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Abstract
Identifying anomalous observations in data has become more important with the availability of large data

sets. Where statisticians were primarily interested in filtering the data for anomalies, in modern
applications the anomalies themselves are of interest as well: they could indicate security breaks, potential
disease outbreaks or fraudulent transactions. Many anomaly detection algorithms have been developed for
this purpose. These algorithms assign an anomaly score to every observation, which increase in the level of
anomalousness. However, to formulate conclusive answers to the question which observations are anomalies,
thresholding the anomaly scores is necessary. The state-of-the-art method is to select a certain number of
observations, which is often motivated by the capacity of processing all selected anomalies. In this thesis,
mixture models are applied to determine a threshold in a data-driven way. Being a popular clustering

method, mixture models of different compositions are tested on benchmark anomaly detection data sets as
well as on a real-world financial data set. In addition, we study the stability of the thresholds through

time. We show that mixture models can be applied as truly unsupervised thresholding methods, matching
the performance of the state-of-the-art method, but are highly dependent on the exact form of the mixture.
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1 Background

1.1 Introducing Anomalies

The term “anomaly” has many synonyms in the literature, of which “outlier” may be the best known. In
this thesis, the two terms will be used interchangeably. The definition of an anomaly or outlier is not set in
stone. In fact, numerous scientists have formed their own definitions (table 1 in [2]), specified for the field of
science they are working in. One of the earliest and most cited definitions of an anomaly is that of Hawkins
[10], who defined an anomaly as follows.

“An outlier is an observation which deviates so much from other observations as to arouse suspi-
cions that it was generated by a different mechanism.”

Although all definitions deviate slightly, the general idea is that anomalies are data points that are signifi-
cantly dissimilar or deviating in comparison with other data points within the same data set. Figure 1 gives
an illustration of anomalies in a two-dimensional data set. Besides one big cluster of observations close to
each other, two observations (−2.5, 3.5) and (6, 0) lie relatively far from other observations and are seen as
outliers.
Statisticians were already interested in identifying anomalies in data sets since the end of the 19th century
([7]). The interest for identifying anomalies has only increased with the development of fields as machine
learning and AI, as anomalies can play a disrupting role in the estimation of models. This is reflected in the
definition of Hawkins: in machine learning, one tries to model the mechanism(s) that generated the data
set at hand. As anomalies are suspective of being generated by a different mechanism, the estimation of the
parameters of a machine learning model can be substantially distorted when these anomalies are included
([16]).
Besides the more theoretical motivation, identifying anomalies also has many real-world applications. In
financial data, anomalies are associated with fraudulent customers, market risks or business opportunities.
In communication between computers, anomalies might indicate intrusions or security breaks. Detection of
potential disease outbreaks is an example of anomaly detection applied in public health. Hence, there are
numerous practical examples which justify the interest in the ability to detect anomalies.

Figure 1: Illustration of anomalies in a two dimensional data set.
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1.2 Taxonomy of Anomaly Detection Algorithms

Identifying anomalies in a data set as in Figure 1 can be done visually. This is, however, infeasible for data
sets with many dimensions. To detect anomalies in such high-dimensional data sets many anomaly detection
algorithms (ADAs) have been developed ([4], [9]) and, undoubtedly, many more will be published in the
coming years. The Python module PyOD ([21]) contains many benchmark ADAs as well as complex and
innovative algorithms to identify anomalies. The documentation of this package therefore gives also a nice
overview of all available ADAs, see [22]. The module has, as well as many surveys on anomaly detection,
created its own taxonomy to characterise ADAs. This thesis follows mostly the line of the PyOD taxonomy,
but characterises ADAs by the way of learning, the formalisation of dissimilarity and whether or not an
algorithm is (non)parametric.

Way of Learning

The way of learning of an ADA mostly depends on the availability of labeled data. If all the observations are
labeled, one could use these labels to learn patterns in the data. This type of learning is known as supervised
learning. The detection of anomalies is then similar to a binary classification problem, one class being the
inliers and the other being the outliers.
When the labels of the observations are not available, the models learn the patterns in an unsupervised
manner. In this case, anomaly detection resembles clustering problems. Assuming that inliers show similar
characteristics, the most similar data instances are clustered together forming the cluster of inliers. The ob-
servations that fall outside this cluster are considered anomalies. Note that we are not necessarily bounded
to modeling two clusters, as many ADAs can work with several clusters of inliers and/or outliers.
If the labels are only partly available, the type of learning is a mixture of supervised and unsupervised
learning known as semi-supervised learning. Within this type of learning, the ideas from supervised and
unsupervised models are combined in order to learn from all available data.

The ADAs learning in an unsupervised manner are often useful in practical applications as obtaining the
labels is almost never easy. Anomalies are rare events and do not occur often. Getting enough labelled
data to perceive patterns might be too hard. In addition, labeling data instances as anomalies is often
done by domain experts in practice. This can be time-consuming, resulting in too few labeled points to
apply supervised learning. Detecting anomalies may lie therefore closer to the nature of unsupervised or
semi-supervised methods.

Definition of Anomalousness

In the definition by Hawkins, it is stated that anomalies should deviate much from other observations in the
same data set. However, it is not clear in what sense observations should deviate. All ADAs formalise this
notion of “deviation” or anomalousness in their own way.
The most used formalisation of anomalousness is in terms of the (Euclidian) distance to other observations
in the data set. Indeed, it is reasonable to assume that observations that lie far away from each other might
originate from two different mechanisms. This insight forms the foundation of many state-of-the art ADAs,
such as the k-Nearest Neighbour (kNN) and Local Outlier Factor (LOF) algorithms. Although formalising
anomalousness by distance seems to be a natural way, the distance-based algorithms have one backfall. It
is known that the (Euclidian) distance measure suffers from the curse of dimensionality ([11], section 6.4)
and, therefore, kNN and LOF do as well. This implies that the performance of these algorithms decreases
when the dimensionality of the data set increases.
The probabilistic models in the PyOD module formalise anomalousness by means of density, i.e. anomalous
observations occur in areas of low density. Generally a probabilistic model is fitted to the data and the
density according to every observation is computed. The Gaussian Mixture Model (GMM) algorithm is an
example of a probabilistic ADA.
A different and rather new formalisation of anomalousness is the concept of isolation. This formalisation
builds upon the data set being randomly split. An anomalous observation would be isolated after just a few
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splits, as it is assumed that this observation lies far from other observations. In contrast, isolating a normal
observation would require many random splits. One of the most basic algorithms that work with the concept
of isolation is the isolation tree. Due to the probabilistic aspect introduced by random splitting, the effect
of randomness is mitigated by combining many isolation trees into an isolation forest (iForest).
The last group of ADAs also computes distances, but not between observations. Instead, the observations
are projected into a subspace with lower dimensionality or onto a multivariate Gaussian distribution. The
former is known as Principal Components Analysis (PCA), which computes anomaly scores as the sum of
weighted distances of an observation to the principal components. The latter algorithm is known as Mini-
mum Covariance Determinant (MCD). For MCD, the parameters of a multivariate Gaussian distribution are
estimated in a way that is robust to anomalies. Then, the Mahalanobis distance is used as anomaly score.
PyOD groups these methods under the header “linear models”, as does this thesis.
Besides ADAs that work with just one formalisation of anomalousness, in recent years attempts to com-
bine different formalisations into one algorithm have been made. For example, the Analytic Isolation and
Distance-Based Anomaly Detection (AIDA) algorithm ([1]) combines the concepts of distance and isolation.

In summary, four formalisations of anomalousness have been introduced together with seven ADAs. For
more information on kNN, LOF, GMM, PCA and MCD, we refer to the documentation of PyOD and the
benchmarking paper [9].

Parametric or Nonparametric

The term nonparametric refers to models that are fully specified by their hyperparameters, as opposed to
parametric models which involve parameters to be estimated from the data. The kNN is a classic example
of a nonparametric model, as it is specified whenever the value of k is given. On the contrary, GMMs are
examples of parametric models as they involve estimating the parameters of the Gaussian distribution.
The difference between these two types of models is mainly in the assumptions underlying them. In para-
metric models, assumptions are often made about the form of a distribution. This is also the case with
GMMs, as it is assumed that the data is (high-dimensional) Gaussian distributed. Assumptions about the
form of a distribution are not needed in nonparametric models.
In general, it holds that parametric models outperform nonparametric models if the assumptions made are
correct. If the assumptions were made falsely, the parametric models perform worse than their nonparametric
relatives.

1.3 Thresholding Anomaly Scores

Despite their differences in the way of learning, definition of anomalousness and the use of parameters, the
ADAs described in Section 1.2 have one thing in common: they output a set of real numbers called the
anomaly scores. The anomaly scores are values that describe the level of suspiciousness. In general, it holds
that a higher anomaly score strengthens the belief that the observation in question is an anomaly.
The anomaly scores of the different ADAs come with two challenges. The first challenge concerns the inter-
pretability of the scores. Indeed, in general it holds that a higher anomaly score makes an observation more
suspicious, but the output of different ADAs may differ in meaning and scale. For example, the anomaly
scores outputted by kNN are the distances between observations and their k-th nearest neighbour. However,
the output of an iForest is the average number of splits required to isolate the observation. The anomaly
scores outputted by kNN and iForest may therefore be similar in value, but differ in terms of meaning. In
addition, it is also not the case that an observation is twice as suspicious when its anomaly score is twice
as high compared to other observations. Lastly, there exist ADAs which assign low scores to anomalous
observations, such as GMM. Therefore, lower anomaly scores indicate anomalous observations instead of
higher scores. In that case, the anomaly scores from GMM should therefore also be interpreted differently.
The second challenge comes with the fact that anomaly scores do not give conclusive answers on which
observations can be considered anomalies. The general rule ”the higher, the more suspicious” is useful, but
is indecisive on the point where the anomaly score is ”too high”. To assign the labels ”inlier” and ”outlier”
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(a) Data set on which threshold is com-
puted.

(b) New observations recorded (the blue
cross).

Figure 2: Illustration of the problem when the threshold is set equal to an anomaly score.

to observations, the anomaly scores should be thresholded. In case the anomaly score of an observation
exceeds this threshold, the observation can be considered an anomaly. Due to the difference in meaning and
scale, there is not a universal method to threshold the anomaly scores.

In practical applications, putting some thought into the value of the threshold is not a waste of time.
Indeed, similar to hypothesis testing the type 1 and type 2 error may play an important role. For example,
in fraud detection the anomalous observations are considered fraudulent customers. However, there is a
risk in accusing these customers of fraud. Considering the null hypothesis as ”the customer is fraudulent”,
the type 1 error is interpreted as letting a fraudulent customer go free, whereas the type 2 error stands for
falsely accusing a customer of fraud. The tendency is to assure the type 2 error is as low as possible, as false
accusations should be avoided. These types of considerations should be taken into account when setting a
threshold.
Other desirable properties of a threshold might be the following.

• A data-driven threshold. The threshold should be motivated by the data instead of solely practical
considerations.

• A stable threshold. The threshold should not change heavily if the set of anomaly scores changes only
slightly.

• An in-between threshold. Suppose the observations in a data set are assigned anomaly scores as in
Figure 2a. If the threshold is set equal to the second highest anomaly score, two observations would
be marked as anomaly. Now suppose a new observation occurs and gets assigned an anomaly score
close to this second highest anomaly score, see Figure 2b. As this new observation has an anomaly
score way closer to the threshold than to the highest inlier, it is questionable that this observation is
- according to the threshold - marked as inlier. Ideally, the threshold should take into account large
gaps between inliers and outliers and should compute a threshold somewhere in between.

1.4 Related Work

Research on how to threshold a set of anomaly scores S = {s1, s2, ..., sn} has become more popular during
the last decades. In [20], a small study of applied thresholding techniques is done, resulting in the histogram
of Figure 3. For the study, the researchers searched for the term ’outlier detection’ on Google scholar. From
the 38,900 hits within a two year period (2016-2018) 100 papers were randomly sampled.

According to Figure 3, the most popular thresholding technique is called “top-N”. This technique corre-
sponds to choosing the threshold as the observation with the N -th highest anomaly score. In a data set
of size n, this naturally results in N outliers or an outlier percentage of N

n · 100%. A similar technique,
although phrased differently, is not to specify the number of outliers but this outlier percentage, also called
contamination level η. In that case, the threshold is chosen such that (at least) η · 100% of the observations
is labelled as anomaly. The default thresholding technique for ADAs implemented in the PyOD module is
also by means of this contamination level.
It may be clear that this is not a natural, data-driven way of setting a threshold, but is rather motivated
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by practical applications. In practical applications, it is often the procedure that the selected outliers are
investigated in more detail by domain experts. The (team of) domain experts have a maximal capacity
of processing these anomalies, therefore choosing the number of anomalies N or the contamination level η
in such a way that the observations marked as outlier can all be processed. In other words, the threshold
is not determined based on patterns in the data, but rather on processing capacity. This could result in
missing anomalies, if the number of anomalies is greater than the processing capacity, or marking too many
observations as anomalies, if there are fewer anomalies than the processing capacity. In case of the latter,
the domain experts spend time investigating observations that are inliers in the first place and, therefore,
wasting time. Determining the threshold in a data-driven way, i.e. based on patterns in the data, is the
optimal method in the opinion of the author.

The aim of [18] is to estimate the contamination level by fitting a Bayesian Gaussian mixture model. The
proposed method there is to estimate the distribution of the contamination level, i.e. the posterior distri-
bution, and then setting the contamination level to the mean of this posterior distribution. This estimated
contamination level is then used in the Top-N strategy.

Besides the method of specifying the number or the contamination level of outliers, the (manual) specification
of a threshold parameter is the second manual thresholding technique according to Figure 3. This technique
might be feasible for domain experts working directly on data sets with relatively low dimensions. However,
this technique of setting a threshold is not data-driven and can be very hard in high-dimensional data. In
addition, interpreting the anomaly scores outputted by an ADA in terms of the features of the data set is
very hard, making it too complex to determine a threshold by hand.
As automatic thresholding techniques, Figure 3 shows the methods of Standard Deviation (SD), Median
Absolute Deviation (MAD) and Inter Quartile Range (IQR). The threshold T is defined, respectively, as

TSD = mean+ cSD · SD;

TMAD = median+ cMAD ·MAD;

TIQR = Q3 + cIQR · IQR,

with mean as the mean of S, SD as the (sample) standard deviation of S, median as the median of S,
MAD as

MAD = b ·median( { | s−median(S) | ;∀s ∈ S} )

with b = 1.482 as suggested in [19], Q3 as the third quartile or 75-th percentile of S and IQR as IQR =
Q3 −Q1 with Q1 as the first quartile or 25-th percentile of S. The three automatic thresholding techniques
described above require specification of a hyperparameter c. In general, the values of cSD and cMAD are set
to 3, motivated by the tail probabilities of the Gaussian distribution. The value of cIQR is often set to 1.5.
The problem with these methods of thresholding is the choice of hyperparameter c. Although the specified
values for c are motivated by the characteristics of the Gaussian distribution, they are still somewhat arbi-
trary. There is not really a conclusive way to choose between c = 3 and c = 3.5. In addition, it might not
even make sense to threshold anomaly scores by a method that is motivated by the Gaussian distribution.
For instance, using kNN as ADA the outputted anomaly scores are distances and therefore never negative.
To find a data-driven threshold, one would ideally tune hyperparameter c. Hence, one would optimise a
certain performance measure, for example accuracy, F1-score, AUC or even more complex measures. It is
important to note that these measures require the true labels of the observations. Hence, when considering
supervised learning, tuning hyperparameter c is feasible. In unsupervised learning, it is infeasible to choose
the value of c in a data-driven way.

A different approach is to transform the anomaly scores into the range [0,1]. In [12], several methods have
been proposed to transform the anomaly scores. Examples of transformations are the minmax-conversion or
linear normalisation, Gaussian scaling or Gamma scaling. After transformation, it is stated that the anomaly
scores can be interpreted as probabilities of being an outlier. However, this is not enough to determine a
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Figure 3: Frequency of used thresholding techniques. Source [20].

threshold, as the question at which point a probability is high enough to conclude that an observation is
anomalous remains. In other words, transforming the anomaly scores to the range [0,1] could be a useful
step, but the problem of thresholding the anomaly scores/probabilities is not solved.

In [8], the anomaly scores are also transformed into probabilities by means of the sigmoid function and a
mixture model. The former is a well-known function in machine learning, often used in logistic regression for
binary classification. The usage of this function makes sense in that way, as the two classes are the inliers and
the outliers. The latter is, opposed to the work in [18], not a Gaussian mixture model. Instead, a mixture of
a Gaussian and an exponential distribution is proposed to transform the output of the kNN algorithm into
probabilities. Both methods have the advantage of not only modelling the probability of being an outlier,
but also the probability of being an inlier. With these two probabilities modeled, the authors propose a
Bayesian risk model to infer the threshold.

Lastly, the Python module PyThresh ([13]) contains 29 thresholding techniques, including the above men-
tioned techniques among others. One of the thresholding techniques is the Gaussian mixture model, but
PyThresh does not include mixtures with other types of distributions. The creators also provided some
benchmarking of the thresholding techniques by considering the anomaly scores outputted by six ADAs
evaluated on 16 data sets. Although the Gaussian mixture model is implemented via the Bayesian approach
from [18], PyThresh does not include mixtures consisting of any other distributions than the Gaussian. The
results in [8] give reason that including other distributions in the mixture might increase the performance
of the mixture.
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1.5 Research Questions and Aim

The aim of this thesis is to investigate methods to calibrate a threshold on a set of anomaly scores. Important
requirements for the method are the following.

• The method should be data-drive, i.e. not something like the Top-N strategy;

• The method should not involve any hyperparameters to choose/tune, i.e. not something like the SD,
MAD or IQR methods;

• The method should preferably produce an in-between threshold, see Section 1.3.

Based on the literature, mixture models are methods that satisfy all three requirements. In this work the
performance of mixture models-based threshold calibration is studied. For that purpose, the research ques-
tions are formulated as follows.

Question 1: What mixture to use?
When mixture models are applied, the mixture of choice is often a Gaussian mixture model (GMM), involv-
ing two Gaussian/normal distributions. This can readily be seen from the fact that popular machine learning
modules in Python - for instance Scikit-learn and PyOD - have the GMM implemented. The PyThresh mod-
ule even has the Bayesian GMM from [18] implemented. However, [8] argues that an exponential-normal
mixture might be more appropriate when transforming anomaly scores to probabilities. In addition, several
papers in the financial domain use a lognormal-Pareto mixture ([3]).

Question 2: How does the mixture model-based threshold compare with other thresholders?
To answer this question, the benchmarking work of PyThresh forms the most important comparison material.
The results of the mixture model-based thresholders are compared to the thresholding methods in PyThresh.

Question 3: Are the mixture model-based thresholds stable?
The thresholds resulting from the mixture models should not be affected greatly when the training data
changes slightly. If this would be the case, applying mixture model-based threshold in the financial domain
would be infeasible.

One remark should be made before the focus is put on mixture models. A famous saying in machine learning
is that ”there is no such thing as a free lunch”. Although mixture models check all of the boxes on the list of
desired properties, e.g. it is a data-driven method that does not require tuning/choosing hyperparameters,
they do come with a cost. In the case of mixture models, the cost is payed in assuming which distributions
to include in the mixture. Indeed, when the anomaly scores follow a mixture consisting of a Gamma and an
uniform distribution, fitting a normal-normal mixture will certainly result in worse performance. Therefore,
even mixtures can not guarantee free lunch.
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2 Methodology

In Section 1.4, the choice of using mixture models to set thresholds on anomaly scores was motivated. This
chapter discusses the way of fitting these mixture models and explains how to determine a threshold from
this fit. Lastly, some notes are made on the code that implements the methodology and an illustrative
example of the algorithms is given.

2.1 Foundations of Mixture Models

In general, a mixture model consists of a combination ofK distributions, also called components. The density
of a random variable X is then modeled as

f(x) =

K∏
k=1

ωkfk(x | θk), (1)

where ωk is called the mixing proportion or prior probability of component k and θk are the distribution-
specific parameters of component k. An important condition is that

∑
k ωk = 1. Mixture models are often

used as a classification or clustering method, such that every component models one class or cluster.
In this thesis, we want to separate the outliers from the inliers, which could be thought of as modeling two
classes. Hence, the mixture models considered in this thesis will consist of two components.

Two important random variables used in the mixture are the anomaly score S and the class assignment T ,
also called the label. Hence, T = 0 is associated with the class of inliers and T = 1 with the class of outliers.
Important to note is that the variable S can be observed, or computed by an ADA, whereas variable T can
not be observed and is a so-called latent variable. The assumptions that form the basis of the mixture model
are the following.

1) The observations are independent and identically distributed.

2) The inliers follow a distribution F0 with density f0(s | θ0), alternatively denoted as fS|T=0(s | θ0).

3) The outliers follow a distribution F1 with density f1(s | θ1), alternatively denoted as fS|T=1(s | θ1).

4) The prior probability of a data instance being an outlier is ω, i.e. P (T = 1) = ω, from which it follows
that P (T = 0) = 1− ω.

With the two conditional densities for S given T and the marginal (prior) density of T described above, we
can infer all other densities that can be made by S and T . These densities are the marginal density of S,
the joint density of S and T and, lastly, the conditional density of T given S. In the derivation of these
densities, the law of total probability and Bayes’ rule play an important role ([6], chapter 3).

The marginal density of the anomaly score S can be found by applying the rule of total probability and
Bayes’ rule. This yields

fS(s) = fS,T (s, T = 0) + fS,T (s, T = 1)

= P (T = 0)f0(s | θ0) + P (T = 1)f1(s | θ1)

= (1− ω)f0(s | θ0) + ωf1(s | θ1) (2)

The density described in (2) is referred to as the mixture. It has the same form as (1) with K = 2.

For the joint density of S and T , we apply Bayes’ rule again to obtain

fS,T (S = s, T = t) = P (T = t)fS|T (S = s | T = t)

=

{
(1− ω)f0(s | θ0) if t = 0;

ωf1(s | θ1) if t = 1;
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There are several ways in which this density can be written in one line. For example

fS,T (S = s, T = t) = I{t=0}(1− ω)f0(s | θ0) + I{t=1}ωf1(s | θ1),

with I{} denoting the indicator function, or

fS,T (S = s, T = t) = (1− t)(1− ω)f0(s | θ0) + tωf1(s | θ1), or

fS,T (S = s, T = t) =
(
(1− ω)f0(s | θ0)

)1−t(
ωf1(s | θ1)

)t

(3)

For the remainder of this thesis we will use (3), as it allows for a concise expression of the log-likelihoods.

Lastly, the conditional density of T given S can be found by applying Bayes’ rule once more and substituting
(2) and (3).

fT |S(T = t | S = s) =
fS,T (S = s, T = t)

fS(S = s)
,

=

(
(1− ω)f0(s | θ0)

)1−t(
ωf1(s | θ1)

)t

(1− ω)f0(s | θ0) + ωf1(s | θ1)
. (4)

Note that if t is equal to 0 or 1, the density described above simplifies to respectively

fT |S(T = 0 | S = s) =
(1− ω)f0(s | θ0)

(1− ω)f0(s | θ0) + ωf1(s | θ1)
,

fT |S(T = 1 | S = s) =
ωf1(s | θ1)

(1− ω)f0(s | θ0) + ωf1(s | θ1)
.

The conditional density of T given S is often referred to as the posterior density.

Note that all densities described above are implicitly defined given the parameters ω,θ0 and θ1. For nota-
tional purposes, this condition is often discarded.

2.2 Fitting Mixture Models and Inferring the Threshold

In order to fit a mixture model, we need to estimate the parameters ω,θ0 and θ1 from a set of anomaly scores
S = {s1, s2, ..., sn}. Let us denote Θ = (ω,θ0,θ1) as the vector of parameters. The method of maximum
likelihood is a well-known and popular method to estimate parameters of a distribution. In this section,
we consider two ways of applying the concept of maximum likelihood estimation, which differ in the way of
handling the latent class label.
As the mixture defines a density stated in (2), the first method to estimate Θ is by just applying maximum
likelihood directly. This way, the latent class labels are ignored. The second method is a well-known
estimation procedure that handles latent data: the Expectation-Maximisation algorithm.

2.2.1 Direct Maximum Likelihood Estimation

The direct maximum likelihood method (DML) maximises the observed likelihood. This likelihood only
includes the observed data S and the density described in (2). Hence, the observed likelihood equals

Lobs(Θ | S) =
n∏

i=1

fS(S = si | Θ),

=

n∏
i=1

(1− ω)f0(si | θ0) + ωf1(si | θ1),
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and therefore the observed log-likelihood equals

ℓobs(Θ | S) =
n∑

i=1

log
(
(1− ω)f0(si | θ0) + ωf1(si | θ1)

)
. (5)

The parameters will then be estimated as

Θ̂DML = (ω̂, θ̂0, θ̂1)DML = argmax
ω,θ0,θ1

ℓobs(ω,θ0,θ1 | S). (6)

We will refer to (6) as direct maximum likelihood (DML) estimation, as it does not include the latent variable
T . Instead, the estimates of ω,θ0 and θ1 can be directly derived from the observed data. Due to its form, (6)
can not be solved analytically and we rely on numerical optimisation. Many optimisation algorithms, such
as BFGS, Nelder-Mead, Newton-CG or any other Newton’s-type algorithms, are implemented in the package
scipy.optimize. The results presented in this thesis rely on this package as well. In this thesis, the L-BFGS-B
method is used in DML estimation, as it is an algorithm allowing for bounds to be set. This property is
necessary, for example, to make sure that outputted estimates of variance parameter are non-zero. To start
the algorithm, an initial guess for the parameters Θ̂(0) is required. More on forming this initial guess in
section 2.2.4.

2.2.2 Expectation-Maximisation Algorithm

When the latent class labels are included in the estimation method, the complete likelihood is maximised.
This likelihood models the joint density of the observed and latent variables described in (3). Hence, the
complete likelihood yields

Lcom(Θ | S,T) =

n∏
i=1

fS,T (si, ti | Θ),

=

n∏
i=1

(
(1− ω)f0(si | θ0)

)1−ti(
ωf1(si | θ1)

)ti
.

The complete log-likelihood is the natural logarithm of the complete likelihood, i.e.

ℓcom(Θ | S,T) = log(Lcom(Θ | S,T))

=

n∑
i=1

log
((

(1− ω)f0(si | θ0)
)1−ti(

ωf1(si | θ1)
)ti)

.

This can be rewritten as

ℓcom(Θ | S,T) =

n∑
i=1

(1− ti)
(
log(1− ω) + log(f0(si | θ0))

)
+ ti

(
log(ω) + log(f1(si | θ1))

)
. (7)

Due to the inclusion of the latent data set T, (7) can not be maximised directly. A well-known and famous
algorithm that copes with latent data is the Expectation-Maximisation (EM) algorithm ([15]). In short, the

EM-algorithm produces a sequence of parameter estimates Θ̂(0), Θ̂(1), ... and label estimates T̂(0), T̂(1), ...,
until the parameter estimates converge, i.e. for some k it holds that | Θ̂(k)− Θ̂(k+1) |≤ ε elementwise. Then,
the output is given by

Θ̂EM = (ω̂, θ̂0, θ̂1)EM = Θ̂(k).

To update the set of parameters, i.e. to compute Θ̂(k+1) and T̂(k+1) from Θ̂(k) and T̂(k), the algorithm
performs the Expectation (E) step and the Maximisation (M) step. Both steps are elaborated on below.
To start the EM-algorithm, the scientist has to provide initial guesses Θ̂(0) for the parameters to estimate.
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More on the initialisation in Section 2.2.4.

In the E-step, the expected complete log-likelihood given the observed data S and previous estimates Θ̂(k)

is computed, with respect to the posterior distribution of T . Mathematically speaking, this yields

Q(Θ, Θ̂(k)) : = ET |S
[
ℓcom(Θ | S,T) | S, Θ̂(k)

]
,

= ET |S

[ n∑
i=1

(1− ti)
(
log(1− ω) + log(f0(si | θ0))

)
,

+ ti

(
log(ω) + log(f1(si | θ1))

)
| S, Θ̂(k)

]
.

As the terms with ω and the densities f0 and f1 do not include ti’s, we have

=

n∑
i=1

(
1− ET |S [ti | si, Θ̂(k)]

)(
log(1− ω) + log(f0(si | θ0))

)
,

+ ET |S [ti | si, Θ̂(k)]
(
log(ω) + log(f1(si | θ1))

)
. (8)

For the expectation of the class label ti we use (4) to find

t̂
(k)
i : = ET |S [ti | si, Θ̂(k)]

= 0 · fT |S(ti = 0 | si, Θ̂(k)) + 1 · fT |S(ti = 1 | si, Θ̂(k))

=
ω̂(k)f1(si | θ̂

(k)

1 )

(1− ω̂(k))f0(si | θ̂
(k)

0 ) + ω̂(k)f1(si | θ̂
(k)

1 )
. (9)

Note that, since there are probabilities and densities involved, these estimated class labels are not necessarily
equal to 0 or 1, but may be decimal values as well. Substituting this into (8) gives

Q(Θ, Θ̂(k)) =

n∑
i=1

(1− t̂
(k)
i )

(
log(1− ω) + log(f0(si | θ0))

)
+ t̂

(k)
i

(
log(ω) + log(f1(si | θ1))

)
. (10)

In the M-step, the expected complete log-likelihood described in (10) is maximised with substitution of the

updated class label estimates T̂(k). This way, we obtain new parameter estimates Θ̂(k+1):

Θ̂(k+1) = argmax
Θ

Q(Θ, Θ̂(k)).

The EM-algorithm is listed in Algorithm 1. Appendix A constructs the update rules for several distribution-
specific parameters in the M-step. The update rule for ω does not depend on the chosen distributions, as
the terms in (10) involving ω do not include any other parameters. Therefore, the update rule for ω can be
found by taking the partial derivative w.r.t. ω and finding the root. The partial derivative equals

∂

∂ω
Q =

n∑
i=1

−1− t̂
(k)
i

1− ω
+
t̂
(k)
i

ω
.

Equating to zero and solving for ω gives

ω =
1

n

n∑
i=1

t̂
(k)
i .
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No matter what distributions are chosen, the update rule for ω in the M-step will always be

ω̂(k+1) =
1

n

n∑
i=1

t̂
(k)
i .

Algorithm 1: EM-algorithm

Input: Set of anomaly scores S, convergence threshold ε, intial guesses Θ̂(0).

Output: Parameter estimates Θ̂.

1) E-step: construct label estimates T̂(k+1) by (9).

2) M-step: construct new parameter estimates as Θ̂(k+1) = argmaxΘQ(Θ, Θ̂(k)).

3) If | Θ̂(k) − Θ̂(k+1) |≤ ε holds elementwise, return Θ̂ = Θ̂(k). Otherwise, go back to 2).

2.2.3 Which Fitting Method to Use?

In sections 2.2.1 and 2.2.2, two ways of estimating the parameters of a mixture have been discussed. In this
subsection, the (dis)advantages of both fitting methods are discussed from a theoretical point of view. In
addition, a numerical comparison is made in section 3.1.

An advantage of the EM algorithm over the DML by means of Newton’s-type algorithms - such as the
L-BFGS-B method - is the assurance of increasing the likelihood at every step, converging to a (local)
maximum. This is in contrast with Newton’s-type algorithms, which have the probability to ’overshoot’
the (local) maximum ([14]). In addition, the EM-algorithm fits nicely in the story of maximum likelihood
estimation, as the update rules in the M-step are very similar to well-known maximum likelihood estimators
of familiar distributions. On the contrary, the update rules of Newton’s-type are not always that clear, due
to the need to numerically approximate the Jacobian or Hessian of the (observed) log-likelihood. The power
of the EM-algorithm lies in its simple outline and closed-form update rules.
The major advantage of Newton’s-type algorithm is in its general applicability. The EM algorithm is rel-
atively fast when the distributions to fit have closed-form update rules. However, when these closed-form
update rules do not exist, such as with the gamma or beta distributions, the execution time of the M-step
increases. This is due to the execution of a numerical solver in the M-step. In that case, the EM algorithm
loses its power. Instead of executing a numerical solver every M-step, one could better run an optimisation
algorithm - the DML algorithm - once.

In summary, the EM-algorithm is favoured by some, as it assures the log-likelihood to increase in every
iteration, it has well-known and familiar update rules and is relatively simple. If time consumption is an
important aspect of the research, the DML method might be preferable, especially when distributions that
lack closed-form maximum likelihood estimates are included in the mixture.

2.2.4 Forming an Initial Guess

Both the DML and the EM-algorithms require initial guesses Θ̂(0) = (ω̂, θ̂
(0)

0 , θ̂
(0)

1 ) to start the maximisation.
As the observed and complete log-likelihoods are not convex in general, there can be local maxima. As a
consequence, the results of the algorithms are depending on this initial guess Θ̂(0). Therefore, it is useful to
put some thought in forming this initial guess.
It is not straightforward to guess the value of parameters in the mixture, as the mixtures can get quite

complex and the dependencies are not always clear. As the range of the estimated class labels t̂
(0)
i is known,

these are guessed first. Indeed, the estimated class labels are always in the range [0,1]. With the guessed

values of t̂
(0)
i , the initial guesses for the parameters can be computed by the updating rules following from
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the M-step of the EM-algorithm. Hence, when estimating the parameters by DML, the initial guesses will
also be computed by the results from the M-step.
Three types of guessing the estimated class labels are considered. Recall that these estimates do not neces-
sarily equal zero or one, but may be decimal values as well.

The first method to guess the estimated class labels is by drawing from from the Bernoulli(p) distribution

for every observation. This results in every t̂
(0)
i being equal to zero or one. The parameter p can be set to

0.5 to simulate purely random guessing, resulting in approximately evenly many inliers and outliers. The
value of p can be altered to reflect beliefs in the contamination level, as decreasing p results in less estimated
class labels of one and, therefore, less observations marked as outlier. This way of initialising the estimated
class labels is referred to as p-random initialisation.
As increasing anomaly scores reflect stronger belief in observations being anomalies, the observation with the
highest anomaly score is the most suspicious. Based on this insight, the estimated class labels are initialised
linearly. Hence, the anomaly scores are first sorted and the observation with the i-th anomaly score gets

estimated class label t̂
(0)
i = i−1

n−1 . This linear initialisation ensures that the class label of the observation
with the lowest anomaly score is estimated as zero, whereas the observation with the highest anomaly score
has an estimated class label of one. Note that other monotonically increasing initialisation are possible, but
in this thesis the most simple one is chosen for no particular reason.
The third method of guessing the class labels is by running a clustering algorithm on the data first. Setting
the number of clusters equal to two results in every observation getting a label of zero of one. These labels
can then be used to compute the initial guess of the parameters of the mixture. The benchmark clustering
algorithm used for this purpose is k-means (with k = 2), which is the reason that this method is called
2-means initialisation. Note that k-means also requires initial guesses, for which random guessing is used in
general.

Figure 4 shows the results of the different initialisation methods. As mentioned, decreasing the value of p
in p-random initialisation results in fewer observations having a guessed estimated class label of one. The
2-means results in the first 82 observations being clustered as inliers and, therefore, are assigned a guessed
estimated class label of zero.

2.2.5 Computing the Threshold

When the parameters ω,θ0 and θ1 are estimated, all the densities described in section 2.1 are completely
determined. To compute a threshold that can be used to separate the inliers from the outliers, the density

ratio R(s) = f1(s|θ1)
f0(s|θ1)

plays an important role. The idea is to equate R(s) to a value γ such that the threshold

is defined as the solution of R(s) = γ. Three values of γ are proposed, leading to a threshold based on
likelihood, posterior density or cost weights.

The idea behind the threshold of equal likelihood - or likelihood-threshold in short - is that, given the
parameter estimates, the threshold equals the value of s that is equally likely under T = 0 as under T = 1.
In other words, the threshold τ is value of s that solves

fS|T (S = s | T = 0) = fS|T (S = s | T = 1) ⇒ f0(s | θ0) = f1(s | θ1)

⇒ f1(s | θ1)

f0(s | θ0)
= 1.

Hence, this threshold, denoted as τlikelihood, can be defined as

τlikelihood = s∗ such that R(s∗) = 1. (11)
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(a) 0.5-random initialisation. (b) 0.2-random initialisation.

(c) Linear initialisation. (d) 2-means initialisation.

Figure 4: Different initialisation methods for the estimated class labels. The 100 observations are first
ordered by their anomaly score.

The posterior probability-threshold or simply posterior-threshold compares the posterior probabilities of
the class labels. Given the parameter estimates, the threshold is computed as the value of s for which the
posteriors are equal, i.e.

P (T = 0 | S = s) = P (T = 1 | S = s) ⇒ (1− ω)f0(s | θ0)

(1− ω)f0(s | θ0) + ωf1(s | θ1)
=

ωf1(s | θ1)

(1− ω)f0(s | θ0) + ωf1(s | θ1)

⇒ f1(s | θ1)

f0(s | θ0)
=

1− ω

ω
.

This threshold is denoted as τposterior and is defined as

τposterior = s∗ such that R(s∗) =
1− ω

ω
. (12)

Threshold τlikelihood is a special case of τposterior for ω = 0.5.

The inclusion of cost weights is proposed by [8] and essentially follows from a Bayesian risk model. It
requires the user to specify a matrix of misclassification costs

C =

(
c00 c01
c10 c11

)
,

where cij indicates the cost of assigning class i to an observation that belongs to class j. With this cost
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matrix, the threshold can be computed as the value of s that solves

(c10 − c00)P (T = 0 | S = s) = (c01 − c11)P (T = 1 | S = s)

⇒ f1(s | θ1)

f0(s | θ0)
=
c10 − c00
c01 − c11

· 1− ω

ω
.

The threshold including the cost matrix is denoted as τweigthed and can be defined as

τweighted = s∗ such that R(s∗) =
c10 − c00
c01 − c11

· 1− ω

ω
. (13)

If the zero-one loss is used, i.e.

cij =

{
0 if i = j;

1 if i ̸= j;

then τweighted = τposterior.
The usage of a cost matrix becomes important for different applications of the thresholding techniques. In
section 1.3, the risk of falsely accusing a customer to be fraudulent was mentioned. This risk can be modelled
by defining the cost matrix. For example, if we want to avoid false accusations, we can increase the value
of c10. This results in the threshold to shift to a higher value, marking less observations as anomalies and
therefore decreases the risk of false accusations.

2.2.6 Short Summary

In this section, we have discussed two methods of estimating parameters ω,θ0 and θ1. These methods are
called direct maximum likelihood estimation and EM estimation. When the parameters are estimated, the
most generic way to compute the threshold is τweighted, which yields τposterior and τlikelihood for particular
values of cij ; i, j = 0, 1 and ω.

2.3 Distributions with Bounded Support

In appendix A, the update rules of some distributions are derived. However, there are some distributions that
do not work well with the default method of optimising the expected complete log-likelihood, in this section
also referred to as the log-likelihood. The difficulties with this default method are due to some distributions
having a bounded support. In this subsection, we discuss the uniform and Pareto distribution in more detail
and propose a workaround.
Note that, similar to the work in Appendix A, in deriving the update rules we assume, without loss of
generality, that the distributions model the outliers. Indeed, if the distribution models the inliers, the label

estimates 1− t̂
(k)
i instead of t̂

(k)
i should be used. For more information, see Appendix A.

2.3.1 The Uniform Distribution

The uniform distribution is often defined in terms of a lower bound a and an upper bound b. Denoted as
Uniform(a, b), the density of an uniform distribution is given by

f(x | a, b) =

{
1

b−a if x ∈ [a, b];

0 otherwise.

The distribution could also be parametrised by the mean µ and the standard deviation σ. The density of
this distribution Uniform(µ, σ) is given by

f(x | µ, σ) =

{
1

2σ
√
3

if | x− µ |≤ σ
√
3

0 otherwise.
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Switching between the parametrisation can be done by the relations

a = µ− σ
√
3; b = µ+ σ

√
3. (14)

During the M-step of the EM-algorithm, the parameters of the uniform distribution are estimated by max-
imising the term

Q(Θ, Θ̂(k−1)) =

n∑
i=1

t̂
(k−1)
i log(f(si | θ1)), (15)

with either θ1 = (a, b) or θ1 = (µ, σ), depending on the applied parametrisation. Note that the expected
complete log-likelihood defined in (10) evaluates to (15), as all other terms do not include any parameters
of the uniform distribution and are, therefore, left out of the maximisation.

Optimisation of a and b. When using the parametrisation with a and b, we encounter some difficulties
during the M-step of the EM-algorithm. Using s(i) as the order statistics, i.e. s(1) is the smallest and s(n)
is the largest anomaly score, we note the following.

1) Whenever we pick a > s(1) or b < s(n), there will be an observation (having the smallest respectively
largest anomaly score) with density f(s | a, b) = 0. Since the logarithm of 0 equals−∞, this implies that
the value of (15) yields −∞ as well. For these cases, the log-likelihood will clearly not be maximised.
Hence, the MLEs of a and b require at least a ≤ s(1) and b ≥ s(n).

2) When constraint 1) above is satisfied, the log-likelihood equals

Q(Θ, Θ̂(k−1)) = − log(b− a)

n∑
i=1

ti.

The log-likelihood is increasing in a and decreasing in b. Hence, to obtain the maximum (log)likelihood,
we would like to pick a as large as possible and b as small as possible.

Combining the two points above, we conclude that the MLEs of a and b are

â = s(1) = min(s1, ..., sn); b̂ = s(n) = max(s1, ..., sn)

Although this may seem like a nice result, it essentially means that the estimates of a and b are equal
throughout the EM-algorithm. The estimates are not updated and the distribution will converge after one
iteration. This is not really a problem, but the problem is that the density resulting from EM will span the
entire data set, as shown in Figure 5a. In other words, the density for observations with a low anomaly score
is equal to that of observations with a high anomaly score. When the uniform distribution is used to model
the outliers, this implies that an anomaly having a low score is equally likely to an anomaly having a high
score. Hence, the distribution for the outliers does not distinguish outliers from inliers, which is not very
useful.

Optimisation of µ and σ. If we use Uniform(µ, σ) as parametrisation and let s(i) be the order statistics
again, we note the following.

1) If we pick µ and σ such that σ
√
3 < | s(1) − µ |, then f(s(1) | µ, σ) = 0. Since log(0) = −∞, the

value of (15) will yield −∞ as well. Similarly, if σ
√
3 < | s(n) − µ |, the log-likelihood will equal −∞

again. In these cases, we can be sure that the log-likelihood is not maximised. Hence, to maximise the
log-likelihood, we should at least have

σ ≥ 1√
3
max{ | s(1) − µ | , | s(n) − µ | }
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2) When the constraint in 1) above is satisfied, the expected complete log-likelihood evaluates to

Q(Θ, Θ̂(k−1)) = − log(2σ
√
3)

n∑
i=1

t̂
(k−1)
i .

This is a decreasing function for σ. Hence, to optimise it, we would like to pick σ as small as possible
in order to maximise the loglikelihood.

From the two remarks above, we conclude that we should estimate σ in the M-step as

σ̂(k) =
1√
3
max{ | x(1) − µ̂(k) | , | x(n) − µ̂(k) | },

with µ estimated as the weighted mean, i.e.

µ̂(k) =

∑n
i=1 t̂

(k−1)
i si∑n

i=1 t̂
(k−1)
i

. (16)

With the estimates µ̂(k) and σ̂(k), one can infer the values of a and b by (14).

As opposed to the results of Uniform(a, b), the parameters of the uniform distribution will be updated
throughout the EM-algorithm. It seems like this solved the problem, but the outputted result is however
even worse. Indeed, the fitted uniform distribution now not only spans the complete data set, but also
extends to either side. See Figure 5b. Hence, it is suffering from the same problem described in the previous
paragraph: according to the fitted distribution, anomalies having low scores are evenly likely as anomalies
having high scores.

Fixing One Bound As shown, the default maximisation of the expected complete loglikelihood has
two backfalls. The parametrisation with a and b suffers from 1) the estimated distribution not getting
updated after one iteration of the EM-algorithm and 2) the eventual distribution spanning the entire data
set. Parametrising the uniform distribution by its mean and standard deviation solves the first problem, but
worsens the second.
To solve both problems, it is proposed to fix one bound of the uniform distribution. Hence, if the uniform
distribution is used to model the scores of the outliers, the upper bound b gets fixed to the largest anomaly
score s(n), i.e. b̂ = s(n). When the uniform distribution is used to model the inliers, the lower bound is fixed
to the smallest anomaly score, i.e. â = s(1). The non-fixed parameter is estimated by using the weighted
mean again, i.e. if the upper bound b is fixed, the estimate for the lower bound a is

â(k) = µ̂(k) − (b̂− µ̂(k−1))

= 2µ̂(k) − b̂

= 2µ̂(k) − s(n)

Similarly, if the lower bound is fixed, estimate the upper bound as

b̂(k) = 2 · µ̂(k−1) − â = 2 · µ̂(k) − s(1),

with µ̂(k) as in (16). This results in the distribution getting narrower every iteration, moving towards the
fixed bound. The result of this maximisation approach is shown in Figure 5c.
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(a) Uniform(a, b). (b) Uniform(µ, σ). (c) Fixed b.

Figure 5: Output of EM-algorithm for three different maximisation approaches of the Uniform distribution,
when used to model the outliers.

2.3.2 The Pareto Distribution

The density of the Pareto(xm, α) distribution is defined as

f(x | xm, α) =

{
αxα

m

xα+1 if x ≥ xm;

0 otherwise.

For the default optimisation, we consider the terms of the expected complete log-likelihood in (10) that
contain xm or α. This yields

Q(Θ̂, Θ̂(k−1)) =

n∑
i=1

t̂
(k−1)
i log(f(si | xm, α)).

Similar to the Uniform distribution, we note that f(si | xm, α) = 0 if si < xm, resulting in the expected
complete log-likelihood to equal −∞. Therefore, the value of xm should satisfy xm ≤ s(1), the minimal
anomaly score.
When the condition xm ≤ s(1) is satisfied, the expected complete log-likelihood can be written as

Q(Θ̂, Θ̂(k−1)) =

n∑
i=1

t̂
(k−1)
i log

( αxαm
xα+1

)
;

=
n∑

i=1

t̂
(k−1)
i log(α) + αt̂

(k−1)
i log(xm)− (α+ 1)t̂

(k−1)
i log(si),

= log(α)

n∑
i=1

t̂
(k−1)
i + α log(xm)

n∑
i=1

t̂
(k−1)
i − (α+ 1)

n∑
i=1

t̂
(k−1)
i log(si).

This function is increasing in xm, which is the reason that the expected complete log-likelihood is maximised
for xm to be as high as possible. Given the constraint xm ≤ s(1), this results in the estimate

x̂(k)m = s(1).

We are left with estimating the value of α. To find the value of α that maximises the expected complete
log-likelihood, we equate the derivative w.r.t. α to zero. For the derivative we have

∂

∂α
Q =

1

α

n∑
i=1

t̂
(k−1)
i + log(xm)

n∑
i=1

t̂
(k−1)
i −

n∑
i=1

t̂
(k−1)
i log(si).
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Equating this derivative to zero gives

0 =
1

α

n∑
i=1

t̂
(k−1)
i + log(xm)

n∑
i=1

t̂
(k−1)
i −

n∑
i=1

t̂
(k−1)
i log(si),

0 =
1

α
+ log(xm)− log(s)

(k−1)
,

α =
(
log(s)

(k−1)
− log(xm)

)−1

,

with log(s)
(k−1)

the weighted mean of the logarithm of the anomaly scores. Hence, the default optimisation
results in updating rules

x̂(k)m = s(1),

α̂(k) =
(
log(s)

(k−1)
− log(xm)

)−1

.

It may be clear that the estimate of xm is not updated throughout the EM-algorithm: it is set equal to the
lowest anomaly score. Therefore, the fitted Pareto distribution spans the entire data set again. That is no
problem if the Pareto distribution is used to model the inliers, but it is not desired if the Pareto distribution
models the outliers. In case of the latter, it means that observations with a low anomaly score are much
more likely than observations with a high anomaly score, which is exactly the opposite of what we are trying
to establish.

It is very common in financial data to model transactions with a mixture. The body of the data is modelled
by a log-normal distribution and the Pareto distribution is often chosen to model the tail. The goal of fitting
this mixture is to find the value of xm, i.e. the value at which the tail starts. This reflects the problem with
the results of the default maximisation: no matter which class is modelled by the Pareto distribution, xm is
always estimated as the lowest anomaly score. When the Pareto distribution is used to model the outliers,
or the tail of the anomaly scores, the estimate of xm is certainly inaccurate.
In [3], a better method to estimate xm is proposed. The proposed procedure is to iteratively fix the value
of xm to decreasing observation values, i.e. xm = s(n), xm = s(n−1), ..., xm = s(1). For every fixed xm, the
other parameters in the mixture model are estimated and the log-likelihood of the mixture is computed.
Eventually, the outputted parameter estimates are the ones that returned the maximal log-likelihood.
A remark should be made here that with looping over n data points, the execution time of the algorithm
increases with an order n. As the data sets increase in size, the EM algorithm can take minutes to find
an optimal solution. An early stopping rule is added to the algorithm: if the decrease in log-likelihood is
larger than a specified threshold, stop the loop and return the best solution so far. The pseudo-code of this
approach is shown in Algorithm 2.

Algorithm 2: Estimation with Pareto Distribution.

Input: Set of anomaly scores S, convergence threshold ε, intial guesses Θ̂(0), stopping threshold η.

Output: Parameter estimates Θ̂.

Construct S−, the anomaly scores sorted in descending order.
For xm in S−:

Estimate other parameters of the mixture by the DML- or EM-algorithm.
Compute the log-likelihood of the data.
If the decrease in log-likelihood compared with the best so far is larger than η · 100%, break.

Return the parameter estimates with the highest log-likelihood.
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2.4 Illustration of the EM-algorithm

In this section, the mechanism of the EM-algorithm is illustrated by fitting a mixture of an exponential and
a normal distribution. Hence, the parameters to estimate are Θ = (ω, λ, µ, σ2) and we assume that

• the inliers follow an exponential distribution with rate λ, i.e. f0(s | λ) = λe−λs;

• the outliers follow a normal distribution with mean µ and variance σ2, i.e.

f1(s | µ, σ) =
1

σ
√
2π

exp(− 1

2σ2
(s− µ)2);

• the prior probabilities of the class label are given by P (T = 1) = ω and P (T = 0) = 1− ω.

From the results in Appendix A, the update rules for the parameters in the M-step are given by

ω̂(k+1) =
1

n
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i
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Note that the exponential distribution is used to model the inliers, so t̂
(k)
i is replaced by (1− t̂

(k)
i ).

To illustrate the EM-algorithm, a data set is drawn from a mixture with parameters

ωtrue = 0.2; λtrue = 0.7;

µtrue = 15; σtrue = 3,

and we will investigate how the EM-algorithm approaches these true parameters. The data set is depicted in
Figure 6 and is drawn by setting a random seed of 302, sampling 160 times from the exponential distribution
(the inliers) and 40 times from the normal distribution (the outliers).
To fit the mixture model, the convergence threshold has been set to ε = 10−5. The convergence results are
shown in Figure 7. After 34 iterations, all parameters have converged. The output of the EM-algorithm is
quite close to the true values:

ω̂EM = 0.1997; λ̂EM = 0.7589;

µ̂EM = 14.6119; σ̂EM = 3.1673.

The resulting threshold τposterior equals 7.5091, selecting 38 observations as anomalies.
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Figure 6: Description of the generated data. On the left is a histogram of the unlabeled data, the input of
the EM-algorithm. In the middle, the distribution that is used to generate the data set is plotted. On the
right the result of the fit is shown.

Figure 7: Convergence of the parameters of the mixture. After iteration 34 all parameters have converged.
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3 Numerical Results

To test the performance of the mixture models described in Section 2, three numerical experiments are
executed. For each experiment, the setup will be discussed in three parts - which data set(s) is/are used,
what to compare, which performance measure to use - after which the numerical results are discussed. Lastly,
a short conclusion on the numerical results is given.
The experiments are used to answer different subquestions of the research aim, but also worsen in the lack
of information. In the first experiment, the true labels as well as the true parameters are known. The
second experiment only includes information on the labels. The last experiment starts from zero: there is
no information on the parameter values or the labels whatsoever.

3.1 Comparison of EM and DML Algorithms

In the first experiment, we compare the performance of the EM and DML algorithms and formulate conditions
on which algorithm to use in a particular experiment. The comparison is made based on three aspects.
Firstly, the sensitivity of the two estimation algorithms to the input settings - the number of observations
and three convergence settings - is considered. The settings and their default value are listed in Table 1. In
this experiment, we vary the values of one of the settings and keep the others equal to their default. We
study the effect of the settings to the output of the algorithm. Note that the estimation is cut off if it has
run for 1000 iterations and no convergence has occurred.
Secondly, we compare the EM and DML algorithms in terms of correctness, i.e. whether or not the outputted
results are close to the true parameter values. For that purpose, we generate data sets from a known mixture
and aim to retrieve that mixture.
Lastly, a short experiment is executed to gain insight on the execution times for both algorithms.

Setting Default Value Values
Number of restarts 10 {1, 5, 10, 20, 50, 100}
Initialisation 0.5-random linear and p-random with p ∈ {0.8, 0.5, 0.1, 0.05}
Tolerance ε 10−5 {10−3, 10−5, 10−7, 10−10}

Table 1: Default settings and considered values for DML and EM algorithms.

Experimental Setup

The data sets used in this experiment are drawn from an exponential-normal mixture, varying in the number
of observations n. The parameters of the mixture are fixed at ω = 0.2, λ = 0.7, µ = 13 and σ = 3. The value
of n is taken from the set {60, 120, 200, 500, 1000, 10000}. The data set of n = 60, for instance, is generated
by drawing 48 times from the exponential distribution and 12 times from the normal distribution, assuring
20% outliers (and thus ω = 0.2) For every data set, the random seed is set to 302.
Increasing the value of n has two considerable effects. Firstly, the number of observations to process in-
creases, which play an important role in the execution time of the algorithm. Secondly, the anomaly scores
of inliers and outliers are getting mixed, although the regions with high density are kept in location. This
can be seen from the plotted data sets in Figure 8a and the boxplots in Figure 8. For the case n = 60, the
inliers and outliers are clearly separated. However, as the number of observations increases, the anomaly
scores of the inliers and outliers overlap.
In general, a machine learning model yields better performance if the amount of data increases (and the risk
of overfitting is ignored). On the contrary, we might argue that as the observations are mixed, the mixture
might get “confused”. In that case, the threshold that perfectly separates inliers and outliers in case of
n = 60 could not be retrieved for the case n = 10000.
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(a) Data sets used to compare DML and EM algorithms.

(b) Boxplot of the data sets used to compare DML and EM algorithms.

Figure 8: Description of the data sets used to compare the performance of the DML and EM algorithms.
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In this experiment, the performances of the EM and DML algorithms is compared. Central to this perfor-
mance is the sensitivity of the output of both algorithms to the value of the settings described in Table 1.
For threshold computation, the default threshold based on equal posterior probability is used.
The execution time of the estimation algorithms is not only tested by fitting an exponential-normal mixture
on the data sets depicted in Figure 8a. In addition, a cross-mixture comparison is made by also fitting a
normal-Pareto and gamma-uniform mixture on the data sets of n = 60, 200, 500, 1000, with default settings.
The idea behind using these three mixtures is that the EM algorithm takes a different approach to estimate
the parameters. As shown in Appendix A, the exponential and normal distributions have closed-form update
rules. The Pareto distribution also has a closed-form update rule for α, but to estimate xm a loop over all
anomaly scores is executed. Lastly, the Gamma distribution has no closed-form update rule and a root finding
algorithm is executed in every M-step. Therefore, we expect the execution time of the EM algorithm to in-
crease for fitting mixtures with Pareto or Gamma distributions involved, whereas the DML algorithm should
more or less stay equal. Note that we are only interested in the execution time, so no correctness is computed.

The sensitivity and correctness of the EM and DML algorithms is measured in terms of the log-error of the
estimated threshold compared to the “true threshold”. The true threshold is the threshold computed by
using the true parameter values in the mixtures. Note that the value of this true threshold does not depend
on the size of the data set, but solely on the parameter estimates. As can be seen in Figure 8a, the true
threshold (rounded to four decimals) equals 7.1082.
The correctness of the output of the estimation algorithms is directly related to the log-error: the lower the
log-error, the better is the output. For the sensitivity, the variance of the log-error is of interest. If the
log-errors have low variance, the algorithms find equal results and the setting is not affecting the algorithm
strongly. However, if the outputs do vary, it is concluded that the algorithm is sensitive to the setting.
In addition to the log-error, the sensitivity is also measured in terms of execution time.

Results

The three sensitivity plots - one for each setting n starts, tolerance and initialisation - looked very
much alike, which is the reason to only show the plot for n starts in Figure 9.
As far the correctness goes, we see that the mixture performance does not worsen as the amount of data
is increased. Instead, the algorithms get closer to the true threshold. This follows from the fact that the
log-error of the computed threshold is lower for higher amounts of data.
From Figure 9, it can be concluded that the DML algorithm is a bit more sensitive to the settings than the
EM algorithm. This can be seen from the fact that, for the different values of n starts, the log-error of
the thresholds for the EM algorithm are equal. However, the log-error of the DML outputs does vary, most
apparently for just one restart.
Regarding the execution time as result of varying a setting, the results were quite different. For setting
n starts, the results are shown in Figure 10. A logical result of having more restarts and a larger data
set is that the execution time increases, but the DML algorithm seems to be more sensitive to this setting
compared to EM, as the dashed line has a steeper increase than the solid lines.
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Figure 9: Logarithm of the relative error for different values of n starts. Solid lines are the results of EM,
dashed lines are the results of DML.

Figure 10: Execution times for different values of n starts. Solid lines are the results of EM, dashed lines
are the results of DML.
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The cross-mixture test for execution times resulted in Table 2 and Table 3. A general trend of increasing
execution times for larger amounts of data can be seen here. In addition, a significant change in the
execution times of the EM algorithm is recorded for the different mixtures. As expected, the EM algorithm
needs more time for all the calculations involved in case of mixtures including Pareto or gamma distributions.
This is in contrast with the DML algorithm, for which the execution times stay more or less equal for the
different mixtures. Furthermore, the DML algorithm is faster in fitting mixtures with the Pareto or gamma
distributions, as it does not have to do a loop over all observation nor executing a numerical solver in every
M-step.

Mixture n = 60 n = 200 n = 500 n = 1000
Exponential-Normal 0.151 0.355 0.412 0.464
Normal-Pareto 0.599 1.213 1.673 2.380
Gamma-Uniform 0.201 0.482 0.565 0.587

Table 2: Execution time in seconds of the EM algorithm.

Mixture n = 60 n = 200 n = 500 n = 1000
Exponential-Normal 0.322 0.413 0.460 0.502
Normal-Pareto 0.328 0.419 0.403 0.470
Gamma-Uniform 0.324 0.320 0.356 0.400

Table 3: Execution time in seconds of the DML algorithm.

Conclusion

The conclusion to draw based on the performed experiments is that the settings do not matter that much and
the default values from Table 1 will do just fine. The variability of the DML algorithm is a little bit higher
compared to the EM algorithm. This is in line with the possibility of DML to “overshoot” the maximum -
see Section 2.2.3 - as this overshooting may result in different parameter estimates.
Considering the execution times of the algorithms, it seems that the DML algorithm is more sensitive to
the number of restarts. For distributions that do not have closed-form update rules - such as the gamma
distribution - or looping over the observations in the data set is needed, e.g. the Pareto distribution, the
DML algorithm is faster than the EM algorithm. On the contrary, if the EM algorithm is used to estimate
parameters of distributions with closed-form update rules, it is faster than the DML algorithm.
Even though there are minor differences described above, both algorithms are not much different from each
other.
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3.2 Performance on Real-World Data Sets

In the second experiment, we apply the mixtures to real-world (labeled) data sets from the Outlier Detection
DataSets (ODDS) database. The results of the mixtures on these data sets will be compared to each other
and to the results of the PyThresh module. To make fair comparison with the results of PyThresh possible,
the experimental setup will be similar.

Experimental Setup

From the ODDS database, 10 data sets were used in this experiment. Included are some of the data sets
used in the benchmarking of PyThresh. The data sets vary in size and number of outliers, see Table 4.
The 10 data sets are put through 7 different ADAs, similar to the PyThresh benchmark. This means that all
ADAs are fitted with their default value, e.g. kNN is fitted with k = 5 and LOF with k = 10. For all default
values of the ADAs, see the documentation of the PyOD module. In addition to the 7 ADAs, an 8-th set of
anomaly scores is constructed by taking the mean of the output of the ADAs. This set is called the ensemble
ADA. After this procedure, we end up with 80 data sets of anomaly scores. The used ADAs are depicted
in Figure 13. Before fitting the mixtures on the sets of anomaly scores, a minmax-conversion is applied to
transform the anomaly scores into the range [0,1]. That way, the highest anomaly score is mapped to 1 and
the lowest anomaly score is mapped to 0.
One remark should be made about the sets of anomaly scores: if the ADA performs poorly, we can not
expect the mixture to find a good threshold. For example, in Figure 11 the output of kNN on data set
ionosphere is plotted. Here, the anomaly scores of the inliers and outliers are mixed, but kNN does pick up
on the general trend: most outliers are assigned a high anomaly score. We expect that computing thresholds
based on the mixtures fitted to this data results in thresholds of high performance. On the contrary, the
output of LOF on the data set annthyroid in Figure 12. The ADA does not pick up on the patterns in the
data, assigning inliers and outliers more or less equal anomaly scores. In fact, the highest anomaly score
are assigned to observations that are actually inliers. Due to the low performance of the ADA, we can not
expect the mixture to find a good threshold in this case.

Data set No. of observations No. of dimensions No. of outliers Outlier Proportion (%)
Annthyroid 7200 6 534 7.42
Arrhythmia 452 274 66 15.00
Breastw 683 9 3511 7.00
Cardio 1831 21 176 9.60
Glass 214 9 9 4.20
Ionosphere 351 33 126 36.00
Lympho 148 18 6 4.10
Musk 3062 166 97 3.20
Pima 768 8 268 35.00
WBC 278 30 21 5.60

Table 4: Description of data sets used in the experimental study.
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Figure 11: Output of kNN for the data set ionosphere.

Figure 12: Output of LOF for the data set annthyroid.

In this experiment, different mixtures were compared. In total, eight distributions were combined to con-
struct 42 mixtures, see Figure 13 and Appendix B for an extensive list of the used mixtures. Note that the
half-normal distribution is only used to model the inliers, whereas the uniform and Pareto distributions are
only applied to model the outliers. Important to remark here is that, due to time constraints, the mixtures
including a gamma or beta distribution are only fitted by DML.
Besides comparing the mixtures to each other, we also compare the mixtures to the state-of-the-art Top-N
thresholder. Since the data sets are labelled, the number of outliers is known and the Top-N thresholder
is feasible. To illustrate how the Top-N thresholder works, see Figure 14. This figure shows the anomaly
scores outputted by the iForest detection algorithm, applied on the data set glass. As this data set contains
9 outliers, the observations with the 9 highest anomaly scores are marked as outliers. In other words, the
threshold will be set to the 9th highest anomaly score, in this case 0.68.
Lastly, the mixtures will be compared to the thresholding techniques discussed in the PyThresh bench-
marking. The results of this benchmarking are shown in Figure 23. On the horizontal axis, the different
thresholding techniques implemented in the module are listed. On the vertical axis, the distance to the MCC
of the Top-N strategy is plotted.

To measure the performance of the different mixtures and Top-N thresholder, the Matthew’s Correlation
Coefficient (MCC, [5]) and the Silhouette Score (SSC, [17]) are used.
The MCC is a supervised measure - as it is computed from the confusion matrix such as depicted in Table
5 - defined as

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FN) · (TN + FP )
.

It is an alternative to the accuracy in case of analysing imbalanced data sets ([5]). Indeed, when considering
the accuracy as performance measure, it is hard to beat the majority class strategy, which marks every
observation as an inlier. This way, the accuracy will equal (100− p), with p the percentage of outliers. The
MCC maps the confusion matrix to the range [-1, 1], where an MCC of 1 indicates perfect prediction and -1
an inverted perfect prediction. The majority class strategy, as well as random guessing, yields an MCC of 0.
The SSC is a well-known measure to validate the quality of a clustering solution, based on the concepts
of cohesion and separation. The former measures the average (Euclidian) distance between observations
within one cluster, whereas the latter measures this average distance between (representative points of)
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Figure 13: Setup of the experiment on real-world data sets.

Figure 14: Output of ADA iForest on data set glass.

clusters. Both the cohesion and separation are computed in an unsupervised manner - as they do not use
true labels, but only predicted labels - and are included in this thesis as well in order to simulate real-world
analysis. As the true labels are often inaccessible in applications, having an unsupervised measure to discrim-
inate on model performances is necessary. The SSC maps predicted labels to the range [-1,1], where an SSC
of 1 indicates perfect separation and cohesion. Note that the SSC does not exist if only one cluster is formed.

One remark should be made here. The described measures are often applied for evaluation of classification
and clustering solutions. However, this does not necessarily reflect the quality of the threshold. For example,
if the results of Figure 14 are thresholded, the quality of a threshold τ = 0.95 will equal the quality of a
threshold τ = 1. Indeed, both will mark only one observations as outlier, resulting in equivalent classifica-
tion/clustering. Unfortunately, the author was not aware of any measures for evaluation of the threshold
directly.

Predicted labels
Negative Positive

True labels
Negative TN FP
Positive FN TP

Table 5: Confusion matrix. In this paper, “negative” and “positive” correspond to inliers and outliers
respectively.
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Results

Let’s first consider the performance of the ADAs on the different data sets. The performance of the ADAs
on the different data sets is measured by the Area Under the ROC Curve (AUC). To compute this measure,
for each possible threshold the true positive rate and false positive rate are plotted. The AUC then equals
the area under this curve. The AUC is a value between 0.5 and 1, where a random guessing strategy yields
an AUC of 0.5. In case of a perfect prediction, i.e. the ADA distinctively separates the inliers and outliers,
the AUC will equal 1.
Figure 15 displays the AUC values of the ADAs on the data sets. The last column contains the mean AUC
of the ADAs over all data sets. From this last column, it can be seen that all ADAs - expect the LOF -
perform equally well on average, as the mean AUCs are within 0.06 range of each other. The LOF is the
only exception as its mean AUC is only 0.712. The top three performing ADAs are MCD, iForest and the
Ensemble.
When specific ADA-data set combinations are considered, we see that five ADAs - MCD, PCA, iForest,
AIDA and Ensemble - perform (almost) perfectly on the data set musk (as the AUC values are rounded to
three decimal values). The same five ADAs are close to 1 for some other data sets as well. In Figure 16, we
can see that these ADAs have (an almost) perfect separation of the inliers and outliers, whereas the KNN
and LOF do not. On the contrary, the three worse performances were by LOF.

Figure 15: AUC values of all ADA-data set combinations.
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Figure 16: Anomaly scores computed for data set musk.

Figure 17a shows the number of times the estimation algorithms successfully estimated the mixture param-
eters. Note that all mixtures including a gamma or beta distribution are only fitted by DML, i.e. mixtures
6-7, 13-14, 20-21 and 27-42 are not fitted by EM. The figure shows overall good results as the number of
successful fits is 80 almost everywhere. The algorithms seem to have only trouble with estimating mixture
19 (log-normal - Pareto), as the number of successful fits is only 10. The DML algorithm also has trouble
with estimating the parameters of mixture 33 (gamma-Pareto) and mixture 40 (beta-Pareto).
Figure 17b shows the percentage of cases that the threshold could be found after a successful parameter
estimation. It can be seen that finding a threshold from the results of EM causes trouble for every mixture,
as no mixture reaches 100%. It can also be seen that the likelihood-threshold is found more often than the
posterior-threshold.
The barchart for DML in Figure 17b shows better results, as finding a threshold in 100% of the cases suc-
ceeded for approximately seven mixtures. Two of these mixtures are mixture 33 (gamma-Pareto) and mixture
42 (beta-Pareto), the two mixtures with which the DML algorithm had trouble to estimate. That means that
five mixtures perform really well in terms of calibrating a threshold successfully. These mixtures are mixture
5, mixture 12, mixture 19, mixture 26 and mixture 40, all of which apply the Pareto distribution to model
the outliers. The difference between likelihood- and posterior-thresholds is less present for the results of DML.
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(a) Number of times the estimation algorithms successfully estimated the mixture parameters.

(b) Number of cases the threshold could be found after successful parameter estimation. The barchart on top shows
the results for EM, the bottom displays the results for DML.

Figure 17: Results on the number of thresholds found.
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In the remainder of this subsection, we will zoom in on a poorly performing ADA, an ADA that performs
excellent and the overall performance of the ADAs, keeping in mind the number of successful fits. The
combination GMM-annthyroid - with an AUC of 0.641 - is considered as the poor case, the iForest-musk
as the excellent case (since its AUC value is approximately 1). The output of the GMM algorithm on the
annthyroid data set is plotted in Figure 18. It can be seen that the outliers are not very well separated
from the inliers, as there are lot of outliers having a low anomaly score and, in addition, the three highest
anomaly scores are assigned to inliers. We refer back to Figure 16 for the anomaly scores of iForest-musk.

The results of the GMM-annthyroid fit - the poorly performing ADA - are shown in Figure 19. In Figure
20, the results of the fit on the iForest anomaly scores computed for the musk data set - the excellent ADA -
are displayed. On the axes, the MCC and SSC are plotted. For the GMM-annthyroid results, the logarithm
of the two measures is taken to magnify differences. In addition, the axes are
The hypothesis that finding a good mixture based on a poor ADA is confirmed by the figures. This conclusion
can be drawn from the fact that, for the poor ADA, the maximal log-MCC is approximately -0.827. This
log-MCC is scored by the likelihood-threshold calibrated from the results of mixture 22 (exponential-normal)
fitted by DML. The log-MCC of -0.827 corresponds with an MCC of 10−0.827 = 0.149, which is relatively
low compared with the performances of the mixtures on the excellent ADA.
Regarding the Top-N strategy, the figures give rise to different conclusions. The Top-N strategy is outper-
formed by several mixtures for the poor ADA, as there are mixtures that have higher MCC or SSC. In
fact, the likelihood-threshold computed on the results of EM outperforms the Top-N strategy in both the
MCC and the SSC. The opposite is true for the good ADA, as the Top-N strategy is only outperformed
by mixture 5 (Normal-Pareto) in terms of SSC and is approximately matched in performance by mixture 1
(Normal-Normal), if the EM algorithm is used to estimate mixture parameters.
Secondly, there are some mixtures that perform really well in terms of SSC, but very poor in terms of MCC.
For example, mixture 17 (LogNormal-Uniform) in Figure 19a has an almost perfect and the highest SSC,
whereas the MCC score is the lowest of all mixtures. Mixture 10 (HalfNormal-Uniform) in Figure 20a shows
similar behaviour.

Figure 18: Output of GMM on the data set annthyroid.
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(a) Results of EM. (b) Result of DML.

Figure 19: Performance of the mixtures on output of GMM on data set annthyroid (the poor ADA). For
the mixture names, see the list in Appendix B.

(a) Results of EM. (b) Result of DML.

Figure 20: Performance of the mixtures on output of iForest on data set musk (the excellemt ADA). For the
mixture names, see the list in Appendix B.
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Regarding the average performance of the mixtures, Figure 21 and Figure 22 have been constructed. Every
mixture is fitted a total of 160 times - 10 data sets, 8 ADAs, 2 estimation algorithms - except for the mix-
tures including the gamma or beta distributions. The latter ones are only fitted by DML, which results in
80 fits. For each fit, the posterior- and likelihood-threshold is calibrated, after which the MCC and SSC are
computed. This is also done for the Top-N strategy described in the experimental setup. With all mixtures
and the Top-N performances evaluated, the difference of the mixture performance and Top-N strategy is
computed, the so-called MCC and SSC deterioration. Hence, if a mixture performed better than the Top-N,
this deterioration will be positive. If the mixture performed worse, the deterioration will be below zero.
Then, for each mixture, the mean and standard deviation of the MCC and SSC deterioration are computed
and plotted. The uncertainty bound is constructed by adding and subtracting 2 times the standard deviation
of the measure from the mean.

It is remarkable that in both figures mixture 30 (gamma - log-normal) comes out on top in the performed
experiment. In terms of MCC, it is even the only mixture outperforming the Top-N strategy on average and
it has the lowest variance of all mixtures. However, from Figure 17b, we learn that mixture 30 has very few
thresholds found. More precisely, in only four cases a threshold could be found, which make the results of
mixture 30 unreliable. Therefore ignoring mixture 30, no mixture was able to outperform the Top-N strategy
on average in terms of MCC, but in terms of SSC multiple mixtures were performing better than the Top-N
strategy.
Both performance measures give different results in the sense that the ranking of the mixtures is completely
different. For example, mixture 1 (normal-normal) is among the best performers in terms of MCC, but is
found back on the 30th place in the ranking based on the SSC. The only mixtures that perform quite well
for both performance measures are mixture 9 (half-normal - log-normal) - ranked 6th for MCC and 10th for
SSC - and mixture 10 (half-normal - uniform) - ranked 10th for MCC and 11th for SSC -.

Figure 21: Average Matthew’s Correllation Coefficient deterioration.
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Figure 22: Average Silhouette Score deterioration.

Figure 23: Results of the benchmarking of PyThresh. The figure is directly copied from the presented results.
The y-axis shows the MCC deterioration, equivalent to Figure 21.
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Conclusion

The first conclusion to draw is that calibrating a threshold on mixtures fitted by EM is less reliable than on
mixtures fitted by DML, as can be seen from Figure 17b.

From the results plotted in Figure 19 and Figure 20, we can draw the conclusion that the performance of
the mixtures depends on the quality of the output of the applied ADA. Furthermore, the Top-N strategy
could not be outperformed by the mixtures in case of a well-performing ADA. However, there are mixtures
that are close to or even matching the Top-N strategy. The likelihood-threshold computed for mixture 1
(normal-normal) fitted by EM matches the Top-N strategy, whereas the likelihood-threshold computed for
mixture 5 (normal-Pareto) is close to the Top-N strategy in terms of MCC and has a better SSC. This is a
positive result, as the mixtures perform as good as the Top-N strategy while using no prior information on
the number of thresholds.
In case of a poor ADA, there are multiple mixtures that outperform the Top-N strategy. One of those is
mixture 22 (exponential-normal), outperforming the Top-N strategy in both MCC and SSC.
Regarding the average performance of the mixtures, other mixtures than the mentioned mixtures 1, 5 and
22 come out as top performers. Again, the Top-N strategy could not be outperformed, but some mixtures
are able to come close to the performance of the Top-N strategy in terms of the MCC. For the unsupervised
SSC, the Top-N is outperformed by about 11 mixtures. Mixture 9 (half-normal - log-normal) and mixture
10 (half-normal - uniform) can be consider the best here, as they are close to the Top-N strategy in terms
of MCC and outperform the Top-N strategy in terms of SSC.
Based on the same figures, the MCC and SSC do not rank the mixtures in a similar way. Indeed, the top
performers in terms of MCC are totally different compared to the top performers in terms of SSC. This is
unfortunate, as the MCC measures accurate prediction but is infeasible in a unsupervised setting.

A similar conclusion is drawn from the results of the benchmarking of PyThresh. In Figure 23, there is no
thresholding technique outperforming the Top-N strategy in terms of MCC. This can be seen from the fact
that no average is higher than 0.
Comparing the PyThresh benchmark with the results of the mixtures, (1) the variance of the PyThresh
thresholder is much lower than the variances of the mixtures and (2) the PyThresh thresholders are much
closer to the Top-N strategy. To draw the latter conclusion, note that the scale of the y-axis is different.

3.3 Testing on Financial Data

In the last experiment, the mixture models are tested in a real unsupervised environment. The notion of
“correctness” from experiment 1, the Top-N strategy and the MCC of experiment 2 are not applicable any-
more, as the information of the true labels is not available. Therefore, this experiment is not focused on
correctness or whether or not the mixtures outperform the Top-N, but the main quantity of interest is the
stability through time.

Before explaining the experimental setup, there is one remark to make. With the monitoring through time
comes another challenge. The aim of machine learning models is to retrieve the mechanism that generated
a data set of interest. It is implicitly assumed that this mechanism is stable over time, therefore being able
to produce similar data as before. In practice, this assumption of a stable mechanism does not always hold.
Due to disruptions - such as the covid-19 pandemic - systems change and data generating mechanisms change
with it, producing data sets that differ from the ones on which the machine learning model is trained. This
concept of evolving data generating mechanisms is known as data drift. There exist several hypothesis tests
that detect these data drifts, from which the two-sample Kolmogorov-Smirnov (KS) test might be the best
known. The test is based on the empirical CDFs of the two samples, computing the test-statistic as the
largest difference between the empirical CDFs. The two-sample KS test is implemented in the scipy.stats
module and in this thesis the KS test is performed with a significance level of 0.05.
When a threshold shows jumps or behaves volatile through time, it may be that the mixture produces
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instable results. However, it is important to keep in mind that volatile behaviour might be due to data drift,
as fitting a mixture on a completely different data set is prone to result in different thresholds. Therefore,
instead of looking at the stability through time, we will be looking at the stability of the threshold for the
periods between the points in time at which the KS test gives the conclusion that data drift has occurred.

Experimental Setup

The data sets used in this experiment are provided by Triodos Bank and are, therefore, confidential. The sets
include transactional data, collected during certain short periods of time. These short periods of time are
referred to as timestamps and 6 timestamps are combined into one period. By a moving window approach,
156 of such periods are extracted. To reduce information on the bank’s customers, but allow for inspecting
the behaviour of the mixture models through time, the thresholds and number of observations in the 156
periods are indexed at the start.
The pre-processing steps includes three steps. Firstly, the data is log-transformed. Secondly, the data set
shows that many transactions are made with round amounts, for instance €500 or €1000, causing spikes to
occur in the data. The data is smoothed by adding Normal(0, 0.1)-random noise, drawn with a seed of 302.
Lastly, the data is scaled into the range [0,1] by applying a minmax-conversion.
The number of observations in each of these periods is plotted in the histogram of Figure 24. It can be seen
that the number of observations per period fluctuates, with periods 90-156 having more than four times the
amount of data compared to the first period. On the contrary, periods 20-90 have half the amount of data.
As we have seen in Section 3.1, having more data to work with increases the performance of the threshold.
Therefore, it is expected that finding thresholds for periods 20-90 is harder than for periods 90-156.
The red line on the bottom of Figure 24 indicate the points in time at which data drift was detected by the
KS test. For a precise description of the way these changepoints are computed, see Algorithm 3.

Figure 24: Number of observations for each of the 156 periods.
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Algorithm 3: Computation of changepoints.
Input: The 156 data sets of Triodos Bank D = {d0, d1, ..., d155}.
Output: List of period IDs at which data drift is detected.

changepoints, anchor idx = [ ], 0
for i in {1, 2, ..., 155}:

if ks pvalue(danchor idx, di) < 0.05:
Add i to list of changepoints, anchor idx = i

Return changepoints.

In this section, the same 42 mixtures as in Section 3.2 are compared see Appendix B. For that purpose, the
data of each of the 156 periods are considered as anomaly scores and form the basis of the fitting procedure.
Important to note is that we only use the DML algorithm to fit mixtures on the data, as the results of
Section 3.2 show that the DML algorithm is more promising than the EM algorithm.

As this experiment is executed in a truly unsupervised environment, the MCC can not be used as performance
measure. Therefore, we rely on the Calinsky-Harabasz Score (CHS, [17]) and the SSC from experiment 2 as
measures of performance. The CHS is similar to the SSC in the sense that it is an unsupervised measure, a
higher CHS is considered a better performance and it is also based on cohesion and separation. Unlike the
SSC, it is unbounded from above.
The stability of the threshold is measured in terms of the variance of the threshold, taking into account the
changepoints. Hence, for each of the 19 distinct intervals in Figure 24, we compute the variance. A low
variance would indicate a stable threshold.

Results

Let us first inspect the number of successful fits and thresholds found. Figure 25a shows the number of
successful fits per mixture. It can be seen that estimating the parameters of most mixtures is not a problem
for DML. However, the DML algorithm has more trouble with the mixtures involving the gamma distribution.
Indeed, the number of successful fits is 133 for mixtures which apply the gamma distribution to model the
outliers (mixtures 6, 13, 20, 27, 41) and 38 successes for mixtures including the gamma distribution to model
the inliers (mixtures 29 - 35). Furthermore, some of the mixtures involving a Pareto distribution are not
fitted at all or only in a few cases, as can be seen from the bars of mixture 19 (log-normal - Pareto), mixture
33 (gamma-Pareto) and mixture 40 (beta-Pareto).
Figure 25b shows that both types of thresholds could be computed an equal number of times, with exception
of mixtures 1, 3, 4, 8 and 22. It seems that it has something to do with the normal distribution, as mixtures 1
is the normal-normal mixture, mixtures 3 and 4 use the normal distribution to model the inliers and mixtures
8 and 22 use the normal distribution to model the outliers. In addition, (almost) no thresholds could be
found for mixtures 2, 6, 11, 24, 25, 36, 37. There seems to be no particular pattern in these mixtures, as
they involve different distributions.
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(a) Number of times the DML algorithm successfully estimates the mixture parameters.

(b) Number of cases the threshold could be found after the mixture is successfully fitted.

Figure 25: Results on the number of thresholds found.
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The average scores of all the mixtures are plotted in Figure 26. To magnify differences in performances, the
logarithm is taken. The results in Figure 26 show that the likelihood-thresholds perform better in terms of
CHS than the posterior-thresholds. In addition, we see that some of the mixtures scoring very good in terms
of SSC, but not in terms of CHS, for instance mixture 22 combined with a posterior-threshold. The best
performer in terms of SSC is the posterior-thresholds resulting from the estimation of mixture 4 (normal-
exponential), as its log-SSC is approximately -0.21. This yields an SSC of 10−0.21 = 0.617. Compared
with the results from Section 3.2, this is relatively low. Hence, finding a threshold with high cohesion and
separation is more difficult for the financial data sets than for the benchmark data sets.
Mixture 25 (exponential-exponential) could be considered as the best performer here, as it has one of the
highest performances in terms of both CHS and SSC. However, Figure 25b shows that the likelihood-threshold
could only be computed in a few cases. The average score of mixture 25 is therefore unreliable, as it might
have been a lucky shot/some lucky shots.

Figure 26: Performance of the mixtures on the 156 periods of the Triodos Bank data set. For the mixture
names, see the list in Appendix B.

Considering the average CHS and SSC in combination with the number of successfully found thresholds, it
is evident that no mixture-threshold combination can be considered as the best performer. The top perform-
ers often have only few thresholds found and, therefore, these results are not reliable. Mixtures for which
thresholds could be computed in at least 70% of the number of successful fits tend to have lower MCCs and
SSCs. Five mixtures - in combination with the likelihood-threshold - have been identified as being moderate
on average, based on two conditions. The first condition is that a high number of thresholds should be found,
i.e. the mixture should be fitted on all 156 data sets and in at least 70% of the cases a threshold should
be found. Secondly, the mixture should be among the top performers in terms of one of the performance
measures or the mixture should score moderately in terms of both performance measures. The five mixtures
are mixture 4 (normal-exponential), mixture 9 (half-normal - log-normal), mixture 22 (exponential-normal),
mixture 23 (exponential - log-normal), mixture 38 (beta-uniform).

For the five mixtures stated above, the stability is investigated in more detail. As shown in Figure 24, the
entire timeline can be divided into 19 intervals. Based on the KS test, the data from the periods that fall
inside such an interval can be considered similar. A stable threshold should have a low variance within such
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Periods Number of periods
Interval 1 0 - 9 10
Interval 6 20 - 33 14
Interval 7 34 - 53 20
Interval 9 62 - 76 15
Interval 10 77 - 87 11
Interval 12 95 - 106 12
Interval 13 107 - 124 17

Table 6: Intervals containing at least ten periods.

an interval, indicating that the calibrated threshold does not differ much from period to period. As some
intervals only contain a few periods, we continue with intervals having at least ten periods. These intervals
are stated in Table 6.

Besides the variance of the threshold itself, the variance in number of outliers selected and the variance of the
outlier percentage are computed. From these three variances, Figure 27 is constructed. The way this figure
should be read is that, for example, the log-variance of the number of outliers of mixture 4 for interval 1 is
approximately 0.5, which implies the variance itself to be approximately 100.5 = 3.162. Hence, the variance
of the number of outliers selected by the likelihood-threshold of mixture 4 is approximately 3.162. Recall
that the thresholds are computed on minmax-scaled data and are, therefore, values in the range [0,1] as well.
From Figure 27, we see that the five selected mixtures have trouble with computing thresholds for the periods
in interval 9. This follows from the observation that there is no graph plotted for that interval, indicating
that there were no or just one threshold to compute a variance over. This corresponds with the note made
on the data set sizes, as the periods in interval 9 contain the least amount of observations.
Regarding the stability of the mixtures, mixture 38 is considered as the most stable in terms of the threshold
itself. Indeed, mixture 38 has the lowest variance for all intervals (except interval 9). On the contrary,
mixture 38 has the highest variance in terms of outlier percentage and number of outliers. For those two
graphs, mixtures 9 and 23 are considered the most stable.

Conclusion

From Figure 25, it can be concluded that mixtures including the gamma distribution do not perform well,
as the number of successful fits is lower than for other mixtures. Combining the number of successes with
the average performance resulted in a shortlist of five mixtures. If the stability of the threshold itself is
important, then mixture 38 (beta-uniform) can be considered the best performer. If the stability of the
amount of observations marked as outlier is of more importance, mixtures 9 (half-normal - log-normal) and
23 (exponential - log-normal) can be considered the top performers.
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Figure 27: Logarithm of the variance for each interval.
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4 Conclusion

4.1 Research Questions

The main goal of this research was to investigate mixture models as basis of calibration of thresholds on
anomaly scores. Three research question have been posed, which will be answered in this section.

Question 1: What mixture to use? First, the subquestion of which estimation algorithm is answered.
In experiment 1 (Section 3.1 it was concluded that, on a perfect data set, the EM algorithm produces better
results than the DML algorithm. Note that with ”a perfect data set” we mean that the data originates
exactly from the mixture that is fitted. In addition, the DML algorithm was a little bit more sensitive to
the settings of the algorithm.
However, in experiment 2 (Section 3.2) we saw the EM algorithm having trouble to find a threshold on a
non-perfect data set. Furthermore, the execution time of the EM algorithm increases when no closed-form
update rules exist. Based on these observations, we conclude that the DML algorithm is the estimation
method to go for, as it seems to be more reliable than the EM algorithm.

To answer the question if there is added value in altering the mixture components, we refer to Figure 21,
Figure 22 and Figure 26. In terms of the MCC of Figure 21, the normal-normal mixture (mixture 1) is only
outperformed by mixtures that have few thresholds found. As these results might therefore unreliable, it
can be concluded that the normal-normal mixture is the best performer on average.
However, regarding Figure 22 and Figure 26, the normal-normal mixture is not among the top performers
for the unsupervised measures. This indicates that the normal-normal mixture performs worse in terms
of separation and cohesion than some other mixtures. Hence, there could be a gain in performance if the
components of the mixture are altered.

Question 2: How does the mixture model-based threshold compare with other thresholders?
The answer to this question is two-fold. On average, it seems like the mixture do not perform better than
other thresholding techniques implemented in PyThresh. This can be seen from Figure 21 and Figure 23, as
the average MCC of the methods in PyThresh is closer to zero and have a lower variance.
When comparing the mixture model-based threshold to the state-of-the-art Top-N strategy, the mixture
model-thresholds definitely have an added value. In case of a good quality ADA, Figure 20 shows that the
mixture model-based thresholds perform almost as good as the top-N strategy, while using no prior informa-
tion on the number of thresholds. This is definitely an advantage of the mixture model-based thresholds, as
such information is not accessible in real world applications. In addition, if the quality of the ADA is bad,
Figure 19 shows that the Top-N strategy is outperformed by many mixtures.
Hence, the conclusion is that the mixture model-based thresholds perform better on average than the Top-N
strategy, but perform worse than other thresholding techniques implemented in PyThresh.

Question 3: Are the mixture model-based thresholds stable?
From Figure 27, the likelihood-thresholds of the most stable thresholds have a variance of around 10−4,
indicating that the thresholds are within a range of 0.04 of each other. The outlier percentage resulting from
the likelihood-thresholds is about 10−1.5 ≈ 0.0316, indicating that the outlier percentage is within a range
of 1% of each other. From these observations, it can be concluded that the mixtures mark approximately
evenly many observations as outlier, indicating that they are stable.
From Figure 27, it could also be seen that different mixture come out as most stable when the stability
importance is associated differently. In case of the stability being associated with the threshold itself, mixture
38 (beta-uniform) was considered most stable. In case of a stable number/percentage of observations marked
as outlier, which would resemble the top-N strategy, mixture 23 (exponential - log-normal) was considered
the most stable.
The answer to this question is affirmative, with a remark that the number of observations should be large
enough. Otherwise, fitting the mixtures will result in a threshold only rarely.
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4.2 Discussion

The aim of this thesis is to investigate if mixture models are reliable and stable methods to set thresholds
on anomaly scores. A popular way of fitting a mixture model is the EM algorithm and it is said to be a
valid method as well. However, in this thesis finding a threshold based on the fit of the EM algorithm was
troublesome, making it hard to compare the performance of the EM and DML algorithms thoroughly. As
far as the author knows, the code that generated the results was correct. Therefore, the trouble of finding
thresholds might be due to poor estimation of the parameters. More research could have been done about
why the EM algorithm shows a low amount of successfully found thresholds.

The failure of threshold computation might be related to the scaling applied to the anomaly scores. This
scaling ensured the anomaly scores to be mapped in the range [0,1]. However, in some mixtures the update
rules of EM prescribed to take a logarithm of the anomaly scores or divide by it. Therefore, the scaling
might not have been appropriate as the lowest anomaly scores could not be used for these mixtures, since
taking the logarithm of or dividing by zero is of course infeasible. The mixtures could generate better results
if this scaling was not applied. In addition, a log-transformation was applied to the financial data.

In the estimation algorithms, some choices have been made. In the EM algorithm these choices concerned
the estimation of mixtures including the uniform, Pareto, gamma or beta distributions. For the former two,
parameters were fixed at a certain value, while the latter two relied on numerical root-finding in the M
step. For the DML algorithm, the L-BFGS-B method was chosen as optimisation algorithm. Maybe other
maximisation algorithms were more appropriate to use.

For construction of the sets of anomaly scores in Section 3.2, all ADAs were fitted with default hyperparam-
eters. Especially in the case of kNN and LOF, the value of k might have a great impact on the performance.
Ideally, the ADAs should have been fitted for different values of the hyperparameters and included in this
thesis.

4.3 Future Work

An important aspect of the experiment in an unsupervised setting was that the SSC could be used as
performance measure. However, from the results of Section 3.2 we concluded that the SSC yielded very
different results compared to the MCC. As the MCC measures correct prediction, and the ranking of the
mixtures was different, the SSC is not reliable in terms of correct predictions. Ideally, we would have an
unsupervised measure yielding equivalent results as the MCC, such that we are sure that the unsupervised
measure measures correct prediction. In that case, evaluating the performance of the mixtures in terms of
this unsupervised measure ensures that we draw conclusions about the correctness of the mixtures. Finding
such an unsupervised measure could be the subject of future work.

Regarding the execution time of fitting all mixtures on data sets of relatively small size (the largest data
set had 7200 observations), this execution time could explode in case of really big data sets. Then, fitting
all 42 mixtures becomes infeasible. An important question is how to identify which mixture to use from
the data, in case visual inspection is not feasible. Constructing (the framework of) a search method that
selects the (most promising) mixture(s) could be the subject of future work. One could for example build
a framework upon nested models - as the exponential distribution is a special case of the gamma distribu-
tion - or distributions from the exponential family, which include many of the distributions used in this thesis.

In the last experiment, the stability of the mixtures in combination with the threshold type was studied.
Here, the mixtures were compared to each other, but not to a state-of-the-art thresholding strategy. To
really form a conclusive answer, the top-N strategy or any other thresholding method from PyThresh should
be monitored over time as well. A more thorough study of the stability of the proposed thresholding strategy
by mixture models could be the subject of future work.
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Lastly, one of the desired properties of a thresholder was formulated as being able to produce an in-between
threshold. Although it could be seen that the produce threshold was indeed in between observed anomaly
scores, there was no further testing if this was any good. Ideally, a train/test split should have been made
and the computed threshold should be examined on the test set. If true anomalies in the test set were more
often marked as anomalies by the in-between threshold, it could have been concluded that the in-between
requirement was useful. This could be the subject of future work.
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Appendices

Appendix A: Estimation of Some Distributions

In iteration k of the M-step of the EM-algorithm the parameters of the mixture model are estimated by
maximising the expected complete loglikelihood given the incomplete dataset S = {s1, s2, ..., sn} of anomaly

scores and the estimated class assignments of the previous E-step T(k−1) = {t(k−1)
1 , t

(k−1)
2 , ..., t

(k−1)
n }. That

is, we want to maximise the function

Q(Θ, Θ̂(k−1)) = E
[
ℓ(ω,θ0,θ1 | S,T(k−1)) | S, Θ̂(k−1)

]
=

n∑
i=1

(1− t̂
(k−1)
i ) log(1− ω) + (1− t̂

(k−1)
i ) log

(
f0(si | θ0)

)
+ t̂

(k−1)
i log(ω) + t̂

(k−1)
i log

(
f1(si | θ1)

)
. (17)

In this appendix we will derive the estimators in the M-step for several distributions. Hence, we will take
derivatives, equate them to zero and solve for the parameter(s) of interest. When we estimate the parameters
of the inlier-distribution, we ignore all the terms except for (1−t̂i) log(f0(si | θ0)). Similarly, when estimating
the parameters of the outlier-distribution, we only consider t̂i log(f1(si | θ1)). In the following we will consider
the distributions to model the outliers and derive the estimates. These estimates can also be used when the
distribution models the inliers: just replace all t̂i’s by 1− t̂i.
The considered distributions are listed below.

• Normal distribution;

• Exponential distribution;

• Uniform distribution (discussed in Section 2.3);

• Lognormal distribution;

• Halfnormal distribution;

• Pareto distribution (discussed in Section 2.3);

• Gamma distribution;

• Beta distribution.

Normal Distribution

The Normal distribution has parameters µ and σ2, respectively the mean and the variance. The probability
density function (PDF) of the Normal distribution is

f(x | µ, σ) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
.

Then to find the estimates of µ and σ2 in the M-step, we want to maximise

Q(Θ, Θ̂(k−1)) =
∑
i=1

t̂
(k−1)
i log

(
f(si | µ, σ)

)
=

n∑
i=1

−t̂(k−1)
i log(

√
2π)− 1

2
t̂
(k−1)
i log(σ2)− t̂

(k−1)
i (si − µ)2

2σ2
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The maximisers are computed by equating partial derivatives to zero and solving for the parameters. It
follows for µ that

∂

∂µ
Q =

n∑
i=1

t̂
(k−1)
i (si − µ)

σ2

=
1

σ2

n∑
i=1

t̂
(k−1)
i si −

1

σ2
µ

n∑
i=1

t̂
(k−1)
i

Then equating to zero and solving for µ yields

µ =

∑n
i=1 t̂

(k−1)
i si∑n

i=1 t̂
(k−1)
i

.

For the estimation of σ2, we have

∂

∂σ2
Q = − 1

σ2

n∑
i=1

t̂
(k−1)
i +

1

σ4

n∑
i=1

t̂
(k−1)
i (si − µ)2

Equating this to zero and solving for σ2 yields

σ2 =

∑n
i=1 t̂

(k−1)
i (si − µ)2∑n
i=1 t̂

(k−1)
i

.

With the expressions above, the update rules of the parameters of the Normal distribution in the M-step are

µ̂(k) =

∑n
i=1 t̂

(k−1)
i si∑n

i=1 t̂
(k−1)
i

(18)

σ̂(k) =
(∑n

i=1 t̂
(k−1)
i (si − µ̂(k))2∑n
i=1 t̂

(k−1)
i

) 1
2

Exponential Distribution

The Exponential distribution has one parameter λ, which is called the rate. The probability density is

f(x | λ) = λ exp(−λx).

To find the estimate for λ in the M-step, we want to maximise

Q(Θ, Θ̂(k−1)) =
∑
i=1

t̂
(k−1)
i log

(
f(si | µ, σ)

)
=

n∑
i=1

t̂
(k−1)
i log(λ)− t̂

(k−1)
i λsi

The partial derivative w.r.t. λ then yields

∂

∂λ
Q =

n∑
i=1

t̂
(k−1)
i

λ
− t̂

(k−1)
i si

=
1

λ

n∑
i=1

t̂
(k−1)
i −

n∑
i=1

t̂
(k−1)
i si.
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Equation to zero and solving for λ then gives

λ =

∑n
i=1 t̂

(k−1)
i∑n

i=1 t̂
(k−1)
i si

,

which is the reciprocal of the weighted mean. Hence, the update rule for λ in the M-step is

λ̂(k) =

∑n
i=1 t̂

(k−1)
i∑n

i=1 t̂
(k−1)
i si

=
(
µ̂(k)

)−1

,

with µ̂(k) as given in (18).

Lognormal Distribution

Similar to the Normal distribution, the Lognormal distribution has parameters for the mean µ and variance
σ2 as well. The probability density is given as

f(x | µ, σ) = 1

x
√
2πσ2

exp
(
− (log(x)− µ)2

2σ2

)
.

To find the estimators of µ and σ2, we want to maximise

Q(Θ, Θ̂(k−1) =
∑
i=1

t̂
(k−1)
i log

(
f(si | µ, σ)

)
=

n∑
i=1

−t̂(k−1)
i log(si)− t̂

(k−1)
i log(

√
2π)− 1

2
t̂
(k−1)
i log(σ2)− t̂

(k−1)
i

(log(si)− µ)2

2σ2

Leaving out terms that do not include µ of σ2 gives

Q(Θ, Θ̂(k−1) =

n∑
i=1

−1

2
t̂
(k−1)
i log(σ2)− t̂

(k−1)
i

(log(si)− µ)2

2σ2

For µ, we want to find the root of

∂

∂µ
Q =

1

σ2

n∑
i=1

t̂
(k−1)
i (log(si)− µ)

which yields

µ =

∑n
i=1 t̂

(k−1)
i log(si)∑n

i=1 t̂
(k−1)
i

.

For σ2, we want to find the root of

∂

∂σ2
Q = − 1

σ2

n∑
i=1

t̂
(k−1)
i +

1

σ4

n∑
i=1

t̂
(k−1)
i (log(si)− µ)2

which yields

σ2 =

∑n
i=1 t̂

(k−1)
i (log(si)− µ)2∑n

i=1 t̂
(k−1)
i

.
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Hence, the update rules for the parameters of the lognormal distribution in the M-step are

µ̂(k) =

∑n
i=1 t̂

(k−1)
i log(si)∑n

i=1 t̂
(k−1)
i

σ̂(k) =
(∑n

i=1 t̂
(k−1)
i (log(si)− µ̂(k))2∑n

i=1 t̂
(k−1)
i

) 1
2

Gamma Distribution

The Gamma(α, β) distribution has density

f(x | α, β) = βα

Γ(α)
xα−1 exp(−βx).

Hence, to find estimators for α and β we want to optimise

Q(Θ, Θ̂(k)) =

n∑
i=1

t̂
(k)
i log(f(si | α, β))

=

n∑
i=1

αt̂
(k)
i log(β)− t̂

(k)
i log(Γ(α)) + t̂

(k)
i (α− 1) log(si)− t̂

(k)
i βsi.

Taking the partial derivative w.r.t. β gives

∂

∂β
Q =

n∑
i=1

αt̂
(k)
i

β
−

n∑
i=1

t̂
(k)
i si.

Setting this expression equal to zero and solving for β gives

β =
α
∑n

i=1 t̂
(k)
i∑n

i=1 t̂
(k)
i si

=
α

s̄(k)
,

with s̄(k) the weighted mean of the anomaly scores. Substituting this back into the expected complete
likelihood gives

Q(Θ, Θ̂(k)) =

n∑
i=1

αt̂
(k)
i log(

α

s̄(k)
)− t̂

(k)
i log(Γ(α)) + t̂

(k)
i (α− 1) log(si)− t̂

(k)
i

α

s̄(k)
si

=

n∑
i=1

αt̂
(k)
i log(α)− αt̂

(k)
i log(s̄(k))− t̂

(k)
i log(Γ(α)) + t̂

(k)
i (α− 1) log(si)− t̂

(k)
i

α

s̄(k)
si.

Taking the derivative w.r.t. α yields

∂

∂α
Q =

n∑
i=1

t̂
(k)
i log(α) + t̂

(k)
i − t̂

(k)
i log(s̄(k))− t̂

(k)
i ψ(α) + t̂

(k)
i log(si)−

t̂
(k)
i si
s̄(k)

= log(α)

n∑
i=1

t̂
(k)
i +

n∑
i=1

t̂
(k)
i − log(s̄(k))

n∑
i=1

t̂
(k)
i − ψ(α)

n∑
i=1

t̂
(k)
i +

n∑
i=1

t̂
(k)
i log(si)−

1

s̄(k)

n∑
i=1

t̂
(k)
i si

where we have used that d
dx log(Γ(x)) = ψ(x), with ψ(x) the digamma-function. Setting this partial derivative

equal to zero gives

0 =
∂

∂α
Q

0 = log(α)

n∑
i=1

t̂
(k)
i +

n∑
i=1

t̂
(k)
i − log(s̄(k))

n∑
i=1

t̂
(k)
i − ψ(α)

n∑
i=1

t̂
(k)
i +

n∑
i=1

t̂
(k)
i log(si)−

1

s̄(k)

n∑
i=1

t̂
(k)
i si
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Dividing by
∑n

i=1 t̂
(k)
i gives

0 = log(α) + 1− log(s̄(k))− ψ(α) +

∑n
i=1 t̂

(k)
i log(si)∑n

i=1 t̂
(k)
i

− 1

s̄(k)
·
∑n

i=1 t̂
(k)
i si∑n

i=1 t̂
(k)
i

0 = log(α) + 1− log(s̄(k))− ψ(α) + log(s)
(k)

− 1

0 = log(α)− log(s̄(k))− ψ(α) + log(s)
(k)
.

From here we rely on numerical solvers to find α.
One possible root-finding xbar = algorithm is the Newton-Rhapson method, which requires specification of
the first derivative and an initial guess. As we would like to find the root of ∂

∂αQ, the derivative used by
Newton-Rhapson is

∂2

∂α2
Q =

∂

∂α

( ∂

∂α
Q
)

=
∂

∂α

(
log(α)− log(s̄(k))− ψ(α) + log(s)

(k)
)

=
1

α
− ψ(1)(α),

with ψ(1) as the polygamma function of order 1.
For the initial guess one could use the coefficient of variation, which is defined as the expectation of the
distribution divided by the standard deviation. For the Gamma distribution it is known that

µ =
α

β
; σ =

√
α

β
.

Hence, the coefficient of variation will equal

µ

σ
=

α\β√
α\β

=
√
α.

Therefore, the initial guess for the numerical solver could be

α =
( s̄(k)
σ
(k)
s

)2

, with σ(k)
s =

(∑n
i=1 t̂

(k)
i (si − s̄(k))2∑n
i=1 t̂

(k)
i

) 1
2

.

In summary, to update the estimates of the parameters of the Gamma distribution in the M-step we

1) Find α̂(k+1) such that log(α̂(k+1))− log(s̄(k))−ψ(α̂(k+1))+log(s)
(k)

= 0, for instance with the Newton-
Rhapson algorithm;

2) Compute β̂(k+1) = α̂(k+1)

s̄(k) .

Beta Distribution

The density of a (α, β) function is given as

f(x | α, β) = xα−1(1− x)β−1 Γ(α+ β)

Γ(α)Γ(β)
.
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With this density, the function to optimise in the M-step becomes

Q(Θ, Θ̂(k)) =

n∑
i=1

t̂
(k)
i log(f(si | α, β))

=

n∑
i=1

t̂
(k)
i (α− 1) log(si) + t̂

(k)
i (β − 1) log(1− si) + t̂

(k)
i log(Γ(α+ β))

− t̂
(k)
i log(Γ(α))− t̂

(k)
i log(Γ(β))

To optimise these functions, we set the partial derivatives equal to zero. The partial derivatives are given by

∂

∂α
Q =

n∑
i=1

t̂
(k)
i log(si) + t̂

(k)
i ψ(α+ β)− t̂

(k)
i ψ(α)

=

n∑
i=1

t̂
(k)
i log(si) + ψ(α+ β)

n∑
i=1

t̂
(k)
i − ψ(α)

n∑
i=1

t̂
(k)
i

and similarily

∂

∂β
Q =

n∑
i=1

t̂
(k)
i log(1− si) + ψ(α+ β)

n∑
i=1

t̂
(k)
i − ψ(β)

n∑
i=1

t̂
(k)
i

Setting these derivatives equal to zero gives a system of equations.{
0 =

∑n
i=1 t̂

(k)
i log(si) + ψ(α+ β)

∑n
i=1 t̂

(k)
i − ψ(α)

∑n
i=1 t̂

(k)
i

0 =
∑n

i=1 t̂
(k)
i log(1− si) + ψ(α+ β)

∑n
i=1 t̂

(k)
i − ψ(β)

∑n
i=1 t̂

(k)
i

Which can be rewritten as{
0 = log(s)

(k)
+ ψ(α+ β)− ψ(α)

0 = log(1− s)
(k)

+ ψ(α+ β)− ψ(β)
(19)

Hence, the update rule for the parameters of the Beta Distribution is to solve system (19) numerically. Again
the initial guesses can be computed from the moments of the Beta Distribution

µ =
α

α+ β
; σ2 =

αβ

(α+ β2)(α+ β + 1)
,

by means of

α = µ
(µ(1− µ)

σ2
− 1

)
; β = (1− µ)

(µ(1− µ)

σ2
− 1

)
.

Therefore, the initial guesses for the numerical solver could be

α0 = s̄(k)
( s̄(k)(1− s̄(k))

σ2(k)
− 1

)
β0 = (1− s̄(k))

( s̄(k)(1− s̄(k))

σ2(k)
− 1

)
,

with

s̄(k) =

∑n
i=1 t̂

(k)
i si∑n

i=1 t̂
(k)
i

; σ2(k) =

∑n
i=1 t̂

(k)
i (si − s̄(k))2∑n
i=1 t̂

(k)
i

.
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Appendix B: Overview of Considered Mixtures

On the next page is an extensive list of the mixtures considered in the numerical experiments of Section 3.2
and Section 3.3.
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Mixture ID Inlier Distribution Outlier Distribution Only Fitted by DML
1

Normal

Normal
2 Log-Normal
3 Uniform
4 Exponential
5 Pareto
6 Gamma ✓
7 Beta ✓
8

Half-Normal

Normal
9 Log-Normal
10 Uniform
11 Exponential
12 Pareto
13 Gamma ✓
14 Beta ✓
15

Log-Normal

Normal
16 Log-Normal
17 Uniform
18 Exponential
19 Pareto
20 Gamma ✓
21 Beta ✓
22

Exponential

Normal
23 Log-Normal
24 Uniform
25 Exponential
26 Pareto
27 Gamma ✓
28 Beta ✓
29

Gamma

Normal ✓
30 Log-Normal ✓
31 Uniform ✓
32 Exponential ✓
33 Pareto ✓
34 Gamma ✓
35 Beta ✓
36

Beta

Normal ✓
37 Log-Normal ✓
38 Uniform ✓
39 Exponential ✓
40 Pareto ✓
41 Gamma ✓
42 Beta ✓
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