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Abstract

We developed a market equilibrium model based on a constrained quadratic optimisation problem
that maximizes the profit margins of liquefied natural gas (LNG) shipping companies. In 2022,
the European LNG imports and prices have increased sharply due to the reduced pipeline gas
from Russia. The market equilibrium model is calibrated to realistic trade volumes and prices for
the most influential regions in the LNG market. We calibrate the market equilibrium model by
solving a bilevel optimisation problem, to obtain ask and bid parameters, which cannot be collected
directly from market data. We present a scenario analysis, in which we show that European prices
would have increased by 5% if China had not been in lockdown during 2022. To illustrate the
usability and limitations of our model, we also investigate the effects of the Panama Canal drought
on trade flows and the impact of Australian port labour strikes on Asian imports based on the
market data from August 2023.
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Chapter 1

Introduction

1.1 Problem Formulation

The natural gas market has changed significantly since the beginning of the Russo-Ukrainian war.
In general – and especially in Europe – the reduced supply of Russian natural gas has lead to
high energy prices, followed by rampant inflation. Amidst this crisis, Europe has also tried to
shift energy composition, from climate-harming fossil fuels like oil and coal, to renewable energy
sources. An important transitional energy source is natural gas (NG) because it is a relatively
clean fossil fuel and can be used to generate electricity on demand. As such, NG can be used in
gas turbines to generate electricity when electricity demand exceeds green energy production.

Since the start of the war, the Russian gas export to Europe have fallen by 80% [70]. As a
consequence, European prices sharply increased. Europe sharply increased the import of NG from
overseas in the form of liquefied natural gas (LNG). The liquefication, shipping and regasification
necessary to transport LNG increase costs. In addition LNG could not fully supplement the short-
fall of Russian gas, causing uncertainty whether the NG storage volumes could be filled sufficiently
before the winter 2022-2023. This led to record high NG prices on the spot market during the
summer of 2022 [49]. One of the major reasons why LNG could not fully compensate the reduced
pipelined NG was the availability of LNG ships - about 700 world-wide [66]. This allowed the
LNG shipping companies to sell their shipping capacity at a premium. If more LNG ships had
been available, the profit margins of the LNG shipping companies would have been lower. In this
thesis, we build a global LNG trade model in which the LNG shipping companies are treated as
deal-makers between exporting and importing regions. To our knowledge, we are the first to build
such a market model with a cap on the global LNG shipping capacity. The market power of the
LNG shipping companies will be fundamental to our market model.

1.1.1 Changing Energy Markets

Energy comes in many forms. Energy-dense physical commodities that power our world include
oil, coal, (L)NG, biofuel, and hydrogen. These commodities can be used as fuels for combustion
engines or to power electricity plants. In addition, green energy sources such as hydropower, solar
and wind increasingly contribute to the electricity energy mix. Energy commodities are traded
through long-term contracts, on the short-term spot markets and on the futures market, where
prices for future delivery amounts and quality are determined.

The environmental goals of Europe call for a sharp reduction in CO2 emission [8]. The usage
of fossil fuels needs to be reduced to meet these goals. To secure future European energy demand,
alternative energy sources will need to be put in place. Currently, there is not enough green elec-
tricity production combined with battery capacity to meet electricity demand at all times. Fossil
fuel electricity generators are used to close the gap between supplied green electricity and demand.
Natural gas is the preferred fossil fuel for this purpose, as it has the least environmental impact
among fossil fuels [3]. It is therefore likely that (L)NG will remain an important energy commod-
ity for at least the next decade [1]. In addition, (L)NG is used as fuel for high heat industrial
processes, as major resource in the production of fertilizer and as fuel for transportation. Some of
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these high heat applications depend on alternatives such as hydrogen to replace the necessity of
NG. Commodities, such as LNG, will remain relevant until this transition is finalized.

The majority of NG is transported via pipelines from sourcing facilities to the consumer mar-
kets. The remaining transportation is covered by shipments for which the NG needs to be liquefied
such that its volume is reduced by a factor 600. Pipeline NG is significantly cheaper than LNG
because the transport, liquefaction and re-gasification are relatively expensive. As a result, im-
porting regions typically try to match their NG demand through pipelined NG, and only rely on
LNG if the demand exceeds the available pipelined NG. Thus, the LNG market is more sensitive
to price changes than the pipeline NG market. The reduction of Russian NG exports to Europe
means that the reduced supply of NG needs to be replaced with the more expensive LNG to meet
Europe’s (winter 2022-2023) demand.

The United States of America is a major producer of NG, historically with little export to other
continents. However, the rising global demand for LNG (mainly from Europe) has created an in-
centive to transport the NG across the Atlantic. While the NG price in North America will remain
significantly lower than in LNG importing regions, the increased LNG import will expose the local
North-American market price to the volatility of the global LNG market, as LNG producers can
now serve both the local demand as well as demand in other continents. The significant increase
in LNG demand in Europe as a result of the Russo-Ukrainian war has accelerated the opening of
the North-American NG market.

1.1.2 Research Objective

Our objective is to model the interaction between N number of regions partitioned in M number
of export regions and N −M number of import regions. We simplify the LNG market to export
regions, import regions and LNG shipping companies to find a market equilibrium. We investigate
if reducing the LNG market model to these components is sufficient to capture the dynamics of
the trade flows and prices of the LNG market in times of high shipment demand. Our market
equilibrium model maximizes the objective function φy(x) representing the profit of the LNG
shipping companies, under consideration of their operational costs. The market equilibrium model
can be defined as a quadratic optimisation problem, given by

max
x

φy(x) = x⊺Pyx+ c⊺yx,

subject to

Dx ≤ vy,

(1.1)

where vector x ∈ RM(N−M) represents the time-averaged trade flows between the export and
import regions, i.e., vector component xk for k = 0, ...,M(N −M) − 1 is expressed as a unit of
LNG per time unit, e.g., MWh per day. As said, the objective function φy represents the profit of
the LNG shipping companies, which is the difference between the revenue and the transportation
costs. The revenue depends on the prices in the regions. The prices depend on linear ask and bid
functions where the parameter vector y ∈ R2M+2N quantifies how the price responds to supply
and demand. All components mentioned above, which describe the price dynamics are represented
by the coefficient matrix Py ∈ RM(N−M)×M(N−M) and vector cy ∈ RM(N−M).

We incorporate operational constraints, such as port capacity and production limits, in the con-
straint vy. Unique to our model is the inclusion of a global LNG transportation capacity constraint
in vy, which mimics the LNG market conditions from 2022 where global shipping capacity is close
to the maximum capacity. We denote the coefficients by Py, cy,vy because they depend on the
ask and bid parameters y. Currently, there are no market equilibrium models to our knowledge
which focus on market scenarios in which the LNG shipping companies hold significant market
power, such that only their profits form the objective function of a market equilibrium problem.
By assuming that the LNG shipping companies have significant market power and combining their
profits, the market can be interpreted as monopolistic, i.e., only one firm (representing all LNG
shipping companies) holds market power. Finding the global solution of (1.1) leads to a market
equilibrium based on supply and demand of LNG. The optimisation of quadratic optimisation
problem is efficient when φy is convex.
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Inconveniently, there is no reliable source for parameters y. However, we do have data for LNG
trade flows x and prices for the regions. To use the model for realistic scenarios, we therefore
need to calibrate to acquire the parameters y. Our calibration process is performed by optimizing
a bilevel optimisation problem which separates the calibration process into two task formulated
as an upper level and lower level optimisation problem. The lower level problem describes the
market equilibrium problem (1.1). The upper level problem describes the minimisation between
the market equilibrium output and the realistic market data. The bilevel optimisation problem for
the calibration is given by

min
x,y

f(x,y), (1.2a)

subject to

g(x,y) ≤ 0, (1.2b)

max
x

φy(x),

subject to

Dx ≤ vy,

(1.2c)

where distance function f : RM(N−M)×R2M+2N → R, in (1.2a), quantifies the accuracy of the cal-
ibration with respect to the realistic market data. Vector function g : RM(N−M)×R2M+2N → RL,
in (1.2b), describes the L number of constraints present in the calibration process. We use g to put
simple lower and upper bounds on the parameters vy. The lower level optimisation problem, in
(1.2c), is the same quadratic optimisation problem as (1.1). Solving a bilevel optimisation problem
(1.2) is non-trivial, because even simple forms, e.g. both levels are linear optimisation problem, are
non-convex [20]. As far as we know, calibration of the ask and bid parameters by solving a bilevel
optimisation problem is not used in other natural gas market models. In this thesis, we explore
methods of simplifying the bilevel optimisation under convexity assumptions of the lower level
optimisation problem in (1.2). However, this simplified method still relies on an accurate choice of
the initial solution. To improve the calibration process, we explore several meta-heuristics, such
as multi-start local search (MSLS), iterative local search (ILS) and genetic local search (GLS).

In Figure 1.1, we illustrate how the baseline step and the perturbation step, which correspond
to solving (1.2) and (1.1), respectively. In the baseline step, a market equilibrium model is cali-
brated by altering the inverse supply and demand functions of all regions until a market equilibrium
is found which is as close as possible to a realistic scenario. Next, in the perturbation step, one (or
several) parameter(s) can be perturbed to model a certain scenario. The objective is to compare
the trade flows and prices between the baseline scenario and the perturbed scenario. We study the
effects of increased Asian LNG demands on European prices in 2022, the impact of the Panama
droughts on trade flows and the impact of Australian port labour strikes on Asian imports in 2023.

Figure 1.1: General model framework for scenario analysis.

1.1.3 Thesis Structure

For the remainder of this chapter, we introduce the market agents in the NG market, followed by
an overview of optimisation models used to capture the interaction between market agents and a
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literature overview. In Chapter 2, we define the market equilibrium model based on a quadratic
optimisation (1.1) of the LNG shipping companies. In Chapter 3, we define the bilevel optimisation
(1.2) which is used to calibrate the market equilibrium model based on realistic data. Additionally,
we perform an accuracy analysis of the calibration w.r.t. the number of regions in the model. In
Chapter 4, we introduce three studies which show realistic scenario analysis based on events in
2022 and 2023. Lastly, in Chapter 5, we provide a conclusion, discussion and outlook on future
work.

1.2 Models of the Natural Gas Market

In the upcoming sections, we introduce the mathematical methods used to model the interactions
of the NG market. In Section 1.2.1, we cover the roles of the agents in the NG market. In addition,
we discuss the different competition forms used to model the market interaction, based on [30]. In
Section 1.2.2, we cover the mathematical formulation of optimisation methods used to model the
interaction of all NG market agents, in increasing order of complexity. In Section 1.2.3, a literature
survey is given, where we reference the scope of the study, the mathematical model used, and the
noteworthy results.

1.2.1 Natural Gas Market Description

The supply chain of the NG market can be explained using agents. Agents are an entity which
fulfil a specific role inside the NG market. In Table 1.1, we give an overview of all the agents which
are used to model the NG market, together with their inclusion in NG market modelling literature,
and a short description. A summary of the NG supply chain can be described as follows: NG is
pumped up by producers from underground reserves, which is then sold to traders. The traders
sell NG to marketeers who distribute the NG to several agents: consumers, storage operators, and
liquefiers. Consumers are the last stage of the supply chain, and are usually divided into residen-
tial, industrial, commercial and power generation sectors. Storage operators receive NG to store
for later use. Liquefiers cool down the NG to create LNG. LNG shipping companies transport
the LNG over sea. At their destination, the LNG shipping companies offload their LNG to the
regasifier who heats the LNG to obtain NG to sell to the marketeer in the destination region. NG
is also transported by pipeline operators between regions. The expansion of pipeline infrastructure
is managed by investment companies.

Focusing on the LNG market, there are a number of characteristics. In the global LNG mar-
ket, 2/3 of the LNG is traded on the long-term (between 10–25 years [2]) contract market, while
1/3 is traded via the spot market. LNG shipping companies act as deal makers between import-
ing and exporting regions. In the event that LNG demand suddenly increases, prices in the spot
market will rise. High gas prices create profitable positions for LNG shipping companies who sell
their transportation capacity to the highest bidder [4].

Now that the agents are defined, we illustrate how the supply and demand dynamics are char-

acterized. Each agent i (from Table 1.1) can have a supply quantity x
(i)
A (p), which is monotoni-

cally increasing in ask price p and demand quantity x
(i)
B (p), which is monotonically decreasing in

bid price p. Typical choices are linear or exponential functions. In addition, supply and demand
functions can depend on more variables than just the price p, for example, the temperature, the
season, the storage available. However, the exact parameters in the demand and supply functions
which quantify the influence of each variable on the total demand (or supply) are usually unknown.
Statistical methods, such as regression can be used to estimate the relation between independent
variable(s), e.g. price, and the dependent variable, e.g. supply or demand. This is the field of
econometrics, and lies outside the scope of this thesis. We will estimate the parameters for linear
supply and demand functions through a calibration given in Chapter 3.

In the following, we assume the supply and demand functions depend on the price p only. A
market equilibrium is defined by an equality between supply and demand. The supply and de-

mand x
(i)
A (p), x

(j)
B (p) between agents i and j, respectively, are set equal by

x
(i)
A (p) = x

(j)
B (p),
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resulting in a price p for which the supply and demand are matched. This equilibrium is a fun-
damental economical concept, and will be present at each stage of the supply chain, e.g., between
producers selling to traders, between traders selling to marketeers, etcetera. However, an equilib-
rium can also be achieved when inverse supply and demand functions are used, which are given by

α(i)(x) := x−1
A (p), (1.3a)

β(j)(x) := x−1
B (p), (1.3b)

and are used for the equation
α(i)(x) = β(j)(x). (1.4)

The equality (1.4) leads to a quantity x for which the supply and demand sides of the market
agree on a price, which we call the clearing price. A high demand leads to a relatively high clearing
price, while high supply leads to a relatively low clearing price. Solving equality (1.4) at each step
in the supply chain leads to a market equilibrium.

To model the interactions of the NG market, a type of competitiveness is assumed. The type
describes the difference in market power between the agents in Table 1.1. This market power
translates to how much knowledge an agent has about: its own (inverse) supply and (inverse)
demand functions, and how much knowledge it has about (inverse) supply and (inverse) demand
functions from other agents. Naturally, a powerful agent has more knowledge than a weaker agent.
Agents can also be modelled to have the ability to anticipate a market equilibrium, and subse-
quently, alter their strategy. The types of competition used to model the NG market are given by
perfect, Cournot, Bertrand, monopolistic and Stackelberg competitions.

A perfect competitive market, as formalized in [13], assumes that a market can perfectly equate
the quantity demanded to the quantity supplied. A perfect market, briefly, is on in which there
are infinite number of buyers and sellers, so no one agent can affect prives, and all agents in this
system are price-takers, i.e., they have no influence on the price of a commodity through the use
of inverse supply and demand functions. Transportation agents make very limited profits because
they cannot influence the supply and demand functions. All competition forms which do not dis-
tribute the market power equally are considered imperfect competitions.

Cournot competition is a type of oligopolistic competition which assumes that a handful of firms
hold market power. This makes these firms price-makers, i.e., they have (almost) full control over
the price of a commodity. Cournot agents differentiate based on the supply, instead of price. They
have knowledge of the inverse demand functions, i.e., they know how their supply will effect the
price response of the demand side.

Bertrand competition can be interpreted as another form of oligopolistic competition, where the
powerful agents compete based on price instead of supply. Bertrand firms have knowledge on the
demand function, i.e., they know how their price will effect the demand. As we show in Sec-
tion 1.2.3, Bertrand competition is not used in studies covering the NG market.

Monopolistic competition is an extreme form of competition, where we assume that only one
firm holds all market power, i.e, the absence of competition. This situation gives an agent full
control of the price. Monopolistic modelling of the NG market is uncommon, because there are
no individual companies which determine the whole market (or part of the supply chain). Note
that even a monopolistic (L)NG market will have a market equilibrium, because the supply and
demand sides still need to equate while the middle-men, e.g., the LNG shipping companies, can
be modelled as one firm maximizing their profit on every trade route.

Stackelberg competition, introduced in [72], is a hierarchical form of competition where, in con-
strast to Cournot competition, a firm can also influences the decisions of other firms. Agents who
are assumed to be Stackelberg leaders are able to influence their supply, and anticipate the market
reaction. This means that Stackelberg leaders have knowledge on their own inverse supply and
demand, as well as the supply and demand functions of other agents. The Stackelberg followers are
the weaker agent in the system, because they cannot anticipate the market. However, the followers
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can still be part of any of the competition forms mentioned previously.

Realistically, any agent lies somewhere between the extremes of price-taker and price-maker. Other
forms of competition, such as cartel competition exist. However, this competition form is (gener-
ally) not found in the mathematical descriptions capturing the (L)NG market models, and thus
will not be discussed here. For more information about these forms of competition, we refer to
[30].

Agent type: Occurrence in paper: Description:

Producer (Region)1 [55, 37, 27, 16, 31, 44,
54, 42, 53, 24, 33, 25]

Produces a quantity of NG until a produc-
tion limit. Agent can represent a region.

Consumer [37, 27, 16, 31, 44, 54,
42, 53, 24, 33, 25]

Consumes NG. Sector divided into: resi-
dential, industrial, commercial and power
generation.

Consumer Region1 Region containing one consumer agent rep-
resenting the total consumption i.e. all sec-
tors.

Marketers [31, 24, 25] Distributes the NG within a region to dif-
ferent agents within the region.

Traders [37, 16, 44, 27, 24] Represents a subsidiary company of a pro-
ducing agent focused on exporting NG.

Pipeline operators [37, 27, 16, 54, 31, 42,
53, 24, 25]

Focus only on the operation of NG pipeline
transport between regions.

Storage operators [27, 31, 53, 24, 25] Stores (L)NG within a region.

Liquefier [27, 42, 54, 25] Liquefies NG to LNG for transportation on
LNG ships.

Regasifier [27, 54, 25] Regasifies LNG to NG for transportation
through pipelines or for storage.

LNG shipping company1 [27, 25] Transports LNG between regions via ships.

Investment company [24, 33, 53] Invests in the expansion of the pipeline in-
frastructure of a region.

Peak gas operators [31] Provides regions with gas in times of high
demand.

Table 1.1: Overview of agents used in the references.

1This agent is incorporated in our model
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1.2.2 Optimisation Methods to model NG Markets

Various types of optimisation problems are used to model the interaction of the NG market agents.
All of the models use a clearing mechanism, which equates supply to demand, as given in (1.4).
Optimisation methods are used to find a market equilibrium, and are given by a single optimisa-
tion problem (OP) or multiple optimisation problems which are optimised simultaneously, called
equilibrium problem (EP). Maximizing the profit of a subset of agents requires anticipation of
the outcoming market equilibrium, which can be formulated in hierarchical optimisation problems.
Here, a mathematical program with equilibrium constraints (MPEC) is used, where the upper level
optimisation describes the optimisation of a single type of agent, and the market equilibrium is
given by the lower level optimisation. For multiple agents who optimise their behaviour in a mar-
ket equilibrium, an equilibrium problem with equilibrium constraints (EPEC) is used, where the
hierarchy is similar as in MPECs. Next, we will give an overview of each mathematical formulation
which is used to analyse the gas market. The overview is a summary based on [30, 17].

Optimisation Problems (OP) The first set of models, OPs, typically are characterised by
a minimization of the costs of production while supplying the demand side of the market, or
maximisation of total profits based on (inverse) supply and demand. These models, and especially
the linear models, can deal with many variables because of the relatively low complexity. OPs
are used to model markets with perfect, oligopolistic or monopolistic competition. Any market
power is then incorporated via parameters acting as weights in the objective function. In addition,
the oligopolistic (or monopolistic) agents have their profit depend on inverse supply and demand
functions, while weaker agents do not. The general formulation of OPs is as follows:

max
x

φ(x),

subject to

ψ(x) ≤ 0,

ξ(x) = 0,

(1.5)

where x ∈ Rn is the optimised variable, usually indicating trade flows. The function φ is the
objective function, which can be used to maximize the overall profits, or to minimize cost. The
vector function ψ represents the inequality constraints. The vector function ξ represents the
equality constraints, which include the market clearing equation (1.4). If the objective function φ
is concave and the feasible region F = {x : ψ(x) ≤ 0, ξ(x) = 0} is convex, then a local solution
will also be the global solution of (1.5). A function φ is concave when it is twice differentiable, and
the Hessian of φ is negative semi-definite, i.e., x⊺Px ≤ 0 for all x ∈ Rn. The feasible region F is
convex if a line segment between two points in F lies in F , i.e., for x(1),x(2) ∈ F it holds that

tx(1) + (1− t)x(2) ∈ F ,

for t ∈ [0, 1]. Note that typically, the literature (such as [17, 58]) describe OPs which minimize
the objective function Φ := −φ, which needs to be convex to guarantee a global optimum. Either
way, for a maximization problem with concave objective function, or a minimisation function with
convex optimisation function, we will refer to both as convex OPs. A convex OP has an optimal
solution when it satisfies meaningful Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions
of (1.5) can be expressed via a complementarity problem (CP), as follows:

∇xL(x,λ,µ) = 0, (1.6a)

ξ(x) = 0, (1.6b)

0 ≤ λ ⊥ ψ(x) ≤ 0, (1.6c)

where λ ∈ Rk and µ ∈ Rl represent the Lagrange multiplier vectors and the Lagrangian function,
L(x,λ,µ), is given by

L(x,λ,µ) := φ(x) + λ⊺ψ(x) + µ⊺ξ(x).

The complementarity given in (1.6c) is defined by the following (in)equalities

ψ(x) ≤ 0, (1.7a)

Diag(λ)ψ(x) = 0, (1.7b)

λ ≥ 0, (1.7c)
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where Diag(λ) ∈ Rk×k defines a diagonal matrix of λ on the diagonal, as seen in [58]. The
complementarity symbol ⊥ is a standard notation for a complementarity problem. Constraint
(1.6a) is the gradient of the Lagrangian L, which needs to be zero, such that the optimisation
problem (1.5) returns an optimal solution x. The constraints (1.6b) and (1.6c) enforce the equality
and inequality constraint of optimisation problem (1.5). Constraint (1.6c) forms a complementarity
problem consisting of two orthogonal vectors λ and ψ(x). Finding a solution to the system of
equations (1.6) is equivalent to finding the solution to the optimisation problem (1.5) [17].

Equilibrium Model (EP) The second set of models, EPs, form a collection of OPs used to
optimise multiple optimisation problems simultaneously. EPs are used to model the same compe-
tition forms as OPs, but the difference in market power is not modelled via weights, but separate
OPs are used to optimise for each agent (type) individually. Consider problem i, i = 1, ...,m given
by

max
x(i)

φ(i)(x(1), ...,x(m)),

subject to

ψ(i)(x(1), ...,x(m)) ≤ 0,

ξ(i)(x(1), ...,x(m)) = 0,

(1.8)

where x(i) ∈ Rn(i)

is the optimised variable for problem i and n(i) ∈ N. The functions φ(i),ψ(i)

and ξ(i) represent the objective function, inequality constraints and equality constraints of problem
i, respectively, similar to the OP in (1.5). Note that each function φ(i),ψ(i), ξ(i) considers the
variables of all problems i = 1, ...,m. This connects the different problems, which allows for the
definition of an equilibrium. For each problem, i = 1, ...,m, it is possible to define the KKT
conditions as given by (1.6), with functions φ(i),ψ(i), ξ(i) for problem i. Rewriting to KKT-
conditions introduces the need of λ(i), µ(i) for problem i. It should be noted that some EPs –
through the KKT conditions – can be written as OPs.

Mathematical Program with Equilibrium Constraints (MPEC) The third set of models,
MPECs, form an optimisation problem where the constraints consist of an EP, i.e., the constraints
are made up by connected optimisation problems. MPECs include the hierarchical structure
between the upper level optimisation problem and the lower level optimisation (or equilibrium)
problem. MPECs are used to model two-stage markets, which are based on Stackelberg competition
with one single Stackelberg leader, i.e., the upper level optimisation is an OP. For example, the OP
maximizes the profit margins of a producer agent, which is modelled to be the Stackelberg leader.
The upper and lower level problems can model perfect, oligopolistic or monopolistic competitions,
as they are an OP and EP, respectively. The levels together model the Stackelberg competition.
The mathematical formulation of an MPEC, with m optimisation problems as constraints, is given
by

max
y,x(1),...,x(m)

λ(1),...,λ(m),µ(1),...,µ(m)

f(y,x(1), ...,x(m),λ(1), ...,λ(m),µ(1), ...,µ(m)), (1.9a)

subject to

g(y,x(1), ...,x(m),λ(1), ...,λ(m),µ(1), ...,µ(m)) ≤ 0, (1.9b)

h(y,x(1), ...,x(m),λ(1), ...,λ(m),µ(1), ...,µ(m)) = 0, (1.9c)

For each i = 1, ...,m:

max
x(i)

φ(i)(x(1), ...,x(m)),

subject to

ψ(i)(x(1), ...,x(m)) ≤ 0,

ξ(i)(x(1), ...,x(m)) = 0,

(1.9d)

where y ∈ Rn is the optimised (upper level) variable, which is optimised in the upper optimisation

problem. Variables x(i) ∈ Rn(i)

for i = 1, ...,m are optimised in the upper level and lower level
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problem(s). Variables λ(i),µ(i) represent the Lagrange multiplier vectors of the i-th lower level
problem, which the upper level optimisation problem also optimises. The functions f, g,h are the
upper level objective function, inequality constraints and equality constraints, respectively, which
describe the Stackelberg leader. The lower level optimisation problem(s) in (1.9d), are the same
formulations as in (1.8). If the EPs in (1.9d) are convex, then (1.9d) can be replaced by the KKT-
conditions. The simplest non-trivial MPEC is the bilevel optimisation problem, which has one (m =
1) optimisation problem as constraint. In Chapter 3, we define a bilevel optimisation to calibrate
the market equilibrium model, which shows that MPECs are also applicable in other contexts.
A bilevel optimisation with the convex lower level optimisation replaced by KKT-conditions is
referred to as a mathematical program with complementarity constraint (MPCC), and is given by

max
y,x

f(y,x,λ,µ), (1.10a)

subject to

g(y,x,λ,µ) ≤ 0, (1.10b)

h(y,x,λ,µ) = 0, (1.10c)

∇xL(x,λ,µ) = 0,

ξ(x) = 0,

0 ≤ λ ⊥ ψ(x) ≤ 0,

(1.10d)

where the problem description can be simplified to the variables y,x,λ,µ and the lower level
optimisation in (1.9d) is replaced by (1.6) to obtain (1.10d). This leader-follower (upper-lower)
hierarchy is present in several modelling problems, for example, military defence applications, elec-
tricity markets, highway network design, resource allocation, supply chain configurations, support
vector machines, meta-learning, portfolio optimisation, and many more, described in [20, 65].

Equilibrium Problems with Equilibrium Constraints (EPEC) The last set of models,
EPECs, are a collection of MPECs, similar to how EPs are a collection of OPs. As such, EPECs
are also separated in an upper and lower level. Again, the hierarchical structure of EPECs is
used to model Stackelberg competition, but now, the upper level optimisation is an EP. Here, we
optimise for multiple Stackelberg leaders. We present the simplified formulation of EPECs, as in
[30], although more generalized formulations exist. The mathematical formulation of an EPEC,
made up of K MPECS, is given by

For each j = 1, ...,K:

max
X(j)

f (j)(X(j)),

subject to

g(j)(X(j)) ≤ 0,

h(j)(X(j)) = 0,

For each i = 1, ...,m(j):

max
x(j,i)

φ(j,i)(x(j,1), ...,x(j,m(j))),

subject to

ψ(j,i)(x(j,1), ...,x(j,m(j))) ≤ 0,

ξ(j,i)(x(j,1), ...,x(j,m(j))) = 0,

(1.11)

where X(j) :=
{
y(j),x(j,1), ...,x(j,m),λ(j,1), ...,λ(k),µ(j,1), ...µ(j,l)

}
is the set of optimisation vari-

ables used in the i-th MPEC. It should be noted that the feasible regions of MPECs and EPECs
are typically non-convex. This makes finding an optimal solution difficult. For a more extensive
coverage of the mathematical structures mentioned above, we refer to [30].
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1.2.3 Literature Review of Natural Gas Market Studies

In this section, we discuss multiple studies that have modelled the NG market. We provide an
overview of economical and mathematical methods used. The focus of these studies is either a
single (economically important) region such as North America [33], Europe [32] or globally, such
as in [54, 24].

The theory of markets dates back to be end of the 19th century in Marshall [56]. The (nowa-
days) fundamental principle of Marshall is the concept of a market equilibrium found between a
supply and demand side via utility functions. The majority of the market equilibrium models still
relies on this fundamental principle. The studies covering the NG market can be categorized ac-
cording to three types of methods. These methods may have similar objective goals, but generally
have distinct applications. The models which are used for the NG market are:

� The traditional economic models;

� The (constrained) optimisation models;

� The agent-based systems.

First, we cover the traditional economic studies, because chronologically this type precedes the
other models. The results regarding price elasticity and cost functions from these traditional
studies usually are inserted in the latter models. The optimisation-based methods range on a
complexity scale, as seen in Section 1.2.2, for which we cover the studies corresponding to each
optimisation method. Lastly, a recent development including agent-based systems is touched upon.

Traditional Economical Model Most of the studies discussed in this section rely on method-
ologies originating from economics such as equilibrium modelling, time series analysis and net
present value computation. Therefore, these models are labelled traditional economical models.

The study [55] looks into the security of supply in the Western European NG market using equilib-
rium modelling, i.e., equating simple supply and demand functions, with a focus on the probability
of disruption. These models study whether quotas and tariffs can be used to guarantee the security
of supply in Northwest Europe. They conclude that depending on the probability of disruption
which is acceptable by policy makers either quotas or tariffs can be used to guarantee a secure
supply, but this depends on the desired probability.

Another paper is [37] which introduced several functions, most notably the Golombek produc-
tion cost function which is present in numerous follow up research studies (containing relevant
optimisation models). This marginal production cost function, g(x,C), is characterized by a com-
bination of a linear part which describes the cost whenever the production capacity is not met, and
a logarithmic part, which is most prominent close to the capacity quantity C ∈ R of a producer.
The function is given by

g(x,C) = a+ bx+ λ · log
(
1− x

C

)
,

where x ∈ R is the quantity of the product, a, b ∈ R are parameters determining the linear supply,
C ∈ R is the production capacity and λ ∈ R is a scaling factor. The authors in [37] study the long-
run impact of liberalizing the NG markets in Western Europe. The model starts with a baseline
where there are limited producers able to sell and traders cannot exploit arbitrage possibilities. It
studies three scenarios built on different assumptions which, in increasing order, would simulate an
increasingly liberalizing market. The paper concludes that increasing the liberalization in Western
markets will decrease the social welfare.

A study performed in [50] provides a global analysis of the crude oil and NG prices over an
extensive period (1918-1999) in which the oil crisis in 1973 is seen as a significant disruption of the
dynamics. Prices were stable before the shock, and became volatile afterwards. Later, the authors
in [50] used the supply and demand elasticity to explain the price volatility after a shock and the
market power of oil producers. They used statistical linear regression based on time-series data.
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Optimisation Problems (OP) The study in [33] introduced the Gas Systems Analysis Model
(GSAM) which was used to study the effects from Canadian carbon stabilization on North Amer-
ican gas markets. A temporal integrating linear program was used to approximate the non-linear
demand, supply and transportation functions. Here, the objective function optimises the operating
costs of the producer, consumer, and investment costs of the infrastructure. The other participants
of the gas market do not have their utilities optimized in this paper.

The study [54] looked at the costs of the NG supply for Europe, the United States and Japan
in a perfectly competing globalising market. This work is based on the MAGELAN model which
was developed in [63]. The objective function in this model includes capital and operating costs
for production and transport around the world. The costs are minimised, while subject to tech-
nical restrictions for the production and transport. The major inputs are demand developments,
reserves, production costs per region, existing infrastructure and cost parameters.

The linear optimisation model TIGER developed in [53] performs an analysis of the impact of
the Nord Stream pipeline on the European Gas Transmission System. The objective function is
based on the total costs of the gas supply (production) and transportation while meeting demand
in each region. The goal is to minimize the costs, under the constraint of storage limits, supply and
demand equations, pipeline operation, LNG import storage and regasification capacity. In [21],
the effects of crises on the Nabucco and South Stream pipelines are studied via the TIGER model.
They concluded that the expansion would increase the security of supply for Europe. In later
development, [52] used an enhanced version of the TIGER model, which was more precise with
respect to the temporal granularity and geographic coverage, to study congestion in the European
NG network. Lastly, the paper [22] analysed a highly granulated European NG infrastructure
model using TIGER to study the gas flows and possible congestion in Western Europe.

However, there is critique on this relatively simple optimisation structure. In [30], the follow-
ing is commented on the design of the TIGER model: ”Since it is a linear program, it can handle
many variables and constraints from a computational perspective. However, there is the overriding
assumption that the market will be efficient so that cost-minimizing behaviour is appropriate to
characterize it. Given recent strategic behaviour in European gas markets as mentioned above,
other economic paradigms may also be appropriate depending on the questions being asked.”. The
assumption mentioned would also in the period of interest for our project (2022-2023) be undesired.

Equilibrium Model (EP) The study [42] used an EP to develop the Baker Institute World Gas
Trade Model (BIWGTM), which is a dynamic spatial equilibrium model with an elastic demand
based on economic theory. The model estimates the coefficients of several regression functions.
BIWGTM is used in [43] to perform a study on several scenarios. Two main implications from
their research are: Russia might have less ability to negatively affect the West European gas mar-
kets as previously was thought and the Middle Eastern gas supply is a possible counterweight to
Russia. They conclude that coordinated plans by Russia and the Middle East to disrupt the West
European market might be more devastating.

More recently, [26] has formulated a simplification of a previously developed Global Gas Model
(which we will discuss later). This paper shows an equivalence of the convex problem formulation
and a mixed complementarity problem by showing that the KKT conditions are essentially the
same. This has resulted in a significant speed-up of the solution method, which allows for more
scenarios and more granularity. This simplified model is used in [27] to perform a case study on
exports from U.S. to Europe and how NG consumption in Europe is influenced by several policy
scenarios. The objective function of the model maximizes the profit of the system i.e. the sales
profit from all agents minus the production, transportation, infrastructure costs.

Mathematical Program with Equilibrium Constraints (MPEC) The study [16] con-
structed the model GASTALE which is a NG market model consisting of successive oligopolies
which are markets with a handful of powerful agents. The market consists of two levels, the up-
stream and downstream market. The upstream market consists of producers which are Cournot
producer agents, which hold significant market power. In addition, they act as Stackelberg leaders
with respect to the trade agents. The trader agent can either be a price-taker or price-maker and
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acts as the Stackelberg follower. The study concludes that this two level approach has led to higher
prices and lower consumer welfare compared to the one level market from OPs and EPs. The study
showed that when the traders are price-makers, then they have more impact on the clearing price,
compared to the producers, who are also price makers. Interestingly, when the number of Cournot
traders grows, then the market converges to a market with perfect competition i.e. the traders
and transportation agents are unable to assert their market power because there are too many of
them.

The method in [31] models the profit optimisation of producers, consumers, pipeline operators,
investments and storage agents. Unique to this model is the inclusion of peak gas operators. The
MPEC used is a mixed non-linear complementarity problem. The model is performed on three
small scale base case markets. In addition, two assumptions are given such that a solution can
be guaranteed. An extension to this model is the World Gas Model in [25], which is a large-
scale multi-period complementarity model. The model includes liquefiers (cooling down the NG
to LNG), LNG shipping companies and regasifiers (heating up the LNG to NG) which model the
necessary components of the LNG market. These agents are necessary to model a global NG mar-
ket.

The study by [19] applies a net present value method to determine whether there is an incen-
tive to begin construction of the South-stream project which connects the supply from Asia to the
demand in Europe through the Black Sea and the Balkans into Central Europe. The study can be
interpreted as simulating the effect of an investment agent while optimizing for the profit of the
whole system while studying the net present value of the project. They conclude that the economic
value is negative in all three considered scenarios. The MPEC used is similar to the GASTALE
model [30].

Equilibrium Problems with Equilibrium Constraints (EPEC) In [44] a static model of the
European NG supply called GASMOD is discussed. The market is modelled as a two-stage game
of a NG market which separates the market in an upstream (exports to Europe) and a downstream
(trade within Europe) market. Trading is constrained by the infrastructure capacities, which are
implemented via an upper bound for the amount being traded on each route. Three scenarios are
studied: Perfect competition in both markets, Cournot competition in both markets and perfect
competition in the upstream market together with Cournot competition in the downstream market.
They concluded that a scenario by Cournot competition in both markets is the best representation.

In [10], an analysis of the impact of uncertain disruptions in gas supply is performed. The re-
sulting price and welfare caused by the disruptions are characterized by long-term gas contracts.
This model, called GaMMES, also uses an upstream market to model the producer agents and
local marketeers, who manage the gas distribution within a region, connected to a downstream
market to model the demand side via consumer agents. The model is performed on three scenarios:
Supply security of the Western European market, German market (same scenario as is [55]) and
the Bulgarian market.

The NATGAS model in [75] is a long-term projection model. The model includes producers, con-
sumers, pipeline operators, storages, investments, traders and LNG shipping agents. The scope of
this model is the European market. The mathematical formulation consists of first-order conditions
which can be used to formulate a mixed complementarity problem. The model assumes imperfect
competition, because of the restrictions on the supply side. The gas market has characteristics of
Cournot and Stackelberg competition. Sensitivity testing is performed on the parameters which
quantify the degree of imperfect competition. Several scenarios are run for base, low and high
LNG prices where Dutch imports, Norwegian and Russian export and resulting prices are studied.

Agent-Based Systems In [46] an agent-based system is used to model the major NG markets:
The European, American and Asian markets. Each market consists of seller and buyer agents.
These agents perform the ask and bid mechanism to perform trading in each market. Each time
step, a clearing price is determined for that market. Then, trading between markets is performed.
This simulation is a timeline of market equilibria where for each time step the equilibrium is
simulated using the agent-based system. This method drops the assumption that the market acts
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completely rationally, which underlies much economical theory and are present in all the previously
discussed models. As a consequence, the equilibrium found is (generally) not optimal. The study
performed a long-term forecast of the NG market where prices and quantities are tracked. Both
supply and demand forecasts per region are published.
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Chapter 2

LNG Market Equilibrium Model

In this chapter, we describe the LNG market from the perspective of maximizing the LNG shipping
companies’ profit margins. In Section 2.1, we introduce individual components that play a role
in the optimization of the LNG shipping companies’ profit as well as the optimisation problem
description. We assume that solving this optimisation problem leads to a market equilibrium
by equating the supply and demand side of the market. Next, in Section 2.2, we express the
optimisation using compact matrix notation. Lastly, using this matrix notation, we explore the
mathematical properties of the market equilibrium model.

2.1 Mathematical Formulation of Key Market Components

In this section, we will cover the mathematical formulation of the supply and demand dynamics,
the objective function which defines the traders profit margins and cover the constraints which
are applicable to the LNG market. In Section 2.1.1, we introduce the definition of a region and
the formulation of the inverse supply and demand as ask and bid functions. The ask and bid
functions are combined with the transportation costs, canal passage costs and travel time to form
the objective function which represents all LNG shipping companies as one firm. This results in
a monopolistic LNG market model. As far as we know, a monopolistic OP approach has not yet
been used to model the LNG market. In Section 2.1.2, we cover the formulation of the constraints
of the LNG market and the local market clearing process. We show that regionally the import
and export are constrained by the port capacity. Exporting regions have limited selling capability
modelled via a production capacity. In addition to defining the objective function based on the
LNG shipping companies’ profit, our model distinguishes itself from the literature in Table 1.1 by
incorporating a constraint on the global LNG shipping capacity.

2.1.1 Formulation of Objective Function

Global LNG trade happens between regions R := {0, ..., N − 1}, each classified as an export region
(seller) S := {0, ...,M − 1} ⊂ R or import region (buyer) R\S = {M, ..., N − 1}. Conceptually,
one can view this trading network as a matrix X ∈ RM×N , where the rows represent the sellers
(S) and the columns represent the sellers and buyers, i.e., all regions (R). Each entry, xij ∈ R, is
a non-negative quantity being traded from export region i ∈ S to region j ∈ R. All regions have
a unique linear demand function from which the inverse is called the bid function, as in (1.3b).
Export regions have an additional ask function, which is the inverse linear supply function, as in
(1.3a). Export regions use pipeline trade within their own region which is assumed to be already
priced into the supply price. Liquefication and regasification terminals usually add a flat rate to
the costs of LNG. As such, we assume that liquefication and regasification are absent in the model
because their costs can be incorporated in the prices of the regions. In addition, we assume that
export regions do not trade with each other, but only allow for LNG trade to import regions. This
can be expressed as

xij = 0, for i, j ∈ S, i ̸= j. (2.1)

Note that xii ≥ 0, where i ∈ S is still possible i.e. there is non-LNG tanker trade in an exporting
region. In Figure 2.1, we illustrate the basic intuition behind the trade flow matrix X for six import
(denoted by blue) and six export (denoted by orange) regions. The orange rectangle denotes the
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diagonal of the matrix, which represent non-negative elements. The right hand side of matrix X
denoted by the green square denotes the LNG trade flows between the export and import regions.

Figure 2.1: Illustrative example of matrix X.

The regional price is determined by the quantities matching regional supply and demand. Through
the trade flows X, all regions are interconnected, which makes solving for the market equilibrium
non-trivial. The connection defines the supply and demand dynamics, where the price (output)
depends on the quantity traded (input). Modelling this interaction requires definitions for the
quantities bought and sold. The import and export are given by

export: Ei(X) :=

N−1∑
j=M

xij , for i ∈ S, (2.2a)

import: Ij(X) :=

M−1∑
i=0

xij , for j ∈ R\S. (2.2b)

In total, export region i ∈ S sells quantity ni(X) units given by

ni(X) := xii + Ei(X), for i ∈ S, (2.3)

where xii denotes the quantity that region i ∈ S sold within the own region and Ei(X) is the
quantity that region i exported. Export and import regions j ∈ R buy mj(X) units of LNG.
However, the definition of mi for i ∈ S and mj for j ∈ R\S are different, because we assume
that export region i ∈ S cannot buy from other export regions, i.e., export regions have no
imports. Import regions cannot sell to themselves, thus they only buy LNG based on imports.
The definitions for mj , for j ∈ R, are given by

export region: mi(X) := xii, for i ∈ S, (2.4a)

import region: mj(X) := Ij(X), for j ∈ R\S, (2.4b)

where Ij(X) is the imported quantity of region j defined in (2.2b).

As stated in (1.3) α, β, the input for the ask and bid functions are the quantities sold ni(X)
for i ∈ S and quantities bought mj(X) for j ∈ R. As a result, both ask and bid functions depend
on the trade flows X. We model the local prices with ask and bid functions which have ni,mj

as input, respectively, i.e., αi(ni(X)) and βj(mj(X)) for region i ∈ S, j ∈ R\S, respectively. We
define αi, βj by the inverse demand and inverse supply functions:

ask function: αi(ni(X)) := ηAi ni(X) + ai, for i ∈ S, (2.5a)

bid function: βj(mj(X)) := −ηBj mj(X) + bj , for j ∈ R, (2.5b)

where ηAi , η
B
j ∈ R are the price slopes and ai, bj ∈ R are the price levels in region i ∈ S, j ∈ R.

These parameters form the vectors ηA,ηB,a, b and will be calibrated in Chapter 3, based on real
market data. For the optimisation regarding the market equilibrium, they are considered to be
constants.

Naturally, a shorter distance allows for quicker transportation. Hence the shorter the distance,
the less ship capacity is needed to trade a fixed amount of LNG within a fixed time period. It is
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possible, that it is more beneficial to trade multiple times on a less profitable but shorter route,
than trading on a longer route with a higher profit per unit. We will approximate the number of
times an LNG tanker can travel on the trade route by a time scale

H

θij
, (2.6)

where H ∈ R is the time horizon and θij ∈ R denotes the time it takes to travel from region i ∈ S
to region j ∈ R\S. We define the travel time θij by

θij :=
Tij

vavg
+ t(s)d

(s)
ij + t(p)d

(p)
ij , (2.7)

for trade from region i ∈ S to region j ∈ R\S. Here, Tij ∈ R gives the distance needed to travel
to deliver a shipment from region i to region j and return back to region i, which we a symmetric
matrix T ∈ RM(N−M)×M(N−M). Parameter vavg is the average speed of an LNG tanker. Dividing
the distance by the average speed gives the average travel time based on only the distance between

two regions. Binary parameters d
(s)
ij , d

(p)
ij ∈ {0, 1} and real parameters π(s), π(p) ∈ R indicate the

usage and costs of the Suez and Panama canals, respectively. Parameters t(s), t(p) are the passage
times for the Suez- and Panama canal, respectively.

The transportation costs per unit of LNG are based on the distance the LNG tanker travels
and the usage of a passage (Suez- or Panama canal), and are given by

τij := cTij +
H

θij

(
π(s)d

(s)
ij + π(p)d

(p)
ij

)
, (2.8)

where H
θij

is the time scale from (2.6) and parameters Tij , d
(s)
ij , d

(p)
ij are the same as in (2.7). Pa-

rameter c ∈ R is the operation cost per distance unit per unit of LNG (in our case nautical mile
per MWh of LNG), such that cTij denotes the operation costs per unit of LNG on the route from
region i to region j. The cost of the canals are scaled by (2.6) because a shorter route will use the
canal(s) more often than a longer route.

We capture the profit margins of the LNG traders by defining the quantities traded multiplied
by the price difference (based on local prices from region i and j) minus the transportation costs
to compute the profit of the LNG trader on route (i, j). The profit of all LNG traders combined
form one firm which is given by an objective function φ, which is optimised for all routes, which is
given by:

φ(X) :=
∑
i∈S

j∈R\S

H

θij

[
βj(mj(X))− αi(ni(X))

]
xij − τijxij , (2.9)

where X = (xij)i∈S,j∈R represents the trade flows between export regions i ∈ S and regions j ∈ R,
αi, βj are the ask and bid functions in (2.5). Parameter τij represents the transportation costs per
unit of LNG given by (2.8), and H

θij
denotes the appropriate time scaling from (2.6) of the revenue

βj − αi for trade between regions i ∈ S and j ∈ R\S.

2.1.2 Formulation of Constraints

In this section, we cover the definition of the regional and global constraints which are used to
model the LNG market.

Starting with the clearing mechanism, we assume that the local ask and bid prices in the region
must be equal, as in (1.4). This is expressed by the following equality constraint:

βi(mi(X)) = αi(ni(X)), i ∈ S. (2.10)

where demand price from the consumer is equated to the price of the producer. This constraint
defines the market clearing process where prices are equated within the export region i ∈ S such
that the inverse demand and supply agree on one price. In export regions i ∈ S, we neglect the
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costs of regional distributors and pipeline operations, which will not be part of the regional price.

There are two regional capacities which may limit the trade. Firstly, the port capacity Cj ∈ R, for
j ∈ R, which restricts import and export, and is given by

0 ≤ Ij(X) ≤ Cj , j ∈ R\S; (2.11)

0 ≤ Ei(X) ≤ Ci, i ∈ S, (2.12)

where Ij(X), Ei(X) are from (2.2). Secondly, the production limit Li ∈ R for i ∈ S is an upper
limit denoting how much NG can be produced. The value Li is set somewhere higher than the
actual production limit to account for storage of NG within a region. This constraint is given by

0 ≤ ni(X) ≤ Li, i ∈ S. (2.13)

An import region, j ∈ R\S, has to deal with constraint (2.11), while an export region, i ∈ S, has
to deal with constraints (2.12) and (2.13).

Next to regional constraints, we add a constraint on the global shipping capacity. We define
maximal global LNG shipping capacity κ ∈ R. We formulate this constraint by∑

i∈S
j∈R\S

θij
H

xij ≤ κ, (2.14)

where the ratio
θij
H incorporates a time-scaling component into the model. We refer to the left-hand

side of (2.14) as the utilized shipping capacity. An example which illustrates the need for this ratio
(which is the inverse of the time scaling (2.7)) is the following: Using one LNG tanker to trade one
tanker-unit of LNG per week on a one-week-travel route is equivalent to seven tanker-units on a
one-day-travel route, because in both cases one tanker-unit is being put to use. The consequence
of adding this constraint, instead of a route specific constraint, is that the global capacity implies
that when there is a business case on one side of the world, it might not be used because global
capacity limits the total trade. This restriction is realistic for our period of interest because of the
relative small number of LNG ships in global use. This also implies that a shock on one side of
the world could have a ripple effect to the other side.

In summary, we give the overall optimisation problem which maximizes the time-scaled profit
margins of all LNG shipping companies. We will refer to this program as the sum notation, based
on the element-wise summation of equation (2.9).

max
X

φ(X)

subject to

xij ≥ 0, i ∈ S, j ∈ R (Non-negative traded amount),∑
i∈S

j∈R\S

θij
H

xij ≤ κ, (Global shiping capacity),

βi(mi(X)) = αi(ni(X)), i ∈ S (Local market clearing),

0 ≤ Ei(X) ≤ Ci, i ∈ S (Port capacity),

0 ≤ ni(X) ≤ Li, i ∈ S (Production limit),

0 ≤ Ij(X) ≤ Cj , j ∈ R\S (Port capacity).

(2.15)

2.2 Standard Quadratic Optimisation Form

The optimisation problem (2.15) follows an intuitive notation which can be easily traced back
to the different modelling components. However, implementing this optimisation in a program-
ming language is not as convenient as a matrix-vector based notation which is commonly used
for quadratic optimisation problems. Understanding, the quadratic structure of this function is
non-trivial from the notation in Section 2.1. Lastly, understanding properties such as convexity is
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well understood for standard quadratic matrix notation. For that reason, we transform (2.15) to a
mathematical program which uses matrices and vectors to formulate the same problem, but now
in standardized quadratic optimisation notation, which is in line with the theory of quadratic opti-
misation, discussed in [17, 58]. In Section 2.2.1, we rewrite the objective function. In Section 2.2.2,
we rewrite the constraints. Rewriting will be based on a re-indexing which will be introduced
before we show the details of the objective function and constraint.

In the clearing price constraint (2.10), we substitute the definitions of ni(X),mj(X) from (2.3)
and (2.4), respectively, to reduce the number of variables present in the objective function. By
rewriting (2.10), we obtain an expression for xii, as follows

xii =
ai − bi
−ηBi − ηAi

+
ηAi

−ηBi − ηAi
Ei(X), (2.16)

for 0 ≤ i < M . By substituting (2.16) in (2.3), we find that ni(X) from (2.3) can be written as

ni(X) =
ai − bi
−ηBi − ηAi

+
−ηBi

−ηBi − ηAi
Ei(X), (2.17)

which can be substituted in the objective function φ(X) in (2.9), to find that the multiplication
αi(ni(X)) · xij can be split in a quadratic and linear part, as follows

αi(ni(X)) · xij =

[
ηAi

−ηBi
−ηBi − ηAi

Ei(X)

]
xij︸ ︷︷ ︸

quadratic

+

[
ηAi (ai − bi)

−ηBi − ηAi
+ ai

]
xij .︸ ︷︷ ︸

linear

(2.18)

As a consequence, we find that α in (2.18) and β from (2.5b), are only dependent on xij for
i ∈ S, j ∈ R\S, because Ij(X), Ej(X) also only depends on xij for i ∈ S, j ∈ R\S, and thus the
objective function φ can be simplified.

In addition to the possible reduction of variables, we show the reformulation of (2.9) to ma-
trix notation (2.20) by first rewriting the matrix variable X ∈ RM×N−M into a vector variable
x ∈ RM(N−M). We rewrite φ(X) into a quadratic matrix form via the column-wise matrix notation,
where the index is

Mj + i := i, j +M, (2.19)

such that we use vector x = (xk)0≤k≤M(N−M) for the objective function and constraints. We
illustrate the translation between matrix X and vector x in Figure 2.2. The orange and blue
circles represent the export and import regions, respectively. The Roman numerals are used to
identify the arrangement of the columns.

Figure 2.2: Illustrative example of the translation between matrix X and vector x.

We define P ∈ RM(N−M)×M(N−M), D ∈ RK×M(N−M) and c ∈ RM(N−M) such that the optimisa-
tion (2.15) is given by quadratic optimisation problem

max
x

φ(x) = x⊺Px+ c⊺x,

subject to

Dx ≤ v,

(2.20)
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which is an elegant notation to provide insight into the convexity of φ by investigating whether or
not the matrix P is positive semi-definite [17]. Note that the equality constraint (2.10) responsible
for the market clearing is implicitly present in the optimisation, because of the substitution of
(2.16) in the objective function φ. Thus, we can remove it from the constraints. in (2.20).

2.2.1 Objective Function in Matrix Form

In this section, we show the application of the re-indexing of (2.19). With this re-indexing, we
rewrite the objective function φ in (2.9) to a quadratic objective function in matrix form as follows

x⊺Px+ c⊺x =
∑
i∈S

j∈R\S

H

θij
[βj(mj(X))− αi(ni(X))]xij − τijxij .

To accomplish this, we define matrix P ∈ RM(N−M)×M(N−M), which corresponds to the quadratic
part of (2.9). We use matrices A,B ∈ RM(N−M)×M(N−M) as auxiliary matrices to define matrix P ,
describing the ask functions αi from (2.17) and the bid functions βj from (2.5b), respectively. It is
important to understand how the re-indexing from (2.19), combined with exploiting the structure
of the summations Ij(X) and Ei(X), results in the expressions for the import and export,

Ij(x) := (Ibx)j =
M−1∑
i=0

xMj+i =

M−1∑
i=0

xi,j+M = Ij+M (X) for 0 ≤ j < N −M, (2.21a)

Ei(x) := (Icx)i =
N−M−1∑

j=0

xMj+i =

N−1∑
j=M

xi,j+M = Ei(X) for 0 ≤ i < M, (2.21b)

where (.)i denotes the i-th component, and matrices Ib, Ic ∈ RM(N−M)×M(N−M) represent a
block-wise and cyclic structure, respectively. With this block-wise and cyclic structure, we refer to
the arrangement of non-zero elements in a matrix Ib, Ic, defined by

Ib :=

I · · · I
...

. . .
...

I · · · I

 , Ic := Diag(J , ...,J ), (2.22)

where I ∈ RM×M is the identity matrix and J ∈ RN−M×N−M is the “all ones matrix”. Matrices
Ic and Ib are used to define the matrices A and B, respectively. The operator Diag(.) defines a
diagonal block matrix, with zeros on the off-diagonal blocks. In addition, we define the time-scaling
matrix

Θ :=

θ
(0) · · · θ(N−M)

...
. . .

...

θ(0) · · · θ(N−M)

 , (2.23)

where vector θ(i) is the i-th column of matrix θ = (θij)i∈S,j∈R\S from (2.7), which is used to define
the block matrix Θ. Depending on the index which is used in the summation, the coefficients in P
will be placed in a cyclic or block-wise manner. Matrix P is defined, in an element-wise fashion,
as follows

Pkl :=
H

Θkl
(Bkl −Akl), for 0 ≤ k, l < M(N −M), (2.24)

where Θk,l is the travel time coefficient from (2.23). Next, we define matrix A as

Akl := ηAk mod M

(
−ηBk mod M

−ηBk mod M − ηAk mod M

)
· Ickl, (2.25)

where 0 ≤ k, l < M(N −M), Alternatively, matrix A can be equivalently defined as

A :=

H
A · · · HA

...
. . .

...

HA · · · HA

 , (2.26)
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where the auxiliary matrix HA is defined as

HA = diag

(
ηA0

(
−ηB0

−ηB0 − ηA0

)
, ..., ηAM−1

(
−ηBM−1

−ηBM−1 − ηAM−1

))
.

Both the element-wise definition from (2.25), and the matrix definition from (2.26) make sure that
A follows a ‘cyclic’ structure of Ic where the entries ‘1’, are replaced by the diagonal entries of
HA. Likewise, we define matrix B, as follows,

Bkl := −ηB⌊k/M⌋ · I
b
kl,

where 0 ≤ k, l < M(N −M). Matrix B can also be defined alternatively by

B := Diag(HB
M , ...,HB

N−1),

where the auxiliary matrix HB
j is defined as

HB
j =

−η
B
j · · · −ηBj
...

. . .
...

−ηBj · · · −ηBj

 ,

for M ≤ j < N , similar to A, such that B follows the structure of Ib where the entries ‘1’, are
replaced by the entries of HB. To stress, the dimensions of A,B are M(N −M)×M(N −M) and
not MN ×MN , because the variables xij for i, j ∈ S, denoting the trade between export regions,
are not part of x. Note, if ηA,ηB > 0, then A is strictly positive while B is strictly negative. The
difference B−A is thus also strictly negative. However, B−A does not capture all of the revenues
of βj − αi, because we have seen from (2.18) that αi(ni(X)) · xij also has a linear part. As such,
we define the vector c which includes the linear part in (2.9). We use the re-indexing from (2.19)
to define vector c = (ck)0≤k<M(N−M), in an element-wise fashion, as follows

cMj+i :=
H

θi,j+M

(
bj+M − ai +

ηAi (ai − bi)

−ηBi − ηAi

)
− τi,j+M , (2.27)

for 0 ≤ i < M and 0 ≤ j < N −M , which leads to a vector c of length M(N −M) containing the
linear parts of the revenue, transportation costs and the passage cost. Using P as given by (2.24),
and c as given by (2.27), we get that

x⊺Px+ c⊺x =
∑
i∈S

j∈R\S

H

θij
[βj(mj(X))− αi(ni(X))]xij − τijxij .

2.2.2 Constraints as Linear Matrix Inequalities

In the following section, the inequality constraints from the optimisation problem in (2.15) will be
given by the linear inequality

Dx ≤ v, (2.28)

which is part of the quadratic optimisation problem given in (2.20). Remember that, the equality
constraint in (2.10), does not need be included in the constraints of the quadratic optimisation,
because of the implicit presence in the objective function, by (2.16). Before we rewrite the con-
straints into the matrix notation, we will reduce the number of effective constraints present in the
optimisation. Substituting xii, given by (2.16), in the non-negative trade flows constraint of (2.15)
results in a constraint, given by

Ei(x) ≤
bi − ai
ηAi

, for 0 ≤ i < M . (2.29)

Similarly, by substitution of xii, given by (2.16), together with the re-indexing as in (2.19), we find
that the production limit given by (2.13) can be written as

bi − ai
ηAi

≤ Ei(x) ≤
(−ηBi − ηAi )Li + bi − ai

−ηBi
, for 0 ≤ i < M, (2.30)
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which, together with the remaining export constraint (2.29), shows that we have redundant bounds
on the export Ei(x). We can reduce the number of constraints by replacing the lower and upper
bounds by a maximum and minimum, respectively, given by

max

{
0,

ai − bi
−ηBi

}
≤ Ei(x) ≤ min

{
Ci,

(−ηBi − ηAi )Li + bi − ai
−ηBi

,
bi − ai
ηAi

}
, (2.31)

for 0 ≤ i < M . The overview of all constraints is given by

xMj+i ≥ 0, for 0 ≤ i < M, 0 ≤ j < N −M,

K∑
i∈S

j∈R\S

θij
H

xMj+i ≤ κ,

max

{
0,

ai − bi
−ηBi

}
≤ Ei(x) ≤ min

{
Ci,

(−ηBi − ηAi )Li + bi − ai
−ηBi

,
bi − ai
ηAi

}
, for 0 ≤ i < M,

0 ≤ Ij(x) ≤ Cj , for 0 ≤ j < N −M.

(2.32)

To adhere to Dx ≤ v, the constraints (2.32) need to be rewritten such that we only have upper
bound inequalities. This requires the following adaptation:

xMj+i ≤ 0, for 0 ≤ i < M, 0 ≤ j < N −M, (2.33a)

K∑
i∈S

j∈R\S

θij
H

xMj+i ≤ κ, (2.33b)

Ei(x) ≤ min

{
Ci,

(−ηBi − ηAi )Li + bi − ai
−ηBi

,
bi − ai
ηAi

}
, for 0 ≤ i < M, (2.33c)

− Ei(x) ≤ min

{
0,

ai − bi
−ηBi

}
, for 0 ≤ i < M, (2.33d)

Ij(x) ≤ Cj , for 0 ≤ j < N −M, (2.33e)

− Ij(x) ≤ 0, for 0 ≤ j < N −M. (2.33f)

Each of the inequalities from (2.33) can be translated as D(ω)x ≤ v(ω) for ω = 1, ..., 6, such that
we have a collection of inequalities, which can be combined in a vertical concatenation to form the
inequality Dx ≤ v given by D

(1)

...

D(6)

x ≤

v
(1)

...

v(6)

 .

To define some of the matricesD(ω), we use I(b), I(c) from (2.22) such that the matrix multiplication
encodes the required summations in the constraints. The constraint (2.33a)translates to defining

D(1) := −I, v(1) := 0,

where I ∈ RM(N−M)×M(N−M) is the identity matrix. For the global shipping capacity constraint
in (2.14), we sum over all elements of the amounts traded xMj+i. Each element xMj+i needs to be
multiplied by the time scale (2.6), for i ∈ S, j ∈ R\S. We translate constraint (2.33b) by defining
row vector

D(2) := µ⊺ = (µ)0≤k<M(N−M), where µMj+i :=
θi,j+M

H
,

for 0 ≤ i < M, 0 ≤ j < N −M . In addition, we define v(2) = κ as scalar value. For the upper
and lower bounds on the export Ei(x) given in (2.33c) and (2.33d), respectively, we use the cyclic
structure from (2.21b) to define the matrix D(3) and D(4), as follows

D(3) := Ic, D(4) := −Ic,
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where Ic is given by (2.22), and the accompanying vectors v(3) = (v
(3)
i )0≤i<M and v(4) =

(v
(4)
i )0≤i<M of matrices D(3) and D(4) are, in an element-wise fashion, given by

v
(3)
i := min

{
Ci,

(−ηBi − ηAi )Li + bi − ai
−ηBi

,
bi − ai
ηAi

}
, (2.34)

v
(4)
i := min

{
0,

ai − bi
−ηBi

}
, (2.35)

for 0 ≤ i < M . We use the block-wise structure of I(b) from (2.21b) to define D(5), D(6) which
translates the lower and upper bounds on the imports given by (2.33e) and (2.33f), respectively, to
the matrix notation. This is similar to the export constraints where Ic is used to define D(3), D(4).
Matrices D(5), D(6) are defined as follows

D(5) := Ib, D(6) := −Ib,

where Ib is given by (2.22). The bounds v(5) = (v
(5)
j )0≤j<N−M and v(6) = (v

(6)
j )0≤j<N−M are

defined in an element-wise fashion by

v
(5)
j := Cj , v

(6)
j := 0,

for 0 ≤ j < N . The final reduced optimisation problem with minimized constraint bounds is given
by

max
x

x⊺Px+ c⊺x,

subject to

Dx ≤ v.

(2.36)

2.2.3 Properties of the Optimisation Problem

To have a guaranteed global optimal solution, we need the optimisation problem (2.36) to be a
convex optimisation problem [17]. This requires the matrix P to be negative semi-definite and
the constraints Dx ≤ v to be a convex set. Starting with the latter, the constraints given by
linear inequalities Dx ≤ v are convex, because from any linear combination of x(1),x(2) ∈ {x ∈
RM(N−M) : Dx ≤ v} where t ∈ (0, 1), we see that the following holds

D(tx(1) + (1− t)x(2)) = tDx(1) + (1− t)Dx(2),

≤ tv+ (1− t)v,

= v,

and thus indeed
tx(1) + (1− t)x(2) ∈ {x ∈ RM(N−M) : Dx ≤ v},

shows that the linear constraints are convex. A twice-differentiable objective function φ(x) is con-
cave when φ has a convex domain and the Hessian ∇2φ is negative definite [17]. For our quadratic
optimisation problem, with φ(x) = x⊺Px + c⊺x, we get ∇2φ(x) = P . This means that we re-
quire P to be negative semi-definite, i.e., x⊺Px ≤ 0, for all x ∈ RM(N−M). Guaranteeing that P
is negative semi-definite is difficult because the time-scale Θ can scale the components of B − A
such that the resulting element-wise multiplication Θkl(Bkl−Akl) can result in indefinite matrix P .

In Chapter 4, we solve the optimisation problem (2.36) to perform scenario analysis via perturba-
tions compared to the baseline scenario which is based on realistic data. Note that P is a negative
matrix, i.e., all components are negative. For each realistic problem (2.36), we also approximate
the eigenvalues of P numerically. Next, we check if the matrix P has any eigenvalues equal to
zero. If that is the case, then we conclude that the matrix P is indefinite, because the eigenvector
x̂ corresponding with the zero-valued eigenvalue would mean that x̂⊺P x̂ = 0. Throughout all our
experimentation, matrix P has been negative semi-definite based on realistic data.
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Chapter 3

Calibration of Market Parameters

The goal of this chapter is to formulate the methodology which is used to calibrate the market
equilibrium model from Chapter 2, such that the modelled trade flows and prices are as close
as possible to realistic trade flows and prices. In Section 3.1, we present a general calibration
procedure defined as a bilevel optimisation problem and a way to translate the bilevel optimisation
such that solving the model is feasible in reasonable computer time. In Section 3.2, we define the
bilevel optimisation problem which calibrates the market equilibrium problem (2.36) from which we
obtain a single level optimisation to solve the problem in reasonable computer time. In Section 3.3,
we share the results from an accuracy analysis of the calibration process.

3.1 Defining a Calibration as Bilevel Optimisation

In this section, we will define a general bilevel optimisation problem which can be used to calibrate
parameter y ∈ Rm such that the solution x ∈ Rn of a general optimisation model is as closely as
possible to realistic data x̄. In Section 3.2, we apply this framework to our optimisation model
(2.36) from Chapter 2 to calibrate for the parameters y := (ηA,ηB,a, b) given realistic data x̄.
During this section, we reuse the notation from Chapter 2 to make the application to the market
equilibrium model easier to understand. Calibration of an optimisation problem can be modelled
as a hierarchical optimisation problem, in the same way as a hierarchical optimisation model is
used to model Stackelberg competition. We define a single objective function which scores the
calibration process. As such, we use an MPEC, given by (1.9), to model the calibration. The lower
level optimisation problem is defined as the optimisation problem which needs to be calibrated. For
example, the OP (2.36) will be used as lower level optimisation in the calibration in Section 3.2.2.
The upper level optimisation is also an OP, for which we specify the details later on. A hierarchical
optimisation of two OPs is called a bilevel optimisation. The upper level optimisation model aims to
minimize the difference between the solution of the lower level optimisation, x, and the observed
data, x̄, to which the lower level optimisation model needs to be fitted as closely as possible.
Consider a (lower level) optimisation problem given by

max
x

φy(x),

subject to

ψy(x) ≤ 0,

ξy(x) = 0,

(3.1)

where x ∈ Rn is the optimised variable and y ∈ Rm a vector with fixed parameters. The functions
φy,ψy, ξy are the objective function, inequality constraints and equality constraints, respectively,
similar to the functions in the OP given in (1.5), but their values depend on a fixed parameter y.

The objective of the upper level optimisation problem is to minimize the distance between the
model output x and the realistic data x̄ where model parameters y are free variables, in contrast
to (3.1) where y is fixed. To quantify how well we fit the model output x to the realistic data x̄,
we define an upper level objective function f(x,y; x̄) which represents a loss function. Notice that
this objective function can include the realistic data x̄, which we write explicitly to show that f is
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used for calibration of market equilibrium solution x to x̄. We define the vector function g(x,y; x̄),
which defines the constraints of the calibration process. The definitions of f, g are similar to the
functions in the MPEC, given by (1.9). The bilevel optimisation is given by

min
x,y

f(x,y; x̄), (3.2a)

subject to

g(x,y) ≤ 0, (3.2b)

max
x

φy(x),

subject to

ψy(x) ≤ 0,

ξy(x) = 0,

(3.2c)

where (3.2a) and (3.2b) form the upper level optimisation and (3.2c) is the lower level optimisation,
as given by (3.1). We can view the optimisation (3.2) from an economic perspective, where the
upper level problem represents the optimisation of a leader’s objective and the lower level problem
is optimising a follower’s objective. The leader, in this case the calibration process, anticipates the
optimal solution of the follower, in this case the market equilibrium.

The upper level problem is not uniquely defined when the lower level problem has multiple global
solutions. There are two ways to alter the bilevel optimisation such that the lower level problem
outputs one global solution: optimistic and pessimistic bilevel optimisation. The descriptions (3.3)
and (3.4) are based on [65]. Optimistic bilevel optimisation assumes that the follower’s optimum
will be the best for the leader’s objective function among all possible optima. This can be expressed
as:

min
x,y

f(x,y; x̄), (3.3a)

subject to (3.3b)

g(x,y; x̄) ≤ 0, (3.3c)

x = argmin
x

{
f(x,y) : x ∈ {max

x
φy(x) subject to ψy(x) ≤ 0, ξy(x) = 0}

}
, (3.3d)

where the lower level optimisation (3.2c) gets replaced by (3.3d). Whereas pessimistic bilevel opti-
misation assumes the opposite, meaning that the follower returns the optimum which is the worst
for the leaders objective function, i.e., x is the argument for a maximum instead of a minimum,
which is given by:

min
x,y

f(x,y; x̄), (3.4a)

subject to (3.4b)

g(x,y; x̄) ≤ 0, (3.4c)

x = argmax
x

{
f(x,y) : x ∈ {max

x
φy(x) subject to ψy(x) ≤ 0, ξy(x) = 0}

}
, (3.4d)

where the lower level optimisation (3.2c) gets replaced by (3.4d). The assumption for pessimistic
bilevel optimisation is stronger than that for optimistic bilevel optimisation. Thus, any algorithm
which solves the pessimistic problem (3.4) will also solve for optimistic problem (3.3), the opposite
does not hold in general.

It is important to note that an (optimistic) bilevel optimisation problem is a non-convex and
non-differentiable optimisation problem, even if the functions f, φ defined in the upper and lower
level optimisation are all convex and smooth [20]. A linear function is the simplest non-trivial
objective function for f and φ in the bilevel optimisation, but even linear objective functions will
result in a bilevel optimisation problem which is NP-hard [15]. There are a number of techniques
which can be used to change the bilevel optimisation such that solving becomes feasible in rea-
sonable computer time. Two techniques, we will cover here are, rewriting the bilevel optimisation
to a single level optimisation and penalty functions. Other methods, which we do not use, are
mentioned in Appendix B.2.
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Bilevel optimisations are hierarchical in nature, but can be rewritten to a single level optimi-
sation when the lower level optimisation is convex, analogously to rewriting an MPEC (1.9) into
an MPCC (1.10) via the use of the KKT-conditions (1.6). We can rewrite the problem, given by
(3.2), as a single optimisation problem if the lower level optimisation in (3.2c) is convex1. The
convexity condition is needed to guarantee that the solution of the KKT-conditions corresponds to
a global optimum. Under convexity assumptions, the lower level optimisation problem (3.1) can
be written by the KKT-conditions, similar to (1.6), as

∇xLy(x,λ,µ) = 0,

ξy(x) = 0,

0 ≤ λ ⊥ ψy(x) ≤ 0,

(3.5)

where λ,µ are the Lagrange multipliers from the lower level optimisation and Ly(x,λ,µ) is the
Lagrangian function, given by

Ly(x,λ,µ) := φy(x) + λ
⊺ψy(x) + µ

⊺ξy(x).

We replace the lower level problem (3.2c) in the bilevel optimisation problem (3.2a), such that a
single level optimisation describes the calibration problem:

min
x,y,λ

f(x,y; x̄),

subject to

g(x,y; x̄) ≤ 0,

∇xLy(x,λ,µ) = 0

ξy(x) = 0

0 ≤ λ ⊥ ψy(x) ≤ 0

(3.6)

Note that expressing the bilevel optimisation (3.2) as a single level optimisation (3.25) increases
the number of variables for which we optimise, because we have the additional Lagrange multipliers
λ,µ present in the optimisation. The literature on MPCCs is well-developed and several solver
implementations are available in open source code, such as [73]. In general, rewriting a bilevel
optimisation as a single level optimisation is not always possible because it relies on the convexity
condition of the lower level problem.

Part of the difficulty of the bilevel programs lies in the fact that both upper and lower prob-
lems are constrained. A way of relaxing this, is by formulating an unconstrained variant of the
upper and/or lower problem. It is possible to rewrite the objective function to include penalty
terms when the constraint inequalities are not adhered to. This idea was first applied to the lower
level problem [11], but the hierarchy between the upper and lower level problem remains. Later
on, both programs were relaxed via a penalty function [47]. The penalty function relaxation is not
unique to bilevel optimisation, but can be used for any constrained optimisation, a combination of
reducing the problem to a single optimisation and then applying the penalty function relaxation
is also used, namely in [74]. The algorithm used by the solver IPOPT to solve the single level
optimisation problem (3.25) uses a penalty term to solve the optimisation problem. We have used
IPOPT to solve the calibration problem. We will discuss this algorithm and the relaxation applied
by IPOPT in Section A.1.

3.2 Calibration of the Market Equilibrium Model

In this section, we present the formulation of the bilevel optimisation problem, of the form (3.2),
which is used to calibrated the market equilibrium model (2.36). We divide this section into the
definition of the objective function (3.2a) in Section 3.2.1 and the definition of the constraints
(3.2b) in Section 3.2.2. We show that the bilevel optimisation can be written as a single level
optimisation of the form (3.25).

1Note that with convex, we also include maximisation problems with a concave objective function.
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3.2.1 Objective Function of the Calibration

The goal of the calibration is to find the values for ηA,ηB,a, b, such that the linear inverse supply
and demand functions capture the demand and supply behaviour corresponding to realistic data.
It should be noted that there is no accurate data available of the parameters ηA,ηB,a, b. Hence,
we need to perform a calibration to approximate them. During the calibration, these values are
bounded within in a realistic bandwidth. The calibration is challenging because of the relation
between the trade flows and the prices. This relation is given by the linear inverse supply and
demand functions

αi

N−1∑
j=M

xij


︸ ︷︷ ︸

model
output

= ai︸︷︷︸
model

parameter

+ ηAi︸︷︷︸
model

parameter

N−1∑
j=M

xij︸︷︷︸
model
output

,

βj

(
M−1∑
i=0

xij

)
︸ ︷︷ ︸

model
output

= bj︸︷︷︸
model

parameter

− ηBj︸︷︷︸
model

parameter

M−1∑
i=0

xij︸︷︷︸
model
output

,

which show that the market model parameters and output are linked. This linkage results in a
calibration in which, improvement of one variable can deteriorate the score of the other variables.

We calibrate the model (2.36), such that the modelled trade flows and prices are as close as
possible to realistic trade flows x̄ij , for i ∈ S, j ∈ R\S, and x̄ii, for i ∈ S and prices p̄. Recall
from (2.5) that the parameters of the market model are the price slopes ηA,ηB and price levels
a, b which result into 2M + 2N parameters, which determine the inverse supply and demand. We
will minimize the difference between model trade flows X and realistic trade flows X̄. The same is
done for model prices p := (βj(mj(x))j∈R where βj from (2.5b) and realistic prices p̄. Minimizing
these differences results in a baseline scenario. Clearly, there is no guarantee that a perfect match
between trade flows (X; X̄) and prices (p; p̄) exists, since it is unlikely that our model captures all
dynamics of the market needed for perfect calibration. Whether or not a particular calibration is
sufficiently accurate, depends on the use case. Given the challenges, we set the following objectives
which our calibration method needs to fulfil:

� The calibrated price p will need to as close as possible to the observed price p̄.

� The LNG trade flows x will need to as close as possible to the observed trade flows x̄.

� The consumption in the export region (local trade) xii for i ∈ S needs to be as close as
possible to the observed data x̄ii for i ∈ S.

For the equilibrium model presented in Chapter 2, the trade flows x and prices β(x) in (2.5) depend
on an unknown market parameter

y := (ηA,ηB,a, b), (3.7)

which corresponds to the variable y in the general bilevel optimisation (3.2). Here, we define f
for the calibration of the market equilibrium model (2.36). The calibration will be based on time-
averaged trade flows and prices listed on Bloomberg. In Table 3.1, we give the units and typical
order of magnitudes for the entries of these variables. Considering these orders of magnitudes, the
objective function f will be based on the non-dimensionalized variables,

xij

x̄ij
, and

pj
p̄j

,

for i ∈ S, j ∈ R, such that all trade flow and price magnitudes are dimensionalized equally by
the objective function in the calibration. The non-dimensional scores are all one when we have
a perfect calibration result. We define a loss function ℓρ based on non-dimensionalized quantities
given by

ℓρ(z, z̄) := ∥z ◦ z̄−1 − 1∥ρ, (3.8)
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Variable Names Mathematical Notation Unit Order of Magnitude

LNG trade flows x̄ij for i ∈ S, j ∈ R\S MWh/day [104, 106]

Local trade flows x̄ii for i ∈ S MWh/day [106, 107]

Regional prices p̄j for j ∈ R e/MWh [100, 102]

Table 3.1: Overview of the order of magnitude of the observed trade flows and prices.

where z, z̄ ∈ Rs for s := M +M(N −M) +N are defined as concatenated vectors given by

z :=

 x

d(x,y)

β(x,y)

 , and z̄ :=

x̄d̄
p̄

 , (3.9)

where d(x,y) := (x00, ..., xMM ) represents the local trade xii in i ∈ S given by (2.16), which
depends on x,y. Vector d̄ := (x̄00, ..., x̄MM ) is the corresponding data. Vector function β(x,y) is
a vector of βj(mj(X)) from (2.5b) for j ∈ R, which depend on y, which is a free variable during
the calibration, thus written explicitly in (3.9). In Figure 3.1, we present an illustration which
shows how the respective parts from X corresponding to x and d(x,y) form the concatenation of
vectors z. The orange and blue circles represent the export and import regions, respectively. The

Figure 3.1: Illustrative example of the concatenated vector z.

vector 1 := (1, ..., 1) ∈ Rs represents the all ones vector and the operation z ◦ z̄ = (z1 · z̄1, ..., zs · z̄s)
is a component-wise vector multiplication. A vector z−1 is defined as z−1 :=

(
1
z1
, ..., 1

zs

)
. The

ρ-norm2 is given by

∥z∥ρ :=

(
s∑

i=0

zρi

)1/ρ

, (3.10)

for z ∈ Rs and ρ ∈ N. The loss function ℓρ in (3.8) normalizes the difference z− z̄ based on the data
vector z̄ resulting in z ◦ z̄−1−1. Then, we evaluate the ρ-norm of the scaled difference z ◦ z̄−1−1,
resulting in (3.8). Choosing ρ = ∞ corresponds to ℓρ being the maximal non-dimensionalized
difference.

Minimizing the maximum non-dimensionalized difference of z ◦ z̄−1 − 1 will lead to a calibra-
tion solution where components zi are all relatively close to their target z̄i. We define the upper
level objective function f from (3.2a) as f∞ given by

f∞(x,y) := ℓ∞(z, z̄) = max

{∣∣∣∣xii

x̄ii
− 1

∣∣∣∣, ∣∣∣∣xij

x̄ij
− 1

∣∣∣∣, ∣∣∣∣pjp̄j − 1

∣∣∣∣ : i ∈ S, j ∈ R\S

}
, (3.11)

which leads to an optimal solution for (3.2) for which the maximal scaled difference between
the components of z and z̄ is minimized. However, we have to choose a numerical value for ρ

2This norm is commonly referred to as p-norm. However, as p is already used for price, we will use ρ instead.
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because the gradient methods we use to solve the bilevel optimisation do not perform well with
non-differentiable functions, like ∥.∥∞. Choosing a relatively large value for ρ, such as ρ = 30,
leads to an approximation of ℓ∞. In Sections 4.1.1 and 4.2.1, we show that for the considered
scenarios, this choice of ρ is sufficient, such that we approximate f∞ by

f30(x,y) ≈ f∞(x,y). (3.12)

3.2.2 Constraints of the Calibration

In this section, we define the constraints on the market parameters y = (ηA,ηB,a, b) given by
(3.2b). The goal is to have a calibration result for realistic market behaviour. To illustrate un-
desirable market behaviour, if ηA0 := 0.0001 and ηA1 := 1000, then region 0 will raise its ask price
by 0.0001 euro when they sell one MWh of LNG. By contrast, region 1 will raise its ask price by
1000 euro when they sell one MWh of LNG. This relatively large difference in ηA0 and ηA1 leads
to selling behaviour of the regions which we deem to be unrealistic. In practice, export regions
behave relatively similarly. We impose bounds on y to prevent an unrealistic solution from the
calibration process. The constraints reduce the feasible region of the optimisation (3.2), and as a
consequence the accuracy is likely worse than without these constraints. By achieving more realis-
tic market behaviour, we likely give up accuracy on the calibration objective function f . Bounding
y also reduces the search space and thus the solution techniques converge quicker when the upper
and lower bounds are closer together. We will not define g from (3.2b) as a vector function, in-
stead, we define several inequalities to model the constraints, which combined correspond to (3.2b).

First, we will define bounds for the price levels. For an accurate calibration, we ideally want
the functions αi, βi from (2.5) to intersect at price p̄i for i ∈ S. Thus, it is a natural choice to
bound the price levels ai and bj around the observed price p̄i where we add a lower bound on ai
and an upper bound on bi with a scaling parameter t ∈ R. We interpret factor t by how much
the price levels (representing prices when nothing is bought or sold) can differ from the observed
price. The constraints on components of a, b, are given by

(1− t) · p̄ ≤ ai ≤ p̄i ≤ bi ≤ (1 + t) · p̄i, for i ∈ S, (3.13a)

p̄j ≤ bj ≤ (1 + t) · p̄j , for j ∈ R\S. (3.13b)

Combining the bounds (3.13) and the ask and bid functions from (2.5), we find bounds on the price
slopes ηA, ηB. Starting with the ask functions α from (2.5a), our goal is to calibrate the model
such that αi ≈ p̄i. Let n̄i be the observed quantity sold by region i ∈ S, then we find that using
the lower bound from (3.13a) results in:

p̄i = ηAi n̄i + ai ≥ ηAi n̄i + (1− t) · p̄i, (3.14)

which can be rewritten as

ηAi ≤
tp̄i
n̄i

.

The same can be done by applying ai ≤ p̄i such that

p̄i = ηAi n̄i + ai ≤ ηAi n̄i + p̄i, (3.15)

which can be rewritten as

ηAi n̄i ≥ 0, ⇒ ηAi ≥ 0, because n̄i ≥ 0.

Thus, we find that

0 ≤ ηAi ≤
tp̄i
n̄i

, for i ∈ S. (3.16)

Similar to the ask function αi, we can use (3.13) together with bid function βj and mj from (2.5b)
and (2.4), respectively, such that we obtain the inequalities

p̄j = −ηBj m̄j + bj ≥ ηBj m̄j + (1 + t) · p̄j , (3.17a)

p̄j = ηAi n̄j + aj ≤ ηAi n̄j + p̄j , (3.17b)
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similar to (3.14) and (3.15). Rewriting the expressions in (3.17) and combining the results gives
us

0 ≤ ηBj ≤
tp̄j
m̄j

, for j ∈ R. (3.18)

Combining the bounds from (3.13), (3.16) and (3.18) form the constraints g from (3.2b).

Next, we define the functions φy,ψy, ξy of the lower level optimisation from (3.2c), given by

φy(x) = x⊺Pyx+ c⊺yx, (3.19)

ψy(x) = Dx− vy, (3.20)

ξy(x) = 0, (3.21)

such that the lower level optimisation (3.2c) is equivalent to market equilibrium problem (2.36),
where the coefficients Py, cy,vy are the same as P, c,v in (2.36), to make clear that their values
depend on y. The resulting bilevel optimisation is given by

min
x,y,λ

ℓ∞

 x

d(x,y)

β(x,y)

 ,

x̄d̄
p̄

 ,

subject to

(1− t) · p̄ ≤ ai ≤ p̄i ≤ bi ≤ (1 + t) · p̄i, for i ∈ S,

p̄j ≤ bj ≤ (1 + t) · p̄j , for j ∈ R\S,

0 ≤ ηAi ≤
tp̄i
n̄i

, for i ∈ S,

0 ≤ ηBj ≤
tp̄j
m̄j

, for j ∈ R,

max
x

φy(x),

subject to

Dx ≤ vy.

(3.22)

As we mentioned in Section 1.2.2, if P in (2.36) is negative semi-definite, then the objective function
φ is concave. As a result, the KKT-conditions from (3.5), given by

∇xLy(x,y,λ) = 0,

0 ≤ λ ⊥ Dx− vy ≤ 0,
(3.23)

where
L(x,y,λ) = x⊺Pyx+ c⊺yx+ λ⊺(Dx− vy), (3.24)

are used to reduce the bilevel optimisation problem (3.2) to a single level optimisation problem
(3.25) by introducing the Lagrange multiplier λ. In other words, we define the MPEC as an MPCC,
under convexity assumption of the lower level optimisation problem. The single level optimisation
problem, which we use for the calibration, is then given by

min
x,y,λ

ℓ∞

 x

d(x,y)

β(x,y)

 ,

x̄d̄
p̄

 ,

subject to

(1− t) · p̄ ≤ ai ≤ p̄i ≤ bi ≤ (1 + t) · p̄i, for i ∈ S,

p̄j ≤ bj ≤ (1 + t) · p̄j , for j ∈ R\S,

0 ≤ ηAi ≤
tp̄i
n̄i

, for i ∈ S,

0 ≤ ηBj ≤
tp̄j
m̄j

, for j ∈ R,

∇xL(x,y,λ) = 0,

0 ≤ λ ⊥ Dx− vy ≤ 0,

(3.25)

where Lagrangian L is given by (3.24).
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3.3 Accuracy Analysis of Calibration

In this section, we present an accuracy analysis of the calibration w.r.t. the number of regions.
Bilevel optimisation problems, even the simplest versions, are NP-hard [15]. In Appendix A.1,
we showcase the methodology of IPOPT, which finds a local solution to the optimisation problem
(3.25) based on the interior point method. This method has a number of weaknesses, including
the dependence on good initial solutions [58]. IPOPT has implemented measures to improve the
convergence to a global optimum, but it cannot guarantee a global optimum. In Appendix A.2,
we introduce several meta-heuristics based on evolutionary computing (EC) to improve the con-
vergence to a globally optimal solution. Our description of ECs is based on [34].

We have performed an accuracy analysis for two meta-heuristics: multi-start local search (MSLS)
and iterative local search (ILS), which are calibrated on a realistic scenario from summer 2022,
which we describe in detail in Section 4.1.1. We tested the MSLS and ILS heuristics for 2 × 2,
3 × 3, ..., 6 × 6 regions, i.e., same number of export and import regions. Each meta-heuristic
solves the problem (3.25) for a population of solutions (in our case with a population size of 600
solutions). Each solution has an associated objective value. In Figures 3.2 and 3.3, we present
percentiles of the objective value of the MSLS heuristic and ILS heuristic, respectively. Note that
the vertical axis is in logarithmic scale. The black line represents the 0th percentile of each problem
size, i.e., the solution(s) in the population with the lowest objective value found by the respective
meta-heuristic of each problem size. By connecting the 0th percentiles of each problem, we show
how the objective value of the best solution(s) increases exponentially w.r.t. the number of regions.
The orange line is the 100th percentile, i.e., the solution(s) with the highest objective value found
by the meta-heuristic and shows the worst performing solution(s). We also plot the 25th, 50th and
75th percentiles, to show the general distribution of objective values in the population.

We observe that the 0th percentile for the ILS algorithm performs better than the MSLS al-
gorithm. Thus, we will use the ILS algorithm to perform the calibration in our scenario analysis
in Section 4. For the other percentiles (25th–100th) ILS performs similar to the MSLS. The large
spread between the percentiles shows that both meta-heuristics have high variability of the up-
per level objective value within the population of solutions. This means that both will need a
sufficiently large population size and long computing time to sufficiently cover the search space.
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Figure 3.2: Performance of the multi-start local search.

Figure 3.3: Performance of the iterative local search.
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Chapter 4

Scenario Analysis

In this chapter, we will cover several realistic LNG transport scenarios based on events in 2022 and
2023 to illustrate how the model can be used as a scenario analysis tool, in line with the approach
shown in Figure 1.1. For each study, we calibrate our baseline with market data applicable for the
period of interest. Next, we perturb a parameter to simulate a hypothetical, but realistic scenario.
The parameters which we perturb are: the inverse supply function α (by lowering ηA), the maximal
global shipping capacity κ, the passage time t(p) through the Panama Canal, the distance matrix
T and the port capacity C.

In Section 4.1, we study the Asian LNG market of summer 2022 to answer the question: What
would the LNG price in Europe have been if China had not been in lockdown during the LNG
price peak in Summer 2022? In Section 4.2, we study the effects of a drought in the Panama
Canal during August 2023 [23]. In Section 4.3, we study the effects of reducing the Australian
port capacity to limit export because there were speculations about labour strikes by Australian
terminal workers [28].

4.1 Study of LNG market during Summer 2022

During the summer of 2022, LNG prices in Europe peaked [49] due to the reduction of pipeline NG
from Russia to Europe [9]. As an alternative to pipeline NG, Europe imported LNG from abroad,
which increased the demand on LNG ships significantly. At the same time, the Chinese LNG
market imported around 25% less LNG from the spot market, compared to 2021. This decrease is
illustrated by the green lines in Figure 4.1, where we see that the 70 days running average LNG
imports drops from around 200,000 metric tonnes per day to around 150,000 metric tonne per day.
The reduced LNG imports were partially caused by the strict Covid-19 lockdown in China, which
led to reduced economic activities and hence less demand for LNG [5]. Our model indicates that
if China imported similar quantities of LNG in 2022, compared to 2021, and the LNG shipping
companies operate under peak capacity, then the European prices would have been approximately
5% higher.

In Section 4.1.1, we provide the calibrated baseline scenario of the LNG market of Summer 2022.
During the calibration, we assume there was no global capacity on LNG trade. The baseline sce-
nario is calibrated based on trade flow and price data from the period 1 June 2022 until 1 October
2022. In Section 4.1.2, we increase the North East Asian LNG consumption by decreasing the
parameter ηBNEA such that the North East Asian import increases by around 33% 1. This increase
is not fully compensated by European or South American import, thus causing the utilized ship-
ping capacity in this hypothetical scenario to increase by 26% w.r.t. the baseline. This increased
utilized shipping capacity is unrealistic, because in Summer 2022, all shipping capacity was in use.
Therefore, in Section 4.1.3, we put the maximal global shipping capacity κ at the utilized shipping
capacity from the baseline.

1Note that the 33% increase precisely reverts the 25% drop in imported LNG.
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Figure 4.1: 70 days running average of Chinese LNG import from 2021 and 2022.

4.1.1 Baseline Scenario from Calibration

For the baseline scenario, we include North America (NA), the Middle East (ME), Australia (AU),
Europe (EU), North East Asia (NEA) and South America (SA). The regions with a mature gas
markets have a price benchmark. The price benchmark for Europe is based on the Title Transfer
Facility (TTF), which is a virtual trading facility. In North East Asia, the price benchmark is based
on the Japan/Korea Marker (JKM), which is a spot price index for the countries listed, but it is
also relevant for Chinese and Taiwanese markets. The export prices of North America are based
on the Henry Hub (HH) benchmark. We assume that other export regions such as Australia and
the Middle East have a similar export price to HH, and that South American has a similar import
price as TTF. In Tables 4.1 and 4.2, we provide the port capacity Cj , production limit Li and
global properties. The calibrated trade flows and prices, their relative differences from the market
data, as well as the inverse demand and supply functions parameters are given in Tables 4.5, 4.4,
4.6 and 4.3, respectively. Worthwhile to mention for the baseline scenario is the objective value

f30(x,y) ≈ 0.1905,

where f30(x,y) is given by (3.12). This means that the maximum absolute differences between
calibrated prices and flows is approximately 19.05%. Recall that this was the maximum difference
only if we had used ρ = ∞, which is in practice inconvenient to implement. We find that the
maximum difference is 22.36%, which verifies that ρ = 30 is a sufficiently high power to approximate
the infinity norm in (3.11) in this experiment. The relative differences in Tables 4.6, are given by

d(z, z̄) :=
z − z̄

z̄
, (4.1)

where z ∈ R corresponds to the calibrated value point, and z̄ ∈ R corresponds to the observed data
point. To measure the relative difference between the perturbation and the calibrated trade flows
and prices in Tables 4.4, 4.8 and 4.10, we will also use (4.1), where z corresponds to the perturbed
value point, and z̄ corresponds to the calibrated value point.
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Type of Region Port Capacity Production Limit

- MWh/day MWh/day

Australia (AU) Export 31,826,800 2,531,507

North America (NA) Export 35,978,120 31,917,808

Middle East (ME) Export 27,952,230 1,852,055

Europe (EU) Import 27,952,230 -

South America (SA) Import 27,952,230 -

North East Asia (NEA) Import 27,952,230 -

Table 4.1: Summer 2022 scenario: Regional Properties.

Symbol Value Unit

Average speed ship vavg 19.5 knots

Transportation cost c 0.00001 MWh/day/NM

Global trading capacity κ ∞ MWh/day

Suez costs π(s) 0.1 euro/MWh/NM

Suez time t(s) 0.75 day(s)

Panama costs π(p) 0.05 euro/MWh/NM

Panama time t(p) 0.5 day(s)

Table 4.2: Summer 2022 scenario: Global Properties.

ηA a ηB b

(e/MWh)/(MWh/day) e/MWh (e/MWh)/(MWh/day) e/MWh

AU 0.0000645 -58.44 0.0062235 1692.71

NA 0.0001039 -1642.79 0.0000788 1212.05

ME 0.0014996 -1686.54 0.0008264 731.27

EU - - 0.0002035 287.08

SA - - 0.0003590 154.81

NEA - - 0.0000900 290.05

Table 4.3: Summer 2022 scenario: Ask and bid parameters.

Baseline Relative diff. Scenario 1 Relative diff. Scenario 2 Relative diff.

p d(p, p̄) p̃1 d(p̃1,p) p̃2 d(p̃2,p)

e/MWh - e/MWh - e/MWh -

AU 22.66 17.75% 36.04 59.02% 37.11 63.75%

NA 22.06 19.98% 30.68 39.08% 17.93 -18.72%

ME 30.46 -14.75% 38.61 26.77% 29.82 -2.10%

EU 153.01 15.96% 156.76 2.46% 161.06 5.26%

SA 92.88 22.36% 96.41 3.80% 99.47 7.10%

NEA 167.08 -15.15% 177.76 6.39% 193.54 15.83%

Table 4.4: Summer 2022 scenario: Baseline prices p with the relative difference compared to market
data p̄ and perturbed prices p̃1, p̃2 with relative differences compared to the baseline p.

34



4.1.2 Scenario 1: Increase North East Asian Demand

For the first scenario, we increase the NEA demand by decreasing ηBNEA by approximately 30%
which achieves a North East Asian import which is approximately 33% higher compared to the
baseline. Note that decreasing ηBNEA makes the slope of the inverse demand function, βNEA in
(2.5), flatter, which keeps prices higher, thus simulating aggressive bidding from NAE. This results
in higher LNG imports by NEA. In Figure 4.2, we present an overview of the relative differences
between the perturbation and the baseline. The orange and blue blocks represent the export and
import regions, respectively. Variables n,m, p refer to the quantity sold in (2.3), quantity bought
in (2.4) and the (bid) prices in (2.5b), respectively. The arrows represent the trade flows between
regions. If a relative difference is larger than 2%, the arrow is coloured green or red depending if
it is a relative increase or decrease. The full result of this perturbation on the trade flows, prices
and the relative difference compared to the baseline are given in Table 4.7, 4.4, 4.8, respectively.

The 33% increased NEA imports is made up mostly from the trade flows AU-NEA and NA-
NEA, where their market share increased by 21% and 103%, respectively. Note that NA is a large
consumer, while AU is not. As a result, we observe that the overall sales have more significantly
increased for the AU market than the NA market. Prices of the import regions remain relatively
stable, with the largest percentage increase being 6% of the NEA price. Prices in export regions
increase significantly, with the AU price showing the largest percentage increase of 59%. The
utilized shipping capacity, which can be computed by the left-hand side of the global shipping
capacity constraint (2.14), has increased by 26% compared to the baseline, which is an unrealistic
increase for the market in 2022.

4.1.3 Scenario 2: Apply Global Constraint of 2022

During the summer of 2022, the market traded LNG close to the maximal global shipping capacity.
We simulate this situation by defining the maximal global shipment capacity κ at the utilized
shipping capacity of the baseline scenario, where we define κ as follows

κ := 47,343,902 MWh/day.

This approach is chosen because estimating the shipping capacity from actual ship capacity (inves-
tigating each individual ship) is near-impossible, especially because it is not precisely clear which
ship can be attributed to the spot market, because individual ships are not labelled as spot or
contract delivery. The global shipping capacity constraint, from (2.14), will bound the perturbed
market from Section 4.1.2, which simulated the increased NEA consumption. In Figure 4.3, we
present an overview of the relative differences between the perturbation and the baseline. The de-
tailed trade flows, prices and relative differences compared to the baseline are given in Tables 4.9,
4.4, 4.10, respectively.

We find that the NEA import increased only by 14% compared to 33% in the scenario with-
out global shipping capacity constraint. Interestingly, the trade flow NA–NEA decreased by 29%
compared to the baseline. This is counter-intuitive and opposite to the increase seen in the per-
turbation without global shipping capacity constraint (in Table 4.8). The trade route AU–NEA
increased by 23%, with overall AU sales increasing by 18%, compared to 17% and 16% from the
previous perturbation. The trade flow ME–EU significantly decreased with 19%, as the AU–NEA
trade route becomes more profitable for LNG shipping companies.

EU prices increased by 5% which is the lowest price increase in the scenario, as NEA experi-
ences a price increase of 16%. The NA price drops with 19%, while undergoing a minor decrease
in their sales, and a minor increase in their local trade. The AU price increased with 64%, which is
the largest price increase, with a slightly larger impact on the local trade flow. We see that despite
the relatively large price changes, the consumption in all export regions remain stable.

Conclusion If China had not been in lockdown during 2022, and North East Asia imported LNG
in similar quantities in 2021, then we would have seen price increase in Europe of 5% according
to the presented model. North East Asia would have had the highest price increase (16%) from
all the import regions, with the European price deviating the least (5%). The second scenario has
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shown that the global shipping capacity constraint is a contributor to the increasing prices. If the
2022 LNG market was not trading close to the global shipping capacity, then an increase of 33% in
NEA demand would have resulted only in 2% to 6% price increases in import regions, with Europe
remaining the most stable.

Figure 4.2: Summer 2022 scenario 1: Relative difference in prices, quantities bought and quantities
sold compared to the baseline.

Figure 4.3: Summer 2022 scenario 2: Relative difference in prices, quantities bought and quantities
sold compared to the baseline.
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MWh/day AU NA ME EU SA NEA Total Sold

AU 268,343 - - 851 1,146 987,706 1,258,046

NA - 15,107,068 - 535,103 170,193 204,737 16,017,101

ME - - 847,981 122,744 1,155 173,107 1,144,988

Total Bought 268,343 15,107,068 847,981 658,698 172,494 1,365,551

Table 4.5: Summer 2022 baseline: Calibrated trade flows.

AU NA ME EU SA NEA Total Sold

AU 11.30% - - - - 17.22% 16.09%

NA - 10.84% - -16.71% -15.99% -15.66% 8.83%

ME - - 10.94% 19.06% - -17.79% 6.21%

Total Bought 11.30% 10.84% 10.94% -11.65% -15.99% -16.23%

Table 4.6: Summer 2022 baseline: Relative differences of the calibrated trade flows w.r.t. the data.

MWh/day AU NA ME EU SA NEA Total Sold

AU 266,194 - - 0 0 1,199,325 1,465,519

NA - 14,997,641 - 523,998 162,659 415,730 16,100,028

ME - - 838,117 116,240 0 196,067 1,150,424

Total Bought 266,194 14,997,641 838,117 640,239 162,659 1,811,122

Table 4.7: Summer 2022 scenario 1: Perturbed trade flows.

AU NA ME EU SA NEA Total Sold

AU -0.80% - - -100.00% -100.00% 21.43% 16.49%

NA - -0.72% - -2.08% -4.43% 103.06% 0.52%

ME - - -1.16% -5.03% -100.00% 13.26% 0.47%

Total Bought -0.80% -0.72% -1.16% -2.80% -5.70% 32.63%

Table 4.8: Summer 2022 scenario 1: Relative differences w.r.t. baseline trade flows.

MWh/day AU NA ME EU SA NEA Total Sold

AU 266,022 - - 0 0 1,216,137 1,482,159

NA - 15,159,495 - 519,111 154,133 144,632 15,977,370

ME - - 848,754 100,030 0 195,777 1,144,561

Total Bought 266,022 15,159,495 848,754 619,141 154,133 1,556,546

Table 4.9: Summer 2022 scenario 2: Perturbed trade flows.

AU NA ME EU SA NEA Total Sold

AU -0.87% - - -100.00% -100.00% 23.13% 17.81%

NA - 0.35% - -2.99% -9.44% -29.36% 0.44%

ME - - 0.09% -18.51% -100.00% 13.10% 0.41%

Total Bought -0.87% 0.35% 0.09% -6.01% -10.64% 13.99%

Table 4.10: Summer 2022 scenario 2: Relative differences w.r.t. baseline trade flows.
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4.2 Study of Impact Panama Canal Drought

During August of 2023, the Panama Canal faced problems related to drought of in-land lakes.
These lakes are used to replenish the canal with water which is lost during the opening of water-
gates [23]. As a consequence, the authorities decided to limit the number of passages a day from
36 to 32 passages [14]. During this time, the JKM (North East Asian) price benchmark increased
by approximately 12%. Many ships were already on their way to the Panama Canal, thus a queue
formed at the entrances. For these ships, the travel time from their departure to their destination
suddenly increased, because of the waiting times outside of the canal.

In Section 4.2.1, we provide the baseline scenario, which corresponds to the market before the
decision of the Panamanian authorities to reduce the throughput of the Panama Canal. We cal-
ibrate the model based on the trade flows and prices from 1 August 2023 until 31 August 2023.
In Section 4.2.2, we perturb the baseline scenario by increasing the passage time of the Panama
Canal. This scenario simulates the market situation after the reduction from 36 ships to 32 ships
by the Panama authorities. In Section 4.2.3, we model the hypothetical closure of the Panama
Canal.

4.2.1 Baseline Scenario from Calibration

For this study, we use the same regions (excluding South America), port capacities, production
limits and global properties as in Section 4.1. The calibrated trade flows and prices, their relative
differences from the market data, as well as the inverse demand and supply function parameters
are given in Tables 4.13, 4.12, 4.14, and 4.11. The objective value of approximately 28.01% and
the accuracy in Table 4.13 shows again that choosing ρ = 30 is sufficiently large to approximate
the infinity norm. Similar as in Section 4.1, all relative differences are given by (4.1).

4.2.2 Scenario 1: Increase the Waiting Time

In August 2023, the number of ships which were allowed to move through the Panama Canal was
reduced from 36 to 32 vessels per day. This reduction led to an average waiting time of 5-8 days.
To mimic this waiting time, we define the passage time of the Panama canal to

t(p) := 5 days.

All other parameters remain equivalent to the baseline scenario. In Figure 4.4, we present an
overview of the relative differences between the perturbation and the baseline. The detailed trade
flows, prices and relative differences compared to the first perturbation are given in Tables 4.15,
4.12, 4.16.

In line with our expectation, increasing the passage time of the Panama Canal reduced the trade
flow NA–NEA. However, a reduction of 95% is very significant. The LNG shipping companies in-
crease their trade on trade routes AU–NEA and ME–NEA by 5% and 8%, respectively, according
to our model. Still, North East Asian imports were reduced by 13% compared to the baseline
scenario. All other trade flows remain relatively stable. The NEA price increased the most, which
makes sense given the largest decline in NEA imports. Although the trade flows for AU and ME
did not change much, their prices have increased by 9% and 8%, respectively. For EU and NA the
prices remain stable.

4.2.3 Scenario 2: Close the Panama Canal

In this section, we model the hypothetical scenario that the Panama Canal has to close entirely in
August 2023. For the regions we considered, this impacts the trade route NA–NEA, because we
modelled the port of North America in the Gulf of Mexico, where Henry Hub is located. Thus,
these ships now need to go around South America. We implemented this scenario by setting the

Panama Canal usage parameter δ
(p)
NA,NEA to zero and we increased the distance of the trade route

between North East Asia and America from 9,745 nautical miles to 14,211 nautical miles. All other
distances and parameters will stay the same as the baseline scenario. In Figure 4.5, we present an
overview of the relative differences between the perturbation and the baseline. The detailed trade
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flows, prices and relative differences compared to the first perturbation are given in Tables 4.17,
4.12, 4.18.

In line with our expectations, by closing the Panama Canal, we find more impactful changes
in the trade flows and prices compared to increasing the passage time of the Panama Canal to 5
days, as in Section 4.2.2. The trade flow NA–NEA (which was already quite low with the baseline
and 5 days passage time scenarios) has changed to zero for the closed Panama Canal scenario.
Again, LNG shipping companies move to the trade routes AU–NEA and ME–NEA with increases
of 5% and 8%, respectively. Prices change similar to those found in Section 4.2.2, where the prices
of AU, ME, NEA increase by 9%, 8% and 11%, respectively. Again, prices of EU and NA remain
stable.

Conclusion Both perturbations show a decrease in NA–NEA trade flows, which is expected
when the travel time on this route increases. The substitution of trade flows AU–NEA and ME–
NEA is less obvious, but can be explained, by substitution of alternative trade flows. The increase
of these flows led to price increases in Australia, the Middle East and North East Asia. The North
American and European prices remained stable. It’s noteworthy that both perturbations generated
such similar trade flows and prices, which indicates that the passage time increasing to 5 days, has
a similar effect to closing the Panama Canal.

It should be noted that the EU price relies heavily on the stability of the NA price. The ask
parameter ηANA = 0, i.e., the constraint for ηANA is at the boundary. As a consequence, the NA
price is fixed. his means that, as long as it is profitable for the LNG shipping companies, the NA–
EU trade flow can increase until the operation costs become too high. Thus, the NA–EU trade
flow is able to meet EU demands, which keeps the EU price stable. This results is unrealistic.

ηA a ηB b

(e/MWh)/(MWh/day) e/MWh (e/MWh)/(MWh/day) e/MWh

AU 0.0000096 -7.16 0.0017640 507.33

NA 0.0000000 6.09 0.0000287 421.08

ME 0.0000808 -91.86 0.0004911 451.17

EU - - 0.0000630 90.27

NEA - - 0.0000146 52.57

Table 4.11: Panama drought baseline: Ask and bid parameters.

Baseline Relative diff. Scenario 1 Relative diff. Scenario 2 Relative diff.

p d(p, p̄) p̃1 d(p̃1,p) p̃2 d(p̃2,p)

e/MWh - e/MWh - e/MWh -

AU 5.88 -24.82% 6.38 8.58% 6.40 8.98%

NA 6.09 -24.82% 6.09 0.00% 6.09 0.00%

ME 9.41 23.85% 10.13 7.62% 10.16 7.96%

EU 42.56 26.55% 42.76 0.45% 42.76 0.47%

NEA 29.82 -21.14% 32.88 10.25% 33.03 10.76%

Table 4.12: Panama drought baseline: Baseline prices p with the relative difference compared to
market data p̄ and perturbed prices p̃1, p̃2 with relative differences compared to the baseline p.
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Figure 4.4: Panama drought scenario 1: Relative difference in prices, quantities bought and quan-
tities sold compared to the baseline.

Figure 4.5: Panama drought scenario 2: Relative difference in prices, quantities bought and quan-
tities sold compared to the baseline.
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MWh/day AU NA ME EU NEA Total Sold

AU 284,271 - - 772 1,069,534 1,354,577

NA - 14,475,992 - 597,624 290,680 15,364,296

ME - - 899,453 159,449 193,954 1,252,856

Total Bought 284,271 14,475,992 899,453 757,845 1,554,168

Table 4.13: Panama drought baseline: Calibrated trade flows.

AU NA ME EU NEA Total Sold

AU 17.91% - - - 26.17% 24.41%

NA - 6.21% - -25.50% -25.80% 3.64%

ME - - 17.67% 27.36% -26.61% 8.58%

Total Bought 17.91% 6.21% 17.67% -18.28% -26.23%

Table 4.14: Panama drought baseline: Relative differences of the calibrated trade flows w.r.t. the
data

MWh/day AU NA ME EU NEA Total Sold

AU 283,986 - - 0 1,122,961 1,406,946

NA - 14,475,993 - 599,956 13,497 15,089,446

ME - - 897,992 154,842 208,898 1,261,733

Total Bought 283,986 14,475,993 897,992 754,798 1,345,356

Table 4.15: Panama drought scenario 1: Perturbed trade flows.

AU NA ME EU NEA Total Sold

AU -0.10% - - -100.00% 5.00% 3.87%

NA - 0.00% - 0.39% -95.36% -1.79%

ME - - -0.16% -2.89% 7.71% 0.71%

Total Bought -0.10% 0.00% -0.16% -0.40% -13.44%

Table 4.16: Panama drought scenario 1: Relative differences w.r.t. baseline trade flows.

MWh/day AU NA ME EU NEA Total Sold

AU 283,972 - - 0 1,125,438 1,409,410

NA - 14,475,993 - 600,049 0 15,076,042

ME - - 897,927 154,631 209,571 1,262,129

Total Bought 283,972 14,475,993 897,927 754,680 1,335,009

Table 4.17: Panama drought scenario 2: Perturbed trade flows.

AU NA ME EU NEA Total Sold

AU -0.11% - - -100.00% 5.23% 4.05%

NA - 0.00% - 0.41% -100.00% -1.88%

ME - - -0.17% -3.02% 8.05% 0.74%

Total Bought -0.11% 0.00% -0.17% -0.42% -14.10%

Table 4.18: Panama drought scenario 2: Relative differences w.r.t. baseline trade flows.
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4.3 Study of Impact Australian Labour Strike

During August 2023, the same time frame as the Panama drought study in Section 4.2, labour
unions threatened to organise labour strikes at the AU LNG terminals. Intuitively, such a labour
strike woud have impacted the trade route AU–NEA the most, but the reduced global supply could
have had impact beyond this specific route. In August 2023, the NEA price increased approxi-
mately by 12% and the EU price increased by 22% on 9 August 2023 [7]. Later on, such an event
has occurred again on 3 September 2023, this time the EU price increased insignificantly [62].
We will investigate the impact of the labour strike, and consider if the increased prices were an
overreaction, or that they followed the new market equilibrium. This study assumes the standard
Panama passage time of 0.5 days.

We use the calibrated model from Section 4.2.1, which was based on trade flows and price data
from the period 1 August 2023 until 31 August 2023. In Section 4.3.1, we perturb the AU port
capacity to mimic a labour strike occurring in AU LNG terminals. We show that although the
make up of the NEA import changes significantly, the EU and NEA prices will remain stable.

4.3.1 Scenario: Reduction of Port Capacity

Two major Australian companies have been in talks with Australian Labour unions, who threat-
ened with labour strikes if work conditions would not improve. These companies are responsible
for half of Australia’s export [28]. During this time, Australia traded most of the LNG to Asia.
However, the instability caused by the possibility of cutting Australian exports in half, resulted in a
12% price increase in NEA and a 22% price increase in EU. The price increase in EU is noteworthy,
because EU does not directly depend on AU exports. At the time, it was unclear when the strike
would happen and if there would be global supply issues. To model the labour strike, we reduce
the port capacity of Australia by half of the exported value of the baseline, corresponding to the
fact that the Australian companies which are dealing with this strike, are responsible for half of
AU export. The quantity exported by Australia EAU = 1,070,306 MWh/day is computed from the
baseline scenario in Section 4.2.1. We set the Australian port capacity CAU to 50% of the export
capacity EAU from the baseline, such that CAU is defined as

CAU :=
1

2
· EAU.

In Figure 4.6, we present an overview of the relative differences between the perturbation and the
baseline. The resulting trade flows, prices and relative differences compared to the baseline are
given in Tables 4.20, 4.19, 4.21.

The Asian import remains stable, but distribution of trade flows change significantly. Firstly,
we see that overall Australian sales reduced by 40%, mostly caused by the export on trade flow
AU–NEA which reduced by 50% as expected. Secondly, the NA–NEA and ME–NEA trade flows
increased by 168% and 17%, respectively, to compensate for the loss on the trade route AU–NEA.
As a consequence, the trade flow ME–EU decreased by 6% .

The Australian price has decreased significantly by 87%. The Middle Eastern price has increased
by 17%, while the North American price remains stable. The prices from the import regions remain
stable as well, which is especially interesting for North East Asia, because the distribution of their
import has changed significantly.

Conclusion This scenario analysis indicates that in August the market overreacted with the
threat of on-going global supply shortage. The market response in September is much more in
line with our scenario analysis which shows stable prices for Europe. Again, It should be noted
that the EU price relies heavily on the stability of the NA price, which is caused by the unrealistic
calibration of ηANA = 0.
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Figure 4.6: Labour strike scenario: Relative difference in prices, quantities bought and quantities
sold compared to the baseline.

Baseline Scenario 1 Relative diff.

p p̃ d(p̃,p)

e/MWh e/MWh -

AU 5.88 0.75 -87.18%

NA 6.09 6.09 0.00%

ME 9.41 10.98 16.60%

EU 42.56 42.95 0.91%

NEA 29.82 30.02 0.68%

Table 4.19: Labour strike scenario: Baseline prices p and perturbed prices p̃ with relative differ-
ences compared to the baseline p.

MWh/day AU NA ME EU NEA Total Sold

AU 287,175 - - - 535,153 822,328

NA - 14,475,991 - 602,420 778,498 15,856,909

ME - - 896,272 149,272 226,645 1,272,189

Total Bought 287,175 14,475,991 896,272 751,692 1,540,296

Table 4.20: Labour strike scenario: Perturbed trade flows.

AU NA ME EU NEA Total Sold

AU 1.02% - - -100.00% -49.96% -39.29%

NA - 0.00% - 0.80% 167.82% 3.21%

ME - - -0.35% -6.38% 16.85% 1.54%

Total Bought 1.02% 0.00% -0.35% -0.81% -0.89%

Table 4.21: Labour strike scenario: Relative differences w.r.t. baseline trade flows.
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Chapter 5

Conclusion and Discussion

In this final chapter, we discuss our findings, provide a conclusion and give an outlook for further
research. In Section 5.1, we summarize our conclusions related to the market equilibrium model,
the calibration process and scenario analysis. In Section 5.2, we present the discussion, in which we
discuss the results from the model design, the algorithmic choices, scenario analysis. In Section 5.3,
we present possible extensions to the model and to the optimisation algorithm used to calibrate.

5.1 Conclusion

We have developed a unique monopolistic market equilibrium model of the LNG spot market to
model interaction between supply and demand, which assumes a strong market position of the
LNG shipping companies in times of high demand. The market equilibrium is found by solving the
quadratic optimisation problem (2.36). If matrix P is negative semi-definite, then the optimisation
problem is convex and quadprog can efficiently return the optimal solution. However, we do not
have such a convexity guarantee, but we did not discover any indefinite matrix P based on realistic
data during our scenario analysis. Hence, the optimization problem appears to be convex in prac-
tice. To prove that P is always negative semi-definite is made challenging because of time-scale
matrix Θ which can theoretically scale elements of P to any size, resulting in P becoming negative
semi-definite.

The solver quadprog can efficiently solve optimisation problems with more regions than we cal-
ibrated for during the scenario analysis. The main limitations of our model is the calibration
process which is inaccurate for larger scenarios as shown in Figures 3.2 and 3.3. As a result, we
can only perturb with a small number of regions during the scenario analysis for which we have
calibrated ηA,ηB,a, b.

The calibration challenge stems from the non-convexity of MPCCs. Additionally, the introduction
of Lagrange multipliers and slack variables in (A.3) significantly increases the computing time
of IPOPT and increases the number of solutions for which we find a unique calibration score,
i.e., more distinct local optima. The ILS has improved finding a stationary point with sufficient
accuracy for scenarios analysis with low number of regions. The runtime of the ILS depends
of the number of local optima found by IPOPT. Since, more distinct solutions require a longer
search to ensure we have explored the whole search space to converge to a sufficiently accurate
solution. Increasing the scenario by one import and one export region results in the number of
variables increasing quadratically, while the degrees of freedom increase linearly. When the number
of variables outnumbers the degrees of freedom, we observe that the calibration accuracy decreases.

We have shown that our model can be used to study (hypothetical) scenario outcomes via pa-
rameter perturbations. The solutions for the summer 2022 scenarios are more realistic than the
August 2023 scenarios because for the latter scenarios the parameter ηANEA was at the boundary,
which kept the prices unrealistically stable. This means that the calibration is artificially limited.
By model design, the calibration works best if the LNG shipping companies have a lot of market
power (close to monopolistic) due to high demand of LNG transport, which leads to high profits
for LNG shipping companies. As such, the calibration based on the dataset from 2022 had better
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accuracy with a maximum relative difference of 19%. The dataset from August 2023 has lower
prices and the price differentials are smaller, which is crucial for our objective function because the
price differentials will determine the potential profits. Subsequently, we observe a lower accuracy
with a maximum relative difference of 26% for a baseline scenario with five regions.

Lastly, our model only outputs steady state equilibriums. This is by design, but it does limit
the usability of the model for scenario analysis because the impact of speculation effects, such as
the European price spike in August 2023 [7], which cannot be modelled realistically, as they can
have a lot of short term impact.

5.2 Discussion

In this section, we discuss the results and shortcomings of the model design, the algorithmic
choices. We will cover the following topics regarding the model design, firstly, we discuss the
decrease in calibration accuracy when the number of region increases. Secondly. we discuss the
high variability of the ask and bid parameters for different market scenarios. Lastly, we discuss
the difference between the calibration accuracy of the summer 2022 and August 2023 scenarios.
Regarding the algorithmic choices and implementation, firstly, we discuss the long runtime of the
ILS algorithm to calibrate the model to a desired accuracy. Secondly, we present the possibility
for a speed-up of the calibration process by excluding market equilibrium constraints Dx ≤ v.

Discussion of model design We have been unable to accurately calibrate the model for more
regions during the scenario analysis. The solution found is accurate (f < 25%) for low dimension
sizes, e.g., up to three export and three import regions. When we increase the number of regions
it becomes exponentially more difficult to calibrate correctly, as shown by the increasing 0th per-
centile in Figure 3.3. Note that the number of trade flows and prices xii, xij ,pj for i ∈ S, j ∈ R\S
which need to be matched as closely as possible to realistic data are given by M(N −M)+M +N
number of variables. When M and N are increased simultaneously, the increase in the number of
variables in the model output is quadratic. On the contrary, the number of parameters ηA,ηB,a, b
are given by 2M +2N variables, which is linear when M and N are increased simultaneously. This
means that increasing the model by import and export regions increases the data that needs to be
fitted more quickly, than the increase in degrees of freedom.

We also observe that the calibrated parameters ηA,ηB,a, b are unstable for increasing number
of regions. For example, assume we have calibrated a baseline scenario including North America
(NA) and the Middle East (ME) as export regions and Europe (EU) and North East Asia (NEA)
as import regions. We have experienced that the addition of Australia (AU) as a export region
significantly changes the value of all parameters ηA,ηB,a, b compared to the calibration with only
four regions. It is logical that a LNG market without AU as export region would indeed behave
different in reality. However, it does prevent us to scale down the problem to obtain ask and bid
parameters which are still usable for larger scenarios.

During the scenario analysis, we observed that the maximum difference for summer 2022 with
six regions in Section 4.1.1 was 19%, which is considerably better than 26% maximum difference
for August 2023 with five regions in Section 4.2.1. We attribute this to the 2022 data fitting our
model assumptions better, in particular the large price differential between import and export
leads to high profit margins for the LNG shipping companies in our model. In summer 2022, the
LNG shipping companies did have more market power compared to August 2023, thereby fitting
our monopolistic assumption of the LNG shipping companies better.

Discussion of algorithmic choises To improve the performance of IPOPT, we have imple-
mented three meta-heuristics to improve the convergence to the global optimum. All methods
help to find a accurate stationary point. However, these meta-heuristics are relatively slow with
a computing time being in the order of hours. Naturally, this depends on the settings of the
user, such as the termination criterion. Depending on the market scenario, we observe that the
number of unique local optima can vary significantly. The higher the diversity in the populations,
the longer the meta-heuristic should run. Next, we discuss our experience with a possible speed-up.
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Under assumption of an accurate calibration process, the calibrated flows will be relatively close
to the data such that when the data trade flows x̄ are in the interior of the feasible region, i.e.,
Dx̄ < v, then the calibrated flows x are likely also in the interior of the feasible region. In other
words, when the data does not violate any constraints, then the calibrated flows will (likely) not
violate any constraints either. This is the case during our scenario analysis calibration in Section 4.
Note that we do not deny the existence of such boundary, we only observe that the calibrated flows
x do not violate the constraints when they are close to the data. Under the assumption of accurate
calibration, it is beneficial to remove the constraints from the lower level optimisation problem,
such that the optimisation (3.25) is simplified by the removal of unviolated constraint Dx ≤ v and
the removal of the corresponding multipliers λ. This reduction in variables leads to a speed-up
in computing time, from order of hours to order of minutes, and generally finds more accurate
stationary points.

It should be noted that reducing Dx ≤ v, also removes part of the slack variables given by s,
which are needed to transform the inequality constraint to an equality constraint in (A.4). With
the inclusion of constraints Dx ≤ v, a significant portion of the initial solution did not converge
to a stationary point. On the contrary, without Dx ≤ v, the majority of initial solutions did
converge. This means that we can reduce the termination criterion of the meta-heuristic which
reduces the runtime of the iterative local search algorithm.

Unfortunately, this still does not allow for accurate calibration of market scenarios which use
larger number of regions. We believe the inaccuracy of the model is not caused by the solver miss-
ing the global optimum, but rather that our model does not allow for enough degrees of freedom to
fit to realistic data. This idea is based on the calibration process mimicking a system of equations
when the variables z match the data z̄ perfectly. A detailed explanation is given in Appendix B.3.

Efforts have been made to use a GLS algorithm which aims to mix solutions via a crossover
operator to find better ‘offspring’ initial points. These initial points are used to find new solutions.
This approach is however unsuccessful in reducing the computation time needed to find a stationary
point which is accurate enough. We believe this is caused by the fact that the solutions z do not
have a ‘block’ structure, where certain components of the “parent ‘’ solutions can be combined to
form “offspring” solutions which are an improvement compared to the parent solutions. Without
such structure, using a GLS algorithm will likely not lead to an improvement compared to an ILS
algorithm. Although we have done our best efforts to tune the GLS algorithm, a more sophisti-
cated tuning, or even alternative GLS algorithm, could find structures in the solutions which we
were unsuccessful to exploit.

5.3 Further Research

In this section, we give an overview of possible extensions, with the focus on suggestions based on
our experiences with the usage of this model.

Least Squares with regularization We explored the use of the least-squares objective function
with regularization ∥z ◦ z̄−1 − 1∥22 + ∥y∥22 to perform the calibration process. This method is
mathematically simple and efficient to solve because least-squares problems are convex [17]. This
objective function with regularization and the exclusion of a majority of the constraints Dx ≤ v, as
mentioned before, creates an optimisation problem which is in line with the standard optimisation
problem designed to be solved by IPOPT, i.e., only simple upper and lower bounds on variables x,y
and no inequality constraints. In Appendix B.3, we present this calibration on the dataset from
summer 2022. We believe that this method is promising, because the objective function is simple,
and the inclusion of a regularisation could have positive effects on the convergence. However,
this method led to a handful of outliers in the calibrated trade flows which were significantly off.
Understanding under which conditions the least squares approach is accurate (without outliers)
would make this simplification useful to apply in practice.

Outlook on implementation We have seen that reducing the constraints Dx ≤ v during the
calibration process leads to less variability in the calibration scores associated to each solution in
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the population. This means that we can use a smaller population for the meta-heuristic. Resulting
in reduced computer time necessary to find a sufficiently low accuracy. We propose the following
strategy. Firstly, calibrate the single level optimisation (3.25) without constraints Dx ≤ v via
MSLS to find x where the constraints are reduced to take advantage of the reduced computer
time. Then check if any of the constraints by Dx ≤ v are violated. If not, then no action is
necessary and the solution can be used for scenario analysis. If any of the constraints are violated,
then solve the single level optimisation problem (3.25) (where the constraints Dx ≤ x are included)
via ILS.

Alternative flows between two regions In our model, we have modelled a single trade route
between regions, where we assume that all transportation moves through the same canal, or avoids
a canal. For example, we have the trade route ME–EU where we assume that all transport uses the
Suez Canal. However, in reality there is an alternative to go around Africa instead. Additionally,
we can include an average waiting time at the LNG ports before the LNG is offloaded. Our current
model indicates when trade flows change to a different destination, but not if an alternative route
for the same destination is used. This would be especially relevant if the ships have to wait before
they can offload. Implementing multiple routes between a pair of regions together with waiting
times at the ports could answer questions, such as: ‘How much LNG is transported around Africa
instead of using the Suez Canal between ME and EU when the EU port waiting time has increased
by 20% in Europe?’. Ships will have to wait at the destination port, so they would rather avoid
the Suez Canal, go around Africa to make up the time and save on the costs from Suez Canal. Due
to the rising tensions in the Middle East from the Israel-Hamas conflict, another question which is
relevant is: ‘How much LNG is transported around Africa instead of using the Suez Canal between
ME and EU when the Suez Canal passage time has doubled?’.

Improving Calibration of the Market Equilibrium Model We shared our interpretation
of the calibration as a system of equations in Section 5.2. To extend the model to be able to
calibrate accurately for more regions, we suggest to extend the degrees of freedom of the model.
Our accuracy analysis in Section 3.3, shows that our current model cannot calibrate for scenarios
where the number of regions is larger than 3 import and 3 export regions.

Additionally, some fixed parameters can be replaced by free variables during the calibration pro-
cess, such as the transportation cost c. We experimented with this technique because as far as we
know, no data on parameter c is not published. This additional (free) variable in the optimisation
will allow c to be calibrated based on the trade flow and price data. Bounds on c are introduced to
keep the resulting multiplication cTij , for i ∈ S, j ∈ R\S, realistic. However, from experience, the
parameter c is at the boundary and thus is artificially limited. Note that relaxing the bound would
make the parameter unrealistic. Hence, this method does not work well in practice. Investigating
which fixed parameters can be transformed to free variables would be the next step.

CO2 Certificate In 2023, the European Union has introduced the CO2 certificates which will
be used in the future for maritime transportation. A natural question with regards to our model
is: How does this new legislation impact the LNG market? Can it already be incorporated in
our model? We would incorporate this as follows. Currently, from the perspective of the ship
companies, little would change because they already operate on boil-off LNG (evaporated LNG
from the load the ship transports). Note that LNG has less CO2 emissions than crude oils used by
other large vessels. When there is a noticeable difference in CO2 emission between vessels used on
specific trade routes, then is it relevant to incorporate an inefficiency cost to trade routes which
have more CO2 emissions on average. Such costs can be incorporated into the transportation costs
τij for i ∈ S, j ∈ R\S.
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Appendix A

Details of the Optimisation
Algorithms

In this chapter, we discuss the optimisation algorithms to find a solution to the optimisation
problem (2.36) from the market equilibrium model and the optimisation problem (3.25) from the
calibration process. In Section A.1, we discuss the IPOPT solver with a simplified description
from the original paper [73]. IPOPT is used to find a solution to (3.25). However, IPOPT re-
lies on a good choice of initial solution to find the global optimum. In Section A.2, we discuss
a global search algorithm based on the ILS meta-heuristic. This heuristic uses the stationary
points found by the IPOPT algorithm to create new initial values to which IPOPT is applied
again. This procedure helps to improve the calibration procedure. In Section A.3, we discuss
the quadprog solver, which we use to solve the quadratic optimisation problem (2.36). Our
description is a simplified version of the original paper [36]. Algorithm 1 combines the cali-
bration and perturbation to perform a scenario analysis. The implementation is programmed
in Python 3.10, run on a licence of Microsoft Windows 10 64-bit operating system on an In-
tel i5-10310U @ 1.70 GHz (2.21 GHz turbo boosted) processor with 16 GB @ 2667 MHz RAM.

Algorithm 1 Scenario Analysis Framework.

input: Data X̄, p̄.
parameters: κ, L,C, T, t(s), t(p), c.
output: baseline: X,p, perturbation: X̃, p̃.

1: X̄, p̄← convert units(X̄, p̄). ▷ in Appendix A.6
2: X,y,p← calibrate(X̄, p̄ ; κ, L,C, T, t(s), t(p), c). ▷ in Section A.1 and A.2
3: perturb parameter(s): y, L, C, T, t(s), t(p), c.

4: X̃, p̃← market equilibrium(y ; κ, L,C, T, t(s), t(p), c). ▷ in Section A.1

5: Return: baseline: X,p, perturbed: X̃, p̃ and differences: X̃ −X, p̃− p.

A.1 Bilevel Optimisation for the Calibration

To find a solution to an optimisation problem, solvers typically interact with algebraic modelling
languages, which allow for relative easy coding of mathematical programs. The algebraic modelling
language called General Algebraic Modeling Language (GAMS) [6] is standard for many optimisa-
tion applications. An alternative is the open-source algebraic modeling language package Pyomo
[41] in the programming language Python. This package is well-developed, based on many contri-
butions, and is well-documented [40]. It uses both open-source solvers (e.g. BARNLP, MOSEK
& IPOPT) and licensed solvers (e.g. KNITRO & Gurobi). However, one open-source non-linear
solver is able to solve the optimisation problem in (3.25): Interior Point OPTimiser (IPOPT).
IPOPT version 3.x is written in C++ (with older versions based on the original paper [73] imple-
mented in Fortran and C) and is used as a pre-compiled solver application. The extension to solve
complementarity problems via IPOPT–C (with the C standing for complementarity) is published
in [61]. For more information on IPOPT(–C), we refer to details in the original papers [73, 61].
We use IPOPT–C to find a local solution of MPCC (3.25).
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IPOPT-C is, as the full name (partially) implies, based on the primal-dual interior point with
filter line search algorithm which is specifically well-suited to solve non-linear constrained opti-
misation problems (NLPs) and has an extension to solve complementarity problems. IPOPT is
extensive and contains a lot of intricacies, which are designed to provide for a robust solver. Here,
we will describe some of the most notable parts of IPOPT based on the original paper [73] and
we cover the fundamental idea of the extension IPOPT–C. The IPOPT-C extension is designed to
solve the MPCC, given by

min
u,w,λ

f(u,w,λ), (A.1a)

subject to (A.1b)

h(u,w,λ) = 0, (A.1c)

u ≥ 0, (A.1d)

0 ≤ λ ⊥ w ≥ 0, (A.1e)

where u ∈ Rn, w,λ ∈ Rm, f : Rn+2m → R and h : Rn+2m → Rq. We present an equality on h
in (A.1c), because inequality constraints can be incorporated via slack variables. It is possible to
rewrite the complementarity (A.1e) to a constraint in a non-linear optimisation problem (NLP)
given by

min
u,w,λ

f(u,w,λ), (A.2a)

subject to (A.2b)

h(u,w,λ) = 0, (A.2c)

Diag(λ)w ≤ 0, (A.2d)

u,λ,w ≥ 0, (A.2e)

where Diag(λ) is the diagonal matrix with λ on the diagonal. In [61], it is proven that the solution
found by solving (A.2) is the same solution to solving (A.1). The original solver IPOPT, in [73],
is designed to solve an NLP of the form:

min
z∈Rn+2m+q

f(z),

subject to

g(z) = 0,

z ≥ 0.

(A.3)

Through the use of slack variable s ∈ Rq and defining z := (u,w,λ, s), we can formulate (A.2d) as

Diag(λ)w+ s = 0, (A.4)

such that (A.2) can be expressed as (A.3). Inequality constraints, such as in the calibration
problem in (3.25), can be solved by IPOPT with the introduction of slack variables to incorporate
the inequality (A.2d) in g(z). Creation of slack variables is handled by Pyomo. The optimisation
problem given by (A.3) is relaxed via a penalty term, as we have mentioned in Section 3.1, to a
barrier method, which is given by

min
z∈Rn+2m+q

Fµ(z) := f(z)− µ

n∑
i=1

log
(
z(i)
)

subject to

g(z) = 0

(A.5)

where µ ∈ R is the barrier parameter scaling term, which scales the penalty term
∑n

i=1 log
(
z(i)
)
,

which is a relaxation of the constraint z ≥ 0. This approach is common in NLP techniques which
use the interior point method, as seen in [58]. The original NLP (A.3) can be rewritten via the
KKT-conditions (1.6) to primal-dual equations

L(z,ν,ω) := ∇f(z) +∇g(z)ν − ω = 0,

g(z) = 0,

Diag(z)Diag(ω)1− µ1 = 0,

(A.6)
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where ν,ω represent the Lagrangian multipliers of the equality constraints g(z) and the bound
constraint z ≥ 0, respectively. Note that ∇f is a gradient vector, and ∇g is a Jacobian matrix,
because f, g have images R and Rm, respectively. The logarithmic function log(.) is convex and if
f, g are also convex, then (A.6) is convex as well, because of the additivity rule of convex functions
[17]. To solve (A.5) for fixed values of µ, a damped Newton’s method is used to the primal-dual
equations (A.6) given by:∇2

zzL(z,ν,ω) ∇g(z) −I
∇g(z)⊺ 0 0

diag(ω) 0 diag(z)

δzkδνk
δωk

 = −

 ∇f(z) +∇g(z)ν − ωg(z)

Diag(z)Diag(ω)1− µ1

 , (A.7)

which can be solved in two steps. Firstly, by applying row elimination, we rewrite (A.7) to[
∇2

zzL(z,ν,ω) + Diag(ω ◦ z−1) ∇g(z)
∇g(z)⊺ 0

](
δzk
δνk

)
= −

(
∇F (z) +∇g(z)ν − ω

g(z)

)
, (A.8)

where ◦ and z−1 are the same operators as in (3.8). Note that in the right hand side of (A.8) is
the derivative of F from the barrier method. By solving (A.8), δzk can be used to compute search
direction δωk as

δωk = µz−1 − z−Diag(ω ◦ z−1)δzk. (A.9)

Combining all the search directions gives rise to the iterative solution approach, where we compute
each iterate (zk,νk,ωk) as follows:

zk+1 = zk + αδzk,

νk+1 = νk + αδνk ,

ωk+1 = ωk + αωδ
ω
k ,

(A.10)

where α, αω ∈ R are step parameters. IPOPT uses the line search interior point method, which
can be interpreted as a bi-objective optimisation method, simultaneously minimising the objective
function Fµ(z) and the constraint violations θ(z) := ∥g(z)∥1, with emphasis on the latter quantity.
Algorithm 2, based on a formulation in Nocedal & Wright [58], describes the line-search interior
point algorithm in broad steps. For a detailed description, we refer to the original paper [73],
where the algorithm in IPOPT is presented.

Algorithm 2 IPOPT: Line search interior point algorithm.

input: Initial solution (z0,ν0,ω0) and barrier parameter µ.
parameters: Set scaling factors σ, τ ∈ (0, 1) and termination tolerances ϵtol, ϵµ > 0.
output: Stationary Point (zk,νk,ωk).

1: Set k ← 0.
2: while E(zk,νk,ωk; 0) > ϵtol do
3: while E(zk,νk,ωk;µ) > ϵµ do
4: Compute the search direction (δzk, δ

ν
k , δ

ω
k ).

5: Compute maximal step size αmax ← max{α ∈ (0, 1] : z+ αδz ≥ (1− τ)z}.
6: Compute maximal step size αmax

ω ← max{α ∈ (0, 1] : ω + αδω ≥ (1− τ)ω}.
7: Compute step sizes α ∈ (0, αmax] and αω ∈ (0, αmax

ω ].
8: Compute (zk+1,νk+1,ωk+1) according to (A.10).
9: Set k ← k + 1.

10: Set µ← σµ and update ϵµ.

11: return (zk,νk,ωk).

The termination criterion is given by

E(z,ν,ω;µ) := max {∥∇f(z)−∇g(z)ν∥∞, ∥g(z)∥∞, ∥Diag(z)Diag(ω)1− µ1∥∞} ,

where ∥.∥∞ is the infimum norm as given in (3.10) with ρ = ∞. The goal of IPOPT is to solve
the barrier method (A.5), where µ → 0. This is achieved by the outer while-loop, which checks
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if the termination criterion holds true for the user defined tolerance ϵtol ∈ R, which is typically
small. This outer-loop represents the barrier method for µ = 0. At the start of the algorithm,
µ > 0, where each iteration of the outer loop, the parameter µ is reduced by a user-defined factor
σ ∈ (0, 1). The inner while-loop, computes the solution of the barrier method for µ > 0, where
each iteration computes a new search direction (by solving (A.8) and computing (A.9)) to update
the solution (A.10), iteratively. The step sizes α, αω need to be determined based on the variable
z and Lagrange multiplier ω, respectively. The user-defined parameter τ ∈ (0, 1) makes sure that
the optimisation does not converge to the lower bound too quickly [73].

Next, we give a brief overview of the extension applied by IPOPT to create a more robust solver
to find a (global) solution of NLPs. The extensions we cover are as follows:

� Filter method, which prevents cycling between solutions.

� Second-order correction, which corrects infeasible solutions based on information in the Ja-
cobian.

� Inertia correction of the KKT matrix, which approximates the system of equations (A.8)
that may have become singular throughout the iterative process.

� Feasibility restoration phase, which is the final mechanism to find a (non-optimal) solution
which is, at least, feasible.

Filter Method For each iteration k, IPOPT maintains a ‘filter’ Fk ⊂ {(θ, f) ∈ R2 : θ ≥
0} which contains the combinations of objective values f and constraint violations θ that are
prohibited. If (θ(zk), f(zk)) ∈ Fk then the candidate solution zk is rejected. The filter is initialized
with

F0 := {(θ, f) ∈ R2 : θ ≥ θmax},

where θmax ∈ R is user defined parameter. During the algorithm, the filter is also updated every
iteration k + 1 by:

Fk+1 := Fk ∪
{
(θ, f) ∈ R2 : θ ≥ (1− γθ)θ(zk) and f ≥ fµ(z)− γfθ(zk)

}
, (A.11)

where γθ, γf ∈ R are user-defined parameters. This filter is designed to prevent the cycling between
two solutions, where one improves the objective value f and the other the constraint violation θ.
If a candidate is found, which does not improve either the objective value f or the constraint
violation θ, then the candidate is discarded.

Second-order correction When a candidate solution is rejected, a secord order correction can
be used to improve the step size. Such a second-order correction (an additional search direction
step based on the Jacobian ∇f(z)) applies addition Newton-like steps to the algorithm, with the
goal of reducing the infeasibility. This correction step replaces the candidate solution zk. The
additional correction step dz,cork is found by solving

∇f(z)⊺δz,sock + g(zk + αkδ
z
k) = 0,

where δz,sock is the second-order step, and f, g are the objective function and constraints from (A.3).
Then, the correction step δz,cork is defined as

δz,cork := αkδ
z
k + δz,sock .

There are more correction techniques applied, such as updating the step size αk and updating
constraint gk based on the corrected point. This second-order correction technique is applied
consecutively until the corrected point is feasible. For more details on the second-order correction
and the intricacies of updating αk, gk, we refer to Section 2.4 in [73].
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Inertia correction of the KKT matrix To be able to evaluate the search directions (A.10),
we need non-singular matrices for (A.7) to solve the system. In addition, the matrix in (A.8) needs
to be positive definite to have global convergence, i.e., the optimisation returns a globally optimal
solution. The inertia of the iteration matrix (found in (A.8)) is defined by a tuple1 signifying n
positive eigenvalues, m negative eigenvalues and 0 zero-valued eigenvalues. To try to keep the
inertia (n,m, 0), a heuristic is used by IPOPT to improve the robustness of the algorithm, and
prevent zero-valued eigenvalues. In short, no action is taken whenever the inertia is (n,m, 0), but
when zero-valued eigenvalues are present, a modified version of (A.8) is solved, where[

∇2
zzL(z,ν,ω) + Diag(ω ◦ z−1) + ε1I ∇g(z)

∇g(z)⊺ −ε2I

](
δzk
δνk

)
= −

(
∇F (z) +∇g(z)ν − ω

g(z)

)
,

for ε1, ε2 > 0 are relatively small values. This allows for an acceptable approximation of the
singular system of equations, such that IPOPT can still find a solution for problem descriptions
with zero-valued eigenvalues during the optimisation process. For more information, we refer to
Section 3.1 in [73].

Feasibility Restoration Phase Whenever the line-search procedure cannot correct an infea-
sible solution, and the step size has become too small to ‘escape’ the convergence, a feasibility
restoration is applied to return a non-optimal solution, which is at least feasible. If the solution is
infeasible under the aforementioned conditions, then the restoration phase computes a new accept-
able iterate to the updated filter Fk+1 by decreasing the infeasibility. IPOPT adjusts the objective
function to

min
z∈Rn

∥g(z)∥1 + ζ∥DR(z− ẑ)∥22,

subject to

z ≥ 0,

(A.12)

where ẑ is the infeasible reference solution at which IPOPT converged and needs to be restored.
The matrix DR is a scaling matrix, the parameter ζ > 0 is used as a weight. The minimization
of ∥g(z)∥1 is the key objective, with ∥DR(z − ẑ)∥22 being a regularization such that the solution
is close to the reference point ẑ at which the restoration phase is initiated. The parameter ζ
needs to be chosen carefully to guarantee improvement of the constraint violation, while staying
in the neighbourhood of ẑ. There are alternative optimisations possible during the restoration
phase compared to (A.12). We only present the basic idea here. For more information, we refer to
Section 3.3 in [73].

A.2 Searching for the Global Solution

EC can be used to improve the solution. The basic idea in EC mimics biological evolution. The
goal in EC is to solve a problem with use of a population of solutions which are iteratively altered.
Candidate solutions are typically referred to as chromosomes, where each chromosome has a fitness
determining if it will be used to form the new solution. In optimisation problems, the fitness
is usually the objective function of the optimisation problem. A set of chromosomes is called a
population, which evolves iteratively with the use of crossover (mixing chromosomes) and mutation
(perturb a single chromosome). Using an evolutionary algorithm can be relatively slow, but can
result in better solutions when the objective function is non-smooth, non-differentiable, or has many
local optima. In these cases, using a gradient-based algorithm would converge locally. However,
gradient-based algorithms have relatively quick convergence and low computing time depending on
the problem size. Combining the properties of the gradient-based algorithms with an evolutionary
framework can result in a relatively efficient and accurate algorithm. We will refer to this as a
meta-heuristic, because it is a heuristic which is not problem specific. There are many types of
meta-heuristics, as seen in [34]. The types we consider are, in order of increased complexity, given
by:

1The variables m,n have nothing to do with the amounts bought and sold in Chapter 2 (n,m, 0), and is used
for notational ease.
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Multi-start local search As the name implies, MSLS uses an efficient local search algorithm for
a number of different initial starting values. It solves the problem with a local solver for each initial
value and considers all the found optima and uses the local optimum with the lowest objective
value. This is assumed to be the global optimum, but there is no guarantee that it is. There is
no interaction or mixing between solutions and solutions are not put back into the local search
algorithm, and thus MSLS local search is the simplest form of EC.

Iterative local search Similar to the MSLS, multiple problems with different initial values
are solved. Based on the objective values, the best ranking solutions are chosen. These can be
changed slightly, referred to as a mutation, to obtain new initial values, which are optimised again.
This iterative process is more complex because of the mutation of the local optima found by the
algorithm. However, there is still no interaction or mixing between solutions.

Genetic local search A crossover operation between multiple (usually two) solutions is used
at each iteration to combine good performing optima to find even better optima. This can be
combined with a mutation operation which only changes one solution. The inclusion of a crossover
operation in between iterations is similar to the genetic algorithms traditionally found in EC.

In our project, we have implemented all three methods, but in the end the ILS algorithm was
sufficient in finding a solution. Applying the global search algorithm did not improve the solution.
In that case, it is better to use the ILS algorithm, because it has reduced computing time, compared
to GLS. The MSLS and GLS algorithms are given in Appendix A.5, respectively. The pseudocode
of the ILS algorithm is presented here, in Algorithm 3, for which all notation corresponds to
the variables and functions defined for the calibration (3.25) of the market equilibrium model.

Algorithm 3 Iterative local search with IPOPT.

input: Observed market data (x̄, d̄, p̄) from (3.9).
parameters: Set scaling parameter σ ∈ (0, 1), termination tolerance ϵimprov > 0, cmax > 0.
output: Stationary solution (x,y,λ)(k)

1: k ← 0, ζ ← 1, c← 0.
2: Choose initial y̆ whose components are in the middle of the constraints (3.25).
3: Initialize population P0 ← initialize population(x̄, y̆, ζ)
4: while E((x,y, λ)(k), c) do
5: Locally optimal solutions Sk ← parallel IPOPT(Pk)

6: (x̆, y̆, λ̆)(k) ← argmin(Sk)
7: if fk

(
(x̆, y̆, λ̆)(k)

)
− fk−1

(
(x̆, y̆, λ̆)(k−1)

)
< ϵimprove then

8: c← c+ 1
9: else

10: c← 0
11: Pk+1 ← initialize population(x̄, y̆, ζ)
12: set k ← k + 1, ζ ← σζ

13: return (x,y, λ)(k)

The termination criterion E((x,y, λ)(k), c) is given by

E((x,y, λ)(k), c) :=

{
true, k < kmax and c < cmax,

false, otherwise.

Lastly the minimal improvement criterion c < cmax counts how many times the objective value has
not improved sufficiently. If there is no noticeable improvement after cmax iterations, we terminate
the algorithm. The function parallel IPOPT(Pk) is the parallelized application of the IPOPT
algorithm, i.e., we distribute the computations of IPOPT over multiple processors, because each
instance can be solved independently. For example, when the population Pk has 22 initial values
with 4 processors, then 2 processors solve IPOPT for 6 initial solutions, and the other 2 processors
solve for 5 initial solutions.
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The initialization of the population by initialize population(x̄, y̆, ζ) uses a Latin hypercube
sampling (LHS) technique, which is presented in Algorithm 4. Let y ∈ Rn be a vector which is
sampled via LHS. Divide each dimension i = 1, ..., n of y that needs to be sampled in equal inter-
vals. Then, for each interval one value is uniformly sampled. Mix the samples from the different
intervals such that the samples have a mix of uniformly sampled values from varying intervals. The
intervals help to spread the samples evenly throughout the sample space. For more information
on the Latin Hypercube sampling in comparison to other sampling techniques, we refer to [57].

Algorithm 4 Description of function: initialize population.

input: Observed market data x̄, found optimal y̆, population size p ∈ N and parameter
ζ ∈ (0, 1).
output: Population P

Step 1: Determine the partitions and perform sampling.
1: Compute the lower bounds yl ← (1− ζ)y, and upper bounds yu ← (1 + ζ)y
2: for i = 1, ..., |y| do
3: Partition interval [yl

i,y
u
i ] into p subintervals, denoted by [yl

i,j ,y
u
i,(j+1)] for j = 1, ..., p− 1.

4: for j = 1, ..., p− 1 do

5: Sample ỹ
(j)
i ∼ U([yl

i,j ,y
u
i,(j+1)])

Step 2: Distribute the samples of each component to form initial population.
6: for j = 1, ..., p do

7: randomly choose y
(k,j)
i ← ỹ(k, j)i without repeat.

8: λ← determine lambda(x̄)
9: Initialize population P ←

{
(x̄,y(k,1),λ), ..., (x̄,y(k,p),λ)

}
10: return P

The function determine lambda(x̄) sets entries of λ to zero when we know, based on x̄, that
constraints are not at the boundary, and gives a random non-zero value when we know that a
constraint is at the boundary. For example, for the non-negativity constraint of x in (2.15), when
we know x̄0 = 0, then λ0 ∼ U([0, 1]) uniformly sampled, otherwise when x̄0 > 0, then λ0 = 0.

A.3 Details of the Quadratic Optimisation Algorithm

In this Section, we discuss the quadprog solver, which we use to solve the quadratic optimisation
problem (2.36). Our description is a simplified version of the original paper [36]. The quadratic
optimisation problem from (2.36) (with linear constraints) is a relatively simple mathematical
description and there are several solvers available which can be used to solve this problem. Under
(strict) convexity conditions, the quadratic optimisation algorithms find the global solution. Some
solvers, such as quadprog, require a symmetric matrix P . In that case, the matrix P can be
replaced by 1

2 (P + P ⊺), because

1

2
x⊺(P + P ⊺)x =

1

2
x⊺Px+

1

2
x⊺P ⊺x = x⊺Px.

The solvers which we used are from the qpsolver [18] Python package running the open-source
solvers: Highs [45, 39], quadprog [36], Clarabel [38], OSQP [67], SCS [59, 60] and CVXOPT [71, 12]
which are mixtures of active-set, interior point and first order methods [17, 58, 67]. Through
testing, we have found that quadprog based on [36] is the most robust solver. When the other
solvers find a solution, the result is used to perform a sanity check on the final solution. The solver
quadprog algorithm solves the quadratic minimization problems of the form

min
x

φ̂(x) =
1

2
x⊺Qx+ q⊺x,

subject to

Dx ≤ v,

(A.13)
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where defining Q := −(P +P ⊺) and q = −c means that minimization problem (A.13) is equivalent
to the market equilibrium problem (2.36) for x, D,v representing the same trade flows, constraint
matrix and constraint bound, respectively. If the matrix Q is indefinite, and all solvers find the
same solution, we have more confidence in the stationary point being a global optimum. In this
section, we present a description of the quadprog solver, applied to the quadratic optimisation
problem (A.13), based on the original paper. For further details, we refer to the paper [36] and
the GitHub source code [35].

The quadprog solver is based on the Goldfarb/Idnani algorithm which is a projection type al-
gorithm. This algorithm uses projections on the active sets of constraints. An active set A ⊂
{1, 2, ...,K} is a subset ofK constraints, based on theK constraints given byD in (A.13). for which
the inequalities are equalities, e.g., if A = {1} then (Dx)1 ≤ v1 will be replaced by (Dx)1 = v1.
Using the active sets, the constrained quadratic programming can be solved in two phases: First,
a feasible point is found (usually non-optimal). Secondly, the problem is iteratively optimised,
increasing the subproblem with one constraint per iteration, while the solution remains feasible.
A natural initial point is the unconstrained optimum

x = −Q−1q,

which is used when this point is also feasible. In case it is infeasible, a feasible point routine is
used to acquire a feasible point based on x̆.

The optimisation problem (A.13) is solved iteratively, where at each iteration a subproblem is
used. Let C ⊆ {1, ...,K}. A subproblem P(C) of the optimisation problem (A.13) is an optimisa-
tion problem with the same objective function, but with the constraints (Dx)j ≤ vj indexed by
j ∈ C. The unconstrained version of the optimisation problem would be given by P(∅). The opti-
misation problem in (A.13) is given by P({1, 2, ...,K}). Note that for any subproblem the active
set A ⊂ C is a set of indices which indicate the constraints which are equalities from the subset of
constraints. For example, let K = 3 and P({1, 2, 3}) be an optimisation problem given by (A.14).
Let P({2, 3}) be an optimisation problem given by (A.15), which is a subproblem of P({1, 2, 3})
because it has a subset of the constraints, namely constraints (Dx)2 ≤ v2 and (Dx)3 ≤ v3. Let
A := {2, 3} be an active set. Then the subproblem P(A) is given by (A.16). Note that the sub-
problem P(A) has equality constraints, while P({2, 3}) has inequality constraints. Additionally, a
solution to P(A) is also a solution for P(A).

P({1, 2, 3}) :

min
x

x⊺Qx+ q⊺x,

subject to

(Dx)1 ≤ v1,

(Dx)2 ≤ v2,

(Dx)3 ≤ v3,

(A.14)

P({2, 3}) :

min
x

x⊺Qx+ q⊺x,

subject to

(Dx)2 ≤ v2,

(Dx)3 ≤ v3,

(A.15)

P(A) :

min
x

x⊺Qx+ q⊺x,

subject to

(Dx)2 = v2,

(Dx)3 = v3.

(A.16)

The solution x found by solving P(C) with some linearly independent active set A ⊆ C, is given by
the solution-pair (x,A). Note that a solution which solves (A.16), also solves (A.15), because the
inequality is a relaxation compared to the equality constraint. In addition, note that when (A.15) is
infeasible, so is (A.14). The linear independence of the active set A means that the normal vectors
ni which correspond with the constraint (Dx)i ≤ vi for i ∈ A are linearly independent. Based
on the definitions of subproblems and solution-pairs, the algorithm used by quadprog iteratively
expands the subproblem at each iteration. To start, we have P(A) with A = ∅. Each iteration,
we consider a violated constraint k ∈ {1, ...,K}\A. If adding the violated constraint as an active
constraint, means that the subproblem P(A ∪ {k}) becomes infeasible, then stop. Else, obtain a

new solution-pair of P(A ∪ {k}). Solve to find the solution-pair (x̃, Ã ∪ {k}), where Ã ⊆ A and

x̃⊺Qx̃+ q⊺x̃ > x⊺Qx+ q⊺x, (A.17)

which replaces the old solution-pair (x,A). Note that the objective value has increased in (A.17) be-
cause we start with the unconstrained minimum (the lowest value possible without any constraint)

59



for the first solution-pair and add constraints consecutively, the objective value must monotonically
increase as the feasible region decreases. Repeat this process, until none of the constraints is vio-
lated, then the optimal solution is found. This approach is outlined in Algorithm 5. Algorithm 6
is the detailed algorithmic description from the original paper [36] is given in Appendix A.4. The
following notation will be used in the algorithms: The matrix N describes the normal vectors ni of
constraints in the active set i ∈ A. The cardinality of A is given by |A|. Matrix N+ is the matrix
of normal vectors of A∪{k} for k ∈ {1, ...,K}\A. Vector n+ indicates the normal (column) vector
nk added to N to obtain N+. Pseudo-inverse N∗ is defined by

N ∗ := (N ⊺Q−1N )−1N ⊺Q−1, (A.18)

and a reduced inverse Hessian operator H, which is subject to the active set of constraints N , is
defined by

H := Q−1(I−NN ∗),

such that a point x̄ = x̂ − H(Dx̂ − v) is an optimum of ∇φ̂(x̂) where x̂ ∈ {x ∈ Rn : n⊺
i x̂ =

vi, i ∈ A}. During the optimisation, we also update the Lagrange multipliers, denoted by λ. The
Lagrange multiplier which corresponds to normal vector n+ is λ+.

Algorithm 5 Quadprog: Basic overview of the algorithm.

input: Coefficients of (A.13): Q, q and constraint Dx ≤ v.
output: Return optimal and feasible x or return an error.

1: Initialize x, φ̂,H,A.
2: if there is no violated constraint then
3: return solution x, which is feasible and optimal.
4: else
5: select a violated constraint i.
6: Determine step directions r (for x) and z (for λ).
7: Compute step length t1 for direction x and t2 for direction λ.
8: Compute minimum step size t = min{t1, t2}.
9: if step size t (or t2) is infinite then

10: return ERROR or go to step 2a.

11: Compute new iteration x, λ+ and φ̂.
12: if t = t1 then
13: Set A ← A\{k}, i.e., add constraint k to the active set.
14: Update matrices H and N , based on new active set A. Go to line (6).

15: if t = t2 then
16: Set λ← λ+ and A ← A∪ {i}, i.e., remove constraint i from the active set.
17: Update matrices H and N , based on new active set A. Go to line (2).
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A.4 Details of Active Set Algorithm used by Quadprog

In Algorithm 6, we give a detailed description of the algorithms used by quadprog, based on the
original paper [36].

Algorithm 6 Detailed description of quadprog.

input: Coefficients of (A.13): Q,q and constraint Dx ≤ v.
output: return optimal and feasible x or return an error.

Step 0: Initialize
1: x← −Q−1q, φ̂← 1

2q
⊺x, H ← Q−1, A ← ∅.

Step 1: Choose a violated constraint, if any:
2: Compute (Dx)j − vj for all j ∈ {1, ...,K}\A.
3: if V = {j ∈ {1, ...,K}\A : (Dx)j − vj > 0} = ∅. then
4: return optimal and feasible x.
5: else
6: Choose i ∈ V and set n+ ← ni and λ

+ ← ( λ0 ).
7: if |A| = 0. then
8: λ← 0.

Step 2: Check for feasibility and determine new S-pair.
Step 2a: Determine step directions r and z.

9: Compute z = Hn+ (direction for x).
10: if |A| > 0. then
11: r = N∗n+ (direction for λ).

Step 2b: Compute step length t.
12: if r ≤ 0 or |A| = 0. then
13: t1 ←∞.
14: else

15: t1 ← minj∈A

{
λ+
j (x)

rj

}
=

λ+
k (x)

rk
.

16: if |z| = 0. then
17: t2 ←∞.
18: else
19: t2 ← (Dx)i−vi

z⊺n+ where i is from line (6).

20: t← min{t1, t2}.

Step 2b: Determine new S-pair and take step.
21: if t =∞ then
22: return ERROR: subproblem P(A ∪ {i}) and by extension (A.13) is infeasible.

23: if t2 =∞. then
24: λ+ ← λ+ + t ·

(−r
0

)
and A ← A\{k} where k from line 15. Update H,N ∗. Go to step 2a.

25: Compute new iteration: x← x+ tz, φ̂← φ̂+ t( 12 t+ u+|A+1|) · z
⊺n+, λ+ ← λ+ + t

(−r
0

)
.

26: if t = t2 then
27: λ← λ+, A ← A∪ {i} where i is from line (6). Update H and N ∗. Go to step 1.

28: if t = t1 then
29: A ← A\{k} where k from line (15). Update H and N ∗. Go to step 2a.
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A.5 Other Meta-heuristics

Multi-start Local Search The multi-start local search algorithm we have implemented is given
by Algorithm 7.

Algorithm 7 Multi-Start local search with IPOPT.

input: Observed market data (x̄, d̄, p̄) from (3.9).
output: Stationary solution (x,y,λ)(k)

.
1: Choose initial y̆ whose components are in the middle of the constraints (3.25).
2: Initialize population P0 ← initialize population(x̄, y̆, ζ)
3: Locally optimal solutions Sk ← parallel IPOPT(Pk)

4: (x̆, y̆, λ̆)(k) ← argmin(Sk)
5: return (x̆, y̆, λ̆)(k)

Differential Evolution We have tried a GLS algorithm using the framework of Differential
Evolution given in Algorithm 8, but altered this algorithm to use the local search algorithm
IPOPT. Algorithm 8 generates a population of local optima for which the solutions are mixed
(by crossover) to find new initial solutions. These initial solutions are used by the IPOPT solver
to find new local optima. If the mixed initial gives a better local optima than the previous it-
eration, the solution is replaced, otherwise the old solution is kept. Parameter CR ∈ (0, 1) is
the crossover rate and parameter F ∈ [0, 2) is used to the adjust the crossover operation, which
is based on the crossover operation typically used by the Differential Evolution algorithm. The
crossover operation is given in Algorithm 9. To determine if the crossover has led to a better
solution, the population of initial solutions P̂k is solved via a parallelised execution of the IPOPT
algorithm. In Algorithm 10, we give the details of the selection procedure we perform, which
is also based on the selection used in Differential Evolution. To improve the robustness of the
global search algorithm a ‘replenishment’ of the population of initial solutions is performed to
make sure that there are enough initial solutions to find solutions. This safety measure is neces-
sary because IPOPT does not always converge to a solution which can be used. At that point,
an error is given by IPOPT, thus we need to replace the failed solution with a new initial value.

Algorithm 8 Differential Evolution with IPOPT.

input: Observed market data x̄, d̄, p̄.
parameters: Set CR ∈ (0, 1), F ∈ [0, 2), ϵtol > 0.

output: Stationary solution (x,y, λ)
(k)
l .

1: k ← 0
2: Initialize population P0 :=

{
(x,y, λ)

(0)
1 , ..., (x,y, λ)

(0)
l

}
3: Local solutions S0 ← IPOPT(P0)
4: while E((x,y, λ)k) ≤ ϵtol and k < kmax do
5: P̂k ← crossover(S0, CR, F )
6: Local solutions Ŝk ← IPOPT(P̂k)
7: Pk+1 ← selection(Sk, Ŝk)
8: Select (x,y, λ)

(k)
l ← argmin(Sk)

9: Pk+1 ← replenish(Pk+1)
10: set k ← k + 1

11: return (x,y, λ)
(k)
l
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Algorithm 9 Crossover Operation of the Differential Evolution algorithm.

input: Population of parent solutions Sk.
parameters: Set CR ∈ (0, 1), F ∈ [0, 2).
output: Population of offspring initial values P̂k.

1: P̂k := ∅
2: for (x,y, λ)

(k)
u ∈ Sk do

3: u1, u2, u3 ← uniform sample([0, 1))

4: random index ι← uniform sample({0,dim((x,y, λ)
(k)
u )})

5: for i ∈ {0,dim((x,y, λ)
(k)
u )} do

6: ri ← uniform sample([0, 1))
7: if ri < CR or i = ι then

8: zi ← (x,y, λ)
(k)
u1 + F ·

[
(x,y, λ)

(k)
u2 − (x,y, λ)

(k)
u3

]
9: else

10: zi ← (x,y, λ)
(k)
u

11: append P̂k ← P̂k ∪ {z}
12: return P̂k

Algorithm 10 Selection Operation of the Differential Evolution algorithm.

input: Parent and offspring solutions Sk, Ŝk.
output: Population of initial solutions for next iteration Pk+1.

1: Pk+1 := ∅
2: for u = 1, ..., |Sk| do
3: select (x,y, λ)

(k)
u ∈ Sk and (x̂, ŷ, λ̂)

(k)
u ∈ Ŝk

4: if f
(
(x̂, ŷ, λ̂)

(k)
u

)
< f

(
(x,y, λ)

(k)
u

)
then

5: add offspring solution Pk+1 ← Pk+1 ∪ {(x̂, ŷ, λ̂)(k)u }
6: else
7: add parent solution Pk+1 ← Pk+1 ∪ {(x,y, λ)(k)u }
8: return Pk+1
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A.6 Preprocessing: Data ingestion

For the model to perform well it is essential that the data which in ingested in the model is of
sufficient quality to perform a accurate calibration. There are a number of pre-processing tasks
necessary before we can calibrate the market equilibrium model. The different price benchmarks
for the European and Asian markets are based on different currencies and different energy units.
In addition, the trade flows are commonly published in a different unit than the price benchmarks
are published. It is essential for the market equilibrium model that these trade flows units and
currencies are equivalent for every route and region. Some regions also do not have a price bench-
mark. These missing data points need an estimate. This estimate is based on a price benchmark
and a price differential, which we base on expert opinion. In general, we assume that export re-
gions act comparable to each other, and thus have similar prices. In Algorithm 11, we show the
conversion algorithm. Here, MMbtu stands for 106 British thermal units, Therms stands for 105

British thermal units, MWh stands for megawatt hour, USD is the United States Dollar, GBp is
the Great British penny and EUR is the Euro.

Algorithm 11 Data Conversion.

input: Data X̄, p̄.
output: Converted data X̄, p̄.

1: p̄← USDperMMbtu to EURperMWh(p̄)
2: p̄← GBpperTherm to EURperMWh(p̄)
3: X̄ ← metric tonne to MWh(X̄)
4: return: X̄ and p̄.

In addition, we also need to acquire data on L,C, κ, π(s), π(p). Some of these values are pub-
lished. However, for missing data we need to find a suitable substitute. In general, we assume
that export regions have similar behaviour and thus similar parameters. We assume the same for
import regions. Alternatively, The North American terminals have relatively a lot of publications
describing the port capacity in the Gulf of Mexico. This can be used to compute an ‘overhead’
ratio ENA

CNA
which describes how much port capacity is available on top of what is already exported,

i.e., overhead. This ratio can be used to compute the port capacities of the other regions as

Ci := Ei ·
ENA

CNA
,

for the export regions i ∈ S.

Our model focusses on the spot LNG market. Finding data which is exclusively on spot LNG
market is difficult. As a solution, we use the combined trade flows (spot and long contract) and
multiply the data by a factor of the spot market contribution. For example, the trade route NA–
EU will be multiplied by 0.5, because 50% of the trade flow is spot market. While ME–NEA is
multiplied by 0.05, because only 5% of the trade flow is spot market.
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Appendix B

Additional Background and
Results

B.1 Algebraic Modeling Language

The goal of using an algebraic modeling language (AML) is to provide a programming syntax which
translates the mathematical formulation seen in LATEX documents to readable code. It should be
noted that AML are high level programming languages, intended to provide a framework to solve
high complexity problems for large scale problems. The types of problems that AMLs are able to
solve are linear, integer, quadratic, non-linear, complementarity and stochastic problems. These
can be constrained or unconstrained programs. Another benefit of AMLs is the relative ease at
which the programmer can use different solvers. Each solver has its own interface, but uses stan-
dardised ‘A Mathematical Programming Language’ [29] (AMPL) read (.nl) and write solution
(.sol) file extensions, which are interpreted by the AML. It is possible for the user to link the AML
to non-supported solvers, as long as the solver is compliant with standard AMPL .nl and .sol file
extensions.

Pyomo translates the optimisation problem (3.25) from Python code to input of the solver ap-
plication based on standard .nl file-format, which is used by algebraic modelling languages to
inferface IPOPT (or any other solving application). The solution is in a standard solution .sol
file-format. The algebraic modeling language Pyomo handles the translation from Python code to
the .nl file-format and after solving the resulting .sol file is interpreted by Pyomo, which creates a
Python object with all the information from the .sol file.

B.2 Other Methods to Simplify a Bilevel Optimisation

Descent Method A descent method uses the gradient of the lower or upper level problem
which provides a direction to decrease the upper level objective value while the point remains
feasible. The upper level problem is non-differentiable, but this can be approximated via several
approximation methods, see [48]. The lower level problem is a standard single level optimisation on
its own, thus gradient-based methods are applicable. This method is explored for quadratic-linear
bilevel programs in [68] and non-linear bilevel programs in [69].

Trust-region Method This method can be seen as the opposite of the line search method. Here
a model function is used for an approximation of a region of the objective function. The size of
the region is changed based on the quality of the approximation. If the approximation is accurate,
the the region is expended. Otherwise the size of the region is reduced. This method is applied to
non-linear bilevel programs with convex objective functions in [51].

Meta-modelling For some solving techniques, such as global search algorithms, it can be prob-
lematic whenever the objective function is computationally expensive to evaluate. Instead, a
meta-model – a surrogate model of the actual model – is used. The meta-models can be solved
with an evolutionary algorithm, because evaluating the objective function is designed to be cheap.
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The meta-model should be close enough to the actual model such that the solution of the meta-
model can be used as an approximation for the solution of the actual model. There are several
ways to employ meta-modelling:

The first approach, reaction set mapping, is based on the fact that the set mapping

Ψ = {φ(x) subject to Dx ≤ v} ,

is not known. The alternative is to approximate Ψ, but this is not straightforward. Attempts have
been made, such as in [64].

The second approach tries to approximate the optimal lower level value function ϕx(y) which
represents the minimum lower level function value for given upper level variable x. However,
ϕx(y) is rarely known. Whenever it is known, ϕx(y) can be used to reduce the bilevel program to
a single level program when the lower level problem is not convex.

The third approach is bypassing the lower level problem, which assumes that the optimal x is
a function of y. With this assumption, a single level optimisation can be constructed because the
lower level optimisation can be removed. This is likely to lead to ill-posed problems because of
non-convexity, discontinuities and non-differentiability. In practice, it is also difficult to determine
such function x(y).

B.3 Accuracy Analysis of Calibration without Market Equi-
librium Constraints

Assume that our model can calibrate perfectly such that z = z̄ as given by (3.9). This means that
we have M(N−M)+M+N equations given by zk = z̄k for k = 1, ...,M(N−M)+M+N . The cal-
ibration has 2M+2N degrees of freedom. When M(N−M)+M+N < 2M+2N , we can interpret
the optimisation as an underdetermined system of equations. And when M(N −M) +M +N >
2M + 2N as an overdetermined system of equations. We show that the optimisation without
market equilibrium constraints of the summer 2022 baseline is able to find accurate solutions con-
sistently when M(N −M) +M +N = 2M + 2N . In Table B.1, we given an overview the number
of equations given by zk = z̄k for k = 1, ...,M(N −M) + M + N and the degree of freedom for
increasing number of regions for this specific calibration. In Figures B.1 and B.2, we show the
accuracy analysis of these regions solved by the MSLS and ILS algorithms, respectively.

Notice that the scenario with 3 export and 3 import regions (3 × 3) is well equated (number
of equations and degrees of freedom are the same) and the accuracy analysis in Figures B.1 and
B.2 are the most consistent. The scenario with 2 × 2 regions is still more accurate, as shown by
the lowest 0th percentile, but has more unique solutions, as seen by the spread between the other
percentiles. We believe this is caused by the calibration mimicking an underdetermined system of
equations. This calibration would benefit from a better solver, which quickly finds the minimum.
We think the scenarios 4× 4,...,6× 6 are inaccurate because the calibration mimicking an overde-
termined system of equations. As seen by the high minimum objective value and high objective
values for all percentiles higher than 25th. In contrast to the underdetermined system, we think
the model would need more degrees of freedom to accurately calibrate. In Table B.1, we give an
overview of the number of equations and degrees of freedom, when the calibration is interpreted
as a system of equations.

Additionally, we have calibrated the model by replacing the objective function by

∥z ◦ z̄−1 − 1∥22 + ∥y∥22,

where γ ∈ R (we choose 10−8) and ∥.∥2 is the Euclidean norm. In Tables B.2, B.3, B.4 and
B.5, we present the corresponding calibrated flows, prices,ask and bid parameters and the relative
difference w.r.t. the realistic data.
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Figure B.1: Performance of the multi-start local search without market equilibrium constraints.

Figure B.2: Performance of the ILS without market equilibrium constraints.
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Export × Import Regions Number of equations Degrees of freedom Type of system

N M(N −M) +M +N 2M + 2N

2× 2 4 10 12 underdetermined

3× 3 6 18 18 well equated

4× 4 8 28 24 overdetermined

5× 5 10 40 30 overdetermined

6× 6 12 54 36 overdetermined

Table B.1: Overview of number of equations and degrees of freedom.

ηA a ηB b

(e/MWh)/(MWh/day) e/MWh (e/MWh)/(MWh/day) e/MWh

AU 0.0000881 -71.87 0.0001888 72.37

NA 0.0000025 -10.98 0.0000013 43.99

ME 0.0010659 -1071.84 0.0012911 999.67

EU - - 0.0002220 327.76

SA - - 0.0003002 153.63

NEA - - 0.0001061 297.43

Table B.2: Summer 2022 scenario calibration without market equilibrium constraint: Ask and bid
parameters.

Baseline Relative diff.

p d(p, p̄)

e/MWh -

AU 26.67 0.06%

NA 26.14 1.25%

ME 27.02 -3.90%

EU 163.93 8.23%

SA 91.97 23.57%

NEA 162.40 -12.70%

Table B.3: Summer 2022 scenario calibration without market equilibrium constraint: Baseline
prices p with the relative difference compared to market data p̄.

MWh/day AU NA ME EU SA NEA Total Sold

AU 242,086 - - 999 1,000 874,953 1,119,039

NA - 13,631,003 - 613,745 203,398 244,154 14,692,301

ME - - 753,326 123,314 1,002 153,293 1,030,934

Total Bought 242,086 13,631,003 753,326 738,058 205,400 1,272,400

Table B.4: Summer 2022 baseline calibration without market equilibrium constraint: Calibrated
trade flows.

AU NA ME EU SA NEA Total Sold

AU 0.41% - - - - 3.84 3.26%

NA - 0.01% - -4.47% 0.40% 0.58% -0.17%

ME - - -1.45% 19.61% - -27.20% -4.37%

Total Bought 0.41% 0.01% -1.45% -1.01% 1.39% -1.81%

Table B.5: Summer 2022 baseline calibration without market equilibrium constraint: Relative
differences of the calibrated trade flows w.r.t. the data.
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