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Abstract

Causality plays an important role in many day-to-day processes and
humans reason about causality all the time. There has however not been
much research on causality in (multi-)agent systems. In this work I intro-
duce a way to integrate a structural causal model in multi-agent system
models, specifically in a concurrent game structure (CGS). In such a causal
CGS, every transition corresponds to an intervention on agent variables
of the causal model. The Halpern and Pearl framework of causality is
used to determine the effects of a certain value for an agent variable on
other variables. This causal CGS allows us to analyse and reason about
causal effects of agents’ actions on each other and their shared environ-
ment in multi-agent settings. In this work I study and analyse the relation
between the derived-multi-agent system model, this causal CGS, and the
original structural causal model and I analyse the causal CGS to show
a relation between strategic responsibility and causality. This work first
gives an overview of the literature on causality, labelled transition sys-
tems and concurrent game structures, several temporal logics and several
notions of responsibility. After that it defines the notion of a causal CGS,
and I show how agent strategies in this CGS relate to causality in the
original causal model and show a relation between strategic responsibility
and causality in the HP framework. This work can in the future be used
for (multi-)agent systems where causal relations play an important role. It
can be used to plan strategies or to determine causation and responsibility
when things go wrong.
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1 Introduction

In his book Actual Causality, Halpern claims that determining causality is cru-
cial in the attribution of responsibility for an outcome [8]. He uses a definition
of responsibility directly building upon the definition of causality [5]. Therefore,
in that case causality is clearly crucial when attributing responsibility, but this
is not true for all definitions of responsibility in multi-agent systems. Other
works define responsibility using agent strategies [16, 2]. In this thesis I am
investigating the relation between actual causality and strategic responsibility.
Before we can do this, we need to look at how both notions compare.

Agent strategies are usually discussed in the context of labelled transition
systems (LTS), or more general, concurrent game structures (CGS), which gen-
eralise LTS to multi-agent systems [1]. LTS are represented as graphs, where
every node corresponds to a state and every edge to a transition. The edges are
labelled, usually with actions that bring the transition about [7, 4]. A logic for
reasoning about transition systems is linear-time temporal logic (LTL), which is
a modal logic that extends propositional logic with a modal operator for ‘next’,
which denotes that something will be true after the current state, and a modal
operator for ‘until’, which denotes that something will be true as long as some-
thing else is not true [4]. However, other temporal logics like computation tree
logic [4, 11] and alternating-time temporal logic [1, 11] are also used.

A model for actual causality can also be represented as a graph, called a
causal network [8]. In such a causal network, the nodes correspond to variables
and edges indicate a causal relation between them. Causal models have two
different types of variables, exogenous and endogenous variables. The former are
variables whose values are determined by causes outside of the model, the latter’s
values are determined by the variables in the model. The value of an endogenous
variable is determined by the other variables of the model, as specified by a
structural equation [8]. There is not a single formalism for reasoning about
causal models, but some people have suggested branching-time logics [13]. These
logics usually have operators for things that will always be true in the future
and things that can be true in the future.

The main difference between causal networks and labelled transition systems
is that nodes in transition systems represent states of the environment, with the
edges representing events that change this state, while in a causal model, the
nodes represent variables that can have a certain value in an environment, with
the edges representing the causal effect the variables have on one another.

This work will focus on the use of transitions systems and causal models for
(multi-)agent systems. One can imagine that actions of one agent in a multi-
agent system can have a causal effect on the system as a whole, and other agents
in particular. For example, if one agent locks a door, a second agent cannot go
through it anymore. The first agent caused the second agent to be unable to go
through the door.

When defining some causal variables as agent variables, variables that are
directly influenced by an agent, causal model could be used to specify how
agents’ actions influence the environment. I want to research how a transition
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system for a (multi-)agent system can be derived from such a causal model. We
could imagine that when doing that, we describe the states of the transition
system with respect to the variables of the causal model. Actions changing the
state could then be interventions that explicitly change one or more variables
which leads to other changes of variables according to the causal model, which
then leads to a new state consistent with the underlying causal model. I will
then look at what such a model can say about causality, strategic responsibility
and the relation between the two.

In order to achieve this, in the next section, I will look at Halpern and Pearl’s
definition of causality [9] and in particular, Halpern’s book on causal models and
causality [8]. I will also look at several definitions of labelled transition systems,
including their original definition by Keller [12] and consider the different tem-
poral logics mentioned above that can be used to reason about these systems.
Finally I will discuss several notions of responsibility as discussed by Chockler
and Halpern [5], Baier et al. [2] and Yazdanpanah et al. [16]. With this solid
theoretical foundation, I will continue with defining a CGS based on a structural
causal model in Section 4. In Section 5, I will then show some results on how
agent strategies in this CGS relate to causality. Finally, I will shortly relate this
to the notion of strategic responsibility in Section 6 and discuss limitations and
future work in Section 7.
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2 Literature Overview

In this section I will first discuss causality, including causal models and a formal
definition. Then I will discuss labelled transition systems, including concurrent
game structures, their generalisation for multi-agent systems. I will continue
with talking about linear temporal logic and finally, I will discuss different no-
tions of responsibility.

2.1 Notation

A short overview of the notation I will use throughout this work:
Apart from a few exceptions, sets will be denoted by a capital letter, e.g.

A,B or Q. Variables will also often be denoted with capital letters. In situations
where this would make things unclear, following the practice in [8], I will abuse

notation a little and use a vector notation X⃗ for the set, so that the variables
of X⃗ are X1, X2, etc. Variable values will be denoted with a small letter, x, y.
An assignment of values to every variable in a set will be denoted with X = x,
where x = (x1, x2, ..., xn) indicating (X1 = x1, X2 = x2, ..., Xn = xn). When
using the vector notation for a set, I will also use the vector notation for the
assignment, so X⃗ = x⃗.

Functions and mappings will generally be denoted with either capital calli-
graphic text, like F and R or with lowercase letters like f and g.

2.2 Actual Causality

The “actual” part in actual cause, is to distinguish this kind of causality from
causality in a more general sense. Type causality is considered with more general
statements that can be used for prediction, e.g. an expression like: “Doing
homework causes a good exam grade.” The two events are not directly related,
and there are of course people who did do their homework but did not get a
good exam grade, but in general doing homework increases the probability of
a good exam grade. Actual causality on the other hand is interested in more
direct relations, an actual cause of an event did actually cause it. For example,
if I knock over my glass of water and water spills over my notes, knocking over
my glass was an actual cause of my notes becoming unreadable [8]1.

2.2.1 Causal Models

Causality has been studied since the ancient Greeks, but formal research into
causality started with Hume in 1758, who introduced two definitions of causality
[10]. A later notable formal definition we will focus on is the definition by
Halpern and Pearl [9]. For this formal definition it is important to create a
model that tries to capture all relevant variables in a system and the causal
relations between them. We call such a model a causal model :

1This is a purely hypothetical example and not based on a true story.
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Definition 1 (Causal Model [8]). A causal modelM is a pair (S,F), where S
is a signature and F defines a set of structural equations, relating the values of
the variables.
A signature S is a tuple (U ,V,R), where U is a set of exogenous variables, V,
a set of endogenous variables and R associates with every variable X ∈ U ∪V a
nonempty set R(X) of possible values for X.

A causal setting is a tuple (M,u), where M is a causal model and u a
setting for the exogenous variables in U .

The exogenous variables are variables whose values depend on factors out-
side of the model, when we created the model, we chose not to explain how
they are caused [8, 14]. The endogenous variables on the other hand are fully
determined by the variables in the model, or more precise, they are eventually
fully determined by the exogenous variables.

To see how that works, we must first look more closely at F , the set of
structural equations. F consists of functions FX , one for every X ∈ V. Such a
function FX then assigns a value to X based on the values of all other variables
in the model [14]2. In practice, not every variable will influence every other
variable and hence not every variable will show up in every structural equation.

Definition 2 (Dependence [8]). Given a causal modelM, and variables X,Y ∈
U∪V, Y depends on X if there is a setting of all variables in U∪V s.t. changing
the value of X in that setting results in a change of the value of Y . Formally,
∃z ∈ (U ∪ V)\{X,Y } and ∃x, x′ ∈ R(X) s.t. FY (x, z) ̸= FY (x

′, z). If Y does
not depend on X, we say that Y is independent of X.

In some contexts, the relation described by Definition 2 is called direct de-
pendence [8].

Now that we know this, we can see that because only the endogenous vari-
ables are described by the structural equations, they must ultimately depend
on one or more exogenous variables.

A way to easily show these dependencies is by depicting a causal model as
a causal network. Such a network is a directed graph with nodes corresponding
to the causal variables in V (and U) with an edge from the node labelled X to
the node labelled Y if and only if FY depends on X, i.e. if X can influence the
value of Y we put an edge from node X to node Y [9] .

Let us now look at an example of such a causal network:

Example 1. Lets define a signature S = (U ,V,R), with U = {UA, UB}, V =
{A,B,C,D} and R(Y ) = {0, 1} for all Y ∈ U ∪ V. Lets now define a set of
structural equations F for all variables in V:

• FA = UA

• FB = min(UB , A)

• FC = max(A,B)

2Formally this means that FX : (ΠX′∈U∪VR(X′)) → R(X)
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• FD = (C − 1)2

We now have a causal model M = (S,F). The network is given in Figure
1. The network has an edge from A to B, which indicates that B depends
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Figure 1: The causal network of the causal model defined in Example 1.

on A. Lets check if that is indeed true according to Definition 2. Let us take
z ∈ (U ∪ V)\{A,B} such that z = (UA = 1, UB = 1, C = 1, D = 1), let
us look at the values of FB(A = 0, z) = min(UB , A) = min(1, 0) = 0 and
FB(A = 1, z) = min(1, 1) = 1, so A can indeed influence the value of B.

Most of the literature is concerned with models that lead to acyclic graphs.
In these models there are no cyclic dependencies between variables. That is, if
X depends on Y and Y depends on Z, then Z can not depend on X [8]. This
is equivalent to the notion of a strongly recursive model:

Definition 3 (Strongly Recursive Models [8]). A modelM is strongly recursive
if ∃ ⪯, a partial order on the endogenous variables of M, V, s.t. for any
X,Y ∈ V unless X ⪯ Y , Y is not influenced by X. X influences Y if ∃X1, ...Xk

s.t. X1 = X and Xk = Y and ∀i ≤ k, Xi+1 depends on Xi.

Example 2. The causal network of Example 1 is an acyclic graph, lets see if
the corresponding model is indeed strongly recursive. Define the partial order ⪯
such that ∀X ∈ V, X ⪯ X, and A ⪯ B, A ⪯ C, B ⪯ C and C ⪯ D. Transitivity
of partial orders also gives us A ⪯ D and B ⪯ D. For any (X,Y ) ∈⪯ (so
X ⪯ Y ), X does indeed influence Y in this network and for all (X,Y ) /∈⪯, X
does not influence Y . Lets now look at the network in Figure 2. This network
is cyclic and so it is supposed to not be strongly recursive. We should hence not
be able to define a partial order ⪯′ for it, so lets see what happens if we try.
B depends on A, so we must have A ⪯′ B. Similarly, we must have B ⪯′ C,
and C ⪯′ A. However A influences C through B as well, so we must also have
A ⪯′ C, and similarly B ⪯′ A and C ⪯′ B. However, a partial order must be
antisymmetric, so for any X,Y , if X ⪯′ Y , X must equal Y . This is not the
case in this partial order and hence we cannot define a partial order according to
the constraints of Example 2 and this network is indeed not strongly recursive.
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Figure 2: A simple cyclic causal network, the exogenous variables are not dis-
played.

In a strongly recursive model, a setting u of the endogenous variables U fully
determines the values of all other (endogenous) variables in the model. After
all, we can use the structural equations first to determine the values of the
first-level variables, the variables whose values only depend on the exogenous
variables [8]. These variables must exist, because the model is acyclic, which
means that if there are no endogenous variables that only depend on exogenous
variables, they must depend on other endogenous variables and because the
model is finite this would inevitably lead to a cycle. After determining the
values of these first-level variables, we can determine the values of the second-
level variables, whose values depend on the values of the exogenous variables
and the first-level variables. Then we can determine the third-level variables,
etc. This means that for finite, recursive models, a causal setting (M,u) fully
determines the values of every variable inM. This is illustrated in the following
example:

Example 3. Consider again the model from Example 1. Note that this model
only has one first-level variable: A, as B does not just depend on exogenous
variables, but also on A. This makes B a second-level variable. C is a third-level
variable, as it depends on B and that makes D a fourth-level variable.

Now we can compute the values of these variables. Take the setting u =
(UA = 1, UB = 0). This leads to the value of A being 1. Given that, we can
compute B = min(0, 1) = 0. We can then compute C = max(1, 0) = 1 and then
D = (1 − 1)2 = 0. Hence u fully determines the values of all variables in the
model.

2.2.2 Formal Definitions of Causality

Now that we have defined the basic terms for causal models, we can look at how
causes have been formally defined in the literature. To do that we first need to
consider how we will formally depict causes.

Given a signature S = (U ,V,R), a formula of the formX = x, forX ∈ V and
x ∈ R(X) is called a primitive event [9, 8]. These primitive events can be com-
bined with the Boolean connectives ∧,∨ and ¬, to form a Boolean combinations
of primitive events [9, 8]. A causal formula has the form [Y1 ← y1, ..., Yk ← yk]φ,
where φ is a Boolean combination of primitive events, Y1, ..., Yk ∈ V with
∀i, j, Yi = Yj if and only if i = j, and yi ∈ R(Yi),∀1 ≤ i ≤ k. Such a for-
mula can be shortened to [Y ← y]φ, and when k = 0 it is written as just φ [9].
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Intuitively [Y ← y]φ says that φ holds in the counterfactual world where Y is
set to y. In a simpler example, [Y ← y](X = x) says that after an intervention
that sets all variables of Y to y, it must be the case that X = x [9, 8].

Now, given a causal setting (M,u), if the causal formula ψ is true in this
setting, we write (M,u) ⊨ ψ [9, 8]. It is clear that in a recursive model, we have
(M,u) ⊨ X = x if and only if the value of X is x after setting the exogenous
variables to u [8]. We can also consider a model after an intervention on the
causal modelM that sets the variables in a set Y to y. We denote this model by
MY←y, it is called a submodel ofM [9]. We can now see that (M,u) ⊨ [Y ← y]ψ
and (MY←y,u) ⊨ ψ are equivalent. In other words, (M,u) ⊨ [Y ← y]ψ if and
only if (MY←y,u) ⊨ ψ [8].

Now we can consider the causality definition of Halpern and Pearl [9].

Definition 4 (HP Definition [8]). X = x is an actual cause of φ in the causal
setting (M,u) if the following 3 conditions hold (where we take AC2.(a) together
with either AC2.(bo) or AC2.(bu), or only the modified version AC2.(am)):

AC1. (M,u) ⊨ X = x and (M,u) ⊨ φ;

AC2. (a) ∃Z,W ⊆ V s.t. Z ∩ W = ∅, Z ∪ W = V (so a partition of V),
with X ⊆ Z and a setting x′ and w of the variables in X and W ,
respectively s.t. (M,u) ⊨ [X ← x′,W ← w]¬φ; and,

(bo) If z∗ is s.t. (M,u) ⊨ Z = z∗, then ∀Z ′ ⊆ Z\X, we have (M,u) ⊨
[X ← x,W ← w, Z ′ ← z∗]φ; or,

(bu) If z∗ is s.t. (M,u) ⊨ Z = z∗, then ∀W ′ ⊆ W and ∀Z ′ ⊆ Z\X, we
have (M,u) ⊨ [X ← x,W ′ ← w, Z ′ ← z∗]φ; or just,

(am) There is a set W of variables in V and a setting x′ of variables in X
s.t. if (M,u) ⊨W = w∗, then (M,u) ⊨ [X ← x′,W ← w∗]¬φ.

AC3. X is minimal; there is no strict subset X ′ of X s.t. X ′ = x′ satisfies AC1
and AC2, where x′ is the restriction of x to the variables in X ′.

The original definition considered condition AC2.a and AC2.bo, but there
were cases where this did not give a satisfactory result, so they updated the
definition to consider conditions AC2.a and AC2.bu. Finally, Halpern came up
with a modified definition using only AC2.am, which he considered to be simpler
to work with [8].

When we have a countably finite set of variables written asA = {A1, A2, ..., An},
I write A← (a1, a2, ..., an) with a1, a2, ..., an ∈ R, to indicate that the A1 gets as-
signed value a1, A2 gets assigned value a2, etc. The notation A = (a1, a2, ..., a2)
indicates that the value of A1 is a1, A2 is a2, etc. This is a bit of an abuse
of notation, because here I sometimes treat the set more like a vector, similar
notation has however been used in the book by Halpern [8], and I believe this is
the simplest way to denote what is happening. For a singleton set A = {A1}, I
will usually just write A← a1 or A = a1. We will see this notation being used
in the following example.
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Example 4. We use again the model from Example 1, we are going to look at
whether A = 1 is an actual cause of B = 1 in the causal setting (M,u), where
u = (1, 1), according to the original version of the HP definition.

AC1. We have (M,u) ⊨ A = 1 and (M,u) ⊨ B = 1, so this condition is
satisfied;

AC2. (a) Take Z = {A,B} and W = {C,D}, set W ← (0, 1). Now (M,u) ⊨
[A ← 0,W ← (0, 1)]¬(B = 1) (because B = 0). This condition is
hence also satisfied;

(bo) In the setting (M,u), we have Z = (1, 1) =: z∗. There exist two
Z ′ ⊆ Z\{A}, namely Z ′1 = ∅ and Z ′2 = {B}. (M,u) ⊨ [A← 1,W ←
(0, 1)](B = 1) and (M,u) ⊨ [A← 1,W ← (0, 1), Z ′1 ← 1](B = 1), so
this is also satisfied.

This condition is hence also satisfied.

AC3. Since {A} is a singleton set, it is minimal.

Hence, A = 1 is indeed a cause of B = 1 according to the original definition.
Let us also check this for the modified and the updated definition:

AC2.(bu) We still have that z∗ = (1, 1), the subsets of W are ∅, {C}, {D} and
{C,D} itself, with w = (0, 1) again. The subsets of Z\{A} are still
∅ and {B}. So let us now check every combination of these.

– (M,u) ⊨ [A← 1](B = 1) (for the two empty sets);

– (M,u) ⊨ [A← 1, {B} ← 1](B = 1);

– (M,u) ⊨ [A← 1, {C} ← 0](B = 1);

– (M,u) ⊨ [A← 1, {C} ← 0, {B} ← 1](B = 1);

– (M,u) ⊨ [A← 1, {D} ← 1](B = 1);

– (M,u) ⊨ [A← 1, {D} ← 1, {B} ← 1](B = 1);

– (M,u) ⊨ [A← 1, {C,D} ← (0, 1)](B = 1);

– (M,u) ⊨ [A← 1, {C,D} ← (0, 1), {B} ← 1](B = 1);

AC2.(am) Take W = {C,D} and A = 0, then we have (M,u) ⊨W = (1, 0) and
given that, (M,u) ⊨ [A ← 0,W ← (1, 0)]¬(B = 1), as B = 0 in this
setting. Hence this condition holds and it is also true according to
the modified definition.

A = 1 is thus a cause for B = 1 according to all 3 iterations of the HP definition.

The tuple (W,w,x′) in AC2.a is called a witness to the fact that X = x is
a cause of φ.

Definition 5 (But-For Cause [8]). We say that X = x is a but-for cause of φ
in (M,u), if AC1 holds, so both (M,u) ⊨ X = x and (M,u) ⊨ φ, and if ∃x′
s.t. (M,u) ⊨ [X ← x′]¬φ.
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Intuitively, a but-for cause of an event E is a cause A such that, but for A, E
would not have happened [8]. In other words, if A had not happened, E would
also not have happened.

Proposition 1. [8] If X = x is a but-for cause of Y = y in (M,u), then
X = x is a cause of Y = y according to all three variants of the HP definition
(Definition 4).

Proposition 1 shows that though the variants of the HP definition have
different results in several cases, they luckily do agree on this fairly basic idea
of causality.

Example 5. Lets check if in the model from Example 1, A = 1 is a but-
for cause of B = 1 in the causal setting (M,u = (1, 1)). We have already
checked in Example 4 that AC1 holds, so we just need to find an x′ such that
(M,u) ⊨ [A ← x′]¬(B = 1). In fact, such an x′ does exist, namely if we set
A = 0, we get that B = 0. Hence A = 1 is a but-for cause of B = 1 in (M,u).
This also supports Proposition 1, as we have already shown that A = 1 is a
cause according to all three variants of the HP definition.

Lets now look at how the definitions compare to one another:

Theorem 1. [8] The following claims hold for the different versions of the HP
definition:

a) If X = x is part of a cause of φ in (M,u) according to the modified HP
definition, then X = x is a cause of φ in (M,u) according to the original
HP definition.

b) If X = x is part of a cause of φ in (M,u) according to the modified HP
definition, then X = x is a cause of φ in (M,u) according to the updated
HP definition.

c) If X = x is part of a cause of φ in (M,u) according to the updated HP
definition, then X = x is a cause of φ in (M,u) according to the original
HP definition.

d) If X = x is a cause of φ in (M,u) according to the original HP definition,
then |X| = 1.

With a part of a cause, we mean that if a cause of an event is of the form
X1 = x1 ∧X2 = x2 ∧ ... ∧Xn = xn, then each of the Xi = xi are parts of the
cause.

Part d of the theorem looks different from the other 3 parts, but is actually
very similar. It can be reformulated to: If X = x is part of a cause of φ in
(M,u) according to the original HP definition, then X = x is a cause of φ in
(M,u) according to the original HP definition. To see that this statement is
equivalent, first note that it follows from d). If X = x is a singleton, it only has
one part of a cause, which is itself. Now lets see that this statement also implies
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d). If we assume that this statement is true and X = x is a cause of φ with
|X| > 1 and X = x is a conjunct of X = x, then according to this statement
X = x must also be a cause. However, by AC3, X = x is minimal, which it
would not be if |X| > 1 and X = x is a cause as well. Hence, |X| > 1 must be
false and in fact, |X| = 1 [8].

Another important thing to consider about causality in this sense is that
causes do not need to be unique, there can be more than one cause of an event
[8].

Causality is not transitive under the HP definition. It is also not true that
if X is a cause of Y , and Y logically implies Y ′, that X also is a cause of Y ′ [8].
We can however prove a result for but-for causes, but before we can do that, we
must first state the following definition:

Definition 6 (Causal Path [8]). A causal path in a causal setting (M,u) is
a sequence (Y1, ..., Yn) of variables s.t. Yj+1 depends on Yi in context u for
j = 1, ..., k − 1. In a causal network, a causal path is just a path in the graph.
We say that Y lies on a causal path in (M,u) from X1 to X2 if Y is a node on
a causal path in (M,u) from X1 to X2.

Proposition 2. [8] Suppose that X1 = x1 is a but-for cause of X2 = x2 in the
causal setting (M,u), X2 = x2 is a but-for cause of X3 = x3 in (M,u), and
the following conditions hold:

a) ∀x′2 ∈ R(X2), ∃x′1 ∈ R(X1) s.t. (M,u) ⊨ [X1 ← x′1](X2 = x′2);

b) X2 is on every causal path in (M,u) from X1 to X3,

Then X1 = x1 is a but-for cause of X3 = x3.

Hence, in a special case, but-for causes are transitive. This is illustrated in
the following example.

Example 6. Consider the following causal model M = (S,F), with S =
(U ,V,R), with U = {UA, UB , UC}, V = {A,B,C} and R(Y ) = {0, 1} for all
Y ∈ U ∪ V. Let the structural equations F be defined by:

• FA = UA

• FB = min(UB , A)

• FC = min(UC , B)

This model is visualised in the network in Figure 3. A = 1 is a but-for cause of
B = 1, which is a but-for cause of C = 1 in the causal setting (M,u = (1, 1, 1))
(notice that these relations are exactly like the relation between A and B in
Example 1, it is hence redundant to prove it formally again). R(B) = {0, 1},
because A = 1 is a but-for cause of B = 1, we already know that there is a value
of A s.t. setting A to that value gives us B = 1. However, we also have that
(M,u) ⊨ [A ← 0](B = 0), because B = min(UB , A) = min(1, 0) = 0 in this
case. Therefore, condition a) in Proposition 1 is satisfied. We also have that
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Figure 3: The causal network of the causal model defined in Example 6.

there is only one causal path from A to C and B is on it, therefore according to
the proposition, A should also be a but-for cause of C. Let us check if that is
true. First, AC1 needs to be satisfied, we do indeed have that (M,u) ⊨ A = 1
and (M,u) ⊨ C = 1. Now we need to try to find a value of A such that C is
not 1 anymore. The only other value we can try is A = 0. If A = 0, we also
get that B = min(UB , A) = 0, and hence C = min(UC , B) = 0. Hence, A = 1
is indeed a but-for cause of C = 1 in this causal setting.

Now that we have discussed the basics of causal models and causality, we
can move on to the next topic.

2.3 Labelled Fransition Systems

(Labelled) transitions systems were introduced by Robert M. Keller in 1976 as
a way to reason about parallel programs [12]. They have been been defined in
multiple ways through the years (see [7], [15] and [4]), but we will first consider
the following definition:

Definition 7 (Labelled Transition Systems [12, 4]). A labelled transition sys-
tem (LTS) is a triple TS = (Q,A,→) where:

• Q is a nonempty, countable set of states;

• A is the countable set of labels (or action names) of:

• →⊆ Q×Q is a binary relation on Q, called the set of transitions.

We can denote transitions with q
a−→ q′, where q, q′ ∈ Q and a ∈ A. q is

called the transition’s source, q′ is the target and a is the label of the transition
[7]. When a LTS is defined with an initial state, we call it a rooted labelled
transition system, defined as a pair (TS, q0), where TS = (Q,A,→) is an LTS
and q0 ∈ Q is the initial state, also called the root [7].

Example 7. Lets define an LTS, TS = (Q,A,→), where Q = {q1, q2}, A =
{a1, a2} and →= {(q1, q2), (q2, q1)}. We can denote this LTS in a graph, like in
Figure 4.

13
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Figure 4: A simple LTS.

A LTS is called deterministic if given a transition
a−→, for any q ∈ Q there is

at most one q′ such that q
a−→ q′ [12, 15]. It is possible that such a q′ does not

exist for any state, but if it does exist, we say that a is enabled in state q [12].

Definition 8 (Path [7]). Given an LTS (Q,A,→), and two states q, q′ ∈ Q, a

sequence of n transitions (n is allowed to be infinite) q1
a1−→ q′1, q2

a2−→ q′2, ... ,

qn
an−−→ q′n such that q = q1, q

′
n = q′ q′i = qi + 1 for i = 1, 2, ..., n− 1, is called a

path of length n from q to q′. We say that the path is acyclic if ∀i ̸= j, qi ̸= qj.
A rooted LTS (TS, q0) is acyclic if it contains no cyclic path starting from q0, a
regular LTS is acyclic if it contains no cyclic path at all.

While a path can in general be infinite, it cannot always be infinite in every
system. A system may have deadlock states, states that have no transition
starting from it [7]. It is hence impossible to leave a deadlock state.

We will now look at a few ways to distinguish different LTS:

Definition 9 (Classes of LTS [7, 15]). A LTS (Q,A,→) is:

• Finite-state if Q and A are finite;

• Finite if it is finite-state and acyclic;

• Boundedly branching if ∃k ∈ N such that ∀q ∈ Q the set Tq = {(q, a, q′)|∃a ∈
A,∃q′ ∈ Q such that q

a−→ q′} has cardinality at most k; the least k satis-
fying the above condition is called the branching degree of the LTS;

• Finitely branching if the set Tq = {(q, a, q′)|∃a ∈ A,∃q′ ∈ Q such that q
a−→

q′} is finite ∀q ∈ Q, otherwise the LTS is infinitely branching;

• Image-finite if the set Tq,a = {(q, a, q′)|∃q′ ∈ Q such that q
a−→ q′} is finite

∀q ∈ Q and ∀a ∈ A.

These classes relate to each other in several ways, as detailed in the following
proposition.

Proposition 3. [7] The following results hold for LTS classes:

1. A boundedly branching LTS is finitely branching;

2. A finitely branching LTS is not in general boundedly branching;
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3. When a finitely branching LTS has finitely many states, it is boundedly
branching;

4. A finitely branching LTS that is not boundedly branching cannot be finite-
state;

5. A finitely branching LTS is image-finite;

6. An image-finite LTS is not in general finitely branching.

Proof. I proved all of the above results, they are each shown in turn below:

1. Take a boundedly branching LTS TS = (Q,A,→), take q ∈ Q at random.
Because TS is boundedly branching, we have that ∃k ∈ N such that
∀q′ ∈ Q, |Tq′ | ≤ k. So also for our q, |Tq| ≤ k < ∞. As q was taken at
random, this must hold for every q ∈ Q, and hence ∀q ∈ Q, Tq is finite.
q.e.d.

2. I will give an example where an LTS is finitely branching, but not bound-
edly branching: Define the LTS TS = (Q,A,→) with Q being (count-
ably) infinite, with the items being numbered q0,0, q1,0, q1,1, q2,0, q2,1, q2,2,
etc. Suppose that ∀i, j ≤ i, qi,j has transitions to qi+1,j′ ∀j′ ≤ i + 1. So
q0,0 has 2 transitions, one to q1,0 and one to q1,1, each of the q1’s has 3
transitions, to each of the q2’s, etc. In general, ∀i ∈ Z≥0, qi,j has i + 2
transitions for all 0 ≤ j ≤ i. So ∀q ∈ Q, Tq is finite. However, there is no
k ∈ N such that |Tq| ≤ k ∀q. To see this, you need to see that ∀k ∈ N,
|Tqk,j

| = k + 2 and hence there does not exist an upper-bound for |Tq|.

3. Now, take a finitely branching LTS TS = (Q,A,→) with |Q| < ∞. Be-
cause Q is finite, we can define k := maxq∈Q(|Tq|). Now, clearly ∀q ∈ Q,
|Tq| ≤ k, in fact, k is the branching degree of TS. q.e.d.

4. Take the LTS TS = (Q,A,→) to be finitely branching, but not boundedly
branching. Assume now that it is also finite-state. By definition, Q would
be finite and by 3. from Proposition 3 it would have to be boundedly
branching. This is a contradiction! Hence TS cannot be finite-state.

5. Take the finitely-branching LTS TS = (Q,A,→). It is easy to see that
∀a ∈ A, q ∈ Q, Tq,a ⊆ Tq. Since TS is finitely-branching, Tq is finite
∀q ∈ Q. But as ∀q ∈ Q,∀a ∈ A, Tq,a ⊆ Tq, Tq,a is also finite ∀a ∈ Q, q ∈ Q.
TS is hence image-finite. q.e.d.

6. If the LTS TS = (Q,A,→) has for any q ∈ Q, an infinite number of
transitions, each with a unique label a ∈ A, but every transition is deter-
ministic. We have that ∀q ∈ Q, a ∈ A, |Tq,a| ≤ 1 and hence the LTS is
image-finite. However, because there are infinitely many transitions, Tq is
infinite and hence TS is not finitely branching.
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There are multiple definitions for equivalence of LTS, each with their own
properties [7]. To give an idea of these definitions, we will look at trace equiva-
lence, but before we can do that, we must define traces.

Definition 10 (Trace [7, 15]). Let (Q,A,→) be an LTS, and let q ∈ Q. A trace

of q is a string σ ∈ A∗, such that q
σ−→∗ q′ for some q′ ∈ Q. Here A∗ is the set

of all strings on A, including the empty string ϵ and →∗⊆ Q × A∗ × Q is the
reachability relation defined as the least relation induced by the following:

q
ϵ−→∗ q

q1
σ−→∗ q2 q2

a−→ q3

q1
σa−−→∗ q3

.

The set of traces of q is defined as:

Tr(q) = {σ ∈ A∗|∃q′ ∈ Q such that q
σ−→∗ q′}

Two states q1, q2 ∈ Q are said to be trace equivalent if Tr(q1) = Tr(q2). Two
rooted LTS are trace equivalent if their roots are trace equivalent.

This basic form of equivalence is not sensitive to deadlock. It may equate
two states, where one is a deadlock state and the other is not [7].

In the next section I will discuss several logic systems we can use to reason
about transition systems, but before we can do that, I must slightly extend the
definition of LTS so that every state is also associated with atomic propositions
that hold in that state. Formally:

Definition 11 (Alternative Definition Labelled Transition System [4, 1]). A
labelled transition system (LTS) is a tuple TS = (Q,A,→,Π, π) where:

• Q is a nonempty, countable set of states;

• A is the countable set of labels (or actions) of:

• →⊆ Q×Q is a binary relation on Q, called the set of transitions;

• Π is a set of atomic propositions

• π : Q→ 2Π, the labelling function.

π associates with every state q ∈ Q a (possibly empty) set of atomic propo-
sitions that hold in q. When we define a LTS in this way they can be seen as a
special case of a concurrent game structure [1].

Example 8. We can extend the LTS from Example 7 to the following LTS
defined according to Definition 11, TS = (Q,A,→,Π, π), where:

• Q = {q1, q2};

• A = {a1, a2};

• →= {(q1, q2), (q2, q1)};
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Figure 5: A simple LTS according to Definition 11.

• Π = {a, b};

• π maps q1 to {a, b} and q2 to {b}.

The resulting LTS is shown in Figure 5.

Labelled transition systems are in fact a special case of concurrent game
structures, where there is only one player [1]:

Definition 12 (Concurrent Game Structures [1]). A concurrent game structure
is a tuple GS = ⟨k,Q, d, δ,Π, π⟩ with the following components:

• A natural number k ≥ 1 of players. We identify the players with the
numbers 1, ..., k.

• A finite set Q of states.

• For each player a ∈ {1, ..., k} and each state q ∈ Q, a natural number
da(q) ≥ 1 of moves available at state q to player a. We identify the
moves of player a at state q with the numbers 1, ..., da(q). For each state
q ∈ Q, a move vector at q is a tuple ⟨j1, ..., jk⟩ such that 1 ≤ ja ≤
da(q) for each player a. Given a state q ∈ Q, we write D(q) for the set
{1, ..., d1(q)} × · · · × {1, ..., dk(q)} of move vectors. The function D is
called move function.

• For each state q ∈ Q and each move vector ⟨j1, ..., jk⟩ ∈ D(q), a state
δ(q, j1, ..., jk) ∈ Q that results from state q if every player a ∈ {1, ..., k}
chooses move ja . The function δ is called transition function.

• A finite set Π of propositions.

• For each state q ∈ Q, a set π(q) ⊆ Π of propositions true at q. The
function π is the labelling function.

Example 9. Let GS = ⟨k,Q, d, δ,Π, π⟩ be a concurrent game structure, with:

• k = 2;

• Q = {q1, q2};

• da1(q1) = da2(q1) = 1, and da1(q2) = da2(q2) = 2, so that D(q1) = {⟨1, 1⟩}
and D(q2) = {⟨1, 1⟩, ⟨1, 2⟩, ⟨2, 1⟩, ⟨2, 2⟩};
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• δ(q1, 1, 1) = q2, δ(q2, 1, 1) = δ(q2, 1, 2) = δ(q2, 2, 1) = q1, and δ(q2, 2, 2) =
q2;

• Π = {a, b};

• π(q1) = {a, b} and π(q2) = {b}.

This is visualised in Figure 6. As we can see, in this concurrent game structure,

r rqi
q1 q2

{a, b} {b}⟨1, 1⟩

⟨1, 1⟩
⟨1, 2⟩,⟨2, 1⟩,

j
I

⟨2, 2⟩

Figure 6: A simple concurrent game structure with two players.

both players only have one action in q1, taking this action brings them to state
q2. In q2 both have two actions, only if both choose action 1, they go back to
state q1, in all other cases they stay in state q2.

Note that if k = 1, a concurrent game structure S = ⟨k,Q, d, δ,Π, π⟩ sim-
plifies to d only being one function, mapping a state to the number of moves
available at that state. The move vector at a state q is just a scalar, a single
number. D is the same as d in this case. We also have that

⋃
q∈Q{(q, δ(q, j1))}

equals the set →⊆ Q×Q of Definition 11.

Example 10. Consider the LTS from Example 8, we can describe it as a con-
current game structure GS = ⟨k,Q, d, δ,Π, π⟩, by setting:

• k = 1;

• Q = {q1, q2};

• d(q1) = 1, d(q2) = 1

• δ(q1, 1) = q2, δ(q2, 1) = q1;

• Π = {a, b};

• π(q1) = {a, b} and π(q2) = {b}.

We can describe any LTS as a concurrent game structure in this way. The
only difference being that the actions do not have names. This also means that
while we could define an LTS like in Figure 7, where both transitions have
the same label and could be seen as the same action (imagine a button that
when you press it turns the light on or off, where Figure 5 could represent a
system with a switch that can be flipped on or off), a concurrent game structure
description cannot distinguish between the systems in Figures 5 and 7.

We will now take a look at several logics that can be used in these systems.
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Figure 7: An LTS like in Figure 5, but with only one action label.

2.4 Logics for Transition Systems

There are multiple logics one can use to reason about transition systems. I will
first discuss linear-temporal logic, after that I will shortly introduce computation-
tree logic and alternating-time temporal logic.

2.4.1 Linear-Time Temporal Logic

Linear-time temporal logic (LTL for short) is a logic that is used to reason
about models that represent time as a straightforward sequence. It can hence
be evaluated on paths from LTS. LTL uses operators from propositional logic,
and in addition the temporal modalities ⃝, which can be read as “next”, and
U , which can be read as “until” [4].

Definition 13 (LTL Syntax [4, 11]). Given a set Π of atomic propositions, a
formula in linear-time temporal logic is build according to the following gram-
mar:

φ ::= ⊤ | a | φ1 ∧ φ2 | ¬φ | ⃝ φ | φ1Uφ2,

where a ∈ Π.

Besides these basic operators, we can define the other modal operators ♢
meaning “eventually” and □ meaning “always”, as:

♢φ := ⊤Uφ □φ := ¬♢¬ϕ.

Generally speaking, LTL-formulas are evaluated on infinite words over 2Π.
A word σ is of the form:

σ = A0A1A2..., where Ai ∈ 2Π,∀i ∈ Z≥0.

Let σ[j] = Aj and let σ[j...] denote the fragment AjAj+1....

Definition 14 (Semantics of LTL [4, 11]). The semantic relation ⊨ of linear
temporal logic is defined by:

σ ⊨ p iff p ∈ σ[0] (i.e. p is true at the start of the word)

σ ⊨ φ1 ∧ φ2 iff σ ⊨ φ1 and σ ⊨ φ2

σ ⊨ ¬φ iff σ ⊭ φ
σ ⊨⃝φ iff σ[1] ⊨ φ

σ ⊨ φ1Uφ2 iff ∃j ≥ 0 such that σ[j...] ⊨ φ2 and σ[i...] ⊨ φ1,∀0 ≤ i < j.
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The derived operators ♢ and □ have the following semantics:

σ ⊨ ♢φ iff ∃j ∈ Z≥0 such that σ[j...] ⊨ φ

σ ⊨ □φ iff ∀j ∈ Z≥0, σ[j...] ⊨ φ.

LTL can be used to reason about labelled transition systems, given an infinite
path λ in a LTS, we have that λ ⊨ φ if φ holds for the infinite word σ =
π(λ[0])π(λ[1])..., where the λ[i]’s are states on the path and π(λ[i]) ∈ 2Π [4, 11].
We write π(λ) = π(λ[0])π(λ[1])....

Lets look at an example of how this works:

Example 11. Consider the LTS in Figure 5. This LTS has the infinite path
λ = q1q2q1q2.... We have that λ ⊨ a ∧ b, because a and b hold in state q1. We
also have λ ⊨⃝b but λ ⊭⃝a, as in the second state of the path, b holds, but a
does not. It is also true that λ ⊨ aUb, after all, if we take the j in the definition
to be 1, we have that for all 0 ≤ i < 1, i.e. i = 0 that λ[0] ⊨ a and λ[j] ⊨ b. It is
also true that λ ⊨ □b, but λ ⊭ □a, because while for any j ≥ 0, λ[j...] ⊨ b, but
for example for j = 1, λ[j...] ⊭ a.

We can also say that an entire LTS satisfies an LTL formula φ. For this we
first need to define the LT property induced by φ:

Words(φ) := {σ ∈ (2Π)w | σ ⊨ φ} [4].

Now, given an LTS, TS = (Q,A,→,Π, π), we have that TS satisfies the LTL
formula φ, denoted TS ⊨ φ, if {σ ∈ (2Π)w | σ = π(λ) for a path λ in TS} ⊆
Words(φ).

Example 12. Consider the LTS of Figure 5 again. For this LTS, the set {σ ∈
(2Π)w | σ = π(λ) for a path λ in TS} = {{a, b}{b}{a, b}..., {b}{a, b}{b}...}. Hence,
this LTS satisfies the formula b, as all paths in the LTS satisfy this formula, but
not the formula a, as the path q2q1q2... does not satisfy this.

2.4.2 Computation-Tree Logic

It is impossible for LTL to distinguish between what has to happen and what can
possibly happen, it is however sometimes useful to know what might possibly
happen on only a single path versus what happens on every possible path [11].
Computation-tree logic (CTL) is an extension of LTL that adds path quantifiers.

Definition 15 (CTL Syntax [4, 11]). Formulas ϕ in CTL are called state
formula and are build up from atomic propositions and path formula φ. The
state formula are build up according to:

ϕ ::= ⊤ | a | ϕ1 ∧ ϕ2 | ¬ϕ | ∃φ | ∀φ.

The path formula are formed according to:

φ ::=⃝ϕ | ϕ1Uϕ2,
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where ϕ, ϕ1 and ϕ2 are state formula. The state formula are interpreted over
the states of the model, and the path formula are interpreted over the paths of
the model.

Unlike LTL formulas, which are evaluated on paths in systems, state formulas
in CTL are evaluated on a state of the model.

Definition 16 (Semantics of CTL [4]). Let q ∈ Q be state of the labelled tran-
sition system TS = (Q,A,→,Π, π), let p ∈ Π and let ϕ and ψ be CTL state
formula and let φ be a CTL path formula. The semantic relation ⊨ for state
formula is defined by:

q ⊨ p iff p ∈ π(q)
q ⊨ ¬ϕ iff q ⊭ ϕ
q ⊨ ϕ ∧ ψ iff q ⊨ ϕ and q ⊨ ψ

q ⊨ ∃φ iff σ ⊨ φ for some path σ starting at q

q ⊨ ∀φ iff σ ⊨ φ for all paths σ starting at q.

For a path σ, the semantics for path formulas φ are given similarly to the
semantics for LTL, by:

σ ⊨⃝φ iff σ[1] ⊨ φ

σ ⊨ φ1Uφ2 iff ∃j ≥ 0 such that σ[j...] ⊨ φ2 and σ[i...] ⊨ φ1,∀0 ≤ i < j.

Let us look at an example of how this works in practice:

Example 13. Consider again the LTS in Figure 5. The state formula are
evaluated over the states of the model. In the simplest form, we can say q2 ⊨
b ∧ ¬a. When we look at the path formulas, we have q2q1q2... ⊨ ⃝(a ∧ b),
similar to LTL. But now we can introduce the path quantifiers, we have both
q2 ⊨ ∃⃝ (a∧ b) and q2 ⊨ ∀⃝ (a∧ b), as there is only one path starting from q2
in this system. To illustrate the difference between ∀ and ∃, we have to modify
the system, so lets consider the system in Figure 8. In this system, we still

r rqi
q1 q2

{a, b} {b}a1
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j
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a3

Figure 8: An LTS with two states and three actions.

have q2 ⊨ ∃ ⃝ (a ∧ b), but not q2 ⊨ ∀ ⃝ (a ∧ b) anymore, because ⃝(a ∧ b) is
not true on the path one obtains after taking action a3 all the time, q2q2q2...,
on this path a will never be true.
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As the above example shows, CTL can express things LTL cannot. There
exists however an even more expressive variant, CTL∗, where quantifiers do not
have to be followed by one of the temporal operators [11]. However as usual,
expressiveness leads to a higher computational cost and makes it more difficult
to reason. In this work I will hence focus on CTL.

2.4.3 Alternating-Time Temporal Logic

The two logics described above are not sufficiently expressive to describe multi-
agent systems, like the concurrent game structures of Definition 12. In order
to reason about such systems we use alternating-time temporal logic (ATL) [1],
which can be seen as an extension of CTL [11].

Definition 17 (ATL Syntax [1]). Alternating-time temporal logic (ATL) is
defined with respect to a set of propositions Π and a finite set Σ = {1, 2, ..., k}
of players. An ATL formula is build up according to:

φ ::= ⊤ | a | ¬φ | φ1 ∨ φ2 | ⟨⟨A⟩⟩ ⃝ φ | ⟨⟨A⟩⟩□φ | ⟨⟨A⟩⟩φ1Uφ2,

where A ⊆ Σ is a set of players and a ∈ Π.

The temporal operators ⃝,□ and U have the same meaning as in LTL and
CTL, similarly we also write ⟨⟨A⟩⟩♢φ for ⟨⟨A⟩⟩⊤Uφ [1]. The operator ⟨⟨⟩⟩ is a
path quantifier, like ∀ and ∃ in CTL [1]. We can write ⟨⟨a1, a2, ..., ak⟩⟩ instead
of ⟨⟨{a1, a2, ..., ak}⟩⟩ and ⟨⟨⟩⟩ instead of ⟨⟨∅⟩⟩.

ATL formulas are interpreted over the states of a concurrent game structure
[1]. Before we can define the semantics of ATL, we must first define the notion
of a strategy in a concurrent game structure:

Definition 18 (Strategy in Concurrent Game Structures [1]). Given a con-
current game structure S = ⟨k,Q, d, δ,Π, π⟩, a strategy for player a ∈ Σ is a
function fa, that maps any (non-empty) finite sequence λ of states in Q to an ac-
tion the player can take at the last state of the sequence. I.e. if q is the last state
of λ, then fa(λ) ≤ da(q). Now, let q ∈ Q, A ⊆ Σ and a set FA = {fa | a ∈ A}
of strategies of the players in A. We define the set of outcomes of FA from q
to be the set out(q, FA) of state sequences the players enforce when following the
strategies in FA. A sequence λ = q0q1q2... is in out(q, FA) if q0 = q and ∀i ≥ 0,
∃⟨j1, ..., jk⟩ ∈ D(qi) such that ja = fa(λ[0, i]) ∀a ∈ A and δ(q, ji, ..., jk) = qi+1.

Example 14. Consider the concurrent game structure in Example 9. Both
players could have the strategy that fai(λ) = 1 if the last state of λ is q1 and
2 if the last state is q2. Now, the sequence q1q2q1q2... is not in out(q1, FA),
because for i = 1, fa1

(λ[0, 1]) = fa2
(λ[0, 1]) = 2. δ(q2, 2, 2) = q2 and not λ[2] =

q1. In fact, the set of outcomes has only one sequence, namely out(q1, FA) =
{q1q2q2q2...}

Definition 19 (Semantics of ATL [1]). Let S = ⟨k,Q, d, δ,Π, π⟩ be a concur-
rent transition system, let q ∈ Q, p ∈ Π and let φ be an ATL formula. The
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satisfaction relation ⊨ of alternating-time temporal logic is defined by:

q ⊨ p iff p ∈ π(q)
q ⊨ ¬φ iff q ⊭ φ
q ⊨ φ1 ∨ φ2 iff q ⊨ φ1 or q ⊨ φ2

q ⊨ ⟨⟨A⟩⟩ ⃝ φ iff ∃FA such that ∀λ ∈ out(q, FA), we have λ[1] ⊨ φ

q ⊨ ⟨⟨A⟩⟩□φ iff ∃FA such that ∀λ ∈ out(q, FA) and ∀i ≥ 0, we have λ[i] ⊨ φ

q ⊨ ⟨⟨A⟩⟩φ1Uφ2 iff ∃FA such that ∀λ ∈ out(q, FA),∃i ≥ 0 such that λ[i] ⊨ φ2

and ∀0 ≤ j ≤ i, we have λ[j] ⊨ φ1

Lets again look an example of how ATL works in practice:

Example 15. Consider again the concurrent game structure of Example 9.
Clearly, q1 ⊨ a and q2 ⊨ b ∨ a. It becomes more interesting if we consider
the path quantifiers. We can for example state q2 ⊨ ⟨⟨a1⟩⟩ ⃝ a, because the
strategy where a1 always picks action 1 in any state, has q1 as the next state
of every sequence in the outcome set and in q1, a holds. We can however not
say q2 ⊨ ⟨⟨a1⟩⟩ ⃝ ¬a, because for any strategy of a1 in state q2, the sequence
q2q1q2q1... will be in the outcome set and so ¬a is not true in the next state
of all sequences. We can also not state q2 ⊨ ⟨⟨a1⟩⟩□¬a, because no matter
what strategy player 1 has, player 2 could always pick action 1, making sure the
sequence q2q1q2q1... is in the outcome set, and so ¬a will not hold in all states of
the sequence. However, we can state q2 ⊨ ⟨⟨a1, a2⟩⟩□¬a, if both players always
pick action 2 in state q2, a will never be true.

As with CTL and CTL∗, there also exists a more expressive variant of ATL,
ATL∗ [1]. Similar to CTL and CTL∗, the difference lies in that quantifiers do
not have to be directly followed by a temporal operator in ATL∗. So given a
set A ⊆ Σ of players, ⟨⟨A⟩⟩¬a is a valid formula in ATL∗, but not in ATL. In
this work I will just focus on ATL, as its semantic interpretation is less complex
[11].

2.5 Responsibility

2.5.1 Different Approaches to Responsibility

Many different notions of responsibility have been defined in the literature. [17]
gives an overview of different forms of responsibility in a broad sense. Much
of the literature is concerned with the notion of strategic responsibility [16, 2],
where agents are seen as responsible for a state of affairs if they had the ability
to avoid it. This is seen as the ‘base form’ of responsibility in [17]. Usually,
a distinction between forward- and backward-looking responsibility is made.
Where the former is considered before an event and the latter afterwards [17,
16, 2].

23



Closely tied to the definition of responsibility is the notion of blameworthi-
ness, which usually requires agents to have had knowledge of the consequence of
their actions [17, 5]. In fact, by some it is seen as a different form of backward-
looking responsibility [17]. Accountability and sanctionability are in some cases
also seen as other forms of responsibility, where the former has to do with task
allocation and the latter with the violation of established norms [17].

In early work, only the cause of an event was seen as (partially) responsible
for the occurence of the event [5], but with the notion of strategic responsibility,
an agent can be part of a responsible coalition without being a cause of the
event.

I now introduce the notion of a computation of a CGS. A computation of a
CGSM is an infinite sequence of states λ = q0, q1, ... such that qi+1 is a successor
of qi for all i > 0, if a computation starts in q, it is called a q-computation. A
finite sequence of states q0, ..., qn is called a q-history if qn = q, n ≥ 0 and qi+1

is a successor of qi for all 0 ≤ i ≤ n. A q-history starting in qi with n steps is
denoted by λ[qi, n] [16].

In the below, S̄ denotes the complement of the set S in Q

Definition 20 (Forward Group Responsibility [16]). LetM be a CGS, S be a
set of states, q ∈ S a state. We say that a group of agents Γ ⊆ Σ is forward
responsible for S in q iff:

1. There is a strategy for Γ, FΓ, such that all states on all computations in
out(q, FΓ) belong to S̄, and

2. Γ is minimal, that is, there is no Γ′ ⊊ Γ with the property formulated
above.

Definition 21 (Backward Group Responsibility [16]). Let M be a CGS, S be
a set of states, q ∈ S a state, and λ[qi, k] an arbitrary q-history. We say that a
group of agents Γ ⊆ Σ is backward responsible for S based on λ[qi, k] iff:

1. There is a state qj in λ[qi, k] such that for some strategy for Γ, FΓ, all
states on all computations in out(qj , FΓ) belong to S̄, and

2. Γ is minimal, that is, there is no Γ′ ⊊ Γ with the property formulated
above.

Responsible groups of agents are sometimes also called coalitions.
These definitions look very similar and it has actually been proven that a

group Γ ⊆ Σ is backwards responsible for S given some history if and only if it
was forward responsible for S in one of the states on the history [16].

Example 16. Lets consider responsibility in the rock-throwing example as
described in [8]. In this example two agents, Billy and Suzy are throwing rocks
at a bottle. Suzy throws faster than Billy, so if they both throw, Suzy’s rock
is the one to shatter the bottle. This situation could be modelled in a CGS
like in Figure 9. In q0,0 the coalition containing both Billy and Suzy is forward
responsible for the bottle shattering, neither is individually responsible, because
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q1,1

q2,0

q2,1

q2,2

q2,3

⟨0,
0⟩

⟨1, 0⟩

⟨0,
0⟩

⟨0, 1⟩

⟨0, 0⟩

⟨0, 1⟩

{¬ST,¬SH,¬BT,¬BH,¬BS}

{¬ST,¬SH,BT,BH,BS}

{ST, SH,¬BT,¬BH,BS}

{ST, SH,BT,¬BH,BS}

{¬ST,¬SH}

{ST, SH}

Figure 9: A possible CGS of the rock-throwing example. The variables ST and
BT stand for Suzy, respectively Billy, throws. Similarly, SH and BH means
Suzy, respectively Billy, hits. BS means that the bottle has shattered. In q0,0,
Suzy decides to throw or not, in a next state, Billy can decide to throw.

they cannot guarantee that the other will not throw their rock and therefore
that the bottle will not be shattered. When we look at backward responsibility
it becomes a bit more complicated. Basically, in q2,2 and q2,3, the coalition is
again responsible. Neither can at any point in the history individually assume
a strategy that will guarantee that the bottle will not shatter. However, in q2,1,
Billy is alone backward responsible, as he could have chosen not to throw in
q1,0.

Yet another approach was introduced in [2]. They consider so-called causal
backward responsibility, where an agent is held responsible only if changing its
actions could have changed the outcome, given that everything else remains
fixed, similar to but-for causes. In their paper, they defined responsibility with
respect to extensive form games, but it can be naturally translated to the CGS
case:

Definition 22 (Causal Backward Responsibility). LetM be a CGS, S be a set
of states, q ∈ S a state, λ[qi, k] an arbitrary q-history, and FΣ be a collective
strategy for all agents in Σ, s.t. λ[qi, k] is contained in out(q0, FΣ). We say that
a group of agents Γ ⊆ Σ is causal backward responsible for S based on λ[qi, k]
and FΣ iff:

1. There exists a strategy FΓ s.t. for F ′Σ := {fa|fa ∈ FΓ if a ∈ Γ, else fa ∈ FΣ},
all states on all computations in out(q0, F

′
Σ) belong to S̄, and
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2. Γ is minimal, that is, there is no Γ′ ⊊ Γ with the property formulated
above.

While this is called causal backward responsibility, this notion is not re-
stricted to only causal CGS, it can be applied in any concurrent game structure.

Example 17. When we consider the rock-throwing example again (Figure 9),
the coalition {Billy, Suzy} is causal backward responsible in the case where
they both throw, but only Billy is responsible in the case where only he throws
and only Suzy is responsible when Billy does not throw. This is because now it
will be guaranteed that the other agent would always have acted the same as it
did.

Causal backwards responsibility can be seen a special case of backwards
responsibility. The following proposition is stated in a different form in [2] and
proven in [3]. As I adapted it to this case, I rewrote the proof.

Proposition 4. LetM be a CGS, S a set of states, and q ∈ S a state, λ[qi, k] an
arbitrary q-history and FΣ a collective strategy such that this history is contained
in out(q0, FΣ). If the coalition Γ is backwards responsible for S based on the
history, it contains a coalition Γ′ ⊆ Γ that is causal backward responsible for S
based on λ[qi, k].

Proof. Let Γ be a backwards responsible coalition, this Γ satisfies the first con-
dition of Definition 22. After all, there exists a strategy FΓ such that for a state
qj in λ[qi, k], all states in out(qj , FΓ) lie in S̄, and qj is a state in out(q0, FΣ),
so when using FΓ and FΣ to create F ′Σ like in the definition, it follows that all
states on all computations in out(q0, F

′
Σ) belong to S̄.

If this Γ is the minimal set that satisfies this property, it a causal backward
responsible. This is however not necessarily true, as a minimal set satisfying the
condition of backwards responsibility is not necessarily also a minimal set with
respect to the causal backwards responsibility property. However, if Γ is not a
minimal set it contains a minimal set satisfying the condition which is then a
causal responsible coalition, which is what had to be proven.

2.5.2 Distributing Responsibility

In all definitions discussed above, it is possible for a group of agents to be
collectively responsible for a state of affairs, but it is sometimes useful to be
able to determine how much every individual agent contributed to the result.
Chokler and Halpern defined a degree of responsiblity for causes of an event [5].
This degree of responsibility depends on how many things have to change until
the agent is the sole cause of the event.

Definition 23 (Degree of Responsibility [5]). The degree of responsibility of
X = x for a causal formula φ in (M,u), denoted dr((M,u), (X = x), φ), is
0 if x = x is not a cause of φ in (M,u); it is 1

k+1 if (X = x) is a cause of
φ in (M,u) and there exists a partition (Z,W ) and setting (x′,w′) for which
condition AC2 of the original or updated HP definition for causality holds, s.t.
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1. k variables in W have different values in w′ than they do in the context
u, and

2. there is no partition (Z ′,W ′) and setting (x′′,w′′) satisfying AC2, s.t.
only k′ < k variables have different values in w′′ than they do in u

The drawbacks of this definition are that it only considers responsibility as
causality, while most recent work focuses on strategic responsibility, and that
the degree of responsibility does not differ between an agent who is part of one
coalition of k agents, or an agent who is part of multiple coalitions of k agents
[2]. Intuitively, the latter agent is more powerful and hence more responsible.
Because of this, [16] and [2] use the Shapley value to distribute responsibility
over a group of agents.

Definition 24 (Responsibility Value [16]). LetM be a CGS, S a state of affairs,
q ∈ S a state and λ[qi, k] an arbitrary q-history. We define the responsibility
game GSq,λ[qi,k] = (Σ, ϱ) as a cooperative game where for any coalition Γ ⊆ Σ,

the game’s characteristic function ϱ(Γ) = 1 if and only if a coalition Γ′ ⊆ Γ is
q-responsible for S given λ[qi, k]; otherwise ϱ(Γ) = 0. The q-responsibility value
of agent a ∈ Σ for S given λ[qi, k], denoted ρ

a.S
q,λ[qi,k]

, is:

ρa,Sq,λ[qi,k]
=

∑
Γ⊆Σ\{a}

|Γ|!(|Σ| − |Γ| − 1)!

|Σ|!
(ϱ(Γ ∪ {a})− ϱ(Γ)).

This definition can be applied to any of the earlier defined forms of respon-
sibility.

Example 18. In the rock-throwing example the coalition {Billy, Suzy} is back-
wards responsible in q2,3 for the bottle not shattering, as explained in Example
16. This means that Suzy has responsibility value:

ρSuzy,S
q2,3,λ[qi,k]

=
|∅|!(|{Billy, Suzy}| − |∅| − 1)!

|{Billy, Suzy}|! (ϱ(∅ ∪ {Suzy})− ϱ(∅))+

|{Billy}|!(|{Billy, Suzy}| − |{Billy}| − 1)!

|{Billy, Suzy}|!
(ϱ({Billy} ∪ {Suzy})− ϱ({Billy}))

=
1

2
· 0 + 1

2
· 1 =

1

2
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3 Problem Definition

The main goal of this project is to formally model, analyse and reason about
causal effects in multi-agent settings. In order to achieve this, I will define
several sub-problems.

In Section 2.2 I defined structural causal models that are used to formally
analyse and model causality and in Section 2.3 concurrent game structures were
defined. These are used to model and reason about multi-agent settings. I will
use both these concepts to solve the first sub-problem:

How can causal models be integrated in multi-agent system models, in order to
allow us to analyse and reason about the effects of agents’ actions on each

other and on their shared environment.

This sub-problem will be solved by using structural causal models, where the
endogenous variables are divided in a set of agent variables, controlled by agents,
and a complement set of environment variables. I will use this to create a
concurrent game structure that can be used to reason about the agents’ actions
in the multi-agent setting.

In Section 2.2 and Section 2.4.3 I introduced the HP definition of causality
and the notion of strategy in concurrent game structures. This is used for the
second sub-problem which can be formulated as follows:

How can we study and analyse the relation between the derived multi-agent
system model and the original structural causal model?

In particular, I will study the relation between agent strategies in this system
and causality in the original model, and investigate the existence of a multi-
agent strategy that ensures a certain outcome and whether that says anything
about the causal relation between variables of the original structural causal
model. I will do this by first formalising what states in the derived multi-
agent system model represent and then show certain specific relations between
strategies in the derived concurrent game structure and causal relations in the
original structural causal model

Finally, in Section 2.5 I discussed the notion of strategic responsibility as
used for concurrent game structures. This is used for the final sub-problem:

Can analysing the derived multi-agent system model show a relation between
strategic responsibility and causality?

Since strategic responsibility relies heavily on the concept of strategy in con-
current game structures, the results of the second sub-problem will be used to
relate the concepts of strategic responsibility and causality in the HP sense.
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4 Basing a Concurrent Game Structure on a
Causal Model

Gladyshev et al. (2023) have done work on defining a concurrent game structure
from a causal model [6]. In their approach, they partition the endogenous causal
variables in a set of agent variables Va, variables directly controlled by an agent,
and a set of environment variables, Ve, that are not directly controlled by an
agent. Therefore, V = Va ∪ Ve and Va ∩ Ve = ∅. They then define the set of
agents of the CGS to be a bijection to the set of agent variables. The states
are the causal models that can be achieved through interventions on the agent
variables and those interventions are the possible actions.

This approach is useful for some purposes but I did not find it very useful
to compare questions of causality and responsibility, because it takes a ‘zoomed
out’ approach to the causal model. Every state contains a whole causal model,
while I am interested in the specific variable values, therefore I came up with
a different approach where I tried to make the causal nature of the model also
apparent in the CGS. A more similar approach to mine was defined in [3],
but they use extensive form games and do not distinguish between agent and
environment variables.

4.1 Defining a Causal Concurrent Game Structure

Before I can define this model I must first define my notion of rank of a causal
variable:

Definition 25 (Rank of a Causal Variable). A ranking function on a causal
model M is a function f : V → Z>0, such that for two causal variables X and
Y , if X is a descendant of Y , then f(X) > f(Y ) . The rank of a causal variable
X is f(X).

An agent ranking function of a causal model M corresponding to ranking
function f is a function g : V → {0, ..., n}, where n = |{f(A) | A ∈ Va}|, such
that: For all A,B ∈ Va, g(A) > g(B) > 0 if and only if f(A) > f(B) and
g(A) = g(B) if and only if f(A) = f(B). For all X ∈ Ve, g(X) = g(A) − 1 if
∃A ∈ Va such that f(X) ≤ f(A) and ∄B ∈ Va such that f(X) ≤ f(B) < f(A).
If such an A does not exist, i.e. if f(X) > f(A) for all A ∈ Va, then g(X) = n.
The agent rank of a variable A ∈ Va is g(A).

The idea behind the agent ranking function g is that it ‘compresses’ the
ranking function to only have as many values as there are agents with distinct
ranks. This will later be used to determine in which states of the CGS which
variables will be updated. A ranking function gives rise to a unique agent
ranking function.

A possible ranking function f on a causal model will be the function that
assigns to the endogenous variables the number of their ‘level’, where first-level
variables will be variables that do not depend on other endogenous variables,
second-level variable only depend on exogenous variables and first-level vari-
ables, etc. This satisfies the condition that descendants need to have a higher
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rank than their ancestors, because variables of rank n will be nth-level variables
that depend on exogenous variables and variables of level n − 1 or less. So all
ancestors of these rank n variables will have a lower rank.

Another possible ranking function f ′ will assign rank 1 to the variable(s) with
the longest causal path(s) starting with them, rank 2 to the variable(s) with the
second-longest causal path(s) starting with them, etc. This also satisfies the
condition, because any ancestor of a variable X will have a longer causal path
starting from them, after all, the path from the ancestor to X is added to the
longest causal path starting at X. This puts them lower in the ranking than X.

In the following example I will look at these rankings in the context of a
specific causal model and determine the corresponding agent ranking functions.

Example 19. Lets look at how these rankings work in the rock-throwing ex-
ample as described in [8], we will use this as a running example from now on. In
this example two agents, Billy and Suzy, are throwing rocks at a bottle. Suzy
throws faster than Billy, so if they both throw, Suzy’s rock is the one to shatter
the bottle. The causal model has endogenous variables Suzy throws, ST , Billy
throws, BT , Suzy’s rock hits the bottle, SH, Billy’s rock hits, BH and the bot-
tle shatters, BS. All variables can have value 0 or 1. The structural equations
are:

• SH = ST

• BH = BT ∧ ¬ST

• BS = SH ∨BH.

The causal network is shown in Figure 10. When we apply f to this example,

r r
r r

r
? ?-
J
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JĴ










�

ST BT

SH BH

BS

Figure 10: The Causal network for the Rock-Throwing example.

ST and BT get rank 1, SH gets rank 2, BH gets rank 3, and BS gets agent
rank 4. The agent variables are ST and BT , so the agent ranking function g
would give them both rank 1. All other variables would also get rank 1, as there
is no agent variable that has a higher or equal rank to SH,BH or BS. So all
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of them get the same agent rank as the highest agent variable, which is 1. For
f ′, the values are: ST gets 1, BT and SH get rank 2, BH gets rank 3 and and
BS gets rank 4. Now the agent ranking function g′ would give ST agent rank
1 and BT agent rank 2. For the environment variables, SH will get agent rank
g′(BT )− 1 = 1, as f ′(BT ) ≥ f ′(SH) = 2. The other two will get agent rank 2,
because they both have higher ranks than the highest agent variable.

Now everything is in order to define causal concurrent game structures.

Definition 26 (Causal CGS). Given a causal model, M, where the variables
can only attain finitely many values, a set of agent variables that is a subset of
the endogenous Va ⊆ V, and where each agent variable depends on exactly one
exogenous variable, a context u, and a ranking function f with corresponding
agent ranking function g. Let I be a set of initial values for all variables ac-
cording to the setting (M,u). A causal concurrent game structure is defined as
a tuple GS = ⟨k,Q, d, δ,Π, π⟩ with:

• k = |Va|, every agent only controls one agent variable.

• A starting state q0,0, with the rest of the states being recursively defined as
follows: For every combination of values of all variables of agent rank 1
in Va, define a state q1,j, j starting at 0 and counting up. Then for every
combination of a q1,j state and values of all the variables with agent rank
2, define a state q2,j, continue this until the variables with the highest
agent rank are considered. In general the number of states qi,j for any
j > 0 will be:

|{qi,j | for all values of j}| =
∏

Y ∈Va,
g(Y )≤j

|R(Y )|.

• daX (qi,j) = R(X) if and only if aX is an agent controlling variable X and
X has agent rank i + 1. Otherwise daX (qi,j) = ∅. If daX (qi,j) ̸= ∅, then
an action for agent aX in state qi,j is denoted aXi,j = x with x ∈ R(X), X

being the agent variable that a controls. Else the action is denoted aXi,j = 0.

• The state following from the move vector (aX1
i,j = x1, ..., a

Xk
i,j = xk) is

defined as δ(qi,j , a
X1
i,j = x1, ..., a

Xk
i,j = xk) = qi+1,j′ , with:

j′ ∈ {j ·#choices, j ·#choices+ 1, ..., j ·#choices+ (#choices− 1)},

where #choices =
∏

Y ∈Va,
g(Y )=i+1

|R(Y )|.

For i = maxY ∈Va g(Y ), the transition δ(qi,j , a
X1
i,j = 0, ..., aXk

i,j = 0) = qi,j
for all j. Note that this is the only possible move vector for any state with
the maximal i, because there are no variables of agent rank higher than i.

• Π = {X = x| for all X ∈ V and all x ∈ R(X)}.
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• The valuation of each state is defined recursively as:

π(q0,0) = I
π(δ(qi,j , a

X1
i,j = x1, ..., a

Xk
i,j = xk)) = (π(qi,j)\V −i+1) ∪ V a

i+1 ∪ V e
i+1,

where

V −i+1 = {X = x | g(X) = i+ 1, (X = x) ∈ π(qi,j)};
V a
i+1 = {Xk = xk | Xk ∈ Va and g(X) = i+ 1}; 3

V e
i+1 =

n′⋃
n=f(A)+1

V e,n
i+1 , where A ∈ Va with g(A) = i+ 1 and n′ = f(B),

if ∃B ∈ Va such that g(B) = i+ 2, else n′ = maxY ∈V f(Y )

V e,n
i+1 = {X = x | X ∈ Ve and f(X) = n,

x = FX((π(qi,j)\V −i+1) ∪ V a
i+1 ∪ V

e,f(A)+1
i+1 ∪ ... ∪ V e,n−1

i+1 )}.

The intuition behind this definition is that agent variables that are earlier on
a causal path will earlier get to take an action, to avoid conflicts. The CGS is
defined with respect to a context, because in certain models, the agent variables
do not fully determine the values of the other variables. The evaluation of the
states is defined recursively. After each transition, only a small number of the
variable values get updated, the rest stays the same as in the previous state.
This is reflected by the fact that we remove the variables that will get updated
from the valuation of the previous state and then add the new values. V a

i+1

contains the values for the agent variables that are currently being changed.
V e
i+1 contains the values of the environment variables that get changed due to

the change in agent variables. This set is divided in several smaller sets, because
environment variables can also depend on each other, making it necessary to
first determine those of the lowest rank, than the slightly higher rank ones, and
so on.

One thing to note is that the fact that all states qi,j can only transition to
states qi+1,j′ , will lead to the CGS having a tree structure. It is impossible to
return to an earlier state and every node can only branch out.

Example 20. We will consider how to build a CGS from the causal model
for the Rock-Throwing example. The agent variables are ST and BT . We
start with the setting (M,u) with u = (UST = 0, UBT = 0) giving I =
{ST = 0, BT = 0, SH = 0, BH = 0, BS = 0}. Given this, let us determine the
causal CGS with f as defined in Example 19.

• k = |Va| = |{ST,BT}| = 2

• Q = {q0,0, q1,0, q1,1, q1,2, q1,3}, because there are 4 combinations of vari-
ables of agent rank 1, (ST = 0, BT = 0), (ST = 0, BT = 1), (ST =
1, BT = 0), (ST = 1, BT = 1) and not variables with a higher agent rank.

3Recall that the xk comes from the move vector
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• daST (q0,0) = R(ST ) = {0, 1}, daBT (q0,0) = R(BT ) = {0, 1} and daST (q1,j) =
daBT (q1,j) = ∅, ∀j ∈ {0, 1, 2, 3}. Since ST and BT both have agent rank
1, so their agents only get to take an action in q0,0.

• δ(q0,0, a
ST
0,0 = 0, aBT

0,0 = 0) = q1,0,

δ(q0,0, a
ST
0,0 = 0, aBT

0,0 = 1) = q1,1,

δ(q0,0, a
ST
0,0 = 1, aBT

0,0 = 0) = q1,2,

δ(q0,0, a
ST
0,0 = 1, aBT

0,0 = 1) = q1,3,

δ(q1,j , a
ST
1,j = 0, aBT

1,j = 0) = q1,j , ∀j ∈ {0, 1, 2, 3}. Since aST and aBT

cannot choose anymore in states q1,j , we denote this inaction with 0.

• Π = {ST = 0, ST = 1, BT = 0, BT = 1, SH = 0, SH = 1, BS = 0, BS = 1}.

• π(q0,0) = I,
π(q1,0) = π(δ(q0,0, a

ST
0,0 = 0, aBT

0,0 = 0)) = (π(q0,0)\V −1 ) ∪ V a
1 ∪ V e

1 , where

V −1 = {ST = 0, BT = 0, SH = 0, BH = 0, BS = 0}, as all variables have
agent rank 1,
V a
1 = {ST = 0, BT = 0}, as aST

0,0 = 0 and aBT
0,0 = 0.

V e
1 =

⋃n′

n=2 V
e,n
1 , where n′ = maxY ∈V f(Y ) = 4, now

- V e,2
1 = {SH = FSH(ST = 0, BT = 0) = 0}

- V e,3
1 = {BH = FBH(ST = 0, BT = 0, SH = 0) = 0}

- V e,4
1 = {BS = FBS(ST = 0, BT = 0, SH = 0, BH = 0) = 0}, so

π(q1,0) = ({ST = 0, BT = 0, SH = 0, BH = 0, BS = 0}\{ST = 0, BT =
0, SH = 0, BH = 0, BS = 0})∪{ST = 0, BT = 0}∪({SH = 0}∪{BH = 0}∪
{BS = 0} = {ST = 0, BT = 0, SH = 0, BH = 0, BS = 0}.
Now, for π(q1,1) = π(δ(q0,0, a

ST
0,0 = 0, aBT

0,0 = 1)), we have that V −1 is the
same as above, as the rank is still the same. The difference starts with
V a
1 , we now have that V a

1 = {ST = 0, BT = 1}, as aST
0,0 = 0 and aBT

0,0 = 1.

V e
1 is still the union of V e,2

1 , V e,3
1 and V e,4

1 , but these sets are now: -
V e,2
1 = {SH = FSH(ST = 0, BT = 1) = 0}

- V e,3
1 = {BH = FBH(ST = 0, BT = 1, SH = 0) = 1}

- V e,4
1 = {BS = FBS(ST = 0, BT = 1, SH = 0, BH = 1) = 1}, so

π(q1,1) = ({ST = 0, BT = 0, SH = 0, BH = 0, BS = 0}\{ST = 0, BT =
0, SH = 0, BH = 0, BS = 0})∪{ST = 0, BT = 1}∪({SH = 0}∪{BH = 1}∪
{BS = 1} = {ST = 0, BT = 1, SH = 0, BH = 1, BS = 1}.
The valuation for the other two states is done similar, so that π(q1,2) =
{ST = 1, BT = 0, SH = 1, BH = 0, BS = 1} and π(q1,3) = {ST = 1, BT =
1, SH = 1, BH = 1, BS = 1}.

The corresponding graph is given in Figure 11.
Let us now consider the causal CGS for f ′ as defined in Example 19. This

means we will now start with just Suzy being able to make a decision.
From now on if a variable like ST can attain only two values I will write ST

and ¬ST instead of ST = 1 and ST = 0 respectively.

• k and Π are the same as in the above example.
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q1,0

q1,1

q1,2

q1,3

{¬ST,¬BT,¬SH,¬BH,¬BS}

{¬ST,BT,¬SH,BH,BS}

{ST,¬BT, SH,¬BH,BS}

{ST,BT, SH,¬BH,BS}

⟨0,
0⟩

⟨0, 1⟩

⟨1, 0⟩
⟨1, 1⟩

Figure 11: The causal CGS of the rock-throwing example, using ranking function
f . As a convention I will not show the initial values in the starting state, nor
any values that are not changed in a state, except for the leaf states. I also do
not show the transitions to the same state in the leaf states.

• Q = {q0,0, q1,0, q1,1, q2,0, q2,1, q2,2, q2,3}, as |{q1,j |∀j}| =
∏

Y ∈{ST} |R(Y )| =
|{0, 1}| = 2 and |{q2,j |∀j}| =

∏
Y ∈{ST,BT} |R(Y )| = |{0, 1}| · |{0, 1}| = 4.

These are all states, because the highest agent rank value of g′ is 2.

• The available actions for each agent in each state are:

daST (q0,0) = {0, 1}, daBT (q0,0) = ∅,
daST (q1,j) = ∅, daBT (q1,j) = {0, 1}, ∀j ∈ {0, 1}
daST (q2,j) = ∅, daBT (q2,j) = ∅, ∀j ∈ {0, 1, 2, 3}.

• The transitions are:
δ(q0,0, a

ST
0,0 = 0, aBT

0,0 = 0) = q1,0,

δ(q0,0, a
ST
0,0 = 1, aBT

0,0 = 0) = q1,1,

δ(q1,0, a
ST
1,0 = 0, aBT

1,0 = 0) = q2,0,

δ(q1,0, a
ST
1,0 = 0, aBT

1,0 = 1) = q2,1,

δ(q1,1, a
ST
1,1 = 0, aBT

1,1 = 0) = q2,2,

δ(q1,1, a
ST
1,1 = 0, aBT

1,1 = 1) = q2,3,

δ(q2,j , a
ST
2,j = 0, aBT

2,j = 0) = q1,j , ∀j ∈ {0, 1, 2, 3}.

• For the valuations we have again that π(q0,0) = I, as by definition. To
determine π(q1,0), we determine V −1 = {¬ST,¬SH}, as both g′(ST ) and
g′(SH) equal 1. V a

1 = {¬ST}, as aST
0,0 = 0. V e

1 = V e,2
1 , as n′ = 2, since

g′(BT ) = 2 and f ′(BT ) = 2 as well. Now, the only environment variable of
rank 2 is SH, and so V e

1 = {¬SH}, as FSH((I\{¬ST,¬SH})∪{¬ST}) =
0. Putting this together gives π(q1,0) = {¬ST,¬BT,¬SH,¬BH,¬BS}.
The valuation of π(q1,1) is done very similar. V −1 is the same as above.

V a
1 is now {ST}, as aST

0,0 = 1. V e
1 again equals V e,2

1 , which is now {SH}. So
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π(q1,1) = (I\{¬ST,¬SH})∪{ST}∪{SH} = {ST,¬BT, SH,¬BH,¬BS}.
Lets now look at π(q2,1) = π(δ(q0,0, a

ST
0,0 = 0, aBT

0,0 = 1)). V −2 = {¬BT,¬BH,¬BS},
since all these variables have agent rank 2. V a

2 = {BT}, as BT is the only
agent variable of agent rank 2 and aBT

0,0 = 1. V e
2 = V e,3

2 ∪ V e,4
2 . There is

no agent variable with a higher agent rank than 2 and the maximum value
of f ′ is 4. We have that V e,3

2 = {BH}, since FBH({¬ST,¬SH,BT}) = 1,
and V e,4

2 = {BS}, since FBS({¬ST,¬SH,BT,BH}) = 1.
So, π(q2,1) = ({¬ST,¬BT,¬SH,¬BH,¬BS}\{¬BT,¬BH,¬BS})∪{BT}∪
{BH} ∪ {BS} = {¬ST,BT,¬SH,BH,BS}. The valuation of q2,0, q2,2
and q2,3 is done similar. So π(q2,0) = {¬ST,¬BT,¬SH,¬BH,¬BS},
π(q2,2) = {ST,¬BT, SH,¬BH,BS} and π(q2,3) = {ST,BT, SH,BH,BS}.

The graph corresponding to this is given in Figure 12.
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q2,2

q2,3

⟨0,
0⟩

⟨1, 0⟩

⟨0,
0⟩
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⟨0, 0⟩

⟨0, 1⟩

{¬ST,¬SH,¬BT,¬BH,¬BS}

{¬ST,¬SH,BT,BH,BS}

{ST, SH,¬BT,¬BH,BS}

{ST, SH,BT,¬BH,BS}

{¬ST,¬SH}

{ST, SH}

Figure 12: The causal CGS of the rock-throwing example using ranking function
f ′. Again I do not show the initial values in the starting state, nor any values
that are not changed in a state. I also do not show the transitions to the same
state in the leaf states.

So, in the second case, the agents that (indirectly) influence most variables
get to take an action first, while in the first case, the agents that are influenced
by the smallest number of variables get to go first.

Some other examples taken from [8]:

Example 21. Consider the fighter planes example from [8]. In this example
Billy and Suzy pilot fighter planes, with the mission to destroy a target. Billy’s
task is to shoot any enemies that might show up to shoot Suzy, Suzy’s task is to
bomb the target. The Causal model is described by the causal variables BGU
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(Billy goes up), ESU (enemy shows up), BPT (Billy pulls trigger), EE (enemy
eludes Billy), ESS (enemy shoots Suzy), SBT (Suzy bombs target) and TD
(target destroyed), which can all be true or false, with structural equations:

• BPT = BGU ∧ ESU

• EE = ESU ∧ ¬BPT

• ESS = EE

• SBT = ¬ESS

• TD = SBT .

The causal network is given in Figure 13.

r r r r r r
r

- - - - -

@
@
@R

HHH
HHHj

BGU BPT EE ESS SBT TD

ESU

Figure 13: The causal network for the fighter planes example.

In this example we have that Va = {BGU,ESU, SBT}, as those are the first
actions of each agent, and we could assume the enemy will also try to shoot
Suzy if they show up and that Billy will actually shoot the enemy if he gets the
chance. Let I = {¬BGU,¬ESU,¬BPT,¬E,¬ESS,¬SBT,¬TD}.

Now, note that both ranking functions we defined earlier give the same
ranking. The rank of BGU and ESU is 1, the rank of BPT is 2, the rank
of EE is 3, for ESS it is 4, for SBT it is 5 and the rank of TB is 6. The
corresponding agent rank of BGU,ESU,BPT,EE and ESU is 1 and for SBT
and TD it is 2. Because of this, we only get one concurrent game structure as
given in Figure 14.

I will not fully write out the whole specification of the causal CGS, but I
will show how the evaluation of q2,3 is determined:

π(q2,3) = π(δ(q1,1, a
BGU
1,1 = 0, aESU

1,1 = 0, aSBT
1,1 = 1)) = ({¬BGU,ESU,¬BPT,

EE,ESS,¬SBT,¬TD}\V −2 )∪V a
2 ∪V e

2 . In this case, V −2 = {¬SBT,¬TD}, as
those are the two variables of agent rank 2. V a

2 = {SBT}, because aSBT
1,1 = 1.

V e
2 = V e,6

2 = {¬TD}, as 0 = FTD({¬BGU,ESU,¬BPT,
EE,ESS,¬SBT}). Therefore, π(q2,3) = ({¬BGU,ESU,¬BPT,EE,ESS,
¬SBT,¬TD}\{¬SBT,¬TD})∪{¬SBT}∪{¬TD} = {¬BGU,ESU,¬BPT,EE,
ESS,¬SBT,¬TD}. Which is what is pictured in Figure 14.

The following example shows why we need to define the CGS in general
given a context.

Example 22. Lets now consider the railroad switch example from [8]. In this
example an agent is capable of flipping a switch that determines on which track
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{¬BPT,¬EE,¬ESS}
{¬BGU,¬ESU} ∪

{¬BPT,EE,ESS}
{¬BGU,ESU} ∪

{¬BPT,¬EE,¬ESS}
{BGU,¬ESU} ∪

{BGU,ESU} ∪
{BPT,¬EE,¬ESS}

{¬BGU,¬ESU,¬BPT} ∪
{¬EE,¬ESS,¬SBT,¬TD}

{¬BGU,¬ESU,¬BPT} ∪
{¬EE,¬ESS, SBT, TD}

{¬BGU,ESU,¬BPT} ∪
{EE,ESS,¬SBT,¬TD}

{¬BGU,ESU,¬BPT} ∪
{EE,ESS, SBT, TD}

{BGU,¬ESU,¬BPT} ∪
{¬EE,¬ESS,¬SBT,¬TD}

{BGU,¬ESU,¬BPT} ∪
{¬EE,¬ESS, SBT, TD}

{BGU,ESU,BPT} ∪
{¬EE,¬ESS,¬SBT,¬TD}

{BGU,ESU,BPT} ∪
{¬EE,¬ESS, SBT, TD}

⟨0
, 0
, 0
⟩

⟨0,
1,
0⟩

⟨1, 0, 0⟩

⟨1, 1, 0⟩

⟨0, 0, 0
⟩

⟨0, 0, 1⟩

⟨0, 0, 0
⟩

⟨0, 0, 1⟩

⟨0, 0, 0
⟩

⟨0, 0, 1⟩

⟨0, 0, 0
⟩

⟨0, 0, 1⟩

Figure 14: The causal CGS for the fighter planes example. The full evaluations
of the starting state and states q1,j are again not pictured.

a train will continue. The train will standard go down the left track, but will
follow the right track if the switch is flipped. Though both tracks arrive at
the same destination, one of them can be blocked. This is modelled with four
variables, LB, left track blocked, RB, right track blocked, F , for switch flipped
and A, train arrives at destination. The only relevant structural equation is:

A = (F ∧ ¬LB) ∨ (¬F ∧ ¬RB).

F is the only agent variable, but to determine the effect of F , it is essential
to take the context into account. The concurrent game structures for all four
possible contexts are given in Figure 15.

4.2 Properties of Causal Concurrent Game Structures

I already mentioned that a causal CGS has a tree structure, because of this,
I will call states qi,j , with i = maxX∈V g(X), with g the used agent ranking
function, leaf-states.

I will call actions in states where an agent does not control a variable, i.e.
aXi,j = 0, with g(X) = i + 1, trivial actions. It is also useful to define an
action path for a state qi,j , that contains all the non-trivial actions that led to
the state. In other words, only the actions that agents took in a state where
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(a) The causal CGS when neither
of the tracks is blocked. I =
{¬LB,¬RB,¬F,A}.
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(b) The causal CGS when
only the right track is blocked.
I = {¬LB,RB,¬F,¬A}.
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(c) The causal CGS when only the left
track is blocked. I = {LB,¬RB,¬F,A}.

��
�� ��

��

��
��

�
�
�
�>

Z
Z
Z
Z~

q0,0

q1,0

q1,1

⟨0⟩

⟨1⟩

{LB,RB}

{LB,RB,¬F,¬A}

{LB,RB, F,¬A}

(d) The causal CGS when both tracks are
blocked. I = {LB,RB,¬F,¬A}.

Figure 15: All four possible causal CGS for the railroad switch example.

they could actually take an action. I will denote this set of actions as α[qi,j ].

Formally, for 0 ≤ n ≤ k, an action (aXn

i′,j′ = x) ∈ α[qi,j ] if and only if qi′,j′ ∈
λ[qi,j , i] (the history of qi,j) and there exists a move vector containing this action:

(aX1

i′,j′ = x1, ..., a
Xn

i′,j′ = x, ..., aXk

i′,j′ = xk), such that δ(qi′,j′ , a
X1

i′,j′ = x1, ..., a
Xn

i′,j′ =

x, ..., aXk

i′,j′ = xk) ∈ λ[qi,j , i]. In other words, an action is on the action path for
a state qi,j , if the state in which the action is taken lies on the history of qi,j ,
and the successor of this state on the history can be reached when taking this
action.

The statement in the lemma below is a direct consequence of the way the
valuation of states are determined in a causal CGS. It states that a variable can
only be assigned a new value once on a computation in a causal CGS. After a
change of value, the variable will keep that value in all following states of the
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computation.

Lemma 1. Given a causal CGS based on the causal model M with ranking
function f and corresponding agent ranking function g. For any causal variable
X ∈ V ofM, with g(X) = i, it holds that (X = x) ∈ π(qi,j) for some state qi,j,
if and only if (X = x) ∈ π(qi′,j′) for all states qi′,j′ that are descendants of qi,j.

Proof. In state qi,j , only propositions with variables of agent rank i are changed,
all other variables will have the same value as in the previous state by defini-
tion. In particular propositions with variables of a lower agent rank remain
unchanged. This means that if (X = x) ∈ π(qi,j), then the value of X will not
change in any descendant states qi′,j′ of qi,j , after all, i′ > i, and all variables
with agent rank less than i′ remain unchanged, so in particular those variables
with agent rank i and hence X = x ∈ π(qi′,j′) for all states qi′,j′ that are
descendant of qi,j .

If (X = x) ∈ π(qi′,j′) for all states qi′,j′ that are descendants of qi,j , then
in none of those states, the value of X was changed, as only variables of agent
rank i′ are changed in states qi′,j′ and X has agent rank i. That means that
the X must have the same value in qi,j , so (X = x) ∈ π(qi,j).

Definition 27 (Correspondence). We say that a state qi,j of a causal CGS
corresponds to a causal setting (M,u) if for all causal variables X ofM, (X =
x) ∈ π(qi,j) if and only if (M,u) ⊨ X = x4.

I will also sometimes say that a causal setting (M,u) corresponds to a state
qi,j of a causal CGS and mean the same thing.

Before we can state our main result, we first need to proof the following
lemma.

Lemma 2. Given a causal CGS based on a causal model M = (S,F) with
S = (U ,V,R), context u and ranking function f , with corresponding agent
ranking function g. Let X ∈ V be any causal variable of M, with g(X) ≤ i,
then for all states qi,j of the causal CGS, (X = x) ∈ π(qi,j) if and only if

(MY⃗←y⃗,u) ⊨ X = x, where Y⃗ ← y⃗ = {Y ← y | Y ∈ Va and (aYi,j = y) ∈
α[qi,j ]}, with α[qi,j ] the action path for qi,j.

Proof. We have X ∈ V with g(X) ≤ i. If X ∈ Va, let (X = x) ∈ π(qi,j), as
X ∈ Va, it holds that the action aXi,j = x was taken on the transition to qi,j ,

so (aXi,j = x) ∈ α[qi,j ]. That means that (X ← x) ∈ Y⃗ ← y⃗ and that hence

(MY⃗←y⃗,u) ⊨ X = x by the definition of an intervention. That proves one
direction for agent variables.

Now suppose (MY⃗←y⃗,u) ⊨ X = x, X has to be in Y⃗ , since Y⃗ contains all
agent variables of agent rank less or equal than i, since all agents with agent
variables with agent rank i get to take an action in the states qi−1,j′ . As Y⃗

contains X and (MY⃗←y⃗,u) ⊨ X = x, it holds that (X ← x) ∈ Y⃗ ← y⃗. This

4So the causal variable X has value x in the causal setting (M,u).
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means that α[qi,j ] contains a
X
i−1,j′ = x, which implies that (X = x) ∈ V a

i for
this state, and hence (X = x) ∈ π(qi,j). That proofs that the statement holds
for agent variables.

Now suppose X ∈ Ve instead. I am going to prove the statement by induc-
tion on the rank of X, f(X):
Base Step Let f(X) = 1, then g(X) = 0 by definition of agent rank. First

suppose that (X = x) ∈ π(qi,j). Since X has agent rank 0, by
Lemma 1 it holds that (X = x) ∈ π(q0,j′) for some state q0,j′ ,
but there is only one such state, q0,0. So, given that (X = x) ∈
π(q0,0), we have that (X = x) ∈ I. We have that (M,u) ⊨ I,
and hence (M,u) ⊨ X = x. Since X has rank 1, it does not
depend on any other variables and its value will not change given

interventions on other variables. Therefore (MY⃗←y⃗,u) ⊨ X = x
as well.
Now, for the other direction, suppose that (MY⃗←y⃗,u) ⊨ X = x,
again, sinceX has rank 1, it must have the same value in (M,u).
Since I has a value for every endogenous variable of M and
(M,u) ⊨ I, we have that (X = x) ∈ I = π(q0,0). By Lemma 1
it follows that (X = x) ∈ π(qi,j) as well.

Induction
Hypothesis

Suppose that there is a n such that for f(X) ≤ n with g(X) ≤ i,
it holds that for all states qi,j , that (X = x) ∈ π(qi,j) if and only

if (MY⃗←y⃗,u) ⊨ X = x.
Induction
Step

I need to show that it holds for an X ′, with f(X ′) = n + 1.
There are two cases, either the agent rank of X ′ is the same as
for X from the induction hypothesis (IH) or g(X ′) = g(X) + 1.
I will first consider the first case, without loss of generality,
we can say that the agent rank of X ′ is i, the prove stays the
same for a lower rank. First suppose that (X ′ = x′) ∈ π(qi,j),
that means that (X ′ = x′) ∈ V e

i and specifically in V e,n+1
i ,

so x′ = FX((π(qi,j)\V −i ) ∪ V a
i ∪ V

e,f(A)+1
i ∪ ... ∪ V e,n

1 ). By
the IH, we have that the values for all variables of rank less or

equal to n in π(qi,j) follow from (MY⃗←y⃗,u), so (MY⃗←y⃗,u) ⊨

V a
i ∪V

e,f(A)+1
i ∪ ...∪V e,n

1 (for V a
i this follows from the first part

of the proof), this also holds for those variables in (π(qi,j)\V −i )
of rank less or equal n. Since X ′ by definition of rank only
depends on variables of rank less or equal to n, it must also

hold that (MY⃗←y⃗,u) ⊨ X ′ = x′.

Now for the other direction, if (MY⃗←y⃗,u) ⊨ X ′ = x′, I need
to show that (X ′ = x′) ∈ V e,n+1

i . By the IH, we have

that all variables that X depends on in (MY⃗←y⃗,u) are in
π(qi,j), since their rank must be smaller than than the rank
of X ′. Lets denote this set of variables that X ′ depends on

with Z⃗. Z⃗ ⊂ (π(qi,j)\V −i ) ∪ V a
i ∪ V

e,f(A)+1
i ∪ ... ∪ V e,n

1 , so

x′ = FX′((π(qi,j)\V −i ) ∪ V a
i ∪ V

e,f(A)+1
i ∪ ... ∪ V e,n

1 ) and hence
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(X ′ = x′) ∈ π(qi,j).
Now to prove the second case. We can again assume without
loss of generality that g(X ′) = i and now g(X) = i − 1. If
(X ′ = x′) ∈ π(qi,j), then (X ′ = x′) ∈ V e,n+1

i , but now n is also
the rank of any agent variable A such that g(A) = i, so x′ =
FX′(π(qi−1,j′\V −i ∪V a

i ), where qi−1,j′ is the parent state of qi,j .

The first half of this proof has already shown that (MY⃗←y⃗,u) ⊨
V a
i and the IH shows that the variables of π(qi−1,j′\V −i with

rank less or equal to n also follow from (MY⃗←y⃗,u) and since
X ′ only depends on those variables with rank less or equal to

n, we have that it must also hold that (MY⃗←y⃗,u) ⊨ X ′ = x′.

Finally, suppose that (MY⃗←y⃗,u) ⊨ X ′ = x′, we must
show that (X ′ = x′) ∈ V e,n+1

i , in other words, that x′ =
FX′((π(qi−1,j′)\V −i ) ∪ V a

i ). All variables that X ′ depends on

in (MY⃗←y⃗,u) have rank n or less, hence for the environment
variables Ze that X ′ depends on, the IH implies that if for

any of those Ze, it holds that if (MY⃗←y⃗,u) ⊨ Ze = z, then
(Ze = z) ∈ π(qi−1,j′). Since all those variables Ze have rank n
or less, g(Ze) < i and hence (Ze = z) ∈ π(qi−1,j′)\V −i as well.
For the agent variables Za that X ′ depends on, it is shown

above that if (MY⃗←y⃗,u) ⊨ Za = z′, then if g(Za) < i, (Za =
z′) ∈ π(qi−1,j′)\V −i and if g(Za) = i, then (Za = z′) ∈ V a

i .
Hence all the variable-value combinations that X ′ = x′ depends
on are in (π(qi−1,j′)\V −i ) ∪ V a

i and hence it must hold that
x′ = FX′((π(qi−1,j′)\V −i ) ∪ V a

i ).

The following proposition actually follows directly from Lemma 2, however
it is the most important result as we will use it in the next section when we
define the notion of causality in causal CGS.

Proposition 5. Given a causal CGS based on a causal modelM, with context
u, for every leaf-state qi,j of this causal CGS, qi,j corresponds to the causal

setting (MY⃗←y⃗,u), where Y⃗ ← y⃗ = {A← a | A ∈ Va and (aAi,j = a) ∈ α[qi,j ]},
with α[qi,j ] is the action path for qi,j.

Proof. Recall that for a leaf-state qi,j , i = maxX∈V g(X). Therefore, as every
variable in the causal model has agent rank i or less, we can use Lemma 2 on all
variables. Hence, for all endogenous variables X of the causal model, it holds

that (X = x) ∈ π(qi,j) if and only if (MY⃗←y⃗,u) ⊨ X = x. This is the definition
of correspondence and hence the statement is proven.
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5 Causality in Concurrent Game Structures

Now that I have defined causal concurrent game structures and shown what their
states represent, it is time to look at what else they can be used for. In this
section I will show three relations between causal concurrent game structures
and the modified HP definition, but before I can do that I must shortly introduce
a few concepts.

I will occasionally say that an agent aX causes φ in a causal setting (M,u)
if there is a value x of agent variable X such that X = x causes φ in this setting.
The set of all agents in a model will be denoted by Σ. Specifically, for a causal
CGS, Σ = {aX | X ∈ Va}. This set will also be called the grand coalition at
times.

Now I can state the first claim. The following proposition states that if
causal formula φ is caused by a set of agents in a causal setting, then there is
at least one leaf-state in the causal CGS corresponding to this causal setting,
that also contains φ.

Proposition 6. Given a set of agents Γ = {aX | X ∈ X⃗} and a setting x⃗ for

the variables in X⃗. If X⃗ = x⃗ is a cause of a causal formula φ, according to
the modified HP definition, in causal setting (M,u), then, in the causal CGS
based on this causal setting and a corresponding ranking function f and agent
ranking function g, the grand coalition has a strategy FΣ that guarantees φ in
the leaf-state resulting from this strategy.

Proof. Let FΣ be the strategy where every agent in the system takes the same ac-
tion as in (M,u), i.e. FΣ = {faY | Y ∈ Va, and faY (qi,j) = y, with y such that
(M,u) ⊨ Y = y if i = g(Y ), else faY (qi,j) = 0}. Because FΣ defines an action
for every agent in the causal CGS, following this strategy will result in a unique
computation λ. In other words, the set out(q0,0, FΣ) is a singleton set only con-
taining λ. By Proposition 5 the leaf state in this computation will correspond
to causal setting (MVa←y⃗,u), where Va is the set of agent variables and y⃗ is
the set of values these agent variables were set to according to the strategy. As
no values were actually changed in this causal setting when compared to the
original causal setting (M,u), φ holds in this setting, because as X⃗ = x⃗ causes
φ in (M,u), we have by the first condition for causality that (M,u) ⊨ φ. The
leaf-state must hence guarnatee φ. This proofs the proposition.

The above statement is fairly trivial, as all what had to be done was making
sure the agents did not change the values of their variables along the path to
the leaf-state.

The following two propositions are more interesting, they make a statement
the other way around, they claim that if there is a set of agents in the causal
CGS that have a strategy that can guarantee φ, then there is a set of agents
that causes φ. The propositions are fairly similar to each other, but the second
is more specific than the first one.

Proposition 7. Given a causal setting (M,u) with (M,u) ⊨ φ and (M,u) ⊨
A = a for some A ∈ Va. Given the causal CGS GS based on (M,u), if agent
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aA has a strategy to bring about ¬φ in all leaf-states resulting from this strategy,
then A = a causes φ in (M,u), according to the modified HP definition.

Proof. To show that A = a causes φ in (M,u), we need to show all three
conditions of the modified HP definition:

AC1 This holds by the conditions in the proposition. (M,u) ⊨ φ ∧ (A = a).

AC2 If A has a strategy faA in the causal CGS GS to bring about ¬φ, define the
strategy FΣ = {fa} ∪ {faX | X ∈ Va\{A}, and for all statesqi′,j′ van GS,
faX (qi′,j′) = x, where x is such that (M,u) ⊨ X = x, if i′ = g(X), else
faX (qi′,j′) = 0}. Now, the valuation of the leaf-state qi,j resulting from
this strategy FΣ when applied from the initial state q0,0, must also contain
¬φ. However, by Proposition 5, this leaf-state qi,j corresponds to causal
setting (MVa←y⃗,u), where Va is the set of agent variables and y⃗ is the set
of values these agent variables were set to according to the strategy. Define
W⃗ = Va\{A}, let w∗ be the set of values such that (M,u) ⊨ W⃗ = w∗.
Because FΣ is defined to keep the values of all agent variables that are not
A the same as in the original setting, these values w∗ are also the values
W⃗ will have in the valuation of qi,j . Let a

′ be such that A = a′ ∈ π(qi,j).
Now, (MA←a′,W⃗←w∗

,u) is the same causal setting as (MVa←y⃗,u). Since
the latter corresponds to qi,j and qi,j is a leaf-state resulting from strategy

faA , ¬φ ∈ π(qi,j), but as (MA←a′,W⃗←w∗
,u) corresponds to qi,j , it holds

that (M,u) ⊨ [A← a′, W⃗ ← w∗]¬φ, which proves the second condition.

AC3 Since the set {A} is a singleton set, it is minimal by definition, proving
the third condition.

As all three conditions are proven, we have that A = a does indeed cause φ in
(M,u) according to the modified HP definition.

As I said before, the following proposition is quite similar to the previous,
the difference is that the above proposition is about a specific agent, while the
following proposition is states that when the grand coalition has a strategy to
guarantee a certain outcome, given that the negation of this outcome holds in
the initial state, then there is a subset of agents that causes this negation.

Proposition 8. Given a causal setting (M,u), with (M,u) ⊨ φ and a causal
CGS based on this causal setting. If the grand coalition has a strategy FΣ to
bring about ¬φ in a leaf-state of the causal CGS, then there is a set of agents
Γ = {aX | X ∈ X⃗} and a setting x⃗ for the variables in X⃗ such that X⃗ = x⃗
causes φ in (M,u), according to the modified HP definition.

Proof. Let qi,j be the leaf-state resulting from the strategy FΣ. Let Γ ⊂ Σ be
the set of agents such that if X ∈ Va, (M,u) ⊨ X = x and (X = x) /∈ π(qi,j),
then aX ∈ Γ. Let X⃗ be those variables X such that X ∈ X⃗ if aX ∈ Γ and let
x be the values of those variables in (M,u) (such that (M,u) ⊨ X⃗ = x). I will

now prove that X⃗ = x causes φ in (M,u).
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AC1 (M,u) ⊨ φ ∧ (X⃗ = x), by the condition in the proposition and the con-

struction of X⃗ and x above.

AC2 Let x′ be the values of the actions that the agents in Γ took on α[qi,j ] (i.e.

x′ = {x | (aX = x) ∈ α[qi,j ], aX ∈ Γ}). Let W⃗ = Va\X⃗, these are exactly
those variables whose values do not change when FΣ is followed. Let w∗

be such that (M,u) ⊨ W⃗ = w∗. Now, (MX⃗←x′,W⃗←w∗
,u) corresponds

to qi,j , as X⃗ ∪ W⃗ = Va and the values these sets are set too are exactly
those values resulting from the strategy FΣ. It holds that ¬φ ∈ π(qi,j)
by the condition of the proposition. Therefore by the definition of cor-

respondence, it must hold that (MX⃗←x′,W⃗←w∗
,u) ⊨ ¬φ, which implies

(M,u) ⊨ [X⃗ ← x′, W⃗ ← w∗]¬φ. Which proves this condition.

AC3 If X⃗ is minimal, then I am done. If X⃗ is not minimal, then it must contain
a minimal proper subset satisfying AC1 and AC2, but then that is also
controlled by a set of agents Γ′ ⊂ Σ, making Γ′ a cause of φ. This also
proves the proposition.

Note that in both proofs above, the set W⃗ does not have to be the only set
W⃗ that satisfies the conditions of the modified HP definition. There might very
well be smaller sets that accomplish the same thing, but for the construction of
the proofs this set worked fine.

The propositions in this section show several relations between causality
and the notion of strategy. The show several ways to relate the HP notion of
causality to a notion specific to concurrent game structures. This can be used
in the next section and in future work to relate the HP notion of causality to
strategic responsibility.
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6 Responsibility in Concurrent Game Structures

The responsibility notions as defined in Section 2.5 cannot be effectively used in
the context of causal concurrent game structures (causal CGS), when applied
just like they stand right now. We recall that all three discussed notions of
responsibility call a coalition responsible for an outcome, only if all states in all
computations, resulting from a strategy for this coalition starting at a certain
state, to belong to a set S̄ of states that do not have this outcome. In a causal
CGS this does not really make sense, as in general, not all variables are allowed
to change their values in every state. This means that in some cases the result of
an action will only be seen in a later state. Therefore it seems contra-productive
to require all states on a computation to belong to this set S̄. Moreover, the
tree-structure of a causal CGS lends itself to only evaluating the result of an
action at the leaf-states, I therefore suggest to slightly modify the notions of
responsibility for this case.

Definition 28 (Forward Group Responsibility). Let M be a CGS, S be a set
of states, q ∈ S a state. We say that a group of agents Γ ⊆ Σ is forward
responsible for S in q iff:

1. There is a strategy for Γ, FΓ, such that all leaf-states of all computations
in out(q, FΓ) belong to S̄, and

2. Γ is minimal, that is, there is no Γ′ ⊊ Γ with the property formulated
above.

Definition 29 (Backward Group Responsibility ). Let M be a CGS, S be a
set of states, q ∈ S a state, and λ[qi, k] an arbitrary q-history. We say that a
group of agents Γ ⊆ Σ is backward responsible for S based on λ[qi, k] iff:

1. There is a state qj in λ[qi, k] such that for some strategy for Γ, FΓ, all
leaf-states of all computations in out(qj , FΓ) belong to S̄, and

2. Γ is minimal, that is, there is no Γ′ ⊊ Γ with the property formulated
above.

Definition 30 (Causal Backward Responsibility). LetM be a CGS, S be a set
of states, q ∈ S a state, λ[qi, k] an arbitrary q-history, and FΣ be a collective
strategy for all agents in Σ, s.t. λ[qi, k] is contained in out(q0, FΣ). We say that
a group of agents Γ ⊆ Σ is causal backward responsible for S based on λ[qi, k]
and FΣ iff:

1. There exists a strategy FΓ s.t. for F ′Σ := {fa|fa ∈ FΓ if a ∈ Γ, else fa ∈ FΣ},
all leaf-states of all computations in out(q0, F

′
Σ) belong to S̄, and

2. Γ is minimal, that is, there is no Γ′ ⊊ Γ with the property formulated
above.

Note that the only difference with the earlier definitions is that I now only
require the leaf-states to be in S̄.
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Lets see how this definition works in the causal CGS for the rock-throwing
example.

Example 23. Recall that we had defined two different causal CGS for the
rock-throwing example, the one of Figure 11 and the one in Figure 12. I will
first consider the first causal CGS.

Let S = {qi,j | ¬BS ∈ π(qi,j)}. We have that q0,0 ∈ S. Now, both Suzy and
Billy are forward responsible for S in q0,0. After all, if either of them follows
the strategy to throw, the bottle will shatter, putting the resulting state in
S̄. Similarly, they are backward and causal backward responsible for S in q1,0.
Now, let S′ = {qi,j | BS ∈ π(qi,j)}. Only the coalition of both Billy and Suzy is
backward responsible for S′ in any of the states in S′. This is also true for causal
backward responsibility in q1,3, however in q1,1, only Billy is causal backward
responsible and in q1,2, only Suzy is causal backward responsible.

In the other CGS, we have mostly the same story, only in q2,1, only Billy is
backward responsible for S′.

Using these definitions, we can make a connection between responsibility
and causality.

Proposition 9. Given a causal CGS based on causal setting (M,u) with (M,u) ⊨
φ, if an agent aA of this CGS is forward responsible for S = {qi,j | π(qi,j) ⊨ φ}
in q0,0, then a

A is a cause of φ in (M,u).

Proof. Let (M,u) ⊨ A = a. The agent aA is forward responsible for S in q0,0,
this means it has a strategy FA such that all leaf states in out(q0,0, FA) belong
to S̄. This set S̄ is exactly the set of those states where ¬φ holds. Hence aA has
a strategy to bring about ¬φ in all the leaf states resulting from this strategy
and hence the condition from Proposition 7 holds, which means that A = a
causes φ. Hence we can say that aA causes φ.

So far, I cannot yet generalise the above proposition to a set of agents,
because I have not yet found a relation between a general set of agents having
a strategy to reach a certain an outcome and being a cause of this outcome.
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7 Conclusion and Discussion

The main goal of this project was to find a way to reason about causal effects in
multi-agent settings. To do this I had formulated three sub-problems, the first
was How can we define a way to derive a system used for reasoning about multi-
agent settings, from a causal model that describes the effects of agents’ action
on the environment? To handle this problem I introduced a way to construct a
causal CGS on the basis of a structural causal model. This construction works
by first dividing the endogenous variables in a set of agent variables, directly
controlled by agents, and a set of environment variables, which are all the other
variables. Then the variables get ranked according to a function that respects
their causal order. This ranking will be used to determine when agents will get
to take actions in the causal CGS. I defined the causal CGS as starting from a
starting state, where agents with the lowest rank get to take actions, leading to
new states, in which all the agents with the next lowest rank get to take actions,
and so on until all agents have taken an action. This leads to a tree-structure
for the CGS. The starting state of a causal CGS will correspond to a causal
setting while every agent action will be reminiscent of an intervention on this
causal setting. Not all variables get evaluated in every state, in principle, all
variables will only be evaluated once on a path through the causal CGS and
in every state, only the agent variables of the agents that just took an action
and all environment variables that depend on those variables and not on higher
ranked agent variables will be evaluated. Because of this only the leaf states
will fully correspond to interventions on the original causal setting.

The second sub-problem was to study the relation between the derived system
and the original structural causal model. I showed that agent strategies in this
CGS can be related to causality in the original causal setting through three
separate propositions.

The final sub-problem asked whether this derived model can help with show-
ing a relation between strategic responsibility and causality? I defined a modi-
fied version of strategic forward responsibility, that only looks at the outcome of
a strategy in the leaf-states of the causal CGS instead of at all states resulting
from the strategy. I then showed a relation between this and the HP definition
of causality, but there could be more research done into this topic in the future.

A limitation of this approach is that since the agent actions are seen as
interventions, not all causal relations are carried over in the causal CGS. After
all, an intervention on a variable removes its causal connection to its ancestors
[14]. An intervention on a variable fixes its value, this means that the system
is changed. After an intervention on a variable X that sets its value to x, the
value of an ancestor has no influence on the value of X anymore, the value of
X will always be x. That is why for some causal models, the actions in the
last states fully determine the values of all the variables. That also means that
a causal CGS in general is unable to say something about all the causes in a
causal model.

Another limitation is that the causal CGS is created with respect to a specific
causal setting. The result only applies to a single context. This means that if
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the context is uncertain, multiple causal CGS have to be made to evaluate all
possible outcomes. However, it is possible that this problem can be solved by
using a version of an epistemic CGS. This can be researched in the future.

In the future the relationship between causality and responsibility in this
framework could be researched more. A possible direction for this research is
how being a part of a cause might impact strategic responsibility. So far, I
have only showed a relationship between a single agent being a cause and the
coalition consisting of only this agent being forward responsible. It might be
possible to show a more general result when an agent is not a cause on its own.
Another possible direction is looking at it from the opposite direction, can we
say anything about whether an agent is a cause when we know it is responsible
for an outcome? It might also be interesting to see how the type of causality
might relate to responsibility. With type of causality I mean whether it is a but-
for cause, or not, and if not, what does the witness look like? It is possible that
the witness influences which group of agents can be held responsible. Finally,
one can also look at distributed responsibility and how causality influences to
what degree an agent can be held responsible.

Another possible direction for future research is to look at how the causal
CGS itself can be adapted and refined. Right now, agents’ actions are completely
independent from other things that are happening in the system. It could be
possible to let agents be influenced by earlier actions or variable values. In
the causal CGS as it stands now, agent actions are also seen as some kind of
intervention on the causal model. It might be interesting to see if there are
other options for modelling the agent actions. If this is possible, it could also
be interesting to compare the relationship that such a model has with causality
and responsibility, with the causal CGS as defined in this work.

This research could be used in multi-agent systems with a clear causal struc-
ture. Examples of this are traffic control environments, think of planes that
cannot land when another is departing, trains that cannot travel over the same
track at the same time and traffic lights that cannot all give the green light
at the same time. Other applications could be in the analysis of multi-player
games, after all, players could cause other players to make a certain move, or
even energy management systems, where supply and demand of electricity in-
fluence each other in a myriad of ways. In these situations this research could
be used to help making decisions, or after something has gone wrong to help
attributing responsibility for this.
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