data pseudonymisation method.

The main advantages are that without a data leak of the original data along
with its latent representation, it is difficult for an adversary to generate a well-
performing reconstruction of the encoded dataset. This method is more effective
if the latent representation is randomly permuted. This permutation is not easily
reversed using a clustering algorithm. A latent representation preserves its data
utility well for classification algorithms, even when permuted. Our experiments
indicate that a dataset can be represented by multiple, well-performing latent
representations, making it difficult for an adversary to discern which original
dataset was encoded in the latent representation. Finally, autoencoders do not
take a long time to train, making it a relatively cheap method to pseudonymise
data whilst retaining data utility for classification algorithms.

The main disadvantages are that by extrapolating existing GDPR regulation
considerations, it is very likely that this method would be considered a data
pseudonymisation method rather than an anonymisation method. Furthermore,
regression algorithms suffer a larger penalty to data utility than classification
algorithms when trained on a latent representation. Finally, our experiments
indicated that using the mean squared error as the loss function for the autoen-
coders does not maximise the data utility in latent representations.

The secure handling of data becomes only more important in an increasingly
data-driven society. Ever since GDPR came into effect in 2018, many companies
have been fined for irresponsibly handling sensitive customer data. If sensitive
data could be pseudonymised into a latent representation that would remain
safe, even if leaked, whilst retaining its powerful data analysis potency, it might
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be a more preferable method of handling data in the future.

5.2 Limitations

The process of training and using an autoencoder to pseudonymise sensitive data
is still considered processing sensitive data according to GDPR. Our conclusions
are merely an extrapolation based on existing regulatory considerations that are
not intended to be actual legal advice.

Our proposed pseudonymisation method comes with a few limitations. Trivially,
if the exact value is of great importance to preserve, then neither the latent rep-
resentation z nor the reconstructed dataset x′ will suffice. Similarly, there is
no meaningful data visualisation for latent representations without contextual-
ising it with the original dataset. It is only when the distribution of the data
is important, whilst keeping the individual datapoints pseudonymous, that this
pseudonymisation method is applicable.

Similarly, if an approximate reconstruction of the values in the dataset is also
considered sensitive, then this method is not applicable. For example, recon-
structing a latent representation of a dataset that contained exact salary figures
might not reconstruct these exact numbers but may still provide the adver-
sary with a salary range. Permuting the latent representation may somewhat
mitigate this issue, as illustrated by Figure 4.7.

The most effective data pseudonymisation method whilst preserving data utility
that we found, namely permuting latent representations, trivially does not apply
to data where the order of records matters, such as time series data.

Finally, our data utility experiments show that regression algorithms suffer a
greater loss of data utility than classification algorithms.

5.3 Future work

In this work, we have assumed to be working with machine learning data, or
data that otherwise has a distribution. This does not cover the full range of data
that could be anonymised or pseudonymised. Further research could be done if
it is possible to pseudonymise unstructured data like textual data, by involving
research on how textual data can be encoded numerically like in research of
natural language processing, for example.

Our experiments indicate that using the mean squared error as the loss function
for the autoencoders does not maximise the data utility in latent representa-
tions. We believe that data utility could be improved a lot more if a better-
suited loss function is chosen, whilst it would retain most, if not all, of the data
pseudonymisation properties discussed in this work.
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The research of conditional variational autoencoders (CVAE, Kingma et al.,
2014; Sohn et al., 2015) led to the idea of researching a CVAE conditioned on a
large (prime) number similar to some encryption methods. This (prime) number
could function as a private key such that the correct distribution is only sampled
if this trained network is supplied with the corresponding key. The resultant
sampled datapoints would be entirely synthetic, but the distribution of the
learnt data points should remain intact, leading to a possible method to encrypt
a data distribution. The practical applications of this idea remain nebulous,
and exploring this is vastly out of scope for this research; therefore, we offer a
potential future work in the field of data anonymisation or pseudonymisation
using machine learning applications.

Our cluster matching attack could be expanded on by making it more efficient,
or by testing other clustering algorithms than K-means clustering, or by a priori
deducing an ideal number of clusters, or finding some kind of iterative improve-
ment method akin to stochastic gradient descent.

There might be other, novel ways to permute the latent representation to hinder
adversarial decoding whilst preserving data utility that may be interesting to
experiment with. One such way is to permute the attributes rather than rows.
Another experiment is to add noise to the latent representation, be it in the
form of adding meaningless features or fake records. However, this noise could
adversely impact data utility.

In this work, we have chosen to encode the entire dataset. Should only a subset
of the features of the dataset be deemed sensitive, then further research could
be done how to safely encode only some private variables whilst retaining the
remainder in their original form, potentially improving data utility.

Another possible attack vector for this method of data pseudonymisation is the
case where both the latent representation and encoder leak. In this situation,
the adversary has access to a pair of original data and an encoding. The research
question would be whether that is enough for an adversary to train a decoder
to decode any given latent representation encoded by that encoder, even if it is
not the same data that the decoder was trained on.

The pseudonymising autoencoder could be varied in architecture, such as adding
more layers or varying the bottleneck size. More extremely, the network could
consist of an ensemble of autoencoders learning to represent subsets of features
of the entire dataset rather than using only one for the entirety of the dataset,
to investigate if these have significant impact on both data privacy and utility.

Finally, it might be interesting to investigate whether there are possibilities to
improve the data utility for regression algorithms.
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