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Abstract
Objective: Bacterial resistance to fluoroquinolones primary arises from chromosomal point mutations
in the gyrA and  parC genes. Currently, bioinformatics tools designed for measuring resistance from
metagenomics data are not able to detect resistance arising from point mutations. To address this gap,
two methods for quantifying fluoroquinolone resistance-inducing SNPs from metagenomic reads were
created.

Methods & Results: GyrAPointCounter is a software which can analyze the presence and abundance
of point mutations present on  gyrA that  cause resistance and infer  the relative proportion of reads
carrying potential resistance causing sequences vs wildtype sequences. GyrAPointCounter is dependent
on the alignment tool DIAMOND for specifically selecting reads mapping to  gyrA. Additionally, we
developed a classification tree machine learning model, which was trained using the physicochemical
proprieties of amino acids. Both methods form their decision rules by using the available sequences and
the mutational patterns of fluoroquinolone-resistant GyrAs present in the CARD database.

The two methods were validated using an  Escherichia coli (E. coli)  WGS dataset (n = 201) and an
external dataset comprised of gyrA sequences (n = 40) belonging to species distinct from those present
in the training data. The results of the analyses show that both methods display excellent concordance
with the phenotypic data for  E. coli sequences. The classification performance for novel species for
GyrAPointCounter and the supervised learning model showed a True Positive Rate (TPR) of  0.87 and
1 and True  Negative  Rate  (TNR) of  0.75  and 0.68  respectively.  An in-house  shotgun  time  series
metagenomomics datatset containing  Illumina short-reads from farm animals treated with enrofloxacin
was  submitted  for  the  analysis  with  our  two methods.  The enrofloxacin-treated  samples  displayed
higher average resistance levels compared to the control groups for both methods.

Conclusions: This research introduced the first version of GyrAPointCounter, which is a promising
tool  for  monitoring  the  resistance  levels  from metagenomics  data.  However,  stricter  validation  is
needed before confidently evaluating the tool’s performance. For the current version, we propose using
the tool as a relative quantification method, rather than absolute.



Layman’s summary
Fluoroquinolones are  a class of antibiotics widely used in medical  practice.  Bacterial  resistance to
antibiotics is a major public health concern which could become the cause treatment failure against
infections. The primary cause of resistance to fluoroquinolones are mutations in two genes, namely
gyrA and  parC.  Metagenomics  is  a  field  of  biology  where  the  DNA  molecules  of  multiple
microorganisms are analyzed together. For resistance monitoring, metagenomics methods are preferred
over  other  methods.  Currently,  there  are  no  tools  which  can  screen  the  levels  of  fluoroquinolone
resistance-inducing mutations from metagenomic data. In this project, we developed a software tool,
GyrAPointCounter, which can report the fluoroquinolone resistance levels detected from metagenomic
data when resistance is conferred by mutations in  gyrA. Additionally, we trained a machine learning
model for the same purpose. We evaluated the two methods on data where the resistant/susceptible
status of the tested sequences was known. The results showed that GyrAPointCounter can detect the
resistance in various species with promising accuracy, however, there was some degree of error. The
machine learning model displayed satisfactory results, however, it showed a tendency to over-predict a
significant number of sequences as resistant even when they were associated with susceptibility. When
assessing a metagenomics dataset comprised of samples from enrofloxacin-treated and untreated farm
chickens, both our methods detected higher resistance levels for the treatment groups in contrast to the
control. This shows that both methods can identify resistant patterns in the data. However, both these
bioinformatic methods are in their infant stages of development, and some refinement is needed.
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1. Introduction
In  2014,  the  World  Health  Organization  acknowledged  the  emergence  of  antimicrobial  resistance
(AMR)  as  a  significant  global  public  health  concern,  with  aggravating  consequences  expected  to
escalate in the future (Bengtsson-Palme et al., 2018). AMR is a complex phenomenon which primarily
arises from the ability of bacteria to evolve and adapt through genetic mutations. Human activities such
as clinical use of antibiotics promotes the development of resistant bacteria which pose consequences
for human and animal health (Read and Woods, 2014). Solving the antibiotic resistance crisis requires
multiple approaches, including reduced antibiotic use, novel treatment strategies, development of new
antibiotics, and also improved surveillance.

Current screening strategies for antimicrobial-resistant organisms involve culture-based methods which
have  specific  limitations.  For  instance,  a  significant  number  of  bacteria  are  non-culturable  under
laboratory conditions, especially bacterial isolates belonging to environmental samples. These methods
bias the results as resistance-associated genes found under this screening method are representative
only  for  a  fraction  of  the  microbial  population  (Waskito  et  al.,  2022).  Moreover,  clinical  testing
guidelines provide clear criteria for determining antimicrobial susceptibility, but such guidelines have
not been developed for bacteria found in the environment, such as soil or water (Berendonk et al.,
2015).  The  above-mentioned  shortcomings  of  the  culture-based  methods  can  be  mitigated  using
metagenomic approaches.

Metagenomics offer remarkable approaches to monitor resistance-linked bacterial genes, by offering a
more accurate picture of the whole bacterial community’s resistome. Metagenomics-based screening
has thus far been employed for various sources such as livestock, wastewater, the human microbiome,
soils, permafrost, and other sources. In metagenomics applications, quantifying antimicrobial resistance
typically  involves  matching the reads  against  established curated databases  via  pairwise alignment
methods;  however,  recent  strategies  are  exploring  the  use  of  supervised-learning-based  methods
(Arango-Argoty et al., 2018; Fahrenfeld et al., 2014; Hendriksen et al., 2019; Kim et al., 2022).

Fluoroquinolones are one of the most efficient classes of broad-spectrum antibiotics. However, their
widespread use in humans has led to the development of fluoroquinolone resistance, which has become
a  major  concern  (Bush  et  al.,  2020).  Crucial  for  fluoroquinolone  susceptibility,  gyrase  and
topoisomerase  IV are  essential  enzymes involved in  DNA replication.  They adjust  the  topological
winding state of DNA by generating staggered cuts on the opposing strands. Fluoroquinolones exert
their  antimicrobial  activity  by  forming  a  topoisomerase-drug  complex  which  prevents  the  ligation
process,  thus  rendering  the  DNA with  an  increased  and  lethal  number  of  double-stranded  cuts.
Resistance to quinolones can be attributed to substitutions in gyrase and topoisomaraseIV genes such as
gyrA (DNA gyrase subunit A), gyrB (DNA gyrase subunit B), parC (subunit of the DNA topoisomerase
IV) and parE (subunit of the DNA topoisomerase IV ). Two of the most common mutations are at Ser83
and Glu87 (E. coli numbering) in gyrA (Redgrave et al., 2014)

By  convention,  the  specific  quinolone  resistance-determining  region  (QRDR)  is  situated  between
amino acids 67-106 (E. coli). The presence of these mutations prevents the formation of the enzyme-
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drug complex and mitigates the antimicrobial effects. While quniolone resistance can also be a result of
gene acquisition, most of the times it is caused by single point mutations (SNPs) in the gyrase and
topoisomerase genes (Levy et al., 2004 ; Bush et al., 2020).

The  metagenomics  tools  presently  available  for  antimicrobial  resistance  monitoring  are  unable  to
effectively quantify resistance to fluoroquinolone resulting from SNPs, thus new strategies are needed
to tackle this issue. DeepARG (Arango-Argoty et al., 2018), for instance, can successfully categorize
shotgun metagenomic sequences into resistant or non-resistant classes for various types of antibiotics.
Nevertheless,  this  method  does  not  account  for  resistance  triggered  by  single  point  mutations.
PointFinder  (Zankari  et  al.,  2017)  is  a  web-based tool  capable  of  detecting  and quantifying  point
mutations,  but  it  is  species-specific,  rendering  it  inappropriate  for  metagenomic  data.  Mumame
(Magesh et al., 2019), on the other hand, tackles these issues, but is only specific to sequences already
present in databases.

Aim of the project
The aim of the project is to find a suitable method to quantify quinolone resistance-inducing point
mutations from metagenomics data. To do this, we developed two methods for identifying and counting
fluoroquinolone resistance levels arising from gyrA’s mutational hot-spot, the QRDR.

1. GyrAPointCounter is an alignment-based algorithmic tool which is able to quantify the relative
proportion of  gyrA sequences that carry quinolone resistance-inducing SNPs. The underlying
algorithm utilizes a set of rules and assumptions to infer the resistant status of a sequence.
These assumptions encompass the idea that closely related species are likely to share similar
mutational patterns.

2. A tree-based supervised learning model was also trained for this purpose. The model utilizes the
physicochemical  properties  of  the  amino  acids  present  in  the  QRDR to  predict  the  AMR
phenotype. Both methods are suitable for metagenomics applications.
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2. Materials and methods

Figure 1. General workflow of the GyrAPointFinder. There are three main commands provided by the tool. 
The first command, generate_database.sh takes the CARD database files as input and outputs a file where 
species-specific substitutions are stored. This file is referred to as the mutational database 
(mutation_dict.json). The command also outputs a file containing the QRDR regions of the fluroquinolone-
susceptible gyrases (qrdr_wt.fasta). The second command uses this file to align the reads provided by the
user to the QRDR regions. Finally, the third command utilizes the alignment table generated in the 
previous step and the mutational database to count the number of potentially fluoroquinolone-resistant 
QRDR regions.
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I. GyrAPointCounter implementation
GyrAPointCounter predicts the resistance phenotype of gyrA sequences from Illumina short sequencing
reads and outputs the ratio of sequences inducing fluoroquinolone resistance mutations over wildtype
sequences. The counting is based on a few assumptions which can be adjusted by the user. The main
assumptions are: close species likely carry a similar mutational pattern and an evolutionary close amino
acid to one which confers resistance, might also confer resistance. GyrAPointCounter uses DIAMOND
(Buchfink et al., 2014) to align the reads to the gyrA QRDR reference sequences. Overall there are
three  main  phases  provided  by  three  commands  underlying  our  tool.  An  overview  of  the
GyrAPointCounter steps can be found in Figure 1 and below.

1. Generate the mutational database and isolate the QRDR region
The first command to run is generate_database.sh. The input for this command is the local path of the
newest version of the CARD database.  The CARD database (Comprehensive Antibiotic Resistance
Database) can be downloaded from the following official webpage. The main purpose of this phase is
to create  a local database which stores the  gyrA QRDR reference sequences and the corresponding
SNPs (Single Nucleotide Polymorphisms).

a) Extraction the fluoroquinolone-resistant gyrA references and the corresponding mutations

The necessary files for this steps are protein_fasta_protein_variant_model.fasta and snps.txt from the
CARD database file.  The protein_fasta_protein_variant_model.fasta file is then filtered for the GyrA
sequences  resistant  to  fluoroquinolones  and the  "single  resistance  variant"  or  "multiple  resistance
variants" of the SNPs are selected from the snsps.txt file. The two tables are parsed in the python
pandas environment.

b) Creation of the QRDR references file

The complete protein sequence of GyrA and the QRDR region of GyrA are generated (FASTA format).
To isolate only the QRDR portion, the sequences were cut using the following approach. First, a file
which contains the first 400 amino acids of GyrA proteins is generated. All the sequences in this file are
multiple sequence aligned using MAFFT (Katoh and Standley, 2013). The start and the stop position of
the QRDR is identified using the reference E. coli sequence. The QRDR is chosen to be no longer than
54 amino acids, around the same length as an Illumina short read. The sequences are cut accordingly
while the gaps corresponding to insertions or deletions were removed. This resulting file constitutes the
QRDR reference database.

c) Creation of the mutational database adjusted to the QRDR region
In the CARD database, the positions of the resistance-conferring mutations are numbered based  on the
full length of GyrA. To adjust the SNPs positions relative to the QRDR, DIAMOND is used to align
the QRDR sequences to the complete gyrase proteins generated in the previous step. The starting

https://card.mcmaster.ca/download
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 alignment position, the one where the QRDR region starts to align to the reference, was subtracted
from the  initial,  full-length-based  mutational  position.  For  example  if  the  initial  mutation  was  on
position 86 (according to CARD) and the start  position of the QRDR alignment to the full-length
reference is the 45th amino acid, then the mutation position in the QRDR sequence is 42 (86 – 45 + 1).
The mutations outside the QRDR are excluded. The CARD database also contains combinations of
mutations under “multiple resistance variants” meaning that the resistant phenotype was observed when
the GyrA possessed all these substitutions. However, it is not confirmed that their synergistic effect is
necessary to grant AMR, merely that their co-occurrence has been observed. For this reason, we treated
those mutations as being able to grant resistance interdependently. By adopting this approach, some
assumptions were introduced with the aim of enhancing the generalization power of our tool.

2. Aligning the reads to the references QRDR regions
To select only the reads belonging to  gyrA, the  Illumina sequencing reads provided by the user are
aligned against the data base using DIAMOND. The command for the aligned table is the following:

diamond blastx -q <QUERY_FILE> --db <REFERENCE_SEQUENCES.dmd> --threads 16 -e
1E-1 --id 70 --query-cover 96 -o OUTPUT_FILE.out  -k 3 -f 6 sseqid qseqid
qstart qstrand qend sstart send qseq_translated sseq length bitscore mismatch
pident

 A few reads can be smaller as a consequence of sequencing errors, in which case the confidence in
those reads is reduced. For this reason, the tool next checks if the length of the queries is at least 45.
The combination of minimum identity score of 70% and the minimum query cover of 96% were chosen
after testing various different parameter scores.

3. Counting the resistance-conferring mutations
The  command  which  counts  and  outputs  the  percentage  of  the  resistance-conferring  sequences  is
main.py. The command also contains an user-adjustable BLOSUM62 matrix threshold flag.

a) Assigning the most probable wild type references
The alignment table is parsed into python pandas environment.  The table contains information such as
the IDs of the query and the reference, their aligned sequences, the start and the stop positions of the
alignments, the length of the alignment, the identity score and the bit score. To assign which mutations
should be interrogated in a read, the top alignments of that particular read with the three references are
checked. The top three alignments are selected based on the identity score. Only the mutations which
are associated with the top three reference are searched for in the translated read (query).
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b) Checking which mutations are present in the reads

Figure 2. A demonstration of the GyrAPointCounter’s computing steps for identifying mutations. A read 
aligns to the QRDR of a reference sequence (E. coli in this example). SNP positions belonging to the 
mutational database are interrogated for the given reference sequence. The first substitution checked in 
this example is S18L. To find  the equivalent of the 18th position on the translated sequencing read, the 
position representing the start of the alignment on the reference (6), is subtracted from the mutation 
position relative to the QRDR (18). Once the position of the SNP is identified, the amino acid which is 
present at that position in the read is checked. If this amino acid shares a high similarity score  on 
the BLOSUM2 matrix with the substituted one (including itself), then the sequencing read is classified as
resistant. This process is repeated for all the mutations for that given reference if the identity score 
is at least 87%.

The alignment start position might not coincide with the first amino acid of the reference's QRDR.
Therefore,  the  mutational  positions  within  the  database formed in the previous  step  are  shifted  in
relation to the read sequence (Figure 2). To locate the mutation at the correct position, a comparable
method involving the subtraction of the alignment start position from the mutational position within the
database is employed.

Once the correct SNP location within the read sequence is identified, the position is checked for the
presence of the mutation according the species’ wildtype reference on which it aligned to. If the identity
of the alignment is at least 87%, then the program scans for all the possible substitutions with respect to
the reference sequence. If the identity is less, then only the substitutions in the 83, 84, 87 (E. coli
numbering) positions are considered.

We  hypothesized  that  not  all  possible  resistance-conferring  substitutions  have  been  confirmed  by
research studies. Consequently, certain potential substitutions that could be valid are absent from the
CARD database. For example when a mutation involving valine leads to resistance, it is probable that a
a substitution to leucine would yield a similar effect due to their chemical similarity. To enact this idea,
we  integrated  the  ability  to  classify  potential  substitutions  as  ones  that  confer  resistance.  This
classification utilizes numerical values derived from the BLOSUM62 substitution matrix. The user has 
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the flexibility to set a threshold for recognizing these probable substitutions (Figure 2). Finally, the
number of resistant sequences is counted against the non-resistant ones. The numbers are reported to
the user in the output, along with the percentages in a table.

II. Physicochemical classification tree model
A machine learning model was trained to predict the phenotype based on the sequence. First, the two
CARD tables,  protein_fasta_protein_variant_model.fasta  and  snps.txt,  were  parsed  into  the  python
environment as mentioned previously. A file containing the entire protein sequence of gyrA for all the
available  species  in  the CARD database was generated (FASTA format).  The latest  version of  the
CARD  database  during  this  internship  contained  information  about  curated  resistance-conferring
mutations  from  the  following  species:  Bartonella  bacilliformis,  Escherichia  coli,  Mycobacterium
tuberculosis,  Staphylococcus  aureus,  Mycobacterium  leprae,  Pseudomonas  aeruginosa,
Campylobacter  jejuni,  Acinetobacter  baumannii,  Haemophilus parainfluenzae,  Salmonella enterica,
Neisseria  gonorrhoeae,  Capnocytophaga  gingivalis,  Shigella  flexneri,  Cutibacterium  acnes,
Clostridioides difficile, Mycoplasma genitalium, Burkholderia dolosa and Helicobacter pylori.

A  suitable  training  dataset  was  constructed  as  follows.  For  every  reference  sequence  and  its
corresponding mutation, a mutated sequence was generated. However, these sequences only contained
one mutation each; multiple combinations of mutations were not created. The process of extracting the
QRDR followed a  similar  approach  as  outlined  earlier  for  GyrAPointFinder.  In  that  approach  we
described  how  multiple  sequence  alignment  (MSA)  was  employed.  However,  here  the  gaps
representing  the  insertions  and  deletions  were  retained.  Sequences  carrying  mutations  outside  the
QRDR were disregarded. The mutated and wildtype QRDRs were parsed to a CSV table format where
each  position  in  the  alignment  was  assigned  a  column.  This  file  was  then  imported  into  the   R
environment.

Each  amino  acid  letter  was  replaced  by five  physicochemical  numerical  values  as  determined  by
Atchley et. al, 2005 (Atchley et al., 2005), essentially expanding the number of columns by a factor of
five. The columns where the variance was minimal were excluded. A pre-made table containing the
Atchley factors was obtained from the following github page (https://github.com/vadimnazarov/kidera-
atchley). The wildtype class imbalance was addressed by using oversampling method. A classification
tree model was build on this dataset using  the rpart (Recursive Partitioning And Regression Trees)
package.

https://github.com/vadimnazarov/kidera-atchley
https://github.com/vadimnazarov/kidera-atchley
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III. Testing datasets
1. WGS E. coli dataset
An in-house E. coli dataset was provided by Msc. Aram Swinkels. The dataset contains WGS (Whole
Genome Sequencing)  Illumina pair-end short reads of  E. coli isolates for which the fluoroquinolone
resistance phenotype was determined by selection on McConkey agar plates coated with enrofloxacin.
The reads were analyzed using our two methods. After the pairwise alignment step, six reads mapped to
the ParC sequence.  To avoid this  contamination,  a filter  was applied on read (query) sequences to
match a few patterns unique to the E. coli ParC sequence. The reads that contained these patterns were
discarded from further analysis. For more details about the dataset please contact Msc. Aram Swinkels.

2. External validation dataset
The external validation dataset was compiled from the BV-BRC database which can be found at the
following  link. This database was queried to identify genomes with recorded phenotypes related to
fluoroquinolone treatment. A considerable number of genomes  have been downloaded. Those genomes
included species outside those belonging to the CARD database (the training set). GyrA sequences
were further extracted and the rest of the genomes were discarded. Subsequently, these genes were
subjected  to  pairwise  sequence  alignment  utilizing  DIAMOND  against  QRDR  of  the  reference
sequences of species featured within the CARD database.

The alignment table was analyzed using GyrAPointCounter. The pre-output table was analyzed in the
python pandas environment. Normally, this table is hidden to the user. This table is identical to the
alignment table but it additionally contains a classification prediction column consisting of True for
resistant and False for susceptible. The table was filtered for identical isolate genomes, keeping just one
of the duplicates. The BV-BRC database does not provide insight into the type of resistance mechanism
underlying the resistant phenotype. Consequently a resistant phenotype might not necessarily correlate
with  mutations  in  the  GyrA QRDR  region.  To  minimize  this  error,  the  experimentally  validated
resistant genomes which are identical to the susceptible reference (100% identity score) were filtered
out.

Further, for the validation of the machine learning model, the aligned and translated genome regions
were extracted. They were multiple sequence aligned with the training sequences and converted into a
CSV table as described previously for the training set, which was imported into R. Similarly to the
training set, the the validation set was transformed from amino acid letters into numerical values.

3. Shotgun metagenomics dataset
To evaluate the feasibility of our methods on a real metagenomics usage, a shotgun metagenomics
datasets was provided by Msc. Aram Swinkels. In his experiments, he tested the effect of enrofloxacin
usage on the chicken gut microbiome. The chicken were divided into three treatment groups and three
control  groups.  The  treatment  groups  were  treated  enrofloxacin  at  day  0.  A baseline  sample  was
collected at the start of the treatment.  Illumina shotgun metagenomics  was carried to investigate the
resistome. The sequencing was carried out by  using Illumina Novaseq S2 sequencer, 60 million reads
per sample, pair end short reads (150 base pairs).  Faecal samples were collected at five timepoints 

https://www.bv-brc.org/view/Bacteria/2#view_tab=amr
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after the treatment for each group while a seacal sample was collected at the sixth timepoint (day 37).
The dataset was analyzed with GyrAPointCounter and the tree-based model. For the tree-based model,
the  query  sequences  (the  reads)  were  extracted  from the  alignment  table  and  multiple  sequenced
aligned with the training set QRDR regions using MAFFT. The results were parsed into a csv file and
imported into R for analysis as described above. For more details about the dataset please contact Msc.
Aram Swinkels.

4. Notes on the versions
The project was carried out under the following software versions:  DIAMOND v2.1.8, MAFFT v7, R 
v4.2.2, python v3.9.12 with pandas v1.4.2,. The versions of the python libraries and R packages used in
this project are available on the github page (currently under construction). 

3. Results

I. Internal validation of the CARD dataset
As previously described, GyrAPointCounter relies on a set of rules derived from a few unconfirmed but
probable  assumptions.  While  these  assumptions  are  employed  with  the  aim  of  enhancing  the
generalization power, this could also bias the algorithm towards the positive class (resistant). To check
this hypothesis, GyrAPointCounter was tested on the same CARD dataset from which its rules are
derived from. More precisely, we wished to see if some wildtype sequences can be misclassified as
resistant due to the potential bias introduced by considering substitutions that surpass the threshold
within the  BLOSUM62 substitution  matrix.  To generate  a  working dataset  for  this  evaluation,  we
generated all the possible mutated sequences, where just one mutation was incorporated per sequence.

The results showed that all the sequences are predicted correctly when the threshold option for the
score of the BLOSUM62 substitution matrix is at least 3. When the threshold is at least a score of 2
then  wildtype  Clostridioides  difficile is  predicted  as  resistant.  The  predicted  mutation  was  R26K
(QRDR numbering).  These  results  suggest  that  running GyrAPointCounter  with  this  cutoff  setting
might lead to an over-prediction issue.

II. Internal validation on E. coli isolates
To assess the performance of our methods on species already available in the CARD database, we used
in-house WGS  E. coli sequencing data. The reads belong to fluoroquinolone-resistant (n = 93) and
susceptible isolates (n = 111) for which the phenotype had been confirmed experimentally. ParC and
GyrA are  subunits  of  topoisomerases  enzymes  which  both  share  high  sequence  similarity  in  their
respective  QRDR.  The  high  cutoffs  employed  during  the  DIAMOND  mapping  step,  such  as  the
minimal percentage of query cover, were selected especially to minimize the off-target reads, such as
those belonging to  parC.  Nonetheless,  some  parC reads still  mapped to the  gyrA’s  QRDR region.
Normally, GyrAPointCounter does not offer the option to remove the  parC contamination. However,
because this issue can be mitigated in future update of the tool by incorporating parC along with gyrA
in the counting , we analyzed the dataset with and without the inclusion of the invasive parC reads. For
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this experiment, the results were identical for the cutoffs of 2 and 3 of the substitution matrix. The
results are presented in the Table 1.

Sample name % resistance GPC 
without parC reads

% resistance GPC with 
parC reads

% resistance 
classification tree model

E. coli susceptible reads 0.09 0.09 0.09
E. coli resistant reads 91 86 91

Table 1. Table illustrating the performance of the supervised learning mode and GyrAPointCounter (GPC). 
In some cases, the reads belonging to parC were filtered out.

Irrespective of  the quantification method,  out  of  all  the reads  which belonged to the experimental
susceptible phenotype, only one read was classified as resistant (1 out of 111).  Upon visual inspection,
the mentioned read contained the S83L mutation which should be indicative of a resistant phenotype.
This implies a sequencing error rather than a miss-classification error (such as bar-code bleeding). The
vast majority of reads associated with the resistant phenotype were correctly classified by our algorithm
after excluding parC reads. More specifically, 85 out of 93 reads (91%) were labeled as belonging to
the resistant isolates. Upon visual inspection, the the misclassified reads were identical to the wildtype
reference, meaning that the gyrA gene was not responsible for the resistant phenotype. The machine
learning model displayed identical results. Taking all of these findings together, both our methods are
performing acculturate on E. coli isolates.

III. External validation using GyrAPointCounter on novel 
species
It  is  important to evaluate the capacity of our two methods to generalize beyond the training data
(CARD data). Therefore, GyrAPointCounter and the machine-learning model were tested on genomes
belonging to species different from the CARD dataset,  which were downloaded from the BV-BRC
database. The gyrA genes were extracted from the genomes and submitted to the analysis with our two
methods.

The  structure of the validation dataset and the outcomes as predicted by GyrAPointCounter can be
observed in Table 2. The results are identical when using the “2” and “3” cutoffs for the BLOSUM62
matrix. The Recall of GyrAPointCounter was 0.87 and the Specificity was 0.75.  It is worth mentioning
that  BV-BRC  data  might  contain  errors.  Upon  inspection,  the  seemingly  wrongly  classified
Pseudomonas stutzeri was identical to the wildtype references sequences to which it aligned to. It it
highly  likely  that  the  resistance  is  not  a  result  of  a  mutation  in  the  QRDR,  in  which  case
GyrAPointCounter did not mislabel. One of the Shigella sonnei isolates contained the S83L mutation
which  is  indicative  of  a  resistant  phenotype,  however,  while  the  mutation  was  called  out  by  our
algorithm,  the  BV-BRC  label  of  the  isolate  was  susceptible.  Moreover,  the  two  mislabeled
Enterobacter cloacae isolates harbored the S83F and S83I mutations, while their QRDR regions shared
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high similarity to those of E. coli and Salmonella enterica. For these two species, the S83L and S83F
substitutions  are  resistance  inducing,  whereas  the two  Enterobacter  cloacae reads  were labeled as
susceptible in the BV-BRC database.

Name species Susceptible Resistant Correctly predicted
Acinetobacter pittii 1 1 Yes

Citrobacter freundii 1 1 Yes
Corynebacterium diphtheriae 1 4 One false negative

Corynebacterium striatum 1 1 Yes

Enterobacter asburiae 1 1 Yes

Enterobacter cloacae 2 4 Two false positives

Shigella sonnei 2 2 One false positive

Klebsiella aerogenes 2 2 Yes

Klebsiella oxytoca 1 0 Yes

Klebsiella pneumoniae 2 3 One false positive

Klebsiella pneumoniae subsp. 
pneumoniae

1 1 Yes

Proteus mirabilis 1 1 One false negative
Pseudomonas stutzeri 0 2 One false negative

Serratia marcescens 1 1 Yes

Table 2.  The composition of the validation dataset and the results inferred by GyrAPointCounter. The
number of isolates carrying one of the two phenotypes is indicated on the second and third columns. The
last  column  shows  the  output  classification,  where  the  type  of  error  is  specified.  The  resistant
phenotype is considered the positive class.

Finally, the validation dataset was tested on the classification-tree model. The reported Specificity and
Sensitivity were 1 and 0.68 respectively. The miss-predicted species included Enterobacter cloacae,
Klebsiella pneumoniae, Shigella sonnei,  which were the same isolates that were wrongly labeled by
GyrAPointCounter. While we maintain our doubts about the  Shigella sonnei and Enterobacter cloacae
isolates as mentioned earlier, these results are suggestive of a classification bias towards the resistant
class.
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IV. Shotgun metagenomics dataset validation

Figure 3. The proportions of reads bearing resistance signatures after the enrofloxacin treatment under 
the conservative and flexible options. For both options, the treated samples tend to exceed the 
resistance proportions of the control. Higher resistance scores can be observed for the flexible options.
con  - control samples where no antibiotic was used; enro -  enrofloxacin-treated samples; S1-3 - 
subgroups

The aim of the project is to create a method to quantify resistance levels from shotgun metagenomics
data.  To  test  the  feasibility  of  GyrAPointCounter  on  a  metagenomics  dataset,  in-house  data  was
analyzed, which has kindly been provided by Msc. Aram Swinkels. Farm chickens were divided into
treatment, here named “enro”, and control groups and subsequently into three subgroups, namely S1,
S2, S3. Fecal samples were collected at five timepoints after the treatment, while the sixth timepoint is
represented  by  seacal  samples.  An  additional  sample  was  collected  at  the  start  of  the  treatment
(timepoint 0).

GyrAPointCounter  ran  using  two  distinct  configurations  here  referred  to  as  "flexible"  and
"conservative."  In  the  "flexible"  setting,  only  substitutions  involving  amino  acids  that  exhibited  a
minimum  score  of  2  on  the  BLOSUM62  matrix  were  considered  as  mutations  which  confer
fluroquinolone resistance. Conversely, the "conservative" option utilized a substitution matrix threshold
of 3 to identify AMR-conferring mutations.

Overall, for both options it can be noted that the control groups have lower resistance levels compared
to the enrofloxacin-treated samples with few exceptions (Figure 3), which is in agreement with the
experimental expectations.  In general,  the trends of the subgroups are  similar for the two options.
However, enro-S1 and enro-S3 subgroups were the exception, displaying significantly lower resistance
levels at timepoints 3 and 5 respectively in the “conservative” model. For the exact number of reads
that  mapped  to  GyrA  QRDR  and  the  predictions  under  the  “flexible”  option  please  see  the
Supplementary table 1.
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Figure 4. (A) Table comparing the top 3 mutations for the time point 3 S1-enro samples for the flexible 
and conservative options. (B) Three random reads classified as having R26K mutation by the flexible 
model. In bold it can be observed that the R26K is a false positive.

We next investigated the cause of the appearance of  S1-enro peak at timepoint 3 compared to the
conservative mode. When inspecting the top mutations for each sample, the flexible model presented
additional  R26K  mutations  (Figure  4A).  The  reads  predicted  as  containing  R26K  mutations  also
mapped  to the Clostridioides difficile, meaning that it employed its decision rules. As observed earlier
for the internal validation dataset, the “flexible” model mislabels the Clostridioides difficile wildtypes
by detecting the R26K, which is a false positive. This exact error is present at the S1-enro timepoint 3
sample. However, when inspecting the reads’ sequences, no R26K mutation could be identified (Figure
4B).

We next tested the supervised learning model on the same dataset to see if the results are reproducible
despite the two different approaches

Figure 5.   The proportions of reads bearing resistance signatures after the enrofloxacin treatment of
farm chickens based on the predictions of the supervised learning classification tree model. Overall, the
predicted resistance levels are higher when compared to GyrAPointCounter. con  - control samples where no
antibiotic was used; enro -  enrofloxacin-treated samples
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The predictions of the machine learning model show both agreements and disparities between the two
methods (Figure 5). There are some consistent peaks predicted by all three models such as the enro-S1
group at timepoint 1, enro-S2 at timepoint 3, enro-S3 at timepoint 2. There are also troughs such as the
enro-S2  at  timepoint 3  group which are consistent  with the previous models.  The trends for the
control-S1 and control-S3 groups are more similar to those of the “flexible” model. A major difference
takes place at timepoint 5 where none of the control groups exceed the resistance levels of the treated
samples,  unlike  the  classifications  predicted  by  GyrAPointCounter.  Taken  together,  these  results
suggest that while the exact levels of fluoroquinolone resistance differ, there are common patterns in
the data reported by both our methods.

4. Discussion

Fluoroquinolone  resistance arises  through either  mutations  in  the QRDR regions  of  topoisomerase
genes (mainly gyrA and parC), the acquisition of plasmid genes or overexpression of porins (Hooper &
Jacoby,  2015;  Cattoir  et  al.,  2007).  Currently,  there  are  no  existing  tools  that  can  quantify
fluoroquinolone  resistance-inducing  point  mutations  from  shotgun  metagenomics  data.  Here,  we
present a novel tool, GyrAPointFinder and a machine learning model designed for this purpose.

PointFinder, a similar tool capable of detecting point mutations from WGS reads of specific species,
employs  a  database  mapping  strategy  (Zankari  et  al.,  2017).  GyrAPointCounter  follows  a  similar
approach but extends the database to include all  available proteins for gyrA present in  the CARD
database.  This  strategy  makes  GyrAPointCounter   suitable  for  metagenomics  data.  In  contrast  to
PointFinder's best-hit approach, our classification decision of resistant/susceptible considers the precise
position  of  the  mutation  compared  to  the  reference  gene.  Moreover,  our  algorithm  expands  its
generalization capacity by including a set of assumptions and rules which expand the repertoire of
situations  in  which  a  SNP  can  be  classified  as  resistant.  For  example  the  decision  algorithm
accommodates likely substitutions (for instance I → L) by integrating additional rules.

Our methods demonstrate agreement with  E. coli experimental data. We tested GyrAPointCounter’s
performance  on  an  in-house  dataset  comprised  of  E.  coli samples  for  which  the  phenotype  was
determined by antibiotic susceptibility testing. The tool exhibited a perfect classification performance
when the parC reads were removed. However, the presence of parC reads indicates that those have not
been filtered out completely during the pairwise-alignment step. The most prevalent mutation identified
was  S83L,  which  was  previously  reported  to  be  the  most  common  fluoroquinolone-resistant
substitution in E. coli (Johnning et al., 2015). The classification tree model showed identical results to
our GyrAPointCounter. These results validate our methods’ ability to apply appropriate decision rules
in the case of E. coli.

Our methods demonstrated a strong capacity to generalize effectively. GyrA genes belonging to species
both related and distant to the ones selected in the CARD dataset were analyzed with our two methods. 
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Both methods showed an enhanced capacity  to  detect  the  resistant  class.  However,  the specificity
suffered (0.75 for GyrAPointCounter and 0.68 for the machine learning model). It is worth mentioning
that the data was downloaded from a database containing non-curated phenotypic data and for this
reason we believe that the Specificity values to be deflated. As mentioned in the results section, there
are reasons to believe that phenotype is not directly a reflection of the gyrA’s QRDR. This means that
some seemingly mislabeled sequences were in fact correctly classified. While we remain reserved in
diagnosing  the performance of our methods with respect to an absolute Specificity value, the results
suggest that the supervised learning model might have a over-prediction bias for the positive class
(resistant). This was expected, as the dataset suffered from imbalanced classes, specifically there were
more resistant sequences than wildtypes. To solve this issue, an oversampling method was used, which
poses the risk of over-training the model.

Lastly,  we  measured  quinolone  resistance  in  a  metagenomics  dataset  where  farm  chickens  were
exposed to enrofloxacin and samples were collected after the treatment. Experimental data for E. coli
(data not shown here; part of the PhD project of Msc. Aram Swinkels) indicated that the second day
after  treatment  the  resistant  levels  significantly  rise  and  steadily  remain  up  for  the  rest  of  the
experiment. Our tool offers a view at the multi-species resistome and as such, the resistance levels
significantly  fluctuated  between  timepoints  and  conditions.  However,  except  a  few  instances,  the
resistance levels in the enrofloxacin-treated chickens exceeded the control samples, demonstrating its
capability to comparatively differentiate between different conditions. Some common patterns can be
distinguished between the “flexible”, “conservative” and the machine learning models, which raises the
confidence in  those  results.  However,  while  the trends  are  similar  the  resistance levels  values  are
distinct.

Although the untreated control versus the treated sample at timepoint 3 displayed the most significant
fluctuation in resistance, it is possible for the true levels to be different. Microbiome analysis (this data
is  part  of  the  PhD project  of  Msc.  Aram Swinkels)  revealed  Lactobacillus  johnsoni  as  the  most
prevalent  species  in  the  second  and third  timeponts  samples.  The point  mutations  responsible  for
quinolone  resistance  in  this  species  are  unknown. Moreover,  the  QRDR  region  of  Lactobacillus
johnsoni is evolutionary distant compared to the available CARD reference sequences (Supplementary
figure 1). For this species, no mutation could be detected by GyrAPointCounter (data not shown). It is
possible that there are point mutations in this species which remain undetected by our approach due to
data  limitations.  Additionally,  while  the  gyrA QRDR  is  typically  the  primary  hot-spot  for  such
mutations, certain species primarily exhibit mutations in other genes, such as parC (Xiao et al., 2012),
which our current tool version does not account for.

Based  on  the  currently  validated  data  at  hand,  our  tool  demonstrated  its  ability  to  effectively
differentiate  resistance  levels  among  variously  treated  samples  for  gyrA.  Future  updates  might
incorporate  parC, gyrB  and parE into the measurement. Additionally, hyper parameters such as the
maximum number of hits  to analyze and the BLOSUM62 substitution values thresholds should be
tested  further  and  optimized.  If  our  algorithmic  approach  is  validated  as  accurate  using  new
meatgenomics datasets  with clear experimental outputs,  the same principle can be applied to other
point mutations conferring resistance to different antibiotics such as tetracycline or streptomycin 
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among others (Melançon et al., 1998, Yassin et al., 2005). However, in the case of point mutations in
the RNA-encoding genes such as 16S or  23S, a  different  approach should be investigated,  as our
current method generalizes based on the BLOSUM62 matrix, which will not be feasible for non-protein
coding genes. Finally, more validated sequences available in the online databases, specifically CARD,
have a great potential for directly improving the efficiency and reliability of our algorithm. 

It  was already shown in this  project  that  “flexible” option is  prone to  Clostridioides difficile false
positives and might bias the results. This suggests that GyrAPointCounter performed more reliably
with  a   more  stringent  threshold.  The  extent  on  which  this  conservative   threshold  affects  the
generalization power is  unknown. Nevertheless,  we advise users to interpret  the results  cautiously.
Since the actual resistance levels are still uncertain, we recommend utilizing the tool as a means of
relative quantification rather than absolute measurement.

5. Acknowledgments
Of course, this project would not have come to fruition without the help of my supervisor. I would like
to thank him for maintaining a very positive attitude throughout the project, especially in the face of
constant disappointments during the first months.



Page 21

6. Supplementary

Supplementary figure 1. Phylogenetic tree of wildtype GyrA QRDR of multiple species. In blue are the 
species which can be found in CARD while in pink are the QRDR sequences of species validated in our 
external dataset. The tree was build using IQ-TREE (Nguyen et al., 2015) an visualized using iTOL. The 
QRDR sequences were aligned using MAFFT.
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Supplementary table 1. Except from the excel table displaying the results of the metagenomics dataset 
validation experiment under the flexible option. Trues represents the number of resistant reads and 
falses the wildtype predicted reads. S- subgroup, time – timepoint, condition – weather the samples 
belong to the treatment or control groups, % - percentage of the resistant reads from the total
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