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ABSTRACT 

 

Submillimeter functional magnetic resonance imaging 

(fMRI) based on blood-oxygenation-level-dependent 

(BOLD) signal enables the study of brain function at the 

submillimeter level, uncovering insights into fine-scale 

organizations like cortical layers and columns. However, 

its inherently low contrast-to-noise ratio (CNR) and signal-

to-noise ratio (SNR) often limit its reliability and 

applicability. Noise Reduction with Distribution Corrected 

Principal Components Analysis (NORDIC PCA) is a 

locally low-rank denoising algorithm that reduces thermal 

noise levels in BOLD fMRI in a local patch manner. 

However, local patches often contain a mixture of signals 

from multiple tissues that negatively affects the low-rank 

structure of the patches, which limits the denoising 

capabilities of the algorithm. We propose an alternative 

approach for patching formation by gathering similar 

non-local voxels, dubbed voxel-matching (VM) NORDIC. 

The results on submillimeter resolution BOLD fMRI data 

indicate that VM-NORDIC effectively promotes the low 

rankness of the patches by boosting signal redundancy, 

allowing for more efficient noise attenuation. Moreover, 

the method barely affects spatial smoothness due to the 

non-local voxel selection. In particular, VM-NORDIC 

outperforms NORDIC with default local patching 

(Standard-NORDIC) in terms of temporal SNR (tSNR) 

(~9-90% larger than Standard-NORDIC; ~23-250% than 

the original) and spatial smoothness estimates (~20% of 

the smoothness induced by Standard-NORDIC). These 

improvements are fundamental to improve the validity 

and precision of fMRI studies at submillimeter resolutions.  

 

INTRODUCTION 

 

Functional magnetic resonance imaging (fMRI)1–3 

based on blood oxygenation level-dependent (BOLD) 

contrast is indispensable for depicting brain activity and 

functional connectivity. The development of ultra-high 

field (UHF) MRI systems (>= 7T) allowed pushing the 

spatial resolution to the sub-millimetre scale by 

increasing the strength of the detectable signal4,5. High-

resolution fMRI is especially essential in studying fine-

scale structures at the mesoscopic level, like cortical 

columns and layers4,6–8.  

Nevertheless, fMRI short acquisition times, the small 

voxel sizes enabled by UHF, and the inherently small 

BOLD responses (~0.5-3%) lead to a low contrast-to-

noise ratio (CNR) and signal-to-noise ratio (SNR), 

limiting the applicability and reliability of submillimetre 

fMRI5,9–11. These drawbacks become prominent at sub-

millimetre resolution regimes, where the detectable MR 

signal is relatively weak, making noise effects more 

dominant9,10,12–14. 

The prevalent type of noise in high-resolution fMRI 

is thermal noise, an i.i.d. zero-mean Gaussian 

distributed noise (e.g. white noise) arising from the 

random fluctuations in the electrical resistance of the 

detectors or the magnetic field strength due to the 

thermal energy of the atomic nuclei in the body15,16. 

Thermal noise is practically and theoretically different 

from physiological noise. The influence of 

physiological noise decreases with increasing image 

resolution and derives from physiological phenomena 

like the heartbeat and respiration, which occur 

periodically over time17–20. As such, it falls within the 

category of structured, non-white noise21–24, and is the 

target of dedicated techniques such as independent 

components analysis (ICA) and its applications (e.g. 

ICA-AROMA)25. On the other hand, the influence of 

thermal noise increases at higher resolutions, shorter 

TRs and lower magnetic fields12,13. In particular, it 

becomes dominant over physiological noise at ~0.8mm 

isotropic voxel size, but it can still affect the quality of 

lower-resolution scans12,13. Also, the application of 

parallel imaging to accelerate fMRI data acquisition 

introduces a non-uniform spatial amplification of 

thermal noise according to the geometry of the receive 

coils (g-factor)26. Overall, thermal noise lowers CNR, 

image quality and temporal SNR (tSNR) by increasing 

the signal variance9. Specifically, in BOLD fMRI, 

functional activity is identified via subtle changes in the 

voxels signal. Therefore, the random signal fluctuations 

associated with thermal noise interfere with the 

detection of the underlying signals of interest related to 

brain activation, leading to false positives and false 

negatives9. Thermal noise removal is therefore crucial 

in fMRI analysis to ensure clinically and research-wise 

high-quality data that lead to accurate, reliable results.  

A way to overcome the penalties due to thermal noise 

at high resolutions is to increase the static magnetic field 

strength even further4,14. Nevertheless, hardware costs 
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and high field-related artefacts strictly limit this 

strategy4. An alternative is to decrease the noise level 

with appropriate data processing techniques. Spatially 

blurring the dataset with a smoothing filter is one 

popular method to increase the SNR27. Smoothing is fast 

and easily applicable, but it comes at the expense of 

lowering spatial specificity, which is undesirable if the 

goal is to depict the activity of fine-scale structures with 

high precision9,27. Temporal averaging is another 

approach often applied to cancel out random signal 

fluctuations. However, it also degrades spatial and 

temporal precision.  

More recent denoising techniques use Principal 

Component Analysis (PCA) to identify and nullify the 

data components indistinguishable from thermal noise 

by exploiting signal redundancy across volumes. The 

repetitive acquisitions inherent to diffusion MRI 

(dMRI) or fMRI provide the data with explicit signal 

redundancy. That is, the multiple volumes report the 

same underlying biological environment, allowing the 

dataset to have a locally low-rank (LLR) structure11,28,29. 

A locally low-rank structure means that in small patches 

of an image, just a few principal components contain 

most of the signal-related variance. This low rankness 

allows approximating the intensities of the voxels by a 

smaller amount of signal principal components to 

preserve the details and structure of the original image 

while removing noise11.  

In 2016, Veraart et al. introduced Marchenko-Pastur 

PCA (MPPCA) to denoise dMRI. MPPCA 

automatically estimates a threshold to suppress thermal 

noise principal components by exploiting the 

asymptotic properties of the eigenspectum of local data 

matrices corrupted by thermal noise. Such spectra 

follow the well-known Marchenko-Pastur (MP) 

distribution30, whose bounds depend on the variance of 

the data and is used in MPPCA as the threshold to 

nullify the noise components28,31. MPPCA processes the 

datasets patch-wise assuming the noise level to be 

constant within the patch. However, accelerated data do 

not always meet this assumption, potentially leading to 

an incorrect estimation of the noise variance26. Further, 

the bounds of the MP distribution are well defined only 

in the asymptotic limit (i.e. with a large amount of data), 

which is often an unrealistic condition with a finite 

amount of data10,31. The prevalent consequences of these 

drawbacks are an incorrect truncation of the singular 

values and the spatial smoothing of the data due to an 

excessive dimensionality reduction of the patches, 

which decreases the characteristic differences between 

the time series of adjacent voxels29. Smoothing is highly 

unwanted in sophisticated denoising methods such as 

PCA-based techniques as it can lead to erroneous results 

and biased statistical analyses. Furthermore, as 

unwanted smoothing can seemingly increase SNR at the 

expense of spatial integrity, one could simply spatially 

smooth the data rather than applying advanced PCA-

based denoising techniques. 

Moeller et al. partly overcame the MPPCA limitations 

by introducing NOise Reduction with Distribution 

Corrected (NORDIC) PCA for dMRI29. The main 

difference between the two methods is that NORDIC 

estimates the noise variance either from a noise scan or 

the complex data via MPPCA and applies it to compute 

the noise threshold via Monte Carlo Simulations of the 

Gaussian noise in the data9,29. Moreover, NORDIC uses 

MPPCA to compute local noise levels to spatially flatten 

the noise due to the g-factor and ensure constant noise 

levels within any patch. The noise flattening is 

eventually reversed after denoising to re-establish the 

original signal spatial variation. The authors reported 

that NORDIC surpassed MPPCA in terms of the degree 

of noise reduction and preservation of detail on dMRI 

data29.  

The NORDIC authors argued that fMRI can also 

benefit from LLR denoising thanks to the high 

redundancy of the data9,29. In this case, the method aims 

at denoising the time courses of the voxels. Several 

studies reported that NORDIC effectively removed the 

noise in the fMRI data while preserving the temporal 

structure of the underlying brain activity, leading to 

improved results in fMRI-based analyses, such as brain 

activation mapping and connectivity analysis9,29,32. 

Especially, Vizioli et al. showed that NORDIC 

outperforms MPPCA on fMRI data regarding tSNR 

levels, spatial smoothness and functional activation 

maps on data with a wide range of resolutions, scanning 

parameters and tasks9. 

However, local patches may represent a downside for 

NORDIC as they often contain heterogeneous signals 

from multiple tissues that can contaminate signal 

redundancy, degrading the low-rank structure of the 

data33. Another disadvantage is that, as for MPPCA, 

NORDIC slightly smoothens the data due to its LLR 

approach. Recently, Zhao et al. tackled these problems 

by developing a non-local low-rank (NLLR) PCA 

denoising method for dMRI. The proposed method uses 

matrices of 3D (2D spatial + 1D diffusion direction) 

similar non-local patches33–35. They argued that 

gathering similar patches into a single matrix better 

exploits signal redundancy and promotes the low-

rankness of the dMRI data. The authors reported that 

their NNLR-based patching method led to a more 

effective dMRI denoising than MPPCA33.  

As mentioned, NORDIC for fMRI also relies on 

signal redundancy across volumes to define principal 

components and thus could benefit from non-local patch 

formation9,29. In the present work, we determine the 

denoising performance of an alternative patching 

method for NORDIC that uses non-local similar voxels 
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to construct low-rank temporal patches (voxel-

matching, VM; dubbed VM-NORDIC). We 

hypothesize that the higher homogeneity of the resulting 

patches compared to the default local patches (Standard-

NORDIC) leads to a more robust estimation of the low-

rank structure of the dataset after PCA. Gathering 

voxels with similar time series boosts the degree of 

redundancy within the patch, amplifying the principal 

components related to the signal. Additionally, 

denoising together voxels from different locations in the 

dataset avoids spatial over-smoothing. As such, we 

expect VM-NORDIC to produce a higher noise 

attenuation and greater preservation of spatial detail 

than Standard-NORDIC while applying the same 

parameter-free threshold on high-resolution fMRI data.  

We assess and compare the performance of VM-

NORDIC with Standard-NORDIC on a group of sub-

millimetre resting state BOLD fMRI datasets at 7 tesla 

in terms of fundamental metrics for fMRI, including 

tSNR and global spatial smoothness.   

   

THEORY  

 

PCA and SVD  

 

Let Y be an M×Q complex-valued volumetric fMRI 

measurement Casorati matrix, with the columns 

representing M voxels and the rows representing Q MR 

signal samples for each voxel (e.g. time points of the 

BOLD data). We expect the fMRI data to have a low-

rank representation due to the multiple volumes 

acquired through time. That is, Q is large enough to 

represent Y with a combination of a few linearly 

independent sources, or principal components P<<R, 

with R = rank(Y) = min{M, Q} >> 1 and P = rank(YL) 

where YL is the low-rank representation of Y. NORDIC 

estimates the principal components via singular value 

decomposition (SVD) of the data Y = U · S · VH, where 

U is a unitary matrix whose columns are the left singular 

vectors of Y and contains information about the spatial 

structure of the signal. VH is the Hermitian unitary 

matrix whose columns are the right singular vectors of 

Y, representing the temporal structure of the signal. The 

diagonal elements S1,1, … , SQ,Q of the matrix S (size 

M×Q) are the singular values that represent the 

contribution of each source of signal or noise. Here,  

S2(j) = λ(j), j ∈ {1, … ,Q}, is the jth eigenvalue of the 

Q×Q sample covariance matrix Σ = I/Q · YYT = 

U · S2 · UT, where U is the transposed orthogonal matrix 

whose columns are the principal components.  

For noise-free measurement data, Y can be effectively 

low rank approximated by P<<R singular values as the 

remaining R−P singular values are zero28,31. However, 

in a realistic case, Y is a noisy data matrix described by 

the model Y = X + N, where X is the signal of interest 

and N is additive i.i.d. zero-mean Gaussian noise and 

which propagates through all components making all R 

eigenvalues non-zero, so that rank(Y) = R. 

Although the noise in each measurement is random, 

its effect on the spectrum of singular values becomes 

deterministic in the limit of R>>P. In other words, if a 

noisy fMRI data matrix contains enough time points Q, 

the histogram of the noise-only components will follow 

the Marchenko-Pastur (MP) distribution, a well-

understood asymptotic universal law from random 

matrix theory for random covariance matrices30. The 

objective of NORDIC PCA is to estimate and eliminate 

the components within the MP distribution of a noisy 

dataset to attenuate thermal noise contributions. This 

result is achieved by numerically estimating the 

boundary between noise and signal singular values of a 

noisy data matrix and applying it as threshold λthr to 

nullify all the ordered singular values λ(j)<λthr within the 

MP distribution (i.e. to cancel out all eigenvalues 

indistinguishable from zero-mean Gaussian distributed 

noise). The truncated singular value matrix Sλthr is then 

recombined with the original eigenvectors matrices to 

reconstruct the low-rank denoised matrix  

YL = U · Sλthr · VH. 

 

Locally Low-Rank (LLR) model 

 

A locally low-rank model is a mathematical framework 

used to approximate a high-dimensional data set with a 

series of low-rank matrices36. This type of model allows 

for a more efficient and compact representation of the 

data and can be used for tasks such as dimensionality 

reduction, data compression, and denoising. The 

method of locally low-rank approximation typically 

involves breaking the matrix (here, the fMRI dataset) 

into smaller submatrices (local patches) and applying 

SVD to each submatrix36. The locally low-rank property 

allows approximating each local region in the data by a 

low-dimensional subspace of fewer principal 

components. Of these components, some are dominated 

by the signal and others by noise - this separability is the 

basic principle of PCA-based denoising. Standard-

NORDIC exploits the LLR properties of fMRI data to 

reduce the noise level via hard thresholding the ordered 

singular values of local patches36. 

 

Degree of noise removal  

 

In VM-NORDIC, the threshold estimation and SVT are 

the same as for Standard-NORDIC7. Nevertheless, the 

same threshold can be more effective at attenuating 

noise from a highly homogeneous patch rather than an 

inhomogeneous one. A higher homogeneity leads to a 

more defined low-rank structure of the data by making 

signal components more defined, which together allow 
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approximating the data with a lower number of principal 

components. Better-defined principal components also 

diminish the risk of accidentally canceling signal 

components and leaving noise components intact. 

However, as for Standard-NORDIC, noise propagates 

through all components of the spectrum of singular 

values9,31. Therefore, VM-NORDIC may lead to a 

higher noise attenuation than Standard-NORDIC but 

does not completely removes it from the data.  

 

METHODS AND MATERIALS 

 

In the following sections, we first explain the 

implementation details of VM-NORDIC and highlight 

its differences from Standard-NORDIC. Then, we move 

to the methods we applied to acquire the data and 

analyse and compare the results from the two methods.  

 

Standard-NORDIC LLR model 

 

Standard-NORDIC relies on the LLR properties of 

fMRI data to reduce the noise level via hard 

thresholding the ordered singular values of local and 

spatially overlapping temporal patches. Neighbouring 

voxels within a fixed k1×k2×k3, usually with k1 = k2 = k3, 

sliding window are vectorized as yt and gathered 

together to form a set of complex M×Q Casorati 

matrices of the form Y = [y1, … yt, … yQ], where Q is 

the length of the time series and M = k1×k2×k3 ~ Q · 11, 

as reported by Veraart et al (see Fig. 2A for an exemplar 

local patch) 9,31. Each Casorati matrix undergoes SVT to 

truncate its singular values spectrum according to a 

parameter-free threshold λthr
9,29. The result is a low-rank 

representation of the original Casorati matrix with a 

lower noise level. Finally, each matrix is reshaped into 

a 4D patch and relocated to its original spatial location.  

 

Proposed Voxel-Matching NORDIC  

 

In VM-NORDIC, patch formation occurs via grouping 

similar time series of non-local voxels. First, the dataset 

is divided into chunks of X slices. Chunking the dataset 

is necessary to speed up the denoising process since 

processing all voxels at once may be too 

computationally heavy for most machines. For each 

chunk, VM-NORDIC computes the Euclidian distance 

between the time series of N reference voxels and all the 

brain voxels in the chunk to assess their level of 

similarity. For each reference voxel, the K-1 most 

similar voxels are vectorised and grouped with their 

reference voxel to form N Casorati matrices of K×Q 

elements (Figure 1A), where K is the (optimal) patch 

size as explained in the next section (see Figure 2B for 

an exemplar non-local patch). Each of the N Casorati 

matrices undergoes SVT and is then transformed back 

into image space. 

 

Patch size optimization  

 

In VM-NORDIC, the patch size represents the number 

of vectorized time series per patch. Optimizing the patch  

 

Fig. 1. A) Flowchart of VM-NORDIC. For each chunk, N reference voxels y0 are compared to all the voxels ym in the chunk. 

For each reference voxel, the K-1 voxels with the highest similarity scores are grouped together with the reference voxel into a 

K×Q Casorati matrix Y. The matrix undergoes SVT to produce a denoised matrix YL. Panels B and C show the weighting 

matrices and indicate the amount of time each voxel has been denoised for VM-NORDIC and Standard-NORDIC. The two 

panels also highlight the main differences in the patching approach between the two methods.  
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size is a fundamental step in VM-NORDIC. Large 

patches may boost redundancy by gathering a higher 

number of similar time series. However, it also implies 

selecting time series that are less similar to the reference 

one, degrading the low rankness of the patch. On the 

other hand, small patches may be more homogeneous 

but not exhibit enough redundancy for reliable 

denoising. Therefore, in VM-NORDIC, the optimal 

patch size is a data-driven trade-off between the level of 

redundancy and the degree of similarity between time 

series. VM-NORDIC first makes an overestimated 

initial guess by multiplying the length of the time series 

by a factor F > 1. This step follows from the observation 

that the optimal patch size increases with increasing 

time points in the dataset (see Suppl. Fig. 6 and 8). Then, 

the algorithm fine-tunes the initial guess via multiple 

dummy denoising runs to find the patch size K that 

produces the highest mean tSNR score.  

 
Threshold estimation 
 
The method for estimating the threshold λthr is analogous 

in Standard-NORDIC and VM-NORDIC and is based 

on Monte Carlo simulations of noise matrices9,29. In 

VM-NORDIC, once the optimal patch size K is 

selected, thermal noise is numerically simulated by 

generating multiple K×Q matrices filled with complex 

zero-mean Gaussian distributed entries and with the 

same variance as the noise of the data. Then, each 

random matrix undergoes SVD and the average highest 

singular value per decomposition is used as the 

threshold to separate  noise from signal components in 

the data patches. 

 

Voxel averaging  

 

The proposed patching method implies that if a voxel is 

highly similar to L reference voxels, it will undergo the 

denoising cycle L times. The final voxel value is the 

weighted sum of its L values generated after each 

denoising cycle it underwent. Figure 1B shows a 

weighting matrix for a representative slice. The values 

in the matrix represent the number of times the voxels 

are visited for denoising. This averaging procedure also 

functions as an additional denoising step by reducing the 

residual contributions of noise7. A similar phenomenon 

occurs with Standard-NORDIC due to the overlapping 

patches (Fig. 1C). The resulting 2D weighting matrices 

for the two methods highlight the core difference in the 

way they handle voxels.  

 

Brain masking 

 

VM-NORDIC applies a binary bran mask to the dataset 

to exclude the background from the denoising process 

using the FSL “bet” function on the time-averaged 

datasets37. Masking reduces the computational time by 

enabling to process fewer voxels and ensures that the 

algorithm does not compute similarity scores between 

brain and background voxels, which could bias the SVD 

of the patch.  

 

Fig. 2. Exemplar Standard-NORDIC (A) and VM-NORDIC (B) patches before and after denoising. The dashed boxes indicate one 

of the temporal signal patterns shared by the timeseries (visible as vertical fading stripe). The VM-NORDIC patch is more 

homogenous than the Standard-NORDIC patch, allowing the denoising to better reveal and highlight the underlying common signal 

patterns. 
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Data chunks 

 

VM NORDIC divides the dataset into multiple chunks 

of 2D slices to further decrease the computation burden. 

The number of slices per chunk depends on a hardcoded 

value (~10^5) standing for the approximate number of 

voxels allowed per chunk. We chose this value based on 

the performance of the machines used for testing the 

algorithm and can be adjusted for different needs. With 

these procedures, VM-NORDIC takes ~5-10 minutes to 

denoise a submillimetre BOLD fMRI dataset on our 

machines. 

 

Participants 

 

We acquired six resting state data sets on three (two 

females and one male) healthy right-handed subjects 

(age range: 22-25), (see the “MRI imaging acquisition 

and processing” sections). All subjects had normal, or 

corrected vision and provided written informed consent. 

The study complied with all relevant ethical regulations 

for work with human participants. 

 

MRI acquisition and processing 

 

All fMRI acquisitions were performed at 7T (Philips) 

using a 2×16-channel surface coil and covered the 

occipital lobe. A segmented 3D GE BOLD-EPI 

sequence was used. Participants were instructed to stay 

still, minimize movements and close their eyes.  

For the first dataset (A), the acquisition covered 30 

coronal slices with TR/TE = 50/25ms, flip angle = 18°, 

segments = 1, SENSE factor (right-left, anterior-

posterior) = 3/1, in-plane voxel size = 0.71mm2, slice 

thickness = 0.8mm, volumes = 75, matrix size = 

240×240, scan time = 4 min. For the second dataset (B), 

the acquisition covered 30 coronal slices with TR/TE = 

65/31ms, flip angle = 18°, segments = 1, SENSE factor 

(right-left, anterior-posterior) = 4/1, in-plane voxel size 

= 0.71mm2, slice thickness = 0.8mm, volumes = 75, 

matrix size = 240×240, scan time = 5.3 min. For the 

third dataset (C), the acquisition covered 44 coronal 

slices with TR/TE = 81/28ms, flip angle = 23°, segments 

= 1, SENSE factor (right-left, anterior-posterior) = 3/1, 

voxel size = 0.55mm3 isotropic, volumes = 115, matrix 

size = 320×320, scan time = 15 min. For the fourth 

dataset (D), the acquisition covered 30 coronal slices 

with TR/TE = 96/31ms, flip angle = 20°, segments = 1, 

SENSE factor (right-left, anterior-posterior) = 3/1, in-

plane voxel size = 0.5mm, slice thickness = 0.8mm, 

volumes = 75, matrix size = 352×352, scan time = 8 

min. For the fifth dataset (E), the acquisition covered 33 

coronal slices with TR/TE = 51/25ms, flip angle = 18°, 

segments = 1, SENSE factor (right-left, anterior-

posterior) = 4/1, voxel size = 0.71mm3 isotropic, 

volumes = 160, matrix size = 240×240, scan time = 10 

min. For the sixth dataset (F), the acquisition covered 24 

coronal slices with TR/TE = 98/28ms, flip angle = 23°, 

segments = 1, SENSE factor (right-left, anterior-

posterior) = 3/1, voxel size = 0.45mm3 isotropic, 

volumes = 100, matrix size = 320×320, scan time = 15 

min. 
 

Experimental design 

 

This study consists of running VM-NORDIC and 

Standard-NORDIC on datasets with different 

resolutions and time points to assess which of the two 

methods leads to an overall more effective denoising in 

terms of key metrics like tSNR and spatial blurring. To 

ensure that the new patch size used in VM-NORDIC is 

not the major cause of differences in results between the 

two methods, we also performed multiple denoising 

runs with VM-NORDIC and Standard-NORDIC with 

different patch sizes. We then plotted Smoothness and 

tSNR scores Vs patch size to assess if the two methods 

could produce similar results by only modifying the 

patch sizes. 

 

Metrics to assess denoising performance 

 

We assessed the denoising performance by comparing 

tSNR and spatial smoothness estimates between 

Standard-NORDIC and VM-NORDIC. The tSNR 

comes from dividing the mean temporal signal by the 

temporal standard deviation voxel-wise. Smoothness 

was estimated through the degree of spatiotemporal 

autocorrelation (FWHM) using the 3dFWHMx function 

from AFNI with the ‘-ACF’, ‘detrend’ and ‘automask’ 

commands38. This function gives back a value in mm, 

representing the voxel spread (blurring). The spatial 

autocorrelation was estimated using a Gaussian + 

monoexponential decay mixed model to account for 

possible long-tail autocorrelations9,38. 

 

RESULTS 

 

Local vs. non-local patches 

 

Figure 2 displays two representative patches for 

Standard-NORDIC and VM-NORDIC before and after 

denoising. The Standard-NORDIC patch was cropped 

vertically in the figure to have the same size as the VM-

NORDIC patch for easier comparison. The noisy 

Standard-NORDIC patch in Fig. 2A includes similar 

voxels as well as voxels with different intensities and 

time courses. On the other hand, the non-local patch 

from VM-NORDIC in Fig. 2B appears highly 

homogenous and with clear common temporal patterns 

between time series. The denoised VM-NORDIC patch 
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shows enhanced common temporal patterns compared 

to the Standard-NORDIC denoised patch.  

 

Magnitude images 

 

Fig. 3A shows a reconstructed example slice before 

denoising and after denoising with Standard-NORDIC 

and VM-NORDIC, respectively. Both denoising 

methods lead to improvements upon visual inspection. 

Particularly, VM-NORDIC reduces noise more 

effectively in highly noisy central regions (see Fig. 4B). 

The zoomed insets show a more detailed view of the 

denoising performance of VM-NORDIC: a more drastic 

noise attenuation than Standard-NORDIC without 

degrading structural detail.  

 

Subtraction images 

 

Figure 3B reports the subtraction images for the same 

representative slice in Fig. 3A of the Standard-NORDIC 

versus the original image and VM-NORDIC image 

versus the original image. The two images only show 

random noise with higher intensities in central regions 

with high g-factors (Fig. 4). In particular, as also visible 

in the zoomed views, VM-NORDIC leads to a higher 

degree of noise removal globally and in central areas. 

The subtraction of VM-NORDIC from the Standard-

NORDIC image shows that VM-NORDIC removes 

random noise with an emphasis on noisier central areas.  

 

tSNR 

 

Table 1 shows the mean tSNR scores and percentage 

increases for VM-NORDIC compared to the original 

data and Standard-NORDIC data for different 

resolutions and SENSE factors. On average, VM-

NORDIC leads to tSNR levels ~9-90% larger than 

Standard-NORDIC and ~23-250% larger than the 

original. The highest noise removal occurs for the data 

with the largest voxel size (0.7×0.7×0.8mm3, datasets A 

and B), especially for the dataset with the lower initial 

tSNR due to the higher SENSE factor (dataset B).  

Fig. 4A shows tSNR maps for two representative slices 

of dataset B before and after denoising with Standard-

NORDIC and VM-NORDIC. VM-NORDIC leads to a 

globally higher tSNR compared to Standard-NORDIC, 

with a higher increase in central areas coinciding with 

high g-factor values (Fig. 4B). Fig. 4B shows the 

normalized tSNR difference map between Standard-

NORDIC and VM-NORDIC, the g-factor map 

estimated in NORDIC via MPPCA, the g-factor map as 

measured by the scanner and the noise map obtained by 

acquiring the MR signal without RF excitation of the 

sample.  

 

Smoothness estimates 

 

On average, VM-NORDIC increased spatial 

smoothness by 4.8 ± 3.9% (std) compared to the original 

smoothness estimate. Standard-NORDIC increased 

spatial smoothness on average by 24 ± 11.6% (std). The 

smoothness patterns were similar across all datasets. 

Figure 5 reports the spatial smoothness estimates for 

dataset B before and after data denoising with Standard-

NORDIC and VM-NORDIC. Here, Standard-NORDIC 

leads to a substantial smoothness increase, while VM-

NORDIC manages to keep smoothness to a level similar 

to the original.  

 

 

 

Fig. 3. A) Magnitude images and their zoomed views for a representative slice of dataset B before and after denoising with 

Standard-NORDIC and VM-NORDIC. VM-NORDIC does not interfere with the structural information and leads to more 

noticeable visual improvements. B) Subtraction images and their zoomed views of Standard-NORDIC versus the original data; 

VM-NORDIC versus the original data; and VM-NORDIC versus Standard-NORDIC. The random patterns indicate that VM-

NORDIC leads to a more intense random noise removal especially in central areas with high g-factor values without affecting 

structural details.  
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Patch size finetuning  

 

Supplementary figures 6 and 7 show how different patch 

sizes affect the denoising performance in terms of mean 

tSNR and smoothness scores for the two methods. The 

“tSNR vs patch size” plots (Suppl. Fig. 6) show steep 

curves with clear maxima for VM-NORDIC  within the 

range of 20-240 time series per patch, with small  

 

fluctuations due to the length of the time series (Suppl. 

Fig. 8). Suppl. Fig. 7 shows that VM-NORDIC keeps 

spatial smoothness estimates similar to or slightly 

higher than the original one but always lower than after 

Standard-NORDIC. Suppl. Fig. 8 and 9 show the tSNR 

vs. patch size and the smoothness vs. patch size plots for 

datasets with different time series lengths. All plots in 

Suppl. Fig. 8 show a slight shift of the maxima towards 

Table 1. tSNR levels for the original data, after standad NORDIC denoising and after VM-NORDIC denoising and the percentate 

tSNR increase after VM-NORDIC with respect to the original data and Standard-NORDIC processed data at different spatial 

resolitions and SENSE factors.  

Fig. 4. A) tSNR maps for two representative slices of 

dataset B for the original data, Standard-NORDIC 

denoised data and VM-NORDIC denoised data. B) 

From left to right, the normalized tSNR difference 

map between Standard-NORDIC and VM-NORDIC; 

g-factor map estimated in NORDIC via MPPCA; g-

factor map measured by the scanner; measured noise 

map of dataset B. VM-NORDIC increases tSNR 

levels especially in central areas of the brain with 

higher g-factor noise amplification. 
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smaller patch sizes with decreasing time series length. 

Further, shorter datasets have an initially higher tSNR 

and show a larger tSNR gain following VM-NORDIC.  

Suppl. Fig. 9 shows consistent but non-significant 

smoothness fluctuations with increasing time series 

lengths.  

 

tSNR/smoothness 

 

Suppl. Fig. 10 displays the plots of the normalized 

tSNR/smoothness ratio scores vs. patch size. Here, the 

maxima in the curves indicate the patch sizes with 

which the methods better remove random noise without 

excessively smoothing the data. The maxima fall within 

the same range reported previously (20-240). Also, VM-

NORDIC always surpasses Standard-NORDIC in terms 

of this metric.  

 

DISCUSSION 

 

We introduced VM-NORDIC, an extension to the 

NORDIC PCA algorithm that further decreases noise in 

BOLD fMRI data. VM-NORDIC achieves this result 

via non-local patch formation using voxel similarity 

matching to boost the low-rank properties of the 

patches, which facilitates denoising performance using 

SVT. The Standard-NORDIC and VM-NORDIC 

patches before and after denoising in Fig. 2 show how 

the higher homogeneity of the VM-NORDIC patch 

allows emphasizing the signal fluctuations that the time 

series have in common, visible as fading vertical stripes. 

Better-defined signal fluctuations enable the uncovering 

of the underlying temporal structure of the brain activity 

which otherwise would be too contaminated by noise 

(Fig. 2B). Overall, VM-NORDIC reaches a higher 

degree of thermal noise removal, as indicated by 

substantial increases in tSNR (up to 2-fold the original 

tSNR), while better preserving spatial specificity and 

structural detail, which are key advantages in sub-

millimeter resolution BOLD fMRI studies. Altogether, 

these results indicate that non-local patching promotes a 

superior low-rank structure of the data, allowing to 

adequately represent the data with fewer principal 

components than with local patches in Standard-

NORDIC. These improvements are in line with the 

results reported by Zhao et al., where patching using 

non-local similarities to denoise dMRI and DTI data 

significantly reduced noise while preserving structural 

details compared to MPPCA33. As mentioned by the 

original NORDIC authors7, NORDIC is beneficial and 

complementary to other pre-processing steps that target 

different aspects of the dataset, such as motion 

correction and physiological noise removal. 

The tSNR scores in Table 1 report that the 

effectiveness of VM-NORDIC increases with 

increasing voxel size. We argue that these results derive 

from the higher signal strength at greater voxel sizes, 

leading to larger and more pronounced principal 

components containing signal, which benefits SVT. 

Notably, among the two datasets with the largest and 

equal voxel size (datasets A and B), the one with the 

initially higher noise level (dataset B, due to the higher 

SENSE factor) shows the largest tSNR gain. This result 

implies that VM-NORDIC targets thermal noise only 

while leaving the target signal intact. However, the 

higher noise level of dataset B due to the greater SENSE 

factor makes its tSNR lower than in dataset A. 

Consequently, as visible in Table 1, the two datasets 

reach similar tSNR levels upon VM-NORDIC, 

implying that denoising removed a larger amount of 

thermal noise from the noisier dataset B.  

That VM-NORDIC effectively removes more noise 

while preserving the structural integrity of the images is 

visually perceivable in the reconstructed images (Fig. 

3A). Moreover, the difference between VM-NORDIC 

and the original image shows only noise without notable 

edge effects (Fig. 3B). The difference between VM-

NORDIC and Standard-NORDIC also shows mostly 

noise, indicating that non-local patching in VM-

NORDIC removes additional noise than Standard-

NORDIC. Moreover, the same image also exhibits 

spatial patterns in correspondence of high g-factor 

values (Fig. 4B). These results suggest that the higher 

mean tSNR after VM-NORDIC mainly derives from 

stronger denoising of central areas. Nonetheless, also 

peripheral areas exhibit a less pronounced yet tangible 

tSNR increase after VM-NORDIC, indicating a globally 

stronger noise removal (see figure 4). 

Fig. 5. Spatial smoothness estimates (using 3dFWMHx 

AFNI) for the representative dataset B. On average, the 

proposed VM-NORDIC barely affects the original spatial 

smoothness of the dataset (~5%), indicating improved 

preservation of structural detail compared to Standard-

NORDIC. Specifically, for this dataset, VM-NORDIC results 

in the spatial smoothness estimate being lower than for the 

original data. This result follows from the particularly small 

patch size used on this dataset, which counteracts signal 

leakage-induced smoothness in the original data. 
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These converging findings point out that in local 

patches from highly noisy regions, noise irreversibly 

propagates through all signal components, leading to 

less effective SVT compared to areas where noise is less 

dominant. This scenario is never obtainable with VM- 

NORDIC since non-local patches inherently have well-

pronounced signal components by construction. Always 

having well- pronounced signal components allows 

VM-NORDIC to denoise all voxels across the dataset 

with comparable efficiency, as long as enough similar 

voxels are present to generate sufficient redundancy. 

Therefore, the outcome is, on average, a high and 

consistent tSNR level across the whole dataset 

independently of the local noise levels. 

VM-NORDIC also induces lower levels of spatial 

smoothing than Standard-NORDIC (Fig. 5, Suppl. Fig. 

7). As mentioned, Standard-NORDIC applies an LLR 

method that inevitably increases spatial smoothing by 

increasing the similarity between adjacent voxels (see 

Methods and Materials, section “Standard-NORDIC 

LLR model”). Importantly, we observe that VM-

NORDIC minimally smoothens the dataset by denoising 

groups of voxels from different locations across the 

dataset, increasing the original smoothness by less than 

5% on average (about 20% of that induced by Standard-

NORDIC). Minimal contamination of the spatial 

integrity is crucial for sub-millimeter BOLD fMRI 

applications. 

The steep tSNR curves as a function of patch size in 

Suppl. Fig. 6 suggest that the performance of VM-

NORDIC is more sensitive to the patch size compared 

to Standard-NORDIC. Notably, for VM-NORDIC, the 

sharp maxima of mean tSNR as a function of patch size 

reveal the existence of an optimal patch size per dataset. 

We argue that these results derive from the notion that 

in Standard-NORDIC, adding or subtracting a few 

voxels from an inhomogeneous local patch does not 

strongly modify its low-rank representation and thus the 

effectiveness of denoising (Suppl. Fig. 6). Contrarily, in 

VM-NORDIC, having larger patches can lower the 

overall similarity ranking, which potentially reduces the 

patch homogeneity and hampers efficient SVT. 

However, larger patches can also improve denoising by 

boosting signal redundancy if the additional voxels are 

sufficiently similar to the reference one. Oppositely, 

small patches may be highly homogeneous but not 

exhibit enough redundancy for a reliable SVT. These 

concepts suggest that the optimal patch size is a data-

driven trade-off between the degree of similarity of the 

voxels and the level of signal redundancy. Hence, a 

data-specific fine-tuning process is necessary to find the 

optimal patch size (see Methods and Materials section 

“Patch size optimization”). The figure also shows that 

VM-NORDIC produces higher tSNR scores than 

Standard-NORDIC at suboptimal patch sizes, meaning 

that the patch size alone is not the sole promoter of the 

improvements. Suppl. Fig. 8 illustrates that the optimal 

patch size per dataset slightly fluctuates or decreases 

with decreasing time points, and that data with fewer 

time points reach a higher tSNR increase thanks to the 

higher initial tSNR. 

Smoothness scores per different patch sizes indicate 

that, overall, the degree of smoothing upon VM-

NORDIC remains lower than for Standard-NORDIC  

independently of the size of the time series (Suppl. Fig. 

7 and 8). In particular, in VM-NORDIC, small patch 

sizes generally preserve spatial detail more effectively 

than large ones. We suggest that the reduced number of 

time series allowed in small patches limit the chance of 

denoising the same time series too many times, which 

could potentially remove the characteristic underlying 

signal. Further, signal leakage due to, for instance, 

susceptibility artefacts can slightly increase the 

smoothness of the original data by spreading the 

magnetic signals from one brain region into 

neighbouring voxels, leading to a decrease in spatial 

resolution and blurring39. Consequently, particularly 

small patches avoid further signal spreading or, in a few 

cases, even counteract signal leakage effects by 

decreasing the artificial similarities between adjacent 

voxels, leading to comparable or lower smoothness 

estimates than in the original data (e.g. Fig. 5, Suppl. 

Fig. 7, second panel).  

Since the goal of a denoising method is maximizing 

the tSNR while minimizing spatial smoothing, 

combining tSNR and smoothness scores into a single 

metric allows for a direct and global assessment of the 

denoising performance. The normalized 

tSNR/smoothness ratio vs. patch size plots for different 

time series in Suppl. Fig. 10 shows that VM-NORDIC 

reaches higher tSNR/smoothness ratios than Standard-

NORDIC, thus a more convenient trade-off between 

noise removal and induced smoothness. Further, also 

these curves emphasize a range of dataset-specific 

optimal patch sizes (20-240) that guarantee a higher 

degree of noise removal while preserving structural 

information.  

Ideally, a reference voxel should be compared to all 

brain voxels across the entire dataset to maximize the 

chance of finding high similarities and grouping voxels 

from different slices. However, computing the similarity 

scores of the whole dataset at once is computationally 

expensive. A solution was to process fewer data per 

cycle by dividing the dataset into equally large chunks 

of temporal slices and denoise each chunk individually 

(for more details, see Methods and Materials section 

“Chunks Size”). As long as the chunks contain enough 

data and slices, there will still be a high chance of 

finding highly similar non-local voxels. After selecting 

the appropriate chunk size based on the performance of 
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our machines, we saw that chunking significantly 

speeds up the processing without interfering with the 

quality of denoising.  

Finally, a recent study reported that Standard-

NORDIC and MPPCA occasionally generate artificial 

functional activation depending on the selected patch 

size11. In particular, they found that larger patch sizes 

provide higher sensitivity to BOLD responses with both 

MPPCA and Standard-NORDIC, but with significant 

activation “spreading” and increasing false positives 

rate due to the local bleeding of active signal 

components11. They concluded that for both methods, 

the optimal patch size for each experiment depends on 

data tSNR and functional CNR. Similarly, our findings 

also show an increase in the induced spatial smoothness 

(hence signal spreading) with increasing patch sizes for 

VM-NORDIC (Supp. Fig. 7). However, as discussed, 

the patch size optimization process in VM-NORDIC 

already relies on the data tSNR and usually estimates 

patch sizes smaller than those used in Standard-

NORDIC. Hence, we suggest that the lower spatial 

smoothness upon VM-NORDIC with small patch sizes 

can limit the activation spreading by keeping unaltered 

or even decreasing the artificial spatiotemporal 

similarities between adjacent voxels39. Yet, a more 

dedicated investigation is necessary to understand if a 

similar effect occurs during VM-NORDIC even after 

the patch size optimization. 

Among the limitations of VM-NORDIC, there is the 

inevitable increase in the processing time (on average 

~1.8  times longer than with NORDIC standard, but still 

within ~5-10 minutes on our machines depending on the 

size of the data) due to the additional steps of voxel 

matching and patch size fine-tuning. Further, the present 

study did not include analyses of functional activity 

such as t-statistic activation maps. Since the end goal of 

VM-NORDIC is to improve the reliability and further 

push sub-millimeter BOLD fMRI studies, these 

statistical analyses are of paramount importance. 

However, we suggest that because the voxels in a VM-

NORDIC patch are already highly correlated owing to 

their similar time courses, increasing their similarity 

may help reveal unspotted activation. 

 

CONCLUSION 

 

A large part of the neuroscientific community is devoted 

to studying mesoscopic cortical organizations like 

cortical columns and layers in the visual cortex8. So far, 

most of the detailed studies were possible only by 

invasively mapping animal cortices. Expanding the 

investigation to in-vivo human brains requires non-

invasive, precise and reliable imaging methods3. 

Specifically, the BRAIN Initiative Working group 

reported that the voxel size (e.g. resolution) necessary to 

resolve these small-scale structures spans from 

~0.46mm and ~0.55mm isotropic7,40. Reducing noise 

while preserving spatial integrity is essential to enable 

high-resolution fMRI studies revealing new 

neuroscientific insights at the mesoscopic scale. 

Together with the latest advancements in hardware 

technologies, such as the development of dedicated 

receive head coils, powerful gradient inserts, and even 

stronger static magnetic fields41–43, VM-NORDIC will 

allow the community to further push the boundaries of 

fMRI resolution to an unprecedented degree. This can 

potentially pave the way to highly relevant discoveries 

within UHF submillimeter fMRI4,5,14. Future steps 

should investigate the effects of VM-NORDIC on 

functional mapping and apply it to higher-resolution 

data acquired with the aforementioned specialized 

hardware.  
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SUPPLEMENTARY MATERIALS 

Suppl. Fig 6. Mean tSNR as a function of patch size for Standard-NORDIC and VM-NORDIC. The denoising performance 

of VM-NORDIC is more sensitive to the chosen patch size. Also, The curves for VM-NORDIC show clear maxima 

representing the optimal patch sizes. 
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Suppl. Fig 7. Global smoothness estimates (FWHM) as a function of patch size for Standard-NORDIC and VM-NORDIC. 

VM-NORDIC does not significantly increase spatial smoothing and, for certain patch sizes, even leads to smoothness estimates 

lower than the originals by counteracting smoothing signal leakage.  
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Suppl. Fig 8. Mean tSNR as a function of patch size for VM-NORDIC denoised datasets with different numbers of time points. 

The optimal patch size slightly increases with increasing time points. Nonetheless, the shift is not significant as long as the 

number of time points is within a regular range. Additionally, shorter datasets show the largest tSNR gains.  

 

Suppl. Fig 8. Mean tSNR as a function of patch size for VM-NORDIC denoised datasets with different numbers of time points. 

The optimal patch size slightly increases with increasing time points. Nonetheless, the shift is not significant as long as the 

number of time points is within a regular range. Additionally, shorter datasets show the largest tSNR gains.  
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Suppl. Fig 9. Global smoothness estimates (FWHM) as a function of patch size for VM-NORDIC denoised datasets with 

different numbers of time points. The degree of spatial blurring exhibits small but irrelevant fluctuations as the number of time 

points of the dataset changes.    
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Suppl. Fig 10. Normalized tSNR over normalized global smoothness estimate (FWHM) ratio as a function of patch size for 

VM-NORDIC denoised datasets with different number of time points. This metric shows which patch size guarantees the best 

denoising performance in terms of the trade-off between nosie removal and induced spatial smoothness. The curves indicate 

that VM-NORDIC has a clear advantage over Standard-NORDIC, and that the optimal patch sizes range from 20 up to 240 

timeseries per patch. 
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Improved NORDIC denoising for submillimetre BOLD fMRI using patch 
formation via non-local pixels similarity - pixel-matching (PM) NORDIC 

Alessandro Nigi1 and Jeroen C.W. Siero1 
1Radiology, UMCU, Utrecht, Netherlands 

Synopsis 
Submillimetre BOLD fMRI enables studying brain function at the mesoscopic level but is limited by low SNR. The 
NORDIC PCA algorithm reduces thermal noise levels in fMRI in a patch-wise manner via singular value thresholding 
(SVT). However, the NORDIC patch formation uses adjacent pixels that often contain signals from multiple tissues, 
which can degrade the denoising performance. We propose an alternative patch formation using the similarity 
between non-local pixels, dubbed pixel-matching (PM) NORDIC. PM-NORDIC outperforms standard NORDIC in terms 
of temporal SNR and spatial smoothness estimates. 

 

Introduction 
BOLD fMRI is an indispensable tool for depicting brain function. However, its low contrast-to-noise ratio and low SNR 
for high-resolution data limit its applicability and reliability1. Recently, Vizioli et al. (2021) introduced NOise Reduction 
with Distribution Corrected (NORDIC) PCA to attenuate thermal noise levels in fMRI via a principal component 
analysis (PCA) approach2. The algorithm divides the dataset into consecutive 4D (adjacent 3D spatial + 1D temporal) 
patches and denoises each patch by truncating the distribution of its singular values according to a parameter-free 
threshold. A potential downside of this patch formation through adjacent pixels is that the patches often contain 
signals from multiple tissues. Mixing of different tissues within a patch can negatively affect the identification of true 
signal components and may not exploit all information redundancy3,4,5. Zhao et al. (2022) introduced PCA-based 
denoising for diffusion MRI data by constructing patch matrices from similar non-local patches3,6,7. They argued that 
grouping similar patches exploits more information redundancy and promotes the low-rankness of the patch 
matrices, resulting in improved denoising for diffusion MRI. NORDIC denoising for BOLD fMRI utilizes signal 
redundancy over time and could thus also benefit from patch formation based on the non-local similarity of pixels2. 
Here, we apply an alternative patching method based on non-local pixel similarity (pixel-matching) for NORDIC 
(dubbed PM-NORDIC) on high-resolution fMRI data and show improved denoising compared to standard NORDIC in 
terms of temporal SNR (tSNR) and spatial smoothness estimates. 

 

Methods 
Imaging data: fMRI acquisitions were performed at 7T (Philips) using a 2x16-channel surface coil. A segmented 3D 

GE BOLD-EPI sequence was used, covering 40 coronal slices on the visual cortex with TR/TE=54/27ms, flipangle=20°, 
segments=3, SENSE factor (right-left, anterior-postior)=3.5/1.5, 0.55mm isotropic voxelsize, volumes=49, 
matrixsize=240x240. 

Standard NORDIC denoising: NORDIC uses locally low-rank (LLR) properties of image patches across image series. 
The algorithm divides the dataset into a series of 4D k x k x k x Q adjacent patches, where k stands for the dimensions 
of the spatial patch and Q is the number of time points. Here k=8 was used. Each patch is denoised via singular value 
thresholding (SVT) by cancelling the components indistinguishable from zero-mean Gaussian distributed noise (via 
Monte Carlo simulations), producing a noise-free low-rank approximation of the original noisy patch. 
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Proposed pixel-matching NORDIC: Here, patch formation occurs via grouping similar non-local pixels (Figure1). For 
each 2D slice, a number (N) of reference pixels are selected. Each reference pixel is compared to M neighbouring 
pixels to compute a similarity score based on the Frobenius norm between the pixel’s time series. The (k^2)-1 pixels 
exhibiting the highest similarity scores are vectorised and grouped with their reference pixel to form N Casorati 
matrices of (k^2) x Q elements (Figure1A). Finally, each Casorati matrix is denoised according to the standard NORDIC 
SVT and back distributed into image space (Figure1C). 

Experiment design: In PM-NORDIC, the outcome of denoising highly depends on the patch size. A large patch size 
contains pixels with lower scores in the similarity ranking, thus results less homogenous compared to a smaller patch. 
Hence, we compared PM-NORDIC to standard NORDIC using two patch sizes: 1) the default computed by NORDIC (k 
x k x k x Q=8x8x8x49) when the user does not explicitly provide a specific patch size, and 2) a smaller patch of ([(k x 
k x k)^(⅓)]^2 x Q, i.e. 8x8x49) 

Data analysis: The denoising performance was assessed by comparing tSNR and spatial smoothness estimates 
between standard NORDIC and PM-NORDIC. TSNR was computed by dividing the mean temporal signal by the 
temporal standard deviation pixel-wise. Smoothness was estimated through the degree of spatiotemporal 
autocorrelation (FWHM) using 3dFWHMx from AFNI using the ‘-ACF’, ‘detrend’ and ‘automask’ commands. 

 

Results 
Compared to the non-denoised original data, the tSNR increased by a factor of 1.89, 2.2 and 2.5 for standard NORDIC 
with default patch size, for standard NORDIC with small patch size and PM-NORDIC, respectively (Figure2). Spatial 
smoothness increased by 11%, 30% and 7% for standard NORDIC with default patch size, standard NORDIC with small 
patch size, and PM-NORDIC, respectively (Figure3). 

 

Discussion 
We introduced PM-NORDIC, an alternative patch formation approach for NORDIC PCA based on the similarity 
between non-local pixels3,6,7. PM-NORDIC showed improved tSNR and spatial smoothness scores for ~0.5mm 
isotropic BOLD fMRI data compared to standard NORDIC. Hence, homogenous patches are more easily low-rank 
approximated via SVT, leading to more effective denoising. Moreover, for PM-NORDIC, a small patch size signifies 
selecting fewer pixels along the similarity ranking, increasing the homogeneity of the resulting patch and further 
improving the denoising performance (Figure4,5). Finally, smoothness scores show that the proposed method better 
preserves structural detail than the default approach (Figure4,5). However, the pixel-matching approach acts on 
groups of non-local pixels. Therefore, adjacent pixels will unlikely be present in the same patch, leading to low levels 
of autocorrelation across the denoised image. 

 

Conclusion 
The proposed PM-NORDIC denoising using patches of highly similar non-local pixels can boost denoising 
performance. PM-NORDIC led to substantial increases in tSNR and preservation of spatial smoothness. Reducing 
thermal noise contributions while preserving spatial integrity is essential for conducting BOLD fMRI at submillimeter 
resolutions, potentially revealing new neuroscientific insights at the mesoscopic scale2. 
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Figures 

 

Fig 1. A) Flowchart of PM-NORDIC. For each 2D slice, reference pixels y0 are compared to M pixels ym. 

For each reference pixel, the (k2)-1 pixels with the highest similarity scores are grouped together with the 

reference pixel into a (k2)xQ Casorati matrix Y. The matrix undergoes NORDIC SVT to produce a denoised 

matrix X. B) patch-formation pixel weighting matrix for a 2D slice for standard NORDIC. C) patch-

formation pixel weighting matrix for a 2D slice for PM-NORDIC. 
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Fig 2. Mean tSNR scores for a representative slice. The proposed PM-NORDIC further increases tSNR compared to 
standard NORDIC, especially in central areas of the brain where the g-factor amplification is usually higher (and thus 
higher thermal noise). 
 

 

 Fig 3. Spatial smoothness estimates (using 3dFWMHx AFNI) for a representative dataset. The proposed PM-NORDIC 
barely affects the original spatial smoothness of the dataset, indicating improved preservation of structural detail and 
potentially spatial specificity of functional BOLD activity compared to standard NORDIC. 

 

 

Fig 4. Difference images (with respect to the non-denoised original data) for the different patching 

methods for a representative slice. PM-NORDIC shows increased noise reduction compared to standard 

NORDIC with default and small patching, indicating that no structural information is being removed. The 

difference between the proposed PM-NORDIC and standard NORDIC reveals that PM-NORDIC removes 

more thermal noise and subtle vessel outlines. 
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Fig 5. Magnitude images and zoomed view of a representative slice before and the after 

denoising. PM-NORDIC effectively removes thermal noise without interfering with the structural 

information. 

 


