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Abstract

In this thesis, we study the problem of the real-time scheduling of flexible-rate Electric Vehicle charging under
resource constraints and uncertainty. We present a novel Schedule Generation Scheme (SGS) which repeatedly
mutates schedules to find potential improvements. This method is evaluated on various network layouts using
a discrete-event simulation and compared to other well-known SGSs which have been adapted to this problem
context. We show how our SGS can yield schedules with reduced customer delays, even when schedules are
updated less frequently than other methods.
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1 Introduction

As a part of the ongoing energy transition, Electric Vehicles (EVs) have steadily become more widely used.
However, as the usage of EVs increases, so too does the demand for charging these vehicles. This is often done
at car parks which have parking places for a number of EVs to park and charge. These car parks are connected
to the local power grid from where they obtain their power. They may additionally be equipped with renewable
energy sources such as solar panels. Still, if we try to charge a large number of cars at high rates simultaneously,
these measures may not be able to supply enough power to the parking place without overloading one or more
segments of the cable grid supplying the car park. As such, it is paramount to properly schedule the charging
of each car. If the charging is scheduled well, this allows the customers to use their EVs when they want, thus
further supporting the energy transition. On the other hand, if this scheduling is done poorly either customers
suffer delays and may opt to use less renewable methods of transportation or we overload the energy network
and potentially cause damages. As such, it is important to use the limited available resources at charging
parks efficiently in order to maximize usage of (clean) energy to optimize customer satisfaction by means of
minimizing delays. This can be seen as a variation of the Job Scheduling problem where schedules need to be
created and updated under resource constraints and uncertainty in realtime. While a great body of literature
has been published on the topic of Job Scheduling and its variants, to the author’s knowledge, no research has
been published on the realtime scheduling of charging under uncertainty and resource constraints as described
in Section 3.

This thesis will contribute to this by presenting and evaluating two novel variations of classic scheduling
methods and a novel method of improving such schedules significantly, all of which may be employed at EV
charging stations. By finding strategies that construct schedules which minimize charging delays more EVs can
be supported and used by customers. For this purpose, the following research question has been formulated
which we aim to answer in this thesis:

Which scheduling strategies can produce effective schedules for EV charging with the least delay
suffered by customers when considering grid constraints, flexible charging rates and uncertain future
demand and renewable energy yield?

To answer this question, we will need to find which methods can construct schedules and incorporate new car
arrivals in a way that yields the lowest average delay. Furthermore, we also investigate the effect of decreasing
the frequency at which schedules are updated to permit usage of methods with greater runtime. To do this, we
will investigate a number of things:

• The efficacy of scheduling using single-pass schedule generation schemes with priority rules

• How well these schedules can be improved by creating mutations of them in a similar fashion to, for
example, local search methods.

• The impact of updating the schedule less often.

To do this, we will first take an in-depth look at the literature related to this problem and the state-of-
the-art solution methods in Section 2. Then, Section 3 details the exact problem which will be investigated
in this thesis, after which Section 4 will describe our approach in detail. The results of this will be presented
and analyzed in Section 5. Conclusions are finally drawn in Section 6, with recommendations for future work
presented in Section 7.

2 Literature Study

The problem of EV vehicle charging scheduling can be modeled as a Job Scheduling problem. While this
problem context has, to the author’s knowledge, not been investigated previously, a broad range of other
approaches and other problem settings have been. A selection of these will be described in this section. Firstly,
a broader context for our problem will be given in Section 2.1 by describing some similar problems that have
been approached previously. Then, we will continue to describe a number of solution methods that have been
used for similar problems in Section 2.2. Section 2.2.1 details some of the numerous methods using priority rules
and schedule generation schemes. Various online and packing algorithms that have been used are introduced in
Section 2.2.2. Solution approaches using mixed-integer programming and other exact approaches are described
in Section 2.2.3. Finally, Section 2.2.4 describes the solution approaches that use genetic algorithms. We round
of this section with a small conclusion on our findings in Section 2.3.

2.1 Problem Context

In this thesis, we will search for a method to schedule the charging of EVs in a manner that services as many
customers as possible with minimal delays. While this problem is complex and, to the authors best knowledge,
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not previously studied, it does share similarities with a number of other problems that have been studied in the
past. These problems include Resource-Constrained Project Scheduling, Bin Packing, (Network Constrained)
Unit Commitment and Economic Dispatch.

The Resource-Constrained Project Scheduling Problem (RCPSP) is a problem first introduced in the work
by Pritsker et al. [1969]. Here, a series of jobs that each require a certain amount of (renewable) resources must
be non-preemptively scheduled. To do this, the limited amount of these resources must be respected. Since its
introduction, many variations of RCPSP have been proposed and studied. Some of the different variations and
extensions of RCPSP which have been studied include [Hartmann and Briskorn, 2010, 2022]:

• The inclusion of multi-modal jobs, where a job can be executed in one of multiple manners requiring
different resource profiles, or even freely chosen resource consumption profiles. [Wall, 1996, Kis, 2006,
Okubo et al., 2015]

• Modeling the time and/or processing rates as being continuous rather than being limited to integer
amounts. [Koné et al., 2011, Schutt et al., 2013, Artigues and Lopez, 2014, Nattaf et al., 2019]

• The usage of nonrenewable, partially renewable or cumulative resources. Cumulative resources are those
which can be consumed or stored like energy in a battery. [Kis, 2006, Okubo et al., 2015]

• RCPSP where the jobs have resource profiles that vary over time instead of having a constant resource
usage. [Wall, 1996]

• The usage of different or additional temporal restrictions. While standard RCPSP may have precedence
constraints, it is also possible to include, for example, release dates and deadlines or due dates on jobs.
[Özdamar et al., 1998, Kolisch and Hartmann, 1999, Neumann and Zimmermann, 2000, Ballest́ın et al.,
2006, Nakahira et al., 2017]

• Optimizing RCPSP for different objectives. While the traditional objective is to minimize the makespan
of all the jobs, other possible objectives are to optimize the Net Present Value, keep a constant resource
usage over time or to minimize the tardiness if the jobs have due dates. [Neumann and Zimmermann,
2000]

• Processing rates of jobs can be updated throughout their execution. [Nakahira et al., 2017]

Naturally, many of these extensions can be and have been combined together. Many different heuristics have
been proposed for this problem, a number of which we will see in Section 2.2. The problem we will study shares
many similarities with an RCPSP problem where the capacity of each cable segment is a limited resource, jobs
can process at continuous rates, and the future demand and - to lesser extent1 - availability of resources is
uncertain. As each job has a due date, our objective is then to minimize total or average tardiness.

According to the literature overview by Pellerin et al. [2020], heuristic solution approaches can typically
be subdivided into three classes; single-pass heuristics, multi-pass heuristics and metaheuristics. Single- and
multi-pass heuristics use one or more priority rules in combination with a schedule generation scheme once or
multiple times to construct a schedule whereas metaheuristics include methods such as tabu search, simulated
annealing or genetic algorithms. For RCPSP, a standard method of creating test instances has been developed
and described in the work by Kolisch et al. [1995].

The Rectangle Packing problem is one where we consider a bin of unit width and infinite height. Given a
number of rectangles of given width and height, we are to pack these into the bin such that the height of the
rectangles in the bin is minimized. A scheduling problem with a limited resource could be regarded as a bin
packing problem where each rectangle represents a job. However, to the authors knowledge it is not possible to
consider a scheduling problem with multiple different limited resources as a (two-dimensional) rectangle packing
problem. This scheduling can be done in an offline case, where all jobs are known beforehand, or an online
context where jobs are revealed one at a time, such as in the research by Ye and Zhang [2007]

The Unit Commitment problem is a problem primarily considered in electricity markets. As described in the
works by Saravanan et al. [2013], Conejo and Baringo [2018], and Knueven et al. [2018], the Unit Commitment
problem determines the commitment of power generating units ahead of time under a number of constraints,
such as minimum up- and downtime of units and ramping constraints. This problem can be either considered
as a deterministic problem [Moghimi Haji and Vahidi, 2012] or as a stochastic problem where future demand
and production of renewable energy sources are not certain [Ackooij et al., 2018, Isuru et al., 2020]. If network
constraints are also considered, this becomes known as the Network Constrained Unit Commitment problem.
Once the commitment of units is decided, Economic Dispatch determines the exact amount to be generated by

1After all, we are guaranteed to have power available through the local transformer and only the power which will be yielded
by solar panels is uncertain.
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each unit to satisfy demand [Conejo and Baringo, 2018]. In practice, Economic Dispatch is commonly included
as part of the Unit Commitment problem.

At first this might seem rather different from our problem of scheduling energy consumption. However, if we
consider each car a generator in the Unit Commitment problem which needs to generate an amount of energy
equal to its charging volume before its intended departure time it becomes clear how the two problems are
related.

Finally, we can observe that the situation of our problem shares a number of similarities with microgrids,
a particular application of scheduling under its own set of constraints. Microgrids are small, (semi-)isolated
electrical systems with their own methods of generating, storing and consuming energy. These microgrids are
typically connected to a larger grid to help with load balancing. While our problem does not account for the
storage of energy, it is nonetheless a fairly similar context otherwise. As such, some of the methods used to
manage microgrids may also be applicable to our problem. Examples of studies on microgrids include the works
by Wang et al. [2016], Brouwer et al. [2018], Nasir et al. [2021], Gust et al. [2021], and Taghikhani and Zangeneh
[2022].

2.2 Solution Approaches

Numerous different approaches to variations of the problem considered in this paper have been proposed previ-
ously. This subsection will list a number of useful overviews of this literature before describing several papers
in greater detail.

An insight into the numerous variations and approaches of RCPSP can be found in the works by Kolisch
and Hartmann [2006], Hartmann and Briskorn [2010], Pellerin et al. [2020], and Hartmann and Briskorn [2022].
An overview of smart charging, smart grids and the strategies applied to it can be found in the works by Wang
et al. [2016] and Nasir et al. [2021]. In addition to this, a survey of the strategies for microgrid usage is done
by Gust et al. [2021]. An introduction to (Network Constrained) Unit Commitment and Economic Dispatch
problems can be found in the literature survey by Conejo and Baringo [2018]. Furthermore, Ackooij et al. [2018]
provide a broad view of Uncertain Unit Commitment problem approaches.

2.2.1 Priority Rules and Schedule Generation Schemes

One approach to the scheduling problem is found in using priority rules in combination with schedule generation
schemes. Here, the jobs are ranked in order of priority according to some priority rule. Then, the schedule
generation scheme constructs a schedule based on the ordering of the jobs. A schedule generation scheme is a
method of inserting a new job into the schedule, which is used to insert the jobs one by one to create a complete
schedule. Three such schemes, the Flexible Serial, Flexible Parallel, and Rescheduling Schedule Generation
Schemes, are detailed in Section 4.2.1. Note that the well-known List Scheduling problem where jobs are listed
and scheduled in order of rules such as earliest due date, latest feasible start time or Smith’s rule is a special
case of using a priority rule and schedule generation scheme to schedule a series of jobs.

A number of papers compare the effectiveness of a variety of priority rules and/or schedule generation
schemes under different constraints and with different objectives. The work by Li and Willis [1992] introduces
a schedule generation scheme which iterates between using forward and backward scheduling techniques. Using
various priority rules, the authors show how this schedule generation scheme can be used to reduce the makespan
of a resource-constrained project scheduling problem. Each iteration of the algorithm the makespan (and thus
the start or finish time ) is reduced to what has been found in the previous iteration. Then, the algorithm is to
find a schedule that fits within this makespan - and is hopefully even shorter to keep reducing the makespan.
The authors compare this to having a box of wooden blocks of various lengths and sizes. By turning the box
over a few times, various blocks can shift into alignment with each other so they will fit neatly.

More research into the usage of priority rules and schedule generation schemes is published by Özdamar
et al. [1998]. This paper considers a case of RCPSP where both tardiness and Net Present Value (NPV) need
to be optimized under precedence constraints. For this dual objective, hybrid priority rules are proposed in
order to enhance both objectives. In effect, these hybrid rules consist of the weighted sums of each rule they are
composed of (for simplicity the weights sum to 1). The authors experimentally demonstrate that hybrid rules
can outperform traditional priority rules that only consider a single objective.

Nakahira et al. [2017] consider the problem where a number of EVs are to be charged at a single car park
before their deadlines with limited power available. While uncertainty of future car arrivals is taken into account,
there is no uncertainty of available power and preemption is allowed. For this problem, an online algorithm is
presented that smoothly updates the charging rates of each EV throughout time based on its laxity. The laxity
of an EV is a measure of how much time it has leftover before its deadline if it continues charging at its current
rate.

Extensive research has also been done to experimentally demonstrate and compare scheduling using priority
rules and schedule generation schemes to other common scheduling methods, such as genetic algorithms or
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simulated annealing. This body of literature includes the works by Kolisch and Hartmann [1999], Hartmann
and Kolisch [2000], Neumann and Zimmermann [2000], and Ballest́ın et al. [2006].

Kolisch and Hartmann [1999] consider RCPSP under general temporal constraints. Here, the researchers
use priority rules as well as metaheuristic strategies including genetic algorithms, simulated annealing, tabu
search, truncated branch-and-bound and disjunctive arc methods to order the jobs before a schedule generation
scheme such as a parallel or serial schemes constructs a schedule. The effectiveness of the various priority rules
and metaheuristics at minimizing the project makespan are compared, and it is shown that the metaheuristics
tend to outperform the priority rules at this objective.

The research presented by Hartmann and Kolisch [2000] further compares priority rules with metaheuristic
strategies. Here, in addition to the serial and parallel schedule generation schemes, X-pass schedule generation
schemes are also investigated. X-pass schedule generation schemes include both single-pass schedule generation
schemes, such as those investigated by Kolisch and Hartmann [1999] as well as multi-pass schedule generation
schemes. Here, the same SGS is used multiple times with a different priority rule each time. There are numerous
ways to apply this, some of which, including sampling methods, are investigated in this paper. Instead of
assigning each job a priority value and selecting jobs to schedule in order of this value, sampling methods assign
each job a selection probability. The order in which jobs are scheduled is random according to this probability.
This means the same priority rule and schedule-generating scheme can be used many times to create different
schedules, the best of which is then used. However, it is still found that the metaheuristic approaches yield
better results, likely since they can ’remember’ previously generated schedules whereas multi-pass methods start
from scratch each iteration.

In their research, Neumann and Zimmermann [2000] consider RCPSP with minimal and maximum time lags.
This is a generalization of the RCPSP with deadlines or release dates as we can simply generate a ’start job’
with zero duration and give every other job a (zero or nonzero) minimum and maximum time lag with respect to
this ’start job’. Two non-regular objective functions are considered in this paper: the resource leveling and net
value problems. For the resource leveling problem, the cost is dependent on either the greatest amount of each
resource that is used in any time period, or each greatest change in the amount of each resource used between
any two consecutive time periods. The paper presents an algorithm which consists of a number of steps. Firstly,
all jobs which have zero total float are scheduled (i.e. those which can only feasibly be scheduled at one point
in time). Then, in order of priority, all jobs are scheduled at their earliest starting time, or at the finish time
of another job. Once a time-feasible (but not necessarily resource-feasible) schedule is generated, it must be
made resource-feasible. This is done by iteratively looking at the first point in time where the schedule is not
resource-feasible and shifting jobs back in time to make it feasible. Finally, this feasible schedule is improved
by means of tabu search. Since each job has quite a lot of neighbors (each other time it could start), firstly out
of these only the most promising are selected to reduce the size of the neighborhood. This method has shown
to be able to solve even large problem instances quickly and effectively.

Ballest́ın et al. [2006] consider RCPSP with due dates or deadlines. In order to find feasible solutions for
these problems, a number of priority rules are proposed. These are used in combination with regret-based
random sampling. The results of this algorithm are then compared to the results of a genetic algorithm applied
to the same problems. From this, it is shown that the priority rule-based algorithm outperforms the genetic
algorithm at finding better solutions for the problem with due dates and at finding more feasible solution for
the problem with deadlines. This is in contrast to some of the previously mentioned papers which have found
metaheuristics to perform better than priority rules and SGSs in other problem contexts. Since our problem
incorporates similar aspects as this problem, such as due dates, this makes our outlook on using a similar
approach to solve our problem more optimistic.

2.2.2 Online Algorithms and Packing Algorithms

A different variation of the problem is the online variant. Here, jobs arrive one by one and must be irrevocably
scheduled before the next job arrives. While the problem studied in this thesis obviously has a measure of
flexibility with respect to being able to change schedules later on not present here, this is otherwise nonetheless
rather similar.

Ye and Zhang [2007] present a solution to the online parallel job scheduling problem. In this online problem,
each job requires usage of a certain number of machines at the same time throughout its whole duration to be
processed. This is analogous to different cars arriving that charge at different rates in our problem. However,
in this online problem the objective is to minimize the makespan, which is different from our problem. The
solution presented in this paper works on the basis of dividing the schedule into ”rooms” and ”walls”. A job that
uses many machines at once becomes (part of) a wall, a segment of the schedule that divides between rooms.
Rooms are the segments of the schedule that are filled with the jobs that use less machines simultaneously. This
way a 7-competitive approach is achieved on this problem.

Ye et al. [2018] consider a problem very similar to the one considered by Ye and Zhang [2007], except here
jobs are malleable. This means that when the task is scheduled, we can choose how many machines work
continuously on the task until it is finished. The processing time of each job is a function of the number of
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machines assigned to it. This problem of malleable task scheduling is first reduced to a rigid task scheduling
problem - a problem where the number of machines assigned to a job is fixed. Then, schedules are generated
consisting of ”shelves”, a number of machines working on the same task(s). We aim to complete all jobs within
a certain makespan and each time it turns out this is not possible, we multiply our attempted makespan with
some constant to increase it. This way, a competitive ratio of 16.74 is achieved.

2.2.3 Mixed Integer Programming and Other Exact Approaches

A variety of mixed-integer programming approaches have been used to find solutions to manage and schedule
energy consumption such as EV charging. Taghikhani and Zangeneh [2022] consider a microgrid connected to
the main grid with renewable energy sources as well as a diesel generator and a battery. A hybrid mixed-integer
program is used in combination with stochastic programming to model the uncertain renewable energy. As
such, the profit of the model can be maximized. In the research performed by Isuru et al. [2020], the network-
constrained unit commitment problem with wind power uncertainty is considered. The solution consists of
a MIP using a Benders decomposition which iterates between the master and subproblems to converge to a
solution.

Furthermore, Seddig et al. [2017] consider the charging of a fleet of EVs at a single car park equipped with
renewable energy sources. The objective is to use as much renewable energy and draw as little power as possible
from the grid to save costs. Various methodologies, including stochastic programming and heuristics, have been
used to forecast the yield of the solar panels. These results are then used by a mixed-integer program to schedule
the charging. In a Monte Carlo simulation it has been shown that in controlled charging renewable energy can
be used very effectively when compared to uncontrolled charging.

Finally, the work by Kis [2006] considers RCPSP with renewable and non-renewable resources and precedence
constraints where an activity may only be started after another activity has been completed for a certain
percentage. Furthermore, in the considered problem, the rate at which each job is performed at each timestep
may be chosen freely. This means that preemption is allowed, and the only upper bound on charging rate is
charging the entire charging volume in a single timestep as a higher rate would be pointless. This problem is
solved by formulating it as a MIP which is then solved using the cutting plane method.

A different exact solution approach is using branch-and-bound. Branch-and-bound is a method where the
original problem ‘branches’ into different sub-problems. Repeating this for different possibilities in the solution
space leads to a branching tree. Using the upper and lower bounds of each branch, we determine which
branches are (and are not) worth considering. Klein and Scholl [2000] develop the PROGRESS procedure for
solving generalized RCPSP using existing branch-and-bound rules combined with their own improvements and
additions. It is shown that PROGRESS quickly yields great results for smaller problem instances, but becomes
infeasibly computationally expensive for larger problem sizes.

Another approach is constraint propagation. Th usage of this method has been surveyed by Brucker [2002].
In this method, additional constraints to deduce the solution space are deduced based on what is already known.
Then, more variables can be set, and more can be deduced again (this approach is similar to that of solving
the popular logic puzzle ‘sudoku’ [Simonis, 2005]). This approach can be combined with other methods such as
branch-and-bound.

Somewhat similarly, Okubo et al. [2015] consider a problem dubbed ‘RCPSP/πRC’ - the resource-constrained
project scheduling problem with partially renewable resources and resource consumption during setup opera-
tions. The authors consider multi-modal jobs with precedence relations. To solve this problem, the authors make
use of a constraint programming method for which a mask calculation algorithm is developed. This method
is compared to an integer programming method which has also been developed by the authors. It is shown
through experimental results that the computational programming model is effective, and even outperforms the
integer programming model.

2.2.4 Genetic Algorithms

Next, we look at the solutions that have been designed using genetic algorithms. The algorithm by Wall [1996]
considers a problem with multiple resource types where jobs may have different execution modes with non-
uniform resource usage, may be preempted, and where temporal and precedence constraints may be present
for both tasks and resources. Schedules can be optimized for a variety of objectives, including minimization of
total tardiness. Note that while the multi-modal non-uniform resource usage profiles would not entirely allow
us to model our freely varying rates of charge, it does come closer than most solution methods we have seen
so far as we could use a set of modes to model a number of possible charging profiles. The author proceeds to
find solutions to the problem by using integer arrays to represent the start time and execution modes of the
jobs. A variety of genetic algorithms are applied to these to find suitable schedules. This has yielded good
but computationally expensive results, finding solutions within 2% of the published best in 60% of the project
scheduling problems it was applied to.
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Another approach using genetic algorithms is presented in the paper by Moghimi Haji and Vahidi [2012].
Here, a so-called ‘imperialistic competition algorithm’ is designed. In this algorithm, solutions are grouped
into populations called ‘empires’. Iteratively, solutions (‘colonies’) in an empire move towards the best solution
in their respective empires (‘imperialists’), and imperialists (try to) steal the colonies of other empires. The
authors show this can be used generate schedules for unit commitment problems.

2.3 Conclusion

In this literature section we have seen that the problem we study shares similarities with a number of other
previously studied problems, such as RCPSP, Rectangle Packing and Unit Commitment and Economic Dispatch.
Out of these, our problem can best be considered as a resource-constrained project scheduling problem. For such
problems, a great deal of solutions have been presented. Out of these methods, priority rules in combination
with schedule generation schemes seem promising for our problem while having little literature dedicated to it
yet. As such, this method will be implemented and evaluated in future sections.

3 Problem Description

We consider a problem where Electric Vehicles (EVs) continuously arrive at a set of car parks where they wish
to recharge their batteries by a certain amount of energy. Cars indicate a due date at which they will leave,
unless they are not fully charged then, in which case they wait to charge fully before leaving. We are to schedule
the charging of the EVs such that the average tardiness - the average time of completion of recharging each car
past the customer’s indicated preferred departure time - is minimized. A number of constraints must be taken
into account for this. These constraints originate from:

• Limited power available at different locations.

• Limited capacity to transfer power between locations through cables.

In more detail; the car parks are connected to the energy supply by a network of cables. Each segment of
these cables is rated for a specific power capacity which may not be exceeded. An example of a grid is shown in
Figure 1. It is, however, supplemented by a number of solar panels at various car parks which provide additional
power throughout the day. As such, the scheduling is constrained by a number of ‘resources’; the capacities of
each cable segment and the power supplied by solar panels and at the grid source.

We can change the schedule of each EV at any point in time as we see fit, though of course events that have
already happened cannot be altered. However, once a car starts charging, it cannot be preempted - it must
continuously charge at rates between the car’s lower and its upper charging rate limits until it has completed
charging.

There are a number of constraints that must be taken into account. Each of the car parks has a limited
number of parking places; if an EV arrives at a car park where the maximum number of vehicles is already
parked, they must move to another car park. It is assumed that if a car has visited three different filled car
parks in the simulation, they will move to park somewhere else, effectively leaving the simulation unserviced.

As such, the charging at each car park is limited by the available power. The power to each car park is
supplied from the local transformer through a series of cables. One cable may be used to supply power to
multiple car parks simultaneously. Each of these cables have a load limit that may not be exceeded.

To supply additional power, some car parks may be supplied with solar panels. It is assumed that, on
average, solar panels generate a certain fraction of their peak power of 200kW. This fraction depends on the
time of day. These fractions throughout the day are shown in Table A1 in the appendix. Note that in this
thesis fractions representing distributions during summer are used, other fractions representing different seasons
can be used. Suggested distributions for winter conditions are included in the aforementioned appendix. The
amount generated at any time is assumed to be drawn from a normal distribution with this average and a
standard deviation equal to 15% of this value. However, this, in addition to the uncertainty of future car
arrivals, introduces uncertainty into the system. Effective scheduling methods will need to be able to handle
this. We assume cars arrive according to a Poisson process. The arrival rates at each hour of the day as well
as the distributions of charging rates, charging volumes and connection times can be found in Tables A2-A5 in
the appendix. Note that when a car arrives, the time it is parked is equal to or greater than the time it takes
to charge its charging volume at the car’s minimum charging rate so that it can actually reasonably be charged
before the due date. The objective of the problem is then to schedule the vehicles such that the total tardiness
is minimized.
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Figure 1: Example of a grid. Here R denotes the power source at the root of the grid, car parks are denoted
1-6 and circles indicate junctions connecting cable segments.

4 Methodology

In order to compare methods of scheduling jobs under the constraints of a situation as described in Section 3, a
discrete-event simulation model has been developed to test the efficacy of various approaches. This section will
describe the simulation model and how it can be used to test different scheduling approaches in Section 4.1.
The various scheduling approaches will be described in greater detail in Section 4.2. Finally, how the various
scheduling approaches are evaluated will be described in Section 4.4.

The processor of the system used to run the tests on was an Intel(R) Xeon(R) Gold 6130 CPU with a clock
rate of 2.10GHz2.

4.1 Discrete-Event Simulation Model

In a discrete-event simulation model, the current situation is stored in the state. Changes to this state and
how it changes over time are modeled through events. When running the model, the first event is iteratively
removed from the schedule, it is calculated how the state has changed since the event that happened before
it, changes that happened in that event are applied and new events are scheduled as appropriate. Then, this
process is repeated with the next event in the schedule.

The problem context and different scheduling approaches can be modeled in a discrete-event simulation
model by storing all parked cars and car parks in the state. Then, events can be used to model the arrival and
departure of cars. The various approaches to scheduling the charging of the cars is also modeled through events.
We simply schedule events representing a car starting to charge at a certain rate or finishing its charging as
dictated by our scheduling method.

The model used to test and evaluate scheduling strategies is represented in Figure 23. Here, immutable
events are those of which we cannot choose to change, and mutable events are those we can change when
this is beneficial. While unusual for discrete-event simulation models, the ability to change scheduled events
is necessary here to be able to update schedules. Note that no information about future events is used when
finding schedules.

2We would like to thank the research programme ”Energie: Systeem Integratie en Big Data” with project number 647.003.005,
which is financed by the Dutch Research Council (NWO), for financing the machines used for the computational experiments.

3Note that a minor exception to this graph will be made for the Simplified Parallel Schedule Generation Scheme. Here, ‘Car
stops charging’ schedules an ‘Update Schedule’ event, with all else remaining the same. This will be detailed further detailed in
Section 4.2.1
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Figure 2: The Event Graph used to model the situation and evaluate scheduling strategies for event-triggered
scheduling

To test different scheduling approaches using this model, all one needs to do is use a different method for
the ‘update schedule’ event - the rest can be kept the same. Thus, different methods of scheduling the cars’
charging can be fairly compared.

In the event graph shown in Figure 2, every car arrival means the schedule will be updated. While this
‘event-triggered scheduling’ is flexible with respect to new arrivals, it also requires a lot of computing for new
schedules which may be adhered to for only a few minutes until the next car arrives. As such, an alternative is
‘interval-based scheduling’. Here, the schedule is only updated when either the solar power is updated or when
a car arrives whose priority value is higher than some predefined percentage of cars present the last time the
schedule was updated. Both these strategies will be evaluated and compared in the remaining sections of this
thesis.

One common caveat of digital simulations are floating point errors. In a simulation model like the one used
here, these small deviations can cause large issues. For example, a floating point error erroneously increasing
the completion time of a job by a fraction of a second might lead to a very short spike in power consumption
in the simulation where this job overlaps with the one after it. This can then cause various issues such as brief
cable overloads or making it difficult or even impossible to schedule jobs here without preemption. To prevent
jobs from accidentally overlapping, the starting and finishing times of jobs in the schedule are rounded up and
down, respectively, to the third decimal. This may cause a very marginal reduction in delays of jobs. As such,
the accuracy of reported delays suffered by users can not be guaranteed beyond the first decimal.

4.2 Scheduling Approaches

The family of methods that we will design, implement and test in this thesis are Schedule Generation Schemes
(SGSs) in combination with priority rules. Here, the jobs are ranked in order of priority according to some
priority rule. Then, the schedule generating scheme constructs a schedule based on the priority assigned to each
job. Notably, a special case of this is the well-known List Scheduling problem where a series of jobs must be
ordered to be scheduled according to some rule.

Usage of SGSs for job scheduling problems where all jobs are known beforehand and are processed at fixed
rates has been studied extensively. Commonly used Schedule Generation Schemes for this purpose include the
Serial SGS and Parallel SGS. These schemes first order all jobs in order of their priority. The Serial SGS then
repeatedly takes the highest priority unscheduled job and schedules it at the earliest time it can be scheduled.
This repeats until all jobs are scheduled. The Parallel SGS instead moves through the time of the schedule.
Starting at the earliest point in time and moving forward, at each point in time it is checked if jobs can be
scheduled. If this is the case, the highest priority job that can be scheduled here is scheduled. Then, if more
jobs can be scheduled at this point in time, the highest priority job is scheduled here again until no more jobs
can be scheduled. Then, the scheme repeats this process at the next point in time until all jobs are scheduled.
Figure 3 gives an example of the serial and parallel schedule generation schemes applied to a small set of three
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jobs.
However, comparatively little research has been done into the usage of Schedule Generation Schemes for

dynamically scheduling jobs which can be processed at flexible rates. As such, this thesis presents a number
of novel SGSs designed for this problem. These will be described in Section 4.2.1. An overview of the priority
rules that will be tested for use by these SGSs is then presented in Section 4.2.2.

4.2.1 Schedule Generation Schemes

An overview of the SGSs that have been designed for and will be evaluated in this thesis is given in here.
The first two SGSs are flexible variations of the serial and parallel SGSs, respectively. These are adapted to
function well in the dynamic environment where rescheduling and flexible rates of charging are possible. Then,
Rescheduling SGSs are introduced which can improve upon the results of Flexible Serial and Parallel SGSs by
changing how some jobs are scheduled.

Flexible Serial SGS
The Flexible Serial SGS is quite like the regular Serial SGS. Jobs are still scheduled in order of priority at the
first available point in time. However, it is possible that jobs are already being processed when we generate
a new schedule. Since these cannot be preempted, they must be processing at the start of the new schedule.
As such, initially, all jobs that are already being processed are scheduled to charge continuously at their lowest
processing rates. Then, we iterate through all jobs in order of priority. When we consider a job that is not
already scheduled, we schedule it at the earliest point in time it can process. At each point in time, the job
is scheduled at either its maximum processing rate or the highest rate permitted due to resource constraints.
If the job we consider is already scheduled, we instead increase its processing rate from the minimum at each
point in time to the maximum. This means the job may be finished earlier, freeing up resource capacities there.
If we want to allocate these resources to jobs with the highest priority (instead of the next job that could use
it), it would be necessary to remove and reschedule all jobs with higher priority. Since SGSs are heuristics,
these are both possible and valid variants of the Flexible Serial SGS. Due to time constraints, this thesis will
only consider the variant where all previously-scheduled jobs are kept as-is, with the other variant being left as
future work.

(Simplified) Flexible Parallel SGS
Similar to its Serial counterpart, the Flexible Parallel SGS considers the jobs in order of priority. First, already-
started jobs are scheduled to charge at their minimum charging rates. Then, the algorithm iterates through
each point in time. Here, in order of priority, each job is scheduled to charge at the highest rate possible (which
may be zero, if too much available power has been consumed by higher priority jobs).

Due to the dynamic nature of our problem, it is unnecessary to create a full schedule when using a Parallel
SGS. Since the schedule can be updated at any point in time, it is only needed to look at which jobs need
to process immediately, and at what rates. It is not necessary to consider the scheduling of jobs that start or
change processing rate at a later point in time yet. This is because relevant events that change the demand
or availability of power such as a car arriving or finishing charging will always trigger the generation of a new
schedule. As such, scheduling this far ahead is not necessary as schedules at that point in time will be created
at a later point in time regardless.

It can easily be seen that, in the Parallel SGS, jobs that are scheduled to start later cannot have an impact
on how jobs charge before it. As such, we can make a Simplified Flexible Parallel SGS where we stop the
schedule generation after we have considered charging jobs at the current time. This will lead to jobs charging
in the same manner, but saves on processing time.

Rescheduling SGSs
The previously described SGSs are so-called ‘single-pass schedule generation schemes’. Here, to create a schedule,
the SGS iterates only once over each job in the list of jobs. On the other hand, here we will use schedule
generation schemes that will iterate over ordered lists of jobs multiple times. This is done by scheduling and then
iteratively removing and re-scheduling jobs multiple times. Note that the rescheduling is done instantaneously
after removal of jobs and already-started jobs will always be rescheduled in such a way that no jobs are
preempted. By using this approach, mutations of the original schedule are created and improvements can
be found in a manner similar to, for example, local search and hillclimber algorithms. The rescheduling SGS
implemented in this thesis first creates an initial schedule using either the Flexible Parallel SGS or the Flexible
Serial SGS with a priority rule. Once a schedule is created, a number of jobs will be removed. This is done in
one of three ways:

1. All jobs are given identical unit weights to be removed. Random jobs are selected and removed until
enough jobs are removed.

2. A small fraction of jobs are randomly chosen to be removed. All jobs are assigned a weight equal to the
number of ‘adjacent’ jobs in the schedule have been removed. Two jobs are considered adjacent if their
scheduled processing times overlap and they are either in the same car park or in different car parks which

10



The initial situation of the serial scheduling scheme;
no jobs (shown above schedule) are scheduled yet.

The initial situation of the parallel scheduling scheme;
no jobs (shown above schedule) are scheduled yet.

Job 1 is placed at the first possible time. At time 0, the highest priority job that can charge is sched-
uled.

Job 2 is scheduled at the first possible time. At time 0, the highest priority job that can charge is again
scheduled. This is job 3 as job 2 requires too much power.

Job 3 is scheduled at the first possible time. The algorithm continues iterating through time until the first
point in time where the remaining job can be scheduled,
which is then scheduled.

Figure 3: An example of the serial (left) and parallel (right) schedule generation schemes applied to a set of
three jobs. Here job 1 is the highest priority and job 3 the lowest.
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have been defined as being ‘adjacent’4. Then, random jobs are removed and the weights are updated until
a predefined fraction of all jobs have been removed.

3. Similarly to the previous approach, a small fraction of jobs is initially removed randomly and all remaining
jobs are assigned a weight. Then, one by one jobs are removed and the weights are updated until a
predefined fraction of all jobs are removed. However, now whenever a job is removed, instead of a unit
increase, the weight of each adjacent job is increased by the idealized reduction in delays that could be
achieved if only these two jobs were removed. The idealization made is that the two jobs can charge
without minimum or maximum charging rate constraints. Then, the jobs can freely be scheduled to
use the power consumed by the other job in the original schedule, to potentially reduce delays. This is
illustrated in Figure 4. Given two jobs, j1 and j2, where j1 is chosen to denote the job with the earliest
due date, this reduction in tardiness can be calculated using:

∆ΣjTj = T ∗
j1 − Tj1 + T ∗

j2 − Tj2 = max(0, C∗
j1 − dj1)−max(0, Cj1 − dj1)

where dj1 ≤ dj2
(1)

Where ∆ΣjTj denotes the total change in tardiness. dj , Tj , T
∗
j , Cj , and C∗

j denote the due date, tardiness,
idealized tardiness when rescheduled with another job, completion time and idealized completion time
when rescheduled with another job of job j, respectively. Note that it can trivially be seen that the job
with the latest deadline will have the same completion time; Cj2 = C∗

j2
, and thus a zero reduction in

tardiness. C∗
j1
, on the other hand, can be found by solving equation:∫ C∗

j1

t

cj1,t′ + cj2,t′dt
′ = vj1 − wj1,t (2)

Where t denotes the current time in the simulation, cj,t′ denotes the charging rate of job j at time t′ in
the original schedule, vj denotes the charging volume of job j and wj,t finally denotes the amount already
charged by job j at time t. Note that Equation 2 simply ensures that all power originally assigned to
the two jobs is used entirely to completely charge the first job until its completion. After this, the rest
can be used to charge the second job, which will then logically finish at the same time as in the original,
non-idealized schedule.

(a) The initial situation of two jobs in a schedule. (b) The idealized situation where the jobs are rescheduled
to use each other’s power without charging rate restrictions.
For the sake of example, we assume the first job has a due
date before its original completion time.

Figure 4: An example of two jobs in a schedule (left) and the idealized schedule where tardiness is reduced
(right)

Once jobs are removed, they must again be reinserted one by one. This is done using the serial SGS with
a different priority rule. When the jobs are reinserted in some order, it is hard to guarantee that when we
try to reinsert an already-started job we can do so without causing preemption. After all, it is possible that
all available power at some point in time has been consumed by other jobs making it impossible for charging
to continue beyond that point. Fortunately, we can reduce the probability of such a thing occurring by first
scheduling all already-started jobs and only reinserting the other jobs later. After all, this way the jobs that
are not already started cannot be scheduled in a way to block the scheduling of an already-started job. If the
already-started jobs are reinserted successfully, all jobs can be rescheduled without preemption. Note, however,

4This has been done based on which car parks are likely to have more power available if less power would be used in some other
car park. For exact details, see Section 4.3.
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that reinserting all already-started jobs first in some order is no guarantee of feasible rescheduling, it just
decreases the probability of a job being unable to be reinserted into the schedule without preemption to some
specific scenarios.

The exact implementation of this consists of two steps:

1. Firstly, in order of priority, we attempt to temporarily schedule all already-started jobs as late and at as
low a rate as possible without preempting the jobs. Note that this disregards the due dates of these jobs.
By giving these jobs a valid place in the schedule, we ensure that no jobs are preempted. If rescheduling
any already-started jobs without preemption is not possible, this mutation is discarded and we return to
the previous schedule.

2. Secondly, we iterate through all jobs in order of priority. When we encounter a job that has not already
begun charging, we schedule it to finish as soon as possible. If the job has already started, we instead
first remove its temporary schedule before scheduling it to finish as soon as possible. We are guaranteed
to be able to schedule this job in the final planning as the temporary schedule created earlier functions as
a lower bound which we can reuse. In the worst case, we can always use this slowest schedule to continue
charging the job without causing preemptions or overloads.

Since our implementation for rescheduling perturbs our schedules, we effectively explore the search space of
possible solutions, akin to local search. We keep making mutations of the best schedule found so far and stop
iterating after a predefined number of successive mutations fail to improve sufficiently. Other implementations
where mutations are made analogous to, for example, methods such as simulated annealing (where we continue
mutating on a worse solution with some probability), tabu search (where certain mutations are forbidden) or
evolutionary algorithms (where other solutions are combined to create new ones) are left for future research.

4.2.2 Priority Rules

A number of priority rules are used to assign priority values to the different jobs. Then, the jobs are ordered
in ascending order such that they can be used by the SGSs. This means that a lower priority value always
indicates a higher priority. The used priority rules calculate the priority value of a job based on a number of
parameters of the jobs. For some job j, these are its due date dj , charging volume vj , minimum charging rate
cj,min, maximum charging rate cj,max, amount charged at the current time in the simulation wj and the current
time of the simulation t. The priority rules and their formulae are:

• First Come First Served (FCFS): j5.

• Earliest Due Date (EDD): dj

• Latest Starting Time (LST): dj − vj/cj,max

• Updated Latest Starting Time (LSTU): dj − (vj − wj)/cj,max

• Adapted Latest Starting Time (LSTA):{
dj − (vj − wj − (dj − t) ∗ cj,min)/(cj,max − cj,min) if car has started charging

dj − vj/cj,max otherwise

• Minimum Greatest Slack Time (MinGST): dj − t− (vj − wj)/cj,max

• Least Work Remaining (LWKR): vj − wj

• Most Work Remaining (MWKR): wj − vj

• Least Flexible Resource Demand (LFRD): cj,max − cj,min

Note that the Updated Latest Starting Time priority rule simply calculates the latest time a job could
start charging at its maximum charging rate to finish charging its remaining charging volume at its due date,
disregarding that this might preempt the charging. The Adapted Latest Starting Time instead returns the
standard LST priority value if the job has not started charging yet, and otherwise finds the point in time up to
which point the job could charge at its minimum charging rate before it would need to switch to its maximum
charging rate to finish on time. Note that, if the job cannot finish on time the equation will return a value
before the current time, as the job would have needed to start charging earlier at a higher rate to be able to
finish on time.

5Jobs are indexed in order of arrival, i.e. the first job to arrive will be indexed 1, the second 2, etc
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4.3 Instances

The approaches described in Section 4.2 will be tested on a number of different instances. These instances
comprise of combinations of five different grids and a range of different daily car arrivals from 750 to 3000
average daily car arrivals. These grid instances are graphically represented here using rounded squares to
denote the transformer (indicated by the letter ‘R’) and the car parks (indicated using two numbers, the top of
which denotes the park’s car capacity and the lower of which indicates the fraction of cars which will arrive at
this car park). Car parks with solar panels are filled in gray. Cables are drawn as lines between car parks, with
their power capacity (in kW) indicated. The instances on which we will test are:

Figure 5: Grid 1: a small tree-like network with uniform cable capacities. The top number in each car park
represents its car capacity; the lower the fraction of cars which arrive at this car park.

Figure 6: Grid 2: identical to grid 1, except the car park capacities are doubled. The top number in each car
park represents its car capacity; the lower the fraction of cars which arrive at this car park.

Figure 7: Grid 3: a grid with all car parks arranged in series. The top number in each car park represents its
car capacity; the lower the fraction of cars which arrive at this car park.
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Figure 8: Grid 4: a small grid where all car parks are arranged parallel to each other. The top number in each
car park represents its car capacity; the lower the fraction of cars which arrive at this car park.

Figure 9: Grid 5: a large, binary tree-like grid. Here, the bubbles with ‘...’ indicate a subtree identical to their
sibling. The top number in each car park represents its car capacity; the lower the fraction of cars which arrive
at this car park.

In Figure 9, each bubble with ‘...’ indicates a subtree which is identical to their sibling. As such, the network
shown here resembles a (symmetrical) binary tree. In Grids 1 and 2, each car park is adjacent to all other other
car parks in the same ‘halve’ of the network, i.e. each car park it is connected to without passing through the
grid root. In Grid 3 all car parks are adjacent. In Grid 4, no car parks are adjacent. Finally, in Grid 5, each
car park is adjacent to all its ancestors and descendants.

4.4 Evaluation Metrics

The performance metrics we measured for each run of the simulations are:

• Average tardiness6

• The greatest delay experienced by a user

• Runtime of the method

• Number of cars serviced

• Percentage of cars serviced without a delay

6Cars that are not delayed are included in this as ’0’.
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• Number of cars that could not find a parking spot

The primary metrics among these are the average delay or tardiness and the greatest delay experienced by
users . A low average delay across multiple testing runs means that the scheduling method is able to generate
schedules that service customers quickly. Customers are less likely to choose a charging option where they risk
large delays, even if the average delay is low. as such, it is of importance to minimize the maximum delay.

The other metrics are secondary. While the time needed to generate a schedule does not directly influence
the schedule’s quality, it is nonetheless of some importance. After all, if the runtime is so long that it is not
possible to update the schedule as frequently as we might like, we might end up using older schedules that
are less relevant to the current situation, thus yielding a less optimal result.Furthermore, in order to find a
completer context for our metric, we also look at the total number of cars that were serviced on time, were
serviced with a delay and which could not find a parking spot.

5 Experimental Results

An extensive number of simulations have been performed on the various aforementioned grids. This way, the
quality of the various methods can be evaluated. The seeds for generating the arrivals of cars have been fixed in
the NumPy.Random (the NumPy Community) Python package to enable an equal comparison between methods.
This section will present and discuss a selection of the results; the full results can be found in Appendix C and
https://github.com/MaxVanHuffelen/ThesisData.

For each of the various problem contexts and scheduling strategies discussed, a number of different numbers
are presented. These are:

• The maximum delay in seconds (abbreviated ‘max delay’)

• The mean delay in seconds (abbreviated ‘mean delay’)

• The percentage of cars that are delayed (abbreviated ‘% delayed’)

• The amount of cars served (shortened to ‘served’)

• The amount of cars that could not be served as they did not find a place to park (shortened to ‘non-served’)

• The runtime of the method(in seconds)

• The number of simulation runs (shortened to ‘runs’) performed

Note that for all numbers (except the number of runs performed) for each seed on which one or more runs
have been performed, the average of all runs on the same seed is taken first. Then, the average is calculated
of these average results, and those values are presented here. This is done to prevent any one seed from being
overrepresented in the results in case it has been evaluated more often than others for a strategy.

For readability purposes, the names of methods have been abbreviated in this thesis. A table detailing the
full names of methods as used in the GitHub repository can be found in Appendix B. The abbreviated names
consist of a number of hyphenated elements. The first element is the name of the schedule generation scheme.
Here, ‘P’ and ‘S’ are used to denote the parallel and serial SGSs, respectively. Similarly, ‘PR’ and ‘SR’ denote
the usage of the rescheduling SGS with the parallel or serial SGS as a basis, respectively. The second element
is used to denote the priority rule used to create the initial schedule. If the rescheduling SGS is used, the third
element will denote the priority rule used for rescheduling. Finally, further elements may be included to denote
variations in the approach, which will be explained throughout this section as they are introduced.

5.1 Search for Effective Methods

Our initial base scenario has been Grid 1 with 750 expected daily arrivals. A wide variety of methods has been
applied to this grid in order to evaluate which methods are worth investigating further. The data of some of
the best methods on this grid as well as S-EDD, which we regularly use as a baseline in this section, are shown
in Table 1. As can be seen here, many methods have little to no difficulty creating effective schedules with
minimal delays. We furthermore note that if an initial schedule created using the flexible serial or parallel SGS
contains delays, these can typically be reduced or even removed entirely by using this schedule as a basis for a
rescheduling SGS. While being able to solve scheduling issues with little delays is of course great, we would like
our scenarios to be a little more challenging to be able to compare methods effectively. As such, in the second
scenario we decided to increase the arrival rate by 50% while using the same grid to have a harder problem
to solve. All priority rules described in Section 4.2.2 have been used to create schedules in this scenario. The
results of the most interesting methods in this scenario with 1125 expected daily car arrivals can be seen in
Table 2. A broader view of the qualities of methods is provided in Figure 10, which shows the average delays of
all combinations of scheduling methods and priority rules, evaluated with the most effective found combination
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of hyperparameters on Grid 1 with 1125 expected daily arrivals. For the sake of clarity, the delays of the serial
SGS using the FCFS priority rules have been omitted; this method has an average delay of 1119.6 seconds,
and has not been evaluated further due to its poor quality. In Table 2, we observe a number of things. A
number of methods, especially PR-EDD-LSTU, perform particularly well, yielding infrequent and low delays -
though this comes at the cost of having a higher runtime. When runtime is a constraint, PR-LSTU-EDD-IB
has a more competitive runtime while still yielding good results. This is the interval-based scheduling variant of
PR-LSTU-EDD, as denoted with ‘-IB’. The lowest maximum delay is achieved by P-LSTU. This method does,
however, come at the cost of a greater mean delay experienced by users. While in many cases, using interval-
based scheduling leads to an increase in delays, it can also lead to a reduction of delays as demonstrated by the
results of SR-EDD-LSTU and its interval-based scheduling variant SR-EDD-LSTU-IB, where the latter has a
lower mean delay and less delayed cars. In all cases, however, we see that interval-based scheduling leads to a
significant reduction in computing time compared to event-triggered scheduling. This is consistent with what
we would expect to see, as re-calculating schedules less frequent logically leads to less operations and thus less
computing time. Furthermore, when comparing methods such as SR-EDD-LSTU and SR-EDD-LSTU-IB to
S-EDD, we see how rescheduling can lead to significant improvements in every metric except runtime.

The methods yielding the best results, and those we will continue using in later subsections, are SR-EDD-
LSTA, SR-EDD-LSTU, PR-EDD-LSTU, PR-LSTU-EDD, PR-LSTU-LST, S-EDD, P-EDD, and P-LSTU. Here,
S-EDD is chosen for its simplicity and will be used as baseline method to which we compare other methods in
Section 5.4.

Table 1: Results of some of the most effective methods on Grid 1 with 750 expected daily car arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTU 0.0 0.0 0.0 3787.4 1007.8 21030.1 5
PR-LSTU-EDD 0.0 0.0 0.0 3787.4 1007.8 17287.1 5
PR-LSTU-LST 0.0 0.0 0.0 3787.4 1007.8 18802.9 5
P-LSTU 7.3 0.0 0.0 3787.4 1007.8 4407.8 5
S-EDD 5298.2 2.7 0.1 3787.4 1007.8 3922.3 5

Table 2: Results of the discussed methods on Grid 1 with 1125 expected daily car arrivals: results of effective
methods

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTU 2290.3 32.4 0.6 4321.6 3464.7 47212.8 15
SR-EDD-LSTU-IB 3232.2 29.9 0.5 4321.0 3465.3 11413.7 15
PR-EDD-LSTU 1777.4 26.0 0.5 4321.7 3464.6 44395.5 15
PR-LSTU-EDD-IB 2244.1 29.1 0.6 4320.7 3465.6 13418.8 15
P-LSTU 809.9 42.6 0.9 4321.5 3464.7 8105.1 15
S-EDD 16156.5 67.3 1.1 4320.2 3466.1 7250.3 15
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Figure 10: Average delays of all evaluated combinations of priority rules with default settings on Grid 1 with
1125 expected daily arrivals

Besides the priority rules, hyperparameters related to how the rescheduling is performed are interesting to
look at and tweak. From the results, of which those of the SR-EDD-LSTA and SR-EDD-LSTU methods and
their variants? are shown in Table 3, we see that a larger rescheduling fraction based on a smaller fraction of
initial removals tends to lead to better results than otherwise identical methods with lower rescheduling fractions
(as indicated with ‘-LR’ in the strategy name, denoting a rescheduling fraction of 0.15 instead of the default 0.5)
or greater rescheduling cluster fractions (as indicated with ‘-GC’ in the strategy name, denoting a rescheduling
cluster fraction of 0.15 instead of the default 0.05). In other words, the best results are achieved when we initially
remove only a small amount of jobs (rescheduling cluster fraction), and then a great number of adjacent jobs
(rescheduling fraction) to achieve large clusters of jobs to reschedule. From this we observe that it is likely that
the removal fraction can be tuned to optimize the balance between effectively implementing the best traits of
the new priority rule we reschedule to without discarding the old one. Where this balance lies exactly is likely
dependent on many other factors, such as network layout, the used priority rules, the initial schedule generation
scheme, the removal scheme and so on. The default values used and described throughout this thesis have been
shown to yield effective results, however. The hyperparameters used in this thesis have been selected based
on a preliminary investigation on a wide spread of permutations of hyperparameter settings, though finding
exactly where this balance lies falls outside the scope of this thesis. An explanation for this phenomenon can
be found in the fact that it is generally hard to reschedule isolated jobs effectively since, in a busy schedule
where all available power is used, removing a single job creates a gap in the schedule that is exactly that job’s
size. Then, scheduling another job in that gap might either not fit (if the new job is larger than the old one or
charges at higher rates) or leave an amount of power unused that can be hard to assign to another job (if the
new job is smaller than the old one or charges at lower rates). Naturally, as the rescheduling fraction increases,
the probability of such an occurrence decreases as the probability of adjacent jobs in a schedule being removed
increases. As expected, then, we see that the random removal scheme (as indicated with ‘-RR’ in the strategy
name) also suffers from this, typically yielding more delays than other methods. The random removal scheme
does, however, yield lower runtimes as the others require calculating which jobs are adjacent to which, a process
which is not needed here. The data also shows that the idealized reduction-based removal scheme (as indicated
with ‘-IR’ in the strategy name) consistently yields more and greater delays while serving less customers than
the simpler rule based on the number of adjacent jobs which is used by default.
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Table 3: Simulation results on Grid 1 with 1125 expected daily car arrivals of SR-EDD-LSTA and SR-EDD-
LSTU and their variants

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA 2096.2 30.6 0.6 4322.3 3464.0 48698.7 15
SR-EDD-LSTA-LR 4662.8 32.7 0.6 4320.9 3465.3 19262.2 15
SR-EDD-LSTA-LR-IR 16400.9 92.8 1.4 4311.0 3469.4 6987.8 7
SR-EDD-LSTA-GC 3899.0 73.0 1.3 4312.7 3467.7 48036.6 7
SR-EDD-LSTA-RR 5960.4 95.8 1.6 4319.6 3459.6 17864.8 5
SR-EDD-LSTU 2290.3 32.4 0.6 4321.6 3464.7 47212.8 15
SR-EDD-LSTU-LR 4929.4 34.5 0.7 4321.0 3465.3 18605.3 15
SR-EDD-LSTU-LR-IR 16400.9 92.8 1.4 4311.0 3469.4 7161.9 7
SR-EDD-LSTU-GC 3800.5 68.1 1.2 4311.9 3468.6 44307.7 7
SR-EDD-LSTU-RR 5425.5 79.9 1.3 4317.8 3461.4 16965.5 5

5.2 Flexible Charging vs Fixed-Rate Charging

While we have seen the impact the previously discussed scheduling methods can have on the scheduling of
flexible jobs, we cannot yet conclude if or how powerful the ability to charge jobs flexibly is compared to only
being able to charge jobs at fixed rates. However, for practical applications it is relevant to know whether
implementing this option is worthwhile. As such, we have also evaluated some of the most promising methods
found in Section 5.1 in the same scenario of 1125 expected daily arrivals on Grid 1, but with the ability to charge
flexibly removed. To do this, all cars can now only be charged at a fixed rate of 9kW; the average maximum
charging rate of jobs in all other scenarios. Then, the results of our most promising methods are as can be seen
in Table 4

Table 4: A comparison of results of methods when charging rates are fixed at 9kW (top) versus when charging
can be done flexibly (bottom)

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA7 66453.2 25014.0 99.8 3483.6 4295.6 126078.9 5
SR-EDD-LSTA 2096.2 30.6 0.6 4322.3 3464.0 48698.7 15
SR-EDD-LSTU7 65028.6 24825.8 99.7 3489.0 4290.2 133900.4 5
SR-EDD-LSTU 2290.3 32.4 0.6 4321.6 3464.7 47212.8 15
PR-LSTU-LST7 43284.6 24942.5 99.9 3515.2 4264.0 134910.3 5
PR-LSTU-LST 992.9 50.6 1.0 4320.4 3465.9 44580.4 15
P-EDD7 62744.7 24903.8 99.7 3480.8 4298.4 7059.3 5
P-EDD 15360.3 57.4 0.9 4319.2 3467.1 6997.2 15
S-EDD7 62744.7 24903.8 99.7 3480.8 4298.4 26646.4 5
S-EDD 16156.5 67.3 1.1 4320.2 3466.1 7250.3 15

As can be seen, the results are significantly worse than when flexible charging is possible; all scheduling
methods yield significant delays for nearly all cars while servicing less customers. It should, however, be noted
that due to the inability to charge flexibly, it is not possible for the scheduling methods in this scenario to
use solar power - after all, if they did and solar power decreases, it would not be possible to prevent cable
overloads without preemption. As such, it is evident that in our problem context the ability to charge flexibly
is a great boon. In other scenarios where preemption or cable overloads might be tolerated but disincentivized
the difference might not be quite so staggering as it is here. Nonetheless, being able to adaptively use up to all
available power while being able to avoid the penalties associated with overloads or preemption will likely still
be a great benefit.

5.3 Increased Parking Capacity

We notice that on Grid 1 with 1125 expected daily arrivals, a sizable fraction of the arrivals is unable to find a
place to park and leaves the simulation unserved. As such, we investigated how well our methods would fare if
more cars could find a place to park by creating a second grid, called Grid 2, where the parking capacities of
all car parks are doubled. A selection of these results (top) compared to those of the same method on Grid 1
(bottom) are shown in Table 5.

7 With charging rates fixed at 9kW
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Table 5: A selection of results on Grid 2 with 1125 expected daily car arrivals (top) compared to those same
methods on Grid 1 (bottom)

Strategy grid max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA 2 108715.6 49577.8 97.4 4574.8 3221.2 1625104.9 6
SR-EDD-LSTA 1 2096.2 30.6 0.6 4322.3 3464.0 48698.7 15
SR-EDD-LSTU 2 107356.6 49685.0 97.4 4576.0 3220.0 1666256.3 6
SR-EDD-LSTU 1 2290.3 32.4 0.6 4321.6 3464.7 47212.8 15
PR-EDD-LSTU 2 111858.5 49240.1 98.5 4589.3 3206.7 1609724.3 6
PR-EDD-LSTU 1 1777.4 26.0 0.5 4321.7 3464.6 44395.5 15
PR-LSTU-LST-IB 2 87223.2 50440.3 96.6 4580.5 3215.5 252475.2 6
PR-LSTU-LST-IB 1 1264.5 50.2 1.0 4320.9 3465.3 13266.4 15
P-EDD 2 112715.1 49031.4 98.5 4600.0 3196.0 26086.1 6
P-EDD 1 15360.3 57.4 0.9 4319.2 3467.1 6997.2 15
S-EDD 2 109012.6 49584.5 97.4 4573.0 3223.0 245441.6 6
S-EDD 1 16156.5 67.3 1.1 4320.2 3466.1 7250.3 15

Compared to those on Grid 1, the results on Grid 2 are vastly different. The increase in parking capacity
leads to significant delays with all methods. Among these, we observe that the usage of interval-based scheduling
and different hyperparameters such as a smaller removal fraction can yield some minor improvements, though.
A small increase in the number of cars serviced is also observed.

The reason for these increases can likely be found in the fact that a greater parking capacity leads to more
cars being able to park (until all car parks are at capacity), and thus placing a greater demand for power on
the already-limited supply. This leads to there generally being more cars waiting to be served - and thus also
more cars experiencing delays until eventually nearly all cars will need to wait (too) long before they can be
serviced. This queue of cars waiting to be served does, however, mean that there are almost always customers
available to service meaning we never waste available power, leading to a small increase in customers served.

The results on this grid, though somewhat limited due to the extensive runtimes, show that PR-LSTU-EDD
yields the least delayed cars and P-LSTU yields the lowest maximum delay. The lowest average delay has
been achieved by SR-EDD-LSTU-LR, though this is most likely caused by the fact that this method serves
significantly fewer cars than other methods rather than it yielding better schedules. P-EDD then not only
manages to serve the greatest amount of customers, it also does so with a competitive mean delay. Rescheduling
did not manage to improve these metrics here. In all likelihood, in an (over)strained grid such as this one,
rescheduling may lead to too many jobs being attempted to process simultaneously, leading to them all charging
at low rates and having a late completion time and all the while leading to a reduction in the flexibility we have
when scheduling other jobs.

5.4 Variations of Grid Layout

After having seen the impact a change in grid layout can have on the efficacy of the various scheduling approaches,
these methods have been evaluated on a number of other grids and compared to a baseline approach of S-EDD.
This way, we can ensure that our rescheduling SGSs offer improvements over the baseline in all scenarios.
Firstly, the most promising methods found on Grid 1 have been evaluated on Grid 3. Grid 3 is quite similar to
Grid 1, boasting the same total parking capacity across the same number of car parks and the same amount of
power supplied from the root node. However, less solar power is available as the only solar panels are placed
at the first car park from the root, and all car parks are placed in one long line. Since many cable segments,
especially those near the root, are used to supply power to all car parks, scheduling approaches will need to
balance where the power sent through these cables is directed. Too much power consumption at one point in
the grid might otherwise deprive other car parks of power. The results of the methods evaluated on this grid
are shown in Table 6

Table 6: An overview of results of the discussed approaches on Grid 3 with 1125 expected daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA 49262.0 8030.2 71.2 3892.3 3886.9 286444.1 6
SR-EDD-LSTU-IB 47937.8 7884.5 71.0 3909.4 3869.8 29920.6 5
PR-LSTU-LST 21633.4 8844.0 81.6 3864.2 3915.0 551593.4 5
P-EDD 50319.1 8047.7 70.5 3915.0 3864.2 7202.9 5
S-EDD 53371.3 8397.6 70.4 3894.6 3884.6 31455.4 5
S-LST 22745.2 9189.5 81.6 3853.2 3926.0 31380.2 5
S-LSTU 18408.7 8607.6 82.8 3884.2 3895.0 33215.9 5
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When looking at the results on this grid, we note that effective charging at 1125 expected daily arrivals proves
to be challenging. While some methods provide significantly better results than others, all yield significant and
frequent delays. Out of these results, SR-EDD-LSTU-IB yields a competitively low mean delay which is suffered
by relatively few customers. On the other hand, P-EDD manages to serve the most customers. The lowest
maximum delay, on the other hand, is found when using the S-LSTU method. Compared to our baseline of S-
EDD, we see that both rescheduling approaches and different choices in priority rules can lead to improvements
in all metrics besides the fraction of delayed cars. The improvement in mean delay yielded by rescheduling
methods over S-EDD is especially pronounced, with nearly all rescheduling methods having a lower mean delay.
SR-EDD-LSTA has been included in Table 6 as a second example besides, SR-EDD-LSTU-IB which has achieved
the greatest reduction. As this is the metric for which these methods optimize, this demonstrates how these
methods retain their quality and efficacy on this grid.

Worth noting is that, despite sharing many similarities, methods applied here have significantly longer
runtimes and worse results than those same methods applied on Grid 1 with the same arrival rate. This
difference is especially pronounced on the (event-triggered) rescheduling methods, whereas it is less significant
on the flexible parallel SGS. This promotes the belief that having too many car parks supplied through the
same cables leads to less effective scheduling as each car scheduled deprives many other cars, including those
in other car parks, of power. Furthermore, this means that many cars are adjacent in the schedules, leading to
more computation power being required for rescheduling, thus increasing computing time.

Finally, we also see that a large fraction of car arrivals go unserved as the car parks are full. As such, when we
increase the difficulty of the scenario by increasing the arrival rate from 1125 to 1500 expected daily car arrivals,
the vast majority of the extra car arrivals leave the simulation unserved. The amount of cars served increases
by only minute amounts, often less than one percent. Nonetheless, we see that delays increase both in frequency
and severity. Thus, we see that an increase of arrivals can lead to a significant reduction of performance in an
overstrained grid. This reduction in performance appears to affect rescheduling methods more strongly than
simpler scheduling methods, who may outperform the rescheduling methods here. Just as we have observed
on Grid 2, the most likely reason for this is that in an (over)strained grid, rescheduling methods may try to
charge too many jobs simultaneously, leading to all of them being processed at a low rate and finishing late
while causing a reduction in the flexibility of scheduling.

Then, based on this observation one might expect to see that a grid with parallel parking places and little
depth would perform well. As such, these same methods will be evaluated on Grid 4, where no cables are shared
by car parks. It should be noted that Grid 4 has access to a greater amount of power from the root node, 540
kW versus the 400 available to Grid 3, as well as a parking capacity, 630 places total versus Grid 3’s 440. As
per our earlier observations, we thus expect results in this grid might have an increase in the amount of cars
processed (since more power is available supplied through cables that are not shared by car parks) as well as the
length of delays experienced by users (as the number of parking places is increased). Indeed, when looking at
the results of this grid we see that the amount of cars serviced and the mean and maximum delays experienced
are consistently higher than those measured on Grid 3 with the same arrival rate, which further supports the
observations we made earlier on how grid layout affects performance. However, the percentage of cars that are
delayed is significantly reduced here compared to the previous grid. Thus, it is evident delays are typically less
frequent but larger than those on Grid 3. This is consistent with what we would expect as, outside of the most
busy hours cars can be processed faster, and thus more cars can be served before their due date. During those
busiest hours, however, waiting times are longer as the expanded parking capacity facilitates a longer queue.

When comparing the results on this grid, as seen in Table 7, we again see that S-EDD is outperformed by
other scheduling methods in every metric. PR-LSTU-EDD serves the most customers with the lowest mean
delay and the second-lowest percentage of cars delayed - only SR-EDD-LSTU manages to have a marginally
lower fraction of delayed cars. The lowest maximum delay is achieved by P-LSTU, with a number of rescheduling
methods also managing to improve on the maximum delay achieved by S-EDD. We see clearly that on this grid,
too, rescheduling methods succeed in improving on the standard set by our baseline approach for every metric.

Table 7: An overview of results of the discussed approaches on Grid 4 with 1500 expected daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTU 65582.4 13735.0 66.4 5171.8 5285.4 497858.2 5
SR-EDD-LSTU-IB 65182.6 13383.1 67.8 5175.6 5281.6 35718.3 5
PR-LSTU-EDD 66529.8 13302.4 66.4 5202.8 5254.4 1172933.3 5
P-EDD 64884.1 13541.9 68.0 5179.6 5277.6 13852.0 5
P-LSTU 32909.2 14194.6 72.6 5184.0 5273.2 18082.4 5
S-EDD 64737.5 14053.0 67.5 5165.0 5292.2 56851.4 5
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Table 8: An overview of results of the discussed approaches on Grid 5 with 1125 expected daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-LST-EDD-LR 21166.6 171.9 4.0 5620.6 2158.6 57226.5 5
SR-LST-LSTU-LR 21166.6 171.9 4.0 5620.6 2158.6 58917.5 5
SR-LSTU-EDD-LR 12007.8 229.6 5.5 5619.4 2159.8 66585.2 5
PR-EDD-LSTU-IB 26010.8 212.0 3.3 5620.6 2158.6 16135.1 5
PR-LSTU-EDD-IB 13595.0 199.2 5.0 5621.8 2157.4 15046.5 5
PR-LSTU-LST-IB 13595.0 199.2 5.0 5621.8 2157.4 17219.9 5
P-EDD 23984.6 208.3 3.1 5619.0 2160.2 43313.4 5
S-EDD 25269.8 231.7 3.4 5618.2 2161.0 67306.5 5
S-LST 21166.6 171.9 4.0 5620.6 2158.6 69965.1 5

So far, we have primarily considered relatively small grids of at most seven car parks. As such, we have
also evaluated our approaches on the significantly larger Grid 5 with an arrival rate of 1125 expected daily
cars to see how well our approaches handle more sizable grids. Due to the size of this grid, runtimes of the
rescheduling methods increased drastically. For this reason rescheduling approaches have only been used with
interval-based scheduling or reduced rescheduling fractions. Despite these restrictions, however, we see that
these methods still performed well as can be seen in Table 8. The lowest values for the mean delay are yielded
by S-LST, SR-LST-EDD-LR, and SR-LST-LSTU-LR, which all produce the same value for the lowest mean
delay. While the schedules produced by the rescheduling methods did not manage to reduce delays compared
to those yielded by S-LST, they did both manage achieve a lower runtime. Tests have shown that a notable
measure variance is present in the runtimes of simulations, which leads us to believe that this improvement is
due to random variance rather than a property of the method. As the rescheduling method first creates a base
schedule using the serial or parallel schedule generation scheme before creating mutations, it thus should not
typically be faster than the method creating just those base schedules. Nonetheless, this does show that when
the rescheduling scheme does not improve on the quality of schedules compared to the schedule it is based on,
it also does not increase the runtime of the method significantly.

The lowest maximum delay is yielded by SR-LSTU-EDD-LR and the lowest fraction of cars delayed is yielded
by P-EDD. Similarly, PR-EDD-LSTU-IB improves on the fraction of cars delayed by S-EDD in a shorter runtime
and also serves more cars than both P-EDD and S-EDD, though at the cost of somewhat higher delays compared
to P-EDD and a greater maximum delay than both. Finally, the schedules with the greatest amount of cars
served are yielded by both PR-LSTU-EDD-IB and PR-LSTU-LST-IB. These two approaches yield results with
identical metrics, except for runtime; PR-LSTU-EDD-IB produces its schedules more quickly than any other
evaluated method, whereas PR-LSTU-LST-IB is the third fastest approach out of those tested.

Again, the results clearly show that a variety of the methods evaluated can offer notable improvements
compared to our baseline method, S-EDD.

5.5 Comparison of Schedule Updating Frequencies

On the various grids, we have evaluated a number of methods using both event-triggered scheduling and interval-
based scheduling. When using event-triggered scheduling, the schedule is updated whenever either a new car
arrives or the solar powers are updated (which happens hourly). Interval-bases scheduling updates the schedule
much less frequently; it does so only when the solar powers are updated or when a car arrives who’s priority
value is higher than that of 80% of vehicles in the schedule. If our schedules are effective and robust, we expect
to see that the lower frequency of updating the schedules (and thus being less adaptive to incorporating new
arrivals) does not lead to a significant reduction in quality of our method compared to the event-triggered
variant.

The differences in results between interval-based and event-triggered scheduling can be seen in Tables 9 to
11. Comparisons for Grids 2 and 5 have been omitted as, due to long runtimes, results of some methods are
not present or only present with a lower rescheduling fraction, making a fair comparison impossible.

Table 9: Comparison of event-triggered and interval-based scheduling methods on Grid 1 with 1125 average
daily arrivals

max delay mean delay % delayed served non-served runtime
event-triggered 1777.4 33.7 0.6 4321.6 3464.6 46122.1
interval-based 2338.1 36.9 0.7 4321.2 3465.0 12419.8
% increase IB 31.5 9.7 7.4 -0.0 0.0 -73.1
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Table 10: Comparison of event-triggered and interval-based scheduling methods on Grid 3 with 1125 average
daily arrivals

max delay mean delay % delayed served non-served runtime
event-triggered 43957.3 8328.6 73.5 3883.2 3896.0 444395.8
interval-based 44148.3 8318.5 73.3 3894.9 3884.3 32503.4
% increase IB 0.4 -0.1 -0.3 0.3 -0.3 -92.7

Table 11: Comparison of event-triggered and interval-based scheduling methods on Grid 4 with 1500 average
daily arrivals

max delay mean delay % delayed served non-served runtime
event-triggered 59976.1 13651.4 68.0 5182.6 5274.6 737654.0
interval-based 59086.2 13701.1 68.9 5183.4 5273.8 49081.2
% increase IB -1.5 0.4 1.5 0.0 -0.0 -93.3

As can be seen from these results, when we compare the quality of interval-based to event-triggered scheduling
we indeed see that using interval-based scheduling typically leads to at most a minor decrease in quality and at
best even an improvement in some metrics. As such, we conclude that the quality of the schedules created with
our methods is such that even when they are updated much less frequently, the reduction in charging efficacy
is only minor. Clearly, our methods are indeed an effective way of scheduling EV charging.

6 Conclusion

The research question that has been formulated at the start of this thesis and which we have aimed to find an
answer to is:

Which scheduling strategies can produce effective schedules for the scheduling of EV charging with
the least delay suffered by customers when considering grid constraints, flexible charging rates and
uncertain future demand and renewable energy yield?

The results of our experiments, as discussed in Section 5 provide an answer to this question. The ability to
charge jobs at flexible rates allows us to easily adapt to new arrivals or changes in available solar power and thus
ensure constraints are always met while using solar power, yielding significantly improved results. Furthermore,
we see that the simpler flexible and parallel schedule generating schemes can occasionally yield decent results,
in particular regularly yielding low maximum delays. However, the best solutions are often found by using the
rescheduling schedule generation scheme. Through rescheduling, these simple schedules can often be improved
further, typically yielding improvements in the metric for which we optimize as well others. Furthermore, these
improvements can be extended to include the runtime of methods by using interval-based scheduling instead
of event-triggered scheduling without incurring significant reductions in performance - and occasionally even
increasing the performance quality. The performance quality of a rescheduling SGS is strongly influenced by
the choice of hyperparameters. Here we see that rescheduling fewer, larger clusters of adjacent jobs tends to
yield the best results. This can be done by using the adjacency-based removal scheme to remove large clusters
of jobs based on a small number of initial job removals. Though it differs per scenario which combination of
priority rules yields the best results, methods using Earliest Due Date and variations of the Latest Starting
Time priority rules have consistently lead to good solutions being found with the rescheduling SGS. The best
of these methods have been found to be SR-EDD-LSTA, SR-EDD-LSTU, PR-EDD-LSTU, PR-LSTU-EDD,
PR-LSTU-LST. Furthermore, we have observed that the LSTU priority rule consistently leads to low maximum
delays experienced by users.

Finally, the grid layout also has a significant effect on performance quality. It has been observed that having
too large parking places can lead to long delays. Furthermore, supplying too many parking places through one
cable segment may lead to longer computation times and slower processing of parked cars.

To summarize, we have designed novel variations of the LST priority rules which, together with the EDD
priority rule, have been used in our Rescheduling Schedule Generation Scheme to create good schedules for the
charging of EVs at flexible rates. Furthermore, we have shown that these schedules are of sufficient quality that
they maintain their efficacy well even when updated infrequently on five different grids.

7 Future Work

Naturally, there are numerous expansions of the research presented here that we would have liked to look into,
but were unable to do due to time constraints. The topics discussed in this section are suggested for future
research.
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One limitation of the current implementation of the simulation is that the arrival rates are treated as being
identical throughout the day for every day. However, in practice, it is common for these distributions to vary
throughout the week; especially in the weekend arrival rates differ from weekdays. It would be interesting to see
how the efficacy of the tested methods changes when this is taken into account. Since the arrival rates repeat
each day in the used simulation model, this could be implemented by making a ’day’ have the length of one
week (or another period of time after which arrival rates should repeat). This is done simply providing the
arrival fractions for each hour of the week, setting the expected ’daily arrivals’ to be the arrivals we expect in
a week, and changing the constants in the code of ’24 hours’ to ’168 hours’ as relevant.

Furthermore, this thesis has only investigated a limited subset of the infinite number of grids which can be
designed and built. It is very conceivable that certain strategies might perform better on grid layouts that have
been designed to make maximally efficient use of them. As such, a possible future avenue of research would
be an investigation of how the efficacy of the different methods changes on different grid layouts with different
capacities. One possible feature of grids that has not been explored yet is using a cable with sufficiently large
power capacity to supply a number of smaller car parks such that it is not necessary to always charge cars at
every car park using all power available. Then, the capacity of the shared cable can be assigned to car parks
flexibly depending on where power is needed, possibly reducing the amount of cable capacity needed.

All grids investigated thus far had the same amount of solar panels. However, some methods might be able
to handle this uncertainty better than others. An investigation into which methods can most effectively utilize
the uncertain yield of solar panels and thus minimize the use of power from external sources (which might be
generated in a less sustainable manner) might yield very interesting and useful results.

In a similar vein, the solar distributions can also be changed to represent, for example, different seasons.
The current simulation has only used a distribution representing summer conditions, though in simulations of
other distributions the results of the investigated methods might change. It would be interesting to see how
these changes in scenario would affect the efficacy of methods.

Regarding the scheduling methods, further research into the optimal values and combinations of hyperpa-
rameters can most likely yield improvements to the results of the investigated methods. Similarly, the creation
and investigation of more priority rules may result in better results being found. In particular, since it is ob-
served that rescheduling methods sometimes schedule too many jobs at low rates leading to jobs finishing late,
implementing priority rules that give a higher priority to jobs that are already started may prove to be fruitful.

The current rescheduling method only allows the usage of two priority rules; one for the initial schedule and
one to reschedule with. It would theoretically be possible to reschedule first with one rule, then a second, and so
on until we return to the first rule in a cyclical pattern. Work on this topic can be continued by implementing
and evaluating this method. This way, many rules can be used to hopefully exploit the best features of each.

Finally, the current method has only been used to optimize schedules for the total delay suffered by users.
However, the same and/or aforementioned methods can theoretically also be used to optimize schedules for a
different metric or even use a linear combination of metrics as an objective. To do this, only the quality measure
function in would need to be changed. A potential avenue of research would then be evaluating the efficacy and
practical applications of such an approach here.
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A Generation Distributions

Table A1: Average solar panel revenues as a fraction of peak revenue

Hour of day Winter Summer
0 0 0
1 0 0
2 0 0
3 0 0.001548952
4 0 0.017126799
5 0 0.05556752
6 0.000103127 0.13203421
7 0.00823918 0.22293125
8 0.05180765 0.31115308
9 0.11377241 0.38261825
10 0.16397867 0.42669293
11 0.1900904 0.446001
12 0.18747252 0.4401042
13 0.15443817 0.40363738
14 0.09591667 0.3424478
15 0.03456073 0.26145884
16 0.004871739 0.16952068
17 8.68E-06 0.08330672
18 0 0.026936987
19 0 0.005260382
20 0 0
21 0 0
22 0 0
23 0 0

Table A2: Average fraction of arrivals at each hour

Hour of day Arrival fraction
0 0.012926435
1 0.004938874
2 0.002042621
3 0.001188988
4 0.000304869
5 0.000518277
6 0.007560745
7 0.027072345
8 0.058748209
9 0.049114356
10 0.035456236
11 0.040120728
12 0.045181549
13 0.048108289
14 0.050913082
15 0.057254352
16 0.072223408
17 0.103899271
18 0.125453492
19 0.071156367
20 0.056217798
21 0.052467913
22 0.047315631
23 0.029816164
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Table A3: Distribution of charging rates

Minimum Charging Rate Maximum Charging Rate Probability
3 6 0.0625
3 7 0.0625
3 8 0.0625
3 9 0.0625
4 7 0.0625
4 8 0.0625
4 9 0.0625
4 10 0.0625
5 8 0.0625
5 9 0.0625
5 10 0.0625
5 11 0.0625
6 9 0.0625
6 10 0.0625
6 11 0.0625
6 12 0.0625
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Table A4: Weights of charging volumes of car arrivals

Charging Volume (kWh) Weight
0 0.029938112
1 0.026188226
2 0.035212341
3 0.03268193
4 0.043443797
5 0.050333831
6 0.071186854
7 0.055973903
8 0.048809488
9 0.032163654
10 0.021188378
11 0.023383433
12 0.020670102
13 0.019725008
14 0.018688455
15 0.018261638
16 0.01804823
17 0.017347032
18 0.017286058
19 0.018718941
20 0.018078717
21 0.018901863
22 0.017286058
23 0.017316545
24 0.017103137
25 0.016615347
26 0.014511753
27 0.015487333
28 0.014938569
29 0.013200817
30 0.011859395
31 0.013322765
32 0.010853328
33 0.01112771
34 0.009603366
35 0.008444864
36 0.00829243
37 0.008079022
38 0.006585165
39 0.007042468
40 0.006920521
41 0.006676626
42 0.006219323
43 0.005762019
44 0.005822993
45 0.005487638
46 0.005640072
47 0.005883967
48 0.005121795
49 0.004115728
50 0.004115728

Charging Volume (kWh) Weight
51 0.004268163
52 0.003871833
53 0.004786439
54 0.003810859
55 0.003262096
56 0.003384043
57 0.003445017
58 0.003201122
59 0.002804793
60 0.002987714
61 0.002957227
62 0.002317003
63 0.002073108
64 0.002256029
65 0.001981647
66 0.001585318
67 0.001615804
68 0.001249962
69 0.001128014
70 0.000640224
71 0.000853633
72 0.000518277
73 0.000731685
74 0.000518277
75 0.000762172
76 0.000579251
77 0.000396329
78 0.000396329
79 0.000182921
80 0.000182921
81 9.15E-05
82 9.15E-05
83 9.15E-05
84 0.000274382
85 0.000243895
86 0.000152434
87 0.000182921
88 0.000182921
89 0.000182921
90 3.05E-05
91 0
92 0
93 3.05E-05
94 0
95 0
96 0
97 0
98 0
99 0
100 0
101 3.05E-05
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Table A5: Weights of connection times of car arrivals

Connection time (hour) Weight
0 0.075089174
1 0.089052163
2 0.084570592
3 0.069967379
4 0.05356544
5 0.036309869
6 0.025608975
7 0.02820036
8 0.041492637
9 0.03755983
10 0.03707204
11 0.040699979
12 0.046431511
13 0.055242218
14 0.049205817
15 0.034511143
16 0.02682845
17 0.022590775
18 0.019237218
19 0.016737295
20 0.013261791
21 0.010426511
22 0.008536325
23 0.006707113
24 0.005518124
25 0.004237676
26 0.00292674
27 0.001859699
28 0.001524344
29 0.001128014
30 0.000579251
31 0.000914606
32 0.001280449
33 0.001249962
34 0.001341423
35 0.001920673

Connection time (hour) Weight
36 0.002256029
37 0.003231609
38 0.003536478
39 0.002804793
40 0.002408463
41 0.002865766
42 0.001890186
43 0.002286516
44 0.001890186
45 0.001310936
46 0.001432883
47 0.001341423
48 0.000945093
49 0.000548764
50 0.000518277
51 0.000274382
52 0.000121948
53 0.000152434
54 0.000426816
55 0.000243895
56 0.000213408
57 0.000457303
58 0.000396329
59 0.000274382
60 0.000670711
61 0.000945093
62 0.000792659
63 0.000884119
64 0.000853633
65 0.000640224
66 0.000396329
67 0.000609738
68 0.000548764
69 0.000457303
70 0.007987561
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B Strategy Name Abbreviations

Table B1: Strategy name abbreviations

Full Strategy Name Abbreviation
serialReschedule EDD-LST-4-0.15-0.05-100-idealizedReduction SR-EDD-LST-LR-IR
serialReschedule EDD-LST-4-0.15-0.05-100-nAdjacent SR-EDD-LST-LR
serialReschedule EDD-LST-4-0.15-0.1-100-nAdjacent SR-EDD-LST-LR-MC
serialReschedule EDD-LST-4-0.25-0.05-100-nAdjacent SR-EDD-LST-MR
serialReschedule EDD-LST-4-0.5-0.05-100-nAdjacent SR-EDD-LST
serialReschedule EDD-LST-4-0.5-0.05-100-nAdjacent-rollingHorizon20 SR-EDD-LST-IB
serialReschedule EDD-LST-4-0.5-0.15-100-nAdjacent SR-EDD-LST-GC
serialReschedule EDD-LST-6-0.15-0.05-100-nAdjacent SR-EDD-LST-MI-LR
serialReschedule EDD-LSTA-4-0.15-0.05-100-idealizedReduction SR-EDD-LSTA-LR-IR
serialReschedule EDD-LSTA-4-0.15-0.05-100-nAdjacent SR-EDD-LSTA-LR
serialReschedule EDD-LSTA-4-0.15-0.15-100-nAdjacent SR-EDD-LSTA-RR
serialReschedule EDD-LSTA-4-0.15-0.15-100-nAdjacent-rollingHorizon20 SR-EDD-LSTA-RR-IB
serialReschedule EDD-LSTA-4-0.5-0.05-100-nAdjacent SR-EDD-LSTA
serialReschedule EDD-LSTA-4-0.5-0.05-100-nAdjacent-rollingHorizon20 SR-EDD-LSTA-IB
serialReschedule EDD-LSTA-4-0.5-0.15-100-nAdjacent SR-EDD-LSTA-GC
serialReschedule EDD-LSTU-4-0.15-0.05-100-idealizedReduction SR-EDD-LSTU-LR-IR
serialReschedule EDD-LSTU-4-0.15-0.05-100-nAdjacent SR-EDD-LSTU-LR
serialReschedule EDD-LSTU-4-0.15-0.15-100-nAdjacent SR-EDD-LSTU-RR
serialReschedule EDD-LSTU-4-0.15-0.15-100-nAdjacent-rollingHorizon20 SR-EDD-LSTU-RR-IB
serialReschedule EDD-LSTU-4-0.5-0.05-100-nAdjacent SR-EDD-LSTU
serialReschedule EDD-LSTU-4-0.5-0.05-100-nAdjacent-rollingHorizon20 SR-EDD-LSTU-IB
serialReschedule EDD-LSTU-4-0.5-0.15-100-nAdjacent SR-EDD-LSTU-GC
serialReschedule GRD-LST-4-0.15-0.05-100-nAdjacent SR-GRD-LST-LR
serialReschedule LST-EDD-4-0.15-0.05-100-idealizedReduction SR-LST-EDD-LR-IR
serialReschedule LST-EDD-4-0.15-0.05-100-nAdjacent SR-LST-EDD-LR
serialReschedule LST-EDD-4-0.5-0.05-100-nAdjacent SR-LST-EDD
serialReschedule LST-EDD-4-0.5-0.15-100-nAdjacent SR-LST-EDD-GC
serialReschedule LST-LSTA-4-0.15-0.05-100-idealizedReduction SR-LST-LSTA-LR-IR
serialReschedule LST-LSTA-4-0.15-0.05-100-nAdjacent SR-LST-LSTA-LR
serialReschedule LST-LSTA-4-0.5-0.05-100-nAdjacent SR-LST-LSTA
serialReschedule LST-LSTA-4-0.5-0.05-100-nAdjacent-rollingHorizon20 SR-LST-LSTA-IB
serialReschedule LST-LSTU-4-0.15-0.05-100-idealizedReduction SR-LST-LSTU-LR-IR
serialReschedule LST-LSTU-4-0.15-0.05-100-nAdjacent SR-LST-LSTU-LR
serialReschedule LST-LSTU-4-0.5-0.05-100-nAdjacent SR-LST-LSTU
serialReschedule LSTA-EDD-4-0.15-0.05-100-idealizedReduction SR-LSTA-EDD-LR-IR
serialReschedule LSTA-EDD-4-0.15-0.05-100-nAdjacent SR-LSTA-EDD-LR
serialReschedule LSTA-EDD-4-0.5-0.05-100-nAdjacent SR-LSTA-EDD
serialReschedule LSTA-LST-4-0.15-0.05-100-idealizedReduction SR-LSTA-LST-LR-IR
serialReschedule LSTA-LST-4-0.15-0.05-100-nAdjacent SR-LSTA-LST-LR
serialReschedule LSTA-LST-4-0.5-0.05-100-nAdjacent SR-LSTA-LST
serialReschedule LSTA-LSTU-4-0.15-0.05-100-idealizedReduction SR-LSTA-LSTU-LR-IR
serialReschedule LSTA-LSTU-4-0.15-0.05-100-nAdjacent SR-LSTA-LSTU-LR
serialReschedule LSTA-LSTU-4-0.5-0.05-100-nAdjacent SR-LSTA-LSTU
serialReschedule LSTU-EDD-4-0.15-0.05-100-idealizedReduction SR-LSTU-EDD-LR-IR
serialReschedule LSTU-EDD-4-0.15-0.05-100-nAdjacent SR-LSTU-EDD-LR
serialReschedule LSTU-EDD-4-0.5-0.05-100-nAdjacent SR-LSTU-EDD
serialReschedule LSTU-EDD-4-0.5-0.05-100-nAdjacent-rollingHorizon20 SR-LSTU-EDD-IB
serialReschedule LSTU-EDD-4-0.5-0.15-100-nAdjacent SR-LSTU-EDD-GC
serialReschedule LSTU-LST-4-0.15-0.05-100-idealizedReduction SR-LSTU-LST-LR-IR
serialReschedule LSTU-LST-4-0.15-0.05-100-nAdjacent SR-LSTU-LST-LR
serialReschedule LSTU-LST-4-0.5-0.05-100-nAdjacent SR-LSTU-LST
serialReschedule LSTU-LST-4-0.5-0.05-100-nAdjacent-rollingHorizon20 SR-LSTU-LST-IB
serialReschedule LSTU-LSTA-4-0.15-0.05-100-idealizedReduction SR-LSTU-LSTA-LR-IR
serialReschedule LSTU-LSTA-4-0.15-0.05-100-nAdjacent SR-LSTU-LSTA-LR
serialReschedule LSTU-LSTA-4-0.5-0.05-100-nAdjacent SR-LSTU-LSTA
serialReschedule LSTU-LSTA-4-0.5-0.15-100-nAdjacent SR-LSTU-LSTA-GC
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serialReschedule LWKR-GRD-4-0.15-0.05-100-nAdjacent SR-LWKR-GRD-LR
serialReschedule LWKR-LST-4-0.15-0.05-100-nAdjacent SR-LWKR-LST-LR
serialReschedule LWKR-MWKR-4-0.15-0.05-100-nAdjacent SR-LWKR-MWKR-LR
serialReschedule MWKR-LST-4-0.15-0.05-100-nAdjacent SR-MWKR-LST-LR
parallelReschedule EDD-LST-4-0.5-0.05-100-nAdjacent PR-EDD-LST
parallelReschedule EDD-LST-4-0.5-0.05-100-nAdjacent-rollingHorizon20 PR-EDD-LST-IB
parallelReschedule EDD-LSTA-4-0.5-0.05-100-nAdjacent PR-EDD-LSTA
parallelReschedule EDD-LSTA-4-0.5-0.05-100-nAdjacent-rollingHorizon20 PR-EDD-LSTA-IB
parallelReschedule EDD-LSTU-4-0.15-0.15-100-nAdjacent PR-EDD-LSTU-RR
parallelReschedule EDD-LSTU-4-0.15-0.15-100-nAdjacent-rollingHorizon20 PR-EDD-LSTU-RR-IB
parallelReschedule EDD-LSTU-4-0.5-0.05-100-nAdjacent PR-EDD-LSTU
parallelReschedule EDD-LSTU-4-0.5-0.05-100-nAdjacent-rollingHorizon20 PR-EDD-LSTU-IB
parallelReschedule LST-LSTA-4-0.5-0.05-100-nAdjacent PR-LST-LSTA
parallelReschedule LST-LSTA-4-0.5-0.05-100-nAdjacent-rollingHorizon20 PR-LST-LSTA-IB
parallelReschedule LSTU-EDD-4-0.15-0.15-100-nAdjacent PR-LSTU-EDD-RR
parallelReschedule LSTU-EDD-4-0.15-0.15-100-nAdjacent-rollingHorizon20 PR-LSTU-EDD-RR-IB
parallelReschedule LSTU-EDD-4-0.5-0.05-100-nAdjacent PR-LSTU-EDD
parallelReschedule LSTU-EDD-4-0.5-0.05-100-nAdjacent-rollingHorizon20 PR-LSTU-EDD-IB
parallelReschedule LSTU-LST-4-0.15-0.15-100-nAdjacent PR-LSTU-LST-RR
parallelReschedule LSTU-LST-4-0.15-0.15-100-nAdjacent-rollingHorizon20 PR-LSTU-LST-RR-IB
parallelReschedule LSTU-LST-4-0.5-0.05-100-nAdjacent PR-LSTU-LST
parallelReschedule LSTU-LST-4-0.5-0.05-100-nAdjacent-rollingHorizon20 PR-LSTU-LST-IB
parallel EDD P-EDD
parallel LST P-LST
parallel LSTA P-LSTA
parallel LSTU P-LSTU
serial EDD S-EDD
serial EDD-rollingHorizon20 S-EDD-IB
serial FCFS S-FCFS
serial LST S-LST
serial LST-rollingHorizon20 S-LST-IB
serial LSTA S-LSTA
serial LSTA-rollingHorizon20 S-LSTA-IB
serial LSTU S-LSTU
serial LSTU-rollingHorizon20 S-LSTU-IB

C Experimental results

Table C1: Results on Grid 1 with 750 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LST-LR-IR 3334.6 1.4 0.1 3794.3 998.4 4273.5 7
SR-EDD-LST-LR 0.0 0.0 0.0 3787.4 1007.8 8261.8 5
SR-EDD-LST 0.0 0.0 0.0 3787.4 1007.8 21399.5 5
SR-EDD-LST-GC 0.0 0.0 0.0 3787.4 1007.8 22323.5 5
SR-EDD-LSTA-LR-IR 3334.6 1.4 0.1 3794.3 998.4 4186.8 7
SR-EDD-LSTA-LR 0.0 0.0 0.0 3787.4 1007.8 9218.0 5
SR-EDD-LSTA 0.0 0.0 0.0 3787.4 1007.8 22162.5 5
SR-EDD-LSTA-GC 0.0 0.0 0.0 3787.4 1007.8 22906.1 5
SR-EDD-LSTU-LR-IR 3334.6 1.4 0.1 3794.3 998.4 4077.9 7
SR-EDD-LSTU-LR 0.0 0.0 0.0 3787.4 1007.8 8742.0 5
SR-EDD-LSTU 0.0 0.0 0.0 3787.4 1007.8 21030.1 5
SR-EDD-LSTU-GC 0.0 0.0 0.0 3787.4 1007.8 21934.7 5
SR-LST-EDD-LR-IR 0.0 0.0 0.0 3794.3 998.4 4606.3 7
SR-LST-EDD-LR 0.0 0.0 0.0 3787.4 1007.8 10103.3 5
SR-LST-EDD 0.0 0.0 0.0 3787.4 1007.8 22121.7 5
SR-LST-EDD-GC 0.0 0.0 0.0 3787.4 1007.8 20923.6 5
SR-LST-LSTA-LR-IR 0.0 0.0 0.0 3794.3 998.4 4372.1 7
SR-LST-LSTA-LR 0.0 0.0 0.0 3787.4 1007.8 10032.9 5
SR-LST-LSTA 0.0 0.0 0.0 3787.4 1007.8 23587.9 5
SR-LST-LSTU-LR-IR 0.0 0.0 0.0 3794.3 998.4 4150.6 7

32



SR-LST-LSTU-LR 0.0 0.0 0.0 3787.4 1007.8 9736.9 5
SR-LST-LSTU 0.0 0.0 0.0 3787.4 1007.8 23500.9 5
SR-LSTA-EDD-LR-IR 187.5 0.0 0.0 3794.4 998.3 5939.4 7
SR-LSTA-EDD-LR 127.2 0.0 0.0 3787.2 1008.0 11783.5 5
SR-LSTA-EDD 118.9 0.0 0.0 3787.2 1008.0 27603.0 5
SR-LSTA-EDD-GC 120.8 0.0 0.0 3787.2 1008.0 28722.1 5
SR-LSTA-LST-LR-IR 187.5 0.0 0.0 3794.4 998.3 5536.3 7
SR-LSTA-LST-LR 127.2 0.0 0.0 3787.2 1008.0 10587.5 5
SR-LSTA-LSTU-LR-IR 187.5 0.0 0.0 3794.4 998.3 5025.0 7
SR-LSTA-LSTU-LR 127.2 0.0 0.0 3787.2 1008.0 12306.9 5
SR-LSTU-EDD-LR-IR 0.0 0.0 0.0 3794.3 998.4 4981.3 7
SR-LSTU-EDD-LR 7.6 0.0 0.0 3787.4 1007.8 10513.8 5
SR-LSTU-EDD 0.0 0.0 0.0 3787.4 1007.8 24184.0 5
SR-LSTU-EDD-GC 0.0 0.0 0.0 3787.4 1007.8 25291.3 5
SR-LSTU-LST-LR-IR 0.0 0.0 0.0 3794.3 998.4 4813.0 7
SR-LSTU-LST-LR 10.2 0.0 0.0 3787.4 1007.8 8992.6 5
SR-LSTU-LSTA-LR-IR 0.0 0.0 0.0 3794.3 998.4 4250.7 7
SR-LSTU-LSTA-LR 10.2 0.0 0.0 3787.4 1007.8 11102.2 5
PR-EDD-LSTU 0.0 0.0 0.0 3787.4 1007.8 17935.4 5
PR-EDD-LSTU-IB 0.0 0.0 0.0 3787.4 1007.8 6797.2 5
PR-LSTU-EDD 0.0 0.0 0.0 3787.4 1007.8 17287.1 5
PR-LSTU-EDD-IB 0.0 0.0 0.0 3787.4 1007.8 6662.3 5
PR-LSTU-LST 0.0 0.0 0.0 3787.4 1007.8 18802.9 5
PR-LSTU-LST-IB 0.0 0.0 0.0 3787.4 1007.8 7056.9 5
P-EDD 5267.9 2.6 0.1 3787.4 1007.8 4111.9 5
P-LST 0.0 0.0 0.0 3787.4 1007.8 4100.7 5
P-LSTA 323.1 0.1 0.0 3787.6 1007.6 6069.5 5
P-LSTU 7.3 0.0 0.0 3787.4 1007.8 4407.8 5
S-EDD 5298.2 2.7 0.1 3787.4 1007.8 3922.3 5
S-LST 0.0 0.0 0.0 3787.4 1007.8 4221.9 5
S-LSTA 127.2 0.0 0.0 3787.2 1008.0 5500.0 5
S-LSTU 10.2 0.0 0.0 3787.4 1007.8 4358.8 5

Table C2: Results on Grid 1 with 1125 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LST-LR-IR 16400.9 92.8 1.4 4311.0 3469.4 7761.5 7
SR-EDD-LST-LR 4905.3 33.6 0.7 4320.9 3465.3 17500.4 15
SR-EDD-LST-LR-MC 23977.4 436.0 6.7 4347.0 3427.0 36026.8 1
SR-EDD-LST-MR 26843.8 510.0 7.9 4350.0 3424.0 56791.1 1
SR-EDD-LST 2409.5 32.4 0.6 4322.1 3464.2 46263.3 15
SR-EDD-LST-IB 2887.6 35.8 0.7 4320.9 3465.3 13861.6 15
SR-EDD-LST-GC 3704.1 71.7 1.1 4311.9 3468.6 42754.2 7
SR-EDD-LST-MI-LR 23977.4 413.9 6.5 4340.0 3434.0 47433.0 1
SR-EDD-LSTA-LR-IR 16400.9 92.8 1.4 4311.0 3469.4 6987.8 7
SR-EDD-LSTA-LR 4662.8 32.7 0.6 4320.9 3465.3 19262.2 15
SR-EDD-LSTA-RR 5960.4 95.8 1.6 4319.6 3459.6 17864.8 5
SR-EDD-LSTA-RR-IB 8574.9 86.6 1.4 4316.4 3462.8 5735.2 5
SR-EDD-LSTA 2096.2 30.6 0.6 4322.3 3464.0 48698.7 15
SR-EDD-LSTA-IB 2406.0 38.2 0.7 4321.7 3464.6 11510.0 15
SR-EDD-LSTA-GC 3899.0 73.0 1.3 4312.7 3467.7 48036.6 7
SR-EDD-LSTU-LR-IR 16400.9 92.8 1.4 4311.0 3469.4 7161.9 7
SR-EDD-LSTU-LR 7537.6 82.6 1.4 4317.6 3471.0 19762.2 18
SR-EDD-LSTU-RR 5425.5 79.9 1.3 4317.8 3461.4 16965.5 5
SR-EDD-LSTU-RR-IB 9099.0 114.3 1.7 5111.8 4069.2 5484.9 6
SR-EDD-LSTU 2290.3 32.4 0.6 4321.6 3464.7 47212.8 15
SR-EDD-LSTU-IB 3232.2 29.9 0.5 4321.0 3465.3 11413.7 15
SR-EDD-LSTU-GC 3800.5 68.1 1.2 4311.9 3468.6 44307.7 7
SR-GRD-LST-LR 20251.8 999.8 16.3 4327.0 3447.0 137897.2 1
SR-LST-EDD-LR-IR 1912.5 100.8 2.0 4308.9 3471.6 8555.1 7
SR-LST-EDD-LR 2296.5 44.4 0.8 4322.0 3464.3 22078.4 15
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SR-LST-EDD 3798.8 41.9 0.7 4321.3 3464.9 48208.6 15
SR-LST-EDD-GC 3816.3 77.8 1.3 4313.1 3467.3 49398.5 7
SR-LST-LSTA-LR-IR 1912.5 100.8 2.0 4308.9 3471.6 7576.2 7
SR-LST-LSTA-LR 1370.2 49.4 1.0 4320.3 3465.9 21161.1 15
SR-LST-LSTA 1159.0 44.1 1.0 4321.1 3465.2 48808.6 15
SR-LST-LSTA-IB 1482.5 48.9 1.1 4320.5 3465.7 10791.3 15
SR-LST-LSTU-LR-IR 1912.5 100.8 2.0 4308.9 3471.6 8201.1 7
SR-LST-LSTU-LR 1500.3 49.8 1.1 4320.1 3466.2 19430.7 15
SR-LST-LSTU 1255.0 51.5 1.0 4320.1 3466.1 48252.4 15
SR-LSTA-EDD-LR-IR 2315.5 100.4 2.0 4309.4 3471.0 10738.0 7
SR-LSTA-EDD-LR 1989.2 37.4 0.8 4321.4 3464.9 25711.1 15
SR-LSTA-EDD 6004.5 103.6 1.7 4347.0 3447.2 64867.8 5
SR-LSTA-LST-LR-IR 2315.5 100.4 2.0 4309.4 3471.0 9718.7 7
SR-LSTA-LST-LR 1342.4 41.8 0.9 4319.9 3466.3 23023.0 15
SR-LSTA-LST 1182.6 49.0 1.0 4321.3 3464.9 51611.4 15
SR-LSTA-LSTU-LR-IR 2315.5 100.4 2.0 4309.4 3471.0 9984.0 7
SR-LSTA-LSTU-LR 1245.9 48.0 1.0 4321.0 3465.3 23452.8 15
SR-LSTA-LSTU 3007.3 145.8 2.9 4346.2 3448.0 59529.4 5
SR-LSTU-EDD-LR-IR 1726.2 100.3 2.0 4308.9 3471.6 8935.9 7
SR-LSTU-EDD-LR 1991.8 34.4 0.7 4320.6 3465.7 23434.2 15
SR-LSTU-EDD 1988.9 31.5 0.6 4321.5 3464.7 48796.4 15
SR-LSTU-EDD-IB 2749.3 42.0 0.7 4322.2 3464.1 11963.7 15
SR-LSTU-EDD-GC 12813.4 211.3 3.8 4283.5 3486.0 79402.9 2
SR-LSTU-LST-LR-IR 1726.2 100.3 2.0 4308.9 3471.6 8119.3 7
SR-LSTU-LST-LR 1243.4 46.3 0.9 4320.5 3465.8 21591.7 15
SR-LSTU-LST 1252.9 51.2 1.0 4320.6 3465.7 49548.6 15
SR-LSTU-LST-IB 1171.8 47.6 1.0 4320.5 3465.8 11662.7 15
SR-LSTU-LSTA-LR-IR 1726.2 100.3 2.0 4308.9 3471.6 8459.4 7
SR-LSTU-LSTA-LR 1620.6 80.7 1.6 4330.3 3459.1 22976.2 9
SR-LSTU-LSTA 2974.4 154.2 2.8 4347.2 3447.0 60943.7 5
SR-LSTU-LSTA-GC 14211.8 800.7 15.1 4341.0 3433.0 111923.7 1
SR-LWKR-GRD-LR 239946.5 1529.5 7.3 4271.0 3503.0 20675.1 1
SR-LWKR-LST-LR 32021.5 765.1 10.8 4321.0 3453.0 65232.8 1
SR-LWKR-MWKR-LR 129151.3 1821.7 9.6 4265.0 3509.0 18028.4 1
SR-MWKR-LST-LR 20511.5 1036.2 18.4 4316.0 3458.0 230725.2 1
PR-EDD-LST 2371.8 31.1 0.5 4321.7 3464.5 43088.8 15
PR-EDD-LST-IB 3493.3 36.1 0.6 4321.7 3464.6 12455.6 15
PR-EDD-LSTA 2110.3 30.2 0.5 4321.2 3465.1 45955.4 15
PR-EDD-LSTA-IB 2424.8 34.6 0.6 4321.5 3464.8 13036.3 15
PR-EDD-LSTU-RR 5454.9 81.8 1.3 4320.0 3459.2 13670.6 5
PR-EDD-LSTU-RR-IB 8162.0 89.6 1.4 4318.6 3460.6 4519.9 5
PR-EDD-LSTU 1777.4 26.0 0.5 4321.7 3464.6 44395.5 15
PR-EDD-LSTU-IB 2543.6 37.4 0.6 4321.9 3464.4 12490.3 15
PR-LST-LSTA 1023.1 40.8 0.9 4321.1 3465.1 47939.6 15
PR-LST-LSTA-IB 1233.8 41.8 0.9 4320.9 3465.4 12183.6 15
PR-LSTU-EDD-RR 5498.5 101.6 2.2 4321.0 3458.2 16056.7 5
PR-LSTU-EDD-RR-IB 5600.7 103.4 2.2 4318.0 3461.2 5592.1 5
PR-LSTU-EDD 1730.0 28.8 0.5 4322.2 3464.1 45722.9 15
PR-LSTU-EDD-IB 2244.1 29.1 0.6 4320.7 3465.6 13418.8 15
PR-LSTU-LST-RR 2912.1 148.4 2.9 4317.8 3461.4 14116.6 5
PR-LSTU-LST-RR-IB 3028.9 162.7 3.0 4316.6 3462.6 4849.0 5
PR-LSTU-LST 992.9 50.6 1.0 4320.4 3465.9 44580.4 15
PR-LSTU-LST-IB 1264.5 50.2 1.0 4320.9 3465.3 13266.4 15
P-EDD 15360.3 57.4 0.9 4319.2 3467.1 6997.2 15
P-LST 1178.1 35.3 0.9 4320.4 3465.9 7420.1 15
P-LSTA 1681.2 41.6 1.0 4320.7 3465.6 9439.9 15
P-LSTU 809.9 42.6 0.9 4321.5 3464.7 8105.1 15
S-EDD 16156.5 67.3 1.1 4320.2 3466.1 7250.3 15
S-EDD-IB 16944.3 76.3 1.2 4321.1 3465.2 2422.8 15
S-FCFS 31397.1 1119.6 11.6 4263.2 3519.5 3092.2 5
S-LST 1371.9 48.8 1.1 4320.3 3466.0 8323.9 15
S-LST-IB 1696.8 66.8 1.2 4319.0 3467.3 1786.7 15
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S-LSTA 1157.5 46.9 1.0 4320.5 3465.7 10038.1 15
S-LSTA-IB 1103.7 48.8 1.0 4320.9 3465.4 2364.2 15
S-LSTU 915.3 46.9 1.0 4320.3 3466.0 8572.7 16
S-LSTU-IB 1106.4 53.3 1.0 4321.1 3465.2 1354.8 15

Table C3: Results on Grid 1 with 1125 average daily arrivals which charge only at fixed rates of 9 kW

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA 66453.2 25014.0 99.8 3483.6 4295.6 126078.9 5
SR-EDD-LSTA-IB 64785.3 24759.6 99.6 3488.4 4290.8 13478.5 5
SR-EDD-LSTU 65028.6 24825.8 99.7 3489.0 4290.2 133900.4 5
SR-EDD-LSTU-IB 64102.5 24667.5 99.7 3491.8 4287.4 13584.6 5
PR-EDD-LSTU 65880.3 24955.9 99.5 3484.8 4294.4 140508.6 5
PR-EDD-LSTU-IB 64115.0 25162.9 99.8 3484.2 4295.0 11690.7 5
PR-LSTU-EDD 63489.9 24621.0 99.5 3494.4 4284.8 330432.5 5
PR-LSTU-EDD-IB 65084.4 24141.5 98.1 3512.8 4266.4 32186.8 5
PR-LSTU-LST 43284.6 24942.5 99.9 3515.2 4264.0 134910.3 5
PR-LSTU-LST-IB 46674.5 25170.5 99.9 3500.0 4279.2 12182.3 5
P-EDD 62744.7 24903.8 99.7 3480.8 4298.4 7059.3 5
P-LSTU 43284.6 24942.5 99.9 3515.2 4264.0 7426.3 5
S-EDD 62744.7 24903.8 99.7 3480.8 4298.4 26646.4 5
S-FCFS 74014.8 23945.1 74.7 3507.2 4272.0 10046.0 5

Table C4: Results on Grid 2 with 1125 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LST-LR 103614.3 48607.6 98.1 4580.0 3212.0 617568.0 3
SR-EDD-LSTA 108715.6 49577.8 97.4 4574.8 3221.2 1625104.9 6
SR-EDD-LSTA-IB 108989.9 49300.0 97.5 4586.8 3209.2 93757.6 6
SR-EDD-LSTU-LR 103661.3 48790.1 97.8 4510.1 3162.5 418294.7 8
SR-EDD-LSTU 107356.6 49685.0 97.4 4576.0 3220.0 1666256.3 6
SR-EDD-LSTU-IB 110206.9 49393.6 97.5 4588.0 3208.0 97720.9 6
PR-EDD-LSTU 111858.5 49240.1 98.5 4589.3 3206.7 1609724.3 6
PR-EDD-LSTU-IB 110028.2 49303.8 98.5 4589.8 3206.2 97267.7 6
PR-LSTU-EDD-IB 110210.6 49145.9 95.8 4588.8 3207.2 299015.4 6
PR-LSTU-LST-IB 87223.2 50440.3 96.6 4580.5 3215.5 252475.2 6
P-EDD 112715.1 49031.4 98.5 4600.0 3196.0 26086.1 6
P-LST 82746.0 50486.5 99.3 4567.8 3228.2 25576.4 6
P-LSTA 83936.2 50272.6 99.5 4582.5 3213.5 26675.6 6
P-LSTU 80155.5 49818.2 99.4 4587.7 3208.3 32733.7 6
S-EDD 109012.6 49584.5 97.4 4573.0 3223.0 245441.6 6
S-LST 84722.6 50196.0 98.3 4577.2 3218.8 250599.5 6
S-LSTA 84103.3 50228.8 98.4 4574.7 3221.3 249130.9 6
S-LSTU 80439.0 50663.8 98.9 4558.7 3241.3 257208.4 3
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Table C5: Results on Grid 3 with 1125 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA 49262.0 8030.2 71.2 3892.3 3886.9 286444.1 6
SR-EDD-LSTA-IB 48431.8 8293.4 71.5 3897.2 3882.0 30896.1 6
SR-EDD-LSTU 50821.7 8251.2 71.4 3893.4 3885.8 272129.6 5
SR-EDD-LSTU-IB 47937.8 7884.5 71.0 3909.4 3869.8 29920.6 5
PR-EDD-LSTU 48924.3 8453.1 72.3 3877.0 3902.2 272433.7 5
PR-EDD-LSTU-IB 51176.2 8237.5 71.9 3903.0 3876.2 28719.8 5
PR-LSTU-EDD 49145.0 8064.2 71.0 3889.2 3890.0 839378.0 5
PR-LSTU-EDD-IB 50508.2 8298.3 71.5 3886.6 3892.6 45399.7 5
PR-LSTU-LST 21633.4 8844.0 81.6 3864.2 3915.0 551593.4 5
PR-LSTU-LST-IB 22687.3 8878.8 80.4 3878.4 3900.8 27580.7 5
P-EDD 50319.1 8047.7 70.5 3915.0 3864.2 7202.9 5
P-LSTU 19899.0 8505.0 82.4 3886.4 3892.8 8994.0 5
S-EDD 53371.3 8397.6 70.4 3894.6 3884.6 31455.4 5
S-LST 22745.2 9189.5 81.6 3853.2 3926.0 31380.2 5
S-LSTU 18408.7 8607.6 82.8 3884.2 3895.0 33215.9 5

Table C6: Results on Grid 3 with 1500 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA 53649.9 9802.6 79.6 3927.7 6532.7 284237.8 3
SR-EDD-LSTA-IB 53307.6 9896.3 80.5 3943.4 6519.6 26725.7 5
SR-EDD-LSTU 55145.0 10085.6 80.8 3907.2 6550.0 293378.4 5
SR-EDD-LSTU-IB 55122.2 9479.2 79.5 3924.0 6533.2 28084.7 5
PR-EDD-LSTU 55020.7 9672.7 80.4 3933.6 6523.6 284391.4 5
PR-EDD-LSTU-IB 52916.4 9369.1 80.3 3933.4 6523.8 29272.5 5
PR-LSTU-EDD 56571.0 9771.7 79.7 3930.6 6526.6 734411.4 5
PR-LSTU-EDD-IB 55663.3 9651.4 78.6 3937.0 6520.2 50565.0 5
PR-LSTU-LST 21837.5 10372.6 89.1 3895.0 6562.2 599248.6 5
PR-LSTU-LST-IB 22217.4 10128.9 88.0 3881.0 6576.2 30648.4 5
P-EDD 54034.5 9372.4 78.2 3936.6 6520.6 7391.6 5
P-LSTU 19967.9 10300.4 90.5 3910.2 6547.0 9231.2 5
S-EDD 52610.1 9457.8 78.2 3937.2 6520.0 35210.2 5
S-LST 21237.8 10216.8 88.8 3898.2 6559.0 37136.0 5
S-LSTU 20381.4 10324.3 89.9 3891.0 6566.2 37238.7 5

Table C7: Results on Grid 4 with 1500 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA 66489.9 13656.6 66.5 5178.4 5278.8 443772.8 5
SR-EDD-LSTA-IB 66639.3 13699.7 66.9 5183.8 5273.4 35846.1 5
SR-EDD-LSTU 65582.4 13735.0 66.4 5171.8 5285.4 497858.2 5
SR-EDD-LSTU-IB 65182.6 13383.1 67.8 5175.6 5281.6 35718.3 5
PR-EDD-LSTU 65556.4 13455.7 67.8 5187.2 5270.0 505396.5 5
PR-EDD-LSTU-IB 63066.3 13651.5 67.9 5190.4 5266.8 35478.9 5
PR-LSTU-EDD 66529.8 13302.4 66.4 5202.8 5254.4 1172933.3 5
PR-LSTU-EDD-IB 62678.2 13570.5 67.8 5179.4 5277.8 87114.0 5
PR-LSTU-LST 35722.2 14107.3 72.5 5172.8 5284.4 1068309.4 5
PR-LSTU-LST-IB 37864.6 14200.4 74.4 5187.6 5269.6 51248.8 5
P-EDD 64884.1 13541.9 68.0 5179.6 5277.6 13852.0 5
P-LSTU 32909.2 14194.6 72.6 5184.0 5273.2 18082.4 5
S-EDD 64737.5 14053.0 67.5 5165.0 5292.2 56851.4 5
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Table C8: Results on Grid 4 with 3000 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LSTA 64296.8 17153.5 87.7 5133.0 15768.3 650835.2 4
SR-EDD-LSTA-IB 63096.8 17768.9 87.5 5072.2 15835.2 34567.2 10
SR-EDD-LSTU 66913.4 19044.9 88.2 4976.0 15942.0 630238.2 1
SR-EDD-LSTU-IB 62719.3 17428.1 87.0 5094.8 15812.6 35236.2 5
PR-EDD-LSTU 72220.0 17984.2 90.5 5061.0 15857.0 664469.8 1
PR-EDD-LSTU-IB 63376.2 17528.9 87.8 5092.0 15815.4 37325.3 5
PR-LSTU-EDD-IB 66031.8 18004.0 85.4 5064.8 15842.6 85350.1 5
PR-LSTU-LST-IB 38078.0 17701.1 92.2 5057.8 15849.6 54623.5 5
P-EDD 63871.7 17504.9 86.6 5072.8 15834.6 13077.1 5
P-LSTU 36385.1 18061.4 95.2 5053.0 15854.4 16271.9 5
S-EDD 66129.4 18275.6 87.2 5064.2 15843.2 70879.0 5

Table C9: Results on Grid 5 with 1125 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LST-LR 25269.8 231.7 3.4 5618.2 2161.0 68658.6 5
SR-EDD-LSTA-IB 26464.2 247.3 3.6 5619.6 2159.6 19475.6 5
SR-EDD-LSTU-LR 25269.8 231.7 3.4 5618.2 2161.0 66725.4 9
SR-EDD-LSTU-IB 26464.2 247.3 3.6 5619.6 2159.6 19078.8 5
SR-LST-EDD-LR 21166.6 171.9 4.0 5620.6 2158.6 57226.5 5
SR-LST-LSTU-LR 21166.6 171.9 4.0 5620.6 2158.6 58917.5 5
SR-LSTU-EDD-LR 12007.8 229.6 5.5 5619.4 2159.8 66585.2 5
PR-EDD-LSTU-IB 26010.8 212.0 3.3 5620.6 2158.6 16135.1 5
PR-LSTU-EDD-IB 13595.0 199.2 5.0 5621.8 2157.4 15046.5 5
PR-LSTU-LST-IB 13595.0 199.2 5.0 5621.8 2157.4 17219.9 5
P-EDD 23984.6 208.3 3.1 5619.0 2160.2 43313.4 5
P-LST 20663.4 174.8 3.9 5617.6 2161.6 42792.3 5
P-LSTA 28191.9 322.0 8.2 5608.3 2168.0 52559.9 3
P-LSTU 14243.2 230.0 5.6 5620.0 2159.2 37556.4 5
S-EDD 25269.8 231.7 3.4 5618.2 2161.0 67306.5 5
S-LST 21166.6 171.9 4.0 5620.6 2158.6 69965.1 5
S-LSTU 14919.5 377.1 8.9 5587.7 2189.7 74100.1 3

Table C10: Results on Grid 5 with 1500 average daily arrivals

Strategy max delay mean delay % delayed served non-served runtime runs
SR-EDD-LST-LR 45882.8 2854.6 33.2 5830.0 4627.2 144483.1 5
SR-EDD-LSTU-LR 45882.8 2854.6 33.2 5830.0 4627.2 146922.4 10
SR-LST-EDD-LR 38545.1 3719.8 49.7 5765.2 4692.0 121992.2 5
SR-LST-LSTU-LR 38545.1 3719.8 49.7 5765.2 4692.0 106153.2 5
P-EDD 44319.4 2836.0 33.1 5830.4 4626.8 55813.4 5
P-LST 33945.3 3565.5 49.2 5782.6 4674.6 54993.9 5
P-LSTA 33530.8 3818.5 53.7 5764.8 4692.4 53805.3 5
P-LSTU 25084.3 3654.3 52.8 5786.6 4670.6 50765.8 5
S-EDD 45882.8 2854.6 33.2 5830.0 4627.2 142564.6 5
S-LST 38545.1 3719.8 49.7 5765.2 4692.0 144077.7 5
S-LSTU 26930.0 4165.1 64.6 5788.0 4656.0 108551.1 1
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