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ANALYSIS OF CHILDHOOD TRAUMA AND EPIGENETIC AGE ACCELERATION SHOWED 
NO APPARENT LINK OR SEX SPECIFIC EFFECTS IN ADOLESCENTS 
Michelle de Groot, Kristel R. van Eijk, Stefanos Mastrotheodoros, Susan Branje, Marco P. Boks 
 
Research indicates that adverse childhood events are associated with accelerated biological aging, which is linked to negative effects on mortality 
and an increased susceptibility to psychiatric diseases. Additionally, differences in pace of biological aging between men and women have been 
reported.  A widely used measure for biological age is epigenetic age, for which so-called epigenetic clocks are developed.  We analyzed a 
dataset of 500 adolescents and assessed childhood trauma using the Childhood Trauma Questionnaire. Epigenetic age acceleration was calculated 
using five different commonly used epigenetic clocks. Our results revealed no significant associations between childhood trauma and epigenetic 
age acceleration, and no sex specific effect. Moreover, we examined the role of genetic risk for childhood trauma on epigenetic age acceleration. 
Similarly, this analysis yielded no significant results or detect any notable sex specific effects. These findings suggest that there may not be a 
significant correlation between childhood trauma and epigenetic age acceleration in adolescents that experienced moderate childhood trauma 
exposure. This paper also highlights the need to incorporate larger sample sizes and consider potential sex-specific effects to comprehend these 
interactions and their implications for overall health and mortality. 
 
 
I. INTRODUCTION 
 

Childhood trauma, characterized by experiences of 
neglect, abuse or maltreatment during young age and 
adolescence, is associated with poorer health outcomes in 
later life. Several studies showed that adverse childhood 
events increase the risk for psychiatric and late onset 
diseases1–3. Moreover, the effects of such trauma extend 
to the molecular level, where we find a relation with 
epigenetic age – a metric based on DNA methylation 
patterns4,5.  

DNA methylation plays an important role in the 
regulation of gene expression, impacting cellular 
processes that underpin the development of various 
health conditions. This epigenetic alteration involves the 
addition or removal of a methyl group to the cytosine base 
in DNA, often occurring at specific sites known as CpG 
sites. The methylation state of CpG sites is influenced by 
factors such as genetics, biological sex and age, and 
environmental variables, including childhood 
experiences6–10. These epigenetic signatures lay the 
foundation for a fascinating biomarker in the field of 
aging: epigenetic clocks.  

Epigenetic clocks are algorithms that estimate an 
individual's biological age based on DNA methylation 
patterns11,12. As these patterns change over time, 
researchers have leveraged them to train algorithms that 
predict an individual's age. This calculated epigenetic age 
can sometimes deviate significantly from the person's 
chronological age, indicating potential disparities 
between the pace of biological aging and the passage of 
time. The concept of epigenetic clocks is proposed as 
potential marker of overall health and aging13–16. 

Childhood trauma, therefore, has far-reaching 
consequences, affecting not only psychological well-
being but also leaving a lasting impact on the molecular 
mechanisms that underlie the aging process. A well 
validated and widely used method to quantify childhood 
trauma is the Childhood Trauma Questionnaire (CTQ), a 

70-item self-administered inventory on a 5-point Likert 
scale from 1 (never true) to 5 (very often true)17. To 
reduce burden on the participants, the developers created 
a shortened version with 28 items from the questionnaire, 
which allows for a more rapid screening of no more than 
5 minutes18. This shortened CTQ provides an accurate 
measure for overall childhood trauma and subtypes 
(emotional abuse, emotional neglect, physical abuse, 
physical neglect, and sexual abuse)19,20. Relatedly, 
childhood maltreatment has been found to be modestly 
heritable, exhibiting an explained phenotypic variation of 
approximately 8%, which aligns with the SNP heritability 
levels seen in depression21,22. Employing genetic risk for 
childhood trauma as a determinant enables us to assess 
the role of an individual's genetic predisposition in their 
risk for childhood trauma on epigenetic age. By 
examining the relation between genetic susceptibility and 
epigenetic changes, we can gain a better understanding of 
how genetic factors may contribute to the acceleration or 
deceleration of the aging process in in the context of early 
life experiences.  Additionally, recent studies show that 
the links between trauma and epigenetic age might be 
moderated by sex, underscoring the need to include 
biological sex into the analyses23,24.  

Understanding the complexities of these 
interactions is crucial for gaining knowledge on the 
adverse effects of childhood trauma, develop 
interventions to minimize the risk of childhood trauma, 
and the possible impact of epigenetic aging for 
psychiatric care. In this paper, we investigate the 
interplay between childhood trauma, biological sex, and 
genetic influences on epigenetic age.  
 
II. METHODS  
Participants 

The participants were all from the longitudinal 
Research on Adolescent Development And Relationship 
(RADAR) study as previously described25. The dataset 
comprised 497 participants from the RADAR Young 
cohort and 244 participants from the RADAR Old cohort. 
In both cohorts, participants are 12 years old at the start 
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of the study, with the first wave being in 2001 and 2005 
for RADAR Old and RADAR Young respectively. Self-
report assessments of participants are included in the 
study. The study involved two moments of saliva 
sampling for genotyping: the first one in 2009 (T1), 
exclusively involving participants from the Young 
cohort; and the subsequent batch in 2019 (T2), where 
participants from both the Young and Old cohorts were 
sampled. Participants in both cohorts were recruited in 
the Netherlands. For more details on the participants and 
the timeline of the study, see Figure 1. 
 
Childhood trauma 

Childhood trauma was assessed using the 
Childhood Trauma Questionnaire (CTQ)17 of which 
validity of the clinical items (including Dutch translation) 
has been demonstrated18,20. This Questionnaire is a self-
report scale with 28 items including emotional neglect, 
physical neglect, emotional abuse, physical abuse, and 
sexual abuse. Responses from participants range from 1 
(never true) to 5 (true very often) on each item. We used 
the mean of the total score to assess overall trauma 
exposure. 
 
DNA Methylation and Epigenetic Age Estimation 

DNA was derived from saliva samples using the 
Oragene DNA kit (DNA Genotek, Ottawa, ON, Canada) 
followed by bisulfite conversion using ZIMO kits. DNA 
methylation was measured at two time points, specifically 
in 2012 (T1) and 2020 (T2), utilizing the Illumina 450K 
and Illumina EPIC bead chips (Illumina, San Diego, CA) 
respectively. Using the minfi26 and meffil27 packages in R 
version 4.228 quality control was performed on the DNA 
methylation data. Initial quality control steps for samples 
included filtering out samples with mean detection p 
value > 0.01 and instances of discordance between 
reported and calculated sex. As suggested by Calen P. 

Ryan12, no further quality control was done on the dataset 
before calculating epigenetic age. The following quality 
control steps were applied for future downstream 
analyses of the dataset. Quantile normalization was done 
and beads failing one or more quality control criteria were 
removed. These criteria included a detection p value > 
0.01, located on the X or Y chromosome, known genetic 
variation, and susceptibility to cross-reactivity on both 
the 450K bead chips29 and EPIC array chips30. 
Additionally, cell-type composition values for saliva 
were estimated using saliva gse48472 reference from the 
meffil package. Surrogate variable analysis by meffil 
calculated factors contributing to variation. These factors 
were compared to possible covariates in order to identify 
possible confounders. To calculate epigenetic age of the 
participants, we employed principal component (PC) 
adjusted algorithms, which have been demonstrated to 
improve their performance31. The analysis involved the 
examination of five different PC-corrected epigenetic 
clocks from the Morgan Levine Lab 
(https://github.com/MorganLevineLab/PC-Clocks), 
namely Horvath1, Horvath2, Hannum, PhenoAge and 
GrimAge. Each of these clocks relies on different CpG 
sites – and therefore representing a distinct measure of 
epigenetic aging. A commonly used measure for 
evaluating epigenetic age is epigenetic age acceleration 
(EAA), which was obtained from the residuals of 
regressing epigenetic age against chronological age. 
While calculating EAA, we adjusted for cell type 
proportions (Bcell, Buccal, CD4T, CD8T, Gran, Mono). 
 
Genotype 

Additionally, we assessed the role of genetic risk 
for childhood trauma on epigenetic age acceleration. We 
used genetic data of the RADAR participants, from the 
datasets on different timepoints of saliva sampling, using 
the Affymetrix SNP Array and Infinium SNP Array for 

2001 2019

Start RADAR Old W1
N = 244, 54.1% girls 

2005

Start RADAR Young W1 
N = 497, 43.1% girls

2009 2016

RADAR Old 
CTQ W12

N= 212, 54.2% girls

RADAR Old T2/W13 
saliva sampling

N = 107, 57.0% girls

RADAR Young T1/W5 
saliva sampling 

N = 397, 43.3% girls

RADAR Young T2/W10 
saliva sampling

N = 236, 47.0% girls

RADAR Young 
CTQ W9 

N = 365, 44.7% girls

Figure 1: Timeline of the Research on Adolescent Development And Relationship (RADAR) study. The figure depicts the study's timeline, 
including the initiation of the study for both RADAR Old and RADAR Young cohorts, the moments of saliva sampling for genotyping (T1 and T2), 
and the administration of the Childhood Trauma Questionnaire (CTQ) 

https://github.com/MorganLevineLab/PC-Clocks
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T1 and T2 respectively. Genetic data from T1 and T2 was 
cleaned separately in several quality control (QC) steps 
using the PLINK software version 1.932,33. An initial QC 
removed low quality variants, setting thresholds at a call 
rate of over 95%, a minor allele frequency exceeding 
99%, and a Hardy-Weinberg equilibrium p-value greater 
than 1e-5. Initial sample QC included assessment of 
comparing reported and estimated sex, maintaining a call 
rate above 95%, keeping samples within a range of ±3 
standard deviations from the mean heterozygosity, 
removing related samples through identity by descent 
(IBD) with a threshold of 0.1, and identifying and 
excluding ethnic outliers based on visual inspection. 
Additionally, related samples based on IBD between T1 
and T2 were removed. Genotype data was imputed 
through the TOPMed Imputation Server34 using the 
TOPMed r2 reference panel (1.0.0). Principal 
components were computed using the plink software to 
assess batch effects. Lastly, polygenic risk scores (PRS) 
were computed by PRSice version 2.3.535 based on 
summary statistics from a genome-wide association study 
(N=185 414) on childhood maltreatment by Warrier et 
al22. 

  
Statistical analysis 

Our primary aim was to explore how childhood 
trauma, biological sex, and genetic risk for childhood 
trauma impact epigenetic age. To achieve this, we utilized 
multiple linear regression models. Model 1 considered 
the influence of CTQ value and sex with EAA as outcome 
(EAA ~ CTQ + Sex). Model 2 assessed the relationship 
between EAA and PRS for childhood trauma, while also 
accounting for sex (EAA ~ PRS_CT + Sex). Statistical 
analyses were performed using R version 4.228. 
 
III. RESULTS 
Preliminary data analysis 
A total of 788 samples passed DNA methylation quality 
control. Chronological age is crucial for calculating 
epigenetic age acceleration, so we excluded samples 
without reported age which resulted in 722 remaining 

samples. As our study design is cross-sectional, 
participants with repeated measures were only included 
once. Many participants from the Young cohort were 
younger than 18 at timepoint 1, and since the CTQ refers 
to experiences up to this age, we prioritized data from 
timepoint 2 when available. The final dataset contains 
511 samples from both the Young (N=408) and Old 
(N=103) cohort.  Values from the childhood trauma 
questionnaire (CTQ) range between 1 and 2.76 (Table 1). 
With a standard deviation of 0.03, our cohort has a 
moderate spread of polygenic risk for childhood trauma 
(CT). Our dataset is almost evenly divided by biological 
sex (46.8% girls, 53.2% boys). 

 
Epigenetic age analysis 

We investigated epigenetic age using the 
principal component (PC) corrected clocks for 
Horvath1, Horvath2, Hannum, PhenoAge and GrimAge. 
Within our study, age discrepancies varied considerably 
across different clocks (Figure 2). Epigenetic ages seem 
to be overestimated in all clocks. However, it is worth 
highlighting that both Horvath epigenetic clocks stand 
out with the least deviation, and therefore providing the 
most accuracy in predicting chronological age. These 
variations in age estimation directly impact the 
calculation of epigenetic age acceleration (EAA). 
Discrepancies, whether positive or negative, result in 

 
Table 1: Dataset summary: This table provides a description of the final 
dataset. It presents statistics for CT Questionnaire, polygenic risk scores 
(PRS) related to childhood trauma, and the sex distribution within the 
cohort. 
Variables Total (N=511) 
 N Mean SD Min Max 
CT Questionnaire 449 1.33 0.31 1.00 2.76 
PRS CT 446 0.13 0.03 0.01 0.19 
Sex      
   Girls 239 46.77%    
   Boys 272 53.22%    

CT Childhood Trauma, PRS Polygenic Risk Score 

Figure 2: Age discrepancy between biological and epigenetic age per 
clock. Almost all epigenetic ages are overestimated, indicated by a 
positive difference. PCHorvath1 and PCHorvath2 show the least 
discrepancies. 
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increased or decreased EAA values. To compute EAA, 
we regressed EA on chronological age and corrected for 
cell-type composition, which included Bcell, Buccal, 
CD4T, CD8T, Gran, and Mono. The residuals from these 
linear models were used to quantify EAA for each clock 
(Table 2). 

Among the clocks, EAA values were consistently 
centered around 0, with standard deviations ranging from 
1.69 to 2.84. The most variation is seen in PhenoAge 
while GrimAge showed the least deviation. As shown in 
Figure 3, EAA for both Horvath clocks are positively 
correlated with CTQ and PRS for CT, while the other 3 
clocks (PCHannum, PCPhenoAge and PCGrimAge) 
correlate negatively with these variables.  

 

Association Between Traumatic Childhood 
Experiences and Epigenetic Age Acceleration 

By using multiple linear regression analysis, we 
examined the associations between childhood trauma, as 
assessed by the Childhood Trauma Questionnaire (CTQ), 
and epigenetic age acceleration (EAA) across various 
epigenetic clocks (Table 3). For examining the validity of 
the model, we examined the residuals plot where we 
confirmed linearity and variance of errors 
(Supplementary Figure 4). Additionally, the QQ plots 
showed normality of the errors by following the expected 
diagonal line.  

Although not statistically significant, the results 
revealed distinct associations between CTQ value and 
EAA. The analysis showed a positive association of EAA 
calculated by the PCHorvath1 clock and CTQ (Beta = 
0.196 ± 0.443, P = 0.647), indicating that higher CTQ 
scores were linked to increased EAA. Conversely, 
PCHorvath2 (Beta = -0.289 ± 0.421, P = 0.421), 
PCHannum (Beta = -0.242 ± 0.337, P= 0.337), 
PCPhenoAge (Beta = -0.255 ± 0.366, P = 0.366) and 
PCGrimAge (Beta = -0.216 ± 0.235, P = 0.235) all 
displayed negative associations with CTQ, indicating that 
higher CTQ scores were linked with decreased EAA. 
Additionally, sex showed to be significantly associated 
with EAA for PCHorvath2, PCPhenoAge and 
PCGrimAge. 

 
Polygenic Risk Score for Childhood Trauma (PRS 
CT) as predictor of Epigenetic Age Acceleration 

Given the genetic basis of childhood trauma, we  

Table 2: Epigenetic Age Acceleration Summary. This table provides a 
comprehensive summary of age acceleration metrics, including mean 
values, standard deviations, minimum and maximum values, for the 
PC-corrected epigenetic clocks. Epigenetic age acceleration is 
adjusted for cell type compositions (EA ~ Chronological age + Bcell + 
Buccal + CD4T + CD8T + Gran +Mono) 

Variables Total (N=511) 
 N Mean SD Min Max 
PCHorvath1  511 0.00 2.81 -7.24 9.13 
PCHorvath2  511 0.00 2.84 -10.04 11.47 
PCHannum  511 0.00 2.22 -7.28 7.92 
PCGrimage  511 0.00 1.69 -4.71 6.22 
PCPhenoAge  511 0.00 2.59 -8.52 9.84 
 

Figure 3: Pearson correlation between CTQ value, PRS for childhood trauma and EAA for the different clocks. Left: Correlation indicated by 
color. Significant correlations are indicated with one or more asterisks where ***: p < 0.001, **: p < 0.01, *: p < 0.05. Right: Correlation values 
range between -1 and 1. 
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assessed the predictive capacity of the polygenic 
risk scores (PRS) for childhood trauma (CT) on 
epigenetic age acceleration (EAA). To obtain the PRS for 
CT, we used the best-fit PRS as calculated by PRSice. 
This best-fit PRS contained the top 7 Single Nucleotide 
Polymorphisms (SNPs) from the CT study, which 
included the genome wide significant SNPs (P = 5e-8).  
The model we used regressed EAA on the CT PRS across 
the different epigenetic clocks while taking biological sex 
into account (Table 4). These regression models also 
showed variance, linearity, and normality of errors, as 
evidenced by the regression and QQ plots 
(Supplementary Figure 5). 

The results revealed both positive and negative 
associations, albeit not statistically significant. Most 
clocks show a negative beta coefficient suggesting a 
potential role of genetic predisposition to childhood 
trauma in reducing EAA while the positive beta value for 
PCGrimAge (Beta = 1.119 ± 2.486, P = 0.653) value 
suggests an increased EAA in this relation. Similar to the 
model on CTQ, we find significant associations between 
EAA and sex for PCPhenoAge and PCGrimAge. 
 
 
 

Sex differences 
We performed a sex-specific analysis of the 

relationship between epigenetic age acceleration (EAA) 
and both childhood trauma (CTQ) and polygenic risk 
scores for childhood trauma (PRS CT) across different 
epigenetic clocks (Table 5). Figure 4 shows scatterplots 
for CTQ and EAA in the top row and PRS and EAA in 
the bottom row, with separate regression lines for boys 
and girls. Although not significant, the results 
demonstrated varying associations between EAA and 
CTQ or PRS CT for different clocks, with some 
distinctions. In the context of CTQ, the clocks 
PCHorvath1 and PCHannum showed inconsistent results 
for boys and girls, with differing beta coefficients 
suggesting potential sex-specific effects. Conversely, the 
clocks PCHorvath2, PCPhenoAge, and PCGrimAge 
displayed consistent patterns for both sexes in relation to 
CTQ. These inconsistencies were also visible regarding 
PRS CT. We saw variability in the beta coefficients for 
boys and girls in the PCHorvath1, PCHorvath2, 
PCHannum and PCGrimage clocks while PCPhenoAge 
demonstrated consistent associations for both sexes. 
Additionally, we tested sex as interaction term. None of 
the interactions between sex and CTQ or PRS CT 
significantly influenced the associations.  

Table 3: Associations between Childhood Trauma (CT) and Epigenetic Age Acceleration (EAA). Results of multiple linear regression analysis across 
various epigenetic clocks. 

Model: EAA ~ CTQ + Sex  
EAA Beta ± SD (P) Beta ± SD (P) R adjusted 
 CTQ SexM Model 
PCHorvath1 0.196 ± 0.443 (0.647) -0.326 ± 0.265 (0.22) -0.001 
PCHorvath2 -0.289 ± 0.421 (0.493) -0.745 ± 0.262 (0.005) 0.015 
PCHannum -0.242 ± 0.337 (0.472) -0.368 ± 0.209 (0.08) 0.004 
PCPhenoAge -0.255 ± 0.366 (0.487) -1.674 ± 0.228 (9.72e-13) 0.105 
PCGrimAge -0.216 ± 0.235 (0.359) 1.211 ± 0.146 (1.407e-15) 0.131 

EEA Epigenetic Age Acceleration, CTQ Childhood Trauma Questionnaire, SD Standard Deviation 
 

Table 4: Associations between Polygenic Risk Score (PRS) for Childhood Trauma (CT) and Epigenetic Age Acceleration (EAA). Results of multiple 
linear regression analysis across various epigenetic clocks. 
 

Model: EAA ~ PRS_CT + Sex  
EAA Beta ± SD (P) Beta ± SD (P) R adjusted 
 PRS_CT SexM Model 
PCHorvath1 -2.258 ± 4.195 (0.591) -0.064 ± 0.26 (0.806) -0.004 
PCHorvath2 -0.863 ± 4.189 (0.837) -0.441 ± 0.26 (0.091) 0.002 
PCHannum -1.182 ± 3.322 (0.722) -0.277 ± 0.206 (0.181) 0.000 
PCPhenoAge -2.77 ± 3.626 (0.445) -1.728 ± 0.225 (1.073e-13) 0.116 
PCGrimAge 1.119 ± 2.486 (0.653) 1.085 ± 0.154 (7.927e-12) 0.098 

EEA Epigenetic Age Acceleration, PRS Polygenic Risk Score, SD Standard Deviation 
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Table 5: Analysis of EAA for CTQ and PRS CT stratified by sex.  

Model: EAA ~ CTQ / EAA ~ PRS_CT   
EAA Beta ± SD (P) Beta ± SD (P) Beta ± SD (P)  

Boys  Girls Sex interaction (boys) 
PCHorvath1 

  
 

    CTQ  -0.49 ± 0.63 (0.44) 0.80 ± 0.57 (0.17) -1.29 ± 0.85 (0.13) 
    PRS CT -7.14 ± 6.17 (0.25) 2.37 ± 5.68 (0.68) -9.52 ± 8.39 (0.26) 
PCHorvath2 

  
 

    CTQ  -0.50 ± 0.63 (0.42) -0.10 ± 0.57 (0.86) -0.40 ± 0.84 (0.64) 
    PRS CT -5.41 ± 6.04 (0.37) 3.45 ± 5.81 (0.55) -8.86 ± 8.38 (0.29) 
PCHannum 

  
 

    CTQ  -0.71 ± 0.52 (0.17) 0.17 ± 0.43 (0.69) -0.89 ± 0.68 (0.19) 
    PRS CT -2.94 ± 4.95 (0.55) 0.49 ± 4.43 (0.91) -3.43 ± 6.65 (0.61) 
PCPhenoAge 

  
 

    CTQ  -0.55 ± 0.54 (0.31) 0.01 ± 0.50 (0.99) -0.56 ± 0.73 (0.45) 
    PRS CT -0.60 ± 4.99 (0.9) -4.82 ± 5.29 (0.36) 4.22 ± 7.26 (0.56) 
PCGrimAge 

  
 

    CTQ  -0.15 ± 0.34 (0.65) -0.27 ± 0.33 (0.41) 0.12 ± 0.47 (0.80) 
     PRS CT 3.05 ± 3.53 (0.39) -0.71 ± 3.51 (0.84) 3.76 ± 4.98 (0.45) 

EEA Epigenetic Age Acceleration, PRS Polygenic Risk Score, CT Childhood Trauma, SD Standard Deviation 

Figure 4: Scatterplots illustrating the associations between Childhood Trauma Questionnaire (CTQ) and epigenetic age acceleration (EAA) in the top 
row and between Polygenic Risk Score for Childhood Trauma (PRS CT) and EAA in the bottom row. Each grid includes regression lines for boys and 
girls, showing the variations in these relationships across different epigenetic clocks. 
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IV. DISCUSSION 
This study investigated the interplay between 

childhood trauma, epigenetic age acceleration (EAA), 
and biological sex. We used five distinct principal 
component (PC) corrected epigenetic clocks, namely 
Horvath1, Horvath2, Hannum, PhenoAge, and GrimAge, 
each reliant on different CpG sites, thus representing 
varied measures of epigenetic aging. Although suggestive 
patterns were revealed, it is important to note the lack of 
statistically significant findings across the epigenetic 
clocks. Moreover, the analysis of polygenic risk scores 
(PRS) for childhood trauma found no significant 
associations for all clocks. A sex-specific analysis of the 
relation between EAA and childhood trauma or genetic 
risk for childhood trauma lacked the support of 
statistically significant results for sex disparities. While 
previous studies have repeatedly reported an association 
of childhood trauma and accelerated epigenetic 
aging23,36,37, our results have not replicated this pattern. 
One potential explanation for this could be the relatively 
low proportion of participants who reported high levels 
childhood trauma in combination with our moderate 
sample size. 

As the different epigenetic clocks focus on different 
underlying processes, they may present distinct effects in 
relation to childhood trauma. Previous research has 
established GrimAge as most reliable epigenetic 
predictor of mortality risk38, yet it has showed 
inconsistent associations with stress. Recent studies 
indicate an association between accelerated aging in 
GrimAge due to lifetime psychosocial stress, while others 
find no significant correlation39. Another study on early 
life adversity and age acceleration using GrimAge 
showed no significant association with physical or sexual 
childhood abuse but found accelerated aging of 2.04 
years in relation to childhood poverty40. Their mediation 
analysis estimated that smoking - one of the factors 
associated with GrimAge DNA methylation sites - 
explained over 50% of the accelerated epigenetic aging 
for participants who experienced childhood poverty. 
Moreover, a study by Hamlet EJ. et al linked accelerated 
GrimAge (but not Horvath, Hannum or PhenoAge) to 
early life adversity. In line with this, another study by 
Joshi D. et al showed positive EAA for GrimAge with 
adverse childhood experiences, while this link was not 
found for PhenoAge EAA5. The specific association of 
GrimAge with accelerated epigenetic aging related to 
childhood adversity aligns the trend in our findings from 
the PRS models. This indicates genetic risk for childhood 
trauma can lead to accelerated biological aging in relation 
to GrimAge, which assesses the risk of mortality.  

Several studies with epigenetic clocks have indicated 
diverging aging between men and women41–43. The 

observed distinctions are thought to be influenced by 
environmental factors and life-style choices. In a study on 
sex differences in lifespan, the male participants tended 
to be biologically older, but they showed unhealthier life 
habits as well41. Furthermore, it is well-documented that 
responses to stress can differ between individuals of 
different sexes44,45. However, the current research lacks 
studies on sex specific epigenetic aging in relation to 
childhood trauma. Our study, although lacking significant 
sex-specific effects, contribute to this field and emphasize 
the need for further investigations into the interplay 
between sex-specific responses to childhood experiences 
and the epigenetic aging process. 

Limitations of the study include the need to account 
for potential confounders like smoking, BMI, and other 
health-related variables. Age acceleration has been 
shown to be associated with sex15,46, smoking status15,47, 
BMI11,15 and cell type proportions48

.  Including these 
factors in the analysis can lead to different results and 
highlights the importance of carefully selecting the 
covariates of your model. This was also concluded in a 
paper by Protsenko et al., where they encouraged 
researchers to correct for tobacco, alcohol use, physical 
activity, race, sex, adult socioeconomic status, medical 
comorbidity, and blood cell composition39. Moreover, 
while this study focusses on childhood trauma, the trauma 
we measured focused on diverse forms, including items 
focusing on emotional neglect, physical neglect, 
emotional abuse, physical abuse, and sexual abuse, which 
may impact epigenetic aging differently. The SNP 
heritability for childhood trauma showed to be rather 
modest, with an explained phenotypic variance of around 
8%, which means non-genetic factors cannot be 
ignored22. Additionally, we used saliva samples for DNA 
methylation extraction, which can lead to different results 
in comparison to other tissues, such as blood samples. 
Further studies may also benefit from the use of a new 
third-generation clock in the analysis, namely the 
DundinPace clock, which has also been associated with 
early life stress40. 

Our study also provided some strengths, with the first 
one being using PC corrected clocks, which have been 
shown to result in more accurate and reliable epigenetic 
age predictions. Additionally, we used polygenic risk for 
childhood maltreatment as a distinct measure for 
epigenetic aging and delved into the sex specific effects 
of epigenetic aging in relation to childhood trauma. 

 
V. CONCLUSIONS 

This study aimed to gain knowledge on the overall 
and sex specific effects of childhood trauma and genetic 
predisposition of childhood trauma on epigenetic aging. 
Employing 5 different principal component corrected 
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epigenetic clocks (Horvath1, Horvath2, Hannum, 
PhenoAge and GrimAge) resulted in no significant 
associations. Additionally, we found no significant 
results in the sex-specific analyses. Further studies are 
required to identify these interactions and their potential 
implications for overall health and mortality. 
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VII. SUPPLEMENTARY DATA 
 

  

Supplementary Figure 1: Boxplot Childhood Trauma Questionnaire (CTQ) values total and per category of the 450 participants included 
in the analysis who filled in the questionnaire. The plot shows low values for sexual and physical abuse, while a lot of participants had a 
high score for denial validity. 

Supplementary Figure 2: Pearson correlation for Epigenetic Age (EA) for the different clocks (PCHorvath1, PCHorvath2, PCHannum, 
PCPhenoAge and PCGrimAge) with Childhood trauma questionnaire (CTQ) values, Polygenic Risk Score (PRS) for childhood trauma, sex 
and cell type compositions. The plot shows high correlation values between the EA from different clocks and EA values with cell type 
composition values.  
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Supplementary Figure 3: Boxplot of Epigenetic Age Acceleration (EAA) per epigenetic clock. The plot is grouped by sex and means are 
compared using Wilcoxon test. EAA differs significantly between boys and girls for the PCHorvath2, PCPhenoAge and PCGrimAge clocks when 
maintaining a p value significance level of 0.05. Notably, PCPhenoAge shows a higher EAA for girls while PCGrimAge indicates a lower EAA 
for girls. 
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Supplementary Figure 4: Validation of the linear regression model of Epigenetic Age Acceleration (EAA) with Childhood Trauma 
Questionnaire (CTQ) values and Sex as predictors. The five rows represent the five different clocks (PCHorvath1, PCHorvath2, 
PCHannum, PCPhenoAge, and PCGrimAge) indicating EAA values. (A) Scatterplot with residuals versus fitted values. Residuals are 
evenly scattered around 0, signifying the model’s satisfactory variance of errors and linearity. The distinct groupings in the fitted values 
corresponding to different sexes suggest the substantial role of sex in predicting EAA. (B) QQ plot illustrating the normality of errors, 
as indicated by the expected vertical line for all five clocks. 
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Supplementary Figure 5: Validation of the linear regression model of Epigenetic Age Acceleration (EAA) with Polygenic Risk Scores 
(PRS) for childhood trauma and Sex as predictors. The five rows represent the five different clocks (PCHorvath1, PCHorvath2, 
PCHannum, PCPhenoAge, and PCGrimAge) indicating EAA values. (A) Scatterplot with residuals versus fitted values. Residuals are 
evenly scattered around 0, signifying the model’s satisfactory variance of errors and linearity. The distinct groupings of the fitted 
values in all clocks except for PCHorvath1 corresponding to different sexes suggest the substantial role of sex in predicting EAA. (B) 
QQ plot illustrating the normality of errors, as indicated by the expected vertical line for all five clocks. 


