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Abstract
The aim of this thesis will be to bridge between the domains of ex-

plainable artificial intelligence (XAI) and the normative criteria required
for the responsible deployment of such models. The innate difficulty in
understanding complex information processing systems such as those con-
stituting the field of artificial intelligence motivates the need for methods
to untangle their inner workings. Toward this end, I argue for the use
of a fundamental epistemological method - that of Levels of Abstraction
(LoAs) - for clarifying the workings of such systems.

I begin by articulating a predominant account of scientific understand-
ing from Kareem Khalifa to argue that opacity, as the main obstacle to
understanding, is a phenomenon relative to those seeking an explanation
(Section 2). After describing the Method of LoAs, I motivate a transi-
tion from using Marr’s levels of analysis to LoAs in the domain of AI to
ground normative criteria for comparing explanations (Section 3). I then
provide further examples of the usefulness of LoAs in the domain of AI
for the sake of conceptualizing the responsibility gap and understanding
advanced properties in AI models (Section 4).

1 Introduction
This introductory section will briefly elaborate on some of the background
knowledge helpful in making sense of how explanation and understanding are
achieved in AI. This overviews the nature of our normative target and sketches
our path toward it. Here, we will see much of the initial literature review, de-
spite some of the material no longer remaining centrally relevant1. Nonetheless,
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1Despite this, I believe it is worth including this review of the responsibility gap literature

for the sake of situating the end goal of normative accounts of explanation in AI. More specif-
ically, although the primary contribution of this thesis is directed toward making normative
distinctions between various stakeholder’s explanatory requirements, discussing responsibility
gaps represents a further relevant next step in the research and is mentioned in Section 4.1.
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the literature review helps to situate the primary aims established at the begin-
ning of this project. These aims are then expounded upon in the form of the
research questions which guided this work from its outset.

Following this, Section 2 gives an account of understanding which is relevant
for fulfilling the explanatory requirements of various stakeholders who interact
with- and are affected by advanced AI models. After describing the components
furnishing a central account of understanding, I provide an overview of a tax-
onomy of opacity in AI. Next, connecting this account to understanding to the
taxonomy of opacity begins to reveal how the blockages to our understanding
may be overcome.

Next, Section 3 articulates the Levels of Abstraction (LoA) methodology,
which I argue to be the main tool for overcoming opacity. I begin by describing
the method of LoAs in detail, and showing how similar frameworks have already
been used to analyze algorithms in AI. I then argue that one commonly-used
similar framework is a weaker version of this LoA approach and that, in fact, the
same process can be accomplished with more precision using LoAs. To complete
this section, I attempt to integrate the account of understanding as described
in Section 2 with these LoAs to offer novel methods for explanation.

Finally, Section 4 briefly indicates some avenues for further research along
the lines of the methodology described. In particular, I note an inconsistency
within an argument against the existence of responsibility gaps, outline the
direction for a potential research program involving LoA in the clarification of
normative criteria, and mention the use of LoAs in understanding advanced AI
capabilities.

1.1 Background Note on LoA Method
Since it was not present in the initial literature scan, a placeholder definition
of a LoA is worth including here, the reflections of which will be recognized
throughout the thesis leading into its full definition in Section 3. Specifically,
LoAs are frameworks for analyzing systems based on their input and output
variables to understand their function while all else is abstracted away. I offer
a more comprehensive definition of these levels later. For now however, we can
interpret thought through neural, psychological, or social levels. A neural level
includes the examining of input and output variables in terms of electrochem-
ical signals within synapses, as well as the neural functionality transmitting
spike train patterns across brain regions. Nonetheless, this approach requires
the abstraction of substantial information that may appear relevant, such as
the impact of propaganda (social) or individual desires (psychological). This
abstraction serves as a distinguishing characteristic, setting a given LoA apart
from alternatives.

1.2 Literature Review
The following section outlines some of the preliminary reading related to the
topic of this thesis. Although the notion of responsibility gaps admittedly plays
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less of a role itself as a target for this thesis, it is important to describe such that
we may usefully place ourselves within the domain. More precisely, responsibil-
ity gaps represent the amorphous challenge taken up by normative accounts of
explainable AI. As such, I begin by explaining some of the background behind
responsibility gaps to make sense of what various accounts of understanding
in AI are seeking (Section 1.2.1). I then overview some of the explanation
techniques involved in attempting to address the concerns born out of the re-
sponsibility gap discussion (Section 1.2.2). I then describe some work in the
area of understanding and its relationship with the complexity of AI models
(Section 1.2.3).

1.2.1 Responsibility Gaps

Much has been written about the potential responsibility gaps in artificial intel-
ligence (AI) and various formulations have been proposed. The earliest formu-
lation can be attributed to Andreas Matthias, who is one of the first to argue
that there will be “an increasing class of machine actions incompatible with
traditional means of responsibility ascription because nobody has meaningful
control” [36]. This statement ties a thread between the increasing autonomy
and decreasing clarity in responsibility attribution. It is this thread of increas-
ing uncertainty between a clear - and in some ways intended - loss of control over
new autonomous systems that dissolves into a frayed end which does not link
well with our current moral and legal frameworks that is shared by all accounts
of the responsibility gap. As programmers lose control over their automata, as
their range of possible actions widens, and the inner workings are obscured by
increasing opacity from their complex design, we find that these useful machines
begin to slip further from our grasp.

Along an immediate tangible-to-abstract dimension, some expansions on this
idea have identified case studies where automated decision-making directly leads
to human harm [54], or more conceptual issues associated with the fuller scope of
harms made possible to humans [11]. Others have striven to keep the human side
of these human-robot collaborations as the targets of responsibility attribution
in the event of harmful end results [41].

However, advocating for solely human-dependent responsibility has insti-
gated arguments against the conditions creating-, and gravity of responsibility
gaps [30, ?], as well as arguments against the very existence of any kind of
technologically-motivated responsibility issue [56]. Such arguments reject the
call for scaling-down AI systems, including by those who say the responsibility
gap can be bridged in the meanwhile, to instead argue that the foundations of
moral responsibility are too fluid to leave any significant space missing [56]. In-
stead of the dissolution of responsibility or assigning it to the humans developing
the technology, a milder approach uses a humans-in-the-loop method to iden-
tify three positions: “active learning, in which the system remains in control;
interactive ML, in which there is a closer interaction between users and learning
systems; and machine teaching, where human domain experts have control over
the learning process” [39].
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Nevertheless, others still have identified the issue of responsibility diffusion as
worth taking seriously both in clinical decision support contexts [9], as well as in
the use of intelligent tools and their constitution of an individual’s environment
[23].

Even more to the central point, newer accounts of the responsibility gap have
made strides toward clarifying the specific domains for responsibility attribu-
tion. Some arguments track the gap as comprised of four interconnected issues
of culpability, moral-, public- and active responsibility [50], while others focus
on the various temporal aspects of backward-looking retribution as opposed to
forward-looking responsibility attribution [16]. In questioning the assumption
that only humans can be responsible agents, some emphasize the temporal as-
pect of the “many things” issue to link the agents of responsibility with the
patients of their actions [13]. Using the notion of responsibility as answerabil-
ity, such an account asserts that the patients receiving a decision may demand
a explanation that answers for the costs incurred by the patient [13].

1.2.2 Explanation and Interpretation of Models

Two points of contention arise in response to these conclusions, namely: that
the exercise of responsibility both requires and deserves AI experts who main-
tain a meaningful degree of control and oversight, and that increases in ML
explainability may create an unwanted shifting of the loci of responsibility from
agents to patients.

On the first contention, some have argued that for a notion of algorithmic
transparency to be made useful to the public at large, we must employ the
use of oversight bodies which enjoy full view of the data and machine learning
development process in order to make a judgment of moral or legal responsibility
[17]. On the second contention, three points have been established to argue how
increasing explainability may shift responsibility to unwarranted patient parties;
that AI systems providing post hoc explanations are occasionally viewed as
blameworthy agents themselves, that variance among explainable algorithms
can falsely imply patients have meaningful control, and that designers are truly
the only group involved with any sense of meaningful control [32]. As such,
there is a clear need for further exploration into the role that AI explainability
has on the attribution of responsibility.

In comparison to the work on responsibility gaps, perhaps even more work
has been done to offer various forms of explanation for machine learning deci-
sions. To situate the ensuing discussion, is worth mentioning that interpretabil-
ity has been argued to not be a monolithic concept, but instead constituted by
several distinct ideas [33]. Driven by a desire for trustworthy, causality-inferring,
domain-transferable, informative, and ethical algorithmic decision-making tools,
the author argues for two properties of interpretable models: transparency and
post-hoc interpretability. On the first property, transparency aims to identify
how a model works, and is broken into three unordered levels of understand-
ing – simulatability, decomposability, and algorithmic transparency – and this
justifies reference to the central philosophical method of Levels of Abstraction
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which will be used in this thesis. This provides solidity to the proposed method
of analysis via a richer situation in the literature which, through further inves-
tigation, may benefit from clarification in these terms.

On the second property, post-hoc interpretability is a common taxonomic
categorization for understanding how models operate after they have done so.
Some authors believe that what little insight can be gained from post-hoc meth-
ods means that all attempts at interpretability must be qualified per model and
can, in fact, mislead by offering plausible but incorrect explanations [33]. Oth-
ers see explanations of the post-hoc variety as but one means of understanding
how a ML model works via artificial interpretability, wherein such methods
provide an understanding of how the system’s inputs specifically combine to
generate an output [48]. Relatedly, some models are themselves interpretable to
a certain degree, via their hybrid neuro-symbolic architecture or inbuilt quasi-
interpretable structures that mimic attention or map the salient features of the
input. Nevertheless, some authors believe that no explanation of any such com-
plicated models will replace the value and reliability of creating models that are
intrinsically interpretable [49].

1.2.3 Understanding Via Models

Methods of understanding through artificial interpretability contrast methods
of understanding without interpretability, which instead indicate only which
properties of the input are deemed important for generating output [48]. An
understanding of a model without interpretability can come through an analysis
of the data, or instead using external support relations such as the strength of its
relation to real-world evidence [55]. Though the coverage between understand-
ing via artificial- and no interpretability is substantial, it is worth mentioning
that some issues remain with regard to the nature of the explanations given,
insofar as the pragmatic aspect of explanation is not fully furnished in these
accounts [5]. Further, the precise requirements for understanding may not be
the target of these explanations, but instead essentially distract with plausible
placations. As such, the requirements for useful insight into these complex mod-
els will be borne out of the relationship between explanation and understanding
[28].

Nevertheless, a division between artificial interpretability and understanding
without interpretability is but one schema by which we might approach explana-
tion in ML models. Among the viewpoints, some argue that because of a lack of
consensus for normative criteria for dispelling algorithmic opaqueness, broad so-
cial acceptance of automated decision-making will only come domain-dependent
strategies for explanation [15]. Alternatively, some taxonomies have been or-
ganized not around different domain strategies, but instead around the style of
model at the heart of a decision; whether in machine learning or deep learning
more specifically [4]. Others state that only a pragmatic account of understand-
ing will offer progress and a useful starting point, and that approximation models
are both the best means to understand an ML model and necessary for post-hoc
interpretability [47]. There have also been attempts to characterize the opacity
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facing the field [10], to make precise the nature of how machines themselves
‘understand’ and the epistemic consequences for our own understanding [3], or
to develop formal frameworks for interpretable ML via idealized explanation
games [59].

From this brief overview of some of the relevant literature, we can begin to
articulate the central problem this thesis will attempt to clarify.

1.3 A Problem Emerges
Even from this brief description of the landscape surrounding the notion of
understanding in AI, it appears that we lack a widely applicable framework re-
lating a strong account of understanding to a means of normative comparison
with which stakeholders may interpret models. The responsibility gap demon-
strates the stakes of not being able to rigorously attribute normative qualities
to the various aspects of complex AI function. Its multifaceted nature proves
to be a difficult challenge for any set of explanatory techniques. To this end, we
can identify some of the further questions which initially guided this research
toward articulating a framework for understanding AI using LoAs.

1.3.1 Research Questions

This bridge between explainable AI and the plurality of notions for responsibility
involved in deploying such systems is clearly not a trivial one to cross. One
notable argument we will investigate further attempts to directly link the two
sides of this issue [63]. However, the precise nature and degree of understanding
of a complex model required to satisfy the explanatory requirements of various
stakeholders remains unclear. One foreseeable issue involved in making general
statements about the granularity of our understanding of a model and drawing
normative conclusions lies in the fact that model architectures vary widely, so
any attempt to describe “model understanding” must remain flexible across
possible architectures.

With this in mind, the relevant research questions that have guided this
project are as follows:

How might we effectively distinguish levels of transparency and their im-
plications for comprehensiveness of understanding, such that we may use this
understanding with regard to the various stakeholder commitments associated
with its deployment? What account of understanding is most appropriate for
linking it to normative criteria?

In the context of understanding a complex ML model, what criteria for un-
derstanding usefully establish normative constraints on our actions? If a model
is to be built and used, to what extent must its inner functions be understood by
stakeholders (including the developers, users, regulatory bodies, or otherwise)
such that we can provide an explanation sufficient for responsibility tracing?

If a certain algorithm is to be deployed, how might LoAs help specify that
a model’s causal mechanisms are sufficiently interpretable? What contribution
to our understanding is afforded by these Levels?
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If it is true that the understanding we ordain from models is primarily limited
by factors other than the LoA that has been specified (as is proposed by Sulli-
van’s argument favoring link-uncertainty [55]), this seems to imply that much
work in traditional forms of explainability will make little progress answering
crucial questions about how such models work. More precisely, if unraveling
a model’s inner workings accomplishes little in comparison to grasping how a
model’s central concept maps to the target phenomenon in the world – as mea-
sured by the empirical support and linkage to the target – then understanding
the model itself seems relatively unimportant.

So, we require some account of a model’s function to provide an epistemo-
logical grounding to justify our decisions made based on their classifications.
Toward this grounding, I argue that the underlying granularity of the Level of
Abstraction by which one views a model has central influence on how it is un-
derstood and how it can be explained. Further, I aim to show that the structure
of these LoAs is present in an important account of understanding, and that
this can help produce novel insights related to the domain of AI. To begin, we
must first consider this notable account of understanding and the ways in which
opaque models can impede upon it.

2 Understanding and Explanation
Due to its centrality in the philosophy of science and other domains, the liter-
ature on understanding and explanation is vast. Thus, rather than attempt to
overview the field, this description will be dedicated to a thin cross-section of
selected writings on understanding and explanation for the purpose of explicat-
ing their role in the ML landscape. I begin by briefly discussing some key topics
in the domain of scientific understanding including factivity, opacity, and the
relationship between understanding and explanation. I then aim to articulate
the role that explanations play in understanding complex processes being com-
puted by advanced machine learning systems. The central proposition of this
section is to establish the intermediary concept I have deemed The Relativity
of Explanation. I conclude by mentioning a few important distinctions in the
realm of understanding particularly as it pertains to the domain of machine
learning.

2.1 A Close Relationship
A foundational account of the relationship between explanation and under-
standing comes is found in Khalifa (2017) [28]. Herein we are acquainted with
the intimate relationship between understanding and explanation in Khalifa’s
Explanation-Knowledge-Science (EKS) model. With respect to empirical phe-
nomena, this account details a model for explaining-why and thus is chiefly
interested in explanatory understanding [28]. For the present purposes, an ex-
ample of such an explanatory relationship would hold in the situation where
“Abe understands why he was denied the loan”, though of course such state-
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ments need not include the term “why” verbatim. This account aims to estab-
lish a minimal threshold for understanding, as well as a comparative notion of
explanatory depth.

Specifically, there are two related principles involved in providing an expla-
nation which are necessary to provide a notion of comparison. These are known
as the Nexus and Scientific Knowledge principles. These two principles aim to
give a structured account of when one subject is more understanding of a state-
ment than another subject. An explanatory nexus refers to the set of correct
explanations for some proposition as well as the relations between those expla-
nations ([28], pg. 6). As such, this web of correct and interlocked explanations
can be grasped (by a subject) to different depths. Scientific knowledge on the
other hand, refers to the accuracy of an explanation to real states of affairs in
the world.

2.1.1 The Nexus Principle

The Nexus principle states that if subject S1’s grasp of the Explanatory Nexus
is fully encapsulated by S2’s, we may conclude that S2understands the topic
better. Thus, we must determine i) what constitutes a correct explanation, ii)
how the relations between them establish a meaningful form of understanding,
and iii) what makes a subject’s grasp more complete versus less ([28], pg. 6).

In the case of point (i), for an explanation of some statement to be correct, it
must satisfy four straightforward criteria ([28], pg. 7). First, the statement must
be (at least approximately) true. This should remain relatively uncontroversial,
since there can be no reasonable explanation of why a rainbow is rectangular
when it is in fact smoothly arched. Second, the explanans - the former statement
doing the explaining - must make a difference in the explanandum - the state-
ment to be explained ([28], pg. 7). Khalifa bases this difference-making notion
on an acceptance of counterfactual dependence as a means of establishing that
the explanandum is affected by the explanans2. More simply in Khalifa’s terms,
if event B counterfactually depends on A, then changes in event A cause changes
in B, whereas a lack of change in A will not cause change in B [31], [61]. We
can exemplify this notion by saying that the various lengths of electromagnetic
radiation in light cause a difference in the scattering of various colors, and this
difference creates the rainbow. Third, the explanans must fulfill the relevant
ontological requirements. As such, this EKS account remains agnostic toward
both realist and anti-realist modes of explanation. Therefore, we can proceed
without reference to these further issues since aspects of this debate remain un-
resolved with regard to machine learning [25, 24]. Fourth, a proper explanation
must satisfy local constraints, which allows for a plurality of explanatory meth-
ods to hold. As Khalifa admits, “the relevance of many explanatory features

2Note that counterfactual dependence is not the only way of establishing a difference,
and that other means of difference making are also amenable to this account [28]. As such,
the details of which specific notion of counterfactual dependence is used and how exactly it
establishes causality should not significantly influence this account of understanding ([28], pg.
7).
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depends on the specific explanandum, the standards of the discipline, and the
interests of the inquirer” ([28], pg. 8). In sum, the first three criteria limit
the scope of possible explanation whereas the fourth allows for some degree of
flexibility.

Progressing to point (ii), to describe meaningful relations between these
explanations, we can imagine a network mapping the causal dependency of some
event worth explaining. If the nodes of such a network represent statements and
the connectivity represents the statements explaining each other, of course it
will be true that some explanatory routes through this network will be stronger
and more relevant than others. However, rather than simply identifying which
statements are stronger than others, a more comprehensive account of a strong
explanation would come as a result of understanding the structure of such a
network ([28], pg. 9). More precisely, a person would be in the most deeply-
rooted epistemic position if they were able to expound not only on the strong
routes through such an explanatory network, but also the interrelationships
between these routes and how they undercut or support one another.

And finally for point (iii), the Nexus principle begets the strength of one’s un-
derstanding by reference to the completeness of a subject’s grasp. Completeness
refers to the number of correct explanations as well as the interrelationships be-
tween them, their quality and importance, as well as the level of detail to which
they are grasped by the subject doing the explaining. In the most simplified
sense, a more complete explanation would typically encapsulate the explanatory
nexus of one that is less complete. However, this is not meant to be a purely
quantitative exercise. Providing a naive method of measurement to one’s un-
derstanding as compared to another is not the ideal goal of this description.
Rather, there will typically be “a stock of explanatory information that two or
more inquirers both grasp and then some further bit of explanatory information
that is unique to one,” ([28], pg. 10).

So, we can imagine some empirical phenomena with a network of explana-
tions which interact with one another to ground an explanation in truthful states
of affairs in the world. We have already seen how grasping different aspects of
this nexus relates to understanding, but now we will investigate the network’s
relationship to truthful states of affairs in the world.

2.1.2 The Scientific Knowledge Principle

The second comparative principle for determining relative degrees of under-
standing avoids reference to a phenomenological account of ’grasping’. Instead,
it grounds itself in a notion of similarity to scientific knowledge. Therefore, the
Scientific Knowledge Principle states that if S1’s grasp of a statement’s Explana-
tory Nexus bears greater resemblance to scientific knowledge than S2’s, then S1
understands that statement better than S2 [28]. This leads us to wonder first,
what exactly is meant by scientific knowledge and second, how exactly one’s
grasp bears resemblance to it [28].

First, to possess scientific knowledge requires that its holder have arrived at
a belief that can only be the result of safe belief-forming processes that could
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not have led to a falsehood [28]. Furthermore, the safety of this belief must rest
upon a scientific explanatory evaluation. Such an evaluation is comprised of
three main parts; initially, there must be consideration of the plausible modes of
explanation, including modeling the explanatory nexus to uncover relationships
between different explanatory factors. For our present purposes, plausibility
refers to an explanation’s fit with the relevant background theories as well as
its simplicity3. Next, We need a means of comparing potential explanations to
determine which are in conflict and which complement each other [28]. In cases
where complementary explanations exist, we can inspect the Explanatory Nexus
to uncover the differing dimensions along which various explanatory methods
find their strength. To complete the safety-preserving evaluation, the prior com-
parisons should result in the formation of various attitudes about the relative
strength and weakness of the explanations surveyed. As such, the comparisons
between explanations should be sufficient for the investigating agents involved
to assign them varying degrees of belief. This concludes our account of what
constitutes scientific knowledge in this context; considering plausible explana-
tory options, comparing them to one another to determine complementarity,
and altering the relevant agent’s attitudes toward the explained phenomenon
based on these explanations.

Second, resemblance is similar to the notion of completeness in the Nexus
principle [28]. For an agent’s grasp to resemble this account of scientific knowl-
edge, it depends upon the number of potential explanations considered by the
agent, as well as the number of comparisons made with methods that are accept-
able by virtue of their scientific status ([28], pg. 13). The agent’s beliefs about
their explanatory nexus must be likewise safe and accurate as depicted by the
previous discussion of belief safety and their fit with our discussed account of
scientific knowledge. Furthermore, it is now worth noting the variety of possible
cognitive states involving degrees of scientific knowledge. Where the standards
for understanding are low, such that relatively little depth is required to justify
a conclusion, Khalifa admits that merely approximately true beliefs may be sat-
isfactory ([28], pg. 14). An increasingly accurate schema then results when we
organize an agent’s understanding from when it is based upon approximately
true beliefs versus being based on scientific knowledge as described ([28], pg.
14).

2.1.3 The Explanation-Knowledge-Science Model and Degrees of
Understanding

In addition to these two comparative principles, the Explanation-Knowledge-
Science (EKS) model consists also of a notion of minimal understanding from
which to begin meaningful comparison. Based upon the two criteria that have

3Khalifa adds that some potential explanations may of course be implausible, while some
some plausible explanations may be incorrect. Though he provides no precise characterization
of plausibility. This point is especially difficult in the realm of AI, where generating expla-
nations means there may be no grounded means of verifying their truth. Our discussion of
mechanistic interpretability in Section 4.2 will reconvene on this point.
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already been discussed, minimal understanding of a why-explanation holds when
a subject believes an statement explains some phenomenon and this statement
is approximately correct ([28], pg. 14).

We can therefore summarize the EKS model by referencing its three main
components and showing their arrangement. The first component is the Nexus
principle which we can recall states that a subject may grasp the Explanatory
Nexus of some proposition more completely than another subject [28]. Second,
the Scientific Knowledge Principle states that one subject’s grasp of such an
Explanatory Nexus may bear greater resemblance to scientific knowledge than
that of another subject [28]. Together, these two principles provide an account
of what it means for one subject to have better understanding than another.
Third, our aforementioned notion of minimal understanding states that, at the
very least, a subject has minimal understanding of a “why” explanation for
a proposition if and only if: that subject believes the explanation really does
explain the proposition, and this explanation is at least approximately true.

Thus, there’s a clear emergence of a spectrum of understanding readable
within the Nexus Principle, Scientific Knowledge Principle and notion of mini-
mal understanding. This overview can be briefly visualized to compare minimal
understanding to scientific or more ideal understanding. On the one hand, min-
imal understanding would be a rather sparse, more weakly connected network
of interexplanatory relationships. In contrast, the Explanatory Nexus of the
relevant scientist would be richer, both in terms of the number and connect-
edness of its supporting explanations, but also in the subsequent Explanatory
Nexuses of these supports, which further stabilize the scientist’s understanding
more than the minimal account.

There are two main reasons for including Khalifa’s EKS account in this
thesis. First, because it remains a relatively uncontroversial account of scientific
understanding via explanation that is amenable to a LoA-based analysis - which
will be made clearer in the following section - and second, that it reinforces the
notion of explanation being agent-dependent.

Due to the ubiquity of understanding and explanation, the lack of contro-
versy stems from the fact that this account is essentially “a more regimented
descendent of the received view” ([28], pg. 16). This straightforwardly places
this account of understanding in a central, rather acceptable position relative
to the landscape.

Furthermore, this is an account of explanation that is dependent on the sub-
ject’s abilities. It is worth noting that the present goal of explaining complicated
systems need not require that increasing degrees of understanding are necessar-
ily closer to an ideal account as opposed to a minimal one. Rather, we can at
least establish that there are different forms of understanding pertinent to the
various users who may interact with such a system. This is particularly impor-
tant for the present purposes because of my advocacy for a concept I maintain
as the Relativity of Explanation. Of course, there are accounts of understanding
which are not relative to the subject. However, for the sake of explaining the
decisions made by complex AI algorithms, it is sensible to make this distinc-
tion outright. This is due to the fact that various stakeholders interacting with
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these algorithms bring various explanatory needs to bear upon them. As such
, an account of understanding which was not agent relative seems to implicitly
argue for a uniformity of explanation that would contradict the usefulness of
the method to be proposed herein.

To create a useful example that will be referenced later in Section 3, we
can imagine various different users interacting with a complex virtual assistant
built upon an advanced large language model. A child may make a request
to a virtual assistant to change the music, turn on the lights, or otherwise
complete a relatively straightforward task. The child’s parent may be a regular
adult consumer more interested in shopping, planning trips, or automating their
email system. One example of a more complete grasp of understanding could
arise when the consumer parent is unable to book a ticket through this virtual
assistant. Whereas the child might not understand why the process is failing,
their parent may understand that they mistakenly provided the incorrect billing
information. Thus, the parent could update this information and further, in
choosing between providing one of two different credit cards, choose the one
with a later expiry date so as to avoid the same problem in the future. In terms
of an Explanatory Nexus, this would correspond to the parent grasping an
explanation for the proposition (the billing mistake) and navigating their Nexus
such that they could anticipate the proposition resurfacing. In comparison, the
child may not be able to intuitively grasp the initial explanation, since they may
not understand what a credit card is for. As a result, the Explanatory Nexus
of the child is encompassed by that of the parent.

From this description, it may seem a naive quantification in reaching beyond
another’s capacity for understanding is the goal of this thesis. This is not
the case however since we are less concerned with determining which of two
individuals understand a why-explanation better than the other as much as
we are concerned with fulfilling the explanatory needs of a given individual.
Nevertheless, determining which explanations fulfill these requirements most
strongly does involve a notion of comparison, and positing various imagined
users proves helpful in demonstrating the fit of an explanation with the agent
seeking it.

2.2 Opacity and The Relativity of Explanation
As we have demonstrated thus far, our central account of understanding is de-
pendent upon a structured support system for some proposition being explained.
This structured support system takes the form of an Explanatory Nexus, the
accuracy of which is measured by the Scientific Knowledge Principle. Given
this picture of how explanation supports understanding, we can now begin to
develop a clearer image of the obstacles in the way of this support structure.

Up to this point, we have only discussed understanding when applied to
abstract subjects insofar as we have not differentiated between different ex-
planatory success criteria. As such, these vaguer caricatures do not accurately
represent the possibility of a variety of stakeholders but instead some amalgam
of capability for understanding. For the purposes of articulating a framework
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for understanding when comparing to agents in the abstract, this will Suffice.
However, we cannot make specific comments about the nature of understand-
ing and explanation in AI systems without taking a more realistic view of the
stakeholders involved in those explanations. Thus, we can now turn to an ex-
amination of the nature of opacity to provide further insight into how various
stakeholders admit more specific normative criteria. More specifically, we can
lay out the landscape of opacity in the field of AI to show how the understand-
ing required for normativity interacts with those agents seeking such normative
comparisons.

2.2.1 Forms of Opacity

One centrally important factor in providing useful explanations is that they be
tuned to the agent seeking to understand. This forms the basis of the Relativity
of Explanation, a concept I introduce to demonstrate an important connection
between the users seeking explanations and the individual requirements therein.
This Relativity of Explanation is supported by a central work on the concept of
opacity in AI, a discussion of which shall form the basis of this section. We will
now briefly examine an important taxonomy of AI opacity to set the groundwork
we require.

Namely, Alessandro Facchini and Alberto Termine outline a three-part tax-
onomy of opacity in terms of accessing the internal workings of an AI model,
its epistemic link to the systems being emulated in the world, and constructing
a semantically coherent interpretation of the information within [19].

First, access opacity refers to the methods for dissecting the inner operations
and behaviour of AI models to understand their function and structure [19].
This dissection is performed over the domains of the training dataset, training
engine and learned model, which together are intended to exhaust the scope of
an AI system’s architecture. This form of opacity is most clearly identifiable
when a human user is unable to locate and explain the functional role of the
elements that are relevant for explaining and predicting various aspects of the
system in question ([19], pg. 76). There are three identified causes of this
epistemic access opacity [12], the interaction between two of which are most
relevant to our depiction of the Relativity of Explanation. These two are the
stakeholder’s background knowledge and skills as well as the complexity of the
system’s structure, in terms of both its size and format4.

Due to the natural limitations on human cognitive resources, our ability to
properly conceive of a complex system’s function diminishes as it increases in
scale [19]. This applies not only to laymen with no domain expertise but also -
to a lesser degree - to those involved in the construction of sufficiently complex
systems. In particular, the training dataset may contain properties which make
it difficult to gain epistemic access, but presumably even more dissection is
required to understand the workings of the training engine and learned model.

4To make the same clarification as Facchini and Termine, size here refers to the number of
the systems’ elements on their mutual relations, while format refers to the type of elements
included and their relations [34].
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Specifically, there exists more innate complexity within the workings of the
learning process than the block of data used to train the learning system [57].
This follows from the fact that the learning process depends not only on the data
fed into it, but also the techniques for organizing the data with its corresponding
outputs such that the model is useful.

Of course, this is not to say that the training data is without its own sources
of opacity, the explanations for which would benefit from being user-relative. It
is merely because to posit the Relativity of Explanation, the more impactful do-
mains are those of the training engine and learned model. This is due to the fact
that when a user encounters these complex artifacts, they cannot possibly seek to
comprehend every aspect of its function simultaneously. As such, explanations
for these two more complex artifacts of the system structure must adequately
differentiate between the questions being asked of the system behaviour in order
to provide relevant descriptions of the behaviour to be understood. It is this
differentiation process which separates all possible explanations into those which
cater to some users as opposed to others, depending on what they want to know
about the processes within. Thus, the user’s skills and background knowledge
interface with the complexity of the system’s structure to result in intersections
which are the differently relevant questions. To account for this variability, the
authors posit five different levels to provide these different descriptions “which
may be suitable and relevant for some users but insufficient or inadequate for
others” ([19], pg. 79). These five levels are Levels of Abstraction, which help to
is the topic of the next section. This leveling framework is the culmination of
the Relativity of Explanation, and it will be later argued that analyses based on
such leveling frameworks are widespread in their applicability for deciphering
the workings of complex computational systems. Thus, it forms a crucial aspect
of this thesis.

Second in the taxonomy is link opacity. This refers to the degree of difficulty
in correlating the mechanisms identified by the AI system with those it may
mimic in the world [19]. If the AI system mirrors (and thereby explains) the
mechanisms involved in some worldly process, we have learned something about
the world system by reference to the mechanics of the AI system [55]. However,
this may not be the case because of the heavy reliance on data driven ML
approaches which do not operate using any hypothesis about the underlying
patterns observed in the data, but which instead make broader probabilistic
associations [55].

Whether an AI model is capable of furnishing mechanistic explanations like-
wise depends upon the mechanisms in the world conceivable by the relevant user.
More precisely, the usefulness of a mechanistic explanation for a complex process
in protein folding, for example, may fall short on any user that is not a domain
expert. Thus, even the capacity to furnish mechanistic explanations beyond a
sufficient depth required by the relevant user offers no guarantee that such a
mechanistic explanation helps in providing understanding. Of course, a domain
expert could reconstruct a more relevant explanation out of their understanding
of the mechanisms and the information decipherable from the AI system, but
this still requires an appropriate scoping of the explanation to determine how
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the user receives it in their Explanatory Nexus and thus, understand5.
The third category in the taxonomy is that of semantic opacity. Its two sub-

divisions can be briefly summarized for the sake of confirming that the Relativ-
ity of Explanation plays a role throughout the taxonomy. Before this summary
however, we can note the two most relevant causes of semantic opacity. Specif-
ically, these are when the model lacks a clear interpretive scheme which makes
sense of the information it stores and inferences it makes, or when an available
semantic for the learned model is incomprehensible due to the user’s cognitive
limitations, such as a lack of background knowledge or relevant epistemic skills
([19], pg. 85).

From these causes, the two resultant forms of semantic opacity refer to either
the meaning of the information stored in the learned model (content opacity), or
the inferences used to manipulate it (inferential opacity) [19]. In the former case,
content opacity is most aptly demonstrated by the difference between rule based
systems and neural networks. Here, logical sentences constituting the rules have
their syntactic elements mapped to features that are relevant in this context by
means of a standard Tarskian semantics ([19], pg. 86), whereas the same cannot
be performed for the parameter weights in a neural network. In the exemplary
case of medical diagnosis, a rule-based system would have its components such
as predicates, variables, and connectives mapped to the medical evidence such as
genetic mutations and disease history, but typically the parameters in a neural
network are merely to reduce the overall error in prediction, not that any of
them are individually interpretable [19]. In the latter case, inferential opacity
refers to the inability to make sense of the reasoning paths followed in one of
these decision makers ([19], pg. 87). Like with the values of neural network
parameters, the inferences may only have an instrumental value insofar as they
are accurate in prediction.

Once more, note the persistence of the user’s limitations in causing semantic
opacity in both of its forms and - more importantly - how there is an implied
degree of detail assumed to be relevant in determining which aspects of the
informational structure helpfully receive a semantics. For example, the transis-
tors and instances of memory access within a computer involved in producing a
simple neural network classification are typically not the items deemed worthy
of requiring a semantics. Instead, the neurons themselves are assumed to be the
items deserving of a semantic interpretation. In other words, the components
within the functioning AI system are not all equally demanded to have a se-
mantics applied to them, and thus there is an implied constraint on the degree
of detail presupposed to have an influence on understanding the information in
the model. As such, it appears as though there is an implied choice of LoA

5More can be said about the relation between this type of explanatory scoping and link
opacity. However, for the purpose of this section in asserting the Relativity of Explanation,
it may suffice to briefly mention that the notion of matching mechanisms within an AI model
with those in the world being discovered is similarly dependent upon an initial set of scoping
decisions. A fuller justification of this point may be deserved, however it must wait until
after a deeper discussion of Levels of Abstraction (read scoping decisions for now) in the next
section in order for it to be coherent.
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being made which is simply not deemed worthy of explicating. This begins to
motivate the necessity for including LoA considerations beyond the scope of
only access opacity.

2.2.2 Relations Between Forms of Opacity

From the stakeholders perspective, this taxonomy supports the notion that var-
ious stakeholders bring diverse explanatory requirements to bear on the system
to be explained. As such, the context in which these AI systems are deployed,
which incorporates the users objectives, background knowledge, and cognitive
abilities, directly influences the manner in which the system is perceived as
opaque. The Relativity of Explanation therefore has a fundamental role in
shaping the form of this taxonomy on opacity, such that it is characterized as
a context-dependent and plural concept whose usefulness depends on its ability
to cater to these diverse explanatory needs.

So aside from our overview of this tripartite taxonomy of opacity, the notable
subdivisions within access opacity in particular lead into our next topic. To be-
gin transitioning toward our discussion of Levels of Abstraction, it is important
to recall the pervasive importance of appropriately scoping the potential expla-
nations for the stakeholder. This has laid the groundwork for the Relativity of
Explanation as I have posited it. Toward the major goal of this thesis, the Rela-
tivity of Explanation represents a bridge between the inscrutable data-driven AI
models and the set of established standards for explanation and understanding
by focusing on stakeholder explanatory requirements.

To transition from this notion to the next section on Levels of Abstraction,
we can recall how the alignment of a user’s explanatory criteria with the com-
plexity of the system to be explained results in a limited set of possibly useful
descriptions. These sets of useful descriptions can be organized into a level-
based framework in a way where the levels represent cross-sections of a system
can be viewed independently of one another. These levels reflect a given user’s
explanatory requirements and their arbitrarily definable set of possible ques-
tions of the system’s function. Further, they can provide unique information
depending on the method of their construction.

In the case of this taxonomy and its handling of the training engine and
learned model artifacts (under the umbrella of access opacity), the authors re-
purpose five levels for organizing the functionality of the hardware and software
used to create these artifacts. The higher levels are the more abstract and they
are concerned with the complex behaviour of the software in the system, while
the lower level details eventually terminate in hardware processes computing
everything underlying those behaviours. Each level passing from software down
to hardware represents a different lens through which to attempt viewing fur-
ther through the opacity of the system. Of course, the organization of these five
lenses on opacity as levels is no coincidence, since the functioning described at
one level is closely tied to the functioning described in adjacent levels.

As has been the main argument of this section, these levels are intimately tied
with specific user explanatory success criteria. In particular, having a detailed
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understanding of advanced software behaviors serves a different set of potential
users than an understanding of every physical piece computing those behaviors.

One critical observation included by the authors involves the dependencies
between these forms of opacity. In particular, it’s worth noting that the only
explicit reference to LoAs in this taxonomy happens within the training engine
and learned model subdivisions under access opacity. However, the authors go
on to explain that access opacity in a learned model can “cause link opacity
whenever the user’s epistemic access to the LoA providing the information that
is relevant for the understanding of the target phenomenon is limited” ([19], pg.
87). Further, we can recall that a user’s ability to provide a semantic interpre-
tation of the relevant aspects of a learned model is foundationally involved in
semantic opacity, but “this ability may be compromised by a limited epistemic
access to the concerned LoAs and therefore cause semantic opacity” ([19], pg.
87). As a result, it seems that there is reason to reevaluate the role of LoAs
as an analytical method beyond the five part hierarchy identified within access
opacity. It is this intuition which motivates the broader usage of an LoA styled
analysis for understanding not only the systems in question themselves, but the
relations between LoA choice and other forms of opacity.

Outfitting a user’s Explanatory Nexus with the relevant information requires
an appreciation of the nature of that user as a stakeholder in the system being
explained. As such, interlocking the user-specific dependence of the Relativity
of Explanation within the form of the Explanatory Nexus begins to ground the
use of these Levels of Abstraction as explanatory tools for understanding. To
fully understand this process however, we must now develop our account of these
LoAs further.

3 Levels of Abstraction
This section will very briefly describe the usefulness of a Level of Abstraction
(LoA) within the context of epistemological analysis. After situating how an
LoA relates to the systems it analyzes and the models it produces, I detail
how an LoA is constructed and used (Section 2.1), how they differ from similar
approaches to understanding (Section 2.2), and how a LoA-based analysis of
ML systems can enrich the normative framework landscape beyond the current
state (Section 2.3).

Broadly speaking, an LoA is a framework for understanding some system
by essentially taking a specific view of it. More specifically, this framework is
a form of epistemological levelism which attempts to explain phenomena in the
world with reference to various, possibly intersecting descriptions [20]. These
descriptions are often layered upon one another such that the nested LoAs pro-
vide increasing degrees of detail. They are epistemological insofar as they aim to
study reality at various levels for the sake of breaking complex phenomena down
into understandable components. As such, this framework refrains from making
ontological claims about objects described at different levels, or from articulat-
ing methodological interdependence among layered theories. Instead, LoAs are
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a means of interpreting some variables within a system, whether conceptual
or empirical. The choice of variables within the LoA determines the nature of
the models which may be generated from it, which themselves are intended to
identify some structural regularities within the system under consideration [20].

By choosing some aspects of a system to be variables, the designer of a LoA
is considering only these aspects of the system and all else is abstracted out.
This means that those entities which are epistemically relevant to the system
processes under consideration are chosen as the foundation for the models made
thereafter. As a result, the ontological commitments of the LoA are borne out
after the variables are decided6. This simplifies the process of analysis to allow
for more streamlined understanding of which questions can be meaningfully
asked of and answered by a given model [20]. Through the process of analyzing
a system at some LoA and generating a model within the confines of the variables
chosen, the boundaries are set as to what information is within the scope of the
LoA.

To begin understanding the LoA framework in the broader context of the
goals of this thesis, we can consider that one of the simplest descriptions of a
LoA is as a specific perspective on a system under consideration [20]. Under
this description, we might imagine various stakeholders of a complex system and
their different views or judgments on the subject matter, such as whether to
engage with it. For example, the different users of an advanced virtual assistant
would have different criteria guiding their understanding of it. A child receiving
their first phone may only know that the assistant has certain features which
make rich interactions possible and may not care about the inner mechanisms
driving these interactions. However, the assistant is still required to perform
many functions that may go unappreciated by the child. The child’s judgment
would correspond to a highly abstract LoA insofar as their criteria for choosing
among assistants may be a rather limited set. As such, variables relating to ease
of use and basic functionality might suffice.

Still at an abstract LoA but different from that of the child, a more common
consumer might value certain variables such as the ability to make online pur-
chases, plan a travel itinerary, or automate the sending of emails. There may be
some personal enjoyment in understanding the inner language model producing
the assistant, but certainly it is the factors involving its practical household
status that determine its worth to most consumers.

To distinguish an abstract LoA from a more granular view, consider the rel-
evant criteria for a software engineer or researcher. The engineer would likely be
interested in the details of the assistant’s interoperability with software through
the relevant APIs, the processes by which the assistant breaks down and re-

6Floridi distinguishes between a committing and committed component within a system-
level-model-structure (SLMS) scheme to show this process of a theory explicating its ontolog-
ical commitment. Briefly, this SLMS scheme shows a cycle of relations where some System is
analyzed at a LoA, which generates a Model to identify a Structure attributed to that system
([20], pg. 316). Thus, when a theory (encompassing the level-model-structure components)
accepts a LoA, it commits itself to the existence of certain types of objects, which are the
types constituting the LoA observables. Since this metaphysical picture is beyond the present
scope, the entirety of this process can is articulated in [20], pages 315-316.
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sponds to a prompt, or its manner of navigating the internet to answer complex
queries. These lower LoAs are constituted by variables which give more de-
tailed views of the internal functioning of the assistant, rather than only its
outward-facing capabilities.

From these simple cases of distinctions among different types of users, we
can already begin to see the difference between a perspective which values a
virtual assistant as something which makes shopping more convenient versus
as a tool for accomplishing specific tasks. This allows us to begin building an
intuition around how the different variables chosen by users shape each of their
views as to the resultant value of the same object.

With this brief sketch in mind, we can now delve into a more detailed look
at the components constituting a LoA beyond their rough contours, as well as
how they relate to one another and other similar work.

3.1 Definitions and The Method
As mentioned, the first component of a Level of Abstraction is that of a typed
variable. Such entities will be familiar to all who have studied computer science,
insofar as a variable is a placeholder for a referent which may be unknown or
changeable [20]. The following quotations are taken from the original account
in Floridi (2008).

Definition. “A typed variable is a uniquely-named conceptual entity (the vari-
able) and a set, called its type, consisting of all the values that the entity may
take. Two typed variables are regarded as equal if and only if their variables
have the same name and their types are equal as sets” (pg. 305).

For the purposes of notation, x:X designates a variable x of type X. This
means that any variable has a set of predefined types, which constitute an im-
portant decision about how that variable may change with reference to changes
in the observed system. In fact, once a variable has been stated with a typical
place holding symbol, and given a restricted set of possible values, it can be
interpreted such that it becomes an observable.

Definition. “An observable is an interpreted typed variable, that is, a typed
variable together with a statement of what feature of the system under consid-
eration it represents. Two observables are regarded as equal if and only if their
typed variables are equal, they model the same feature and, in that context,
one takes a given value if and only if the other does” (pg. 306).

Further, observables are discrete if their variables have finitely many values,
and are analogue otherwise [20].

Although in some contexts it is appropriate to leave implicit the relation-
ship between the observed feature of the world system and its corresponding
feature in the model, it is important to explicate this relationship for the sake
of clarifying the process of inference. Generally speaking, a system can refer to
any object in the world worth analyzing, including conceptual systems whose
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domain is discourse, analysis, or other purely semantic grounds. However, for
the purposes of this thesis, a system will typically refer to a machine learning
algorithm instantiated on some computing device and will be disambiguated
from the world system being predicted otherwise 7.

To clarify the relationship between observables and typed variables, we can
imagine measuring the height of a person [20]. If the variable for a person’s
height is assigned the letter h, and the set of possible types given is the rational
numbers such that {0 < h < 3}, this provides an example of a typed variable.
If we add the statement that h represents that person’s height in meters and
interpret this value as such, this makes it an observable. Note that the interpre-
tation must be consistent, since interpreting the a similar variable in feet and
inches may appear to equate the typed variables despite this being an error.

With a clarified notion of an observable in mind, we can now construct a more
precise definition of our central LoA concept, which is essentially a collection of
observables.

Definition. “A level of abstraction (LoA) is a finite but non-empty set of ob-
servables. No order is assigned to the observables, which are expected to be
the building blocks in a theory characterised by their very definition. A LoA
is called discrete (respectively analogue) if and only if all its observables are
discrete (respectively analogue); otherwise it is called hybrid” (pg. 309).

We can now briefly return to the previous examples of various computer
users. The child LoA would presumably consist of observables capturing ease
of access such as “display size and resolution”, whereas the engineer would
likely focus on observables for “storage capacity” or “processing capabilities” as
described previously.

Thus, observables alone describe the aspects of the system worth considera-
tion as independent entities. However, the system being considered likely cannot
take an arbitrary assortment of possible variable values and remain realistic. So
in addition to a collection of observables, LoAs need restrictions on all possible
combinations of values to understand the relationships that are allowed to hold
among the observables within a given LoA [20]. For a straightforward example,
we can take the case of a person’s height where the variable type is the rational
numbers. Any value inside the given range {0 < h < 3} would be considered a
possible system behaviour.

More sophisticated than a restriction on a single value, consider the prop-
erties of a chess game. Typically during a match, players simply record their
moves in a standard notation. Potential observables could be the time taken to
perform a move, the apparent stress level of the players, their exercise habits in

7Nevertheless, there will be cases where the distinction between the world system being
modeled and the algorithm designed to recognize patterns within it remains unclear. Espe-
cially in cases where machine learning models are identified as such, the explanatory work
may describe the machine learning model as the system (object) in question. Therefore, the
use of the term “system” will be used here to refer to the object being studied. This will
typically be a machine learning system, not the system in the world that the machine learning
algorithm is attempting to predict or otherwise emulate.
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training, or the location of the match. This information may not appear directly
relevant for understanding how the pieces move across the board, yet these fea-
tures may inform why a particular blunder was made or good move overlooked.
The annotated moves in particular are only informative with the relevant back-
ground understanding of the initial and following possible states of the board.
To make this understanding explicit, we can disassemble the constructed game
into various constituent pieces8.

Imagine viewing along the surface of the chessboard from two perpendicular
angles. The first LoA would only view the files of the board stretching from
player to player without consideration of the ranks running from side to side
nor the differently colored squares within [20]. The second LoA would only
consider the ranks and would not distinguish the files. In the first LoA, each
file’s observable would thus be the set of pieces placed somewhere upon the eight
squares in it, and a move would be constituted by the change in file that results.
Observing each piece as it moved would show a knight moving one or two files to
either side, a king could only move one file side to side while a bishop could move
any number of squares. A rook (or indeed any other piece) that moves along
the file would appear stationary in this view, but would be indistinguishable
from a bishop if it likewise moved between files. Similarly, a pawn could only
change files when it captured another piece, otherwise it would traverse down
its file and appear to never move. Pawn movements in the second, rank-based
LoA would always show a change of position since pawns must move forward.

Where neither view of file- nor rank-based chess would individually provide
much useful information, “the two disjoint observations together ... reveal the
underlying game,” ([20], pg. 308). This is due to the fact that the game has
been disassembled into two dimensionally-impoverished LoAs whose true value
is realized once they are recombined to recover the original two-dimensional
game. The standard notion again becomes meaningful, since the rank and
file coordinates of each piece which were projected down into each LoA in the
deconstruction process.

However, some information remains lost if we attempt to understand the
original game from only this pair of LoAs. As mentioned with the example of
a person’s height, we still require some restrictions on the possible observable
values that permit us to make sense of the overall system. Otherwise, an uncon-
strained set of observables taking arbitrary values would not usefully correspond
to the system in question. To this end, we can define a system’s behaviour as
precisely those combinations of observable values that correspond to real states
of affairs.

Definition. “The behaviour of a system, at a given LoA, is defined to consist of
a predicate whose free variables are observables at that LoA. The substitutions
of values for observables that make the predicate true are called the system

8Of course, there are many possible methods of performing this dissection, including
whether to only include features of the chessboard itself or these other contextual features.
The goal is to create the most useful simplifications which remain maximally informative to
the intentions sought by the LoA designer.
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behaviours. A moderated LoA is defined to consist of a LoA together with a
behaviour at that LoA” (pg. 310).

Thus, a moderated LoA couples a specific view of a system to its allowable
dynamics. This tracks the representation relationships between observables and
their instantiated aspects within the system in question. This is particularly
useful in discrete systems as opposed to analogue, since the behaviours of ana-
logue systems in science are typically described by differential equations. To
appreciate the relevant difference between discrete and analogue systems, it is
worth identifying their respective domains of application.

Most importantly, the continuity that holds within analogue systems means
that small changes in observables create small corresponding changes in the
overall system behaviour ([20], pg. 310). The quantities of these changes can
be described exactly and solved, providing the sought behaviour in a way that
cannot be achieved in discrete systems. Instead, where discrete systems have
observables whose small variation may cause arbitrary resultant changes in the
overall system behaviour, the method of LoAs provides a way of tracing the
relationships that hold across these apparently arbitrary changes ([20], pg. 310).
This allows the system to be comprehended via simple approximations; in this
case, the predicate’s free variables constitute an exact description of the system
behaviours. Then, varying the LoA permits increasingly detailed accounts of the
system while retaining the correspondence from observable changes to system
behaviour changes.

We can now arrive at the final remaining definition required to understand
the method overall. In contrast to the scope of a single model as formalized by a
LoA, a Gradient of Abstractions describes the process for facilitating discussion
over a range of possible LoAs [20].

Definition. “A gradient of abstractions, GoA, is defined to consist of a finite
set {Li|0 ≤ i < n} of moderated LoAs Li, a family of relations Ri,j ⊆ Li × Lj ,
for 0 ≤ i 6= j < n relating the observables of each pair Li and Lj of distinct
LoAs in such a way that:

1. the relationships are inverse: for i = j, Ri,j is the reverse of Rj,i

2. the behaviour pj at Lj is at least as strong as the translated behaviour

PRi,j
(pi)pj =⇒ PRi,j

(pi)

and for each interpreted type x:X and y:Y in Li and Lj , respectively, such
that (x:X, y:Y) is in Ri,j , a relation Rx,y ⊂ X × Y,” ([20], pg. 312). The
same equality and discrete/analogue restrictions apply as with all previous
definitions.

Condition (1) ensures consistency is maintained between successive LoAs as
increasing detail is sought. In particular, if new observables are added to a
more detailed, lower LoA which thereby extend another higher LoA, the same
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constraints operating on the higher LoA apply to the lower. Even if newly intro-
duced observables lie outside the scope of the more abstract LoA, the constraints
applied to these observables are still true in the more abstract LoA.

The goal of the method is therefore to adjust the LoAs such that they become
more comprehensive in their detailed expression of system behaviours [20]. The
variability within LoA construction is a core feature of the method which plays a
key role in distinguishing the herein proposed LoA method from other normative
frameworks.

3.1.1 Disjoint and Nested LoAs

One useful distinction between the possible forms of a GoA is between their
having disjoint or nested LoAs. A disjoint GoA is one with constituent detailed
LoAs containing complementary information to one another which combine to
give a fuller account of the more abstract LoAs. In contrast, nested LoAs provide
further refinements on the details of a system when they are each successively
within the scope of the previous. More specifically, we can turn to the defined
difference between these two options:

Definition. “A GoA is called disjoint if and only if the Li are pairwise disjoint
(i.e., taken two at a time, they have no observable in common) and the relations
are all empty. It is called nested if and only if the only nonempty relations are
those between Li and Li+1, for each 0 ≤ i < n− 1, and moreover the reverse of
each Ri,i+1 is a surjective function from the observables of Li+1 to those of Li”
([20], pg. 312).

Most commonly useful to the domain of computer science are the nested
layers. Their hierarchical structure offers a successively fine-grained represen-
tation of the computation being performed. By using a nested GoA defined to
capture the behaviour of a system, we can provide an example of the nature
of the relations between related LoAs. In what might be the simplest case, we
can recall the example of a person’s height or we can measure their physical
attributes as a proxy for their potential aptitude for some sport. Specifically,
LoA L0could contain observables for a person’s size - designated by variable s,
typed with {small, medium, or large} shirt sizes - and the dynamism in their
movement - designated by variable d, typed as a real number representing the
time in seconds it takes for them to move through a standardized set of markers
on the floor. A more precise LoA L1might then contain two more useful vari-
ables for both size and dynamism, which receive reach and height, and ground
speed and jump touch respectively. Measuring one’s reach and height as rep-
resentative of their size could be done with variables r and h, each typed with
bounded9 real numbers representing centimeters to provide the behaviour of
L1as the following predicate with free variables r and h. This system behaviour

9In this case, the upper boundary could simply be the value of the height of the tallest
person ever recorded [58]. For the purposes of this example, this provides an allowable range
of physical measurements that could indicate a person’s aptitude for success in some sport.
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could be interpreted as some threshold of practicality for being considered for a
competitive team.

{rmin < r < rmax} ∧ {hmin < h < hmax}

In summary, a LoA is a set of variables - each with a specified type - which
are the interpreted aspects of the system under observation10. Specifying a LoA
helps to clarify which questions are meaningfully oriented toward the system at
hand, as well as to disambiguate and clarify fallacies and category mistakes. This
is intended to establish the rules by which the subsequent analysis is governed;
as Floridi states “the choice of a LoA predetermines the type and quantity of
data that can be considered and hence the information that can be contained in
the model”[20]. As will be shown in Section 3.4, this variation in the information
that can be contained within a model reflects how LoA-change contributes to
an understanding of the target system.

3.2 Similar Approaches Toward Normativity
Using LoAs to clarify conceptual commitments in a model is a fundamentally
useful epistemological method, but it is not altogether new. There are multiple
notable methods that attempt to clarify how one may take differing views of
a single system and extract meaningfully different information from each. As
such, this section will discuss various methods of interpreting the behaviour of
complex systems via LoA-like analyses, each with the purpose of being internally
comparable with reference to various normative commitments. Section 3.3 will
discuss precisely what is meant by these frameworks having normative targets
in more detail, and Section 3.4 will combine the full account of how a LoA-based
approach offers key insights into understanding the complexities of AI systems
and their associated normative commitments.

One of the most famous attempts at a framework for understanding complex
systems through layers of analysis is provided by the neuroscientist David Marr
[35]. Here, Marr posits three complementary views on how a complex system
performs the task it is designed to accomplish: the computational, algorithmic,
and physical levels. These give increasingly fine-grained descriptions of the
component pieces within the system interacting to perform its overall task.

A further attempt at understanding the field of AI is sketched by Serb and
Prodromakis (2019), who add two layers atop Marr’s system in an attempt to
provide a more exhaustive coverage of possible descriptions [52]. Additionally,
they aim to identify pathways for potential innovation within certain safety and
performance guarantees as described by the framework’s levels. What follows
will establish the fundaments of Marr’s framework and briefly expand upon a
cross-section of the dialogue surrounding it’s relevance to the digital domain. In

10For another account of structured views of complex systems that approaches a similar
goal via algebraic topology to explain spatial and structural changes over time within a similar
hierarchical system, consider Atkin, 1982 [2], as well as Beaumont and Gatrell’s discussion of
his method in [7].
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particular, we will overview some attempts to make this framework amenable
to the tasks associated with understanding advanced AI. After situating Marr’s
framework in some of its contemporary discourse, we may proceed to a compar-
ison of the various innate tradeoffs within these different leveling systems.

3.2.1 Marr and Machine Learning

Perhaps most famously, the vision neuroscientist David Marr aimed to dissect
complex systems using three complementary levels of analysis [35]. Despite
originally being construed as a means of understanding vision processing in the
brain, these levels have become foundational pillars in complex system analysis
more broadly. Thus, it is helpful to begin with this oldest framework to fully
understand the later attempts at making Marr’s levels amenable to ML systems.
In this way, we can begin to understand the proposed value of analytical methods
that depend upon such level-based frameworks and the benefits they provide.
These benefits will be briefly overviewed after we are introduced to one possible
expansion of Marr’s framework from Serb and Prodromakis (2019) [52], and a
further discussion of the benefits of leveling-systems will come in Section 3.4.
Generally speaking in the domain of AI, the clarifications offered by this style of
analysis allow for simplified comparisons between interpretability taxonomies,
identification of various forms of ethical risk, as well as more accurate potential
behaviour prediction.

Due to its centrality in fields such as the neuro- and cognitive-sciences, Marr’s
threefold framework is renowned for its popularity. We can sketch its layers of
analysis to serve as a proper starting point for comparison with other similar
theorizing. Specifically, this framework consists of three distinct levels, all of
which describe a complex system with increasing implementational detail. From
the top down, Marr’s levels are the computational, the algorithmic, and the
physical [35]. These levels correspond to three descriptions of a system which
elucidate particular features depending on the view assumed.

Most abstractly, the computational level addresses the broader questions
related to overall task decomposition and processing. The main components of
the task and their manner of serving the overall goal of the designed artifact
are the foci of this level. This level seeks to define the main purpose of the
process, and what kind of information it requires in order to be accomplished
[35]. Stated in terms of the original vision example, the computational problem
of recognizing objects would be how a visual system extracts information from
the sensory input to make categorizations of objects and their relationships in
space [35].

Next, the algorithmic level aims to specify the steps which constitute the
algorithms used to achieve the goals set out at the computational level [35]. As
such, this level articulates the manner in which the incoming data is processed
into its desired output state. This requires a description of the representations
and various transformations of the information involved in all the intermediary
steps. To use the same example as earlier, we can recognize objects by first
addressing questions of how edges might be detected in the visual field, how
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contrast and contour allow structure to be determined, or how we can perceive
depth by differentiating between the information given by the two points of
input in our eyes [35].

Finally, the most concrete level is that of the implementation of the previous
level within the physical hardware [35]. The physical level describes how the
algorithms identified are made manifest within the biological, digital, electronic,
and other mechanisms underpinning the actual completion of the algorithms.
Following suit, this level describes the specific circuits involved in transmit-
ting the signals that are processed in every intermediate step of the algorithms.
Again with our example of recognizing objects, the physical level would describe
which neural cells and pathways are involved in the various aspects of transmit-
ting the visual information from the eye’s first input, to the recognition that an
object is in the visual field [35].

Much has been written about Marr’s framework, but it is worth summariz-
ing a few key points before we discuss the expansions upon his theory which
aim to apply this framework to the domain of machine learning. One straight-
forward observation is that there exist certain dependencies between the levels
as they are described. There is a conceptual flow as the more abstract levels
become more concrete. More specifically, the goals set out in the computa-
tional level carry through to determine the structure of the algorithms which
furthermore bound their physical implementation to some configuration of com-
ponents executing them. In this sense, there is a top-down flow of information
which determines the criteria for evidence of success from the computational to
the physical level. Likewise in reverse, the performance constraints of physical
hardware can influence the usefulness of various algorithms. The availability of
sufficiently complex algorithms then constrains the range of possible goals that
can be accomplished. Thus, there is a bottom-up flow of constraints imposed
by logistical realities of solving problems.

Moreover, there can be cases where the boundaries between levels blur, since
the system under investigation may have many complex components each with
their own definable computational-level goals. For essentially this reason, Marr
advocates for an iterative application of this system at varying spatial scales
[35]. This is intended to enable the framework’s usefulness to be renewed re-
gardless of whether the system in question is the entirety of visual processing, a
certain brain region firing in sequence, or a single neuron. In each case, we can
define its computational goal, its algorithmic processes, as well as their physical
implementation11.

Recently, Marr’s levels of analysis have been argued to offer uniquely distinct
contributions when analyzing not only biological vision systems, but especially
information-processing mechanisms more broadly [8]. In fact, the necessity of
each level in the framework is derived from those unique contributions to the

11This blurring of the boundary between levels is particularly evident with the advent of
wetware biological computing which breaks down the typical hardware-software distinction.
For a more detailed account of the transference of abstractly defined specifications into this ge-
netic circuitry “between” the hardware and software, while maintaining the distinct usefulness
of these different levels, see (Oliveira and Densmore, 2022) [45].
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analysis. More specifically, the computational level helps to conceptualize why
a mechanism does what it does, and places this overall notion of its function
within its broader environmental context [8]. This helps build an understand-
ing of the external tasks and constraints into an answer of its contextualized
purpose. Internally however, the algorithmic level inspects the encoded repre-
sentations within the mechanism to clarify how information is being processed.
Bechtel and Shagrir argue that this “how” of computation defines the manner
in which these patterns of organization enable the mechanism to produce its
particular phenomenon [8]. Finally, the implementational level completes this
top-down picture of necessary levels since it provides a comprehensive view of
how the mechanism is performed in reality, along with the physical details con-
straining its operation [8]. As mentioned previously, these levels interact in their
contributions such that the computational level defines the overarching goals to
be accomplished, the algorithmic level explains how these goals are achieved via
internal processes, and the implementational level produces the result in real-
ity. So with regard to the methodologies identified by each level of analysis, we
see how each perspective offers a different understanding of both the internal
workings of the functions and the overall trajectory of the system at hand.

Moreover, Marr’s levels have been used to analyze various types of ML sys-
tems to make precise the nature of the algorithms involved in reinforcement
learning (RL) and beyond [40], [22]. Broadly, Hamrick and Mohamed (2020)
take elementary steps toward directly applying Marr’s framework to various
methods in ML. First, they identify one example of how deep Q-networks (a
type of RL algorithm) could face what appears to be one critique - namely, that
of the algorithms failing to really know what objects are - but which breaks
into two separate critiques when made at two different levels of analysis. More
precisely, the computational goal is to maximize scalar reward, but perhaps this
should be formulated with direct reference to understanding objects and spatial
relations. Likewise the implementational critique could be directed more at the
manner of distributed representation used by these Q-networks, since there is a
potentially misguided translation from the discrete composition of real objects
to these distributed forms [22].

To demonstrate the scope of possible AI domains to which Marr’s levels ap-
ply, the authors also use the framework to articulate the relationship between
symbolic and distributed reasoning systems. For something such as the Travel-
ing Salesman Problem, solutions are traditionally implemented using symbolic
programming methods although, algorithmically, the TSP can be converted to
other NP-complete problems which can themselves be solved using a variety of
algorithms, including heuristic search [22]. The programming implementations
of these heuristics need not be symbolic however, and as such they could be
implemented with non-symbolic deep learning components. As a result of this
analysis, we see that ML systems may enact computations using both symbolic
and distributed representations at differing levels of analysis [22].

Furthermore, the application of Marr’s levels can emphasize crucial design
considerations such as choosing how to represent discretized time brackets, to en-
sure that the logic of the algorithmic level correctly achieves the computational-
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level goal, as well as to track the subtle goal changes made between levels [22].
Likewise with bias in the training data, where these levels might help distin-
guish biases as the “result of clinical constraints at the computational level, or
whether it is an artefact of algorithmic-level choices”[22]. Notably, the authors
also mention the flexibility of Marr’s leveling system insofar as it can focus the
analysis on various aspects of larger systems. However, they are careful to add
that Marr’s framework is unable to “capture the full set of abstractions ranging
from the computational-level goal to the physical implementation” [22]. And
more broadly, they acknowledge that Marr’s levels lack any consideration of the
socially-situated role of computing systems. As such, we seek a framework that
maintains the insightful cross-cutting nature of Marr’s levels, but which is more
flexible and responsive to contextual concerns.

More elaborately than the brief RL example previously, Niv and Langdon
(2016) argue that the entire field of RL has had enormous success due to its
straddling of all three of Marr’s levels [40]. However, they assert that especially
in the domain of RL, open problems remain when applying Marr’s levels of
analysis and that the solutions to these problems require input from various
levels for their resolution.

For example, the computational level goal of these decision-making systems
is to maximize their future reward and minimize their punishments, but this
might not be a true representation of agent goals from the perspective of evo-
lution [40]. As such, we may ask whether this formulation is most apt for the
tasks we seek to achieve, or whether more nuanced forms of fundamental re-
wards should also be considered such as curiosity and information-seeking [40].
Similarly, task representation is typically learned via experience, but the meth-
ods by which this is done are not clear. Where animals have been observed to
infer the causal structure of a task based on their observations, the question
remains as to what mechanisms are involved and how they relate to the agent’s
memory and attention.

Algorithmically, the representation of tasks as temporally distributed has
been used to help navigate continuous learning, but this begs the question of how
these representations adapt to different learning environments while accounting
for the passage of time in complicated tasks [40]. Likewise, internal action
and state representations can determine the efficiency of many RL algorithms
in hierarchical-task scenarios, especially insofar as the decomposition of these
task hierarchies lack proper criteria for which modes of decomposition support
learning the most [40].

At the implementational level, successful mappings from RL functions to
neurobiological substrates leave unanswered the question of how certain brain
neurons compute reward prediction errors as analogized in the RL algorithms.
Finally, a combination of model-based and model-free architectures may coexist
in the brain, but this leaves open the question of how such systems interact
with one another or the overall system behaviour [40]. At the very least, these
findings motivate the use of LoA-styled analysis for understanding a variety of
advanced ML architectures, especially to diagnose misplaced assumptions and
make clear which analogies are relied upon too heavily. Thus, we require a
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framework that maintains the usefulness of Marr’s approach and which may
recognize the broader context of computing systems and their interactions with
users and other computing systems.

In accordance with the recommendations made by both Hamrick and Mo-
hamed as well as Niv and Langdon, in the next section, I will discuss the need
for and benefits associated with a more fine-grained approach than that offered
by Marr’s framework. Rather than only seeking to find inspiration across the
levels, the LoA method will demonstrate a more flexible and modular framework
than that presented in Marr’s three levels, while maintaining its usefulness.

3.2.2 A Five-Part View of AI Systems

First, the uppermost layer in the Serb-Prodromakis system is that of agency.
At this level, we can interpret the system as exercising the ability to make
goals and decisions, learn to improve its behaviours toward those goals, and
acquire declarative knowledge to act more effectively in its environment [52].
This layer is perhaps most characteristic of human intelligence and it plays a
key role in understanding our interactions with such systems, since it allows us
to formulate an idea of a machine whose actions are reminiscent of our own.
This layer is therefore also crucial in bounding an AI system’s behaviour within
some set of ethical norms [52]. As a result, research in cognitive psychology, the
ethics of human-computer interactions, and multi-agent systems all play a role
in enhancing the agential capabilities, to name a few.

Next, the semantic layer deals with the manipulation of symbols, as well as
more fine-grained reasoning and planning. Although this layer also deals with
aspects of reasoning, its particular operations consist of those such as variable
assignment, inference, and the use of memory - both for storage and recall
[52]. Often, the messages communicated between component pieces at this layer
occur using semantic objects which are typically represented as high-dimensional
vectors [52]. Typically, learning at this level consists of the transformation of
these semantic object vectors to form new objects from salient combinations of
the old. In contrast to the lower layers which may rely on deep neural networks
to make feature abstractions, such complex combinations of semantic objects
are underpinned by different mathematical machinery [52].

In the middle of the framework is the computational layer based on that
found in Marr (1982), which is focused on accomplishing the tasks set out at the
semantic layer [35]. These may include classifying sensory inputs or modulat-
ing and generating signals required by supervised learning, which are functions
computed using items such as n-bit digital numbers [1], neural spikes [38], or
analog signals [27]. This layer is largely composed of neural networks, which
are often described in terms of layered neurons and their degree of connection
with one another. The aim of these systems is to make accurate classifications,
stabilize local circuitry, and train efficiently [52]. Various architectures are used
to learn in this layer and progress toward these aims, and these computations
are usually structured around gradient descent optimization.

Next, the functional layer refers to the fundamental implementation blocks
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that perform the base functions through logic gates, artificial neurons, and other
circuit components which process signals and shape activation functions [52].
Most importantly to the design of the learning processes at this layer is the
creation of effective learning rules for neurons, whether in spiking or non-spiking
networks.

Finally, the physical layer encompasses the physical processes involved in
implementing all the components mentioned. Specifically, transistors have ac-
complished much of the physical computation in traditional computers, but
research on quantum computing and other forms of implementation such as
wetware processing are intended to fundamentally change the nature of this AI
hierarchy from the ground upward [52].

Before continuing with similar frameworks to this one, I will briefly discuss
the interrelations between these layers for the sake of outlining how the ca-
pabilities of AI systems are shaped, especially insofar as the levels themselves
contribute to developing the field.

3.2.3 Tradeoffs and Anticipating the Usefulness of A Continuous
Level System

The primary focus of this five part system when discussing the features of the
layers themselves is how they individually face complexity-performance trade-
offs, or how together the layers face a control-complexity tradeoff [52]. In align-
ment with the nested LoAs mentioned earlier, this framework views the field
of AI hierarchically, with each level serving a particular function with the per-
spective it conveys, and with consecutive layers providing increasingly detailed
information on the model in question.

To begin understanding how the interactions between different LoAs influ-
ence our interpretation of a system’s complexity, we can examine some tradeoffs
identified within this five-level framework. These five notable interrelationships
set certain constraints on the AI system’s function and performance.

Initially, we might examine the relationship between power efficiency and
complexity. As some high-level, complex capability is brought to bear on the
lower levels computing it, efficiency often improves. For example, hardware ac-
celeration is useful primarily because implementing a neuron directly on hard-
ware is more energy efficient than doing the same in software [52]. Conversely,
the complexity of an AI functionality increases along with its power usage while
moving up the hierarchy to achieve more abstract reasoning over sophisticated
semantic objects.

Furthermore, there is a notable relationship between transparency and re-
liability insofar as higher level components are typically more amenable to an
intuitive human understanding. It is often easier to inspect and debug the se-
mantic objects which are more readily analyzable. On the other hand, lower level
components like neurons and weight matrices are more challenging to query and
their internal states can be difficult to precisely characterize. This difficulty can
require special tools and methods of analysis, which makes them less reliable.

Likewise, high level components are typically more flexible, since behaviours
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can be altered via their more interpretable semantic objects and symbolic repre-
sentations [52]. As we descend to lower levels however, control over the specific
system operations can be more difficult, since manipulating the same behavior
can require an understanding of each physical signal involved in the hardware.

In particular, the relationship between the functional and physical layers di-
rectly impacts hardware design. Is the structure of neural networks become more
ubiquitous, hardware designers can cater to their specific needs by designing ar-
chitecture that optimize for these designs [52]. For example, the performance
of complicated patterns of connection between neurons in neural networks can
be accelerated using shared memory blocks. Further, the advancements previ-
ously mentioned in quantum computing and other relevant domains promise to
continually increase the capabilities of the building blocks of computation.

To connect this to our broader discussion of the nature of discrete leveling
systems such as Marr’s in comparison to LoAs, we may briefly examine the work
of David Danks for insight into core issues underlying these tradeoffs [14]. For
the present purposes, it is worth sketching two of his criticisms to anticipate the
usefulness of more fine-grained approaches than that of Marr, especially since
these criticisms intersect with LoAs in a clear manner. More specifically, these
two criticisms of distinct levels of representation in the cognitive sciences such as
Marr’s are a varying notion of realism and a lack of precision when considering
intertheoretic relations.

On the first point about realism, Danks says that this dimension assesses
the relationship between a theory and the real world phenomena it describes.
Although effectively all cognitive theories have a degree of realist commitment
there is variation among precisely which aspects of their analyzed systems are
considered real [14]. Especially in the case of using metaphors for higher level
concepts that do not literally exist, the boundaries of these metaphors can be-
come unhelpful or misleading. To translate this to LoA terms we can recall that
the process of definition makes our ontological commitments clarified including
those with regard to realism.

On the second point about intertheoretic relations, Danks describes how
there is a predominant tradition where higher level theories are expected to be
explained by or reduced to those at a lower level [14]. In place of this reduction
process, he posits a notion of constraint between theories which is intended to
encapsulate when a change in understanding in one theory leads to change in
another [14]. To again indicate toward translating this into LoA terms, we can
consider this constraining process similar to the moderating done upon either a
LoA to produce its behaviour.

Thus, although it is clear that Marr’s levels and its descendant frameworks
provide a novel shorthand approach to analyzing complex systems, we can see
from these innate tradeoffs that there remains room for improvement. Before
articulating that improvement further, it is worth seeing an example of how
normativity is intended to be derived from the use of such a leveling system.
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3.3 Beyond Marr’s Levels for Normative XAI
As has been established in previous sections, both the original three-level and
other expanded versions of Marr’s framework make for a generally acceptable
method for decomposing and understanding complex systems12.

To illustrate its usefulness, we can first recall that Marr’s computational
level of analysis is intended to provide explanations for why the computed func-
tion is appropriate for its designated task [53]. This is rooted in the nature
of the questions asked by this level of analysis; namely, those surrounding the
overall trajectory of the function being computed and its integration within
the environmental context in which it is situated. As such, the nature of the
explanations being provided at various levels of analysis allow for comparisons
based on the criteria of the imagined users asking the questions associated with
each level. Of course, the plurality of potential explanatory criteria does not
necessitate a stable basis for comparison. That is to say, various users may seek
explanations for various aspects of the machine learning process, so there must
be some means of associating the explanations to the criteria they fulfill. Other-
wise, a user’s explanatory criteria are left unanswered. This begins to establish
how the lens of Marr’s levels translates between the realms of understanding and
normative explanation, especially since the normative domain of comparisons
of explanatory strength are central.

We can now describe in more detail how normative criteria are extracted
from users for the purpose of making opaque computing systems transparent.
This process will then be translated to suit a LoA-based method rather than
Marr’s framework in the following subsection. Specifically, the next subsec-
tion will connect the aforementioned account of AI opacity impeding upon our
understanding of a model’s inner workings with the natural alignment of under-
standing by means of LoA-based method.

3.3.1 Normativity through Marr

Thus far, I have striven to articulate the value of a general leveling framework
(of which Marr’s represents one specific form) toward understanding advanced
ML systems. To give a more precise example of how we may derive normative
requirements from such a framework, we may turn to work of Carlos Zednik
(2021) [63]. In alignment with Zednik’s analysis, our present goal in extracting
normative requirements for explanations is to structure these explanations as
comparable in their achievement. Alternatively, the comparison process among
a multitude of explanations is performed by reference to such norms. For an
example in Zednik’s terms, we can examine the success or failure of an explana-
tion toward answering a certain why or how question, since these are the norms
he has identified in the form of the stakeholder questions.

12The same conclusion applies to a LoA-based method insofar as the structured decompo-
sition by way of Marr’s levels can be accomplished in LoA terms, though the precise charac-
terization in LoA terms may not be reversely translatable to Marr’s levels. Further expansion
upon this point will come in Section 3.4.
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To briefly overview his translation process, Zednik’s normative framework
describes a rough mapping from Marr’s levels to normative criteria to assign the
appropriate explainability methods to each user’s concerns. Despite encounter-
ing a more detailed description of the Forms of Opacity in Section 2.2.1, we can
briefly revisit this issue for the purpose of understanding how Marr’s framework
intends to dispel the relevant form. Namely, Zednik acknowledges the plurality
of opacity issues within ML and states that this creates a series of black boxes
depending on the user involved. One central claim he makes is that there is no
such thing as one unified issue of opacity insofar as a model is equally inscrutable
to all stakeholders. Instead, there are various opacity problems presented to the
different stakeholders who interact with the model for which we seek an ex-
planation. As a result, each ML system constitutes a black box insofar as its
workings are not particularly amenable to any one user’s understanding, even
by the experts involved in their creation. It is this multitude of opacity issues
which motivates the central concept from Section 2.2.2; The Relativity of Ex-
planation. Simply put, the act of confronting the black-box nature of a system
and seeking an explanation cannot be done without a stakeholder standpoint
from which to begin seeking. Every stakeholder brings a particular set of con-
cerns to bear on the system in question which manifest as various explanatory
requirements.

Toward this end, Zednik would likely agree with our previous analysis inso-
far as he proposes that opacity must be understood as an agent-relative phe-
nomenon [63]. In contrast however, his conclusion is borne out of an acceptance
of an analysis of opacity in computing systems made by Paul Humphreys (2009)
[26] rather than something akin to our previous discussion involving the taxon-
omy of opacity. Instead, this new vision describes computing systems as “opaque
relative to a cognitive agent X at time t just in case X does not know at t all
of the epistemically relevant elements of the system.” ([26], pg. 618). First, we
must note the agent relativity of this account which aligns with the Relativity
of Explanation. Second and in alignment with our discussion of the taxonomy
of it, opacity is an epistemic property concerning a lack of a certain kind of
knowledge [63].

This first means that various user agents encounter opacity differently in
their interactions with the system based on their designated roles. For exam-
ple, those who operate an AI system likely consider different aspects of the
system’s functioning than those who are subject to its decisions, and similarly
those creating the AI systems will be concerned with different aspects from those
tasked with examining its compliance and safety protocols [63]. In a manner
which should sound familiar given the Relativity of Explanation, these opera-
tors, decision subjects, creators, and examiners all inquire differently about the
functioning of the same system.

Due to the nature of these different inquiries, the characteristics defining
each user in their participatory role correspondingly constrain the scope of rel-
evant questions they may ask about the system. Thus, Zednik argues that each
predefined type of stakeholder can be matched with the set of questions that
are relevant to their standpoint insofar as explanations for them would provide
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answers relevant to their explanatory criteria. More specifically, these explana-
tory criteria are found within what, why, how, and where questions, such as
asking why the system made one categorization over another, or how the sys-
tem achieved a certain result [63]. Of course, these questions may not take
on exactly this form, but the overall sorting of concerns into similarly defined
categories is more honest to his intention than the precise questions being asked.

On the second point about epistemically relevant elements (EREs), we can
now expand upon their nature to articulate the role they play in understand-
ing. According to Zednik, we can proceed from this notion of agent-relative
opacity and ranges of possible questions to identify the EREs which help con-
struct meaningful answers [63]. More simply, these EREs constitute the building
blocks of the knowledge useful for reducing a system’s opacity [26]. We can thus
expand upon this notion for this context by specifying that an element may be
“some step in the process of transforming inputs to outputs, or as a momentary
state transition within the system’s overall evolution over time” ([63], pg. 269).
For such an element to become epistemically relevant, it must be known and also
capable of being cited for the purpose of explaining another element’s behaviour
or some aspect of the system’s output [63]. In this context, the process of expla-
nation becomes the acquisition of knowledge of a systems EREs, though there
remain degrees of freedom by which to deliver various explanations. Zednik says
that whether we explain computation electronically through the magnetization
of hardware registers, mathematically using the manipulation of binary strings,
or rationally by reference to the system’s goals and representational states, these
explanations remain equally legitimate ([63], pg. 269). However, in alignment
with the Relativity of Explanation as posited herein, these various explanations
serve particular stakeholders depending on the task they wish to complete.

To amalgamate one of Zednik’s examples with one made previously about
interacting with a virtual assistant, imagine such an assistant being used to
make a small online shop by integrating with existing e-commerce tools. It is
easily foreseeable that if the internal representation of some useful data such as
a date given by a verbal prompt to the virtual assistant could be in a format
that requires slight modification to integrate with a third-party tool13. From
our earlier engineer example perspective, this means that correctly operating
the system would depend on this ERE being clarified such that it adds a small
amount of transparency.

For the purpose of translating these notions into terms consistent with the
rest of this thesis, we can note that agent-relative opacity can be interpreted as
fundamentally akin to the Relativity of Explanation. As will be further demon-
strated in Section 3.4, the constraints delimiting the range of possible questions
are intimately tied to the choice of LoA. Before this demonstration however, we
can quickly follow Zednik’s argumentation to show how the alignment of each
user type with its set of questions is achieved using the guardrails of Marr’s

13It may be noteworthy that the steps involved in this online storefront generation process
may be found in more detail than is necessary for present purposes [46]. This is simply to say
that such online integration is not a purely theoretical example, and we could imagine storing
dates as either DDMMYYYY or MMDDYYYY, and this causing problems downstream.
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levels.
The first notable item allowing Marr’s levels to be used as guardrails is

that we may divide the potential stakeholder questions according to their most
relevant level. Specifically, concerns about what a system is doing and why
are handled at the computational level [53], questions about how the system
performs its actions are addressed at the algorithmic level [37], and questions
about where the relevant operations are realized falls to the implementational
level [62].

As such, Zednik argues that the explanation-seeking questions posed by each
distinct level funnel the identified user requirements toward those EREs fulfilled
by existing techniques [63]. Then, insofar as the identified XAI technique fulfills
the relevant explanatory requirements, Zednik asserts that the user’s explana-
tory requirements have been successfully met [63].

We can briefly examine one noteworthy example corresponding to each level
to clarify this process. The algorithmic example will be elaborated upon in the
next subsection to discuss the generality of LoAs in comparison to Marr’s levels.
Presently however, Zednik proposes that one technique which answers questions
about what a system is doing and why it produces certain outputs is done by
input heat mapping [63]. In the most abstract, computational-level sense, this
technique involves highlighting features of the input which bear the responsi-
bility for specific outputs according to the algorithm. In terms of answering
how questions for the algorithmic level, we can instead use feature-detector
visualization to identify system variables which detect and characterize the spe-
cific representations of input features and their influence on the overall system
behavior. A notable example of this can be found in one dissection of gener-
ative adversarial networks which aimed to identify the units most sensitive to
uniquely recognizable features in the input (crosses on buildings for identifying
churches for example)[6]. Finally, implementational level questions correspond
to the method of diagnostic classification when no clear feature detectors are
present. This technique determines which information becomes represented by
a system after receiving some input.

As a result of Zednik’s analysis, we have now seen how the formulation of
stakeholder-specific questions leads to a more tailored normative description of
which style of ERE corresponds to which existing explainability method. In
addition to the agent-relative notion of opacity which motivated the need for
plural explanation methods, we have also been exposed to other argumentative
features marking this account as normative which are worth clarifying before
continuing. Specifically, we have seen a means of evaluating the explanatory
success of a given explainability method by reference to the norm of its ability
to provide EREs to Marr-level questions. To conclude with a further metacog-
nitive point, the gaps surrounding currently available explainability methods
demonstrate some of the limitations associated with the techniques to indicate
what types of explanation cannot yet be achieved.

With this overview of Zednik’s approach to normative explainable AI using
Marr’s levels, we can now progress to a discussion about the advantages in
generality made possible with LoAs as opposed to Marr’s more coarse-grained
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levels.

3.3.2 Generality of LoAs for Normativity

As has been stated, there are myriad ways of explaining the behaviour of a com-
puting system depending on the EREs sought. We have now seen how Zednik
provides a breakdown of explanatory pathways which navigate through the filter
of Marr’s levels to determine which available explainable AI method can most
aptly handle the concerns raised by a particular stakeholder’s question. As such,
this account makes progress toward creating a normative framework evaluating
the successes of explainable AI methods. However, in accordance with the con-
clusions drawn by Hamrick and Mohamed [22], by Niv and Langdon [40], and by
Zednik himself [63], there appears to be a clear methodological need for a more
fine-grained framework for analysis which, at the very least, allows for more
flexibility and modularity. Some further consequences of this movement away
from such a coarse-grained framework toward a more fine-grained or continuous
one will be elaborated in the next section.

In the least sophisticated sense, LoAs are clearly more general and flexi-
ble than Marr’s levels since LoAs can take arbitrary observables as their con-
stituents. We have already been exposed to this continuity as a gradient of
abstractions (GoA). This formulates LoAs as a continuum rather than as dis-
crete levels within Marr’s framework, which brings inherent flexibility in its
approach to modeling.

Moreover, we have seen that Marr’s levels may be subject to criticisms sur-
rounding its presumption of altered ontological commitments, but this does not
hold in the case of LoAs. Instead, LoAs attempt to understand and explain
the target system while clearly delineating how the perspective taken is altered.
This attempts to equalize the realist commitments made across LoAs [20], in-
sofar as none are presumed to be more real than any other.

To briefly exemplify the precision of LoAs in comparison to Marr’s levels,
we can review in more detail the algorithmic-level questions and explainabil-
ity method alignment previously provided in Zednik’s normative account. In
short, the algorithmic level focuses on how a system accomplishes its speci-
fied functions, and answering “how” questions at this level bridges between the
tasks of computing the correct functions for the designated task, and correctly
computing these functions.

In LoA terms, this algorithmic bridging is related to the distinction between
external adequacy and internal coherence, between which we may choose a GoA
that is “realistic” ([20], pg. 325). Specifically, external adequacy means the LoA
chosen adequately reflects the phenomena being studied and thus is computing
the correct functions, whereas internal coherence implies that the chosen LoAs
in the GoA should be logically consistent and should not result in contradictions
with one another.

Further, it is helpful to remember the distinction between disjoint and nested
LoAs. This is especially useful when determining how “parallel” processes (when
viewed from a hierarchical stance) could influence one another. Especially in
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these cases where there is some overlap between LoAs, it could become impos-
sible to disentangle potentially independent systems using Marr’s levels.

If we recall the example of a feature detector analyzed at the algorithmic
level, suppose we imagine such a system embedded in a self-driving car. There
are two related features of such an example which support the notion of LoAs
being more flexibly applicable and maneuverable between these constraints than
Marr’s algorithmic level: explicit goal comparison and hierarchical precision.
Marr’s framework is useful when describing specific algorithms but can only
weakly compare those at different levels or further, validate their consistency.
Moreover, there is the possibility for an explicit inclusion of higher-level goals in
a hierarchical analysis with LoAs which is not present for Marr. For more detail
on the difference of mechanics of these processes, we will elaborate on how this
understanding is made clearer in the next section. For the time being, we can
briefly demonstrate how these might be accomplished in the vision system of a
self-driving car.

For the example of explicit goal comparison in a self-driving car, the ex-
plicitly defined LoAs can fit the exact contours of the self-driving system such
as for sensory perception, decision-making, and vehicle control. So, LoAs can
more easily reveal how one level in sensory perception (object detection) inter-
acts with one for route planning (decision-making). The bidirectional relation-
ship between the two would be more easily characterized as each route decision
caused different sensory perceptions, especially in a situation where both are
happening in rapid succession such as crash avoidance.

To touch on the example of hierarchical analysis in the same system, LoA
definition can more straightforwardly assist with both top-down and bottom-up
analyses as the various subsystems interact across level boundaries. Likewise,
this can help identify feedback loops and previously unknown dependencies;
perhaps a change in the vehicle control processes (a tire going flat, unexpected
conditions, or impact) could influence whether the car maintains the ability to
follow the planned route.

We can now speak in broader terms about the contributions to our under-
standing provided by LoAs, especially in the case of AI.

3.4 Understanding AI with Levels of Abstraction
As we have begun to see with the self-driving car example, the relevance of
these features provides insight into the resultant relationships that form between
levels. Thus far, I have argued for the advantages of LoAs over Marr’s levels.
After discussing multiple authors who - despite appreciating the value of level-
based frameworks - support the need for a more continuous approach than that
offered by Marr, I aimed to show that one attempt at normativity through
Marr’s levels can be made more precise due to the more generalizable capacity
of LoAs. For the present purposes, I shall now elaborate upon the mechanics
of how LoA-induced perspectival shifts affect our understanding of their target
system, and their role in elucidating a model’s function. As discussed, the
choice of variables and their behaviorally-constrained values provide a selection
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of possible relationships between observable features of the system and the LoAs
they constitute.

We can now recall how Khalifa’s account of comparing degrees of under-
standing between subjects enables normativity to be established. More specifi-
cally, the most relevant of his conditions for understanding required an account
of how the relations between the explanations establish a meaningful form of
understanding. As such, we will now see how the capacity to analyze these
relationships between LoAs with precision forms the basis of our understanding
explanations, as well as providing grounds for evaluating their success through
this notion of comparison.

Where Zednik began his sorting process by differentiating stakeholder re-
quirements by the type of questions they would plausibly ask, I will instead
argue that the structure of a LoA is inherent within the notion of an Explana-
tory Nexus. Then, I will expand upon some of the potential strategies for novel
explanation that arise when using a system of LoAs, thereby furnishing our
Nexus. I finish this section by situating this approach to understanding AI
within some relevant literature.

3.4.1 The LoA Structure of an Explanatory Nexus

I will now posit that Khalifa’s notion of an Explanatory Nexus can be help-
fully structured in LoA terms. As such, a Nexus offers a fitting method for
establishing comparison between competing explanations due to the advantages
inherent in the LoA approach overviewed previously. However, this is not meant
to straightforwardly equate an explanation with a LoA. Instead, we can dissect
the component pieces of an Explanatory Nexus and show how each benefits
from the LoA structure as mentioned in the previous section. This will further
demonstrate the flexibility in this approach which is not present with Marr’s
three levels.

At its core, the Nexus functions as a connection between our understanding
of a phenomenon and its explanation to capture the relationship between what
is known and how it is known. More specific to its structural qualities, the
Explanatory Nexus is the set of correct explanations of some proposition as well
as the relations between those explanations ([28], pg. 6). The inter-explanatory
relationships between these supporting propositions ground this Nexus within
a network of related arguments. The EKS model then establishes that under-
standing is simply the process of a subject coming to grasp this Nexus and for it
to bear resemblance to scientific knowledge as described by the Scientific Knowl-
edge Principle ([28], pg. 14). If we can say that the subject’s Nexus bears some
degree of resemblance to approximately true scientific knowledge, they have a
minimal degree of understanding (as opposed to none) [28]. As discussed in our
explanation of the EKS Model, these features beget a spectrum of understand-
ing from the minimal to the more richly connected Nexus in the ideal case [28].
This makes the EKS model a useful tool for comparison and helps to connect
the realms of knowledge and explanation. With the branching network image
of an Explanatory Nexus in mind, we can proceed to an illustration of its core
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features in LoA terms.
More precisely, both the explanandums (statements to be explained) and

explanans (relevant explanations) involved in the construction of a Nexus can
be formatted in accordance with the LoA method, thereby granting the benefits
discussed previously. For the sake of making worthwhile comparisons across
LoAs, I have chosen examples which vary the LoA while referring to the same
type of explanandum/explanans rather than simply providing more detail. How-
ever, the notion of providing more detail will be captured by briefly mentioning
the effect of distinction between nested and disjoint LoAs in this context. With
this distinction, the habit of providing three LoA examples will be differentiated
from the coincidental overlap with Marr’s three-leveled framework.

For the explanandum side, a potential observable at a low LoA could be
a classifier’s decision instance, where the input and output might be the pixel
values of the image and the associated label. Moving the LoA upward, an in-
termediate observable could be the patterns across multiple classifier decision
instances, where the inputs could be common aggregate features from a set
of images and the outputs would be the trends in consistent misclassification.
Finally at an even higher level, one further observable could be the general
behavior guiding a classifier’s decision making, where the input is now the en-
tire architecture including its parameter values and the output is the general
behavior it exhibits.

And for the explanans, one potential observable for a low LoA could be
which specific factors influenced a particular classification instance, where the
input would be the features detected in the image and the output being the
resultant classification. Moving upward again, a mid-level observable for ex-
plaining patterns of decisions could be the choice of algorithm, where the input
would be an images features and the algorithm used to make the classification
with the output being the associated waiting given to those features by the var-
ious components of the algorithm. And finally at the highest example LoA, an
observable might be a foundational algorithm whose input is a description of
the error gradient for some training instance, and the output is the parameter
weights adjusted after optimization.

As we can see, both the explanandum and explanans can be afforded various
LoAs. Although it may appear as though Marr’s levels could do the same task,
it is important to recall the arbitrary level of precision that can be sought within
this LoA framework which, admittedly, may align with Marr’s levels at times.
Now in the case of the explanans, which presumably affords more interesting
results when varying the LoA chosen for the same explanandum, we can of
course further decompose these explanations to contour their strengths around
the needs of various users.

For this decomposition, it can be helpful to recall the distinction between
nested and disjoint LoAs, which further distinguishes this method from Marr’s
style. After outlining some of the potential benefits of this distinction, an argu-
ment gesturing toward further steps in this contouring process will be conducted
in Section 4.2. Essentially, a nested GoA is primarily helpful in describing com-
plex systems precisely with LoAs which become incrementally more accurate in
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their modeling of the system in question ([20], pg. 313). In contrast, a disjoint
GoA describes a system as a combination of non overlapping LoAs ([20], pg.
313). This case is relatively simple since oftentimes the LoAs are overlapping
in some of their observables.

Nevertheless, this distinction reminds us of the benefits associated with clar-
ifying the nature of the LoAs being used. More specifically, nested levels provide
a cumulative insight as each layer builds upon the others, where moving through
layers allows one’s understanding to become increasingly comprehensive. More-
over and as indicated previously, nesting affords a continuity to the analysis as
each level fits like a puzzle piece into the last. This helps to create a cohesive
narrative from the bottom to the top of the system, so to speak.

In contrast, which may offer a unique angle on the problem, especially if
the problem requires focusing on a specific LoA without considering others. In
instances where higher dimensional objects are easily conceptualized it could
also be the case that these split levels make for a clearer encapsulation of the
target system14. Where nested levels bring coherence, disjoint levels may offer
unique insights especially in contexts where functionality in isolation is helpful
such as troubleshooting or refining AI behaviours.

Now, we can examine some examples which clarify the type of continuous
gradation possible within the observables found in an LoA that are not possible
within Marr’s framework. Of course it is foolish to attempt enumerating a
list in a continuous space, but for the sake of showing the fine-grainedness of
these observables in contrast to Marr’s levels, we can briefly list a few items.
Where iteratively applying Marr’s framework would restrict the possible views
of a given entity to three perspectives at a time, we can instantiate arbitrarily
many. In the case of nested LoAs, a more continuous spread of neural network
weights in a decision making process could range from the individual parameter
weights at the low end, to the activation of individual nodes in response to input,
to the activation patterns of a whole layer to the combined decision making logic
from the amalgam of all layers, to the end classification in a given context at the
higher end. In the case of disjoint levels, an example of a more continuous spread
is admittedly difficult to conjure since we would need some problem where the
number of break points between LoA is unrelated to understanding the overall
system. Nevertheless, sound waves being captured in compartmentalized maybe
one example. In one disjoint set, we could have the raw sound waves as captured,
or this sound could be broken into its phonetic components, and finally another
arrangement could work at the level of recognizing words from these phonetic
components. In each case, the specific LoA for each component could be seen
as independent from the rest.

So what benefits can be drawn from understanding the relationships between
LoAs within this notion of an Explanatory Nexus? I now briefly identify three
which will be explained in the next section. These three benefits are, at least
theoretically, an increased holistic understanding of the system, the ability to

14Among the systems which may benefit from this type of analysis is the earlier description
of ranks- and files-chess, which is effectively an n-dimensional array representation of a given
board state.
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identify root causes of behaviours, and the bridging between stakeholders with
various degrees of technical experience.

3.4.2 Novel Explanatory Strategies

The aim of this section is to briefly summarize some of the overarching themes
in the usefulness of the LoA structure as I have described it as being present in
an Explanatory Nexus. The first three identified were an increased holistic un-
derstanding of the system, the ability to identify root causes of behaviours, and
the bridging between stakeholders with various degrees of technical experience.

In particular, an improvement in one’s holistic understanding of a system
refers to the manner in which we can move between levels to get a more com-
prehensive view. Moving from the lowest level - where we see the most im-
mediate reasons for specific outcomes - toward higher levels which encapsulate
further-reaching patterns, our explanations portray a broader understanding of
the system.

In the case of root cause identification, there may be instances where lower-
level anomalies can be traced back to foundational aspects or assumptions within
the algorithms. Navigating between these levels can illuminate issues related to
their integration with one another, especially regarding the relations between
levels when explicated in LoA terms. A helpful example of this root cause clari-
fication process comes in the form of the ontological commitments borne out of
defining a LoA. Examining the alignment between the ontological commitments
made at one level and how they relate to those made at another may illuminate
an incongruence which could be producing a root issue15.

And lastly in the case most relevant to this thesis, we have seen an example
of how various stakeholders are likely interested in different LoAs since they af-
ford different forms of understanding within an Explanatory Nexus. In Zednik’s
terms, we can envision the needs of operators, decision subjects, creators, and
examiners as different but potentially overlapping with one another. However,
where Zednik uses Marr’s levels to cluster explanations together in somewhat
broad, inflexible terms, the LoA approach as embedded within our Explanatory
Nexus offers more holistic integration across levels, ontological clarity, and the
opportunity to connect the most relevant explanations to an arbitrary stake-
holder’s requirements.

Aside from only bridging between stakeholders with various degrees of tech-
nical experience, we can also describe how bridges between levels can afford their
integration and offer novel explanations. We can recall that Section 3.2.2 dis-
cussed the properties of explicit goal comparison and hierarchical precision for
the purpose of showing how LoA offer the benefits of a more general framework
than Marr’s levels. Now however, we can discuss the possibility for relations
defined between LoAs to provide a means of rigorously generating bridge laws.

15This is made particularly clear in Danks’ analysis of the blurring between ontological com-
mitments at different Marr levels [14]. Especially insofar as cognitive theories are analogized
to AI processes, we must remain wary of any alterations in the commitments to realism made
between levels.
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The focus of this description will be to merely support the existence of such
novel explanatory strategies, without articulating the extent of their capabil-
ity. A further speculation for the potential usefulness of such a method will be
provided in Section 4.2.

In her attempt to articulate the space for novel explanation using the concept
of abstraction, Eleanor Knox aims to demonstrate that the process of descrip-
tion which moves from a theory in one LoA to another can lead to explanatory
novelty ([29], pg. 44)16. To do so, she derives novel explanatory strategies orig-
inating in the physical transition from thermodynamics to statistical mechanics
via complex bridge laws.

For the purposes of our discussion, the realm of statistical mechanics provides
precise detail to focus on the most minute interactions in a system. Conversely,
thermodynamics is more macroscopic in its description of abstract system be-
haviors. Where statistical mechanics may encapsulate the precise nature of
particle interactions, thermodynamics refers to these intricacies with simpler
abstractions such as heat and entropy [29]. The goal of a bridge law then, is
to provide a rigorous mathematical framework to avoid fitting too closely to
the detail available at a microscopic state of a system and thus being unable to
derive overarching patterns, while retaining the information provided at a lower
level [29].

Despite using the realm of physics as her arena, this notion of a bridge law
allows for a mode of transition between LoAs which is applicable to the domain
of AI. For example in the realm of reinforcement learning, we could construct
a bridge between the algorithm’s state-action reward dynamics to a simplified
higher-level LoA which clarifies aspects of the decision-making process. More
specifically, bridge laws could help elucidate the relationships found within not
only the data themselves, but perhaps also between the other lower-level features
of the algorithm itself. Such lower-level features may include parameter values,
the nature of the layers involved in a classification, their constituent nodes, and
the connections between them. As is consistent with this account of bridge laws,
understanding and intervening upon the behavior of the overall algorithm at this
level may be effectively impossible due to its nature as highly-dimensional and
complex.

This sounds reasonable enough in these generic terms, so perhaps it is nec-
essary to provide more description of the specific form such bridge laws may
take. Of course, the task of specifying the relation between LoAs is clearly not
a straightforward one. For this purpose, it may be most appropriate to design
bridge laws consisting of rule sets or algorithms which connect higher-level rep-
resentations of data (like clusters, categories and features) with the low-level
raw data (data instances or pixel values). In a somewhat familiar case of a vi-
sual feature detector, this bridge law could clarify the logic mapping from pixel

16For brevity, I have taken the liberty of substituting Knox’s broader notion of abstraction
for an explicit usage of the LoA terminology. This follows relatively clearly from applying our
understanding as formatted within the LoA-structured Explanatory Nexus, but it is worth
noting she does not make use of LoAs verbatim.
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values to object recognition, rather than performing the recognition itself17.
Nevertheless, we have seen how LoAs offer an opportunity for novel explana-

tion due to their simplification of information shrouding the relevant conclusions
from being drawn. Knox identifies the potential for these explanations by say-
ing “changes of descriptive quantity induced by sufficiently complex bridge laws
lead to new standards of abstraction, and thus novel explanatory strategies”
([29], pg. 57). As such, it is worth investigating further how LoA-facilitated
bridge laws could be generated to describe the relations between the vast arrays
of individual components and their interactions en mass. Although the form of
such bridge laws has clearly not been made precise in this section, it seems to be
an appealing avenue for further work in the domain of explanation due, at least
in part, to its apparent success in the transition between statistical mechanics
and thermodynamics.

3.4.3 Situating Understanding through LoAs

We can now situate the usefulness the aforementioned method of analysis in
relation to the taxonomy overviewed in Section 2.2 to show how its scope has
been expanded from that proposed by the original authors of the taxonomy
[19]. Specifically, this method of analysis is the embedding of an LoA structure
within an Explanatory Nexus as a means of clarifying the relations between
explanandum and explanans.

Within the taxonomy that we have examined, LoAs have already been iden-
tified as centrally useful within access opacity. However, it is my contention
that this form of analysis described herein is also useful beyond this category.
More specifically, consider trying to understand the nature of link opacity and
a stakeholder’s explanatory requirements. If these requirements remain unful-
filled and thus link opacity holds, this means that the empirical link between
the core concept of a model and its relation to the target phenomenon in the
world is weak [55].

However, this neglects any mention of the relevant LoA used for determining
which target phenomenon in the world is matching up with exactly which ele-
ments of the model. More specifically, it is necessary to determine an LoA such
that a reasonable comparison can be made between this notion of link opacity
with its empirical support and those aspects of the model which are deemed
worthy of matching with the target phenomenon18. If an analogy is to hold

17This distinction between performing the computation and clarifying the logic performed
within it is relevant to the role played by such bridge laws. However, further elaboration
on this point would only constitute further speculation beyond the scope of this paper. Re-
gardless, it is worth noting that the use of LoAs in these cases would need to be subject
to an iterative application of constraints from the external adequacy (validity) and internal
coherence (verification) to facilitate the transition. The interactions between the LoA (as it
is defined for a stakeholder) as it fits between these two constraints may offer some avenues
for articulating the specific role that a given ERE is playing in the wider system function.

18Within a similar taxonomy for understanding in the domain of AI [48], a version of link
opacity is seen as a form of understanding without interpretability. If we maintain that the
concept of link uncertainty rests at the heart of such a form of understanding, a similar
argument would apply. Specifically, if “the degree to which the central concept captured by
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between the function of a some model of a world system and its supposedly
analogous mechanism in the world, we must assert some grounding for that
analogy. Otherwise, even the notion of providing empirical support for a model
functioning as this world-system analogy would be without a target. Perhaps
more clearly, we cannot provide empirical support for any internal aspect of
a model without deciding that such empirical support take a certain form, a
form which is dictated by an implicit LoA choice. As a result, there is an im-
plicit LoA choice presumed by the notion of link opacity which permits coherent
comparisons.

Although it is notable that this choice of LoA is not identical to the options
proposed within access opacity[19], it should at least be clear that the domain
for an LoA based method of analysis extends beyond the reach of only access
opacity.

4 Domains of Application
This final section will begin articulating a few case examples of the applicability
of LoAs in the analysis of AI systems more broadly. As such, it is the briefest
section in this thesis due to its comparatively speculative nature.

Some authors believe that LoAs are already widely accepted in the domain of
computer science [19], and perhaps in some regard this is true of computation in
general. However, it seems as though their usefulness when analyzing advanced
systems such as those used in the domain of AI has been minimally explored
as an explicit tool. It is for this reason that I use this short section to gesture
toward some potential directions for further application of this method.

For the sake of reconvening on a notable topic mentioned in the introduction,
I will sketch an argument for how the use of LoAs can clarify certain claims made
about the responsibility gap. In particular, I will argue against one such paper
which concludes that the gap does not exist (Section 4.1). Further, I indicate
how LoA are currently implicitly involved in describing sets of normative criteria
in modern research, as well as how bridge laws structured by means of LoAs
might assist with the plight of modern interpretability of neural networks; one
of the more prominent issues within the domain of AI safety (Section 4.2).

4.1 Interpreting Responsibility Gaps in Machine Learning
Now, we can briefly apply a LoA-style analysis to one paper arguing against the
existence of responsibility gaps. As such, the aim of this section is to circle back
provide some degree of completeness to this aspect of the literature review and
offer an example of the usefulness of LoAs as a tool for thought, rather than
formal analysis.

a model maps to the target phenomenon in the world, as measured by the empirical support
and linkage to the target” ([55]), then the following argument in favor of broadening the scope
of LoA analysis beyond only being mentioned within access opacity (as in [19]) is supported.
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To begin, we can recall that the responsibility gap essentially refers to the
space that exists between the increasing capabilities of autonomous decision-
making and the lack of corresponding responsibility-attribution methods to ac-
count for this expanding class of decisions. To recall the description offered by
the author who coined the concept, we must remain wary of the “increasing class
of machine actions [that are] incompatible with traditional means of responsi-
bility ascription because nobody has meaningful control” [36]. Daniel Tigard
argues that this problem doesn’t exist, however, as long as we have a clear un-
derstanding of the values embedded within a technology and can acknowledge
the multitude of existent practices for associating actions with responsibility
[56].

For the sake of tying up this responsibility gap loose end and demonstrating
the informal use of an LoA analysis, we can outline the most relevant pieces
of his argument against the existence of a responsibility gap and identify two
interconnected reasons as to why his conclusion is weak.

Initially, Tigard argues that there is a plural ambivalence in our current re-
sponsibility attributions. This means that we often hold individuals or broader
societal entities responsible in a variety of ways depending on the context, in-
cident and type of responsibility involved [56]. Among other methods, this also
includes our attempts “to locate accountability in technology”, which allows us
to “engage in other forms of responsibility practices” (both quotes from [56],
pg. 599). He continues by arguing that as with other forms of responsibility,
responsibility can likewise be managed in the context of complex technology.
Moreover, despite their growing autonomy, lack of humanlike intentions and
capacity for moral agency, these technologies can still be manipulated and con-
tained [56]. Finally, Tigard acknowledges that those impacted by technological
decisions will likely seek to understand the embedded underlying values within
the systems which, presumably, we were unable to properly manipulate and con-
tain. He then concludes that understanding the nature of these values and their
role in the design cycle facilitates the assignment of responsibility to designers,
users, or even the technology itself [56]. With this brief summary of some of
his core points in mind, we can proceed to a description of the two interlocking
issues.

The first issue Tigard encounters is in his oversimplification of ethical sce-
narios. This important to observe that the core of this argument rests upon how
understanding technologically-embedded values effectively clarify responsibility.
Unfortunately however, this simplification offers little by way of deeply under-
standing the intricate ethical landscape surrounding and influencing advanced
autonomous technologies. This oversimplification can be seen as a misappropri-
ation of an LoA, insofar as it does not adequately reflect the proper observables
for tracking the impacts of values across the development and deployment of an
autonomous system. More straightforwardly stated, this referencing of “under-
standing values” does not provide any basis for responsibility attribution that
goes beyond the issues of opacity we have already encountered. At such, there
remains ambiguity in determining the bearers of responsibility for the outcomes
affecting concerned stakeholders. This brings us to the second issue which is
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very similar and which is closely related to our previous discussion of LoAs.
Specifically, it is this resultant lack of clarity in Tigard’s responsibility as-

signment. Building upon the premise that understanding values clarifies re-
sponsibility, it remains difficult to apply to situations where there are inherently
many influences on the creation, deployment, and operation of such autonomous
technologies. Especially in cases where understanding an autonomous system’s
capabilities is limited by a degree of access opacity as described in section 2.2,
Tigard’s account struggles to provide any robust foundation for determining re-
sponsibility when these values and underlying processes are themselves obscure.
As such, this demonstrates how approaching an argument through the lens of a
LoA analysis can clarify our understanding of notions such as the existence of
the responsibility gap.

4.2 Generating LoA from Normative Criteria
One final remark is worth making on the comparable value of LoAs versus
Marr’s levels with regard to their applicability as either a tool for thought or
explicit analysis. Namely, there may certainly be instances where the conver-
sational maneuverability of Marr’s levels makes them preferable for discussions
of certain algorithmic features. However, since only making a useful conversa-
tional contribution is not the supposed intention of a systematic analysis for
extracting normative criteria, it seems reasonable to maintain the value of the
more rigorous LoA approach described herein. For the present purposes of this
thesis however, attempting to add notation would only provide a false precision,
since I assert that such a project is outside the current scope. Regardless, the
distinction between the feasibility and current plausibility of rigorously defining
interpretability methods with LoAs this one I wish to maintain.

One especially useful domain where generating explicit LoA to deal with
stakeholder relative normative criteria would be in mechanistic interpretability.
In other words, mechanistic interpretability refers to the sub-discipline within
explainable AI attempting to explain and predict the behaviours of neural net-
works through understanding the algorithms which underlie these models [42].
One of the central issues in the field of mechanistic interpretability is that of
neuronal superposition [18], which is the conundrum where individual neurons
participate in the representation of multiple features of the input. As researchers
attempt to analyze this problem and provide it with an epistemic foundation at
the “microscopic” level [43], we may notice a very similar argumentative struc-
ture to that of Knox and the translation from statistical mechanics to thermo-
dynamics [29]. More specifically, there lies an implicit inclusion of LoAs within a
core work projecting the direction of future mechanistic interpretability methods
[43]. Upon this analogous “microscopic” theory, there lie four proposed meth-
ods forward, three of which include clear reference to LoA analyses [43]; larger
scale structure, universality, and bridging from the aforementioned microscopic
to the macroscopic. These items each deserve another word of clarification after
examining the nature of this epistemic foundation.

To that end, the epistemic foundation upon which mechanistic interpretabil-
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ity rests is an examination of the smallest pieces of a neural network; namely, its
parameter values and features [43]. This LoA has already been identified as one
of the lowest practically available in Section 3.4.1. The LoA above this begin to
attempt explaining how combinations of these pieces result in individual nodes
representing multiple complex aspects of the input.

Here, larger scale structure refers to this “more abstract story” ([43], under
Larger Scale Structure) that appears to remain coherent on top of understanding
these lower-level features. Is my contention that an explicit LoA analysis would
further clarify potential distinctions between these low-level features, if it is true
that they are at precisely the same level.

Second, the notion of universal features and circuits posits that neural net-
works trained on similar domains create similar patterns in their methods of
recognition [43]. On the previous discussion of the plausibility of an explana-
tion from Section 2.1.2, this universality may be the closest thing to a ground
truth that is discoverable. However, it still seems to be the case that deter-
mining which patterns truly are universal (insofar as various AI models really
are sharing exactly the same pattern) would be a process simplified by an LoA
analysis.

Third, the process of bridging from the microscopic epistemic foundation
to the macroscopic patterns is especially relevant for LoA analyses since some
microscopic discoveries have already been shown to have macroscopic effects
[43], because this is effectively identical to that described by Knox [29]. As
such, it seems reasonable to expect that a similar application of complex bridge
laws could benefit this pursuit as well19.

As we have discussed in Section 2.2, the multifaceted black-box problem
presents various forms of opacity to the stakeholders involved. As such, the
explanatory requirements of such a stakeholder begin to constrain the LoAs
which are helpful in their understanding of the relevant internal functions.

Rather than focusing on potential users and the questions they would likely
ask with respect to Marr’s levels as is Zednik’s approach [63], it is perhaps more
worthwhile to begin by considering the observables involved in a LoA which
provide a sufficient explanation for the system in question, such as a particular
neuron in superposition. If we can determine the criteria for a sufficient ex-
planation in this context (given the researcher stakeholder’s background knowl-
edge and skills), we could provide measurable targets for successful explanation
against which to compare progress toward understanding larger scale structure,
universality, or the notion of bridging from the microscopic to the macroscopic.
As such, with reference to the process of combining the lowest-level pieces into
nodes containing complex representations, we see the value of this arbitrary def-

19One notable qualification on this speculation is that Knox concludes that a metaphysical
account of emergence and its relation to levelism seems plausible ([29], pg. 57-58), whereas we
must recall that the LoA approach only seeks to make claims in the domain of epistemology.
Even still, she expresses that her account of explanatory novelty does not fit well on either
side of this metaphysical/epistemological debate ([29], pg. 58). As such, further work seems
necessary to precisely differentiate the interactions between these novel explanatory techniques
and the metaphysical assumptions supporting different accounts of emergence.
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inition of explanatory criteria in full [44]. Thus, as a result of the Relativity of
Explanation and the continuity of LoAs, we could determine a set of relevant ob-
servables that fits essentially arbitrarily defined explanatory criteria to provide
normative targets for progress toward these goals in mechanistic interpretabil-
ity; namely, understanding larger scale structure, universality, and building the
bridge between the micro- and macroscopic.

In navigating between somewhat understandable low level features and the
emergent properties born out of them which seem entirely unpredictable, we can
conclude by advocating once more for the potential usefulness of LoA-structured
bridge laws as done previously.

There is much complexity surrounding the notion of emergence across vari-
ous domains but recently and most presently relevant, in the abilities of language
models [60]. This has spurred interest toward directly applying psychological
investigation methods to language models [21], though in contrast some authors
believe any emergent properties dissolve when interpreted with the correct met-
rics and thus constitute little more than a mirage of ability [51]. Nevertheless,
the creators of some widely used language models have warned against numerous
emergent properties that were not explicitly included as intended capabilities
[46]. Even with only this short description, it is clear that a full discussion of
the concept of emergence is beyond the scope of the current work. As such, it
remains a monumental task to attempt understanding the nature of emergent
capabilities in AI, and I hope that my proposed LoA-structuring of analysis
represents a push in the right direction.

Conclusion
This thesis is has aimed to articulate a clarification of a framework for un-
derstanding based on Levels of Abstraction, especially as they pertain to un-
derstanding AI models. After a preliminary overview of some of the relevant
literature in Section 1, I described an account of understanding which is taken to
be a regimented version of the received view in Section 2. I then discussed how
obstacles to understanding come in various forms of opacity, and aimed to show
how explanation was fundamentally tied to those stakeholders seeking them.
Section 3 gave a longer description of LoAs and their structure, and showed
examples of similar frameworks being used to clarify normative considerations
that adjusted to different stakeholders. I strove to demonstrate the flexibility
and precision that may be achievable with an LoA framework in broad terms.
I finished Section 3 with a call to action in pursuing LoA-based analyses in-
volving the construction of complex bridge laws which aim to usefully translate
between LoAs. Finally, Section 4 briefly mentioned one argument concerning
the existence of the responsibility gap and gestured toward further research
which aligned with the modern goals of understanding advanced AI systems.
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