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Abstract

Artificial intelligence (AI) is increasingly being used in healthcare, particularly for
interpreting medical images. However, there are growing concerns regarding the presence
of biases in these AI models, which raise important fairness considerations. This study
investigates biases in artificial intelligence (AI) models for chest X-ray diagnosis and
explores the role of Explainable AI (XAI) in understanding model decisions. Biases were
observed in model performance across different patient groups and diseases. Various XAI
techniques were employed to generate explanations for model decisions, and comparisons
were made with explanations provided by doctors. We identified an optimized version of
occlusion as the most accurate XAI technique in this case, which also provided a consistent
accuracy of the explanations across all patient groups. Indeed, the explanations remained
equally accurate regardless of variations in model performance for different subgroups,
suggesting the absence of model bias amplification. Evaluating the correctness of XAI
explanations posed challenges due to the limited availability of ground truth. In order
to increase the power of our analysis, we explored alternative evaluation methods, like
deletion or insertion curves, but reported them as unsuitable for chest X-ray images. We
have therefore established some recommendations for using XAI on chest X-ray images.
Given the reported absence of biases in the explanations, our aim is also to instill confidence
in clinical stakeholders regarding XAI techniques.

Keywords: fairness, explainability, chest X-rays, artificial intelligence.



Layman’s Summary

Artificial Intelligence (AI) is a powerful technology that mimics human learning and
reasoning to solve problems. In healthcare, AI can be used to create models that diagnose
diseases based on chest X-ray images, similar to how a doctor would.

However, researchers have found that these AI models can sometimes be biased, just
like humans. For example, a model may perform better for males than females, leading
to unfair outcomes. To build trust in these models, it is crucial for doctors to understand
how they make decisions.

This is where Explainable AI (XAI) comes in. XAI aims to make AI models more
understandable by providing explanations for their decisions. In the case of chest X-ray
diagnosis, an XAI technique would highlight the important regions in the image that
influenced the model’s decision. For instance, if the model determines a heart-related
disease, the explanation should point out the heart as the crucial area.

In our study, we confirmed the presence of biases in chest X-ray models. We noticed
that the performance of the model varied depending on the disease and the group of
patients (e.g., males vs. females, younger vs. older). To understand why the model was
making these decisions, we used XAI techniques to generate explanations.

However, we observed that different XAI techniques provided different explanations.
So, we compared the explanations with those given by doctors and selected the technique
that aligned better with the doctors’ explanations. With this analysis we were able to
find the best explainer for this case. Interestingly, we found that the XAI technique’s
explanations were equally accurate for all groups of patients. This suggests that even
if the model performs differently for different patient’s groups, the explanations are not
affected by this. The explanations will be equally accurate for all groups. However, we
need to conduct further research with more cases to confirm these findings.

Furthermore, we encountered challenges in evaluating the correctness of the XAI
explanations. It is difficult to gather enough information about how doctors explain
their decisions, making alternative evaluation methods necessary. We tried to evaluate
explanations without the doctor’s explanations. But unfortunately, the evaluation methods
we tried were not suitable for our chest X-ray images.

In summary, addressing biases and enhancing the interpretability of AI models
through XAI techniques are vital steps in ensuring fairness and trust in healthcare appli-
cations. Further research is needed to validate the findings, but we suggest that XAI
methods do not amplify model biases, which should motivate clinicians to trust XAI.
Developing suitable evaluation methods will contribute to advancing the field of XAI in
chest X-ray diagnosis. We would like to ultimately use these techniques to evaluate why
the model is sometimes wrong.
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1 Introduction

1.1 Motivation and contribution

Healthcare is being revolutionized with technological advances and, particularly, with
Artificial Intelligence (AI). Research on AI applied to medicine is rapidly expanding, with
the number of related publications currently five times greater than it was a decade ago
[1]. The use of AI for the interpretation of medical imaging has been of great success [2],
and its implementation seems to be particularly promising in the radiology field, as X-ray
images follow a universal standard that facilitates the integration with AI [3]. The urgent
need for rapid interpretation of chest X-ray images during the COVID-19 pandemic has
further accelerated research in this area [4, 5].

Despite the notable advancements, the adoption of these tools in hospitals across
many high-income countries remains sluggish [6]. Several studies have highlighted two
significant concerns voiced by clinical stakeholders: a lack of transparency, which refers to
the challenge of understanding the decision-making process of AI models, and the potential
biases embedded within these models [7, 8].

First of all, biases in AI pose a genuine concern that has been relatively recently
identified in the medical and other fields [9, 10]. Since then, this issue has been carefully
studied [11–14]. These biases can arise either from the training data that fails to represent
the demographics of the target population [10] or from inherent biases in the learning
process itself [15]. When a model exhibits bias, it demonstrates unequal performance
across different subpopulations, often characterized by protected attributes such as sex,
age, or race. In other words, biased models are inherently unfair, and in the context of
medicine, this poses significant risks and violates bioethical principles [16]. Indeed, these
fairness issues have also been reported for models classifying chest X-ray images [17–19],
as well as other imaging modalities like MRI [20, 21].

On the other hand, models designed for image interpretation are often complex and
regarded as black boxes. And understanding the output of a black box is challenging.
Explainable AI (XAI) tackles this problem of transparency, by aiming to elucidate the
behavior of such models using various techniques [22]. The form of the explanation will
depend on the goal and input of the model. In the case of image classifiers, built with
Convolutional Neural Networks (CNN), we expect a visual explanation in the form of a
heatmap. This heatmap highlights those features of the input image that were important
for the final classification. These are also known as saliency maps or attribution heatmaps.
XAI on medical imaging is extensively reviewed in [23, 24].

This project combines both concerns, fairness and explainability in an attempt to
audit models. Specifically, we concentrate on classifiers that categorize chest X-ray images
for specific conditions or diseases, known as multi-label classifiers. Ideally, we want (1)
to once again establish the presence of biases within these classifiers, and (2) to employ
XAI techniques to comprehend the reasons behind the frequent misclassification of data
points from a particular subpopulation. It is important to note that we attribute biases to
the model itself rather than the data. For instance, we may observe the model excessively
focusing on the female breast as a factor for predicting a disease that is actually unrelated
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to it.

Nevertheless, prior to delving into the understanding of misclassifications using XAI,
it is crucial to establish the trustworthiness of the explanations provided. We aim (1) to
benchmark a selection of XAI techniques (i.e., explainers) with different metrics, and (2)
to assess whether the explanations are equally accurate for all subpopulations. By adding
this explainability step, we might be generating new sources of biases or amplifying those
embedded in the model.

1.2 Related work

The integration of fairness and explainability to comprehend biases was inspired by
the work of FairLens [12]. It begins by identifying the subpopulations for which the model
demonstrates poorer performance. Subsequently, it leverages XAI techniques to provide
explanations for misclassified instances within those subpopulations. Notably, the model
evaluated in FairLens was a multi-label classifier utilizing tabular data. To the best of
our knowledge, there is currently no literature available that applies a similar approach
specifically to image datasets.

Several datasets with chest X-ray images have been released. The NIH ChestX-ray
[25] was initially released with the annotation for 8 chest diseases, but they later added
more labels adding up to 14 diseases (NIH ChestX-ray 14). With the release of this
dataset, the first efforts were made to employ state-of-the-art algorithms for classifying
these images [25, 26]. A few years later, other groups published similar but larger datasets,
like CheXpert [27], MIMIC-CXR [28] and PadChest [29], which further stimulated research
on new classifiers.

Researchers quickly raised concerns regarding fairness issues in chest X-ray classifiers.
It was discovered that gender-imbalanced datasets led to biased classifiers [18]. As such,
classifiers trained with a higher proportion of male images, showed a lower performance
when tested with female images, and vice versa. Furthermore, Seyyed et al. reported
algorithmic underdiagnosis biases affecting traditionally underserved subpopulations, such
as black female patients with low income [17]. Discussion about the sources of the biases
(i.e., whether they were data-based or algorithmic biases) followed this publication [30,
31].

Regarding algorithmic biases, some proposed techniques for model debiasing involved
fine-tuning and pruning methods [32]. However, another study found that aiming for equal
performance across the entire population actually resulted in worsened performance for all
subpopulations [33]. They concluded that their debiasing strategies did not surpass the
effectiveness of simple data balancing techniques.

In a different approach, Luo et al. focused on addressing shortcut learning as a
potential source of biases and introduced a novel algorithm to mitigate it [34]. Shortcut
learning occurs when a model learns spurious correlations that are irrelevant to the
classification task and do not generalize to other datasets. This behavior was observed
in COVID image classifiers, where the learned shortcuts were lateral markers indicating
some information about the image acquisition process [35]. However, shortcuts can also
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manifest as anatomical features that differentiate patient groups based on demographics
rather than diseases, such as the female breast. Notably, models have been trained to
predict patient demographics (i.e., age, sex, and race) from chest X-ray images [36]. In a
recent study, the same trained model used for disease classification achieved remarkable
success in classifying sex and race [37]. But based on other analysis, they argued that
this could not be solely used to establish the source of the model biased to be anatomical
shortcuts that differentiate patients demographically.

In terms of explainability, there is no consensus about the XAI technique to be
used with chest X-ray image classifiers [23, 38]. It is common to find publications
that use explainers as an additional step (post-hoc) for assessing the model (e.g., [39]).
But also, some researchers propose modifications to the CNN (like [40, 41]) to make it
more interpretable. Among the post-hoc explainers, those generating Class Attention
Maps (CAM) are prevalent [38]. Recent benchmarking studies have compared different
explainers used with chest X-ray image classifiers, with GradCAM being reported as
superior but still limited compared to human annotations of disease localization [42].
Another novel explainer, PYLON, has also undergone benchmarking with other explainers
by using human annotations as the ground truth [43]. However, there is no standardized
metric for comparing these explainers, although intersection over union (IOU) is commonly
used to evaluate the overlap. Efforts have also been made to evaluate explanations without
relying on ground truth annotations, and fidelity metrics have been proposed. These are
calculated by perturbing the image regions regarded as important for the classification,
and quantifying the change in model’s output [44, 45]. However, the debate around these
fidelity metrics is ongoing [46–48].

1.3 Theoretical background

1.3.1 DenseNet-121 model

Seyyed et. al. reported biased chest X-ray classifiers [17] using the DenseNet-121
architecture [49]. DenseNet-121 is a densely connected Convolutional Neural Network
(CNN) designed to address the problem of information loss that occurs when the number
of layers is too high. Particularly, DenseNet-121 is built in such a way that all convolutional
layers (120 in total) are connected to each other within four dense blocks (Fig 1). Within
a dense block, all feature maps from one layer are concatenated to those produced by the
previous layer, which have the same size. Downsampling is performed after each dense
block using convolution and pooling operations. At the end of the network, the resulting
feature maps from the last block are average pooled and passed through a fully connected
layer. For the chest X-ray classifier, the fully connected layer finally converts the feature
maps into a linear vector, with each element representing the score for a specific disease.
These scores will be then transformed into probabilities ranging from 0 to 1 using a sigmoid
layer, assuming a multi-label classification problem (i.e., one image can be classified with
more than one disease independently of the probability for the rest of the diseases). The
model used pre-trained weights from the ImageNet dataset [50] rather than being trained
from scratch.
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Fig. 1. Densenet-121 architecture. Denset-121 consists of a total of 120 convolutional layers, which

are connected to each other within 4 dense blocks (with 6, 12, 24 and 16 convolutional units,

respectively). Between blocks, downsampling of the feature maps is done via convolution and pooling

(also referred to as transition layers). In case of feeding the network with a 256x256 image, the output

size of each dense block are shown at the right-bottom corner. Figure adapted from [49].

1.3.2 Explainability methods

XAI techniques have been categorized under different aspects [51]. First, depending
on the complexity of the model being explained, explanations can be generated intrinsically
or in a post-hoc way. If generated intrinsically, the model needs to be interpretable on
its own, so it must be simple enough to extract explanations or rules during the training
of the model. However, image classifiers are normally too complex, making this kind
of intrinsic explanation not suitable, though there is ongoing research on interpretable
classifiers [52, 53]. Indeed, obtaining a post-hoc explanation is more common in these
cases. This is done by analyzing the trained model or attempting to understand the
relationships learned between the input and the output. These last options also branch off
XAI techniques into model-aware, when they rely on the internal structure of the model,
or model-agnostic, when they just assess the relationships between the input and output of
the model. And finally, based on the scope of the explanation, we can distinguish between
local and global explainers. While local explanations assess single predictions, a global
explanation would summarize it to understand the model as a whole. Again, given the
complexity of image classifiers, the latter is difficult to achieve.

As previously mentioned, the categorization of XAI techniques for image classifiers
mainly focuses on the distinction between model-aware or model-agnostic methods,
while fixing the explanation to be local and post-hoc. All these methods will produce
an attribution heatmap, but they might follow different approaches for this. In the
literature, we can still find another classification based on the approach: gradient- (or
backpropagation-) based and perturbation-based techniques. But, for the cases we will
present, it translates to the same model-aware vs model-agnostic distinction.
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GradCAM [54], Integrated Gradients (IG) [55] and GradientSHAP [56] are three
gradient-based (and model-aware) methods recurrently used. Gradients are important for
understanding how features influence the score of the model for a given class. The idea of
such explainers is to compute the gradients of the output with respect to the input (IG
and GradientSHAP) or the extracted features (GradCAM) via backpropagation, using the
same weights obtained during the training of the model. These gradients are then used to
calculate the attribution of each pixel for the class of interest.

Given a class c, the function targeting the class as Fc and an input x:

• GradCAM [54]: for a given class c, this explainer computes the gradient of the
model score F (x) with respect to feature maps Ak by backpropagation until the

last convolutional layer (∂Fc(x)
∂Ak ). For each feature map (of size Z), the gradients are

average-pooled to compute the neuron importance weights αk
c as

αk
c =

1

Z

∑
i

∑
j

∂Fc(x)

∂Ak
ij

Next, a weighted linear combination of the feature maps is computed to obtain
the attribution heatmap, which includes only positive values because of the ReLU
function:

Lc
GradCAM = ReLU(

∑
k

αc
kA

k)

It is important to note that (1) this heatmap will have the same size as the
convolutional feature maps (i.e., Z) and (2) F (x) corresponds here to the score given
by the model in the form of logits and not the probabilities.

• IG [55]: this method relies on a baseline x′, which normally corresponds to a black
image. IG generates different image inputs that go from this baseline to the original
image, controlled by α. For each of these inputs, it computes the gradients of the
output with respect to the original input. The integrated gradient needs to be
computed independently for each input dimension i as:

IGi(x) = (xi − x′
i)

∫ 1

α=0

∂F (x′ + α(x− x′))

∂xi

dα

Normally, to improve the resulting IG heatmaps, SmoothGrad [57] is also
implemented. SmoothGrad creates noisy copies of the original image, for which the
gradients are computed independently for each case and averaged at the end.

• GradientSHAP: this explainer released by Captum [56], a Pytorch library for model
interpretation, follows the ideas behind expected gradients [58] and SHAP values
[59]. It intrinsically uses SmoothGrad [57]. Instead of using a single baseline, this
is chosen given a baseline distribution D. It also selects random points along the
transition from the baseline to the original image (α parameter) and computes the
expected gradient of the output with respect to these randomly chosen points. The
final SHAP value corresponds to the expected gradient multiplied by the difference
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between the input and the baseline value:

SHAPi(x) = (xi − x′
i)Ex′∼D,α∼U(0,1)

∂F (x′ + α(x− x′))

∂xi

On the other hand, occlusion [60] is a straightforward example of perturbation-based
(model-agnostic) methods. These methods also require a baseline similar to the one used
by IG. However, they do not compute the gradients, but simply perturb the original input
image and quantify the changes in the model’s output.

• Occlusion [60]: by occluding different patches from the original image, the attribution
of the occluded patch is computed as the difference between the output given the
original image and the perturbed image. The process iteratively hides different image
regions, and this results in the final heatmap. The patch size and stride (the pixel
distance for patch movement) can be adjusted. When regions are occluded in multiple
steps (with a smaller stride than the patch size), the attribution is computed as the
average difference in output. It is worth noting that all pixels occluded by one single
patch will receive the same attribution value.
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2 Results

2.1 The models exhibit reproducible biases and give rise to disease-specific

affected subpopulations

We trained and assessed different classifiers to predict the presence or absence
of 13 to 14 chest diseases from X-ray images. Following the work done by Seyyed
et al. [17], we utilized three datasets with similar data statistics but varying in size
(S1): NIH ChestX-ray14 (NIH), CheXpert (CXP), and MIMIC-CXR (MIMIC). To ensure
reproducibility, we adopted the same data splits for training, testing, and validation as
described in the paper. Additionally, we employed an alternative data split for NIH,
where we grouped all the images with a bounding box annotation (i.e., ground truth
image localization of a disease) into the test set (S2). This alternative version of NIH is
referred to as ’alternative NIH’ in the rest of the report. We reduced the size of all the
images to reduce the storage space.

Since we aim to reproduce the models from the original work, we needed to
first achieve a similar performance. The original study presented underdiagnosis and
overdiagnosis rates for the ”no finding” label. Hence, we also computed the false positive
rate (FPR) and false negative rate (FNR) specifically for the ”no finding” label for our
models, that had been trained with an upgraded Pytorch [61] version. These rates were
calculated for different subpopulations based on the division of patients by sex and age.
We obtained very similar results to those in the original work (Fig S1), as well as close
accuracy of the models given by the area under the curve (AUC) (Table S3). By ensuring
consistency in these performance metrics, we can validate the reproducibility of the models,
even with the image resizing and Pytorch upgrade.

With the alternative NIH dataset, we observed changes in the model’s performance
with respect to the original NIH case. Still, significant biases persisted. While the
original study by Seyyed et al. [17] primarily focused on the ”no finding” label to
detect underdiagnosis and overdiagnosis, our main focus lies in evaluating the model’s
performance when classifying specific diseases. Specifically, we were interested in assessing
the sensitivity of the model in predicting each disease. To accomplish this, we computed
the true positive rate (TPR) for each disease and subpopulation (2). Our analysis revealed
that while some diseases exhibited lower performance for female and younger patients
(such as atelectasis, effusion, mass, nodule, and edema), the detection of other diseases
demonstrated inferior results for males (e.g., pneumothorax) and older patients (e.g.,
cardiomegaly). Hence, the subpopulations affected by lower performance were inconsistent
and varied depending on the specific disease being evaluated.

2.2 Explanations with occlusion show the strongest agreement with the

ground truth-bounding boxes

In order to understand the reasons behind the model’s disease predictions, we wanted
to explain the regions of interest that contribute to classifying a label as positive. But
before this, we want to ensure the quality and reliability of these explanations. We
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Fig. 2. Sensitivity biases in the model. Model performance calculated as the true positive rate or

sensitivity for the different subpopulations (by sex: males (M) and females (F); and by age divided

into ventiles as 0-20, 20-40, 40-60, 60-80 and 80 or older). The model is trained and tested with the

alternative NIH.

analyzed a selection of four explainers for image classification: GradCAM [54], integrated
gradients (IG) [55], GradientSHAP [56, 59], and occlusion [60].
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To assess which method produced the most accurate explanations, we focused on the
bounding boxes that were annotated for some images of the NIH dataset (984 in total).
These bounding boxes indicate the true localization of diseases in the images. As these
annotated images are exclusively available in the alternative NIH test set, our analysis in
this section will solely refer to this dataset. Specifically, we consider the pairs of X-ray
images and diseases that were correctly classified as positive (TP) and possess bounding
box annotations (574 in total). For each of these pairs, we employed the four explainers
to generate attribution heatmaps (i.e., explanations). It is worth noting that we were
working with a reduced set of eight disease labels: atelectasis, cardiomegaly, effusion,
infiltration, mass, nodule, pneumonia, and pneumothorax. This is because the bounding
box coordinates were only provided for the previous version of NIH (NIH ChestX-ray8
[25]).

We conducted a disease-specific evaluation of the attribution heatmaps using three
metrics: Intersection over Union (IoU), Point Localization Accuracy (PLA), and the Area
Under the Curve (AUC) for the Receiver Operating Characteristic (ROC) curve generated
by our attributions (as the prediction) and the bounding boxes (as the true values).

When quantitatively evaluating the attributions with the 3 metrics mentioned above,
we detected that GradCAM and occlusion clearly outperformed the other two explainers
(Table 1). The accuracy of the attribution heatmaps varies significantly depending on the
disease being explained. Cardiomegaly consistently achieved the highest values for IoU,
PLA, and AUC, while explanations for atelectasis and nodules tended to have lower values
overall. Upon visual inspection of the attribution heatmaps, it was evident that GradCAM
and occlusion produced lower-resolution heatmaps compared to IG and GradientSHAP
(see Figure S2). This was totally expected given how these explainers work. Additionally,
the heatmaps generated by IG and GradientSHAP exhibited high levels of noise and
sparsity, confirming their lower quality as assessed quantitatively.
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Since occlusion (1) generally showed higher accuracy than GradCAM and (2) it could
be tuned with some hyperparameters choice (i.e., the occlusion patch size and stride), we
decided to explore it further. The first explanations with occlusion were created using a
patch of size 32x32 and stride 32. We conducted the same evaluation experiments but for
four other cases, using smaller patches and strides to aim for higher-resolution heatmaps.
A higher resolution translated to a larger computational time to obtain the heatmaps
Table S4. Even though we expected higher-resolution heatmaps to perform better, it was
hard to conclude it from the results in Fig 3. While IoU and PLA remained relatively
stable across different hyperparameter choices, the differences were not consistent among
diseases. Conversely, changes in the AUC consistently followed the same trends across
diseases. High-resolution heatmaps (i.e., small patch and stride) achieved lower AUC
values, but this happened especially when the patch size and stride have the same size.
Based on these AUC results and considering computational time, occlusion with a patch
size of 32x32 and stride of 16 seems to be a reasonable choice.

8, 8 16, 8 16, 16 32, 16 32, 32
Patch, Stride

0.1

0.2
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0.4

0.5

Io
U

8, 8 16, 8 16, 16 32, 16 32, 32
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1.0
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8, 8 16, 8 16, 16 32, 16 32, 32
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0.95
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Fig. 3. Occlusion performance with different hyperparameters. Evaluation of the occlusion

explanations for different hyperparameters choices. Different window and stride sizes are evaluated.

The x-axis go from smaller to larger patches and strides, which correspond to high-resolution to

low-resolution heatmaps. Intersection over Union (IoU), Point Localization Accuracy (PLA) and

the Area Under the Curve (AUC) are computed with the bounding box annotations (i.e., ground

truth localization). AUC and IoU are shown with the average value and the 95% confidence interval.

The dataset (and model) used here is the alternative NIH. Only true positive cases with bounding

box annotation are considered.

We observed variations in the behavior of the metrics IoU, PLA, and AUC when
evaluating the various occlusion hyperparameter choices. This rose the question of which
metric was most suitable for evaluating explanations. Analyzing the results obtained with
a patch size of 32x32 and a stride size of 16 in occlusion, we examined the correlations
between these metrics (Fig 4A-C). IoU and PLA showed a stronger correlation with each
other than with AUC. However, PLA can not be used to evaluate individual explanations
and it is instead calculated for a group of explanations, in this case for each disease
(see section 3.5.1). Furthermore, we explored the correlation between IoU and AUC for
individual explanations (Fig 4D) and found numerous cases with high AUC but low IoU
scores. We visually explored some cases (Fig 4E). In general, explanations with a high IoU
and AUC were those that were inside the bounding box, and for which this bounding box
was large. Cases with low IoU and low AUC were those where the explanation highlights
a completely different region. But in cases of disagreement, where AUC was high but IoU
was very low, the correct region was highlighted by the explanation, but the small size of
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the bounding box penalized the IoU score. It is worth mentioning that the computation
of the IoU required the binarization of the heatmap with a threshold that directly affects
the size of the highlighted region. Therefore, we believe AUC is a more reliable choice for
evaluating this type of explanation. It seems to be more flexible, but still coherent, with
the comparison between explanations and bounding boxes.

A) B) C)

D) E)

0

1

at
tr
ib
ut
io
n

I II III

II

I

III

Fig. 4. Agreement among the metrics used to evaluate the explanations with bounding boxes.

(A-C) depict the correlation between Intersection over Union (IoU), Point Localization Accuracy

(PLA) and the Area Under the Curve (AUC) metrics that have been computed for each disease (for

IoU and AUC, the average is presented). Regression lines with 95% confidence interval are plotted.

(D) shows the correlation between IoU and AUC individually for each case, without its aggregation

into diseases. Three individual cases are annotated (I-III), which are shown in panel (E). For each

case, explanations with occlusion are shown at the top, and the bounding box annotation is shown

at the bottom. The attributions are normalized between [0, 1] for visualization purposes (E). The

dataset (and model) used for this analysis is the alternative NIH. Only true positive cases with

bounding box annotation are considered. For (E), the attributions are normalized between [0, 1] for

visualization purposes.

2.3 The explanations of the decisions of the models are equally accurate

among different subpopulations

Once we have selected the best explainer and evaluation metrics, we wanted to know
whether there were subpopulations for which the explanations were worse. Since we had
previously detected model biases, could we find similar biases in the explanations?

We assessed the explanations from occlusion with the AUC metric. Instead of
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computing the average AUC of all the explanations for a specific disease, we computed
it for the disease but also for each subpopulation (Fig 5). Our analysis showed that,
overall, the accuracy of the explanations was similar among the subpopulations. This
similarity was evident for diseases like cardiomegaly, while diseases like atelectasis did
exhibit some differences. However, the mean AUC values for atelectasis still fell within
the error bars of the other subpopulations. Based on these findings, we argue that although
the model performs differently on various subpopulations, the explainer did not amplify
these biases. The explanations remained equally accurate once obtained, regardless of the
subpopulation.

Fig. 5. Performance of the explainer on different subpopulations. Area Under the Curve (AUC)

computed with the bounding box annotations (i.e., ground truth localization) and the attributions

given by occlusion, given for each subpopulation (by sex: males (M) and females (F); and by age

divided into ventiles as 0-20, 20-40, 40-60, 60-80 and 80 or older). The dataset (and model) used

here is the alternative NIH. All test images that were correctly classified for the presence of a disease

(i.e., true positives) and that had the bounding box annotation were considered for this analysis.

95% confidence intervals are shown. For each disease, the number of cases is shown.

However, our analysis might have limited statistical power. We only focused on
TP cases with bounding box annotations, resulting in a total of 574 cases, which further
decreases when analyzing them by disease and by subpopulation.

2.4 The evaluation of the explanations without bounding boxes seems to be

unsuitable for chest X-ray images

We tried to expand our analysis by incorporating two metrics that do not rely on
bounding boxes, allowing us to overcome the limitation of only working with TP cases.
This would enable us to extend our analysis to larger datasets, including CXP and MIMIC,
and even the full NIH dataset by considering all cases.
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First, we calculated the faithfulness correlation [44] for the same explanations
evaluated in the previous section. This metric computes the correlation between the change
in model output and the attributions of subsets of pixels that are iteratively masked from
the original image (see section 3.5.2). We compared this metric with the AUC score, but
we could not detect any correlation (Fig S3). Therefore, we were reluctant to use this
metric to extend the bias analysis to other data.

Second, we wanted to evaluate the explanations with deletion or insertion curves
[45]. These curves are obtained with the model probabilities that are given for the same
image but with different parts of it masked. The image is iteratively masked based on the
most important regions, given by the heatmap attributions. From these curves, we then
compute the Area Under the Deletion Curve and Insertion Curve (AUDC and AUIC).
For the following analysis, we used the normal NIH dataset and the GradCAM explainer,
although we argue that it can be perfectly translated to any other dataset and explainer
choice.

When plotting some of these curves as a sanity check, we detected an unusual
behavior in some cases (Fig S4). When inserting the important regions, the probability did
not significantly rise until adding approximately 75% of the original image. In contrast, for
the deletion curves, we could see they followed the expected behavior: the probability went
quickly down when masking important regions of the image. Surprisingly, when creating
a deletion curve by randomly masking regions without following the importance order, it
appeared very similar to the curves generated using the ordered deletion procedure. Since
the mask we used for the process was a black image, we wondered whether there was a
problem with the model. Has the model learned to predict certain diseases based on black
patterns? Is the model ”modeling” the black instead of anatomical features?

To answer this, we used another masking technique. Instead of masking the image
with black regions, we also mask it with the same regions but coming from another image,
which corresponded to the mean image of the whole test set. We hypothesized a larger
disparity between curves created randomly and by importance order when using the mean
image mask compared to the black mask.

We compared the AUDC for curves obtained by masking regions randomly and by
importance order, both masking with black regions or with the mean image. We computed
the difference between AUDC obtained randomly and by importance order (AUDCdiff)
for the two mask cases. We have finally compared the normalized AUDCdiff obtained
with the two masks for each image associated with each disease (Fig 6). We can see
there was no clear difference between using the mean image instead of a black image when
masking. Since we were no longer restricted to the cases with bounding box annotation,
we performed this analysis also for the rest of the diseases (Fig S5) and observed the same
results. It is also worth mentioning that there was a great number of cases for which
the AUDCdiff was negative, meaning that a random deletion would obtain a better score
(lower AUDC). Based on these findings, we rejected our initial hypothesis about the model
and argue that the issue lies with the evaluation metric itself. For chest X-ray images, the
evaluation of explanations using deletion or insertion curves appears to be unsuitable.
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Fig. 6. Comparison between masks used for the deletion curves. The difference between the area

under the curve of deletion curves produced with (1) a descending order of the pixels by importance

and (2) a random order of the pixels, are shown as the AUDCdiff. The AUDCdiff is shown for two

masks that were used to generate the deletion curves, the black image and the mean image of all

test images (meanImg). Paired lines are depicted to show individual comparisons. The analysis

was performed for all true positive cases of the test set with the NIH dataset and the GradCAM

explainer.
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3 Methods

3.1 Chest X-Ray datasets

Based on Seyyed’s work [17], we utilized three datasets: NIH ChestXRay 14 (NIH)
[25], CheXpert (CXP) [27], and MIMIC-CXR (MIMIC) [28]. These datasets consist of
multiple images per patient, belonging to either a single or different studies (time points).
Images were annotated manually or using natural language processing, identifying 15 labels
(NIH) or 14 labels (CXP and MIMIC), which include chest diseases and an additional
label for ”no finding.” In CXP and MIMIC, we treated unknown or uncertain labels as
negative cases. To ensure label consistency, we considered ”no finding” as positive only
when no diseases were present and negative if at least one positive disease was identified.
Patient sex and age were annotated for all images. In the case of MIMIC, we merged
MIMIC-CXR and MIMIC-IV [62] to obtain patient demographics. Additional technical
and demographic information about the datasets can be found in [STable1]. Access to
these datasets required a data use agreement and completion of the credentialing process,
including a small course through Physionet [63] for MIMIC.

To reduce resource requirements, we stored smaller versions of the images by fixing
the image height at 512 pixels while maintaining the original proportions.

Initially, we split the data into training-validation-test sets using Seyyed et al.’s
partitioning approach [17], resulting in approximately 80-10-10 splits without any patient
overlap [STable1]. However, our MIMIC splits slightly differed due to unmatched patients
resulting from merging MIMIC-CXR and MIMIC-IV. In addition, we created a different
data split for NIH to obtain a test set containing patients with at least one image annotated
with bounding boxes, which provide ground truth explanations of disease localization in
the images. This alternative NIH split was necessary because the overlap between the
images in the original test set and those with bounding boxes was insufficient (49 images
instead of 984). The alternative NIH split followed a proportion of 70-15-15.

3.2 Chest X-Ray classifiers

We used the code to build the models (classifiers) from the work by Seyyed et al.
[17], with slight modifications for GPU reproducibility. These models, implemented in
PyTorch, adopt the DenseNet-121 architecture [49] and utilize ImageNet [50] pre-trained
weights. The initial learning rate was 5e-4 and halved if no validation loss improvement was
observed for 3 epochs. The training concluded after 10 epochs without improvement. Data
augmentation involved random flips and rotations, with images resized to 256x256 pixels
and normalized using ImageNet statistics. As a multi-label classifier, a sigmoid function
was applied to obtain label probabilities. These probabilities were then transformed into
binary predictions using a threshold learned during the validation process.

We trained the models for each dataset (NIH, alternative NIH, CXP, and MIMIC)
with an updated PyTorch version (v1.2.0) that is compatible with the explainability library
Captum [56].
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3.3 Model performance metrics

To evaluate the model’s performance and compare it to the original results, we
calculated the average AUC. We also computed the false positive rate (FPR) and false
negative rate (FNR) for the ”no finding” label. Additionally, we assessed the model’s
sensitivity by calculating the TPR for each disease. These rates were computed for specific
subpopulations based on patient stratification by sex and age, divided into ventiles ranging
from 0-20 to 80 and older.

3.4 Explanation of the model decision

To interpret the model’s decisions for image and disease label pairs, we utilized
the Captum library [56], which provides model interpretability functionalities in PyTorch
[61]. We selected four explainers from Captum: GradCAM [54], Integrated Gradients
(IG) [55], GradientShap [56, 59], and occlusion [60]. These explainers generate pixel-level
attributions, visualized as heatmaps, indicating the importance of each pixel for the
model’s prediction.

For GradCAM, we obtained explanations from the final convolutional layer, resulting
in an 8x8 resolution heatmap. For IG, we applied SmoothGrad [57] (Noise Tunnel in
Captum), which involves creating multiple images with random noise and averaging the
attributions obtained for this set of images. Since GradientShap already incorporates
SmoothGrad, we used it with default parameters. As for occlusion, we experimented with
different hyperparameter choices to refine the explanations. We started with a window
and stride size of 32x32 (inspired by [42]), gradually reducing the parameters by two until
reaching a window and stride size of 8. Except for GradCAM, all explainers required a
baseline, which we set as a black image. For all the explainers, we only take positive
attributions into account.

We generated explanations solely from the test set, excluding the ”no finding” label
and misclassified images.

3.5 Metrics for evaluating the explanation

We assessed the explanations using different approaches based on the availability of
bounding boxes.

3.5.1 Metrics based on the bounding box annotation

For those images that have the bounding box annotation, we used the following
metrics:

• Intersection over union (IoU): it computes the ratio of the overlap area to the union
area between the binarized attributions heatmap and the bounding box. To binarize
the heatmap, we applied Otsu’s thresholding method (as in [42]).

• Point Localization Accuracy (PLA) [proposed in [43]]: it measures the accuracy of
localizing the most important pixel, defined as the pixel with the highest attribution,
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within the bounding box. The PLA is calculated by dividing the number of hits
(where the most important pixel is inside the bounding box) by the total number
of cases considered. This metric is computed independently for each disease. For
low-resolution heatmaps such as GradCAM and occlusion, we determine the most
important pixel as the pixel located in the middle of the most important region of
pixels.

• Area Under the Curve (AUC): it considers the explanation as the prediction and the
bounding box as the ground truth. Then the AUC is computed as it is normally done
for model performance assessment. To compute the AUC, we first convert the 2D
matrices of the heatmap and the bounding box into 1D arrays.

3.5.2 Metrics not based on the bounding box annotation

Alternatively, we used two other evaluation metrics that do not rely on the bounding
boxes but only on the model output and the attributions:

• Faithfulness correlation (FC) [44]: it is computed by masking a random subset of
image pixels with black in an iterative manner. The Pearson correlation is then
calculated between the difference in model output and the sum of the attributions
assigned to those masked pixels. In each iteration, we compute (1) the difference
between the model output with the original image and the model output with the
partially masked image, and (2) the sum of attribution values corresponding to the
masked pixels. We perform 200 iterations, masking a subset of 1024 pixels each time.

• Area Under the Deletion Curve (AUDC) [45]: it is computed by iteratively masking
regions of the image in a descending order based on the attributions heatmap.
Starting from the original image, we mask regions one by one until the entire image
is masked. At each step, we recompute the model output and construct the deletion
curve. The area under the deletion curve is then computed. The smaller the AUDC,
the better the explanation.

• Area Under the Insertion Curve (AUIC) [45]: starting with a completely masked
image and gradually revealing regions by inserting them one by one, from most to
least important regions according to the heatmap. At each step, we recompute the
model output and construct the deletion curve. The area under the deletion curve is
then computed. The larger the AUIC, the better the explanation.

For both AUDC and AUIC, we worked with regions of size 32x32, which translated
to 64 iterations (images that are fed to the model are 256x256). Before computing the
AUDC, we normalized the x-axis with the number of iterations to [0, 1]. The normalized
axis corresponds to the fraction of perturbed pixels. We employed two types of masks: a
black mask and the mean image of all the images in the test set.

Additionally, we computed the AUDC for deletion curves created by randomly
masking regions of the image, without sorting based on attribution values. We then
evaluated the difference between the AUDC of the descending-deletion curve and the
random-deletion curve, which we refer to as AUDCdiff. To facilitate a meaningful
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comparison of this difference between the black mask and mean image mask (which have
different endpoints, which correspond to the probability of the fully masked image), we
normalized the AUDCdiff for the mean image mask by fixing the curve range and using
the AUDCdiff obtained with the black mask as a reference. We do so with this formula:

AUDCdiff (mean image) = AUDCdiff (black)
deletion curve range (black)

deletion curve range (mean image)

where the deletion curve range is the difference between the endpoint (i.e., probability
given the completely masked image: either black or mean image) and the start point (i.e.,
probability given the original image: same for both masking strategies).
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4 Discussion

The final purpose of this work was to use XAI to understand fairness issues on chest
X-ray image classifiers. The starting point was to reproduce the models used by Seyyed
et. al., for which they reported underdiagnosis biases for underserved subpopulations
[17]. Therefore, we have analyzed the performance disparities for the classification of
individual diseases among different subpopulations (stratified by sex and age). Then, we
aimed to use XAI techniques, the explainers, to understand the decisions given by the
biased models. In order to ensure a good quality of the explanations, we have evaluated
four popular explainers by quantitatively comparing them with (ground truth) bounding
boxes. Occlusion outperformed the other explainers. With the previous evaluation, we
also compared the accuracy of the explanations for each subpopulation, and this suggested
new biases. Since the number of cases used in this analysis was low, we also assessed the
explanations with metrics that do not rely on the bounding boxes, known as fidelity
metrics. However, these metrics - especially, deletion curves - did not work well with chest
X-ray images.

In terms of reproducing the biased models, we have found the same underdiagnosis
biases they reported for the three datasets: NIH, CXP and MIMIC. Even when using
an updated Pytorch version, compatible with the XAI techniques. It is important to
note that NIH shows a different underdiagnosed group (males) than CXP and MIMIC
(young, females), also in the original results. Very slight differences in FPR and FNR
exist because (1) we ran the model once whereas they run it 5 times, and (2) for CXP and
MIMIC we corrected the annotations to be consistent with the ”no finding” label. Also, for
the MIMIC case, we were not able to obtain the exact original dataset due to unmatched
patients between the images and the demographics from MIMIC-IV. Alternatively, for NIH
we have used a customized data split, for which all the images published with bounding
boxes were present in the test set. We have also built a model for this and detected
major changes with respect to the original results for NIH, with a generally smaller FPR
and greater FNR for the ”no finding” label. But still, we report male patients being
underdiagnosed while female patients being overdiagnosed. This alternative NIH model is
used for the rest of the study, if not specified otherwise.

While they basically focused on the underdiagnosis rate as the FPR for the ”no
finding” label, we were interested in the precision of the model for each disease that can
be diagnosed. We have therefore assessed it as the TPR of each disease label. We have seen
that, depending on the disease label of interest, this rate changes among subpopulations,
exhibiting different biases (i.e., the negatively affected subgroup for a certain disease is
not the same as for another disease). Out of the 14 diseases, the model was notably more
precise for males in 6 cases and for females in 5 cases. A general increase of the TPR
for males was also reported by Seyyed et. al. in a previous publication [19]. In terms of
age biases, there are also a few diseases for which the precision increases with the age of
the patient. For example, effusion is a clear example of a disease that favors male and
older patients. However, it is worth mentioning that we did not perform further analysis
with intersectional subpopulations, making these findings to be taken independently for
sex and age differences.

20



On the other hand, using explainability to understand the model decisions was not
as straightforward as expected. Given there is no common pipeline to do so, we first
encountered two important choices to be made: the explainer and the evaluation of its
explanations. For the evaluation/benchmark of the explainer, we have chosen 4 post-hoc
explainers that are commonly used in the literature and/or easily to be used with Captum.
These were GradCAM, occlusion, IG and GradientSHAP. Following other benchmark
works [42, 43], we have used the IoU and PLA to evaluate the explanations (i.e., attribution
heatmaps). On top of these two, we have also evaluated them with the AUC that results
from considering the bounding box as the ground truth and the heatmap as the prediction.
We have evaluated all TP cases independently for each of the 8 diseases with bounding
box annotations. With a similar trend for all three metrics, occlusion (a model-agnostic
explainer) outperformed the rest. Following occlusion, GradCAM also performed much
better than IG and GradientSHAP, which produced highly noisy heatmaps. Similar
performance of IG and GradCAM was reported in [42] using the CXP dataset. And
the publication of a novel (but not post-hoc) explainer, PYLON, also reported similar
GradCAM results with NIH [43]. As shown in our results, they also obtained a much higher
accuracy of cardiomegaly explanations, compared to other diseases like pneumothorax.

Since occlusion can be fine-tuned with two hyperparameters, the patch size and
stride, we analyzed different combinations to get the best choice. These hyperparameters
control the occlusion process of the image and, therefore, the resolution of the explanation.
Even though we expected higher resolution explanations to obtain better results, we could
see that the results for PLA and IoU did not change much. However, the AUC was higher
for lower-resolution heatmaps, but it always showed higher values when the stride was
smaller than the patch size. This makes two consecutive occlusion steps hide a shared
region of the image, and compute the average of the two attributions. This result seems
plausible, as the region to be shared is occluded with different neighboring pixels, and
this could improve the attribution heatmap. We have chosen a patch size of 32x32 and a
stride of 16 (note that the images are 256x256). It would be interesting to see what would
happen for cases with the same patch size but a much smaller stride. Probably it is not
the high resolution of the patch that gave us worse performance, but the small occlusion
patch.

IoU, PLA and AUC behaved differently in the previous analysis. When assessing
their respective correlations, we have seen a better correlation between PLA and IoU than
these two with AUC. PLA and IoU are more rigid than AUC, so it makes sense they give
more similar results. The problem with PLA is that it can not be calculated for single
images (for a single image we can just say whether the most important pixel is inside the
bounding box or not), but PLA is the ratio between hits and the total number of cases
we are comparing. IoU needs a binarized attribution heatmap, but the threshold choice
is not trivial and it is a source of debate in object detection [64]. Also, IoU was reported
to be low when comparing different human annotations on the chest X-ray images [42],
due to the variable sizes of the bounding boxes the doctors annotated between each other.
We have seen that there are a high number of cases for which the AUC was very high but
the IoU was extremely low. By exploring some of these cases, we could see that even if
the bounding box was similarly located as the important region of the explanation, if this
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region was bigger they were highly penalized by the IoU score. Therefore we propose to
use the AUC as a more flexible, but still coherent, metric.

We hypothesized that model biases could be translated into what we call explanation
biases. So we have evaluated whether the explanations were more accurate for certain
subpopulations, with the AUC. We do see that their accuracy change among different
subpopulations. However, we can not detect a consistent relationship between these
and the model biases defined for underdiagnosis and overdiagnosis. In the case of the
detection of nodules, we saw they were underdiagnosed in males and overdiagnosed in
females. With this analysis, we see that the explanations for females are worse. In the
case of pneumothorax, overdiagnosed in males and underdiagnosed in females, but worse
explanations are still produced for females. We might not have enough statistical power
to reach a strong conclusion due to the low number of cases we are considering (only TP
cases: 574 in total, but to be analyzed independently for each disease). We could not find
literature doing this kind of analysis to compare it with. Still, we do think this finding can
help us motivating clinical stakeholders to trust XAI since model biases were not found in
the explanations.

Finally, we wanted to find a way to assess explanations without relying on the
bounding boxes. We have tried two fidelity (or faithfulness) metrics, which should capture
how well the explanation captures the true behavior of the model. The first one, the
faithfulness correlation, showed no agreement with the previous (and bounding box-based)
AUC metric. The second approach with deletion or insertion curves does not seem to be
suitable for chest X-ray images. We have detected that a random perturbation of the
image produced similar deletion curves to those created when the perturbations followed
the importance of the pixels. Also, for the insertion curves we have detected that the
model needs a great amount of the original pixel to be able to detect the signal. Since
we were perturbing these pixels with a black mask, these behaviors made us think of the
following. Maybe the model was focusing on black features instead of anatomical features.
We then compared the curves produced by masking the images (1) with a black mask and
(2) with a mask that maintained the anatomical structure of the chest. For the latter,
we changed image regions by the same regions coming from the mean image of all chest
X-rays. However, we have shown that there are no big differences, so random perturbations
were close to importance-ordered perturbations for both masks. This means it is not a
problem of the model, but it also means that deletion curves are not suitable for our case.
Moreover, going back to the explanations we obtained with XAI, where normally the
highlighted regions were anatomical features, we can indeed corroborate that the model
did not focus on black features.

The fact that deletion curves do not work for this kind of images, but occlusion
outperformed other explainers might be surprising. Occlusion builds the explanation also
by perturbing the image with black pixels. However, occlusion uncovers the previously
occluded region at each step (so in every step there is only one region hidden), while when
we create a deletion curve we leave the previously hidden region covered (until we obtain
a completely occluded image). We could therefore think that deletion curves remove any
correlation between regions of the image that could be important for the model. That is
why we also chose to compute the faithfulness correlation, which occludes random pixels of
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the image, which are different every iteration. But since this metric was not in agreement
with the bounding box metric, we can not reach any conclusion on this.

One work reported that this last deletion process generates out-of-distribution
images, and this could be the source of a strange performance of the model since it did not
learn such images [65]. They proposed to retrain the model with these partially occluded
images with ROAR. While we understand the proposed issue when perturbing with a black
value (or any constant value), we argue that we would avoid it when masking with the
mean X-ray. This type of mask follows the concept of meaningful perturbation, introduced
in [66], and is similar to the approach proposed by Lenis et. al. to inpaint the image with
regions from a healthy sample [67], although they use it for explaining the image, not for
evaluation. These should not produce such out-of-distribution samples. But instead, we
still found that deletion curves with the mean image mask were also problematic.

5 Conclusions

In conclusion, we once again highlight the presence of inherent biases in classifiers
for chest X-ray images. While this applies to different datasets, we specifically focused on
the model trained using the NIH dataset. Our findings reveal a significant variation in
the model’s precision among different subpopulations, focusing on patients’ sex and age.
The subpopulation adversely affected varies depending on the predicted disease, although
there is a slight trend towards higher precision for male and older patients.

To address the disparate model performance, we introduced the explainability step,
which helps in understanding these variations. Additionally, we recommend an optimized
version of occlusion as the XAI technique that provides more accurate explanations
compared to doctors’ annotations. Moreover, we propose evaluating visual explanations
by computing the AUC between the explanations and the ground truth annotations. Our
study demonstrates that this metric offers greater flexibility while remaining coherent,
unlike commonly used metrics such as IoU.

Despite the presence of precision biases in the model, our evaluation of the
explanations provided by occlusion reveals a different picture. Interestingly, we have not
observed significant differences in the accuracy of these explanations among the various
subpopulations. The explainer seems to not amplify model biases. Given the reported
absence of biases in the explanations, our aim is also to instill confidence in clinical
stakeholders regarding XAI techniques.

We strongly discourage researchers from using deletion or insertion curves to evaluate
visual explanations for chest X-ray images. It is essential to individually examine the
behavior of these curves, especially when dealing with other types of images.

Our study contributes to advancing fairness and explainability in chest X-ray image
interpretation. Further research will provide valuable recommendations for improving
these classifiers before being deployed in hospitals. We have established some initial
guidelines to evaluate the classifiers with XAI, but the next steps should be focused on
the knowledge we can gain given the explanations. We aim to explain not only the correct
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classifications but the misclassifications for correcting the model or, at least, for warning
the clinical stakeholders about these mistakes.
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7 Supplementary data

7.1 Supplementary figures

A) B)

D)

E)

C)

F)

G)

Fig. S1. Reproduction of the models’ biases. Comparison of the False Positive Rate (FPR) and

False Negative Rate (FNR) for the ”no finding” label across subpopulations (by sex: males (M) and

females (F); and by age divided into ventiles as 0-20, 20-40, 40-60, 60-80 and 80 or older). Our

results are depicted on the left (A, C, E, G) and the originally reported results on the right (B, D,

F) [[31]], which are presented for 5 runs (95% confidence intervals are plotted). A-B correspond to

the NIH dataset, C-D to the CXP dataset, and E-F to the MIMIC dataset. G corresponds to the

alternative NIH model (with a customized data split). Note our models have been trained only once

with a previous image resizing and with an upgraded Pytorch version.
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Fig. S2. [Example of the explanations produced by the different explainers. An example of

an NIH image with atelectasis is shown. (A) depicts the bounding box annotation (i.e., the ground

truth disease localization), while (C-E) show the attribution heatmap produced by GradCAM (B),

occlusion (C), integrated gradients (D) and GradientSHAP (E). The attributions are normalized

between [0, 1] for visualization purposes.
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Fig. S3. Correlation between AUC and Faithfulness correlation. Area Under the Curve (AUC)

metric using the bounding box annotation vs faithfulness correlation, which does not rely on the

bounding box.
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Fig. S4. Example of the strange behavior of insertion and deletion curves. Given the GradCAM

explanation for a NIH image with nodule, this depicts the (A) insertion curve, (B) deletion curve,

and (C), deletion curve when masking regions with a random order.
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Fig. S5. Comparison between masks used for the deletion curves (for the rest of diseases).

The difference between the area under the curve of deletion curves produced with (1) a descending

order of the pixels by importance and (2) a random order of the pixels, are shown as the AUDCdiff.

The AUDCdiff is shown for two masks that were used to generate the deletion curves, the black

image and the mean image of all test images (meanImg). Paired lines are depicted to show the

differences individually for each case. The analysis was performed for all true positive cases of the

test set with the NIH dataset and the GradCAM explainer.
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7.2 Supplementary tables

Table S1. Datasets summary. Original NIH ChestX-ray 14, CheXpert and MIMIC-CXR datasets

information.

NIH
CheXpert MIMIC-CXR

ChestX-ray14

Size 43 GB 450 GB 550 GB

#Images (#Patients) 112,120 (30,805) 223,648 (64,740) 371,547 (64,967)

Image size (average) 1024x1024 2282x2635 2485x2695

Image view Frontal Frontal and lateral Frontal and lateral

#Labels (diseases + ”no finding”) 14+1 13+1 13+1

Demographics Age and sex Age and sex Age and sex (also

insurance and race)

Bounding box annotation Yes No No

Table S2. Data splits and demographics statistics. Information about the data splits to be used by

the classifiers. Statistics about population demographics are shown for the total number of images

of each dataset. The splits corresponding to the alternative NIH ChestX-ray14 splits are written in

parenthesis, and they correspond to the split where all the images with bounding boxes are included

in the test set. The rest of the datasets follow the splits used by Seyyed et. al. [17]

NIH

ChestX-ray14 CheXpert MIMIC-CXR

(alternative)

Training set (#images) 98,892 (83,367) 178,352 297,895

Test set (#images) 6,373 (15,938) 22,274 36,386

Validation set (#images) 6,855 (12,815) 23,022 37,266

Total (#images) 112,120 223,648 371,547

%male 56.49 59.36 52.16

%female 43.51 40.64 47.84

%0-20 years 6.28 0.87 1.38

%20-40 years 26.22 13.18 13.58

%40-60 years 43.92 31.01 32.34

%60-80 years 22.67 38.94 39.18

%80- years 0.91 16.01 10.86
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Table S3. Reproduction of the original models. Comparison of our models’ performance with the

originally reported results [17], given by the average Area Under the Curve (AUC) of the model.

The original AUC is reported with ±95% confidence interval for the 5 runs. Note our models have

been trained for only one run, with a previous image resizing and with an upgraded Pytorch version.

Alternative NIH corresponds to another dataset split of NIH, that was not used in the original paper.

Original AUC Our AUC

NIH 0.835 ± 0.002 0.835

Alternative NIH 0.783

CXP 0.805 ± 0.001 0.799

MIMIC 0.834 ± 0.001 0.830

Table S4. Occlusion hyperparameter choices. Summary of the experiments for optimizing occlusion,

based on the patch size and the stride. These parameters affect the resolution of the attribution

heatmap and its computing time. Note that the maximum heatmap resolution equals the image

resolution, which is 256x256.

Window size Stride Resolution Computing time

(s)

32 32 8x8 1.72

32 16 16x16 4.53

16 16 16x16 5.92

16 8 32x32 18.43

8 8 32x32 19.30
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7.3 Supplementary materials

All the code used for this project can be found on the following repository:
https://github.com/gemmabb/FairMedImages.
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