
 

Evaluating forest restoration effects on timing 

of avian dawn chorus in Ranomafana National 

Park, Madagascar 

Marjolein Pijper 

 

 

 

 

 

 

 

 

 

Master’s Thesis Sustainable Development• 30 credits   

Utrecht University 

Faculty of Geosciences 

Swedish University of Agricultural Sciences, SLU  

Department of Wildlife, Fish, and Environmental Studies 

Umeå, September 1st 2023  



 

 

Marjolein Pijper 

Supervisor: Joris Cromsigt, Utrecht University, Copernicus Institute of 

Sustainable Development 

  

Assistant supervisor:  Tim Hofmeester, Swedish University of Agricultural Sciences, 

Department of Wildlife, Fish, and Environmental Studies 

Assistant supervisor: John Martinsson, RISE Research Institutes of Sweden 

2nd assessor:  Mariska te Beest, Utrecht University, Copernicus Institute of 

Sustainable Development 

   

   

   

   

Credits:   30 credits 

Course title:   Master’s thesis Sustainable Development 

Course code:  GEO4-2321 

Programme/education: MSc Sustainable Development, Utrecht University 

Place of publication: Umeå, Sweden 

Year of publication: 2023 

Cover picture:   Sheila Holmes 

Copyright:   All featured images are used with permission from the copyright  

  owner. 

 

Keywords:  Acoustic monitoring, forest restoration, dawn chorus, avian 

singing, bird monitoring, automatic recognition 

 

  

Evaluating forest restoration effects on timing of avian dawn 
chorus in Ranomafana National Park, Madagascar  



 

 

Monitoring of forest restoration efforts is essential to ensure healthy, self-sustaining tropical 

rainforests. Passive acoustic monitoring is used to monitor vocal activity of birds, which play a key 

role in forest ecosystems as seed dispersers. Communication between birds seems most profitable 

during a peak of bird singing in the morning, known as the dawn chorus. Anthropogenic disturbances 

leading to increased light levels affect the timing of this chorus in individual species. This research 

sheds a light on the effect of forest restoration on the dawn chorus using automatic detection methods 

to identify bird sounds from acoustic data. Machine learning methods like clustering and pattern 

matching were used alongside a manual analysis to describe the dawn chorus in protected forests as 

well as restoration sites around Ranomafana National Park, Madagascar.  

Restoration sites were found to have lower species richness and increased interference from 

insect sounds. No difference was found between timing of the dawn chorus in both forest habitats. 

This can possibly be assigned to changes in community composition and decreased detectability of 

species in insect-dominated landscapes. Future research could further disentangle these effects, by 

filtering of acoustic data, development of workflow pathways and the use of stronger machine 

learning methods that allow for more reliable species-specific detection. In the current state of 

automatic acoustic methods, close cooperation with local experts is recommended to achieve 

effective monitoring in tropical rainforests.  

Keywords:  Acoustic monitoring, forest restoration, dawn chorus, avian singing, bird 

monitoring, automatic recognition 
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1.1 Problem statement 

In our effort to mitigate the effects of climate change, the International Panel of 

Climate Change (2022) underlines the importance of conservation and restoration 

of forests. Not only do they play a crucial role in removing carbon dioxide from our 

atmosphere, but they also provide essential ecosystem services for the 880 million 

people living in and around forests that depend on them for their livelihood (FAO, 

2020). Especially the poorest populations rely on forest resources such as firewood 

(K. A. Brown et al., 2013), and its conversion to agricultural land (Klanderud et al., 

2010), drives intense deforestation and dramatic loss of biodiversity. This leads to 

loss of species-specific functional traits and ecosystem services, generating less 

resilient environments that leave its population even more vulnerable to further 

environmental change (K. A. Brown et al., 2013).  

With its large tropical rainforests, Madagascar is one of the richest countries in 

terms of biodiversity, with about 90% of all animal and plant species being endemic 

to the country (Hobbs & Dolan, 2008). At the same time its human population ranks 

amongst the poorest in the world (Belghith et al., 2016), with over 90% living on 

less than $2 a day (UNIDO, 2021). The dependence of these people on forest 

resources and land for agriculture (K. A. Brown et al., 2013), has led to alarming 

deforestation rates (Klanderud et al., 2010) threatening the endemic biodiversity, 

and the livelihood of the Madagascar human population. Forest restoration 

practices are implemented (Klanderud et al., 2010), but adequate monitoring of the 

diversity of species in the forest environment is needed to assess their success in 

terms of recovery of functional traits and ecosystem services (Le et al., 2012).  

Bird species provide important functions in the restoration of disturbed forests, 

such as the dispersion of seeds and pollination, thereby promoting the growth of 

vegetation and enhancing the forests carbon storing capacity (Pejchar et al., 2008). 

Traditional bird monitoring methods rely on manual observations often depending 

on volunteers and funding (Stowell et al., 2019). Additionally, forests are not easily 

accessible and in the face of extreme poverty, conservation is often not a priority 

(Razafindravony et al., 2023). This makes such knowledge, funding and manpower 

scarce resources. 

1. Introduction 
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Remote acoustic monitoring devices can be part of the solution for low-cost bird 

monitoring by providing 24-hour data in remote areas, providing comparative 

information about the vocal behaviour of bird species in forests with different levels 

of disturbance (Stowell et al., 2019; Toenies & Rich, 2021). For effective acoustic 

monitoring, it is important to know more about variation in, and drivers of, bird 

vocal activity. 

1.2 Bird vocal activity 

Birds, and species of the songbird family Passeriformes in particular, are dependent 

on vocal communications for their survival and reproduction (Chen et al., 2015; 

Huang et al., 2022). They use singing to attract partners, to defend territory, to 

communicate about potential predators, and for many other functions (Cuthill & 

Macdonald, 1990; Slagsvold, 1996). This singing turns out to be especially 

advantageous in the morning (Huang et al., 2022; Puswal et al., 2021), resulting in 

a peak of bird singing known as the dawn chorus. To detect calls from their own 

species in noisy environments, like a tropical rainforest dawn chorus, species 

differentiate using distinct melodies, pitch and through temporal separation (Francis 

et al., 2009; Kempenaers et al., 2010; Luther, 2009; Slabbekoorn & Peet, 2003). 

Species with higher ability to distinguish themselves from other species 

consequently have more effective communication, positively affecting their fitness 

and survival rates (Francis et al., 2009; Slabbekoorn & den Boer-Visser, 2006). 

Temporal separation of the acoustic spectrum has led to a predictable sequence at 

which different species start singing (Kempenaers et al., 2010; Thomas et al., 2002), 

but the exact timing can be influenced by different climatic variables such as 

ambient temperature, cloud cover and ambient light (Bruni et al., 2014; Da Silva et 

al., 2014; Hutchinson, 2002; Puswal et al., 2021). 

1.3 Ambient light levels 

As mature tropical rainforests are biodiverse systems with a high vegetation density 

consisting of many different layers, the microclimatic conditions within it are 

highly variable. The upper layer can receive up to 100 times as much light as the 

lowest layer, the forest floor (M. L. Berg et al., 2005; Engelbrecht & Herz, 2001; 

and see D. W. Lee, 1987). Recently reforested tropical rainforest is often 

characterized by a single layer of seedlings or saplings, so although its composition 

is highly variable depending on its restoration phase and initial position, its 

vegetation density is much lower than mature forest (Le et al., 2012). This 

dramatically increases the penetration of light all the way down to the ground layer, 
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potentially affecting the vocal behaviour of bird species living in these disturbed 

forests. 

Earlier studies into anthropogenic light pollution show that increased ambient 

light levels lead to earlier singing times (Kempenaers et al., 2010). However, the 

size of this effect is not similar across all species, and it depends strongly on their 

sensitivity to light (Thomas et al., 2002), with more sensitive species singing earlier 

relative to their normal starting time. Thomas et al. (2002) found that this sensitivity 

is related to eye size, suggesting evolutionary adaptation to the species’ foraging 

height, corresponding with light availability. In forests, canopy species are adapted 

to high light conditions with smaller eyes and lower sensitivity, while ground 

species adapted to low light conditions have larger eyes and higher sensitivity 

(Ausprey et al., 2021). Species inhabiting different foraging layers are, therefore, 

expected to exhibit different responses to light levels and to drivers that affect light 

levels in forests, such as deforestation or reforestation. 

Another species characteristic that influences the response to changing light 

levels in forests is related to the generalist-specialist concept, as described by 

Devictor et al. (2008). Generalist species can survive in many different habitats, 

while specialists are adapted to a particular type of habitat. Generalists are thought 

to be more plastic in their behaviour, adapting on non-evolutionary timescales. 

Anthropogenic changes inducing higher light levels are therefore expected to have 

larger fitness consequences for specialists, who will have a lower ability to adapt 

their behaviour. Generalists species, on the other hand, will likely adapt their 

behaviour and singing time to be more synchronous with the surrounding 

ecosystem.  

1.4 Research gap  

The response of tropical songbirds timing to light pollution and habitat disturbance 

has been studied before. However, we do not yet know to what extent reforestation 

affects the timing of singing. In Madagascar in particular, assessments of the effects 

of reforestation on animal activity is important to support and maintain its 

vulnerable endemic biodiversity. In the long-term process of reforestation, bird 

community compositions are likely to shift as more and more of the original forest 

layers return (Devictor et al., 2008; Le et al., 2012). The different responses 

amongst generalist and specialists are especially important in conservation, as 

specialist species are known to be under the greatest threat of habitat conversion 

(Devictor et al., 2008). More knowledge on the timing of singing activity as a 

response to reforestation leads to more accurate estimation of sampling strategies 

and therefore to more effective monitoring and conservation. This will eventually 

contribute to improved reforestation results and a better livelihood for the 

community living in Madagascar’s rainforests. 
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1.5 Research objectives 

This research has focused on forest restoration sites around Ranomafana National 

Park (RNP) in Madagascar and aimed to determine differences in the timing of 

vocal activity at dawn amongst bird species in and around RNP and between mature 

forest protected by the National Park (NP) and forest restoration sites (RS). I have 

used acoustic data from these forest treatment habitats to test how the start time of 

the dawn chorus differs between these habitats. The research focusses on three 

objectives. 

I set out to evaluate whether the timing of dawn singing is different in restoration 

sites compared to mature forest, for different tropical bird species and whether this 

response can be related to species-specific traits (objective 1). 

I have analysed this using acoustic software developed to identify and classify 

different sounds. This method is still quite new and under development, so I 

expected that methodological challenges would arise during the process. I 

considered it valuable to support the development of these methods. Therefore, I 

also aimed to identify these methodological challenges and determine which factors 

could influence the identification of bird sounds in audio recordings from tropical 

rainforests (objective 2). Two of the factors I suspected would impact the 

identification result are ambient sound levels and overall species abundance and 

diversity. These factors are therefore also considered in the analysis. 

Given the large insecurity of identification results, I formulated a third objective 

in case species-specific identification proved to be infeasible. This was to examine 

whether bird communities, irrespective of species, in restoration areas exhibit an 

earlier dawn chorus compared to those in mature forests (objective 3).  

Figure 1: Souimanga Sunbird, Cinnyris Sovimanga, one of Ranomafana 

National Park's most common bird species. Jean-Sébastien Guénette / 

Macaulay Library at the Cornell Lab (ML119864591) 
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2.1 Dawn chorus  

Singing is used by bird species as an important part of communication to defend 

their territory, attract mates and to communicate about foraging locations, possible 

predators and mate localization (Chen et al., 2015; Huang et al., 2022). Many 

species show a diurnal singing pattern, characterized by two peaks in singing 

activity near both sunrise and sunset. The first peak, known as the dawn chorus, is 

often the most pronounced, and three non-mutually exclusive hypotheses are often 

discussed to explain its occurrence (K. S. Berg et al., 2006). The acoustic 

transmission hypothesis postulates that singing is most effective at the coolest time 

of the day because sound travels further at lower temperatures (K. S. Berg et al., 

2006; T. J. Brown & Handford, 2003). The efficient foraging hypothesis explains 

how the low morning light availability prohibits the possibility of many day-time 

activities like foraging, making mornings a more profitable time to spend their 

energy on singing (Chen et al., 2015; Hutchinson, 2002; Kacelnik, 1979). Lastly, 

the energy stochasticity hypothesis relies on the notion that birds store high reserves 

in the evening to prepare for unpredictable nightly conditions, and use singing at 

dawn to get rid of excess reserves (Hutchinson, 2002; Reid, 1987; Thomas, 1999). 

All though all three of these mechanisms are likely to influence the general onset 

of dawn chorus in singing birds, individual differences remain between species (K. 

S. Berg et al., 2006; Kempenaers et al., 2010). One explanation for these differences 

among species is the threshold hypothesis, which states that birds start singing at 

dawn after a certain threshold level of light is reached (Da Silva et al., 2014). This 

threshold level differs per species and is dependent on the light sensitivity of their 

visual system, leading to species-specific timing of dawn song, as empirically 

shown by Kempenaers et al. (2010) and Da Silva et al. (2014). 

2.2 Adaptations to light intensity 

In altered light conditions, such as through anthropogenic light pollution, the 

species with high sensitivity respond with earlier singing as soon as the artificial 

2. Theory  
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light level rises above their threshold (Da Silva et al., 2014, 2014; Miller, 2006). 

This threshold is often not reached in species with lower light sensitivity, causing 

the timing of their first song to be unaffected by the increased light conditions 

(Kempenaers et al., 2010).  

In tropical rainforests, these variations in light conditions are naturally present 

throughout different layers of vegetation. Greater canopy density alters the solar 

radiation reaching the understory, as it blocks direct sunlight, thereby altering the 

light spectral composition and intensity (D. W. Lee, 1987). Average light 

conditions in understory of dense tropical forests are often below 1% of the light 

reaching the canopy (Engelbrecht & Herz, 2001). However, great variation (70%) 

is found in different understory light conditions in distinct types of tropical forests. 

Figure 2 illustrates this dense tropical rainforest in Ranomafana National Park. 

2.3 Species-specific variations in dawn singing 

Bird species are found in all different layers of tropical forests, with all these 

different light conditions, thereby leading to the prediction that they have evolved 

different sensitivity to light. By studying dawn chorus in a neo-tropical forest, Berg 

et al. (K. S. Berg et al., 2006), found that time of first song is related to specific 

species characteristics related to ambient light level and visual sensitivity. For 

passerine birds included in the study, timing of bird singing is earlier in species with 

bigger eye size. They also found that timing of singing is earlier in species with a 

higher foraging height. This supports the efficient foraging hypothesis, as the higher 

light availability in the higher foraging heights leads to earlier foraging possibilities 

and therefore to earlier singing, as explained by Thomas et al. (2002). These 

Figure 2: Tropical rainforest of Ranomafana National Park, with dense vegetation existing of many 

layers, blocking direct sunlight to the lowest levels. Sipa, 2013. 
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findings suggest an evolutionary adaptation towards increased visual sensitivity to 

lower light conditions (McNeil et al., 2005).  

Interestingly, the opposite results have been found by Chen et al. (2015), who 

found that in East-Asian tropical montane forest, lower-layer species initiated 

singing earlier than upper-layer species. They suggest, however, that this 

relationship is highly dependent on the habitat type, and this pattern is more likely 

to occur in forests lacking sufficient canopy height. Visual ability is therefore likely 

a more dominant factor in a study area like theirs, with less-structured vegetation 

and low canopy (10-12m), while foraging height is found to be most dominant in 

forests with tall trees (25m or more) and distinctive inter-layer vegetation that leads 

to significant variations in light availability (K. S. Berg et al., 2006; T. J. Brown & 

Handford, 2003).  

2.4 Light levels change in forests 

Habitat disturbance such as land conversion affects the microclimatic variables in 

tropical forests (Ausprey et al., 2021). While in undisturbed forests the changes 

from canopy to the floor are gradual due to the many vegetation layers, disturbed 

forests have a more simplified structure due to lower plant diversity. This causes 

abrupt changes in microclimatic conditions like light levels and temperature 

(Fontúrbel et al., 2021). Species adapted to dark environments (such as forest 

floors), do not respond well to these changes, showing lower abundances in more 

open areas (Ausprey et al., 2021). The fast dynamics of habitat conversion do not 

allow species to adapt evolutionary, thereby favouring species that have a high 

adaptability to more diverse environments, known as generalists (Devictor et al., 

2008). While other environmental variables like temperature and food availability 

also affect the song rate, song length and the abundance of certain species (see e.g. 

K. S. Berg et al., 2006; Huang et al., 2022; Johnson & Rashotte, 2002), the timing 

is most strongly affected by a change in light levels.  
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3.1 Research area 

Ranomafana National Park (RNP) is a montane rainforest in Eastern Madagascar, 

with elevations ranging from 400-1417 m altitude, spanning an area of 416 square 

kilometres (WildMadagascar, n.d.). The park is home to 115 bird species, of which 

30 endemics to the area (Hobbs & Dolan, 2008). The park is one of the field sites 

of the program Rewilding Madagascar, a multi-year research program, run by SLU 

with Dr. Sheila Holmes as program leader, looking into the role of seed dispersal 

for reforestation success. RNP hosts a research station, and it is used in this program 

to test monitoring techniques, such as camera traps and acoustic devices. Because 

3. Methods 

Ranomafana 

National Park 

Recorder locations 
• National park 

• Restoration site 

Figure 3: Map of Ranomafana National Park, Madagascar. Pointers represent the recorder 

deployment points within the park (blue) and at the restoration sites (red). Adapted from 

Razafindravony et al. (2023). 



16 

 

this research program focusses on reforestation success, it evaluates forests with 

various stages of reforestation as well as mature forests within RNP, providing an 

excellent opportunity to examine the effect of restoration on bird behaviour.  

3.2 Data 

The continuous acoustic data of the Rewilding Madagascar project has been 

collected using AudioMoth acoustic recording devices (Hill et al., 2018; Open 

Acoustic Devices, n.d.) at different restoration sites (RS) outside the national park 

(n=4) and multiple locations within RNP (NP) as control treatment (n=5) (see 

Figure 3 and Appendix 3). Each acoustic device performed 24-hour recordings on 

five consecutive days with a time schedule of 1 min on and 1 min off to save 

memory and battery life. The recorders were deployed in the field between February 

22nd and May 3rd 2022 (unpublished data, Andriamavosoloarisoa, 2023). For this 

research, I used recordings from 5 A.M. to 6 A.M., which includes the onset of 

nautical twilight up until or just before sunrise for all recorded sites and dates. 

Mornings with excessive rain were excluded from the dataset because bird calls 

could not be identified. This led me to discard three mornings, two of which were 

the only ones of one of the NP sites (AND13#1), so that site was removed from the 

dataset. Thereby the final dataset came down to four sites for both treatments, both 

with thirteen mornings to analyse, resulting in a total length of 2 * 13 * 30 recorded 

minutes = 13 h.  

The data was obtained from the ‘Rewilding Madagascar’ project through the 

RFCx-ARBIMON platform (Aide et al., 2013), an online audio processing software 

further referred to as Arbimon.  

3.3 Species identification 

3.3.1 Species selection 

My analysis started with the first objective of this research, to find a species-specific 

response in singing times to the different forest habitats. For this, I identified species 

that were present in the recorded data and showed different characteristics with 

regards to foraging height and level of specialisation.  

Mahefa Andriamavosoloarisoa, PhD researcher in the Rewilding Madagascar 

project responsible for collecting the data, provided a list of thirteen most-occurring 

species in the area based on his local experience and his preliminary assessment of 

the dataset (M. Andriamavosoloarisoa, personal communication, April 28th 2023). 

I also extracted a list of Ranomafana’s most common species and their 

characteristics and observation counts within the area of Ranomafana from the 
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eBird Database (Sullivan et al., 2009). The complete list of species that I used in 

my analysis consisted of the thirteen from Andriamavosoloarisoa and thirteen more 

of the remaining species with the highest observations from eBird. The full list of 

analysed species can be found in Appendix 1. 

3.3.2 Arbimon software 

I chose the Arbimon software to process and analyse the audio data for its three key 

features: sharing data, visualizing data, and its incorporation of machine learning 

models. Firstly, the fact that Arbimon runs online allows data (once uploaded) to 

be accessible for collaborators all over the world, allowing validation of results and 

facilitating the data to be used in more distinct research projects. Secondly, 

Arbimon’s immediate conversion of audio files into visual representations that can 

be filtered by frequency and time makes a scan of the recording faster and more 

efficient. Lastly, Arbimon’s built-in machine learning methods makes them 

accessible for researchers across all fields of expertise.  

3.3.3 Machine learning methods 

Audio processing relies on the use of spectrograms. Spectrograms are a visual 

representation of sound with time on the x-axis, frequency on the y-axis and the 

amplitude of the signal is illustrated by the darkness of the pixels. An example of a 

bird call represented by a spectrogram is seen in Figure 4. By converting sound to 

a visual spectrogram, it can be analysed by machine learning methods such as audio 

event-detection (AED), clustering and pattern matching (PM). I will expand upon 

these methods below. 
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Figure 4: Spectrogram of the song of bird species Cinnyris sovimanga. eBird, 2023. 
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Audio event-detection and clustering  

AED detects sound events in audio files based on threshold values it receives as an 

input, such as minimum amplitude, duration or bandwidth. A frequency range can 

also be specified. It can be used to filter the amount of data to search through during 

identification. An example of resulting detections is shown in Figure 5. When 

combined with a clustering analysis, the detected audio events can be categorized, 

after which they can be identified to species using visual inspection and audio 

playback (Rainforest Connection, 2022a). This clustering analysis will group the 

found audio events according to how similar the pixels of the spectrograms are. 

This will thus create groups of audio events that have similar features.  

This feature can be used to search for examples of desired calls, without the need 

for existing examples and could therefore be used to start the analysis. I used these 

examples of calls in the PM analysis to efficiently detect more examples of the pre-

determined sounds. I stored the best sound patterns of each selected sound as a 

template within Arbimon, and because Arbimon requires them to be assigned to a 

species, I assigned them to ‘unknown species’ codes (sp1, sp2, etc.) that are 

available within the software. 

I ran multiple AED’s with different parameter-settings (Min. frequency 0-1.6 

kHz, Max. frequency 8-10 kHz, Min. amplitude 0.5-1 (in number of standard 

deviations from the mean of the spectrogram), Min. duration 0.2 s, Min. bandwidth 

0.5-1 kHz), resulting in different amounts of detected sound events and clusters. 

This method was only used as an exploratory way to start to understand patterns in 

the data and to find examples of clear bird calls. Following this approach, I stored 

only those call templates that were clearly distinctive of a bird species and of which 
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Audio event detection (AED) 

Figure 5: Example of audio event detection on a spectrogram. Blue boxes are sound events 

detected by the algorithm.  
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I found multiple others, in order to improve the chance of success of their PM 

analysis.  

Pattern matching 

Pattern matching is a semi-automatic sound classification algorithm implemented 

in the Arbimon software for which an example, or template, of a sound 

(spectrogram) is compared to other spectrograms within the recording (Rainforest 

Connection, 2022b). This process returns correlation scores per match that 

describes the similarity of pixels within the spectrograms. All matches with a 

correlation score above a given value are then presented to the user. It is semi-

automatic because the resulting matches can then be manually evaluated both by 

visual comparison and auditory playback. This is visualized in Figure 6. In 

conclusion, PM is useful if you have a known call and you want to find more 

instances of that call within your dataset. 

The templates that I used were from three different sources. I started with the 

three unidentified species from the above-explained AED/c analysis. Then, I added 

those templates from species on my list, which were already identified in other 

public Arbimon projects and were therefore publicly available. Finally, I created 

templates myself from the first thirteen species of my species lists. This was done 

with the help of recordings from the Macaulay Library at the Cornell Lab of 

Ornithology, as explained in the following section.  

Creating the templates 

For each species on the list, I requested a few (two to four) recordings from the 

Macaulay Library in which a clear, distinctive call or song could be heard, 

Pattern matching 

Template 

Matches 

Figure 6: An illustration of how pattern matching works. The desired vocalization is given as a 

template spectrogram. The algorithm then returns instances where the recordings resemble this 

template. Manual validation is then required to mark true matches as present (blue tick) and false 

matches as absent (yellow cross). 
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preferably recorded in Madagascar, because location-specific templates are found 

to improve selection results (LeBien et al., 2020). See Appendix 2 for a full list of 

recordings used. I imported these recordings into a public Arbimon project called 

‘Madagascar Bird Templates’. I used Arbimon’s software to cut out call templates 

from these recordings that could be used to identify these calls in other recordings. 

Per species I selected three different templates with different calls or different 

qualities. For example, some calls were repeated with a couple of seconds in 

between them, in which case I selected one template with the single call and one 

template with three or four times that same call to provide more context. All of 

these templates were added to the Rewilding Madagascar Project. 

Consequently, I performed PM analyses on each of these templates (with 

parameters: min. correlation score = 0.2; max. nr. of matches per recording = 2; 

max. nr. of matches per site = no limit). Then I verified the results visually by 

comparing spectrograms, and audibly through playback (see Figure 9 in the results 

for clarification). When the number of matches was lower than 20, I lowered the 

correlation threshold from 0.20 to 0.15 to increase the chance of true matches. 

When more than 600 matches were found, only the 600 with the highest score were 

validated and others were automatically discarded. 

These machine learning methods did not provide observations of all the species 

of interest, and a visual scan through the data revealed that many bird calls were 

missed using this method. The evaluation of this method, as described in objective 

two, will be performed in more detail in the results and discussion section. To 

accurately define dawn singing behaviour, the focus was therefore switched to 

objective three, in which the dawn singing behaviour of the complete bird 

community was assessed.   

3.4 Manual detection of bird sounds 

A manual analysis was required to capture the complete behavioural pattern of bird 

vocalizations in the dawn choruses of the test sites. This analysis was performed in 

Raven Lite (K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab 

of Ornithology, 2023). 



21 

 

3.4.1 Raven Lite Software 

 

I chose Raven Lite for the manual assessment because it has a couple of advantages 

over Arbimon for the task of manually scanning and annotating large datasets (see 

Markolf et al., 2022). Namely, it allows you to treat consecutive recordings as one 

to scan through it more efficiently, it allows you to adjust the brightness and contrast 

to adapt to various levels of ambient sounds, and it provides intuitive annotation 

methods.  

For each recorded morning, I visualized all 30 recorded minutes as one l, and I 

adjusted the visible frequency range to 0-10 kHz, the typical frequency range of 

bird sounds (Slabbekoorn & den Boer-Visser, 2006). Thereafter, I adjusted the 

brightness and contrast to values between 55 and 68 % by choosing those values in 

which bird calls had a good contrast with the ambient sounds, which differed per 

recording. Within this view I scrolled through each recorded morning and selected 

and marked spectrograms that were bird vocalizations. I did this both by 

recognizing spectrograms and by listening to the call to be sure that I was not 

Figure 7: Example of a selection result for site AND06#21, day 2. All recordings have been 

placed after each other and can be processed as one recording. 
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selecting sounds from other animals. The most challenging part was to distinguish 

bird sounds from insect sounds. I was able to identify insect sounds because of the 

continuous and repetitive nature, mostly spanning complete recorded minutes and 

often even more than one.  

3.4.2 Call type annotation 

A species might have two or more calls that sound different and also look different 

on the spectrogram, two different call types. However, since I did not have the 

expertise to assign calls to specific species, I was also unable to identify when two 

calls types were from the same species. Instead of counting the number of species, 

I therefore counted the number of different call types that were observed within 

each minute. Instead of defining the number of species (the species richness), I thus 

defined the number of different calls (the call richness) per minute.  

By defining the call richness per minute, I could use this to evaluate the pattern 

of activity over the morning. The start of the dawn chorus is usually determined by 

the first call of the morning when looking at specific dawn-singing species (see e.g. 

Thomas et al., 2002), but here I examined the full spectrum of bird calls irrespective 

of species and species characteristics. It was therefore possible that I also detected 

a rare call of a nocturnal species. To increase robustness of the result, I therefore 

defined the start of the dawn chorus by the first time that the call richness was higher 

than 0 for at least three consecutive minutes (see Figure 8). To account for 

differences in sunrise times, I converted the recorded times of the found species 

calls to time relative to sunrise, according to the Astronomical Applications website 

of the US Naval Observatory (as in K. S. Berg et al., 2006). This procedure resulted 

in an annotated spectrogram like the one shown in Figure 8. 

Other variables that were determined per morning were the ambient sound level 

and the maximum call richness. The ambient sound level is given in Raven Lite as 

the average power density. The unit they use is in decibel full-scale per Hertz (dB 

* FS / Hz), where the full scale is defined by zero as the highest sound amplitude 

that can be recorded with the recording system. The maximum call richness was 

defined as the highest call richness value detected in the morning. 



23 

 

3.5 Statistical analysis 

The measured response variables were the maximum call richness, the start time of 

the dawn chorus and the ambient sound level. These variables are used to compare 

the two forest treatment groups NP and RS. I used R software for the statistical 

analyses (R Core Team, 2023). The distance between pairs of recorders was large 

enough to avoid the same individuals being recorded at multiple sites. Therefore, 

the observations among sites can be seen as independent observations. However, 

recordings from different days at the same site cannot. Hence, I used a linear mixed 

model to test if the response variables were different among treatments, while 

including a random intercept per site to correct for multiple measurements. 

  

 
 
  

  
  

 
 
  

                       

                      

 

 

 

 

 

 

      

Figure 8: Example of how the start time of the dawn chorus is determined. The first time after 

which call richness > 0 for three or more consecutive minutes. 
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4.1 Audio event detection and clustering 

The range of detected audio events was 800 to 1600 per site (10-20 per minute), 

with clusters ranging from 20 to 100 events. From these, I selected three calls to 

create a template from, because they were clear bird vocalizations, they were 

repeated throughout multiple recordings and they were distinctive enough to be 

used in a pattern matching analysis. 

4.2 Pattern Matching 

The results from the pattern matching analyses varied strongly depending on how 

the call sounded and how the spectrogram looked. The amount of (unvalidated) 

matches found per template ranged between 4 (Coua Caerulea t1) and 973 (for 

Dicrurus fortificatus t1). After validation, calls of only one species (Copsychus 

albospecularis) were eventually found with certainty in six different sites. Other 

species were found in four (Cinnyris sovimanga), three (Terpsiphone mutata), or 

two different sites (Cuculus rochii, Neomixis tenella and Nesillas typica), but these 

could not be verified.  

Of the unknown species templates, four unknown species calls were found in 

two other sites than where the templates were originally found, and one was found 

back in one other site. 

Two examples of pattern matching results are presented here to exemplify the 

range of different outcomes. Figure 9 shows pattern matching results after 

validation of an unknown species ‘sp13’, whose template was taken from one of 

the recordings in the dataset. Twenty-seven matches were found that had sufficient 

correlation with the example template. Of them, fifteen were then classified as true 

matches, or present, by verifying them audibly and visibly. Figure 10 shows the 

result of known species Cinnyris sovimanga, whose template was imported from a 

Macaulay Library recording. In this case 103 matches were found, of which only 

one was validated as present. Finding one, zero, or very little true matches was 

exemplary for patterns used from imported templates. 

4. Results 
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Figure 10: Pattern Matching result for a template of Cinnyris sovimanga that was obtained from a Macaulay Library recording. 

In this case, one of the 103 matches was validated as present (blue tick), the other 102 as not present (yellow cross). 

Figure 9: Pattern Matching result for a template of unknown species ‘sp13’ that was selected from an event detection analysis. In 

this successful case, 15 of 27 matches were validated as present (blue tick), the other 12 as not present (yellow cross).  
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4.3 Manual analysis 

During the analysis it proved much more difficult to identify bird sounds in some 

of the restoration sites because of the high level of insect noise that was present. 

This noise often completely blocked out other sound in the frequency range of 3 to 

5 kHz and sometimes also 6 to 9 kHz. 

4.3.1 Activity pattern 

The call richness was visualised in activity patterns across time for each recorded 

morning, as seen in Figure 11 (NP) and Figure 12 (RS). 

 

 

Figure 11: Richness of bird vocalizations per minute during the start of dawn chorus for National 

Parks. The measured window (blue area) displays the activity pattern per recorded day, per site. 

Sampling frequency of measurements is 30 per hour. Time = 0 corresponds to sunrise. 
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4.4 Dawn chorus characteristics 

The maximum call richness was higher in the national parks, with numbers reaching 

up to 15 in the national parks, and only 5 in the restoration sites (estimated 

difference: -3.92, 95% CI: -6.04 to -1.81, p=0.001, Figure 13A). No difference 

could be found between the two treatments for the start time of dawn chorus 

(estimated difference: 4.53 min., 95% CI: -6.26 to 15.32, p=0.394, Figure 13B). 

The ambient sound level was higher in the restoration sites than in the national parks 

(estimated difference: 7.51, 95% CI: 3.55 to 11.47, p=0.001, Figure 13C).  

  

Figure 12: Richness of bird vocalizations per minute during the start of dawn chorus for 

restoration sites. The measured window (blue area) displays the activity pattern per 

recorded day, per site. Sampling frequency of measurements is 30 per hour 



28 

 

 

  

Figure 13: Linear mixed model results comparing treatments for A) max. call richness per minute, B) 

start time of the dawn chorus and C) ambient sound level of the recordings. Black bars represent model 

estimates with upper and lower limits of the 95% confidence interval. 
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In this research, I have aimed to define the effect of forest restoration on the start 

time of the dawn chorus in tropical forests in Madagascar. To analyse this effect, I 

used audio recordings from test sites that were located both in mature forests of 

Ranomafana National Park and surrounding areas with forest restoration. I will first 

discuss the results and their implications, and will later describe the challenges that 

need to be taken into account for acoustic monitoring in tropical forest ecosystems.  

5.1 Summary of results 

The analysis was first focussed on species-specific identification through the use of 

machine learning methods (objective 1). The automatic pattern matching and 

cluster analysis method was not accurate enough to facilitate species recognition.  

The challenges faced in this analysis (objective 2) were mostly connected to high 

variability in interfering insect sound sources, and the current reliability of 

recognition software on validation by local expert knowledge.  

By focussing the objective to differentiating all bird calls from the surrounding 

soundscape I could detect the communal dawn chorus (objective 3). I found that 

there was no difference between the start time of the dawn chorus in mature forests 

and forest restoration areas (Figure 13B). I also found that restoration areas showed 

a lower maximum call richness and a higher ambient sound level (resp. Figure 13 

A and C).  

5.2 Reduced species richness in restoration areas 

The call richness during the dawn chorus was higher in mature forests, as also 

illustrated by Figure 11 and Figure 12. The results therefore show a higher species 

richness in the national parks than in the restoration sites, which adds supporting 

evidence to the knowledge that protected forests have higher species richness than 

anthropogenically disturbed forests (Barlow et al., 2016; IPCC, 2022).  

The call richness was used as a proxy for species richness, and I will expand 

upon some of the considerations of this. As explained, two different calls may 

correspond to the same species, as they use different vocalizations to communicate 

5. Discussion 
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different messages (Clay et al., 2012). To compare species richness by call richness, 

two things have to be assumed. First, the detected species in both forest treatments 

use an equal number of different vocalizations. This is accounted for in this study 

by selection of study sites close enough to exhibit comparable bird communities. 

Second, all species should have equal chances of detection. All detection methods 

(e.g. camera traps, point counts) have a sampling bias towards species with specific 

habitats, behaviour or body size (Fontúrbel et al., 2020; Manu & Cresswell, 2007). 

Acoustic monitoring is found to be comparable to point counts in detection of call 

activity and is therefore considered a suitable alternative (Digby et al., 2013). In 

order to improve the accuracy of this prediction, local expert knowledge is needed. 

This entails excellent knowledge of bird vocalizations of species local to the study 

area. This knowledge is scarce, and it is precisely where and why automatic 

detection algorithms can aid research in this field. 

5.3 Dawn chorus timing not affected 

The hypothesis that the dawn chorus in restoration sites would start earlier because 

of increased light levels, cannot be supported by this study. It should first be 

excluded that the differences between light availability were too small in this study. 

Although I did not perform a formal analysis on the vegetation at both treatment 

sites, the researchers collecting the data have confirmed that vegetation structure in 

the restoration sites is indeed much less diverse, leading to much higher light levels. 

This lack of difference in timing can therefore not be ascribed to the lack of 

differences in light levels.  

Even though studies on individual bird species found that species started singing 

earlier when exposed to higher light-levels (see Kempenaers et al., 2010), opposing 

results have also been found when studying the chorus of the complete bird 

community. Lee et al. (2017) found that environments with increased light counter-

intuitively exhibited even later dawn choruses. They argue that other aspects, such 

as the adaptation of species communities to these environments, possibly play a 

role in this. Species with lower sensitivity could then be expected to inhabit the 

areas with higher light availability, as shown earlier by Kempenaers et al. (2010).  

Caterall et al. (2012), show that species composition takes considerable time to 

recover towards a rainforest-like bird community. They estimate that most forest 

bird communities will need more than 150 years to recover, even if rainforest-

requirements like closed canopy-cover, high stem-density and ground litter layer 

are met within 10 years. In the studied restoration sites, none of these parameters 

are met. It is therefore possible that the bird community that now inhabits the 

restoration sites consists of more species with low sensitivity. This would then lead 

to later dawn singing than expected from the environmental conditions. 
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5.4 Interference from insects in restoration sites 

Another explanation for why this study was not able to detect differences in timing 

of the dawn chorus could have been because detectability of birds was decreased in 

restoration areas. It was found that insect sounds are predominant in most 

restoration sites, as also illustrated by the increased ambient sound level. Their 

dominance in the soundscape often masks large parts of the frequency range that 

are used by birds in their vocalizations, impeding their detection (see Figure 14).  

In bioacoustics, environmental noise is a frequently encountered problem (see 

Aide et al., 2017; Burivalova et al., 2022). Studies have focussed on de-noising 

recordings by filtering out rain and wind (Juodakis & Marsland, 2022). Brown et 

al. (2019) have even developed a method to not only detect cicadas in acoustic 

recordings, but to also filter them from the data. However, these studies have only 

been able to achieve effective filtering through band pass filtering, where the 

frequency band used by insects is detected and deleted, thereby also removing the 

masked bird vocalizations. More studies into insect filtering are therefore required 

to more effectively detect birds from acoustic landscapes dominated by insects.  

The research method should therefore be adjusted to be workable in restoration 

areas with high insect populations. It should not be ruled out that in those research 

sites, audio recorders might not be the best monitoring tool for bird species 

evaluations. Other remote monitoring tools, like camera traps, should also be 

considered.  
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Figure 14: Spectrograms of a restoration site (above) with many insect sounds and of a national park 

(below) with bird vocalizations. These species groups often interfere, where the louder, continuous 

sound of insects often masks the sound of birds. 
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5.5 Recommendations on the use of machine learning 

methods 

Automatic acoustic detection is under continuous development. This was illustrated 

in this research by its reduced effectiveness in noisy environments and by minor 

but time-consuming issues like data-corruption. I hope to aid future research into 

detection of birds in tropical rainforests, by addressing strengths and limitations of 

the used analyses. 

5.5.1 Cluster analysis 

The main difficulty in the clustering analysis, was choosing the right parameters for 

both the audio event detection and the clustering itself. Because there is a high 

diversity in the soundscape of the data (with diverse ambient sound levels), the 

optimal parameters may not be equal for every recorded day because of the high 

variability in environmental parameters. The resulting clusters were not necessarily 

homogeneous, with different call types appearing in the same cluster, and, 

conversely, similar calls ending up in different clusters. The few calls that could be 

distinguished led to what I defined before as ‘unknown species’.  

Therefore, clustering analysis cannot be used to identify occurrences of species 

without additional knowledge of bird vocalizations; information often only 

accessible through local experts. In this study, I tried to surpass this by taking 

existing recordings from common species in the research area and use them in a 

pattern matching analysis.  

5.5.2 Pattern matching analysis 

In the pattern matching method I tried identifying the twenty-six most common 

species by importing their templates from the Macaulay Library. LeBien et al. 

(2020) have shown before that using a local context greatly improves selection 

results. Therefore, all of the recordings I used were from Madagascar, and even 

from the Ranomafana region if they were available for the given species. However, 

imported templates from outside the dataset still did not work as well as templates 

that were created within the same dataset (see Figure 9 and Figure 10). The context 

therefore was thus still not close enough to the recordings, and surrounding factors 

like weather conditions, time of year, or simply individual variations were too high 

to find successful matches.  

Another factor that could possibly improve selection results is the selection of 

suitable templates. Bird vocalizations encountered during the selection varied in 

terms of pitch, rhythm, tone and repetition (The Cornell Lab, 2009). Especially if 

calls were repeated, it made it difficult to determine the right number of repetitions 

to choose for the template. Templates of short calls were often not suitable, but 
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adding more repetitions also increased the disturbance by surrounding sounds, 

thereby decreasing suitability again. Other questions are how to deal with individual 

variations in song pattern, or what the minimum length of a template should be. An 

analysis into the characteristics of template suitability would greatly enhance 

workflow in pattern matching and increase its overall efficiency. 

5.5.3 Alternative analyses 

Automated bird species identification from audio recordings is a challenging 

problem, and stronger methods are probably needed than pattern matching and 

clustering analysis. Such stronger methods, like neural network applications have 

been developed for the general public to use in the Northern Hemisphere (see 

application apps Merlin (Chu, 2012) or BirdNet (Kahl et al., 2021)). Unfortunately, 

the identification of birds from tropical areas is not that far developed. Templates 

of tropical species are not yet available in different environmental contexts to make 

species identification robust. However, recent studies show potential of animal 

sound detection networks requiring only a few examples, referred to as few-shot 

learning (Nolasco et al., 2023). In this study pattern matching, or template 

matching, was evaluated with an F-score of 12.35%, while state of the art neural 

network solutions were able to get an F-score of 61.83% with just 5 templates. The 

potential of these developments is promising, and more research can reveal its 

potential for a variety of environmental contexts and species groups. 

At this stage of the developments, however, it is still essential for species 

identification to work in close cooperation with an expert knowledgeable of local 

species and their sounds. I was able to conduct this study in cooperation with an 

expert in the field, PhD candidate Mahefa Andriamavosoloarisoa, who collected all 

the data and provided me with knowledge about common species in the area. 

However, this type of research requires the experts to be out in the field for long 

stretches of time, in remote areas with limited access to internet, making 

cooperation difficult and slow. This highlights the need for development of stand-

alone detection algorithms, to reduce dependence on local expertise.  

 

5.6 Future of rainforest restoration monitoring 

Although my results shed a light on the diversity of the acoustic landscape among 

forest treatments, the multitude of interactions between insects, birds and 

restoration status are still unclear. For example, it is suspected that the interference 

of sounds can have potential fitness consequences for birds (e.g. decreased 

communication, higher risk of predation (J. Lee et al., 2017), increased food 

availability, etc.), and it is unclear how insect communities respond to restoration 
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(e.g. species richness, volume of sound, etc. (Schmidt & Balakrishnan, 2015)) and 

what the underlying mechanisms are (e.g. microclimatic variations). These 

interactions could be further studied through enhanced insect filtering mechanisms, 

but species-specific recognition is also required for more detailed response patterns. 

Simultaneously, this research clearly shows the challenges faced in bird call 

recognition from acoustic data in the tropical rainforests of Madagascar. Although 

automatic detection methods are being developed and made available to the public, 

they still come with many limitations and the handbooks to use them have yet to be 

developed. The rapid advances and possibilities of machine learning methods being 

used in other areas of the world do give hope that these will also become available 

for those areas in the world where they are needed most urgently. Development of 

reliable machine learning algorithms for species recognition will decrease our 

dependence on the knowledge of local experts. With a continuation of data 

collection and annotation through strong cooperation with local experts, these 

methods can be extended towards more and more similar habitats. This will 

eventually lead to a better understanding of rainforest restoration and behavioural 

response of those species vital to re-establish healthy, self-sustaining forests.  
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The restoration of forest plays a large role in our efforts to mitigate climate change, 

but they are also crucial for the 880 million people who depend on forests for their 

livelihood. Restoration of tropical rainforests is urgent in a country like 

Madagascar, in which many species are endemic. Birds play a large role in the 

restoration of forests because of the key role they play in seed dispersal. In order to 

monitor and evaluate the restoration of forests, monitoring of birds is therefore 

crucial. Acoustic monitoring devices can used as a low-cost solution.  

Mature tropical rainforests provide a typical habitat of dense vegetation and low 

light conditions to which birds have adapted their behaviour. Restoration areas, 

however, are much less dense in vegetation and are characterised by much higher 

light levels. Typically, birds show a peak of singing behaviour in the morning, 

triggered by the onset of day. This is known as the dawn chorus. A change in light 

levels is expected to influence the timing of singing in bird species depending on 

their sensitivity to light. The relative disturbance of singing times can possibly 

influence fitness of individual species. 

This research aimed to identify differences in dawn singing time of individual 

species and the complete community, by comparing mature protected forests by 

forest restoration sites in and around Ranomafana National Park, Madagascar. The 

analysis was performed using novel automated machine learning methods, which 

are still under continuous development.  

The challenge of analysing acoustic data from rich tropical soundscapes was 

revealed here. Template matching and audio event detection did not provide 

species-specific identification without close collaboration of local experts. 

However, manual analysis of the data revealed that species richness was lower in 

restoration sites, but no difference in timing of the dawn chorus could be found. 

The restoration sites were also characterized by higher insect sound in the recorded 

data, increasing the challenge of identification of birds. Further research into the 

underlying mechanisms of insect abundance, its potential fitness consequences for 

birds and methodological advancements are needed to further distangle the effect 

of restoration on the dawn chorus. With more efforts and energy directed towards 

species-identification in tropical areas, for which the needs for effective monitoring 

are much more urgent, we can decrease our dependence on local knowledge and 

expand insights into the most effective ways to perform and monitor restoration.  

Popular science summary 
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Species list Ranomafana National Park. 

Table 1: Bird species occurring in and around Ranomafana National Park, according to *mad PhD-candidate Mahefa 

Andriamavosoloarisoa (2023) or ** eBird (2021). Observations, foraging height and main diet were also taken from 

eBird (2021). 

English name Latin name Observations Foraging height Main diet Source  

Malagasy Bulbul Hypsipetes 
madagascariensis 

589 Upper Fruits, insects * 

Souimanga Sunbird Cinnyris sovimanga 543 Upper Nectar * 

Madagascar Magpie-
Robin 

Copsychus albospecularis 500 Undergrowth Insects, fruit * 

Madagascar Wagtail Motacilla flaviventris 490 Undergrowth Invertebrates, insects * 

Malagasy Paradise-
Flycatcher 

Terpsiphone mutata 478 Middle Insects * 

Crested Drongo Dicrurus forficatus 460 Upper Invertebrates, fruits * 

Blue Coua Coua caerulea 427 Middle Insects, invertebrates, 
fruits 

* 

Malagasy Brush-Warbler Nesillas typica 396 Undergrowth Insects and spiders * 

Common Jery Neomixis tenella 297 Upper Insects * 

Lesser Vasa Parrot Coracopsis nigra 263 Upper Fruits * 

Malagasy Coucal Centropus toulou 247 Undergrowth Insects, invertebrates, 
small vertebrates 

* 

Forest Fody Foudia omissa 204 Upper Seeds, insects, nectar * 

Red Fody Foudia madagascariensis 179 Lower Seeds, insects, nectar * 

Malagasy White-eye Zosterops maderaspatanus 528 All Insects, seeds, fruit ** 

Pitta-like Ground-Roller Atelornis pittoides 450 Undergrowth Invertebrates, fruits ** 

Nelicourvi Weaver Ploceus nelicourvi 402 All Insects ** 

Velvet Asity Philepitta castanea 396 Undergrowth Fruits ** 

Madagascar Cuckoo Cuculus rochii 386 Middle Insects ** 

Common Newtonia Newtonian brunneicauda 383 Middle Insects ** 

Tylas Vanga Tylas eduardi 376 Middle Insects ** 

Red-tailed Vanga Calicalicus 
madagascariensis 

370 Upper Insects ** 

Mascarene Martin Phedina borbonica 362 Lower Insects ** 

Spectacled Tetraka Xanthomixis zosterops 355 Undergrowth Insects ** 

Madagascar 
Cuckooshrike 

Coracina cinerea 323 Upper Invertebrates ** 

Cuckoo-roller Leptosomus discolor 314 Middle Invertebrates, reptiles ** 
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Macaulay Library recordings. The following recordings were provided by the 

Macaulay Library of the Cornell Lab of Ornithology. 

Table 2: Recording numbers of recordings from the Macaulay Library of the Cornell Lab of Ornithology 

(2023) used in creating templates for the Pattern Matching analysis. 

ML 73397 ML 85852 ML 85867 ML 85872 ML 85888 ML 86416 

ML 87958 ML 87974 ML 91642 ML 92888 ML 92974 ML 92989 

ML 93111 ML 93555 ML 93609 ML 93632 ML 93824 ML 93844 

ML 93895 ML 94017 ML 95336 ML 95355 ML 95623 ML 95638 

ML 95784 ML 95821 ML 95832 ML 95839 ML 95842 ML 95851 

ML 95893 ML 95914 ML 95918 ML 95921 ML 95942 ML 95944 

ML 95951 ML 95969 ML 95982 ML 95995 ML 95998 ML 97427 

ML 97455 ML 97456 ML 97458 ML 97480 ML 97485 ML 97488 

ML 97489 ML 97500 ML 97501 ML 97521 ML 97537 ML 97564 

ML 97597 ML 97597 ML 97963 ML 97965 ML 98778 ML 100007 

ML 101983 ML 141911811 ML 503918061 ML 503918061 ML 504227001 ML 504227021 
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AudioMoth Deployment Sites. 

 

Table 3: Deployment sites of the AudioMoth recorders are used in this study. 

ID Site Treatment Latitude Longitude Altitude Height Direction Date deployed 

AND02#2 Andranofady NP 21.226223 47.395664 1143 7 10 22/03/2022 

AND06#21 Andranofady NP 21.214359 47.421957 1205 13.5 142 24/03/2022 

AND13#1 Andranofady NP 21.226253 47.433634 1078 14 70 30/03/2022 

RAN03#18 Ranomena NP 21.227459 47.475265 1082 15 11 28/04/2022 

RAN05#6 Ranomena NP 21.238254 47.46181 1057 15 30 29/04/2022 

ABV02#22 Ambatovory RS 21.283594 47.458088 803 2.8 252 01/03/2022 

AMB02#18 Ambodivoahangy RS 21.217104 47.547612 671 4 32 13/03/2022 

AMPB01#6 Ampitambe RS 21.261109 47.599323 569 2 0 09/03/2022 

TKL04#11 Tanambao 

Kelilalina 

RS 21.294172 47.551847 733 1.8 118 25/02/2022 
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