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Abstract 
Melanoma is one of the most immunogenic tumours and has the greatest potential to be treated by immune 

checkpoint blockade (immunotherapy). Tumour mutational burden (TMB, expressed as somatic mutations per 

MB coding DNA) is suggested as a good marker for prognosis of immunotheraphy. Still, it is not enough to explain 

why less than half of all patients respond to immunotherapy. To get better insight into other factors that shape 

the outcome of an immunotherapy, we focused on the data provided by Riaz et al., 2017.  Interestingly, in this 

data set TMB and neoantigen counts are not significantly different between responders and non-responders, 

giving us more room to search for additional factors. Still, we found that the average number of mutations in 

mutated genes were significantly higher in responding patients than non-responding ones. We identified 458 

mutated genes unique to a positive or partial response, and 1106 mutated genes unique for stable or progressive 

disease, which in Gene Ontology (GO) analysis and heatmaps reveal similarity in molecular functions, biological 

processes, cellular components, protein classes, and pathways. Next, we found highly expressed Human 

leukocyte and cluster of differentiation antigens (HLA and CD antigens) in these patients, and a possible role for 

immune evasion and immune response likely through antigen presentation to T and NK cells. However, the 

expression of HLA-A, HLA-B, and HLA-C were not significant between response groups, but HLA class II molecules 

were, suggesting an important role for CD4 T cell responses in immunotheraphy outcome. Moreover, the 

expression of possible T cell targets (i.e., mutated genes) in the response group was higher than in the non-

response group, suggesting that the success of the immunotherapy is not only depending on the number of 

mutations but also how well the mutated genes are expressed. Finally, we identified a “response-signature” 

consisting of six genes: COL3A1, HLA-DRA, TMSB4X, RPSA, A2M, LDHA, that are the most differentially expressed 

genes in responding patients and are all related to melanoma. This study exposes that the average expression 

of neo-antigens (possible T cell targets) should be considered for therapy prediction, and that only a part of the 

underlying gene expression from non-synonymous mutations of a patient should appeal to personalized 

vaccines.  

Keywords: mutational, response, immunotherapy, antigens, melanoma, tumour, TMB, load, somatic, SNVs. 
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Introduction 

Melanoma is the rarest and the most aggressive type of skin cancer that develops from 

pigment-producing cells known as melanocytes (Linares et al., 2015). Other types of cancers 

that occur in the skin, non-melanomas, are also malignant. However, they are far less likely 

to spread to other parts of the body and are therefore more easily treatable. Favourably, 

melanoma has been identified as one of the most immunogenic tumours, which means that 

it has the greatest potential to be treated by immunotherapy (Marzagalli et al., 2019) as the 

formation of T lymphocyte (T cell) reactivity against neo-antigens is more common in 

melanoma (Schumacher and Schreiber, 2015). This has stimulated the use of immunotherapy, 

and in particularly, immune checkpoint blockade (ICB) therapies such as programmed cell 

death protein 1 (PD-1), PD-1 ligand (PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA4) 

(Eggermont et al., 2018) in melanoma patients. 

 

These ICBs have managed to improve the overall survival outcomes of patients i.e., mortality 

rates dropped: the median survival time for metastatic melanoma patients was 9 months until 

2011, and in 2017 it was reported to exceed 2 years (Schreuer et al., 2017). More recently, 

clinical trials reported the same in advanced stages of melanoma: a 5-year survival rate of 

34% for patients treated with pembrolizumab, and 52% for patients treated with combination 

of nivolumab and ipilimumab (Hamid et al., 2019, Larkin et al., 2019).  

 

Aside from overall survival, analytical improvements have been achieved as well. Next-

generation sequencing (NGS) helped in estimating tumour mutational burden (TMB), 

identifying (expressed) neoantigens, developing new therapies to boost the immune 

response, and understanding how genomic and transcriptomic variation can influence 

efficacy. More advances include gene databases such as the Cancer Genome Atlas (TCGA) 

(Blum et al., 2018), bioinformatics tools like gene set enrichment analysis (GSEA) 

(Subramanian et al., 2007), and RNA sequencing data (Riaz et al., 2017) or single cell 

approaches (Sade-Feldman et al., 2018) that investigated the dynamics between cancer and 

immune cells during ICB in melanoma.  

 



6 
 

Importantly, there are biomarkers envisioned within the cancer-immunity cycle that can 

contribute to the ICB response prediction (Chen and Mellman, 2013; Schumacher and Kesmir, 

2015). The TMB, which is the somatic mutations per mega base (Mb) of coding DNA 

(Schumacher and Schreiber, 2015; Sha et al., 2020; Heydt et al., 2020; Jardim et al., 2021) is 

one of these. It is frequently reported on as a biomarker for assessing tumour immunogenicity 

(Morrison et al., 2018; Van Allen et al., 2015) and for the efficacy of ICBs in many cancer types 

including melanoma (Rizvi et al., 2015; Wang et al., 2019; Forschner et al., 2019). 

Furthermore, in several clinical trials TMB has been shown to be a good predictor of 

immunotherapeutic efficacy (Ajona et al., 2017; Razzak, 2013; Hugo et al., 2016; Cristescu et 

al., 2018). 

 

Recent examples of studies with TMB in melanoma involved (1) the correlation between TMB 

and immune infiltration by Wang et al. (2021), (2) the correlation between TMB and 

differentially expressed genes (DEGs) by Kang et al. (2020), (3) the integrative modelling of 

multi-omics sequence data that incorporated genomic, transcriptomic and T cell repertoire 

characteristics by Anagnostou et al. (2020), (4) the systematic pan-tumour analyses that 

collated whole-exome and transcriptomic data by Litchfield et al. (2021), (5) the sequencing 

of whole-exome, transcriptome, and/or T cell receptor (TCR) by Riaz et al. (2017), and (6) the  

identification of TMB-related hub genes and their competing endogenous RNA networks by 

Zhang et al. (2021).  

 

These studies concluded that (1) in cutaneous melanoma, elevated TMB levels were 

associated with better survival outcomes, (2) in cutaneous melanoma, TMB was positively 

correlated with prognosis, (3) TMB is associated with improved treatment response, and that 

the mutation frequency in expressed genes is superior in predicting outcome, (4) clonal TMB 

was the strongest predictor of ICBs response, followed by total TMB (and CXCL9 expression), 

(5) total and clonal TMB are associated with overall survival and response in nivolumab-

treated whilst ipilimumab-naïve patients, and (6) elevated TMB levels were significantly 

correlated with improved survival outcomes and had a substantial effect on melanoma, 

respectively.  
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However, despite these promising results, additional biomarkers are necessary because the 

TMB as a marker by itself is insufficient. Namely, less than half of all patients respond to these 

immunotherapies (Schumacher and Kesmir, 2015). There are patients that attain high TMB 

and yet still do not produce an (effective) anti-tumour immune response. Similarly, there are 

also ICB responders with low TMB as well. Thus, only a part of the variation in the quality of 

the anti-tumour immune response in the setting of immunotherapy (Chen et al., 2016) can be 

explained by TMB. More novel predictive biomarkers for melanoma treatment are needed to 

instruct clinical decision-making, and subsequently to predict the response to 

immunotherapy.  

 

In this study, we aim to identify such predictive biomarkers that can explain the failure in 

immunotherapy in almost half of the patients that get the chance to use this new treatment. 

Our analysis focusses on somatic, exomic, neo-antigenic and transcriptomic data by 

integrating somatic mutations with gene expression data. We show that aside from the 

number of possible T cell targets (neo-antigens), also the underlying tumour expression 

pattern can dictate the outcome of the immunotherapies.  
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Methods 

Data acquisition and experimental details 

To investigate the mutational landscape of cancer patients with a known response to 

immunotherapy we analysed genomic data identified by Riaz et. al (2017). This dataset 

consists of 68 patients with advanced melanoma, who ranged from 22 till 89 years old 

(median age was 55 years) and had sufficient material for genomic analysis. There were 15 

patients with a response (partial or complete response: PRCR) and 53 patients with no 

response (stable or progressive disease: SDPD).  

 

Moreover, 33 patients were naïve to the treatment whilst the 35 others had already 

progressed on Nivolumab. These patients received Nivolumab in doses of 3mg/kg every 2 

weeks until progression, or for maximum 2 years, with a (radiography) response assessment 

every 8 weeks. Upon progression, a CT scan was performed 4 weeks later for confirmation. 

Biopsies were collected from the same site and were performed before therapy (1-7 days 

before first dose) and on cycle 1 (day 23-29) (Riaz et. al, 2017). 

 

Here we describe briefly how this data was generated. We examined the whole-exome 

sequencing (WES), neoantigen typing, and the RNA Sequencing (RNA-seq) datasets provided 

by Riaz et al. In brief, after DNA was extracted from samples, exonic sequences were enriched, 

sequenced, and used to identify single nucleotide variations (SNVs). These SNVs were 

additionally filtered based on read count (less than 5 or with corresponding normal coverage 

of less than 7 reads) and followed by a determination of insertions and deletions (indels), of 

which only high- or moderate-impact indels determined by callers were selected. We used 

the sum of these remaining SNVs (non-synonymous mutations) provided by Riaz et al. to 

calculate the TMB (from WES). 

 

Second, neo-antigen analysis was performed from exome-sequencing data, with each non-

synonymous SNV translated into a 17-mer peptide sequence, which were used to create 9-

mers for determination of MHC class I binding. Next, the binding strength of mutated peptides 

to patient-specific Human leukocyte antigen (HLA) alleles were calculated and those with a 

rank < 2% were considered for further analysis. If a mutation generated multiple 9-mer 
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peptides that bound to patient-specific HLA alleles, it was only counted as one neoantigen, 

whilst neo-peptides were calculated as the total number of predicted 9-mers that bound to 

patient-specific HLA alleles. Thus, one mutation can generate multiple neo-peptides, 

however, only the best binder is considered as a predicted neoantigen. This part was 

completely provided by Riaz et. al. 

 

Third, RNA-seq data for transcriptome analysis was produced from raw FASTQ files that were 

aligned on the hg19 genome. These aligned fragments were counted with Rsamtools v3.2 and 

we used these fragments provided by Riaz et al., annotated it with the  

TxDb.Hsapiens.UCSC.hg19.knownGene transcript database and normalized it per kilobase per 

million mapped reads (FPKM) by using the robust FPKM estimate function of DESeq2 v1.26. 

Before normalization, genes were filtered as a measure of quality control: we removed genes 

with low read counts (minimum 4 samples and minimum 2 read count, and variances and 

standard deviations >1).  

 

All subsequent differential gene analysis was conducted using the DESeq2 package, which use 

a generalized linear model, where counts are modelled using a negative binomial distribution 

with fitted mean and a gene-specific dispersion parameter. The differentially expressed genes 

(DEGs) for the pre-therapy samples were modelled according to response variables 

(influencing factor) i.e., we stratified two cohorts for analysis: SDPD (stable and progressive 

disease) and PRCR (partial and complete response).  

 

Finally, for a GO enrichment analysis we conducted the panther DB Gene Ontology 

knowledgebase v16.0. with homo sapiens as only organism (Ashburner et al.,2000; The Gene 

Ontology resource, 2021) and Human CD antigens were taken from abcam’s human CD 

markers chart (Updated August 5, 2021). 

 

For more specificalities regarding corrections, alignments, method names in the WES, 

neoantigen analysis, RNA-seq and other methods, or experimental details such as antibodies, 

biological samples, critical commercial assays, tumour tissue storage and division, or resource 

sharing, please refer to the original methodology by Riaz et al. (2017). 
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Statistical analysis 

Statistical analyses in this study were performed with R software environment v3.6.1. For 

measuring the statistical significance of continuous variables between groups, the data (two 

vectors) were compared by the paired two-sample Wilcoxon tests (‘Mann-Whitney’ test). 

Alternative hypotheses testing were used for further specification of significant results 

(direction testing). Before applying all these comparisons, the Shapiro-Wilk normality checks 

were performed to test for skewed distributions (if a score is significant, the data is not 

normally distributed, and we thus apply Wilcoxon test because normality is not needed). All 

figures shown passed this test. Next, all heatmaps were scaled and centred in the column 

direction.  

 

For an overview of package versions and miniconda environment installations please refer to 

the supplementary materials.  
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Results 

Dataset synopsis  

The number of patients (sample size) differed between results. A summary of this is shown in 

figure 1, which shows the amount of patients for each analysis throughout this report. As 

stated in the previous section, patients in this study were either naïve or progressive to 

immunotherapy treatments, which means that we have included patients who also 

potentially built-up resistance to immunotherapy. Since limited effective treatment options 

are available as soon as a patient develops resistance (Weiss et al., 2019) it is interesting to 

include these progressive patients to see if their response will also be differentiable. 

Therefore, we decided not to separate patients based on previous treatments; we only 

differentiate between PRCR (responders) and SDPD (non-responders). In the next paragraph 

we pick up from here and start our analysis by exploring the neo-antigenic and the exomic 

measurements.  

 

 
Figure 1: Summary of the amount of patients per analysis. The distribution of each number is as follows: Exomic 
data (68) is shown for 15 responders and 53 non-responders. Neo-antigenic data itself, and the overlap of neo-
antigenic with exomic data (41) is shown for 9 responders and 32 non-responders. Transcriptomic data (49) is 
shown for 10 responders and 39 non-responders. Transcriptomic overlap with exomic data (44) is shown for 10 
responders and 34 non-responders. Transcriptomic overlap with both neo-antigenic and exomic data, as well as 
the transcriptomic overlap with only neo-antigenic data (27), is shown for 7 responders and 20 non-responders. 
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Tumour neoantigen landscape of patients 

An important aspect in the cancer-immunity cycle is whether the tumour is likely to contain 

T cell recognizable antigens (Schumacher and Kesmir, 2015). As TMB increases, the 

probability increases that neo-antigens (expressed by tumour cells) produce higher neo-

antigenic load (Chan et al., 2019), and tumours with a high number of clonal neo-antigens 

might be more likely to bring forth an effective immune response (McGranahan et al., 2015). 

To analyse this foreign antigen space (neo-antigen landscape), generated by mutations of the 

cancer patients, we related the non-synonymous mutations (from SNVs) with the neo-

antigens (figure 2). 

 

 
Figure 2: Comparison of neo antigenic and mutational load (TMB) of the patients (n=41). (A) Neo antigenic load 
is plotted as a function of TMB. Mutational load correlates with neoantigen load by a (Pearson's) correlation 
coefficient of almost 1 (r=0.99, p-value < 0.001). (B) Comparison of two response groups using neoantigens (not 
significant). (C) Comparison of two response groups using TMB (not significant). Comparisons were both 
computed with non-paired two-sample test (Wilcoxon). NS: p>0.05. 
 

When plotted as a function of one another, the tumour neo-antigen load and tumour 

mutation load were nearly linearly correlated (figure 2a: r=0.99, p-value < 0.001). However, 

when statistically tested for differences, antigenicity did not differ between responders and 

non-responders (figure 2b). The same was true for the mutational load (figure 2c). Together, 
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this indicates that a higher mutational or neo-antigenic load did not necessarily translate into 

more sensitivity to ICB. An explanation for this is that besides antigenicity, an anti-tumour 

immune response is also affected by the infiltrative features such as the activation and 

recruitment of T cells to the tumour microenvironment, the composition of the tumour 

microenvironment, as well as the resistance to immune checkpoint blockade (Tumeh et al., 

2014). Nevertheless, it can still be argued that a higher mutational load generates more T cell 

targets, which contribute to the success of the immunotherapies in PRCR patients because 

anti-tumour T cell responses were stimulated. 
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Tumour mutational landscape of genes 

Identifying mutations in all patients might indicate which genes affect response to 

immunotherapy. Therefore, we characterized the exomic landscape of the mutations in each 

patient by performing data analysis on the SNVs. We first counted genes that were affected 

by non-synonymous mutations (NSMs): a total of 10939 mutated genes were found across all 

patients. Afterwards, to decrease stochastic effects in our analysis, we only considered genes 

that were mutated in at least 2 patients. This filtering reduced the profile of genes to a total  

 

 
Figure 3: Histograms of the non-synonymous mutations identified across all patients. (A,B) Summary of the 
distribution of mutations. (C,D) The distribution of mutations separated by its relation to either one, or two, 
therapy outcomes. Results are shown for 5629 genes which remain after filtering for stochasticity: genes shown 
have mutated in at least 2 patients. Turquoise indicates that a gene is related to one therapy outcome (unique). 
Red indicates that a gene is related to both therapy outcomes (intersect).  
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of 5629 in which 6 genes had at least 30 mutations in the entire dataset (figure 3a) and two 

genes which had mutated in at least 30 patients (figure 3b). These most frequently mutating 

genes are listed below in Table 1. 

 

Table 1: Overview of top mutated genes that had a minimum of 30 SNVs (left side of table) throughout the entire 
dataset or mutated in minimum 20 patients (right side). All genes in this table were involved in both therapy 
outcomes (intersect). Top mutated genes also found in top 10 of Kang et. al (2020) and Zhang et. al (2021) include 
TTN, MUC16, DNAH5, PCLO, LRP1B, ANK3, ADGRV1, BRAF. 

Have 30 or more mutations SNVs Occur in 20 or more patients 

Gene Total 
mutations 

Total 
patients 

Gene Total 
mutations 

Total 
patients 

TTN 196 38 TTN 196 38 

MUC16 164 37 MUC16 164 37 

DNAH5 58 21 PCLO 55 25 

PCLO 55 25 MUC4 52 25 

MUC4 52 25 LRP1B 37 22 

OBSCN 41 20 CSMD1 35 22 

MGAM 40 20 DNAH5 58 21 

LRP1B 37 22 BRAF 21 21 

NEB 37 14 OBSCN 41 20 

PKHD1L1 36 20 MGAM 40 20 

ANK3 36 16 PKHD1L1 36 20 

CSMD1 35 22    

FAT3 35 18    

ZFHX4 35 17    

HYDIN 33 16    

ADGRV1 31 18    

MUC17 31 18    

APOB 30 15    

 

Previously, several studies have identified genes that are frequently mutated in cancer 

patients. For example, Kandoth et. al. (2013) looked into 3,281 tumours across 12 cancer 

types (excluding melanoma) from The Cancer Genome Atlas (TCGA) database. Using these 

data sets, they identified 127 genes that were significantly more mutated than the others 

across cancer types. Interestingly, the genes we identified in Table 1 have hardly any overlap 

with these more pan-cancer mutated genes. In the same way, we also performed our 

response-unique data transformation on SNVs identified by Mariathasan et al. (2018). 

However, the study focussed on urothelial tumours and compared much less mutated genes 

than Riaz et al. (100s rather  than 1000s), thus were not included for this analysis. 

 

On the other hand, more recently, Kang et. al (2020) and Zhang et. al (2021) also computed 

mutated genes in melanoma-patients from the TCGA database. Though their data sets 
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contained less patients (467 and 472 patients, respectively) the two studies both analysed 

melanoma patients only, in contrast to the pan-cancer study from above. Notably, our genes 

from Table 1 contained 8 of the top 10 identified genes from both Kang et. al (2020) and Zhang 

et. al (2021) (RP1 and DNAH7 not ranked high enough in our case). Together, these results 

suggest that the genes identified in Table 1 are specific for melanoma patients. Additionally, 

we performed a GO analysis for these melanoma-genes (n=19) listed in Table 1, however, this 

did not help us to describe this gene set further (results not shown). 
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Tumour mutational landscape of response unique genes 

It is unclear whether a gene is important for either PRCR or SDPD response. It is very 

interesting to see if mutated genes are exclusive to responders i.e., are not found in the 

patients with no response to the therapy. To further identify ‘responder-genes‘ which might 

facilitate response to therapy, we classified a gene as ‘unique’ when it mutated only in 

patients of one response group (either PRCR or SDPD) and as an ‘intersect’ gene if it mutated 

in patients of both.  

 

This separation by therapy outcome identified a total of 1564 genes found to be unique to a 

response (PRCR or SDPD) and 4065 genes which mutated for both response groups. 

Moreover, the response-intersecting-genes accumulated relatively more mutations and 

occurred in more patients than response-unique-genes (figure 4). For example, the 

melanoma-related genes from the previous section in Table 1 had most mutations and were 

all response-intersecting genes. Since our interest lies in differentiating between the PRCR 

and SDDP response groups, we decided to provide a second classification to improve the 

separation of genes by therapy outcome: SDPD and PRCR response-unique genes (figure 4). 

 
Figure 4: Histograms of the non-synonymous mutations with response-indication. Distributions of mutations 
separated by (1) indication of overlap with response groups (unique or intersect), and (2) by response itself (only 
for unique-related genes). Results are shown for 5629 genes. Genes have mutated in at least 2 patients. Red 
indicates that a gene is related to both therapy outcomes (intersect). Blue indicates that a response-unique-gene 
is related to the SDPD therapy outcome (SDPD-unique). Green indicates that a response-unique gene is related 
to the PRCR therapy outcome (PRCR-unique).  
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This additional characteristic divided the total of 1564 response-unique-genes from above 

even further and resulted in 458 mutated genes unique to the PRCR response group whilst 

1106 genes unique to SDPD (figure 4a, 4b). The same could be done for the 4065 response-

intersecting-genes and resulted in 1503 PRCR- and 2138 SDPD-response-intersecting-genes, 

respectively (suppl. figure 1). 

 

An important notice is that none of the genes had mutated across all patients. Still, there were 

response-unique-genes that mutated for more than 2 PRCR or SDPD patients. The top of these 

genes are shown in Table 2 for both response groups. Similar to the top mutated genes from 

Table 1, we performed a GO analysis for these SDPD-unique (n=19) and for the PRCR-unique 

genes (n=8) from Table 2. However, this did not provide a better data description. 

Furthermore, an interesting result from Table 2 was the class II major histocompatibility 

complex protein HLA-DQB1 which was found to be SDPD-response-unique, which indicates 

that HLA immunity genes are prone to non-synonymous mutations as well.   

 
Table 2: Overview of genes that mutated only for patients in the SDPD (SDPD-unique) or in the PRCR response 
group (PRCR-unique). Note that the SDPD group (n=53) is larger than the PRCR response group (n=15). 

Gene Total 
mutations 

Total 
patients 

Response 
indication 

Gene Total 
mutations 

Total 
patients 

Response 
indication 

RNF213 9 7 SDPD unique ZDBF2 9 4 PRCR unique 

ARMCX4 7 6 SDPD unique A1CF 9 4 PRCR unique 

GHR 7 6 SDPD unique PCDHB6 7 4 PRCR unique 

ZNF727 6 6 SDPD unique UROC1 6 4 PRCR unique 

HLA-DQB1 9 5 SDPD unique KAT6A 5 4 PRCR unique 

CATSPERB 8 5 SDPD unique PRDM10 4 4 PRCR unique 

ITGAX 6 5 SDPD unique DLG1 4 4 PRCR unique 

NAV2 6 5 SDPD unique PRR23B 4 4 PRCR unique 

ZNF626 5 5 SDPD unique     

MUC5AC 5 5 SDPD unique     

PTPN13 5 5 SDPD unique     

RHAG 5 5 SDPD unique     

UBXN11 5 5 SDPD unique     

PTPRR 5 5 SDPD unique     

OR4B1 5 5 SDPD unique     

OR10H5 5 5 SDPD unique     

ZNF257 5 5 SDPD unique     

DCX 5 5 SDPD unique     

PTCHD4 5 5 SDPD unique     
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Tumour mutational landscape of SNVs 

Aside from the gene-specific annotation, mutations could also be characterized by nucleotide 

change, chromosome, or variant classification instead (see supplementary materials). We 

found that the G>A and C>T nucleotide changes had occurred far more than others in this 

data set (n=5629 genes, suppl. table 1), as was found earlier for the non-synonymous 

mutations (see e.g., Iengar, et al. 2012; Kang, et. al 2020; Zhang, et. al 2021). When further 

characterized by response (suppl. table 2) these nucleotide changes were also found to occur 

more frequently in the PRCR-response-group than in the SDPD-group (for all SNV types), in  

 
Figure 5: Comparison of two response groups using the non-synonymous mutations of all the mutated genes. (A) 
Comparison for mutations of response-intersecting genes (n=4065). Alternative hypothesis tested for PRCR < 
SDPD (p=1.973e-11). (B) Comparison for mutations of response-unique genes (n=1564: PRCR unique=458, SDPD 
unique=1106). Alternative hypothesis tested for PRCR > SDPD (p=0.015). (C) Comparison for average mutations 
per patient of response-intersecting genes. Alternative hypothesis tested for PRCR > SDPD (p<2.2e-16). (D) 
Comparison for average mutations of response-unique genes. Alternative hypothesis tested for PRCR > SDPD 
(p<2.2e-16). The average mutations per gene is calculated only for patients where the gene had mutated (thus 
not complete response group). Comparisons in A and C were computed with paired two-sample tests, and those 
in B and D with the non- paired two-sample test (both Wilcoxon). Red indicates genes from patients who 
responded to treatment. Blue indicates  genes from patients who did not respond. * p < 0.05, ** p < 0.01, *** p 
< 0.001. 



20 
 

 

line with the fact that the patients in the PRCR group have on average more mutations than 

SDPD group patients (suppl. Table 2, 4 and 6) (Schumacher and Schreiber, 2015, Riaz et al., 

2017). To show this more clearly, we compared all mutated genes (unique and intersect) in 

two response groups (figure 5). 

 

The results showed that the total number of mutations and the average number of mutations 

of a gene were significantly different between response groups. The total number of 

mutations was significantly less for the response-intersecting genes in the PRCR group 

compared to the SDPD group because of the group size (figure 5a). Contrastingly, in the case 

of the response-unique mutations, the total number of mutations were significantly higher 

for the PRCR group, even though the group was smaller (figure 5b).  

 

To account for this difference in sample size, we tested the average mutations as well. Both 

the response-intersect and unique genes were significantly higher in the PRCR group in this 

case (figure 5c, 5d). These results suggest that the mutational load (especially the number of 

non-synonymous mutations) is a good indicator of the immunotherapy outcome, confirming 

the findings of Riaz et. al. 2017. Please note that, we showed in the previous neoantigen 

section that there is a very strong correlation between the mutational load and the number 

of predicted neoantigen. Therefore, the higher mutational load generates more T cell targets 

in PRCR patients and stimulates anti-tumour T cell responses, which in turn contributes to the 

success of the immunotherapies. 

 

In terms of chromosomes, most non-synonymous mutations were found for chromosome 1, 

followed by 19 and 2 (suppl. Table 3 and 4). When corrected for the size of the chromosomes 

(as Chromosomes 1 and 2 are the largest ones), it became clear that chromosome 19 has the 

most mutations per Mb (suppl. Table 3 and 4). Chromosome 19 was previously associated 

with lung cancer (Wang, et. al. 2015), but to our knowledge it is not yet reported that 

chromosome 19 is enriched in mutations in melanoma patients. Next, we analysed the type 

of variants and found that missense variants occurred most in all patients, in agreement with 

Kang, et. al (2020) and Zhang, et. al (2021). As expected, the missense variant occurred more 

often in the PRCR-group (suppl. Table 5 and 6).   
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Finally, there were characteristics that were shared by all patients in the PRCR or SDPD group: 

all PRCR patients at least had mutations (1) with G>A nucleotide change, (2) on chromosome 

1, 2 and 12, and (3) by missense variants; all SDPD had missense variant, with most patients 

(n=49) having mutations on chromosome 1 and 19, followed by patients (n=47) with 

mutations on chromosome 2 and 11, and another majority (n=51) all having G>A, C>T, A>G 

nucleotide changes.  
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Characterizing genes unique for positive response: PRCR unique  

The GO results of our top mutated genes (table 1), including the top of the response-unique 

genes in the previous section (table 2), required more details for response differentiation. 

Interestingly, the GO results revealed that mutations of immunity associated genes occur as 

well. Mapping these genes might aid us to predict therapy outcome e.g., the mutations of 

HLA-DQB1 were SDPD-related in Table 2. Thus, instead of focussing only on the top mutated 

genes, we featured the complete set of genes that were found to be PRCR-response unique 

(n=458). Five different ontology queries were performed: molecular functions, biological 

processes, cellular components, protein classes, and even pathways.  

 

First, by assessing the molecular functions (figure 6a), we found that most PRCR-unique genes 

were related to binding (41.8%), catalytic activity (26.1%) and molecular function regulation 

(17.3%). In terms of cellular component (figure 6b), intracellular (36.6%) and cellular  

 
(A) Molecular Functions (B) Cellular Components 

  

  
(C) Biological Processes (D) Immune System Processes 

  
 

Figure 6: Gene ontology analyses of the PRCR-unique genes. (A) Hits for molecular function (n=352). (B) Hits for 
cellular component (n=465). (C) Hits for biological process (n=870). (D) Hits for immune system processes (n=26). 
Colours indicate identified categories shown in the legenda’s, bar chart, and pie chart classification. 
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anatomical entity (54.6%) were the largest hits. For biological processes (figure 6c), the largest 

hits were for biological regulation (17.4%) and metabolic process (15.5%). Immune system 

processes were only a small percentage (n=26, 1.7%). Within the latter (figure 6d), immune 

response (34.6%), leukocyte activation (23.1%), and immune system development (19.2%) 

were abundant. Suppl. table 7 and 8 show the PRCR-unique genes related to immunity 

processes and immunity protein classes, respectively.   

 

When we divide PRCR-unique genes into protein classes (figure 7a), the largest contributor 

was the metabolite interconversion enzyme (17.9%), followed by transmembrane signal 

receptor (12.3%), gene-specific transcriptional regulator (11.9%), protein modifying enzyme 

(11.9%), and transporter proteins (10.5%). Immunity related proteins (figure 7b) were only a 

small fraction (n=7, 2.5%), with the immunoglobulin receptor superfamily (4 out of 7) as the 

dominant class. The most heterogeneous results however were generated by the pathway 

analysis (suppl. figure 2) where the most relevant pathways were the integrin signalling 

pathway (5.6 %), T cell activation (2.8 %) and B cell activation (1.4 %). 

 

(A) Protein Classes (B) Immunity Protein Classes 

 

 

Figure 7: Gene ontology analyses of the PRCR-unique genes. (A) Hits for protein class (n=285). (B) Hits for the 
defence/immunity protein class (n=7). Colours indicate identified categories shown in the legenda’s, bar chart, 
and pie chart classification. 

 
 
Lastly, we analysed whether these PRCR-genes could separate PRCR from SDPD patients 

based on the underlying tumoral gene expression. Suppl. figure 3 shows a heatmap of these 

mutated genes that were PRCR-unique and also measured in the RNA sequencing dataset. As 

expected, the patients do not cluster according to their response groups (see the top bars in 
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the heat map). Moreover, there is also a not clear pattern emerging from this heat map. If we 

repeat the same by using only the top 50 (highest median expressed) PRCR-unique genes 

(suppl. figure 4), a separate cluster of four genes that were relatively high in expression in all 

patients emerged (thus not only in PRCR group): PGK1, HNRNPC, CSDE1 and RHOA.  

 

All four genes have previously been identified to have associations with melanoma i.e., 

namely (1) CSDE1 was found to be a critical modulator of melanoma metastasis while it was 

overexpressed in melanoma tumours and promoted invasion and metastasis (Wurth et al., 

2016), (2) HNRNPC exhibited overexpression in melanoma cells (Mulnix et al, 2014), (3) RHOA 

overexpression was associated with thinner tumours, higher grade of tumour-infiltrating 

lymphocytes and lack of disease recurrence: a suppressive role in skin melanoma 

(Kaczorowski et al.,2019), (4) PGK1 expression was highest and upregulated in metastatic cells 

compared with melanocytes (Janik et al., 2018).  

 

Additionally, these genes have previously been identified with cancer types besides 

melanoma (e.g., Hu et al., 2017; Liu et al., 2020; Wu et al., 2018; Ottolini et al., 2020), 

establishing that an oncogenic role has thus been linked to the (high) expression of these 

genes. Our results show that mutations in these genes were PRCR unique, supporting their 

role as potential targets to promote an anti-tumour immune response.  

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/metastatic-melanoma
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/melanocyte
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Characterizing genes unique for negative response: SDPD unique 

For the completeness, we extended our analysis from the previous section. We show the 

results for the same five queries however now for the SDPD-unique genes. 

 

(A) Molecular Functions (B) Cellular Components 
  

  
(C) Biological Processes (D) Immune System Processes 

  

Figure 8: Gene ontology analyses of the SDPD-unique genes. (A) Hits for molecular function (n=880). (B) Hits for 
cellular component (n=1260). (C) Hits for biological process (n=2043).(D) Hits for immune system processes 
(n=48). Colours indicate identified categories shown in the legenda’s, bar chart, and pie chart classification. 
 
 

For biological processes (figure 8), protein classes (figure 9), and pathways (Suppl. figure 5) 

mainly similar categories to PRCR-unique genes were found. Interestingly, the immunity 

proteins for the SDPD-unique genes (n=13) were classified to only two classes: 

immunoglobulin receptor superfamily (76.9%) and major histocompatibility complex protein 
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(23.1%). Suppl. table 9 and 10 show the SDPD-unique genes in the immunity processes and 

SDPD immunity protein classes, respectively.   

 

(A) Protein Classes (B) Immunity Protein Classes 

 

 

Figure 9: Gene ontology analyses of the PRCR-unique genes. (A) Hits found for protein class (n=698). (B) Hits found 
for the defence/immunity protein class (n=13). Colours indicate identified categories shown in the legenda’s, bar 
chart, and pie chart classification. 

 

Although this heat map of the top 50 highly expressed SDPD-unique genes did also not show 

a clear pattern, it distanced a cluster with three highly expressed genes for all patients (suppl. 

figure 6). It contained two immune-system-related, and a ribosomal protein: HLA-A, HLA-B, 

and RPL4, respectively. Another important gene was TYRP1 which showed greatest variation 

in terms of gene expression and divided the patient hierarchies into two.  

 

Moreover, also for these genes a link with melanoma has been reported i.e., namely (1) RPL4 

is from a series of ribosomal proteins that are overexpressed in the melanoma exosomes 

(Mathivanan, S. and Simpson, 2009), (2) HLA-B  (antigens) expression by metastatic 

melanoma cell lines and melanocytes were variable, while HLA-A (antigens) were consistently 

expressed in both cell types (Marincola et al., 1994), (3) TYRP1 expression in melanoma skin 

metastases was found to correlate with both distant metastasis-free survival, overall survival 

and with Breslow thickness (Journe et al., 2011). Except for TYRP1, the other three genes were 

reported for non-melanoma cancer types as well (Kim et al., 2021; Menon et al., 2002).  
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In short, our findings agree with these studies in the sense that RPL4 showed high expression 

stability, down-regulation of HLA-A can possibly benefit long-term survival (see next section), 

and that TYRP1 indeed might emerge as a marker for metastases of (thin) melanomas 

considering it separated our patients in two groups. Thus, again oncologic roles, including for 

melanoma, have been found for our top expressed response-uniquely mutated genes (SDPD 

in this case). 
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Tumour expression landscape 

To examine the gene expression landscape, we computed the heatmap for the complete RNA-

sequencing dataset and investigated the top expressed genes (top 50) (figure 10). In total 6 

mutated genes were present in this top selection. Three of these were SDPD-unique and 

included HLA-A, HLA-B and RPL4. The three other genes were response-intersecting genes 

and included HSP90AA1, PABPC1 and FN1. No PRCR-unique genes were present in this top 

gene criteria. In addition, HLA-A and HLA-B were the only genes identified with somatic 

mutations that clustered together. Interestingly, from the classical HLA I loci (HLA-A,-B,-C),  

 

 

Figure 10: Clustered heatmap of the top 50 highest median expressed genes in the entire RNA-sequencing dataset 
(n=18194). Values were centred and scaled in the column direction. Both axes show the hierarchical clustering. 
Cohort, best overall response (BOR) and response group (PRCR or SDPD) are indicated in the top axis for each 
patient. Red to blue colour scale indicates the gene expression values. 
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only HLA-C was not found among these top expressed genes. At the same time, three genes 

were clearly separated: eEF1A1 (eukaryotic elongation factor 1A1), PMEL (Premelanosome 

Protein), and FN1 (Fibronectin 1). Gene eEF1A1 was highly expressed in all patients and had 

the highest median expression, while PMEL and FN1 showed the greatest variation in up- and 

down-regulation.  

 

All three have been associated with melanoma. Overexpression of eEF1A1 occurs in 

melanomas and tumours of the pancreas, breast, lung, prostate, and colon, and therefore 

supports importance of eEF1A1 in tumorigenesis (Johnsson et al., 2000; Grant et al., 1992; 

Zhang et al., 1997;Xie et al., 2002; Mohler et al., 2002; de Wit et al., 2002) because of its 

possibly anti-apoptotic properties in the context of p53-family signalling (Blanch et al., 2013). 

In the case of PMEL, expression has been found to be significantly higher in both skin 

cutaneous melanoma (SKCM) and SKCM-metastasis when compared with other cancers 

(Zhang et al., 2021). More specifically, in SKCM, high PMEL expression associated with poor 

overall survival, and in both SKCM and SKCM-metastasis patients, PMEL expression even 

negatively correlated with the infiltration cells of cytotoxic (CD8) T cells, macrophages, and 

neutrophils. Furthermore, for FN1, small downregulation of FN1 suppressed migration, 

invasion, adhesion, proliferation capabilities and induced apoptosis of melanoma cells (Li et 

al., 2019).  

 

Next, to understand how top expressed genes (from figure 10) differ between 

immunotherapy outcome, we divided the RNA sequencing dataset into two and analysed the 

top 50 expressed genes per outcome. We check which genes overlap and which do not. As a 

result, the  groups differed by 6 genes. In the case of the PRCR group (Suppl. figure 7) the 

different genes included COL3A1, HLA-DRA, TMSB4X, RPSA, A2M, LDHA, whilst in the case of 

the SDPD group (Suppl. figure 8) the different genes were SDCBP, HLA-A, CD63, ANXA5, RPL7A 

and GNAS. Strikingly, all 12 genes have been associated with melanoma features (Su et al., 

2020; Makowiecka et al., 2019; van Tuyn et al., 2017; Simon et al., 1996; Brand et al., 2016; 

Das et al., 2016; Lupia et al., 2014; Jang & Lee, 2003; Arroyo-Berdugo et al., 2014; Larribère & 

Utikal., 2020; Marincola et al., 1994; Chen et al., 2019). In the rest of this paper, we will call 

the set of COL3A1, HLA-DRA, TMSB4X, RPSA, A2M, LDHA genes as the “response-expression-
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signature (R S)” and the set of SDCBP, HLA-A, CD63, ANXA5, RPL7A and GNAS genes as “non-

response-signature ( R S)”.  

 

Finally, three HLAs were important in the top 50 differentially expressed genes from these 

two response groups: HLA-A, -DRA, and -B. These three showed different behaviours when 

we compared them. First, the expression of HLA-A did not rank among the top 50 expressed 

genes for the PRCR group. Support for this behaviour comes from Menon et al. (2002), who 

reported that down-regulation of HLA-A was their only prognostic factor correlated with a 

lower tumour stage and longer disease-free survival in (colorectal) cancer patients, and in our 

case, seemingly important to invoke an anti-melanoma immune response. The second 

antigen, HLA-DRA, ranked among the top genes of the PRCR group and at the same time was 

missing in the top of the SDPD, which suggests that presentation of peptide antigens directly 

to helper (CD4) T cells was more important for the responders to immunotherapy. Finally, 

because both the PRCR and SDPD group included the class II HLA-B in their top gene sets, the 

role of antigenic presentation to CD8 T cells and formation of ligands for receptors on NK cells 

was ambiguous, in line with Marincola et al. (1994) who reported varying expression of HLA-

B by melanoma cell lines (cancer) and melanocytes (non-cancer). 
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Tumour antigenic landscape: HLA and CD antigens 

To investigate the complete HLA transcriptional landscape we filtered the RNAseq dataset 

solely for HLA expressions (figure 11). Interestingly, the classical HLA class I genes still did not 

cluster together: HLA-C separated from both HLA-A and HLA-B, based on its lower expression. 

Instead, the cluster exhibiting the highest expression consisted of HLA-A, -B, and -E (class I 

HLAs) together with HLA-DRA (class II).  

 

There is evidence that HLA-E favours both tumour escape and tumour immune surveillance 

(Monaco et al., 2011). To find out if this is the case for our patients, we separated the HLA 

heatmaps per response group. This way we enable HLA clustering per response, so that HLA 

patterns can differ between the PRCR group (suppl. figure 9) and SDPD group (suppl. figure 

10). Yet, both response groups did not show different HLA-E clustering. In both cases HLA-E 

remained highly expressed and still clustered with HLA-A,-B,-DRA, similar to the combined 

heatmap of Figure 11, and thus arguably shows dual favourality of HLA-E for immune escape 

and immune response. The separated HLA heatmaps also showed unchanging HLA-C 

grouping. Even after separation, it remained relatively lower expressed and separated from  

 

 
Figure 11: Clustered heatmap of all HLA genes (n=25) in the RNA-sequencing dataset. Values were centred and 
scaled in the column direction. Both axes show the hierarchical clustering. Cohort, best overall response (BOR) 
and response group (PRCR or SDPD) are indicated in the top axis for each patient. Red to blue colour scale 
indicates the gene expression values.  

  

https://onlinelibrary.wiley.com/doi/full/10.1111/pcmr.12164?casa_token=qDm-I2C0IwYAAAAA%3AUULpvLcGSonQaenmlgCf8cVv6Z7IqaAPDqHpz-LXrgV3LkDkIBY5C8rZRD1D7uQVUVZlET6I7ZBd6rQ#pcmr12164-bib-0027
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the other highly polymorphic HLA genes (HLA-A,-B, -DRA) where only HLA-E is considered 

oligomorphic (Parham, 2014). 

 

As expected, heatmaps based on alternative combinations of genes did not improve 

clustering of response groups. This was true for heatmaps based on mutated HLA genes in 

the RNA-sequencing dataset (n=8; suppl. figure  11), heatmaps based on human CD antigen 

genes (n=279; suppl. figure 12), and mutated human CD antigen genes in the RNA-sequencing 

dataset (n=126; suppl. figure 13), where we also analysed the top 50 genes. These maps did 

however reveal highly expressed CD antigens (e.g., CD74, CD59, ITGB1, CD63 and CD44; figure 

11 and suppl. figure 12) and mutated genes exhibiting high expression (e.g., CD44; suppl. 

figure 13). Indicating that aside from (mutated) HLA’s that also (mutated) CD antigenic genes 

achieved high expression. 

 

We next analysed the amount of mutations found for HLA, human CD antigen, and PD-1 

related genes (suppl. Table 13, 14 and 15, respectively). All HLA mutations occurred on 

chromosome 6 whereas the mutations of CD antigen genes occurred on a variety of 

chromosomes. For HLA-genes the total mutations were highest for class II HLA genes (HLA-

DR and DQ). In the case of CD antigens, the CD163 and CD163L, which are potential 

inflammation biomarkers and therapeutic targets (Etzerodt and Moestrup, 2013), mutated 

the most (high CD163 expression in macrophages is a characteristic of tissues responding to 

inflammation). Interestingly, PD-L1 (CD274) was not found to have mutated. Even other PD-

1 related genes (PD-L2, PD-1, CD96 and CTLA4) mutated in maximum 2 patients, which could 

imply that these genes are more robust to mutations.  

 

Finally, to understand how HLA relates with other antigens found on the cell surface of 

leukocytes, we analysed the top 50 genes in a heatmap of HLAs combined with CD antigens 

(n=294; figure 12). Like before, we focus again on the two clusters with classical class I HLA 

genes. While the cluster with HLA-C  did not include CD antigens, the highest expressed cluster 

(HLA-A,-B,-E,-DRA) associated with CD74. We separated this heatmap to enable different 

clustering patterns for the PRCR group (suppl. figure 14) and SDPD group (suppl. figure 15) 

again. Notably, the results remained the same: HLA-C did not group with antigens and CD74 

is still grouped with the high expressed HLA genes. Note that this latter behaviour can also be 
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seen in figure 10 of the previous section, where we evaluated top 50 genes in the entire RNA-

sequencing dataset, and CD74 clustered with HLA-A and HLA-B already. Strikingly, evidence 

from literature investigating CD74 as a potential therapeutic target in the treatment of 

melanoma patients supports this response duality (Imaoka et al., 2019; Ekmekcioglu et al., 

2016; Ogata et al., 2020). Thus, as for HLE-E in the previous paragraph, response separation 

showed similar CD74 clustering in both response groups, and therefore also imply dual 

favouriting for immune escape and immune response linked to this leukocyte antigen.  

 

 
 
Figure 12: Clustered heatmap of the top 50 highest median expressed genes for the RNA-sequencing dataset only 
containing HLA (n=25) and human CD antigen genes (n=279). Values were centred and scaled in the column 
direction. Both axes show the hierarchical clustering. Cohort, best overall response (BOR) and response group 
(PRCR or SDPD) are indicated in the top axis for each patient. Red to blue colour scale indicates the gene 
expression values. 
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Linking DEGs and mutational expression with therapy outcome  

It is clear that a single factor is not enough to classify the patients into one group or the other. 

Instead of focussing on genes individually, we tested for response difference by comparing 

the expression of genes in groups. To do so, we calculate the median expression for a gene,  

 

 

Figure 13: Comparison of two response groups using the median gene expressions. (A) Comparison for expression 
of all genes (n=18194). Alternative hypothesis tested for PRCR > SDPD (p<2.2e-16). B) Comparison for expression 
of all HLA genes (n=25). Alternative hypothesis tested for PRCR > SDPD (p=0.033). C) Comparison for expression 
of all human CD antigen genes (n=279). Alternative hypothesis tested for PRCR > SDPD (p=7.35e-16). (D) 
Comparison for expression of HLA class I genes (n=3: HLA-A, HLA-B and HLA-C; Parham, 2014). Alternative 
hypothesis tested for both directions (not significant). (E) Comparison for expression of HLA class II genes (n=12: 
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All HLA-D genes from figure 11 except HLA-DQB2, HLA-DQA2, HLA-DPB2; Parham, 2014). Alternative hypothesis 
tested for PRCR > SDPD (p=2.44e-4). (F) Comparison for expression of PD-1 related (co-expressed) genes (n=5: 
CD96, CTLA4, PD-L1 ,PDCD1 (PD-1), PD-L2). Alternative hypothesis tested for PRCR > SDPD (p=0.032). (G) 
Comparison for RES genes (COL3A1, HLA-DRA, TMSB4X, RPSA, A2M, LDHA). Alternative hypothesis tested for 
PRCR > SDPD (p=0.016). (H) Comparison for NRES genes (SDCBP, HLA-A, CD63, ANXA5, RPL7A, GNAS). Alternative 
hypothesis tested for PRCR < SDPD (p=0.032). Red indicates genes from patients who responded to treatment. 
Blue indicates  genes from patients who did not respond. All comparisons performed were paired two-sample 
tests (Wilcoxon). NS: p>0.05, * p < 0.05, ** p < 0.01, and *** p < 0.001. 

 

from all patients, per response, and then compare the expression of these genes in two 

groups. Afterwards, statistical significance is calculated for various sets of genes by means of 

two-sample tests (figure 13).  

 

From all tests, the only group of genes that did not prove to result in response differentiation, 

was the expressional pattern of the class I HLA-genes. This suggests that for differentiating 

between response at the gene level, antigen presentation to CD8 T cells and formation of NK-

ligands for receptors was not significant (figure 13d), which in turn confirms our results from 

previous section that presentation of peptide antigens directly to CD4 T cells was more 

important for the responders to immunotherapy (figure 13e). Other groups of genes were all 

significant for distinguishing an eventual immune response; the DEGs, HLAs, CD antigens, 

class II HLAs, ICBs (PD-1 related), and RES genes (see tumour mutational landscape 3 sections 

earlier). Moreover, all these genes were significantly higher in PRCR group than SDPD, except 

for NRES genes. Here, SDPD expression was greater than PRCR instead (figure 13h). Overall, 

expressional values thus have mattered for segregating a responsive outcome on the 

genotypical level. 

 

Additionally, we tested the expression values of mutated genes. Earlier we showed results 

that validated the average number of mutations per patient per gene as a good predicter for 

the outcome of therapy (figure 5). Still, it is clearly only one of the factors shaping the 

outcome as there are several patients with high mutational loads not responding to the 

immunotherapy as well as patients with low mutational load responding very well. Therefore, 

we hypothesized that a combination of the gene expression with the amount of mutations 

might be an even better predictor. To this end, we linked mutated genes with their expression 

values (figure 14). Response-intersecting, PRCR-unique, and SDPD-unique genes were all 

significantly different for therapy outcome at genotypical level, with the intersecting genes 
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having the highest p-value (p<0.001, figure 14a-c). The same was true for immunity related 

mutations identified by the GO characterizations earlier (figure 14d-f, see suppl. table 9-12 

for genes per category). Furthermore, for every test shown, the gene expression of the PRCR 

group was relatively greater than for the SDPD group, implying that mutated genes (likely T 

cell targets) generally have been higher expressed in responders.  

 

 

 
Figure 14: Comparison of two response groups using the gene expressions of the mutated genes. (A) Comparison 
for expression of response-intersecting genes (n=3231). Alternative hypothesis tested for PRCR > SDPD (p<2.2e-
16). (B) Comparison for expression of SDPD-response-unique genes (SDPD unique=943). Alternative hypothesis 
tested for PRCR > SDPD (p=0.002). (C) Comparison for expression of PRCR-response-unique genes (PRCR 
unique=334). Alternative hypothesis tested for PRCR > SDPD (p=0.001). (D) Comparison for expression of 
response-intersecting genes related to immunity in GO search (n=147). Alternative hypothesis tested for PRCR > 
SDPD (p=4.974e-15). (E) Comparison for expression of SDPD-response-unique genes related to immunity in GO 
search (n=39). Alternative hypothesis tested for PRCR > SDPD (non-p=1.511e-4). (F) Comparison for expression of 
PRCR-response-unique genes related to immunity in GO search (n=20). Alternative hypothesis tested for PRCR > 
SDPD (p=0.013). See suppl. table 9, 10, 11 and 12 for a list of the G.O. related immunity genes used in the tests. 
All comparisons performed were paired two-sample tests (Wilcoxon). Red indicates genes from patients who 
responded to treatment. Blue indicates  genes from patients who did not respond. * p < 0.05, ** p < 0.01, and 
*** p < 0.001. 
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Surprisingly, when we do not compare the same set of genes between each response, but all 

PRCR unique genes against all SDPD unique genes instead, the expression of response unique 

genes in SDPD group tests significantly higher than PRCR (Suppl. figure 16). Suggesting that 

even though there are more T cell targets in the PRCR group, these targets are probably 

presented in lower copy numbers on the cell surface than in the SDPD group. However, this 

is likely a bias because there are less PRCR unique genes (943 SDPD unique versus 334 PRCR 

unique genes).  
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Linking DEGS and mutational expression at the patient level 

To confirm if the underlying tumour mutational expression pattern matter for discriminating 

response at the patient level (responsive phenotype), we calculated the average gene 

expression per patient, and then compare the two response groups. We tested the same set 

of genes from the previous section to assess whether the genes could produce significant 

results for response differentiation (figure 15). Note that in de previous sections we focussed  

 

 

 

 
Figure 15: Comparison of two response groups using the average gene expression per patient (n=44). (A) 
Comparison for average expression of all genes (n=18197) per patient. Alternative hypothesis tested for both 
directions (not significant). (B) Comparison for average expression of all HLA genes (n=25) per patient. Alternative 
hypothesis tested for both directions (not significant). (C) Comparison for average expression of human CD 
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antigen genes (n=279) per patient. Alternative hypothesis tested for both directions (not significant). (D) 
Comparison for average expression of HLA class I genes (n=3: HLA-A, HLA-B and HLA-C; Parham, 2014) per patient. 
Alternative hypothesis tested for both directions (not significant). (E) Comparison for average expression of HLA 
class II genes (n=12: All HLA-D genes from figure 11 except HLA-DQB2, HLA-DQA2, HLA-DPB2; Parham, 2014) per 
patient. Alternative hypothesis tested for both directions (not significant). (F) Comparison for average expression 
of PD-1 related (co-expressed) genes (n=5: CD96, CTLA4, PD-L1 ,PDCD1 (PD-1), PD-L2). Alternative hypothesis 
tested for both directions (not significant). (G) Comparison for RES genes (COL3A1, HLA-DRA, TMSB4X, RPSA, A2M, 
LDHA). Alternative hypothesis tested for PRCR > SDPD (p=0.048). (H) Comparison for NRES genes (SDCBP, HLA-A, 
CD63, ANXA5, RPL7A, GNAS). Alternative hypothesis tested for PRCR < SDPD (not significant). All comparisons 
performed were non-paired two sample tests (Wilcoxon). Red indicates genes from patients who responded to 
treatment. Blue indicates  genes from patients who did not respond. NS: p>0.05 and * p < 0.05. 

 

median and not the mean expression values because the former described top expressed 

genes better. From this point on we switch to mean, because outlier values within an 

individual do not affect calculations for other patients anymore (as much).  

 

Strikingly, the only set of genes that proved to be useful for response prediction were the RES 

genes: COL3A1, HLA-DRA, TMSB4X, RPSA, A2M, LDHA (figure 15g). The transcriptome, HLAs, 

CD antigens, both HLA classes, and PD-1 related (ICBs) genes all proved not to be sufficient 

on the patient level. We next extended this analysis to the mutated genes (figure 16). The 

results show that response-intersecting, SDPD-unique, PRCR-unique, as well as their 

immunity genes were equally not adequate enough to describe a difference in responsive 

versus non-responsive patients  

 
To assess if personalized vaccines for melanoma-cancer immunotherapy would improve our 

findings we computed the personalized average mutational expression of a patient. That is, 

the expression of a patient is now averaged only over genes that actually mutate in the 

individual itself, and not throughout the complete data set. Note that the neoantigens being 

generated in each patient were correlated to the tumoral mutation load by a ratio of nearly 

1:1 (in the first section). Therefore, by calculating the average expression of mutated genes 

per patient, and then comparing two groups, what we now test is the average expression of 

the neoantigens being generated in each patient (figure 17). The results show that not the 

response-intersecting genes (figure 17a), but the response- unique genes (figure 17b) are  
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Figure 16: Comparison of two response groups using the average mutational gene expression per patient (n=44). 
(A) Comparison for average expression of all response-intersecting genes (n=4065) per patient. Alternative 
hypothesis tested for both directions (p=0.376). (B) Comparison for average expression of all SDPD-response-
unique genes (n=1106) per patient. Alternative hypothesis tested for both directions (p=0.484). (C) Comparison 
for average expression of all PRCR-response-unique genes (n=147) per patient. Alternative hypothesis tested for 
both directions (p=0.184). (D) Comparison for average expression of response-intersecting genes related to 
immunity in GO search (n=147) per patient. Alternative hypothesis tested for both directions (p=0.184). (E) 
Comparison for average expression of SDPD-response-unique genes related to immunity in GO search (n=39). 
Alternative hypothesis tested for both directions (p=0.355). (F) Comparison for average expression of SDPD-
response-unique genes related to immunity in GO search (n=20). Alternative hypothesis tested for both directions 
(p=0.44). See suppl. table 9, 10, 11 and 12 for a list of the G.O. related immunity genes used in the tests. All 
comparisons performed were non-paired two-sample test (Wilcoxon). Red indicates genes from patients who 
responded to treatment. Blue indicates genes from patients who did not respond. NS: p>0.05. 
 

important for differentiation response at the (personalized) patient level. Importantly, our 

results here point out that within the mutational landscape of a patient, only a selection of 

the mutational expressions are insightful for predicting response, here characterized as the 

individual’s exome excluding our response-intersecting genes. In short, our findings expose 

that only a part of the underlying gene expression from non-synonymous mutations (exomic 

landscape) of a patient should appeal to personalized vaccines as suggested by ahin and 

Türeci, 2018.  
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Figure 17: Comparison of two response groups using the average gene expression of mutated genes within one 
patient. (A) Comparison for average expression of personal response-intersecting genes per patient (n=44). 
Alternative hypothesis tested for both directions (not significant). (B) Comparison for average expression of 
personal response-unique per patient (n=42). Alternative hypothesis tested for PRCR > SDPD (p=0.016). Both 
comparisons performed were non-paired two-sample test (Wilcoxon). Red indicates genes from patients who 
responded to treatment. Blue indicates  genes from patients who did not respond. NS: p>0.05 and * p < 0.05. 
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Discussion  

Here we present our computational analysis with a focus on identifying biomarkers to stratify 

the outcome to immunotherapy in melanoma patients. Throughout literature there is 

numerous support for TMB to be a good measure for tumour immunogenicity assessment, 

and subsequently response differentiation in ICB. Our findings confirm this to be the case for 

responders in this study as well. Specifically, after we analysed the exomic profile of the non-

synonymous mutations we show that the genes of patients with a response to the therapy 

have on average more mutations (SNVs) than patients without a response (figure 5). For these 

patients with a responsive outcome we can argue in favour of a higher mutational load that 

generates more T cell targets and consequently stimulates anti-tumour T cell responses, 

which in turn contributes to the success of the immunotherapies. Non-responding patients 

however also achieved high TMB and neo-antigenic lead, comparable with high levels in 

responders. For this reason, we set out to search for other biomarkers than the TMB. 

 

By characterizing the genes that mutate only in one response group (figure 4, suppl. figure 1), 

we confirm that the underlying gene expression of mutations contains high expressed genes 

(suppl. figure 3, 4 and 6), which throughout literature also find support for being melanoma 

related. Still, even though characterization of the response-unique genes reveal mutations 

which are exclusive to a response group, both groups mainly related to similar processes 

according to five different GO queries (figure 6-9, suppl. figure 2 and 5).  

 

What matters most for a response to control cancer, the number of T cell targets (i.e., 

mutations) or how well these targets are expressed? On the genotypic level, both show 

importance. First, for the expressions, genes were significantly different between response, 

except for the class I HLAs  (figure 13d). Despite that the class I HLA genes did not significantly 

differ between response; all other sets of genes did, including the class II HLA genes (figure 

13e). This implies that antigenic peptide presentation directly to CD4 T cells, and not CD8, was 

more important for invoking an immune response. Second, for the mutations, all mutation 

categories tested significantly different (figure 14). The mutations of response-intersecting, 

response-unique, and the immune-related-GO mutations all were important at the gene level.  
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Since only class I HLA genes did not differentiate response, we  propose that this is the result 

of immune evasion mechanisms. The reason is as follows. During the assessment of the 

tumour antigenic landscape we noticed signs supporting both immune response evasion 

versus immune response evocation (figure 10): we separated the heatmap of HLA (and later 

with CD antigens) by the two response groups and found that HLA-E, HLA-C and CD74 exhbit 

similar cluster behaviour in both (figure 11 and 12, respectfully), even when taken apart from 

each other (suppl. figure 9, 10, 14 and 15). Interestingly, melanoma literature associated with 

these genes impose a duality for response. We here describe these scenarios for HLA-E with 

HLA-C, and afterwards for CD74. 

 

A common feature of immune escape in virus-infected cells and tumours is insensitivity of 

natural killer (NK) cells to selective loss of expression of a particular class I locus (Parham, 

2014). In short, NK cells assess the quantity of HLA-A,-B, and -C in a potential target cell by 

the amount of HLA-  at the cell’s surface and uses this a measure of ‘health’. For healthy 

target cells expressing normal levels of HLA-E, an inhibitory signal prevents the NK cell from 

attacking, and if the NK cell finds an unhealthy cell with deficient expression of HLA-E, the NK-

cell’s cytotoxic machinery is mobilized and kills the unhealthy cell (infection and malignancy 

frequently reduce the cell-surface expression of MHC molecules). In addition, the expression 

of HLA-C is at one-tenth level of HLA-A and HLA-B. Thus, a selective loss (depletion) of HLA-C 

would reduce the total amount of HLA class I only slightly (9% according to Parham, 2014).  

 

We cannot confirm HLA-C reduction upon melanoma progression for our analysis because 

our measurements are from one time point only. However, the lower expression of HLA-C, 

compared to other highly polymorphic HLAs, is suggestive (figure 11). According to literature, 

as an immune evasion phenotype, a selective loss of HLA-A,-B, and -C alleles is suggested to 

alleviate competition for β m, allowing ligand donation from relieved class I allele(s) in 

amounts sufficient to stabilize HLA-E, enhance HLA- ’s surface expression, engage the 

inhibitory NKG2A receptor, and further promote immune escape. Eventually, contributing to 

protection of tumour cells from lysis by NK cells (Monaco et al., 2011).  

 

However, some state a problem with this view of the inhibitory mechanism (Tremante et al., 

2014). What is more, there are opposing studies where high HLA-E seems to correlate with 
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good, and not poor, prognosis in melanoma (John et al., 2008, Mandruzato et al., 2006). These 

show that at the same time HLA-E is apparently a very efficient mechanism in some tumours, 

with a positive role for immune response and survival (Monaco et al., 2011). Our analysis can 

agree with both scenarios; immunotherapy patients had high HLA-E levels but no anti-tumour 

response, and immunotherapy patients had high HLA-E levels, and yet still produced an 

immune response. Hence, studies where HLA-E is seemingly widely expressed or upregulated 

in human tumours or malignant tissues, are difficult to match with opposing reports, 

describing low surface expression or down-regulation of HLA-E in melanoma (Derré et al., 

2006; Marín et al., 2003; Palmisano et al., 2005, Monaco et al., 2011; Tremante et al., 2014). 

 

This dual sided role of HLA-E has also implications for the two statements from earlier: (1) 

that NK cells are insensitive to selective loss of expression of a particular class I locus (HLA-C) 

(2) and that NK cells kill target cells with deficient expression of HLA-E. According to the 

findings from Tremante et al. (2014), compared to melanocytes, HLA-E is relatively up-

regulated in melanoma, both in tissues and on the cell surface. The study shows that 

melanocytes express very low (if any) levels of surface HLA-E whilst remain harmless from NK 

cell lysis. More, though lytic enhancements were only evident in 30% in melanoma cultures, 

and no effect was found in melanocyte cultures (0%), this so-called elective melanoma killing 

does not appear to correlate with HLA-E surface level (in the cases that had lytic effect). 

Suggesting that NK lysis works via an HLA-E-independent mechanism (Palmisano et al., 2005, 

Monaco et al., 2011; Tremante et al., 2014). Further research should be done for more 

clarification between these duplicities in results. 

 

We tried to address this issue by looking at the HLA in combination with CD antigens to include 

a broader range of leukocyte antigens (figure 12). However, CD74 in the separated heatmaps 

of the response groups also imply a dual favourality for immune escape and immune response 

(in both cases it clustered the same, only with HLA-DRA). To illustrate, a significant correlation 

has been shown between the expression levels of PD-L1 and CD74 in melanoma tissue 

samples (Imaoka et al., 2019). The expression of PD-L1 on tumour cells can contribute to 

cancer immune evasion by interacting with PD-1 on immune cells (Wu et al., 2015). Moreover, 

PD-L1 is mediated by MIF-CD74 interactions  which directly regulate its expression, implying 

that activation of the MIF-CD74 interaction plays a (critical) role in melanoma cells, and helps 

https://onlinelibrary.wiley.com/doi/full/10.1111/pcmr.12164?casa_token=qDm-I2C0IwYAAAAA%3AUULpvLcGSonQaenmlgCf8cVv6Z7IqaAPDqHpz-LXrgV3LkDkIBY5C8rZRD1D7uQVUVZlET6I7ZBd6rQ#pcmr12164-bib-0027
https://onlinelibrary.wiley.com/doi/full/10.1111/pcmr.12164?casa_token=qDm-I2C0IwYAAAAA%3AUULpvLcGSonQaenmlgCf8cVv6Z7IqaAPDqHpz-LXrgV3LkDkIBY5C8rZRD1D7uQVUVZlET6I7ZBd6rQ#pcmr12164-bib-0027
https://onlinelibrary.wiley.com/doi/full/10.1111/pcmr.12164?casa_token=qDm-I2C0IwYAAAAA%3AUULpvLcGSonQaenmlgCf8cVv6Z7IqaAPDqHpz-LXrgV3LkDkIBY5C8rZRD1D7uQVUVZlET6I7ZBd6rQ#pcmr12164-bib-0027
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(tumour cells) escape from antitumorigenic immune responses by causing immune evasion 

(Imaoka et al., 2019).  

 

Blocking this MIF-CD74 signalling is therefore supported by (1) Figueiredo et al. (2018) where 

MIF–CD74 interference on macrophage and dendritic cells, decreases expression of 

immunosuppressive factors from macrophages, and increases the capacity of dendritic cells 

to activate cytotoxic T cells. Note that dendritic and macrophage cells both express CD74, the 

main MIF receptor (Su et al., 2017). Blocking is also noted by (2) de Azevedo et al. (2020) 

where MIF-CD74 signal inhibition combined with ipilimumab, enhanced T-cell infiltration 

(increased CD8 TIL), and eventually reduces PD-L1 expression in resistant melanoma cells.   

 

However, also with these anti-tumour-invoking findings there is a dispute. One is that 

although (innate and adaptive) immunity is mobilized after MIF-CD74 (axis) inhibition, other 

pathways that can possibly contribute to restore the immunogenicity of the tumour cannot 

be ruled out. Even more opposing are inflammatory marker tests that report prognostic value 

for high CD74 (as a useful tumour cell protein marker). Namely, (1) in melanoma tumour cells 

from stage III melanoma patients, higher CD74 percentage or intensity of protein expression 

associated with longer survival (Ekmekcioglu et al., 2016), (2) in stage IV melanoma patients, 

only high expression (above median) of CD74 expression associated with good survival and 

better prognosis prediction, when compared with low (below median) expression (Ogata et 

al., 2020). For these oppositions, further research is also necessary. 

 

So what matters for an immune response? Eventually, two approaches generated a result 

that was significant for response stratification on both the genotypical as well as patient level. 

The first is the set of six genes (RES) which included COL3A1, HLA-DRA, TMSB4X, RPSA, A2M, 

LDHA (figure 15g). All have been reported about in other melanoma-related studies (Su et al., 

2020; van Tuyn et al., 2017, Makowiecka et al., 2019; Zhou et al., 2014; Simon et al., 1996; 

Brand et al., 2016). The second is the unique mutations in a patient (figure 17b). As a static 

set of genes, like above, the somatic mutations do not differentiate response at gene and 

patient level simultaneously. However, by only selecting the average expression of response-

unique mutations that actually occur in a patient, the response division tests significant. Thus, 
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response prediction based on mutations, should be done without the response-intersecting 

part that we identified.  

 

Additional improvements can be made by performing our response-unique-revealing data 

transformation on other and larger cancer-datasets. Likewise, gene-network and single cell 

sequencing analysis might provide more understanding of the underlying gene expression 

dynamics, related to response-unique mutated genes. A limiting factor in this study is the 

sample size i.e.., the total amount of patients (figure 1). Fortunately, despite the limited size, 

we find nearly consistent results as large-scale studies with over  00’s of patient. For example, 

compared to TCGA studies by Kang et. al (2020) and Zhang et. al (2021) whom looked at 467 

and 472 melanoma patients, respectively, we find nearly the same top frequently mutated 

melanoma genes (8 out of their top 10, with the other 2 ranked lower here) and the same top 

type of variant (missense) (table 1, suppl. table 1-4). More, we extend these findings by 

assessing the chromosomes and splitting the results for therapy outcome (suppl. table 3). 

Satisfying is that we identify highly expressed genes likely related to melanoma and 

sometimes even broader oncological relevance (see references in sections of PRCR- and 

SDPD-unique characterizations and heatmaps). 

  

Ultimately, because the neo-antigens and tumour mutations were nearly linearly related 

(figure 2a), we extrapolate the results from the expressions to the neo-antigens, and propose 

that the average expression of the neo-antigens being generated by the patient’s unique part 

of mutations, is a significant  MB extension to describe our patients’ immune response. In 

support of personalized inoculations (Sahin and Türeci, 2018). We also suggest that further 

research is needed to elaborate on the combined eff ect of the RES genes COL3A1, HLA-DRA, 

TMSB4X, RPSA, A2M, LDHA.  
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Conclusion 

To summarize, the data presented here demonstrate that the TMB is a good marker for 

immunotherapeutic efficacy. Non-responding patients to immunotherapy sometimes show 

similar levels of neoantigens and tumour mutational load, whereas responding patients 

likewise sometimes exhibit low mutational load, complicating interpretation of the marker. 

We quantitated the neo-antigens, the SNVs, tumour gene expressions, and tried to 

understand if a single factor can explain this problem. Instead, a set of six genes, and the 

response-unique part of a patient’s mutations, help to distinguish response prediction. Our 

results are shown for responding, non-responding, Nivolumab-naïve, and Nivolumab-

progressed patients. Hence, our findings also relate to more resistance to immune checkpoint 

blockade. Finally, aside from the average expression of neo-antigens (possible T cell targets), 

we demonstrate that a part of the underlying tumour expression pattern facilitates an 

outcome of the immunotherapies, and subsequently, should be considered to predict the 

response to immunotherapy. 
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Supplementary materials: Appendix 
 
 
 

 
Suppl. Figure 1: Mutation histograms with the distribution counts shown for the response itself (instead of only 
the indication whether a gene is involved in multiple responses e.g., figure 3). Results are shown for 5629 genes. 
Genes have mutated in at least 2 patients. Purple indicates that a response-unique-gene is related to the SDPD 
therapy outcome (SDPD-unique). Green indicates that a response-unique gene is related to the PRCR therapy 
outcome (PRCR-unique). Blue indicates that a gene is related to both therapy outcomes but measured in SDPD 
patients only (SDPD-intersect). Red indicates that a gene is related to both therapy outcomes but measured in 
PRCR patients only (PRCR-intersect).  
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Suppl. Figure  2: Gene ontology analysis of the PRCR unique genes for pathways. Functional classification is viewed 
by bar chart and pie chart. Colours indicate identified categories. Molecular function analysis had a total of 144 
pathway hits. 
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Suppl. Figure  3: Clustered heatmap of all PRCR unique mutated genes. A total of 334 of the 458 PRCR-unique 
genes were also present in the RNA-sequencing data set. Both axes show hierarchical clustering. The colours 
inside the matrix show the gene expression of which values were centred and scaled in the column direction. 
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Suppl. Figure  4: Clustered heatmap of the top 50 highest median expressed PRCR unique genes that were present 
in the RNA-sequencing dataset. Values were centred and scaled in the column direction. Both axes show the 
hierarchical clustering. Cohort, best overall response (BOR) and response group (PRCR or SDPD) are indicated in 
the top axis for each patient. Red to blue colour scale indicates the gene expression values. 
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Suppl. Figure  5: Gene ontology analysis of the SDPD unique genes for pathways. Functional classification is viewed 
by bar chart and pie chart. Colours indicate identified categories. Molecular function analysis had a total of 429 
pathway hits. 
 
 
 
 
 
 
 

 
Suppl. Figure  6: Clustered heatmap of the top 50 highest median expressed SDPD unique genes that were present 
in the RNA-sequencing dataset. Values were centred and scaled in the column direction. Both axes show the 
hierarchical clustering. Cohort, best overall response (BOR) and response group (PRCR or SDPD) are indicated in 
the top axis for each patient. Red to blue colour scale indicates the gene expression values. 
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Suppl. Figure  7: Clustered heatmap of the top 50 highest median expressed genes in the PRCR group. Values were 
centred and scaled in the column direction. Both axes show the hierarchical clustering. Cohort, best overall 
response (BOR) and response group (PRCR) are indicated in the top axis for each patient. Red to blue colour scale 
indicates the gene expression values. 
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Suppl. Figure  8: Clustered heatmap of the top 50 highest median expressed genes in the SDPD group. Values 
were centred and scaled in the column direction. Both axes show the hierarchical clustering. Cohort, best overall 
response (BOR) and response group (SDPD) are indicated in the top axis for each patient. Red to blue colour scale 
indicates the gene expression values. 
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Suppl. Figure  9: Clustered heatmap of the HLA-genes (n=25)in the PRCR group. Values were centred and scaled 
in the column direction. Both axes show the hierarchical clustering. Cohort, best overall response (BOR) and 
response group (SDPD) are indicated in the top axis for each patient. Red to blue colour scale indicates the gene 
expression values. 
 
 

Suppl. Figure  10: Clustered heatmap of the HLA-genes (n=25)in the SDPD group. Values were centred and scaled 
in the column direction. Both axes show the hierarchical clustering. Cohort, best overall response (BOR) and 
response group (SDPD) are indicated in the top axis for each patient. Red to blue colour scale indicates the gene 
expression values. 
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Suppl. Figure  11: Clustered heatmap of HLA genes in the RNA-sequencing dataset with non-synonymous 
mutations in at least 2 patients (n=8). Values were centred and scaled in the column direction. Cohort, best overall 
response (BOR) and response group (PRCR or SDPD) are indicated in the top axis for each patient. Both axes show 
the hierarchical clustering. Red to blue colour scale indicates the gene expression values. 
 

 
Suppl. Figure  12: Clustered heatmap of the top 50 highest median expressed human CD antigen genes in the 
RNA-sequencing dataset (n=279). Values were centred and scaled in the column direction. Both axes show the 
hierarchical clustering. Cohort, best overall response (BOR) and response group (PRCR or SDPD) are indicated in 
the top axis for each patient. Red to blue colour scale indicates the gene expression values. 



64 
 

 

 
Suppl. Figure  13: Clustered heatmap of human CD antigen genes in the RNA-sequencing dataset with non-
synonymous mutations in at least 2 patients (n=126). The top 50 highest median expressed genes are shown. 
Values were centred and scaled in the column direction. Cohort, best overall response (BOR) and response group 
(PRCR or SDPD) are indicated in the top axis for each patient. Both axes show the hierarchical clustering. Red to 
blue colour scale indicates the gene expression values. 
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Suppl. Figure  14: Clustered heatmap of the top 50 highest median expressed genes in the PRCR group for the 
RNA-sequencing dataset only containing HLA (n=25) and human CD antigen genes (n=279). Values were centred 
and scaled in the column direction. Both axes show the hierarchical clustering. Cohort, best overall response (BOR) 
and response group (PRCR) are indicated in the top axis for each patient. Red to blue colour scale indicates the 
gene expression values. 
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Suppl. Figure  15: Clustered heatmap of the top 50 highest median expressed genes in the SDPD group for the 
RNA-sequencing dataset only containing HLA (n=25) and human CD antigen genes (n=279). Values were centred 
and scaled in the column direction. Both axes show the hierarchical clustering. Cohort, best overall response (BOR) 
and response group (SDPD) are indicated in the top axis for each patient. Red to blue colour scale indicates the 
gene expression values. 
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Unique SDPD and PRCR response genes 

         

Suppl. Figure  16: Comparison of two response groups using the expression of all the response-unique genes 
(n=1277: PRCR unique=334; SDPD unique=943). Alternative hypothesis tested for PRCR > SDPD (non-paired two-
sample test, p=0.014). 
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Suppl. Table 1: mutations characterized by SNV nucleotide change. 

SNV type Total 
mutations 

Total 
Patients 

Average 
mutations 

G>A 12266 66 185.85 

C>T 12313 65 189.43 

A>G 615 65 9.46 

G>T 527 63 8.37 

G>C 322 60 5.37 

C>G 308 58 5.31 

T>C 466 57 8.18 

A>T 438 56 7.82 

C>A 414 56 7.39 

T>G 292 55 5.31 

T>A 360 53 6.79 

A>C 268 53 5.06 

 

 

Suppl. Table 2: Mutations characterized by SNV nucleotide change and further divided per response. The 
average  mutations is calculated only for where it had mutated (thus not complete response group). 

Response SNV type Total 
mutations 

Total 
Patients 

Average 
mutations 

PRCR C>T 6069 14 433.50 

PRCR G>A 5407 15 360.47 

SDPD G>A 6859 51 134.49 

SDPD C>T 6244 51 122.43 

PRCR A>T 184 12 15.33 

PRCR A>G 174 14 12.43 

PRCR G>T 160 14 11.43 

PRCR T>A 145 13 11.15 

PRCR T>C 148 14 10.57 

PRCR C>A 120 12 10.00 

PRCR G>C 122 14 8.71 

SDPD A>G 441 51 8.65 

PRCR T>G 105 13 8.08 

PRCR C>G 105 14 7.50 

SDPD G>T 367 49 7.49 

SDPD T>C 318 43 7.40 

PRCR A>C 81 11 7.36 

SDPD C>A 294 44 6.68 

SDPD A>T 254 44 5.77 

SDPD T>A 215 40 5.38 

SDPD C>G 203 44 4.61 

SDPD A>C 187 42 4.45 

SDPD T>G 187 42 4.45 

SDPD G>C 200 46 4.35 
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Suppl. Table 3: Mutations per chromosome and divided per response. The average mutations is calculated only 
for where it had mutated (thus not complete response group). 

Response Chromosome Per million  
base pairs 

Total  
mutations 

Total  
patients 

Average mutations  
in patients  

Average mutations 
 in chromosomes 

PRCR 1 248,956,422 1285 15 85.67 5,16E-06 

PRCR 2 242,193,529 1034 15 68.93 4,27E-06 

PRCR 19 58,617,616 964 14 68.86 1,64E-05 

PRCR 5 181,538,259 709 11 64.45 3,91E-06 

PRCR 3 198,295,559 813 14 58.07 4,1E-06 

PRCR 6 170,805,979 751 14 53.64 4,4E-06 

PRCR 11 135,086,622 697 13 53.62 5,16E-06 

PRCR 7 159,345,973 701 14 50.07 4,4E-06 

PRCR 12 133,275,309 735 15 49.00 5,51E-06 

PRCR 17 83,257,441 545 14 38.93 6,55E-06 

PRCR 4 190,214,555 538 14 38.43 2,83E-06 

PRCR 8 145,138,636 488 13 37.54 3,36E-06 

PRCR 10 133,797,422 497 14 35.50 3,71E-06 

PRCR 9 138,394,717 447 13 34.38 3,23E-06 

SDPD 1 248,956,422 1670 49 34.08 6,71E-06 

PRCR 16 90,338,345 430 13 33.08 4,76E-06 

PRCR X 156,040,895 372 13 28.62 2,38E-06 

PRCR 15 101,991,189 349 13 26.85 3,42E-06 

PRCR 20 64,444,167 340 13 26.15 5,28E-06 

SDPD 2 242,193,529 1202 47 25.57 4,96E-06 

PRCR 14 107,043,718 292 12 24.33 2,73E-06 

SDPD 19 58,617,616 1143 49 23.33 1,95E-05 

PRCR 18 80,373,285 255 12 21.25 3,17E-06 

SDPD 12 133,275,309 929 44 21.11 6,97E-06 

SDPD 3 198,295,559 934 45 20.76 4,71E-06 

PRCR 13 114,364,328 228 12 19.00 1,99E-06 

SDPD 7 159,345,973 851 45 18.91 5,34E-06 

SDPD 17 83,257,441 865 46 18.80 1,04E-05 

SDPD 11 135,086,622 882 47 18.77 6,53E-06 

SDPD 6 170,805,979 839 45 18.64 4,91E-06 

SDPD 5 181,538,259 715 42 17.02 3,94E-06 

PRCR 22 50,818,468 219 13 16.85 4,31E-06 

SDPD 4 190,214,555 666 42 15.86 3,5E-06 

SDPD 10 133,797,422 557 43 12.95 4,16E-06 

SDPD X 156,040,895 592 46 12.87 3,79E-06 

SDPD 16 90,338,345 511 40 12.78 5,66E-06 

SDPD 8 145,138,636 570 46 12.39 3,93E-06 

SDPD 9 138,394,717 544 45 12.09 3,93E-06 

SDPD 15 101,991,189 468 40 11.70 4,59E-06 

SDPD 14 107,043,718 465 40 11.63 4,34E-06 

PRCR 21 46,709,983 127 11 11.55 2,72E-06 

SDPD 20 64,444,167 360 36 10.00 5,59E-06 

SDPD 22 50,818,468 293 39 7.51 5,77E-06 

SDPD 18 80,373,285 282 38 7.42 3,51E-06 

SDPD 13 114,364,328 261 42 6.21 2,28E-06 

SDPD 21 46,709,983 166 34 4.88 3,55E-06 

PRCR Y 57,227,415 4 2 2.00 6,99E-08 

SDPD Y 57,227,415 4 3 1.33 6,99E-08 
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Suppl. Table 4: Mutations characterized by variant classification and further divided per response. The average 
mutations is calculated only for where it had mutated (thus not complete response group). 

Response Variant  
classification 

Total  
mutations 

Total  
patients 

Average  
Mutations 

PRCR missense variant 11546 15 769.73 

SDPD missense variant 13909 53 262.43 

PRCR stop gained 683 14 48.79 

PRCR missense variant & splice region variant 274 13 21.08 

SDPD stop gained 865 48 18.02 

SDPD missense variant & splice region variant 415 42 9.88 

PRCR protein protein contact 100 11 9.09 

PRCR splice acceptor variant & intron variant 110 13 8.46 

PRCR start lost 24 4 6.00 

SDPD splice acceptor variant & intron variant 198 36 5.50 

SDPD splice donor variant & intron variant 190 36 5.28 

PRCR splice donor variant & intron variant 63 12 5.25 

SDPD protein protein contact 137 33 4.15 

PRCR stop gained & splice region variant 18 6 3.00 

SDPD stop gained & splice region variant 32 20 1.60 

SDPD start lost 18 14 1.29 

SDPD start lost & splice region variant 1 1 1.00 

SDPD splice acceptor variant& 
splice donor variant & intron variant 

3 3 1.00 

PRCR stop lost 2 2 1.00 

SDPD Stop lost 1 1 1.00 

 
 

Suppl. Table 5: Overview of mutated genes unique to the PRCR-response whilst related to immune system 
processes. 

 

 

 

 

 

 

 

 
 

Suppl. Table 6: Overview of mutated genes unique to the PRCR-response whilst related to defence/immunity 
proteins. 

 
 

Activation of 
immune 
response 

Immune 
effector 
process 

Immune 
response 

Immune 
system 

development 

Leukocyte 
activation 

Leukocyte 
migration 

FYN OAS3 CCR2 ANXA1 ANXA1 ANXA1 

MNDA ANXA1 ANXA1 CD3D CD3D  

 TLR8 TRIM62 IL36B IL36B  

  FYN TNFSF8 TIGIT  

  IL36B KIT TNFSF8  

  TLR8  KIT  

  PTX3    

  MNDA    

  PDCD1    

Antimicrobial 
response 
protein 

Immunoglobulin 
receptor 
superfamily  

Immunoglobulin Major 
histocompatibility 
complex protein 

B cell 
activation 

T cell 
activation 

DEFB125 PTGFRN OPCML HLA-DQA2 PIK3CB PIK3CB 

 LILRA2   JUN JUN 

 KIR3DL2    HLA-DQA2 

 FCRL4    CD3D 
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Suppl. Table 7: Overview of mutated genes unique to the SDPD-response whilst related to immune system 
processes. 

 
 

Suppl. Table 8: Overview of mutated genes unique to the SDPD-response whilst related to defence/immunity 
proteins. 

Major 
histocompatibility 
complex protein 

B cell activation T cell activation Immunoglobulin  
receptor  

superfamily 

HLA-A FRK NFKB2 CD96 SLAMF1 

HLA-B NFKB2 ZAP70 FCAMR HAVCR2 

HLA-DQB1 SYK CD86 FCRL6 PIGR 

 SOS1 SOS1 CD300A SLAMF7 

   CD86 CD300LG 

 

 

Suppl. Table 9: Overview of HLA-genes with non-synonymous mutations in at least 2 patients. 

Response  
overlap 

Gene Chromosome 
of SNVs 

Total  
mutations 

Total  
patients 

Intersect HLA-DRB5 6 10 6 

SDPD unique HLA-DQB1 6 9 5 

Intersect HLA-DRB1 6 8 5 

Intersect HLA-DQB2 6 5 4 

SDPD unique HLA-A 6 4 3 

SDPD unique HLA-B 6 3 2 

PRCR unique HLA-DQA2 6 2 2 

Intersect HLA-G 6 2 2 

 
 
 
 
 
 
 
 
 
 

Activation of 
immune 
response 

Antigen 
processing 

and 
presentation 

Immune 
effector 
process 

Immune 
system 

developmen
t 

Leukocyte 
activation 

Immune  
response 

TEC HLA-A HLA-A SRC FES TEC ITK 

SH2B2 HLA-B FES CSF1R IL27RA HLA-A ACKR2 

SLK  HLA-B ITK ITK FES CD86 

ITK  SYK SYK CD86 TRIM51 SYK 

SYK  CRP CEBPE SYK FRK SPN 

SLC39A10   ALAS2  SRMS SLC39A10 

CRP   UBASH3B  SRC IL1F10 

     SH2B2 ANG 

     SLK CCR9 

     TRIM64C PARP9 

     HLA-B CRP 
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Suppl. Table 10: Overview of human CD antigen genes with non-synonymous mutations in at least 5 patients. 

Response  
overlap 

Gene Chromosome Total  
mutations 

Total 
patients 

Intersect CD163 12 17 11 

Intersect CD163L1 12 13 8 

Intersect ITGA1 5 9 8 

Intersect SIRPB1 20 9 7 

Intersect FGFR2 10 8 7 

Intersect ACE 17 7 7 

Intersect TLR4 9 9 6 

Intersect CR2 1 8 6 

Intersect ALK 2 7 6 

Intersect CD33 19 6 6 

Intersect SELP 1 6 6 

SDPD unique ITGAX 16 6 5 

Intersect LILRB1 19 6 5 

Intersect IL7R 5 5 5 

SDPD unique RHAG 6 5 5 

Intersect LILRB4 19 5 5 

Intersect PTPRC 1 5 5 

Intersect CEACAM5 19 5 5 

Intersect ITGA2B 17 5 5 

 
 

Suppl. Table 11: Overview of PD-1 related antigen genes with non-synonymous mutations. 

Response  
overlap 

Gene Chromosome Total  
mutations 

Total 
patients 

intersect  PDCD1LG2 (PD-L2)  9  2  2  

PRCR_unique PDCD1 (PD-1) 2  2  2  

SDPD_unique CD96 (Tactile) 3  2  2  

intersect  CTLA4  2  2  2  
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Miniconda environment installations 
 

Base 
# platform: win-64 

brotlipy=0.7.0=py39h2bbff1b_1003 
ca-certificates=2021.1.19=haa95532_1 

certifi=2020.12.5=py39haa95532_0 
cffi=1.14.5=py39hcd4344a_0 

chardet=4.0.0=py39haa95532_1003 
conda=4.9.2=py39haa95532_0 

conda-package-handling=1.7.2=py39h8cc25b3_1 
console_shortcut=0.1.1=4 

cryptography=3.4.7=py39h71e12ea_0 
idna=2.10=pyhd3eb1b0_0 

menuinst=1.4.16=py39h2bbff1b_0 
openssl=1.1.1k=h2bbff1b_0 

pip=21.0.1=py39haa95532_0 
powershell_shortcut=0.0.1=3 

pycosat=0.6.3=py39h2bbff1b_0 
pycparser=2.20=py_2 

pyopenssl=20.0.1=pyhd3eb1b0_1 
pysocks=1.7.1=py39haa95532_0 

python=3.9.1=h6244533_2 
pywin32=228=py39he774522_0 
requests=2.25.1=pyhd3eb1b0_0 

ruamel_yaml=0.15.100=py39h2bbff1b_0 
setuptools=52.0.0=py39haa95532_0 

six=1.15.0=py39haa95532_0 
sqlite=3.35.2=h2bbff1b_0 

tqdm=4.59.0=pyhd3eb1b0_1 
tzdata=2020f=h52ac0ba_0 

urllib3=1.26.4=pyhd3eb1b0_0 
vc=14.2=h21ff451_1 

vs2015_runtime=14.27.29016=h5e58377_2 
wheel=0.36.2=pyhd3eb1b0_0 

win_inet_pton=1.1.0=py39haa95532_0 
wincertstore=0.2=py39h2bbff1b_0 

yaml=0.2.5=he774522_0 
 

 
Virtual environment 

 
# platform: win-64 

_r-mutex=1.0.0=anacondar_1 

anyio=2.2.0=py39haa95532_0 

argon2-cffi=20.1.0=py39h2bbff1b_1 

async_generator=1.10=pyhd3eb1b0_0 

attrs=20.3.0=pyhd3eb1b0_0 

babel=2.9.0=pyhd3eb1b0_0 

backcall=0.2.0=pyhd3eb1b0_0 

bleach=3.3.0=pyhd3eb1b0_0 

brotlipy=0.7.0=py39h2bbff1b_1003 

ca-certificates=2021.1.19=haa95532_1 
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certifi=2020.12.5=py39haa95532_0 

cffi=1.14.5=py39hcd4344a_0 

chardet=4.0.0=py39haa95532_1003 

colorama=0.4.4=pyhd3eb1b0_0 

cryptography=3.4.7=py39h71e12ea_0 

decorator=4.4.2=pyhd3eb1b0_0 

defusedxml=0.7.1=pyhd3eb1b0_0 

entrypoints=0.3=py39haa95532_0 

idna=2.10=pyhd3eb1b0_0 

importlib-metadata=3.7.3=py39haa95532_1 

importlib_metadata=3.7.3=hd3eb1b0_1 

ipykernel=5.3.4=py39h7b7c402_0 

ipython=7.21.0=py39hd4e2768_0 

ipython_genutils=0.2.0=pyhd3eb1b0_1 

jedi=0.17.2=py39haa95532_1 

jinja2=2.11.3=pyhd3eb1b0_0 

json5=0.9.5=py_0 

jsonschema=3.2.0=py_2 

jupyter-packaging=0.7.12=pyhd3eb1b0_0 

jupyter_client=6.1.7=py_0 

jupyter_core=4.7.1=py39haa95532_0 

jupyter_server=1.4.1=py39haa95532_0 

jupyterlab=3.0.11=pyhd3eb1b0_0 

jupyterlab_pygments=0.1.2=py_0 

jupyterlab_server=2.3.0=pyhd3eb1b0_0 

libsodium=1.0.18=h62dcd97_0 

m2w64-bwidget=1.9.10=2 

m2w64-bzip2=1.0.6=6 

m2w64-expat=2.1.1=2 

m2w64-fftw=3.3.4=6 

m2w64-flac=1.3.1=3 

m2w64-gcc-libgfortran=5.3.0=6 

m2w64-gcc-libs=5.3.0=7 

m2w64-gcc-libs-core=5.3.0=7 

m2w64-gettext=0.19.7=2 

m2w64-gmp=6.1.0=2 

m2w64-gsl=2.1=2 

m2w64-libiconv=1.14=6 

m2w64-libjpeg-turbo=1.4.2=3 

m2w64-libogg=1.3.2=3 

m2w64-libpng=1.6.21=2 

m2w64-libsndfile=1.0.26=2 

m2w64-libsodium=1.0.10=2 

m2w64-libtiff=4.0.6=2 

m2w64-libvorbis=1.3.5=2 

m2w64-libwinpthread-git=5.0.0.4634.697f757=2 

m2w64-libxml2=2.9.3=4 

m2w64-mpfr=3.1.4=4 
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m2w64-openblas=0.2.19=1 

m2w64-pcre=8.38=2 

m2w64-speex=1.2rc2=3 

m2w64-speexdsp=1.2rc3=3 

m2w64-tcl=8.6.5=3 

m2w64-tk=8.6.5=3 

m2w64-tktable=2.10=5 

m2w64-wineditline=2.101=5 

m2w64-xz=5.2.2=2 

m2w64-zeromq=4.1.4=2 

m2w64-zlib=1.2.8=10 

markupsafe=1.1.1=py39h2bbff1b_0 

mistune=0.8.4=py39h2bbff1b_1000 

msys2-conda-epoch=20160418=1 

nbclassic=0.2.6=pyhd3eb1b0_0 

nbclient=0.5.3=pyhd3eb1b0_0 

nbconvert=6.0.7=py39haa95532_0 

nbformat=5.1.2=pyhd3eb1b0_1 

nest-asyncio=1.5.1=pyhd3eb1b0_0 

notebook=6.3.0=py39haa95532_0 

openssl=1.1.1k=h2bbff1b_0 

packaging=20.9=pyhd3eb1b0_0 

pandoc=2.12=haa95532_0 

pandocfilters=1.4.3=py39haa95532_1 

parso=0.7.0=py_0 

pickleshare=0.7.5=pyhd3eb1b0_1003 

pip=21.0.1=py39haa95532_0 

prometheus_client=0.9.0=pyhd3eb1b0_0 

prompt-toolkit=3.0.17=pyh06a4308_0 

pycparser=2.20=py_2 

pygments=2.8.1=pyhd3eb1b0_0 

pyopenssl=20.0.1=pyhd3eb1b0_1 

pyparsing=2.4.7=pyhd3eb1b0_0 

pyrsistent=0.17.3=py39h2bbff1b_0 

pysocks=1.7.1=py39haa95532_0 

python=3.9.2=h6244533_0 

python-dateutil=2.8.1=pyhd3eb1b0_0 

pytz=2021.1=pyhd3eb1b0_0 

pywin32=228=py39he774522_0 

pywinpty=0.5.7=py39haa95532_0 

pyzmq=20.0.0=py39hd77b12b_1 

r-base=3.6.1=hf18239d_1 

r-base64enc=0.1_3=r36h6115d3f_4 

r-crayon=1.3.4=r36h6115d3f_0 

r-digest=0.6.18=r36h6115d3f_0 

r-evaluate=0.13=r36h6115d3f_0 

r-foreign=0.8_71=r36h6115d3f_0 

r-htmltools=0.3.6=r36h6115d3f_0 
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r-irdisplay=0.7.0=r36h6115d3f_0 

r-irkernel=0.8.15=r36_0 

r-jsonlite=1.6=r36h6115d3f_0 

r-pbdzmq=0.3_3=r36h6115d3f_0 

r-rcpp=1.0.1=r36h6115d3f_0 

r-repr=0.19.2=r36h6115d3f_0 

r-uuid=0.1_2=r36h6115d3f_4 

requests=2.25.1=pyhd3eb1b0_0 

send2trash=1.5.0=pyhd3eb1b0_1 

setuptools=52.0.0=py39haa95532_0 

six=1.15.0=py39haa95532_0 

sniffio=1.2.0=py39haa95532_1 

sqlite=3.35.2=h2bbff1b_0 

terminado=0.9.3=py39haa95532_0 

testpath=0.4.4=pyhd3eb1b0_0 

tornado=6.1=py39h2bbff1b_0 

traitlets=5.0.5=pyhd3eb1b0_0 

tzdata=2020f=h52ac0ba_0 

urllib3=1.26.4=pyhd3eb1b0_0 

vc=14.2=h21ff451_1 

vs2015_runtime=14.27.29016=h5e58377_2 

wcwidth=0.2.5=py_0 

webencodings=0.5.1=py39haa95532_1 

wheel=0.36.2=pyhd3eb1b0_0 

win_inet_pton=1.1.0=py39haa95532_0 

wincertstore=0.2=py39h2bbff1b_0 

winpty=0.4.3=4 

zeromq=4.3.3=ha925a31_3 

zipp=3.4.1=pyhd3eb1b0_0 
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R package versions 
 

Session info 
 
R version 3.6.1 (2019-07-05) 

Platform: x86_64-w64-mingw32/x64 (64-bit) 

Running under: Windows 10 x64 (build 19042) 

 

Matrix products: default 

 

locale: 

[1] LC_COLLATE=English_Netherlands.1252  LC_CTYPE=English_Netherlands.1252    

[3] LC_MONETARY=English_Netherlands.1252 LC_NUMERIC=C                         

[5] LC_TIME=English_Netherlands.1252     

 

attached base packages: 

 [1] parallel  stats4    grid      stats     graphics  grDevices utils     

 [8] datasets  methods   base      

 

other attached packages: 

 [1] umap_0.2.7.0                            

 [2] Rtsne_0.15                              

 [3] Hmisc_4.5-0                             

 [4] Formula_1.2-4                           

 [5] lattice_0.20-41                         

 [6] coin_1.4-1                              

 [7] survival_3.2-10                         

 [8] rstatix_0.7.0                           

 [9] ggpubr_0.4.0                            

[10] gridExtra_2.3                           

[11] ggrepel_0.9.1                           

[12] stringr_1.4.0                           

[13] tidyr_1.1.3                             

[14] pheatmap_1.0.12                         

[15] forcats_0.5.1                           

[16] dplyr_1.0.5                             

[17] plyr_1.8.6                              

[18] IHW_1.14.0                              

[19] genefilter_1.68.0                       

[20] org.Hs.eg.db_3.10.0                     

[21] annotate_1.64.0                         

[22] XML_3.99-0.3                            

[23] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 

[24] GenomicFeatures_1.38.2                  

[25] AnnotationDbi_1.48.0                    

[26] DESeq2_1.26.0                           

[27] SummarizedExperiment_1.16.1             

[28] DelayedArray_0.12.3                     

[29] BiocParallel_1.20.1                     

[30] matrixStats_0.58.0                      

[31] Biobase_2.46.0                          

[32] GenomicRanges_1.38.0                    

[33] GenomeInfoDb_1.22.1                     

[34] IRanges_2.20.2                          

[35] S4Vectors_0.24.4                        

[36] BiocGenerics_0.32.0                     

[37] sqldf_0.4-11                            

[38] RSQLite_2.2.4                           

[39] gsubfn_0.7                              

[40] proto_1.0.0                             
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[41] ggplot2_3.3.3                           

[42] nrstats_0.1.0                           

 

loaded via a namespace (and not attached): 

  [1] utf8_1.2.1               reticulate_1.18          rms_6.2-0                

  [4] R.utils_2.10.1           tidyselect_1.1.0         htmlwidgets_1.5.3        

  [7] 78unsell_0.5.0            codetools_0.2-18         chron_2.3-56             

 [10] pbdZMQ_0.3-3             withr_2.4.1              colorspace_2.0-0         

 [13] knitr_1.31               uuid_0.1-2               rstudioapi_0.13          

 [16] ROCR_1.0-11              ggsignif_0.6.1           labeling_0.4.2           

 [19] slam_0.1-48              repr_0.19.2          GenomeInfoDbData_1.2.2   

 [22] lpsymphony_1.14.0        bit64_4.0.5              farver_2.1.0             

 [25] vctrs_0.3.6              generics_0.1.0           TH.data_1.0-10           

 [28] xfun_0.22                BiocFileCache_1.10.2     R6_2.5.0                 

 [31] locfit_1.5-9.4           bitops_1.0-6             cachem_1.0.4             

 [34] reshape_0.8.8            assertthat_0.2.1         scales_1.1.1             

 [37] multcomp_1.4-16          nnet_7.3-15              gtable_0.3.0             

 [40] conquer_1.0.2            sandwich_3.0-0           rlang_0.4.10             

 [43] MatrixModels_0.5-0       cmprsk_2.2-10            splines_3.6.1            

 [46] rtracklayer_1.46.0       broom_0.7.6              checkmate_2.0.0          

 [49] abind_1.4-5              backports_1.2.1          tools_3.6.1              

 [52] tcltk_3.6.1              ellipsis_0.3.1           RcolorBrewer_1.1-2       

 [55] Rcpp_1.0.3               base64enc_0.1-3          progress_1.2.2           

 [58] zlibbioc_1.32.0          purrr_0.3.4              Rcurl_1.98-1.3           

 [61] prettyunits_1.1.1        rpart_4.1-15             openssl_1.4.3            

 [64] cowplot_1.1.1            zoo_1.8-9                haven_2.3.1              

 [67] cluster_2.1.1            magrittr_2.0.1           data.table_1.14.0        

 [70] Rspectra_0.16-0          openxlsx_4.2.3           SparseM_1.81             

 [73] mvtnorm_1.1-1            hms_1.0.0                evaluate_0.13            

 [76] xtable_1.8-4             rio_0.5.26               jpeg_0.1-8.1             

 [79] readxl_1.3.1             compiler_3.6.1           biomaRt_2.42.1           

 [82] tibble_3.1.0             crayon_1.4.1             R.oo_1.24.0              

 [85] htmltools_0.3.6          geneplotter_1.64.0       libcoin_1.0-8            

 [88] DBI_1.1.1                dbplyr_2.1.1             MASS_7.3-53.1            

 [91] rappdirs_0.3.3           Matrix_1.3-2             car_3.0-10               

 [94] cli_2.4.0                R.methodsS3_1.8.1        pkgconfig_2.0.3          

 [97] GenomicAlignments_1.22.1 foreign_0.8-71           Irdisplay_0.7.0          

[100] Xvector_0.26.0           digest_0.6.18            Biostrings_2.54.0        

[103] cellranger_1.1.0         htmlTable_2.1.0          curl_4.3                 

[106] Rsamtools_2.2.3          quantreg_5.85            modeltools_0.2-23        

[109] lifecycle_1.0.0          nlme_3.1-152             jsonlite_1.6             

[112] carData_3.0-4            askpass_1.1              fansi_0.4.2              

[115] pillar_1.6.0             ggsci_2.9                Ggally_2.1.1             

[118] fastmap_1.1.0            httr_1.4.2               glue_1.4.2               

[121] zip_2.1.1                fdrtool_1.2.16           png_0.1-7                

[124] bit_4.0.4                stringi_1.5.3            blob_1.2.1               

[127] polspline_1.1.19         latticeExtra_0.6-29      memoise_2.0.0            

[130] Irkernel_0.8.15          
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Installed packages 
Package    Version 

                             abind      1.4-5 

                          annotate     1.64.0 

                     AnnotationDbi     1.48.0 

                           askpass        1.1 

                        assertthat      0.2.1 

                         backports      1.2.1 

                         base64enc      0.1-3 

                                BH   1.75.0-0 

                           Biobase     2.46.0 

                     BiocFileCache     1.10.2 

                      BiocGenerics     0.32.0 

                       BiocManager    1.30.12 

                      BiocParallel     1.20.1 

                       BiocVersion     3.10.1 

                           biomaRt     2.42.1 

                        Biostrings     2.54.0 

                               bit      4.0.4 

                             bit64      4.0.5 

                            bitops      1.0-6 

                              blob      1.2.1 

                              brew      1.0-6 

                              brio      1.1.1 

                             broom      0.7.6 

                     broom.helpers      1.2.1 

                             bslib      0.2.4 

                            cachem      1.0.4 

                             callr      3.6.0 

                               car     3.0-10 

                           carData      3.0-4 

                           caTools     1.18.2 

                        cellranger      1.1.0 

                         checkmate      2.0.0 

                      chemometrics      1.4.2 

                             chron     2.3-56 

                          circlize     0.4.12 

                          classInt      0.4-3 

                               cli      2.4.0 

                             clipr      0.7.1 

                        clisymbols      1.2.0 

                              clue     0.3-58 

                            cmprsk     2.2-10 

                              coda     0.19-4 

                              coin      1.4-1 

                        colorspace      2.0-0 

                        commonmark        1.7 

                    ComplexHeatmap      2.2.0 

                           conquer      1.0.2 

                           corpcor      1.6.9 

                          corrplot       0.84 

                              covr      3.5.1 

                           cowplot      1.1.1 

                             cpp11      0.2.6 

                            crayon      1.4.1 

                       credentials      1.3.0 

                         crosstalk      1.1.1 

                              curl        4.3 

                         cyclocomp      1.1.0 

                        data.table     1.14.0 

                               DBI      1.1.1 
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                            dbplyr      2.1.1 

                      DelayedArray     0.12.3 

                        dendextend     1.14.0 

                          DEoptimR      1.0-8 

                              desc      1.3.0 

                            DESeq2     1.26.0 

                          devtools      2.3.2 

                           diffobj      0.3.4 

                            digest     0.6.18 

                        doParallel     1.0.16 

                            doSNOW     1.0.19 

                           downlit      0.2.1 

                             dplyr      1.0.5 

                                DT       0.17 

                            dtplyr      1.1.0 

                             e1071      1.7-6 

                               egg      0.4.5 

                          ellipsis      0.3.1 

                           emmeans    1.5.5-1 

                      estimability        1.3 

                          evaluate       0.13 

                         extrafont       0.17 

                       extrafontdb        1.0 

                             fansi      0.4.2 

                            farver      2.1.0 

                           fastmap      1.1.0 

                           fdrtool     1.2.16 

                               FNN      1.1.3 

                           foghorn      1.3.2 

                 fontBitstreamVera      0.1.1 

                    fontLiberation      0.1.0 

                        fontquiver      0.2.1 

                           forcats      0.5.1 

                           foreach      1.5.1 

                           formatR        1.8 

                           Formula      1.2-4 

                  freetypeharfbuzz      0.2.6 

                                fs      1.5.0 

                     futile.logger      1.4.3 

                    futile.options      1.0.1 

                            gargle      1.0.0 

                           gdtools      0.2.3 

                        genefilter     1.68.0 

                       geneplotter     1.64.0 

                          generics      0.1.0 

                      GenomeInfoDb     1.22.1 

                  GenomeInfoDbData      1.2.2 

                 GenomicAlignments     1.22.1 

                   GenomicFeatures     1.38.2 

                     GenomicRanges     1.38.0 

                         geosphere     1.5-10 

                              gert      1.2.0 

                        GetoptLong      1.0.5 

                            GGally      2.1.1 

                           ggforce      0.3.3 

                           ggplot2      3.3.3 

                     ggplot2movies      0.0.1 

                            ggpubr      0.4.0 

                           ggrepel      0.9.1 

                             ggsci        2.9 

                          ggsignif      0.6.1 
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                                gh      1.2.0 

                          gitcreds      0.1.1 

                     GlobalOptions      0.1.2 

                              glue      1.4.2 

                            gmailr      1.0.0 

                       googledrive      1.0.1 

                     googlesheets4      0.3.0 

                            gplots      3.1.1 

                          gridBase      0.4-7 

                         gridExtra        2.3 

                            gsubfn        0.7 

                            gtable      0.3.0 

                            gtools      3.8.2 

                             haven      2.3.1 

                            hexbin     1.28.2 

                             highr        0.8 

                             Hmisc      4.5-0 

                               hms      1.0.0 

                         htmlTable      2.1.0 

                         htmltools      0.3.6 

                       htmlwidgets      1.5.3 

                            httpuv      1.5.5 

                              httr      1.4.2 

                          hunspell      3.0.1 

                               ids      1.0.1 

                            igraph      1.2.6 

                               IHW     1.14.0 

                               ini      0.3.1 

                            inline     0.3.17 

                        intergraph      2.0-2 

                           IRanges     2.20.2 

                         IRdisplay      0.7.0 

                          IRkernel     0.8.15 

                           isoband      0.2.4 

                         iterators     1.0.13 

                              jpeg    0.1-8.1 

                         jquerylib      0.1.3 

                          jsonlite        1.6 

                           kernlab     0.9-29 

                             knitr       1.31 

                                ks     1.12.0 

                          labeling      0.4.2 

                          labelled      2.8.0 

                          lambda.r      1.2.4 

                              lars        1.2 

                             later    1.1.0.1 

                      latticeExtra     0.6-29 

                          lazyeval      0.2.2 

                           libcoin      1.0-8 

                         lifecycle      1.0.0 

                             lintr      2.0.1 

                              lme4     1.1-26 

                            locfit    1.5-9.4 

                               loo      2.4.1 

                        lpsymphony     1.14.0 

                         lubridate     1.7.10 

                               M3C      1.8.0 

                          magrittr      2.0.1 

                           mapproj      1.2.7 

                              maps      3.3.0 

                          maptools      1.1-1 
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                          markdown        1.1 

                        matrixcalc      1.0-3 

                      MatrixModels      0.5-0 

                       matrixStats     0.58.0 

                            mclust      5.4.7 

                           memoise      2.0.0 

                              mice     3.13.0 

                              mime       0.10 

                             minqa      1.2.4 

                            misc3d      0.9-0 

                           mockery      0.4.2 

                            modelr      0.1.8 

                        modeltools     0.2-23 

                          multcomp     1.4-16 

                         multicool     0.1-11 

                           munsell      0.5.0 

                           mvtnorm      1.1-1 

                           network     1.16.1 

                            nloptr    1.2.2.2 

                               NMF     0.23.0 

                           nrstats      0.1.0 

                          numDeriv 2016.8-1.1 

                           openssl      1.4.3 

                          openxlsx      4.2.3 

                      org.Hs.eg.db     3.10.0 

                         parsedate      1.2.0 

                            pbdZMQ      0.3-3 

                          pbkrtest      0.5.1 

                             pcaPP     1.9-73 

                          pheatmap     1.0.12 

                            pillar      1.6.0 

                             pingr      2.0.1 

                          pkgbuild      1.2.0 

                         pkgconfig      2.0.3 

                           pkgdown      1.6.1 

                         pkgKitten      0.2.1 

                           pkgload      1.2.0 

                          pkgmaker     0.32.2 

                             plogr      0.2.0 

                            plot3D        1.3 

                            plotly      4.9.3 

                               pls      2.7-3 

                              plyr      1.8.6 

                               png      0.1-7 

                         polspline     1.1.19 

                          polyclip     1.10-0 

                           polynom      1.4-0 

                            praise      1.0.0 

                       prettyunits      1.1.1 

                          processx      3.5.0 

                           profvis      0.3.7 

                          progress      1.2.2 

                          promises    1.2.0.1 

                             proto      1.0.0 

                             proxy     0.4-25 

                                ps      1.6.0 

                             purrr      0.3.4 

                          quantreg       5.85 

                       R.methodsS3      1.8.1 

                              R.oo     1.24.0 

                           R.utils     2.10.1 
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                                R6      2.5.0 

                              ragg      1.1.2 

                          rappdirs      0.3.3 

                        rbenchmark      1.0.0 

                         rcmdcheck      1.3.3 

                      RColorBrewer      1.1-2 

                              Rcpp      1.0.3 

                     RcppArmadillo 0.10.2.2.0 

                         RcppEigen  0.3.3.9.1 

                      RcppParallel      5.0.3 

                             RCurl   1.98-1.3 

                             readr      1.4.0 

                            readxl      1.3.1 

                          registry      0.5-1 

                           rematch      1.0.1 

                          rematch2      2.1.2 

                           remotes      2.2.0 

                              repr     0.19.2 

                            reprex      2.0.0 

                           reshape      0.8.8 

                          reshape2      1.4.4 

                        reticulate       1.18 

                               rex      1.2.0 

                             rgeos      0.5-5 

                               RH2      0.2.4 

                           Rhtslib     1.18.1 

                              rhub      1.1.1 

                               rio     0.5.26 

                             rJava     0.9-13 

                             RJDBC      0.2-8 

                             rjson     0.2.20 

                             rlang     0.4.10 

                               rle      0.9.2 

                         rmarkdown        2.7 

                               rms      6.2-0 

                              rmsb      0.0.2 

                            RMySQL    0.10.21 

                          rngtools        1.5 

                        robustbase     0.93-7 

                              ROCR     1.0-11 

                          roxygen2      7.1.1 

                       RPostgreSQL      0.6-2 

                         rprojroot      2.0.2 

                         Rsamtools      2.2.3 

                          RSpectra     0.16-0 

                           RSQLite      2.2.4 

                             rstan     2.21.2 

                        rstantools      2.1.1 

                           rstatix      0.7.0 

                        rstudioapi       0.13 

                       rtracklayer     1.46.0 

                             Rtsne       0.15 

                          Rttf2pt1      1.3.8 

                         rversions      2.0.2 

                             rvest      1.0.0 

                         S4Vectors     0.24.4 

                          sandwich      3.0-0 

                              sass      0.3.1 

                       scagnostics    0.2-4.1 

                            scales      1.1.1 

                           selectr      0.4-2 
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                       sessioninfo      1.1.1 

                                sf      0.9-8 

                             shape      1.4.5 

                             shiny      1.6.0 

                          sigclust      1.1.0 

                              slam     0.1-48 

                               sna        2.6 

                              snow      0.4-3 

                               som    0.3-5.1 

                       sourcetools      0.1.7 

                                sp      1.4-5 

                           SparseM       1.81 

                          spelling        2.2 

                             sqldf     0.4-11 

                       StanHeaders   2.21.0-7 

                           statmod     1.4.35 

                    statnet.common      4.4.1 

                           stringi      1.5.3 

                           stringr      1.4.0 

              SummarizedExperiment     1.16.1 

                           svglite      2.0.0 

                            svUnit      1.0.3 

                               sys        3.4 

                       systemfonts      1.0.1 

                          testthat      3.0.2 

                       textshaping      0.3.3 

                           TH.data     1.0-10 

                            tibble      3.1.0 

                             tidyr      1.1.3 

                        tidyselect      1.1.0 

                         tidyverse      1.3.1 

                          tinytest      1.2.4 

                           tinytex       0.30 

                      translations      3.6.1 

                            tweenr      1.0.2 

 TxDb.Hsapiens.UCSC.hg19.knownGene      3.2.2 

                              umap    0.2.7.0 

                             units      0.7-1 

                           usethis      2.0.1 
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