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Abstract 
Cell metabolism is comprised of a complex network of interactions. Regulating metabolic flux, 
especially in stress conditions, is essential to cell survival. An increasing number of studies suggest 
that the spatial organization of metabolic enzymes within the cell plays a critical role in regulating 
metabolic flux. In Saccharomyces cerevisiae, it is speculated that enzyme sequestration is a common 
mechanism of downregulating product synthesis rates in starvation conditions. Particularly, 
sequestration by filament formation is reported as a prevalent phenomenon. In this study, we 
investigate filament formation of CTP synthase in situ, using a cryo-CLEM tomography approach. We 
identify three individual instances of filament bundles and characterize them through filament 
averaging. To enable efficient implementation of rapid GPU-based template matching for locating 
CTP synthase in non-filamentous form, we develop a subvolume-based template matching 
approach. Altogether, we present a methodology that can be adapted for mapping out the spatial 
organization of metabolic pathways, to improve our understanding of how cells control their 
metabolism. 

 
Keywords (5): metabolism, cryo-CLEM, CTP synthase, S. cerevisiae, starvation 



 2 

Layman’s Summary 
In order for cells to grow, they need energy and building blocks. Certain molecules function as 
building blocks or carry energy. Enzymes are proteins responsible for shaping molecules to suit their 
function. Often, for a particular building block to produced, a sequence of different enzymes is 
needed to obtain the right molecular structure. The process of creating these molecules is called 
metabolism. 
 
While we know the details of how these metabolic products are formed, how enzymes and their 
targets interact inside the cell remains to be explored. The cell is a crowded area, with structures 
and compartments everywhere. For an enzyme to get to its target, it needs to travel there 
somehow. The crowdedness of the cell serves as a barrier for movement, like trying to move 
through a crowded station to get to the train. 
 
Metabolic products need to be made in bulk at high speeds for cell growth, so how can a cell ensure 
maximum production? In this study, we looked at how cells organize metabolic molecules, so the 
products are created as fast as possible. Additionally, cells should also be capable of slowing down 
metabolic processes. If an environment lacks nutrients, a cell will stop producing the building blocks 
needed for growth to save energy. One way of achieving this is through storing enzymes in a shape 
that makes them inactive, for instance filaments. Filaments are long chains of the same molecule 
stacked on top of each other. CTP synthase, an enzyme responsible for the production of CTP -a 
molecule that carries energy- is speculated to form filaments.  
 
Using electron microscopy, we can visualize what these enzymes look like both in free and 
filamentous form. To target CTP synthase amongst the crowdedness of the cell, a fluorescent tag is 
attached to the enzyme. We first image a sample of cells with fluorescence light microscopy, and 
then use electron microscopy. By overlaying the fluorescent images with the electron images, we 
can find our area of interest. A series of images is taken at that spot with the electron microscope 
while tilting the sample along an axis. The obtained images can subsequently be combined to create 
a 3D image of the area. 
 
In our research we find three bundles of filaments near the area of our fluorescence. We suggest 
these filaments are made up of CTP synthase. Unfortunately, we need to acquire more and higher 
quality data before we can conclude this. However, the method we developed to obtain these 
images of filament bundles can be applied to study many different metabolic pathways inside cells. 
A combination of electron and fluorescence microscopy is key to uncovering how enzyme and 
substrate interact inside the cell. This will aid our understanding of how a cell grows and adjusts to 
its environment. 
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Introduction 
Diffusion-based motion cannot account for metabolic synthesis rates 
Cell metabolism is a highly complex and coordinated system of interactions, responsible for 
supplying the cell with energy and synthesizing new essential molecules. The function and growth of 
a cell depends on its metabolism. Therefore, it is crucial that the activity of the enzymes involved is 
optimized. Regulating enzyme abundance through altering transcription or translation rates is one 
way of adjusting metabolic flux. Post-translational modifications that alter the catalytic properties of 
metabolic enzymes have also proven to be essential, predominantly because of their rapid and 
immediate influence on the metabolic product synthesis rate [Wang et al., 2010; Krebs et al., 1979]. 
In addition to these general mechanisms of regulation that directly affect enzyme abundance or 
activity, studies suggest that cells also manage their metabolism on a spatial level through protein 
accessibility [Gaertner, 1978; Sweetlove et al., 2018]. 

 
While the optimal performance of metabolic pathways in the spatial dimension was previously 
assumed to be the result of a “well-mixed” system, ongoing research challenges this classical 
perception [Schmitt et al., 2017]. In a rudimentary model, the cytosol of a cell is equated to a 
homogeneous, aqueous solution through which molecules can freely diffuse. The spread of 
metabolic enzymes, cofactors, and intermediates is thus based on Brownian motion [Barros et al., 
2007]. However, if such a model is applied to experimental data, the resulting diffusion factors 
diverge considerably [Selivanov et al., 2007]. Besides, the observed synthesis rates are higher than 
allowed by free diffusion of reactants or products [Saks et al., 2008]. Cellular structural elements 
such as internal organelles, cytoskeletal networks, and macromolecular crowding function as local 
diffusion barriers and limit the actual diffusion rate of molecules inside the cell [Saks et al., 2008]. 
Hence, it can be concluded that the cytosolic compartment of the cell is not in fact a homogeneous 
system. A “well-mixed” system is only theoretically possible and does not serve to spatially maximize 
nor regulate metabolism. Although the spatial dynamics and compartmentalization of metabolic 
enzymes have been observed for decades [McBrien et al., 1968], only recently has the role of these 
phenomena in regulation of metabolism come to light. Reevaluation of the classical understanding 
of how metabolic pathways spatially optimize to adjust their production rates is in order (Figure 1A). 
 

Multienzyme complexes as reaction hubs for metabolic pathways 

Historically, existence of complex structural organization -also known as “quinary structure”- has 
been studied in cell-free systems [Cohen et al., 2017]. Multienzyme complexes are hypothesized to 
function as “membraneless” compartments containing key agents of a metabolic pathway. These 
compartments serve as reaction hubs for the chemical interactions necessary. By confining the 
essential molecules of a pathway within such a space or complex, substrate channeling is facilitated 
and reaction rates are maximized [Castellana et al., 2014; Bauler et al., 2010]. Additionally, 
potential toxic or unstable precursors can immediately be processed through proximity to successive 
enzymes and cofactors. Colocalization of metabolic enzymes and their structural interaction is 
therefore considered paramount to regulation of metabolic flux.  
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Not only can metabolism be regulated through multienzyme complexes that increase overall 
reaction rates; enzyme sequestration also plays a critical role by decreasing product synthesis rates 
[Hinzpeter et al., 2019]. Especially while exposed to environmental stress, cells often rely on 
downregulation of their cellular metabolism as a major response strategy [Hand & Hardewig, 1996]. 
In case of nutrient deficiency, restricting metabolic synthesis is an effective way of saving energy and 
resources. Sequestration of enzymes can create a spatial barrier that reduces the activity of the 
enzyme in question without necessarily altering its catalytic properties or disposing of the protein. 
Thus, achieving sequestration should not be a costly process and it allows the cell to quickly recover 
when conditions reverse. In fact, self-assembly of metabolic enzymes into filaments appears to be a 
widespread phenomenon, particularly at the rate-limiting step of metabolic pathways [Noree et al., 
2019; Lynch et al., 2020; Park & Horton, 2019; Simonet et al., 2020]. As a review on the topic by 
Schmitt et al. proposes; metabolic flux is regulated by alternating states of multienzyme assembly 
and sequestration (Figure 1B) [Schmitt & An, 2017]. 

Well-mixed system 

Sequential metabolic enzymes:  

Multienzyme assembly Enzyme sequestration 

Realistic model A 

B 

Figure 1: Regulation of metabolic flux through spatial optimization.  

(A) A spatially well-mixed system by diffusion is unattainable in a realistic setting. It cannot not account for the 
local diffusion barriers presented by the cytoskeletal network, intracellular organelles, and macromolecular 
crowding. (B) Within a realistic model, enzymes form multienzyme assemblies to maximize product synthesis. In 
response to environmental stress, cells can stall metabolism through sequestration of essential enzymes. 
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A robust method for structurally characterizing spatial organization in native 
context is needed 

Most of our current knowledge on the existence of multienzyme assembly and enzyme 
sequestration comes from in cell studies. A variety of light microscopy techniques are employed to 
investigate spatial organization phenomena [Schmitt & An, 2017]. From glycolysis and 
gluconeogenesis enzymes clustering to formation of the fatty acid synthase complex in fatty acid 
synthesis; most of the essential metabolic pathways seem to be spatially optimized in some manner 
[Kohnhorst et al., 2017; Suresh et al., 2015; Gipson et al., 2010; Noree et al., 2019]. Even nucleotide 
synthesis is regulated through polymerization and dynamic cellular bodies, called “purinosomes” 
[Liu, 2016; French et al., 2016].  However, actual structural information on the interaction 
mechanisms and the consequences of these phenomena is still lacking. If such information is 
available, it is usually derived from in vitro studies or an overexpressed state of the protein [Marini 
et al., 2020]. In order to determine the functional significance of these spatial assemblies in a 
cellular context, we require structural characterization of the processes involved. For development 
of a method that can attain this kind of information, CTP synthesis in yeast serves as an ideal model 
metabolic pathway. Filament formation of CTP synthase (CTPS) has been structurally and 
biochemically characterized in depth [Hansen et al., 2021; Ingerson-Mahar et al., 2010]. Its 
assembly mechanism, however, is yet to be explored in a native state. 
 
We aim to map out the spatial organization of de novo CTP synthesis in Saccharomyces cerevisiae at 
molecular resolution, while obtaining structural information on CTPS accumulation. By determining 
the structure of CTPS in a sequestrated state in cell, we can elucidate the mechanism by which the 
cell regulates its CTP synthesis rate. As CTPS accumulation within foci is a response to starvation 
stress, this research will give insight into how yeast manages pyrimidine metabolism in conditions 
where growth is undesirable [Noree et al., 2010]. As Noree et al. observes, many other metabolic 
enzymes in yeast accumulate under starvation conditions [Noree et al., 2010]. Therefore, whether 
CTPS forms filaments in cells will shed light on the comprehensive metabolic stress response in 
yeast. Moreover, the methodology developed in this study can be adapted for analyzing the spatial 
organization of metabolic enzymes in general. This research may contribute to uncovering the 
spatial dimension of metabolism within its cellular milieu.   
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Results 
GFP-tagged Ura7 assembles into foci upon starvation 
Cytidine triphosphate synthase (CTPS) interconverts CTP and UTP in de novo pyrimidine 
biosynthesis. This reaction comprises the final step of the CTP synthesis pathway and is also the rate-
limiting reaction [Lieberman, 1956] (Figure S1). Across the many domains of life, CTPS has been 
observed to assemble into filaments: polymeric structures with CTPS as the repeating unit [Zhou et 
al., 2021; Noree et al., 2010; Ingerson-Mahar et al., 2010; Barry et al., 2014]. CTPS has two isoforms 
in budding yeast: Ura7 and Ura8. The molecular concentration of Ura7 inside the cell is tenfold that 
of Ura8 [Nadkarni et al., 1995; Ghaemmaghami et al., 2003]. This study will focus on Ura7 CTPS 
sequestration because its abundance facilitates accurate targeting and analysis. Ura7 is active in a 
tetrameric state with a total mass of approximately 260 kDa [Yang et al., 1994]. The enzyme 
responsible for catalyzing the first two steps of de novo pyrimidine biosynthesis is Ura2, which has 
not been reported to engage in enzyme sequestration [Antonelli et al., 1998; Noree et al., 2019].  

 
As Hansen et al. demonstrates, isolated Ura7 polymerizes in tetrameric form into parallel filaments. 
At lower pH, larger bundles of filaments emerged as a result of lateral aggregation of singular 
filaments [Hansen et al., 2021]. These filament bundles are in accordance with live cell fluorescent 
light microscopy (FLM) experiments that primarily show one focus of signal accumulation per 
starved cell. Hansen et al. even observed the initial appearance of multiple small foci that later 
converged into one larger signal, resembling in vitro behavior [Hansen et al., 2021]. Although 
numerous studies have shown accumulation of fluorescently tagged CTPS in starved cells, whether 
this accumulation constitutes filament formation has yet to be explored. 
 
To establish a protocol for inducing Ura7 accumulation in yeast, an FLM experiment described in 
previous studies was reproduced [Hansen et al., 2021, Noree et al., 2010]. Yeast cells with 
endogenously GFP-tagged Ura2 or Ura7 were harvested while in log phase and incubated in 
starvation medium. The GFP-signal of the target proteins appeared outside the vacuoles and 
nucleus, as was expected due to the largely cytosolic nature of both proteins. The nucleus was not 
distinguishable from the vacuoles with certainty. In log phase, the general dispersion of both Ura2 
and Ura7 appeared homogeneous throughout the cytosol at this resolution (Figure 2A). Upon 
nutrient deprivation, Ura7 accumulated to form bright foci, whereas the distribution of Ura2 
remained uniform (Figure 2A).  
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The experiment was performed for different starvation timepoints to determine the incubation time 
necessary for inducing the maximum number of filaments (Figure 2A). Quantification of both Ura2 
and Ura7 fluorescence data allowed for a fair comparison (Table S1, Figure 2B). After 30 minutes of 
incubation, Ura7 puncta were already observed. The total number of cells counted for this condition 
amounted to 1,766. The total number of foci counted was 421. As the number of foci per individual 
cell could not be efficiently determined, the measure used to quantify the increase in foci equaled 
the total number of foci per total number of cells and thus corresponded to 24%. Furthermore, some 
cytoplasmic areas of the cells not exhibiting distinct points of fluorescence started losing or gaining 
signal compared to the control condition. Unfortunately, at this resolution, no quantifications of the 

Figure 2: Signal accumulation of CTPS in response to starvation stress. 

 (A) The spread of Ura2 and Ura7 throughout the cytosol is largely even in a log phase state of growth of the 
cell. Upon starvation stress, Ura7 accumulates into foci. Cells were incubated in starvation medium for 
varying amounts of time. Ura2 dispersion was barely affected. Accumulation of Ura7 increased over time. 
The percentage of foci per total number of cells was quantified per condition. Scale bar: 5 µm. (B) The 
calculated percentage of foci was plotted for each timepoint. The error bars represent a binomial 95% 
confidence interval. 

A 30 min 60 min 120 min 180 min 240 min 

Ura2-
GFP 

Ura7-
GFP 

Log phase 

B 
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change in brightness of GFP-signal could be made. However, as time increased, foci did visually seem 
to become brighter and sometimes larger. After 1 hour, the number of foci had effectively doubled, 
corresponding to 40%. From 1 to 2 hours, a steady increase was again perceived to 63% foci, while 
the surge in fluorescent maxima slowed after 2 hours. Between 3 and 4 hours, the rise in signal 
accumulation plateaued at 70% (Figure 2B). Most cells with putative filament formation presented 
more than one focus per cell prior to reaching 2 hours of starvation. Remarkably, while the total 
number of cells forming foci increased, the number of foci per individual cell often appeared to 
decrease from multiple fluorescent spots to one after 2 hours.  
 
In contrast to the rapid rearrangement of Ura7, there were no obvious foci detected for Ura2, nor 
was there a surge in signal accumulation over time. After 4 hours of starvation, the distribution of 
the GFP-signal had rearranged to a limited extent, with some areas of the cytoplasm exhibiting 
brighter fluorescence. Generally, the fluorescence of Ura2-GFP expressing cells after 4 hours seemed 
to have dimmed. Thus, Ura7 accumulates into singular spots in the cytoplasm as a result of nutrient 
deprivation, while the dispersion of Ura2 throughout the cell stays diffuse. 
 

Protein expression levels are predominantly unchanged by starvation 
To assess the influence of starvation on the yeast protein landscape, a selection of proteins was 
studied through Western blot analysis. Determination of the lysate protein concentration showed 
that the total amount of protein expression did not change drastically upon starvation (Figure S2). 
Instead, concentrations were stable, amounting to approximately 1 µg/µL for all samples (Table 
S2/S3).  
 

 

Figure 3: Protein concentration of yeast lysates seems unchanged upon starvation.  

A Western blot was performed with the lysates measured in Figure S2A. Protein expression levels of Ura2 and 
Ura7 were mostly unaffected by starvation stress.  

 
Protein abundance of Ura7 remained largely constant as band intensity did not change substantially 
between states of growth and starvation (Figure 3). For Ura2 expression, a decrease in signal 
intensity upon nutrient depletion was observed. The loading control, actin, showed a corresponding 

270 kDa Ura2-GFP 

90kDa 

50 kDa 

Log phase Starvation 

Ura7-GFP 
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drop in signal. Likely, Ura2 expression was stable across the different growth conditions and the 
detected reduced signal is a product of less sample loaded overall. A replicate of the analysis 
resulted in a similar overall outcome, as the intensity of the target proteins stayed consistent for 
both conditions in the second blot (Figure S3). Equally, the loading control displayed homogeneous 
intensity throughout the different lanes. Thus, total protein determination of lysates shows that the 
overall protein abundance in yeast is not strongly affected by starvation. Specifically, Western blot 
analysis shows that Ura2 and Ura7 protein abundance is comparatively uninfluenced by absence of 
nutrients. 
 

Identification and characterization of potential Ura7 filament bundles in situ 
To achieve high resolution structural information of native protein states, cryo-electron tomography 
(cryo-ET) was implemented. As sample thickness is a limiting factor for cryo-ET, focused ion beam-
milling (FIB-milling) was used to thin vitrified samples prior to data collection. FLM under cryogenic 
conditions allowed for navigating the sample and identification of the sites of interest. Employing a 
cryo-correlative light electron microscopy (cryo-CLEM) approach, fluorescently tagged CTPS was 
targeted during FIB-milling and data collection. The fluorescent signal also served as a confirmation 
tool once filament structures had been identified.  
 
Using this specifically designed cryo-CLEM tomography pipeline, the assembly of the Ura7 
fluorescent signal was studied in situ (Figure 7). Tilt series were recorded at the sites of correlated 
fluorescent signal (see Methods). Ultimately, after visual inspection of the resulting reconstructed 
volumes, a structure resembling the morphology of the ordered filament bundles characterized by 
Hansen et al. in vitro was identified (Figure 4A) [Hansen et al., 2021]. The filament bundles stretched 
the length of approximately 500 nm, with a bundle width of 150 nm. As cryo-samples were thinned 
to allow for tomographic data collection, the size estimates might be limited. However, the density 
of the bundle appeared to round off at the edges, indicating that most of the original volume of the 
structure was present in the tomogram. The bundle seemed compromised of roughly 8 nm thick 
filaments. Amongst the filaments, two different types of repeating unit were discerned: one of circa 
5 nm, the other of 8 nm (Figure 4A). However, the filaments exhibiting the smaller repeat did appear 
to extend into the area projecting the larger repeating unit (Figure 4A). 
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Figure 4: A cryo-CLEM approach successfully localizes filament densities at the sites of Ura7 signal. 

 (A) The identified filament structure is comprised of bundled filaments. Two different types of repeating unit 
are observed, as shown by the white arrows. Scale bar: 100 nm. (B) Another filament bundle was discovered. 
The observed filaments resemble those found in A. Scale bar: 100 nm (C) A third filamentous bundle was 
localized. High dose images were taken. The white arrows point to the filament density as well as the 
occurrence of the repeating unit in the image on the right. Scale bar: 200 nm. 

Another tomogram unveiled a filament bundle with similar morphology (Figure 4B). Here, only the 
larger repeating unit was observed, although filament shape was reminiscent of the assembly 
exhibiting the smaller repeat. Finally, a third filament bundle was located at another GFP-signal site 
(Figure 4C). A tilt series could not be collected, but a high-dose image showed a bundle that bore 
most semblance to the structure as seen in the second tomogram. Again, the larger repeat was 
observed.  
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For initial characterization of the different repeating units, power spectra were computed (Figure 
5A). The power spectrum of the 5 nm repeat revealed a distinct punctum, indicating a similar 
orientation for all sampled particles. The power spectrum of the 8 nm repeat instead displayed a 
pattern resembling a line, possibly suggesting a helical twist along the filament axis. However, the 
weakness of the signal significantly limits the reliability of any structural deductions. 
 

 

 

A 

B 

Figure 5: Analysis of the repeating units followed by subtomogram averaging.  

(A) The power spectra retrieved for the 5 nm repeat (left) and the 8 nm repeat (right). (B) The 
averages obtained from run039 and run041 respectively. Run039 was performed using both a 
reference and a mask, run041 utilized only a mask. The averages were filtered according to their 
determined resolution of roughly 15 Å.   
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To uncover the filament structure and determine the origin of the different repeating units, filament 
averaging was performed (Figure 5B, Table S5). Approximately 2100 particles were picked with a 
particle size of approximately 4 nm. Introducing the Ura7 filament structure of Hansen et al. as a 
reference in addition to a cylindrical mask, the average appeared almost identical to the expected 
Ura7 structure, spanning around 8 by 8 nm (Figure 5B, Figure S4C) [Hansen et al., 2021]. When 
averaging with a randomly assigned particle as reference, a similarly sized density occurred. 
However, this density lacked the clear definition of the four monomers of the Ura7 tetramer. 
Instead, a flatter structure was shown, representing a square with some missing density in the 
centre. To conclude, we show the successful acquisition of tomographic data on filamentous 
densities corresponding with Ura7-GFP signal. The features of the structural average obtained 
without a given reference could potentially represent the dimensions of the expected tetrameric 
Ura7 structure, although the data is not conclusive.  
 

Subvolume-based template matching enables use of GPUs 
A subtomogram averaging workflow was established for locating and characterizing Ura2 as well as 
Ura7 in a non-filamentous state. GPU-based template matching was considered a desirable particle 
picking method due to its efficiency, but it was limited by the available GPU memory. A memory 
limitation is overcome either by binning the volume used for template matching, or by splitting the 
volume up into subvolumes. Considering that the molecular weight of both proteins in active form 
corresponds to roughly 250 kDa, particle picking in a highly-binned volume would not be favourable. 
Instead, we designed a subvolume-based template matching approach using PyTom.  
 

 
Subvolumes were created to encapsulate separate parts of a tomogram. Template matching was 
performed using GPUs. The jobs were consecutively submitted to the GPU with GNU parallel – a tool 
developed for executing shell jobs in parallel, allowing for an efficient execution [Tange, 2011]. After 
obtaining the particle picking results, particles were extracted. Before continuing with the standard 

Figure 6: The transformation of the subvolume-based template matching approach was successful. 

The particle lists show a 2D pixelated slice of each selected particle. (A) Particle picks of a template 
matching job ran with a ribosome as reference. (B) Particle picks of a template matching job ran with 
polymerase gamma as reference. (C) Particle pickso of a template matching job ran with Ura2 as 
reference. 

adsas A C B 
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STA procedure, the identified particle coordinates were transformed and plotted back into the full 
tomogram, as PyTom subtomogram reconstruction utilizes the original projections of the tomogram. 
Simultaneously, the particle filenames were rewritten to avoid overwriting during generation of the 
subtomograms. To test whether the creation of the subvolumes as well as the associated 
transformation of the particle coordinates was successful, a positive control was implemented using 
a ribosome as a reference. The resulting particle list clearly displayed centered ribosome densities 
(Figure 6A). A negative control was used to get an impression of the performance of the template 
matching algorithm on small proteins. This negative control comprised polymerase gamma as a 
reference, which is a mitochondrial polymerase of similar mass and size to Ura2. For the number of 
particles that were extracted, all seemed to correspond to ribosome densities (Figure 6B). Finally, 
template matching was performed with Ura2 as a reference. The resulting particles looked 
comparatively similar to each other and did not obviously resemble ribosomes (Figure 6C). To 
conclude, a pipeline for subvolume-based template matching was successfully developed, although 
the performance of the resulting method has yet to be examined.  
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Discussion 
Maintenance and adaptation of metabolism during starvation is essential for cell survival. The 
intracellular compartmentalization of CTP synthase plays a critical role in balancing pyrimidine 
biosynthesis across many species [Ingerson-Mahar et al., 2010; Liu, 2010; Carcamo et al., 2011]. In 
this study, we set out to establish a methodology for mapping out the spatial organization of 
metabolic pathways on a molecular level. Using de novo CTP synthesis as a model metabolic 
pathway, a cryo-CLEM pipeline was developed to structurally characterize physical organization of 
metabolic enzymes in situ.   
 

Filament induction of Ura7 is a pH-sensitive reaction to starvation 
As was established in both Hansen et al. and Noree et al., endogenously GFP-tagged CTP synthase 
accumulates in yeast cells upon nutrient deprivation [Hansen et al., 2021; Noree et al., 2010]. 
Furthermore, Hansen et al. showed that the formation of CTP synthase filaments is pH-dependent in 
vitro [Hansen et al., 2021]. Previous studies have shown that starvation conditions induce 
cytoplasmic acidification in yeast, triggering macromolecular crowding [Munder et al., 2016]. The 
resulting strongly reduced diffusional mobility within the cell is responsible for a global decrease in 
metabolic activity and growth [Joyner et al., 2016]. Acidification of the cytosol seems to be the 
assembly trigger for CTPS and other similarly aggregating enzymes to preserve the cell in a low-
nutrient milieu. Sequestration of these enzymes in starvation conditions is advantageous compared 
to disposal, as it is less costly, and allows the cell to store enzymes only to rapidly recover once the 
environment regains a favorable concentration of nutrients. 

 
Therefore, it is likely that Ura7 accumulation is a direct starvation response, meant to reduce 
metabolic activity. Ura7 is possibly inactivated through aggregation, as the Ura7 filaments observed 
by Hansen et al. stabilize an inactive conformation of the protein [Hansen et al., 2021]. At a 
minimum, CTP synthase activity is reduced due to inaccessibility of the active sites within the 
filament bundles. Additionally, filaments may serve as diffusion barriers that limit the motion of 
metabolites through the cytosol, slowing down growth processes in general [Petrovska et al., 2014]. 
Filamentous assembly of metabolic enzymes in response to starvation is speculated to be a common 
mechanism of inhibition in yeast [Petrovska et al., 2014]. In fact, metabolic enzymes in general are 
often found to self-assemble into larger structures, into both activating and deactivating states 
[O’Connell et al., 2012]. In addition to Ura7 foci formation, we showed that Ura2 dispersion 
throughout the cytosol did not significantly change even under extreme starvation conditions (Figure 
2). This observation supports a model in which yeast regulates CTP synthesis by managing the rate-
limiting step of the pathway, whereas the enzymatic steps performed by Ura2 are not spatially 
hindered.  
 

CTP synthesis is regulated through spatial organization of the rate-limiting 
step 
Generally, the overall protein concentration of yeast lysate was not affected by starvation. Either the 
ratio of protein expression levels changes in response to starvation, or cells regulate their metabolic 
flux without adjusting protein abundance significantly. Post-translational modifications could play a 
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role in the inactivation of metabolic proteins during starvation. On a larger scale, we consider the 
physical organization of the cell. From the fluorescence studies performed, it was concluded that 
yeast does not necessarily spatially organize Ura2. Additionally, the protein expression levels of Ura2 
or Ura7 are not drastically minimised upon starvation. This indicates that Ura2 activity is not strongly 
regulated through alteration of enzyme abundance or activity, which supports the model previously 
proposed in which only the rate-limiting step of a reaction is responsible for regulation of metabolic 
flux. Multiple studies on the regulation of metabolic pathways have shown that the rate-limiting step 
is often the enzymatic reaction that is sequestered [Noree et al., 2019; Saad et al., 2017; Jin et al., 
2017].  As we have not measured the synthesis rates of CTP inside the cell with and without CTPS 
filaments, we can only speculate that the spatial organization of the rate limiting step is responsible 
for limiting the product synthesis rate of the CTP synthesis pathway. It seems the inherent activity of 
Ura2 is unaffected by the growth state of the cell.  
 
Prospective insights on the cryo-CLEM approach for targeting filaments 
Using the cryo-CLEM workflow developed for targeted FIB-milling and cryo-ET data collection, 
filament bundles were observed near the site of Ura7-GFP signal in three isolated instances. 
Unfortunately, the following limitations restricted the throughput of this method even more than is 
typical for cryo-EM studies.  
 
Firstly, cryo-FLM data are acquired before sample thinning is executed. As a result, much of the 
fluorescent signal recorded before FIB-milling corresponds to material no longer present in the 
thinned sample. Equipping the Aquilos Cryo-FIB instrument with an integrated cryo-FLM module 
such as the Delmic METEOR would enable the collection of fluorescence data when the sample is 
close to its final thickness. This would help minimizing both polishing and cryo-TEM time spent on 
lamellae that do not contain the target of interest. Alternatively, lamellae could be transferred to a 
cryo-FLM microscope between fine milling and polishing of the sample. 
 
Furthermore, the correlation procedure used for aligning FLM data with TEM overviews is not 
entirely robust. The alignment of SEM images with the corresponding FLM data is performed based 
on the correlation of the Dynabeads. The Dynabeads are picked in both SEM and FLM data, resulting 
in reliable scaling and transformation factors to be used for alignment. Any other alignment 
hereafter, however, is currently performed by eye. The manual correlation mostly relies on lamella 
shape, cell edges, or other relatively large features. Instead, the scaling factor between FLM and 
TEM data could be calculated based on the pixel size. This would at least ensure accurate scaling of 
the FLM image to the TEM overview. An ImageJ plug-in such as DS4H Image Alignment could 
perform reliable translation and rotation of the fluorescent maximum intensity projection (MIP) and 
SEM images based on manually picked landmarks in a fashion similar to the selection of the 
Dynabeads (https://github.com/illeb/DS4H-Image-Alignment), in turn enabling more accurate FLM 
to TEM correlation. Options such as these would significantly improve the reliability of the method. 
The use of intracellular beads could also pose as a solution, but their introduction into the cells 
might prove complicated in this context.  
 
Besides a limited resolution and an error-prone correlation method, the throughput of this approach 
is further limited by the resolution of the FLM data. Resolution is limited because immersion 
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objectives cannot be used for cryo-imaging. Due to the limited resolution of the fluorescent signal, 
determining an exact target for tilt series collection is difficult. Usually, collection of EM images of 
the site of interest was required beforehand. This additional exposure to electrons reduces the 
quality of the tilt series acquired. Instead, this workflow would benefit from the incorporation of 
cryo-superresolution techniques. Alternatively, post-acquisition refinement of the FLM data could 
possibly be implemented by training and using a neural network such as CARE [Weigert et al., 2018]. 
Altogether, the throughput of the developed cryo-CLEM methodology is mainly limited by the 
current approach to acquiring and processing the FLM data. A reliable correlation procedure would 
serve as an immediate improvement, whereas refinement of other factors requires stronger 
intervention. 
 

The molecular identity of the filament repeats remains unknown 
The methodology developed in this study resulted in the localization of three filament bundles near 
the site of Ura7-GFP signal. All structures resembled each other, as well as the structure observed in 
vitro by Hansen et al., which leads us to believe that these filaments are made up of Ura7 molecules 
[Hansen et al., 2021]. In tetrameric form, Ura7 stretches approximately 8 nm in both width and 
length. The measured thickness of the filaments is consistent with these dimensions. Two different 
repeating units were observed along the filament bundles. Power spectra were retrieved to give 
insight into the molecular conformation of these seemingly different filamentous structures. Since 
the larger repeat exhibits a helical twist, whereas the smaller repeat represents a stacking 
conformation, the difference in repeating units could be related to a different polymerization 
assembly of the same molecule. Possibly, filaments are more dynamic in a cellular milieu than in an 
isolated state in vitro. Equally, the filaments could be built from different molecules altogether, or 
longitudinal elongation of the polymer could affect the structure. Regardless, it remains difficult to 
decide whether the filaments themselves are truly comprised of Ura7 without further processing.  
 
One of the filament bundles was characterized through averaging, providing further insights into the 
molecular building stones. Unfortunately, the particle size chosen for picking and processing of the 
particles proved unsatisfactory: an approximate interval of 4 nm was used whereas the observed 
repeating units were either 5 or 8 nm in size. The same applies to the boxsize. Moreover, the 
different repeating units were part of the same model and therefore not analysed separately. 
Instead, to decide whether the observed difference in repeating unit is a projection artefact or the 
result of an actual structural variety, two models will need to be picked. Particles should be 
extracted with either a 5 or 8 nm interval, corresponding to the two different repeats observed. 
Furthermore, the boxsize should be increased to encompass at least three molecules, allowing for 
better alignment as well as obtaining information on the interaction interface. Although the 
dimensions of the average acquired represent the larger repeat and a tetrameric conformation of 
Ura7, the resolution of the structure is limited by the inclusion of the smaller repeat. Additionally, 
the approximate 4 nm interval used to pick particles means that the density of a molecule in the 
filament is oversampled and most likely not centered.  
 
We conclude that a revision of the filament averaging is necessary, to characterise the two repeating 
units. Also, more data collection of filament bundles corresponding to correlated fluorescent signal 
would allow for a larger sampling pool. To reliably decide whether the obtained density corresponds 
to Ura7, an average resolution ranging from 5-10 Å would be needed to distinguish the alpha helixes 
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and beta sheets present in the structure [Baker et al., 2007]. However, because the location of the 
filament bundles corresponds to Ura7-GFP signal, a lower resolution that allows for reliable 
comparison of the average to the in vitro data reported by Hansen et al. would suffice [Hansen et 
al., 2021]. 
 

Performance of subvolume-based template matching remains to be tested 
Finally, a method was developed to enable STA of Ura2 and non-assembled Ura7. The template 
matching approach and associated coordinate transformations seemed theoretically successful, but 
subtomogram averages need to be obtained before one can gauge the reliability of the method. 
While the particle picking size limit for SPA generally fluctuates around 200 kDa, particle picking in 
tomographic data is much more prone to false positives due to the variety of potential candidates 
present in the biological material [Rickgauer et al., 2017; Lucas et al., 2021]. It remains an open-
ended question whether PyTom-based template matching is even possible with particles of this size. 
Even so, the particles extracted do seem to resemble each other to some degree, indicating that the 
algorithm is picking up some repeating structure. Of course, this could merely reflect an unfortunate 
arrangement of noise or overall electron-dense areas. Metabolic enzymes are generally of a similar 
size to Ura2 and tetrameric Ura7, if not much smaller. Recent studies report pushing the size limit 
for template matching and could pose as suitable alternatives to the subvolume-based method in 
PyTom [Rickgauer et al., 2017; Lucas et al., 2021]. Equally, deep learning networks such as 
TomoTwin could prove useful once reliable functioning in experimental data is achieved 
(https://github.com/aniketkt/TomoTwin). In short, any robust method for picking metabolic 
enzymes would be a fruitful addition to the cryo-CLEM methodology developed in this study.  
 
To conclude, Ura7 accumulates in Saccharomyces cerevisiae during starvation, most likely forming 
filaments to reduce enzymatic activity and slow metabolic growth. We speculate that the regulation 
of the CTP synthesis pathway is entirely controlled by Ura7, which carries out the rate-limiting step. 
Developing a cryo-CLEM methodology allowed for the identification and characterization of 
potential CTP synthase filaments in situ. While this method requires improvement, it lays the 
groundwork for enabling future investigation into the spatial organization of metabolic pathways. 
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Methods 
Yeast cultivation 
GFP-tagged yeast clones for genes YJL130C (Ura2) and YBL039C (Ura7) were obtained from the Yeast 
GFP Clone Collection (ThermoFisher Scientific). The clones were cultured on YPD 2% agar plates at 
RT for 2-3 days before storing at 4°C. Yeast liquid cultures were maintained in YPD medium. For 
inoculation, overnight cultures of yeast were diluted to an OD600 of 0.2 in YPD and grown shaking at 
30°C for approximately 2 hours until early-mid log phase growth was reached. 
 

Inducing filament formation 
Overnight cultures of yeast were inoculated in YPD until early-mid log phase. Cells were harvested 
and washed in 1X PBA to remove any remaining nutrients. Starvation conditions were established by 
resuspending yeast cells in starvation buffer: 0.15 M phosphate-citrate buffer (pH 7). Subsequently, 
cultures were incubated for 30 minutes to 4 hours at 30°C while shaking.  
 

Fluorescence microscopy 
For obtaining initial FLM data of Ura7 accumulation in yeast, spinning disk confocal microscopy was 
performed using a FEI CorrSight microscope equipped with an Andromeda module. Z-stacks were 
collected using either a 40x 0.9 NA (EC Plan-Neofluar 40x/0.9 Pol M27, Zeiss) or a 20x 0.8 NA (EC 
Plan-Neofluar 20x/0.5 M27) dry objective. With a step size of 0.4 µm, 20 planes were acquired per 
site, resulting in a final stack thickness of 7.6 µm.  
 

Quantitative analysis of fluorescence microscopy 
A quantitative analysis of the Z-stacks obtained at different starvation timepoints was performed 
using Fiji, ImageJ [Schindelin et al., 2012]. A maximum intensity projection (MIP) of each Z-stack was 
smoothened (Process/Smooth, 3x3 neighborhood) and thresholded at a cutoff of 6323 or 0.36 % of 
the signal to create a binary image representing cell profiles (Image/Adjust/Threshold). After 
watershedding (Process/Binary/Watershed), particles were analyzed to determine the number of 
cells (Analyze/Analyze Particles). The roundness and size parameters used to exclude unwanted 
particles were not defined, as all particles corresponded to cells. To acquire the number of total GFP-
foci, maxima were found in the original MIP of the Z-stack (Process/Find Maxima). Each image stack 
was processed using the same parameters. The total percentage of foci per total number of cells was 
calculated per condition, in addition to the lower and upper bounds of a binomial 95% confidence 
interval. 
 

Western blot analysis 
For Western blot analysis of the protein landscape of the yeast cultures, proteins were extracted 
through NaOH-aided lysis [Kushnirov, 2000]. Per 5.5 mL of 0.6 OD600 yeast culture, 200 µL 0.1 mM 
NaOH was added and incubated for 10 minutes at RT. Samples were spun down at 14,500x g for 1 
minute, after which the NaOH supernatant was discarded. Lysates were flash frozen in liquid 
nitrogen and stored at -80°C until further use. 
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To determine the total protein concentration of the lysates prior to western blotting, a bicinchoninic 
acid assay (BCA) was performed using the BCATM Protein Assay Kit (Pierce/ThermoFisher Scientific). 
Half of each sample lysate was thawed and resuspended in 100 µL 1X PBS. A custom python script 
was used to deduce the total protein concentration of each sample (Text S1). 
 
20-25 µg of protein was loaded per lane on a 12% mini-PROTEAM TGX Precasted Gel (BioRad). Gels 
were run at 150 V (constant) and 50 mA for 50 minutes. Using the Trans-Blot Turbo System (BioRad), 
proteins were transferred from the gel to a TransBlot Turbo Transfer PVDF Membrane (BioRad) on a 
mixed molecular weight setting. After transfer, the membrane was cut to separate the target 
proteins from each other. The membrane segments were blocked in 0.05% milk in PBST (1X PBS with 
0.005% Tween-20) for 30 minutes at RT. The blocking buffer was discarded, and the membranes 
were incubated with primary antibodies diluted in 0.05% milk PBST for 2 hours at RT. The following 
antibodies were used: anti-GFP rabbit IgG polyclonal antibody (Invitrogen: #A11122) at 1:2000 
dilution; anti-beta actin rabbit polyclonal antibody (Life Technologies: #PA5-85271) at 1:2000 
dilution; anti-Atg8 rabbit polyclonal antibody (Life Technologies: #PA1-26648) at 1:7000 dilution. 
 
The membranes were washed by a quick rinse, then 5, 10, and finally 15 minutes of shaking in PBST. 
Next, the secondary antibody in 0.05% milk PBST was added. The membranes were incubated for 1 
hour at RT and washed again according to the previously mentioned procedure. Anti-rabbit IgG HRP 
goat polyclonal antibody (Boster: BA1054-0,5) was used as the secondary antibody. To develop the 
blot, the ECLTM Prime Western Blotting Detection Reagents kit (Amersham) was used. Using the 
ChemiDoc XRS+ (BioRad), membranes were imaged through chemiluminescence at different 
exposure times (Supplementary). 
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Figure 7: The cryo-CLEM sample preparation and data collection workflow. 

 (A) Yeast clones are cultivated on YPD agar plates or kept in liquid culture. Overnight liquid cultures are 
inoculated and incubated in starvation buffer for 3 hours. Grids with yeast sample are blotted and plunged into 
liquid ethane. Finally, vitrified grids are clipped into Autogrids. (B) Cryo-fluorescence light microscopy is 
performed on the samples using the FEI CorrSight microscope. (C) Samples are thinned to lamellae suitable for 
cryo-ET imaging using the Aquilos Cryo-FIB instrument. (D) Cryo-ET data is collected with the Talos Arctica 
electron microscope.  

 
Vitrification 
Samples for cryo-EM analysis were prepared by mixing green fluorescent Dynabeads 
(Invitrogen/ThermoFisher Scientific) into an aliquot of starved yeast culture with a ratio of 1:10. 
Using the PELCO easiGLOW (Ted Pella), 200 mesh copper R1/2 holey carbon grids (Quantifoil Micro 
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Tools) were glow discharged with a current of 45 mA for 45 seconds at 0.39 mBar. 3.25 µL of yeast 
sample was pipetted onto the charged grids and left to settle for 30 seconds. The grids were blotted 
from the back for 2 second after the initial moisture catch with Whatman 0.95 filter paper (Figure 
7A). Immediately after, samples were vitrified in liquid ethane through manual plunging. The plunge 
frozen grids were clipped into AutoGrids (ThermoFisher Scientific) before proceeding with the cryo-
CLEM workflow.  

Figure 8: The cryo-FLM correlative method for sample preparation and tilt series recording.  

(A) A SEM grid overview. Scale bar: 1 mm. (B & C) A SEM and FIB image of a grid square covered with vitrified 
yeast cells. The orange sections indicate the rough milling pattern position. Scale bar: 30 µm, 20 µm 
respectively.  (D) A FIB image of the grid square after rough milling. (E) A SEM image of the final lamella after 
polishing. (F) The result of correlating the FLM data with the SEM image, based on the Dynabeads. (G) The SEM 
image of the lamella correlated with a stitched TEM overview. Scale bar: 10 µm. (H) Correlation of the FLM MIP 
with the TEM lamella overview. (I) A slice of the tilt series recorded at the site of the fluorescent signal indicated 
in H. 
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Cryo-fluorescence microscopy 
For targeting both the thinning of the vitrified samples as well as the cryo-ET data collection, cryo-
FLM data was acquired to identify the regions of interest by performing spinning disk confocal 
microscopy (Figure 7B). Grids were imaged using the FEI CorrSight microscope equipped with a cryo-
stage cooled to liquid nitrogen temperature [Arnold et al., 2016]. Potential sites were selected in the 
FEI MAPS v3.8 software (ThermoFisher Scientific) and 30-plane thick Z-stacks with a 300 nm spacing 
were collected with a 40x 0.9 NA dry objective (EC Plan-Neofluar 40x/0.9 Pol M27, Zeiss). Collection 
was performed with an exposure time of 2000 ms per plane at 100% laser power. The excitation 
filter EX 488 nm was applied to excite both the GFP-tag and the Dynabeads in the target grid 
squares. 
 

Cryo-FIB-milling 
After collection of cryo-fluorescence data, samples were thinned to a suitable thickness for cryo-ET 
data collection using the FEI Aquilos Cryo-FIB dual-beam microscope (ThermoFisher Scientific) 
(Figure 7C). From the potential targets selected during cryo-FLM, grid squares were selected based 
on the integrity of the carbon film and the degree to which the buffer was blotted away. The grids 
were coated with a layer of platinum to reduce charging effects (10 sec, 10 Pa, 30 mA, 1 kV). The 
deposition of a second layer of organometallic platinum via a gas injection system (GIS) served to 
protect the surface of the sample from damage and limit curtaining artefacts. The imaging process 
was guided by FEI MAPS v3.8 software. Grid overviews were acquired at mapping position both pre-
coating and post-coating with scanning electron microscopy (SEM) (Figure 8A). Eucentric height was 
determined per target grid square, as well as the optimal milling angle, ranging from 16 to 20° stage 
tilt. The sites were milled in a stepwise fashion, with each consecutive step employing a lower Ga+ 
beam current (1 nA, 0.3 nA, 0.1 nA, 30 pA). The exact placement of the rough milling pattern was 
dictated by both the number of GFP foci observed in the corresponding Z-stacks as well as the 
estimated stability and size of the lamellae (Figure 8B/C). In between the fine milling and polishing 
steps, a high-resolution SEM image (1536 x 1024, 1 us, 1000x magnification) was acquired at 
mapping position (sample perpendicular to the electron column) for CLEM-correlation purposes 
prior to cryo-ET (Figure 8E). 
 

Correlation of FLM and SEM data 
Before FLM-guided tilt series collection, acquired FLM and SEM images of the lamellae were 
correlated. Using the 3D Correlation Toolbox, Z-stack were resliced and Dynabeads were manually 
selected in both FLM and SEM images [Arnold et al., 2016]. Scaling, translation, and rotation factors 
were calculated with the toolbox. Using a python script, the FLM images were scaled, translated, and 
rotated to match the SEM views (Text S2, Figure 8F). Actual overlay of the images was performed in 
ImageJ. 
 

FLM-guided tilt series collection 
Following sample preparation, lamellae were transferred to a FEI Talos Arctica transmission electron 
microscope (200 kV, ThermoFisher), fitted with a K2 direct camera and a Gatan filter for cryo-ET data 
collection (Figure 6D). In SerialEM, low-magnification maps were collected of the lamellae at 4,800x 



 23 

magnification resulting in a pixel size of 38.6 Å/px. The maps were exported, and stitching was 
improved in IMOD’s Etomo module if necessary [Mastronarde & Held et al., 2017]. Through manual 
scaling and alignment based on shape outline and distinctive landmarks, a correlation of the SEM 
lamellae overview with the TEM map was constructed (Figure 8G). Consequently, the FLM-data 
could be overlayed with the TEM view, as per the previously determined SEM-FLM correlation 
(Figure 8H). Dose-symmetric tilt series were recorded at the sites of fluorescent signal, at 42000x 
magnification with a pixel size of 2.17 Å/px, defocus of 3 µm, and a 2° increment. A total dose of 
approximately 100 e-/Å2 was reached over the total tilt range of -55 to 55° (non-relative to the FIB-
SEM stage tilt).  
 

Tomogram reconstruction 
The collected tilt series were first aligned using alignframes (IMOD) and then reconstructed in 
IMOD/4.10.44a’s Etomo module [Mastronarde & Held et al., 2017]. After coarse alignment, fine 
alignment of the tilts was performed via patch tracking. CTF estimation of the tilts was performed 
using the IMOD CTF plotter, fitting up to 5 zeros at a defocus of approximately 3 µm. Subsequently, 
CTF correction by phase-flipping was performed using ctfphaseflip. The final aligned images were 
binned by a factor of 2. Finally, the tomograms were reconstructed using weighted back-projection 
with a SIRT-like filter representing 5 iterations. The resulting tomograms had a pixel size of 4.34 
Å/px.  
 

Filament averaging 
To elucidate the structure of the filaments observed, filament averaging was performed. The 
filaments were manually picked in 3dmod (IMOD), with contours tracking the curvature and 
progression of the filaments in all dimensions. After selection of the filaments, the model was 
processed using addModPts (PEET/1.13.0) [Heumann et al., 2011]. With a constant size interval of 4 
nm, points were added along the contours (Figure 9A). Each point in this model represented the 
center of a particle. Using IMOD/PEET’s Subvolume Averaging package for averaging particles, the 
newly created model was processed. Boxes with a size of 36:36:36 were centered around each point, 
essentially extracting the particles. Initial determination of the structure was performed without a 
reference, to avoid bias. After it was confirmed that the raw average resembled Ura7, the particles 
were averaged with both a reference and/or a mask. The reference was obtained from the Ura7 
filament structure determined by Hansen et al. and inverted, scaled, and clipped to a boxsize of 
36:36:36 pixels with a pixel size of 4.34 Å/px using EMAN2/2.91 (Figure S4) [Hansen et al., 2021]. 
The cylindrical mask was created in EMAN2 as well and then softened in RELION/3.1.2. 
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Figure 9: Picking and averaging the repeating unit of the filament bundles. 

The model picking strategy is visualized in green. Contours were placed to trace the general shape of the 
filaments. Points were added to essentially pick the particles from the model. Scale bar: 200 nm.  

 
Subvolume-based template matching 

Subtomogram averaging (STA) of Ura2 and Ura7 was performed in PyTom (development version, 
https://github.com/FridoF/PyTom). Before STA of the proteins of interest could be executed, 
customization of the standard PyTom STA workflow was necessary. Firstly, the IMOD-reconstructed 
volumes had to be imported into PyTom by use of the SerialEM mdoc-file generated per tilt series. 
The patch tracking model generated in IMOD was transformed into a PyTom-style markerfile, with 
the marker coordinates corresponding to the positions of the patches. Using weighted back 
projection, reconstruction of non-CTF corrected projections was performed, with a binning factor of 
4 (8.68 Å/px). Consequently, particles were picked via template matching in the PyTom-generated 
volumes. Considering the limited molecular mass of both Ura2 and Ura7, template match had to be 
run with high magnification tomograms not optimally binned. To account for the increase in memory 
utilized by the larger volume and to maximize processing efficiency, the tomogram was split up into 
subvolumes (Figure 10A). The splitVolumes function in PyTom 
(pytom/localization/parallel_extract_peaks/PeakLeader/splitVolumes) was customized, rewriting the 
parallel_extract_peaks.py PyTom script (Text S3), with the purpose of writing the subvolumes as well 
as corresponding job and bash execution files to disk. A custom python script was written to access 
and run the adjusted splitVolumes function (runSplitVolumes2.py, Text S4). Use of GNU parallel 
commands enabled consecutive execution of the numerous subvolume template matching bash 
files. By virtue of the parallel command, the template matching runs were submitted to the GPU for 
optimal processing efficiency without requiring manual supervision or intervention. 
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Figure 10: The subvolume-based approach to template matching.  

(A) The dividing of the full tomogram volume up into subvolumes. For template matching, the particle picking 
space of the subvolume is expanded by half the size of the reference. (B) The picked particles have to be plotted 
back into the coordinate system of the original volume. Using a translation, particle coordinates can be 
accurately retrieved and the picks of the different subvolume can be combined in one particle list. (C) The 
proposed STA approach after extraction and transformation of the particles. First, subtomograms are 
reconstructed from the original projections. Subtomograms are aligned and classified to finally obtain an 
average.  

 
The Ura2 structure used for template matching was generated from its AlphaFold structure 
(https://alphafold.ebi.ac.uk/entry/P28274). In Chimera/1.12, a density map was generated from the 
molecular structure using the “molmap” command, mimicking a resolution of 3 Å. Using 
EMAN2/2.91, the resulting density was inverted, clipped, and scaled to match the pixel spacing of 
the subvolumes (8.68 Å/px). The mask was also produced in EMAN2, with a soft edge.  
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After the scores and angles files were generated, particles were extracted using a bash loop. 
However, since the subvolume were treated like separate tomograms, the coordinates of the 
particles found were relative to the coordinate system of the subvolume. Through a python script 
(rewriteParticles.py, Text S5) executed by a shell script, the particles were therefore plotted back 
into the coordinate system of the original volumes (Figure 10B). Concurrently, particle filenames 
were rewritten, as reconstructed subtomograms would otherwise overwrite each other. The number 
of candidate particles extracted was estimated at the hand of the total number of molecules present 
in the volume of the cell. For Ura2, this amounted to extraction of 200 particles per subtomogram 
(https://www.yeastgenome.org/locus/S000003666/protein). The new particle lists were combined 
in the PyTom GUI.  
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Supplementary Materials 

 
  

Figure S1: The CTP synthesis pathway in S. cerevisiae. 

Enzymes are given in yellow; metabolic substrates, products, and cofactors in red; names of the enzymes in S. 
cerevisiae in purple.  

Saccharomyces cerevisiae UTP and CTP de novo biosynthesis. Retrieved September 16, 2022, from 
https://pathway.yeastgenome.org/YEAST/NEW-IMAGE?type=PATHWAY&object=PWY-7176 
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Figure S2: BSA analysis shows that overall protein concentrations are similar in both log 
phase growth and starvation states of the cells. 

(A & B) The left cluster of red points represents an 8 times dilution of the lysates. The right 
cluster corresponds to a 4 times dilution of the samples. 
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Figure S3: The repeat of the western blot analysis displays similar results.  

Western blot analysis of the protein lysates shows that Ura2 and Ura7 expression levels are 
relatively unchanged by starvation stress.  
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90kDa 

50 kDa 

Log phase Starvation Starvation Log phase 
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C 

Figure S4: Filament averaging was performed and the resulting averages were low pass 
filtered according to their resolution.  

(A) The Fourier shell correlation curve of the average obtained from run039. (B) The Fourier shell 
correlation curve of the average obtained from run041. (C) The mask used for both run039 and 
run041, in addition to the reference generated from the in vitro structure of Ura7.  
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Table S1: Quantification of the fluorescence microscopy experiment.  

Lower and upper bound 95% confidence intervals were calculated for a binomial distribution. 

Timepoint 
(min) 

Fluorescent 
Protein Cells Maxima Percentage 

Lower 
Bound 
95% CI 

Upper 
Bound 
95% CI 

30 Ura2 1,463 10 0.68 0.00 0.01 
60 Ura2 1,069 15 1.40 0.01 0.02 

120 Ura2 1,697 11 0.65 0.00 0.01 
180 Ura2 1,653 7 0.42 0.00 0.01 
240 Ura2 1,321 6 0.45 0.00 0.01 

30 Ura7 1,766 421 23.84 1.94 2.06 
60 Ura7 1,160 459 39.57 2.87 2.93 

120 Ura7 1,912 1205 63.02 2.22 2.18 
180 Ura7 2,370 1658 69.96 1.86 1.84 
240 Ura7 3,297 2321 70.40 1.60 1.60 

 
Table S2: The total protein concentrations determined for each lysate of Figure ?1. 

Lysate 
Growth 
Phase 

Concentration 
(µg/µL) 

Ura2 Log phase 1.384 
Ura2 Starvation 1.352 
Ura7 Log phase 1.488 
Ura7 Starvation 1.504 

 
Table S3: The total protein concentrations determined for each lysate of Figure S1. 

Lysate 
Growth 
Phase 

Concentration 
(µg/µL) 

Ura2 Log phase 1.018 
Ura2 Starvation 0.950 
Ura7 Log phase 1.076 
Ura7 Starvation 1.044 

 
Table S4: The exposure times used to visualize the protein bands during western blot analysis. 

Target 
protein Antibody 

Exposure 
time (s) 
Figure 3  

Exposure 
time (s) 
Figure S1 

Ura2 Anti-GFP 10 4 
Ura7 Anti-GFP 60 20 
Actin Anti-actin 40 20 
Atg8 Anti-Atg8 180 50 
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Table S5: The different parameters of the filament averaging jobs run. 

Run Reference Mask 
Search 
Distance Phi Theta Psi 

036 Particle 2184 - 5 180 30 20 
039 Ura7 filament Cylindrical 4 180 30 20 
040 Particle 2184 Cylindrical 5 180 30 20 
041 Particle 777 Cylindrical 5 180 30 20 

043 
Average run 
041 Cylindrical 3 180 30 20 

044 
Average run 
043 Cylindrical 5 180 30 20 
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Text S1: Custom python script for analyzing BCA measurements. 
 
#!/usr/bin/env python 
 
# open text file with BCA values 
BCA = open("BCA_0606.txt", "r") 
 
bca = {} 
 
# read lines in file into dictionary 
for line in BCA: 
    line = line.rstrip() 
    term = line.split("|") 
    bca[term[0]] = float(term[1]) 
     
BCA.close() 
 
# account for the blank 
blank = bca["I"] 
 
for key in bca: 
    bca[key] = bca[key] - blank 
 
# separate values based on experiment 
calibration = {} 
measurement = {} 
 
for key in bca: 
    if key[0] == "U": 
        measurement[key] = bca[key] 
    else: 
        calibration[key] = bca[key] 
 
# print(measurement, "\n", calibration) 
 
# change calibration keys to concentration BSA 
concentration = [2000, 1500, 1000, 750, 500, 250, 125, 25, 0] 
index = -1 
cal = {} 
 
for key in calibration: 
    index += 1 
    cal[concentration[index]] = calibration[key] 
# print(cal) 
 
# separate calibration values and keys for seaborn plot 
calval = [] 
calkey = [] 
for key in cal: 
    calval.append(cal[key]) 
    calkey.append(key)  
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# plot and fit calibration curve 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
plt.figure(figsize = (15, 10), dpi = 120, facecolor = "w", edgecolor = "k") 
sns.regplot(x = calval, y = calkey, data = cal, ci = None, label = "BSA Calibration Values", color = "b", 
marker = "o") 
plt.title("BSA Calibration Curve", fontsize = "xx-large") 
plt.ylabel("Protein Concentration (mg/mL)", fontsize = "xx-large") 
plt.xlabel("Absorption (550 nm)", fontsize = "xx-large") 
 
# get the equation 
from scipy.stats import linregress 
 
slope, intercept, r_value, p_value, std_err = linregress(calval, calkey) 
 
def fitline(b): 
    return intercept + slope * b 
 
# calculate the measurement concentrations 
measured = {} 
for key in measurement: 
    measured[measurement[key]] = fitline(measurement[key]) 
print(measurement) 
print(measured) 
 
# plot the measurement points 
plt.scatter(measured.keys(), measured.values(), label = "Yeast Lysate Measurements", color = "r", 
marker = "o") 
plt.annotate("R-squared value = {:.3f}".format(r_value), (-0.05, 1750), fontsize = "x-large") 
 
index = -1 
for key in measured: 
    index += 1 
    plt.annotate(list(measurement.keys())[index], (key, measured[key])) 
plt.legend(fontsize = "xx-large")   
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Text S2: Python script for applying the coordinate transformations calculated 
by the 3D correlation toolbox. 
#! /cm/shared/apps/miniconda2/envs/pyto/bin/python3 
 
module load miniconda/pyto/1.6.0 
condaactivate 
ipython 
 
''' 
    "This example shows how to apply a coordinate transformation previously obtained by correlating  
    "a 3D (such as confocal) and a 2D (such as ion beam) image to transform the correlated 
    "images. In this way, the confocal image is transformed to the ion beam coordinate 
    "system, so that the transformed confocal image "looks like" the ion beam image, or 
    "the ion beam image is transformed to the confocal system. 
    
    "The transformation is read from the output files previously generated by running 3DCT. 
    "To make it easier to visualize the transformation, the images used to establish the  
    "correlation were artificially generated. 
    " 
    "The image transformations shown here are performed using Pyto package." 
''' 
import pyto 
import sys 
import pickle 
from copy import copy, deepcopy 
import numpy as np 
import tifffile as tf 
import pyto 
from pyto.geometry.rigid_3d import Rigid3D 
import matplotlib as mpl 
import matplotlib.pyplot as plt 
 
confocal_file_name = 'S3L12FLM_resliced.tif' 
ion_beam_file_name = 'S3L12SEM.tif' 
#ion_beam_size = [1024,941] #x,y Should add programatic extraction 
results_file_name = 'S3L12XYZ_full.txt' 
results_file_name_min = 'S3L12XYZ.txt' 
    
# Read images and adjust axes 
cf_data = tf.imread(confocal_file_name).transpose() 
confocal_size=cf_data.shape 
ib_data = tf.imread(ion_beam_file_name) 
if len(ib_data.shape) == 3: 
    ib_data = ib_data[:,:,0] 
ib_data = ib_data.transpose() 
 
# read marker positions 
results = np.loadtxt(results_file_name_min) 
#print(results) 
cf_markers = results[:,0:3] 
cf_markers_transformed = results[:,3:6] 
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ib_markers = results[:,6:8] 
transform_error = results[:,8:10] 
 
# Read parameters from 3DCT results 
with open(results_file_name, 'r') as results_fd: 
    for line in results_fd: 
        if line.startswith('#   - rotation'): 
            phi, psi, theta = np.fromstring(line.split(': [')[1].split(']')[0], sep=',') 
            continue 
        if line.startswith('#   - scale'): 
            scale = float(line.split('= ')[1]) 
            continue 
        if line.startswith('#   - translation for rotation around [0,0,0]'): 
            trans = np.fromstring(line.split('= [')[1].split(']')[0], sep=',') 
            continue 
        if line.startswith('#   - translation for rotation around'): 
            origin = np.fromstring(line.split('[')[1].split(']')[0], sep=',') 
            trans_or = np.fromstring(line.split('= [')[1].split(']')[0], sep=',') 
            break 
 
print("Please check that the following parameters are the same as those in the 3DCT results file:") 
print("phi, theta, psi = {}".format((phi, theta, psi))) 
print("scale = {}".format(scale)) 
print("translation around [0, 0, 0] = {}".format(trans)) 
print("translation around {} = {}".format(origin, trans_or)) 
 
 
# Make transformation from confocal to ion beam (based on 3DCT correlation results) 
euler_rad = np.array([phi, theta, psi]) * np.pi / 180 
#q = pt.Rigid3D.make_r_euler(angles=euler_rad) 
q = Rigid3D.make_r_euler(angles=euler_rad) #Original line 
tdct = Rigid3D(q=q, scale=scale, d=trans) #Original line 
#tdct = Rigid3D() 
#tdct.gl=q 
#tdct.s=scale 
#tdct.d=trans #, d=trans) 
 
# reposition so that transformed markers z > 0 
cf_markers_tf = tdct.transform(x=cf_markers, xy_axes='point_dim') #Original line 
#cf_markers_tf = af.Affine.transform(tdct,x=cf_markers, xy_axes='point_dim') 
tdct_z = deepcopy(tdct) 
tdct_z.d[2] += -np.floor(cf_markers_tf[:,2]).min() 
tdct_z.transform(x=cf_markers, xy_axes='point_dim') 
 
# Transform confocal image 
# Pad the confocal image to prevent chopping 
padded=(1600,1200,1000) 
cf_data_tf = tdct_z.transformArray(array=cf_data,shape=padded) 
#cf_data_tf should also be saved as 3d file 
 
#save as maxproj.tiff 
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cf_tf_file_name = 'S3L12Z_max.tif' 
data = cf_data_tf.max(axis=2).transpose() 
#sum instead of max sometimes is better 
# data = cf_data_tf.sum(axis=2).transpose()  
pixel_um = 0.164 
cf_meta = {"PixelSize": str(pixel_um), "FocusStepSize": str(pixel_um)} 
cf_res = (10000/pixel_um, 10000/pixel_um, 'CENTIMETER') 
tf.imsave(cf_tf_file_name, data, metadata=cf_meta, resolution=cf_res) 
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Text S3: Rewritten version of the splitVolumes function for writing 
subvolumes and corresponding job files to disk. 
 
def splitVolumes2(self, job, splitX, splitY, splitZ, filename, gpuID, verbose=True): 
        """ 
        splitVolumes: Split the target volume in job into smaller ones and write subjobs and volumes to 
disk. 
        """ 
        # check if the split is feasible 
        v = job.volume.getVolume() 
        r = job.reference.getVolume() 
 
        print(r.sizeX(), r.sizeY()) 
         
        vsizeX = v.sizeX(); vsizeY = v.sizeY(); vsizeZ = v.sizeZ() 
        sizeX = vsizeX//splitX; sizeY = vsizeY//splitY; sizeZ = vsizeZ//splitZ 
        rsizeX = r.sizeX(); rsizeY = r.sizeY(); rsizeZ = r.sizeZ() 
        if rsizeX>sizeX or rsizeY>sizeY or rsizeZ>sizeZ: 
            raise RuntimeError("Not big enough volume to split!") 
         
        self.jobInfo["originalSize"] = [vsizeX, vsizeY, vsizeZ] 
        self.jobInfo["splitSize"] = [sizeX, sizeY, sizeZ] 
         
        # read the target volume, calculate the respective subregion 
        from pytom.localization.peak_job import PeakJob 
        from pytom.localization.structures import Volume 
        _start = [-rsizeX//2,-rsizeY//2,-rsizeZ//2] 
        _size = [sizeX+rsizeX, sizeY+rsizeY, sizeZ+rsizeZ] 
 
        # obtain original reference name (not path) 
        orig_ref_name = job.reference.getFilename() 
         
        # write a textfile for storing the subvolume coordinates 
        textfile = "subRegions" + "_" + filename[:-4] + ".txt" 
        txt = open(textfile, "w") 
         
        for i in range(splitX*splitY*splitZ): 
            strideZ = splitX*splitY; strideY = splitX 
            incZ = i//strideZ; incY = (i%strideZ)//strideY; incX = i%strideY 
            _start = [-rsizeX//2+incX*sizeX,-rsizeY//2+incY*sizeY,-rsizeZ//2+incZ*sizeZ] 
             
            start = _start[:] 
            end = [start[j]+_size[j] for j in range(len(start))] 
             
            if start[0] < 0: 
                start[0]=0 
            if start[1] < 0: 
                start[1]=0 
            if start[2] < 0: 
                start[2]=0 
            if end[0] > vsizeX: 
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                end[0] = vsizeX 
            if end[1] > vsizeY: 
                end[1] = vsizeY 
            if end[2] > vsizeZ: 
                end[2] = vsizeZ 
             
            size = [end[j]-start[j] for j in range(len(start))] 
 
            # for reassembling the result 
            whole_start = start[:] 
            sub_start = [0, 0, 0] 
            if start[0] != 0: 
                whole_start[0] = start[0]+rsizeX//2 
                sub_start[0] = rsizeX//2 
            if start[1] != 0: 
                whole_start[1] = start[1]+rsizeY//2 
                sub_start[1] = rsizeY//2 
            if start[2] != 0: 
                whole_start[2] = start[2]+rsizeZ//2 
                sub_start[2] = rsizeZ//2 
            self.jobInfo[i+1] = [sub_start, whole_start] 
             
            # writing the filenames for each subvolume 
            jobfilename = filename[:-4] + "_sub" + str(i) + ".xml" 
            volfilename = filename[:-4] + "_sub" + str(i) + ".mrc" 
            bashfilename = filename[:-4] + "_sub" + str(i) + ".sh" 
                         
            subregion = [start[0], start[1], start[2], size[0], size[1], size[2]] 
             
           # create an actual volume 
            subVol = Volume.getVolume(job.volume, subregion = subregion) 
             
            print("This is the subregion of subvolume " + str(i) + ".") 
            print(subregion) 
            txt.write(str(subregion)) 
            txt.write("\n") 
             
            # write volume to disk 
            from pytom.basic.files import write_em 
   
            mrc = write_em(volfilename, subVol) 
             
            # replace original tomogram with newly generated subvolume 
            path2mrc = job.dstDir + volfilename 
            subVol2 = Volume(path2mrc, [0,0,0,0,0,0]) 
             
            import os 
             
            # write a reference link per subvolume 
            # to avoid overwriting 
            ref_link = orig_ref_name[:-4] + "_sub" + str(i) + ".mrc" 



 40 

            os.symlink(orig_ref_name, ref_link) 
            job.reference.setFilename(filename = ref_link) 
             
            # write subjob file to disk 
            subJob = PeakJob(subVol2, job.reference, job.mask, job.wedge, job.rotations, job.score, i+1, 
dstDir = job.dstDir, bandpass = job.bandpass) 
            xml = subJob.toXMLFile(jobfilename) 
             
            # write shell script to disk 
            path2xml = job.dstDir + jobfilename 
             
            def subRunscript(filename, jobFile, gpuID): 
                from pytom.tools.files import dump2TextFile 
                 
                text = "#!/bin/bash\n" 
                text += "cd " + job.dstDir + "\n" + "\n" 
                text += "mpiexec --tag-output -n 1 " + "/data/gijsvds/pytom-
develop/gui_devel/pytom/bin/pytom /data/gijsvds/pytom-
develop/gui_devel/pytom/bin/localization.py" + " -j " + jobFile + " --gpuID " + str(gpuID) + "\n" 
                dump2TextFile(filename, text, append = False) 
 
            subRunscript(bashfilename, path2xml, gpuID = gpuID)  
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Text S4: Custom python script for accessing the splitVolumes2 function 
(runSplitVolumes2.py) 
 
#!/usr/bin/env pytom 
 
# run like so: 
# pytom runSplitVolumes2.py [job file] [splitX] [splitY] [splitZ] [gpuID] 
 
verbose = True 
 
import parallel_extract_peaks2 as pp2 
from pytom.localization.peak_job import PeakJob 
import os 
import sys 
import operator 
 
filename = sys.argv[1] 
job = PeakJob() 
job.fromXMLFile(filename) 
job.check() 
 
X = int(sys.argv[2]) 
Y = int(sys.argv[3]) 
Z = int(sys.argv[4]) 
 
gpuID = sys.argv[5] 
 
peak = pp2.PeakManager() 
 
peak.splitVolumes2(job, splitX = X, splitY = Y, splitZ = Z, filename = filename, gpuID = gpuID) 
 
  



 42 

Text S5: Custom python script for transforming extracted particles back into 
their original coordinate system. 
 
#!/usr/bin/env pytom 
 
# run using the rewriteParticles.sh bash script for multiple particle lists 
 
verbose = True 
 
import numpy as np 
from pytom.basic.structures import ParticleList 
import sys 
import operator 
import copy 
 
# create particle list structures 
pl = ParticleList() 
new_pl = ParticleList() 
 
# load sub particle list into variable 
filename = sys.argv[1] 
pl.fromXMLFile(filename) 
 
from pytom.basic.structures import PickPosition 
from pytom.basic.structures import Particle 
 
# read in the subregion for the correct subvolume 
with open(sys.argv[4]) as txt: 
    subregions = txt.read().splitlines() 
 
substarts = [] 
 
for line in subregions: 
    listified = line.strip("][").split(",") 
     
    startX = listified[0] 
    startY = listified[1] 
    startZ = listified[2] 
     
    substart = [startX, startY, startZ] 
    substarts.append(substart) 
 
index = int(sys.argv[3]) 
 
regionX = int(substarts[index][0]) 
regionY = int(substarts[index][1]) 
regionZ = int(substarts[index][2]) 
 
print(regionX, regionY, regionZ) 
     
for p in pl: 
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    subCoordinates = p.getPickPosition() 
    # retrieve coordinates of the particle 
    subX = subCoordinates.getX() 
    subY = subCoordinates.getY() 
    subZ = subCoordinates.getZ() 
    #print(subCoordinates) 
     
    # transform coordinates back into the whole tomogram 
    newX = subX + regionX 
    newY = subY + regionY 
    newZ = subZ + regionZ 
     
    # create new PickPosition variable with the new coordinates 
    newCoordinates = copy.deepcopy(subCoordinates) 
    newCoordinates.setX(newX) 
    newCoordinates.setY(newY) 
    newCoordinates.setZ(newZ) 
     
    # rewrite particle name to avoid overriding during STA 
    oldname = p.getFilename() 
    newname = oldname[:-3] + "_sub" + sys.argv[3] +".em" 
     
    # create a new particle from the old particle 
    # but replace the PickPosition with the one containing the new coordinates 
    new_p = copy.deepcopy(p) 
    new_p.setPickPosition(newCoordinates) 
    new_p.setFilename(newname) 
     
    #add the new particle to the new particle list 
    new_pl.append(new_p) 
     
output = filename[:-4] + "_transformed.xml" 
new_pl.toXMLFile(output) 
  



 44 

#!/bin/bash 
# run in TM directory  
# run like so: 
# bash rewriteParticles.sh reference subregions_textfile 
 
for i in {0..15} 
do 
        pytom /data/stuart/Flory/CTPsynthase/pytom/subvolumes/method/rewriteParticles.py 
particles_TM_job2_sub$i.xml $1 $i $2 
done 
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