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Abstract 

Advances in deep learning have revolutionized the omics field, including genomics, epigenomics and 
transcriptomics. Many deep learning models have integrated multiple types of omics data to study genomic 
regulation and predict different signals of regulatory activity from DNA sequence. These models differ from 
each other in many aspects, such as the training data, the model architecture, the training approach, or their 
interpretation method. In this review, we provide a comprehensive overview of the current state of the field 
of deep learning in regulatory genomics by examining each part of these models. We start by describing the 
differences in the data used by each model and then explain the most commonly used architectures and the 
different training approaches these models take. We also provide a concise overview of the different model 
interpretation methods available with their advantages and disadvantages. Furthermore, three main 
applications of these models are described: motif discovery, non-coding variant effect and synthetic construct 
design. Finally, we conclude with a discussion of the limitations of these models nowadays. This survey is 
intended to serve as a guideline for omics researchers to gain an overview of the current landscape of deep 
learning methods in genomics and to guide them to focus new efforts on solving the limitations. 
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Introduction 
The development of the Sanger technique for sequencing DNA in 1977 opened the doors to the field of 
genomics1. The first DNA-based genome to be sequenced using that technique was the genome of the 
bacteriophage PhiX174. A few years later, in 1990, the Human Genome Project started with the goal of obtaining 
the sequence of the entire human genome, with the expectation that it would lead to cures and treatments for 
human diseases. But when the full sequence was published for the first time in 2003, it became clear that there 
was still much work to be done to understand the function of the sequence in its entirety. It consisted of 3 billion 
base pairs (bp), of which only 2% encoded proteins (20,000 – 25,000 genes). The rest of the sequence (98%), 
misleadingly referred to as “junk DNA”, still had unclear functions.  

It is now extensively known that non-coding DNA has structural and regulatory purposes2. It can regulate gene 
expression through various mechanisms (reviewed by Zrimec et al. (2021)3 and Misteli (2020)4). For instance, it 
contains elements like promoters and enhancers that guide transcription initiation. This is achieved through the 
binding of transcription factors (TF) with activating or repressing effect to specific DNA patterns (also called 
motifs). Gene expression is also regulated through sequence-guided nucleosome positioning. Nucleosomes are 
basic structural units of chromatin that are formed by 147 bp-long DNA stretches wrapped around eight histone 
proteins. They regulate gene expression by competing with TFs for DNA binding. Other epigenetic mechanisms 
(functional changes in the genome that do not involve a sequence change), such as DNA methylation or histone 
modification, can also regulate gene expression by affecting DNA accessibility for TFs. In addition, some motifs 
affect gene expression by controlling the 3D structure of the chromatin. For example, the architectural 
chromatin protein CTCF binds to specific motifs and creates topologically associated domains (TADs). These 
chromatin domains restrict interactions between regulatory elements to genes within the domain and contain 
countless internal loop interactions that bring regulatory elements like enhancers and promoters close in space 
to facilitate the activation of gene expression. 

Mutations in functional elements of the non-coding DNA can therefore result in gene deregulation and lead to 
diseases. For instance, mutations in two positions in the promoter of TERT, encoding the reverse transcriptase 
subunit of telomerase, introduce de novo TF binding sites and cause an increase in activity that avoids shortening 
of telomeres, driving a tumorigenic mechanism5. Some efforts to study the link between non-coding mutations 
and their consequence have been carried out in expression quantitative trait loci (eQTL) studies and genome-
wide association studies (GWAS) that look for associations between specific single nucleotide point mutations 
(SNPs) in non-coding DNA and gene expression levels (eQTL studies) or a particular phenotype (GWAS) measured 
in hundreds or thousands of individuals6. However, these studies present some limitations. The first one 
originates from the phenomenon of linkage disequilibrium: some SNPs always appear simultaneously due to the 
lack of recombination between them. Because of this, eQTL and GWAS cannot discern which one is the cause of 
the phenotype under study. Second, they cannot determine how a particular SNP eventually causes the 
phenotype in question (e.g., through a drop/gain in TF binding affinity or the creation or disruption of a TF 
binding site). Third, they are limited to the study of SNPs present in the population of individuals that participate 
in the study, which caps their statistical power to pinpoint genetic signatures underlying rare traits. Furthermore, 
they are unable to predict the effect of unobserved mutations. This is an important limitation, since many 
variants are unique or rare: a recent study performed whole-genome sequencing of >53,000 individuals with 
rich phenotypic data and diverse backgrounds, and found 400 million variants, of which 97% had frequencies of 
less than 1%, and 46% occurred only in one individual7. 

The progress and feasibility of next-generation sequencing technology allowed the development and extended 
use of genome-wide methods that determine the state of the genome at multiple levels. For instance, chromatin 
immune-precipitation sequencing (ChIP-seq) is a technique that determines the binding profile of different DNA-
binding proteins, histone modifications or nucleosomes8. DNase-seq identifies active or accessible (nucleosome-
depleted) regions of the DNA9. RNA-seq and Cap Analysis Gene Expression (CAGE) quantify gene expression: 
RNA-seq can detect different transcript isoforms generated by alternative splicing, while CAGE measures 
expression only at the transcription start site10,11. Massively parallel reporter assays (MPRAs) have been used to 
screen candidate regulatory sequences for promoter/enhancer activity by placing them in plasmids with a 
reporter construct that are introduced in thousands or millions of cells from which the activity readout is 
obtained12. All these methods opened the opportunity to study in detail how non-coding DNA regulates gene 
expression, and the detailed mechanisms by which mutations in these regions could result in gene expression 
deregulation. However, understanding the complex interactions between different combinations of regulatory 
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elements and their function is not trivial. The increasing amounts of omics datasets available posed deep 
learning (DL) as a powerful tool to study the regulatory activity of non-coding DNA. 

DL has replaced classical algorithms (linear regression, support vector machines, random forests and 
feedforward neural networks), commonly referred to as “shallow” methods, to unravel the syntax that dictates 
genomic regulation3. DL is a form of machine learning that learns how to perform tasks as humans do: by 
example. By providing a model with big amounts of labelled data, it is trained to detect patterns and annotate 
unseen data. Unlike more shallow machine learning methods, DL does not require manual feature extraction to 
make predictions, but it automatically detects significant features without the need to make strong biological 
assumptions. The ability of DL models to extract patterns and their ability to capture non-linear relationships 
makes them the ideal tool to study the regulatory function of non-coding DNA. They can be used to identify 
functional units in the DNA (enhancers, promoters, transcription factor binding sites (TFBS), transcription start 
sites (TSS), histone modification sites, etc.), investigate how they drive gene expression and predict the effect of 
mutations in these regions. 

The potential of DL for regulatory genomics caused a continuous stream of published papers since 2015 
describing DL models to predict genome-wide signals of regulatory activity (transcription factor binding profiles, 
histone modification profiles, chromatin accessibility, enhancer-promoter interactions or RNA expression levels) 
from DNA sequence alone (Figure 1, Table 1). These models can be used to make predictions from new 
sequences. This is particularly interesting for many reasons. First, unlike GWAS and eQTL studies, DL models 
have the ability to exhaustively inspect the effect of all possible mutations in a sequence, even if they have never 
been observed. Second, by using DNA sequence as the only predictor variable, they facilitate the application in 
a clinical context, where DNA sequence is a feasible data modality to be acquired from patients. In addition, DL 
models can be inspected with different interpretation methods to understand how predictions were made, 
which reveals how DNA sequence could possibly determine the different levels of genomic regulation (from TF 
binding affinities to gene expression levels). Thus, they are not only interesting for clinical applications, but also 
for basic molecular biology research. 

The multiple models developed so far use different data, architectures, training and validation schemes, and 
model interpretation approaches. The diversity in these choices imply that there is not one golden standard to 
design, evaluate and interpret DL models in genomics. This review intends to examine the differences and 
similarities in their design, while critically assessing their possible limitations. We will also discuss challenges that 
need to be addressed. We hope that the reader obtains a clear picture of the diversity in the design and 
validation of DL models that could help them, if needed, in the development of their own algorithm. We also 
hope this review helps researchers focus on the current limitations and the gaps instead of reinventing models 
that have already been developed by others previously. 

 

Figure 1. A) Histogram showing the increase over the last years in the number of publications about deep learning in regulatory genomics. 
B) Timeline of DL models for the study of regulatory genomics reviewed here. 
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Table 1. Overview of deep learning models for regulatory genomics. 

Model Input DNA 
length 

Prediction Organism / cell type Architecture 

DeepBind 
Alipanahi et al. 
(2015)13 

14–101 bp TF binding affinity Mouse & human CNN 

DeepSEA 
Zhou & Troyanskaya 
(2015)14 

1 kb Epigenetic profiles:  
- 690 TF binding profiles for 160 different 
TFs 
- 125 DHS (DNase Hypersensitive Sites)  
- 104 histone mark profiles 

Human CNN 

DanQ 
Quang & Xie (2016)15 

1 kb Epigenetic profiles 
- 690 TF binding profiles for 160 different 
TFs 
- 125 DHS (DNase Hypersensitive Sites)  
- 104 histone mark profiles 

Human CNN + RNN + 
Bidirectional LSTM 
(BLSTM) 

Basset 
Kelley et al. (2016) 16 

600 bp Chromatin accessibility 164 human cell types CNN 

BiRen 
Yang et al. (2017)17 

1 kb Enhancer ability Mouse & human CNN + RNN (GRU) 

AttentiveChrome 
Singh et al. (2017)18 

10 kb Gene expression 56 human cell types LSTM + Attention 
layers 

Basenji 
Kelley et al. (2018)19 

131 kb  Epigenetic profiles (genomic tracks): 
- 949 Chromatin accessibility profiles 
- 2307 histone modification profiles 
- 973 transcription start site (TSS) profiles 

Human CNN + Dilated layers 

ExPecto 
Zhou et al. (2018)20 

 40 kb Gene expression 
 

Human (218 tissues and cell types) 
 

CNN + linear 
regression 

SPEID 
Singh et al. (2019)21 

3 kb for 
enhancer 
2 kb for 
promoter 

Enhancer-promoter interaction 6 human cell lines (GM12878, HeLa-S3, 
HUVEC, IMR90, K562, and NHEK) 

CNN + RNN 

MPRA-DragoNN 
Movva et al. (2019)22 

145 bp Enhancer activity Human K562 and HepG2 cell lines CNN 

Xpresso 
Agarwal & 
Shendurne (2020)23 

10.5kb Gene expression - Human myelogenous leukemia cells 
(K562)  
- Human lymphoblastoid cells 
(GM12878)  
- Mouse embryonic stem cells (mESCs) 

CNN 

Zrimec et al. (2020)24 150 bp 
 

Median gene expression - S. cerevisiae  
- E. coli  
- D. melanogaster  
- M. musculus  
- H. sapiens  
- A. thaliana  
- D. rerio 

CNN 

TBiNet 
Park et al. (2020)25 

1 kb 690 TF binding profiles for 160 different TFs 
 

Human CNN + Attention 
layers + BLSTM 

AgentBind 
Zheng et al. (2021)26 

1 kb TF binding profiles of 38 TFs Human lymphoblastoid CNN or CNN + RNN 

BPNet 
Avsec et al. (2021)27 

1 kb TF-binding: 
-Profile shape: probability of observing a 
particular read at a particular position in the 
input sequence  
-Total read count 

Mouse embryonic stem cell (ESC) 
 

CNN + Dilated layers 

Enformer 
Avsec et al. (2021)28 

200 kb Genomic tracks: 
- 600 human RNA expression profiles 
- 4713 human auxiliary measurements (TF 
binding, DNA accessibility) 
- 357 mouse RNA expression profiles - 1286 
mouse auxiliary measurements (TF binding, 
DNA accessibility) 

Mouse & human CNN + Attention 
layers 

DeepGRN 
Chen et al. (2021)29 

1 kb TF binding profiles Different human cell types  
(from the 2016 ENCODE-DREAM in vivo 
Transcription Factor Binding Site 
Prediction Challenge) 

CNN + BLSTM + 
Attention layers 

DeepSTARR 
De Almeida et al. 
(2022)30 

249 bp 
 

Enhancer activity in combination with a 
developmental (Dev) or a housekeeping 
(Hk) promoter 

Drosophila melanogaster S2 cells 
 

CNN 

ChromTransfer 
Salvatore et al. 
(2022)31 

600 bp 
 

Chromatin accessibility Pre-training with many human cell types 
(n not specified) 
Fine-tuning with 6 human cell lines: 
GM12878, K562, HCT116, A549, HepG2 
& MCF7 

CNN 
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Training data 

Epigenomic data 
Models like MPRA-DragoNN22 and DeepSTARR30 use data from reporter assays to predict the enhancer or 
promoter activity of DNA sequences. These assays enable the evaluation of the effect of isolated SNPs32, solving 
the problem of linkage disequilibrium. However, they present some limitations: 1) These experiments often have 
low reproducibility, which caps the performance of models trained on the data obtained from them because a 
model can never be more accurate than the training data22. 2) Due to the location of putative sequences in 
plasmids, these assays cannot account for the effect of distal enhancers, local chromatin context and three-
dimensional conformation of the genome. Thus, they only account for the regulatory activities that are intrinsic 
to the DNA sequence33. 

In contrast, other models overcome the limitations of reporter assays by using endogenous data obtained from 
genome-wide assays (ChIP-seq, DNase-seq, RNA-seq, CAGE). Different models use different combinations of 
data derived from these assays to predict diverse aspects of genomic regulation. For instance, some models 
have been trained with ChIP-seq data in order to predict TF binding or histone modification profiles (DeepBind13,  
TBiNet25, AgentBind26, BPNet27, DeepGRN29,31). Others are trained with DNase-seq data to predict chromatin 
accessibility (Basset19, ChromTransfer31). These two features are highly interconnected, as TFs bind to accessible 
regions of the genome. Thus, some models predict both types of data simultaneously (DeepSEA14, DanQ15). 
Other models use RNA-seq or CAGE data to predict gene expression levels (AttentiveChrome18, ExPecto20, 
Xpresso23, Zrimec et al.24). As gene expression levels are dependent on TF binding, histone modification profiles 
and chromatin accessibility, some methods use all these kinds of data to predict all levels of genomic regulation 
(Basenji19, Enformer28). 

 

Input sequence data 
All models analysed here make predictions from input DNA sequence in order to understand how it determines 
genomic regulatory activity. Raw DNA sequences need to be encoded before they are given to a model.  One-
hot encoding is the most used coding method to convert a DNA sequence into a matrix that the network can 
work with. This method encodes each nucleotide binarily as A = (1 0 0 0), G = (0 1 0 0), C = (0 0 1 0) and 
T = (0 0 0 1), resulting in a DNA sequence represented by a 4 x L matrix, where L is the sequence length. The 
length of DNA sequences used differs between models (Table 1). While the first models only used 600 bp – 1 kb, 
more recent algorithms used up to 200 kb (Enformer28). Such increase was possible thanks to developments in 
DL architectures, which allowed models to integrate information from more distant loci in the input sequence 
(see Deep learning architectures in genomics).  

 

Deep learning architectures in genomics 
Since deep learning was first theorized, different architectures have been developed for diverse purposes. When 
applying deep learning in regulatory genomics, one must decide which architecture fits better the purpose of 
the model. Given that there is a lack of consensus regarding what is the best architecture for each task, 
researchers should test multiple architectures and decide which one gives better results. In this section, we will 
describe the most used architectures for regulatory genomics applications: convolutional neural networks and 
recurrent neural networks. We will also introduce the attention mechanism, a technique that can be combined 
with one of the previous architectures. 

 

Convolutional Neural Networks 
Convolutional neural networks (CNNs) are the most widely used models for image recognition. They were 
developed by LeCun et al. (1998) to recognise handwritten digits34. Their ability to identify patterns makes them 
suitable in genomics to find DNA motifs that determine, for instance, transcription factor binding, RNA 
polymerase binding or histone modification.  
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CNNs are composed of several convolutional layers, pooling layers and fully connected (FC) layers35 (Figure 2). 
Convolutional layers are the main part of these models. Each of them contains filters that extract patterns from 
the previous layer. For instance, in image recognition, the filters of the first convolution layer can detect edges 
with different orientations from the input image. In genomics, instead of edges these filters recognize DNA 
motifs. They can be thought of as position weight matrices (PWMs)a that scan the input sequence to find motif 
matches. Applying a filter throughout the length of the input sequence in sequential steps results in a vector, 
with each entry representing the similarity between each position in the raw input sequence and the filter 
applied. After applying X filters, the resulting vectors are combined into a matrix that serves as the input to the 
next layer. This one detects co-occurrences of motifs at specific positions of the input sequence. Each 
convolutional layer of the CNN adds a level of abstraction to detect complex combinations of DNA patterns 
across the full input sequence. Pooling layers (typically max-pooling) are typically employed after convolution 
layers to reduce the number of parameters and computational cost. Pooling also simplifies the output of each 
convolutional layer and allows the model to integrate more distant regions of the input sequence, i.e., it enables 
bigger receptive fieldsb. Finally, one or more fully connected layers convert the output of the last pooling layer 
to the desired output. This can be, as we saw in the previous section, TF binding affinity, gene expression, 
enhancer-promoter interaction, enhancer/promoter activity, histone modification, chromatin accessibility, or a 
combination of those. The output can be a unique value for the whole input sequence or different values for 
sequential sub-sequences of different sizes up to the single-nucleotide resolution. These values can be discrete 
(classification task) or continuous (regression task). 

 

Figure 2. Illustration of a deep learning model. The input sequence is first one-hot encoded. The first convolutional layer scans the input 
sequence using filters that look for motifs and produce an output matrix with a column for each filter and a row for each position in the input 
sequence. In this example, the motifs represent TF binding motifs for GATA1 and TAL1. Negative values are transformed into zeros with an 
activation function. Max-pooling simplifies the output of the first convolutional layer. The second convolutional layer detects position and 
combination of motifs found in the first layer. The (optional) bidirectional LSTM (BLSTM) layer detects orientation and distances between 
motifs. Finally, a fully connected network produces the output (in this case, TF binding affinity for GATA1 and TAL1 in two different cell types). 
Figure adapted from Eraslan et al. (2019)36. 

The number of layers, the number of filters per layer, and their size (known as kernel size) are hyperparameters 
that need to be tuned to achieve the best performance. The number of layers defines the depth of the model, 
which, in turn, determines the complexity of motif combinations that it can find. The number of filters per layer 
determines how many different patterns will be scanned in the output from the previous layer. In the first layer, 
it represents the number of motifs (or partial motifs) that the model will look for in the input DNA sequence. 
The filter/kernel size represents the length of these motifs. The weights and coefficients in each filter are 
parameters that are optimized during the training phase. 

 

a Position weight matrices are representations of motifs in DNA sequences with one column for each position filled with symbols (A, T, C, G) 
representing the four nucleotides with size proportional to the importance of each nucleotide in each position for the feature in question 
(TF binding, promoter activity…). 
b The receptive field is the maximum length between two features that the model can account for to produce the output. 
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CNNs were first used in regulatory genomics by Alipanahi et al. (2015) to predict sequence specificities of 
transcription factors (DeepBind). Their model outperformed existing non-DL methods that participated in the 
DREAM5 TF-DNA Motif Recognition Challenge13. Zhou and Troyanskaya (2015) developed DeepSEA based also 
on CNNs to predict TF binding affinity, chromatin accessibility and histone modifications14. They achieved a 
median area under the curve (AUC) for TFBSs of 0.958, surpassing the performance of the best existing method 
at the time, which was based on a gapped k-mer support vector machine (AUC = 0.896)37. Since then, CNNs have 
been continually and successfully used in other models to predict different phenotypes from DNA sequence 
(Table 1). Kelley et al. (2016) used this architecture to predict chromatin accessibility in 164 human cell types 
(Basset)16. Movva et al. (2019) predicted enhancer activity based on MPRA experiments in two human cell lines 
(MPRA-DragoNN)22. Agarwal and Shendurne (2020) predicted gene expression levels (Xpresso)23, and more 
recently Salvatore et al. (2022) predicted the open or closed chromatin state on a wide range of tissues, cell 
types and cellular states (ChromTransfer)31. 

CNN architectures have been widely used for different purposes, achieving high performances and allowing 
interesting findings (see Applications). They can learn properties like motif specificity, orientation and co-
occurrence3. However, they are limited in the size of the receptive field, thus not being able to model long-range 
interactions between, for instance, promoters and enhancers. Dilated convolutional layers allow CNNs to 
capture information across longer spans of the sequence, therefore expanding the receptive field38. These layers 
make use of filters with gaps to achieve such an increase. They were used by Avsec et al. (2021) in their BPNet 
model, which predicted TF binding27, and by Kelley et al. (2018) in their Basenji model, which predicted cell-
type–specific epigenetic and transcriptional profiles19. Dilated layers proved to increase the accuracy of model 
predictions for all data types included in their model.  

 

Recurrent Neural Networks 
Recurrent neural networks (RNNs) are widely used for natural language processing due to their capacity to 
model sequential data. In RNNs, nodes are arranged in a chain in such a way that each node takes as input a 
subsequence from the previous layer but also the output of the previous node. That way, the output of each 
node integrates both current and previous sequence information39,40. Bidirectional RNNs (BRNN) do this in both 
directions, therefore integrating current, previous and future sequence information (Figure 2). Thanks to this 
ability, RNNs can model dependencies between different parts of the input sequence.  

RNNs suffer from the “vanishing gradient” problem. This problem arises from the use of the gradient descent 
algorithm to update the network weights in order to minimize an error function during the training phase. 
Because of the recurrent architecture this gradient can become smaller and smaller as it is propagated back 
through the network. The consequence is that the model is not trained properly. Long Short-Term Memory 
(LSTM) networks and Gated Recurrent Units (GRU) are two variants of RNNs that reduce this problem.  

In the regulatory genomics field, RNNs have been mostly used in combination with convolutional layers to 
predict TF binding affinity, DNase I sensitivity and histone modifications (DanQ15), enhancer activity (BiRen17), 
enhancer-promoter interactions (SPEID21) and TF binding scores (AgentBind26). RNNs can learn sequential 
properties like motif multiplicity, distance between elements (e.g., a TF binding site from the TSS) and relative 
order of patterns3, but their training requires a lot of computational power, and they do not always perform 
better than CNNs. For instance, Zrimec et al. (2020) tested different neural network architectures that combined 
CNN layers, RNN layers and fully connected layers, achieving the best performance with a CNN (3 layers) – FC (2 
layers) architecture24. This showcases that the most complex model is not always the most accurate, and 
different architectures should be tested to choose the most adequate for each purpose. 

 

Self-attention mechanism 
Due to the problem of vanishing gradients, RNNs are also limited in the length of the receptive field. This issue 
can be circumvented by using self-attention layers in CNN or RNN architectures. These layers transform each 
position (nucleotide, or k-mer) in the input sequence by applying a function that depends on the interaction 
score between the position in question and every other position in the same input sequence. These interaction 
scores are optimized during the training phase to bring the best results. The fact that each position can directly 
attend to all other positions in the input sequence allows the model to account for long-range dependencies (for 
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example between distant promoters and enhancers)41. This mechanism has been applied in AttentiveChrome18 
(predicts histone modification), DeepGRN29 and TBiNet25 (predict TF binding profiles). Thanks to the self-
attention layers, AttentiveChrome outperformed DeepChrome in most of the human cell types included in the 
study (average AUC of 0.81 vs. 0.80), and TBiNet outperformed DeepSEA and DanQ (average AUC of 0.95 vs. 
0.90 and 0.93, respectively). 

In 2021, Avsec et al. published Enformer27, a deep learning model that uses convolutional and self-attention 
layers to predict genomic tracks for 5313 epigenetic marks in humans and 1643 in mice from 200 kb-long DNA 
sequences. The receptive field of this model is five times longer than the previous state-of-the-art model 
Basenji219. This increase was possible thanks to the use of self-attention layers. Despite architectures with self-
attention being the most powerful to account for distant interactions, the flip side is the high computational 
costs required to implement them, and some claim that such long sequences (200 kb) are not strictly necessary 
to explain most of the variance in RNA levels42 (see Discussion and limitations).  
 

Training approach 

Multi-task learning 
We can observe among the reviewed models that while some of them predict only one type of data (Basset, 
AgentBind, BPNet, ChromTransfer, Expecto, Xpresso, Zrimec et al.), others perform multiple tasks at the same 
time (DeepSEA, DanQ, Basenji2, Enformer). Due to the dependencies between the different data types 
(eventually, they are all determined by TF binding to different DNA motifs) it is logical to think that models 
trained to predict multiple tasks will perform better than those that only learn one task because multi-task 
architectures allow learning shared features. This improves the generalisation of models and reduces the 
computational cost compared to training separate models for each of the tasks39. However, multi-task learning 
can cause optimization imbalances, meaning that some tasks can have a bigger influence on the network 
weights31. This might result in a worse performance for weaker tasks (e.g., predicting the epigenomic profile of 
a cell type that is significantly different from the rest), a problem that might be solved by giving more weight to 
weaker tasks in order to compensate the imbalance. In any case, one should be aware of this possible 
inconvenience when working with multi-task models. 

Similarly, some models use the same network to predict traits from different organisms. Agarwal and Shendurne 
(2020) showed that their Xpresso model designed separately for mouse and human cell lines achieved similar 
performances when applied to the test set from the other species23, which suggests that the learned regulatory 
syntax can be generalised between human and mouse. This is also supported by the fact that Enformer achieves 
the best performances with a model trained simultaneously on human and mouse data28. Kelley (2020) also 
showed that joint training on human and mouse data improved model performance for both species and 
suggested that the addition of more diverse sequences to the model is probably driving this improvement43. 
Humans and mice are evolutionarily close enough to have orthologous transcription factors and share regulation 
mechanisms, but distant enough that merging data from both species leads to an increase in sequence diversity 
that improves the model. This sweet balance is probably the key to reaching more accurate models but as 
discussed above, we should be careful with optimization imbalances.  

To perform multi-task predictions, some have employed transfer learning. This concept is inspired by the way 
in which humans can apply knowledge acquired after solving a problem to tackle new tasks. Similarly, transfer 
learning allows pre-trained models to be adapted to new tasks. For instance, Salvatore et al. pre-trained a model 
in a cell-type agnostic way to predict open chromatin regions from DNA sequence and fine-tuned it in a cell-type 
specific manner31. In that way, the model can leverage big amounts of data to learn general rules that apply to 
all cell types, and tailor these rules towards each specific cell type with less required data. Transfer learning has 
also been used by Zheng et al. (2021)26 and Novakovsky et al. (2021)44 to adapt a model that predicted the 
binding of many TFs simultaneously to predict each of them separately. The advantage of using transfer learning 
is that it requires fewer amounts of cell type- or TF-specific data, whereas training independent models for each 
cell type or each TF results in lower performances due to insufficient data. Transfer learning can also be used to 
tailor models pre-trained on multiple species towards species-specific predictions. That way, species with less 
available genomics data can also make use of the benefits of deep learning.  
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Data splitting for validation 
DL models must be trained, selected and evaluated. To avoid overfitting and ensure generalisability, these tasks 
must be performed on different splits of the dataset. The normal procedure involves partitioning the dataset in 
training, validation and test sets. The training set is used to train models with different hyperparameters to learn 
the parameters in the filters (i.e., for the filters in the first layer, the importance of each nucleotide). These 
models are then assessed on the validation set to choose the best hyperparameters and the best one is finally 
evaluated on the test set to get a final measure of its performance. Common splitting proportions are 60% for 
training, 10% for validation and 30% for testing, although when the amount of data is limited the training set 
can be increased. Partitioning the dataset in training, validation and test sets can be done in different ways. 
Most authors hold whole chromosomes out as test and validation sets. Others take extra precautions and keep 
homologous sequences in the same set19,28. This ensures that the model has never seen the test data during 
training, thus it is a measure that should be broadly taken to prevent data leakage between training and test 
sets, which would result in overfitting. This means the model would memorise the entire input sequence as 
relevant instead of just the region (e.g., the nucleotides that create a TFBS) that drives the observed feature and 
that can be applicable to other parts of the genome. 

Preferably, each model should be evaluated multiple times to take the average of its performance as a more 
statistically robust measure. However, this is not always possible when data is scarce. K-fold cross-validation 
presents an alternative. It consists of splitting the data into training, validation and test sets k times, and 
repeating the training and evaluation process to take an average of the model’s performance. Although k-fold 
cross-validation is preferred to achieve more certainty about the model’s accuracy, training a model can require 
vast amounts of time, therefore this approach is not always employed.  

 

Model interpretation 
DL is often used to teach computers how to do a task that humans can perform easily (e.g., recognizing cats in 
images, or classifying whether a movie review is positive or negative) but in genomics, DL models go beyond 
human capabilities and achieve high performances doing very complex tasks. Therefore, humans can leverage 
these models to gain knowledge about the basis of genomic regulation, but unfortunately their parameters are 
hard to interpret because of the non-linearity, making it difficult to understand how they arrive to the output. 
Understanding how these models do their tasks is crucial for two reasons. First, the underlying bases on which 
models make predictions are, on some occasions, of greater value for researchers than the predictions 
themselves, as they enable insights into the basic biology driving genome regulation. Second, humans are often 
reluctant to accept what they do not understand, therefore opening the “black box” would facilitate the 
acceptance of these models in a clinical setting. Model interpretation aims to shed light into the basis underlying 
a model’s predictions. Talukder et al. (2021)45 and Novakovsky et al. (2022)46 have extensively reviewed many 
methods that are used for model interpretation in genomics. Here, we will provide a short overview of these 
methods (Figure 3, Table 2). 

Convolution kernel analysis was common among the first developed methods13,15,16. In convolutional neural 
networks that predict regulatory features from DNA sequences, the filters of the first layer learn short 
subsequences that drive such features (e.g., a motif to which a TF binds). To visualize and identify such 
subsequences, convolution kernel analysis takes these filters and looks for input sequences that activated them. 
After alignment, the nucleotide frequencies corresponding to each position are computed and converted to 
PWMs (Figure 3A). These PWMs can be interpreted as motifs that potentially drive the regulatory feature under 
study (TF binding, histone modification, chromatin accessibility, etc.). However, in neural networks multiple 
filters can cooperate to describe a single motif, being therefore only partial representations of it. These partial 
motifs could find no matches on databases of known motifs, making it difficult to interpret the results 
biologically. 

Another approach for model interpretation, and the most used approach so far, is in silico mutagenesis (ISM). 
This technique consists of mutating the input sequence one nucleotide at a time and comparing the model’s 
output for the mutated sequence with that of the reference. The difference is used to create heatmaps that 
highlight important positions for the model’s prediction (Figure 3B). A drawback of this technique is that it can 
miss redundant motifs. Consider a sequence with two binding motifs for a TF, where the presence of each of 
them individually is sufficient to drive TF binding. A network could succeed in annotating the sequence as 
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positive, but the model interpretation would not give a high importance score for these two regions, because 
mutation of any of them separately would not result in a difference in the output. 

In a variation of ISM, longer stretches of the input sequence can be mutated to introduce motifs and assess their 
impact on the output. The difference between the model’s output with and without the motif is used to 
determine motif importance (Figure 3C). This approach can also determine the effect of different backgrounds 
on known motifs. 

 

 

Figure 3. Approaches for model interpretation. A) Convolution kernel analysis. B) In silico mutagenesis. C) Motif insertion. D) 
Backpropagation-based approach. Figure from Novakovsky et al. (2022) 46 . 

 

ISM is a very intuitive way of interpreting DL models, and despite the mentioned limitation it has been used by 
many authors13,14,19–21,28,47 (see Table 2). However, it requires an iteration through the model for each sequence 
variation, resulting in high computational costs. Backpropagation-based approaches, like saliency maps, are 
computationally more efficient, as they only require one backward pass through the network (Figure 3D), but 
they present the same limitation as ISM: they can miss redundant motifs. To solve this issue, reference-based 
methods like DeepLIFT were developed 48. With one backward pass, DeepLIFT compares the activation of each 
node to the reference activation and computes contribution scores to identify important features.  

Finally, attention mechanism is a popular approach for model interpretation in RNNs and architectures with 
attention layers18,25,28,29. This technique uses the model’s attention scores to emphasize parts of the input that 
are important to make predictions.  
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Table 2. Model interpretation techniques used by different deep learning models. 

Convolution kernel 
analysis 

Input modification (ISM) DeepLIFT Saliency maps Attention mechanisms 

- Alipanahi et al., 2015 
(DeepBind) 
- Park et al. 2020 
(TBiNet) 
- Kelley et al., 2016 
(Basset) 
- Quang et al. 2016 
(DanQ) 
- Singh et al., 2019 
(SPEID) 

- Alipanahi et al., 2015 
(DeepBind) 
- Lanchantin et al, 2017 
(DeMoDashboard)  
- Zhou et al., 2015 (DeepSEA) 
- Kelley et al., 2016 (Basset) 
- Avsec et al. 2021 
(Enformer) 
- Singh et al., 2019 (SPEID) 
- Zhou et al. 2018 (ExPecto) 

- Avsec et al. 2021 
(BPNet) 
- Movva et al. 2019 
(MPRA-DragoNN) 
- De Almeida et al. 2022 
(DeepSTARR) 

- Lanchantin et al, 2017 
(DeMoDashboard) 
- Kelley et al., 2018 (Basenji) 

- Park et al. 2020 (TBiNet) 
- Chen et al. 2021 
(DeepGRN) 
- Avsec et al. 2021 
(Enformer) 
- Singh et al., 2017 
(AttentiveChrome) 

 

Applications 
The power of DL models is leveraged in different genomic areas such as variant calling and annotation, disease 
variant prediction, gene expression and regulation and epigenomics (reviewed by Alharbi and Rashid (2022)49). 
Here, we will describe in detail three key applications of the DL models reviewed (namely, motif discovery, non-
coding variant effect prediction and synthetic construct design) and show examples that showcase the value of 
these models.  

Motif discovery 
As explained in the previous section, model interpretation enables the discovery of the most informative regions 
in the input DNA sequence for the model to determine the output. These regions often consist of motifs that 
drive the regulatory feature in question. For example, using three model interpretation approaches, Lanchantin 
et al. (2017) found different motifs that matched known TFBS motifs in the JASPAR motif database47. Similarly, 
Park et al. (2020) used convolution kernel analysis to interpret their TBiNet model (predicts TF binding affinities 
for different TF-cell type combinations). They saw that 142 out of 320 kernels of their model matched known TF 
binding motifs present in the JASPAR, jolma2013 and uniprobe databases25. Although the authors did not delve 
into the other 178 kernels, they might likely represent partial or undiscovered motifs. These examples show that 
DL models can be used to discover new DNA motifs that drive genome regulation. 

In addition to the discovery of new motifs and important features for different regulatory features, these models 
offer an opportunity to understand how motif arrangement affects binding affinities. For instance, Avsec et al. 
(2021)27 developed a model to predict TF binding profiles in mouse embryonic stem cells (TBNet) and inspected 
the results thoroughly to learn something about the motif syntax driving TF affinities. Interpretation of TBNet 
revealed a ~10.5-bp helical periodicity associated with Nanog binding. They also found composite motifs (two 
or more strictly spaced motifs) and cooperative TF interactions (the binding of a TF to a motif is affected by a 
second motif and the relative distance between them). 

Similarly, Kelley et al. (2016) performed interpretation of their Basset model that predicts chromatin accessibility 
and they found that the model dedicated the most filters to overlapping parts of the CTCF’s binding motif, 
showing that this was the most predictive pattern of accessibility. They also observed unrecognized filters that 
may be unknown protein binding sites. Analysis of these filters revealed that they matched proteins that were 
known to regulate the development of different cell types16.  

Finally, this approach can also be used to fine-tune representations of already known motifs. For example, De 
Almeida et al. (2022) used DeepLIFT to find regions in input sequences that were important for enhancer 
annotation by their DeepSTARR model, and they found a significant contribution of sequences adjacent to 
important known motifs up to ten or more nucleotides. This suggests that the current motif representation is 
only partially illustrating the entire sequence that drives enhancer activity.  

 

Non-coding variant effect prediction 
As stated in the introduction, an advantage of DL models over GWAS/eQTL studies is the possibility of studying 
the effect of all possible mutations in non-coding regions, without requiring the presence of these variants in 
the training data. For example, Alipanahi et al. (2015) used mutation maps to visualize the effect of genetic 
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variants on TF binding affinity. They found that a single nucleotide mutation in the LDL-R promoter disrupted an 
SP1 binding site, leading to familial hypercholesterolemia13. Similarly, Zhou et al. (2015) identified that a C-to-T 
mutation at a specific breast cancer risk locus led to increased affinity of FOXA1, and a T-to-C mutation at a locus 
associated with α thalassemia created a binding site for GATA114.  

The added value of these models compared to GWAS/eQTL studies is not only in the possibility of studying all 
possible mutations, but also in the fact that they can infer the direct effect on the genome regulation instead of 
only associating them with an observed phenotype. For example, Kelley et al. (2018) analysed 1170 loci 
associated with autoimmune diseases and blood cell traits with their model Basenji. It predicted that a C-to-G 
mutation at one of the loci associated with multiple sclerosis increased transcription of GALC in immune cells 
and GPR65 in severely acute lymphoblastic leukaemia cell lines, thyroid cells, insular cortex cells, and immune 
cells19.  They also showed that a SNP located in a 559-kb gene desert and associated by GWAS studies with vitiligo 
with high probability created a motif recognized by CTCF. It had been hypothesized that this SNP regulates TYR, 
a gene located 6.28 Mb away from the SNP that catalyses the conversion of tyrosine to melanin. Basset’s 
prediction suggested a plausible mechanism by which the SNP can affect the regulation of such a distant gene. 

Another example of this application is provided by Avsec et al. (2021), who also used their model Enformer to 
study the direct effect of mutations. In an eQTL study, a C-to-T mutation in an intron ~35 kb downstream of the 
TSS of the NLRC5 gene had been described to decrease the expression of that gene in whole blood. Enformer 
not only correctly predicted this change but also showed that this variant affects the TF binding motif of SP1, 
suggesting that the mechanism of action by which NLRC5 expression is decreased might be through a perturbed 
SP1 binding affinity. In a similar approach, Singh et al. (2019) used their SPEID model to predict the effects of 
somatic mutations on enhancer-promoter interaction in melanoma patients and they identified mutations that 
lower the interaction likelihood. 

Finally, the ability to predict the effect of non-coding variants has been applied to prioritize SNPs identified in 
GWAS studies. Due to linkage disequilibrium, these studies result in many SNPs being associated with a 
pathology despite not being the causal mutation. DL models can be leveraged to predict the effect of each of 
these mutations and prioritize those that have a stronger effect for further experimental studies. For instance, 
Zhou et al. (2018) prioritized SNPs related to immune diseases with their ExPecto model and proved that their 
top three SNPs showed transcriptional regulatory activity, whereas none of the GWAS lead SNPs showed 
differences in transcriptional activity.  

All in all, these examples show the potential of DL models as in silico perturbation tools to predict the direct 
effect of mutations that may eventually cause a pathology. The fact that they can evaluate non-coding mutations 
makes them particularly valuable, given that most variants identified by GWAS are non-coding50. Such 
predictions can be used as working hypotheses for further experimental validation. 

 

Synthetic construct design 
Finally, all these models further our understanding of how DNA sequences encode genome regulation and 
eventually, gene expression. This knowledge enables the design of synthetic constructs with desired 
characteristics. For example, de Almeida et al. (2022) used DeepSTARR to create synthetic enhancers de novo 
with specific activity levels. They designed 249 enhancers spanning different activity levels according to their 
model and measured their enhancer activity experimentally, achieving a Pearson correlation coefficient of 0.62. 
The advantage of using DL models over traditional methods based solely on experimental data on promoter or 
enhancer activity, is that DL models are not restricted to naturally occurring sequences, but instead can explore 
the entire sequence space to achieve the desired expression level. For instance, Vaishnav et al. (2022) used a 
genetic algorithm to design random sequences and predicted the resulting expression with a convolutional 
model. They chose the 500 sequences with the maximum or minimum expression levels and showed that the 
designed sequences drove more extreme expression levels than 99% of the naturally occurring sequences51. This 
is of high interest both for synthetic biology applications and for industrial purposes to increase the production 
of proteins of interest. 
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Discussion and limitations 
Due to the success of DL as a tool in genomics and epigenomics, there has been since 2015 a steep increase in 
the number of published DL methods that model different aspects of genomic regulation (Figure 1). In this 
review, we have compared some of these published between 2015 and 2022 (Table 1, Figure 1), with an 
overview of the multiple alternatives available for each part of their design (input sequence length, predicted 
features, model architecture, training approach, model interpretation methods and downstream applications). 
Here, we will discuss some open questions and ideas that stemmed from this analysis and point out some 
limitations. For an in-depth review of general limitations of DL models in genomics, please see Whalen et al. 
(2022)52. 

Training data & training approach 
An aspect of concern regarding the input data is the origin of the DNA sequence. Most of the models (DeepSEA14, 
DanQ15, DeepGRN29, Basset19, TBiNet25, Enformer28, Basenji19, AgentBind26, ChromTransfer31) make the 
simplifying assumption that the reference genome underlies the functional annotations studied. This poses two 
problems: 1) We cannot be sure if the features used to train the model came from that sequence, or if the cells 
from which the data was obtained carried a mutation or SNP that affected the output. This might have important 
consequences when assessing the impact of mutations, as the model could have learned the wrong rules. 
However, these models seem to succeed at finding known drivers of diseases, which might be explained by a 
low impact of common SNPs in the phenotypes predicted or by a low divergence between the reference genome 
and the genome of the cells from which the data originates. Despite the success of these models so far, this 
matter should not be disregarded, especially when using data derived from pathogenic cell lines (e.g., cancer 
cell lines) that most likely will have a set of SNPs more divergent from the reference genome. 2) These models 
do not account for the possibility of having allele variants. The input sequence contains only one allele, but the 
observed phenotype (e.g., RNA levels) could result from the effect of the other allele, or the combination of 
both. These variations cannot be detected with the current model designs, and further efforts should take them 
into account. New models should use datasets obtained from assays (ChIP-seq, DNase-seq, RNA-seq, etc.) in 
which the DNA sequence from the same sample is obtained and mapped to genome graphs or multiple 
genomes53 instead of the reference genome to account for possible SNPs and structural variants and different 
alleles. 

Given that these models only use the reference genome, it might seem surprising that they can solve the 
problem of linkage disequilibrium, as they are not leveraging the variability in SNPs between different genomes. 
This shows the power of DL models over statistical association studies like GWAS and eQTLs, as DL models do 
not try to learn the regulation of each gene independently, but instead they learn the shared rules that underlie 
regulation across the genome. We hypothesize that there might be enough sequence variability within the 
genome to discern the exact nucleotides that form important motifs, but to our knowledge, this argument has 
not been discussed or used to justify the usage of the reference genome. We anticipate that by using different 
genomes these models would incorporate more sequence variability and thus improve their performance. 

Another aspect of controversy related to the input sequence comes from its length. We have seen that it varies 
between models, with a tendency to increase as the DL architectures improve their capacity to handle bigger 
receptive fields. The model with the longest input sequence is Enformer, with 200 kb. The authors of Enformer 
claim that this increase in input length compared to the previous state-of-the-art model Basenji2 resulted in a 
substantial performance increase when predicting gene expression. However, it has been shown that the model 
extracts most of the signal from regions proximal to the gene in question (the proximal 1/3rd of the sequence 
explains 99% of the variation in RNA levels)42. Thus, the increase in performance observed in Enformer could be 
driven mainly by the increased number of parameters42. The reason why Enformer does not attend to distant 
sequences is of interest for the field. A plausible explanation would be that enhancers tend to be closer to their 
paired gene, in which case such large receptive fields would not be strictly needed. This is supported by an 
enhancer-gene pair screening performed by Gasperini et al. (2019), where it was shown that enhancers are 
separated from their target genes by a median distance of 24.1 kb54. Although longer-distance enhancer-gene 
interactions are possible, perhaps their frequency is not enough for the model to increase the attention weights 
towards distant regions. Even if their frequency is not very high, Enformer is to this day the only model with a 
receptive field big enough to detect contributions from enhancers more than 20 kb away from the affected gene. 
It would be interesting to use the model to systematically predict distant enhancer-gene pairs and investigate if 
they share common features that determine this distant association. 
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The problem of the low number of examples of distant enhancer-gene pairs brings us to the topic of data 
imbalance. Data imbalance or class imbalance is a widespread problem in genomics. This can be intuitively 
understood if one thinks about the ratio of enhancer to non-enhancer sequences in the genome, the low 
percentage of the genome to which a TF can bind or the ratio of methylated to unmethylated regions. If the 
number of positive examples is very low due to the data imbalance, it can be insufficient for the model to learn 
the biological rules explaining the observed phenotype. Instead, the model could predict a negative output for 
every instance and yet achieve good accuracy. Data augmentation is used to alleviate the problem of class 
imbalance. It consists of increasing the number of examples with the minority label to reduce the imbalance. 
Data augmentation can be achieved by, for instance, shifting each positive sequence a few nucleotides right and 
left and adding the resulting sequences as new positive data21 or adding the reverse complement of positive 
sequences to the pool of positive examples22. Training the model with augmented data can cause a high false 
positive rate when the model is applied to real data. A solution for this issue is the approach taken by Singh et 
al. (2019), who took advantage of transfer learning to pre-train the model on a dataset balanced with data 
augmentation and fine-tune it later with the original imbalanced data21. In addition, data augmentation can also 
result in overfitting (i.e., instead of learning just the motif that drives the feature under study, the model 
“memorizes” the larger sequence that has been repeatedly inputted due to the data augmentation technique). 
In short, although data augmentation alleviates the problem of data imbalance, it can have unwanted 
consequences, thus being still one of the limitations of DL in the genomics field. 

Model evaluation approach 
Although some researchers evaluate their models with an external validation experiment (e.g., CRISPR 
perturbation assay or GWAS studies)22,27,28, the lack of a shared evaluation approach makes the comparison of 
the models difficult. A benchmark study, or the agreement to use a shared validation task for all models, would 
be of high value for the community. Perhaps this could be done in the shape of a competition or challenge like 
CAGI (Critical Assessment of Genome Interpretation)55, in which participants had to predict the impact of 
mutations at every position in five enhancers and nine promoters. The activity of these mutated enhancers and 
promoters was assessed in a MPRA assay. This dataset was used by Enformer as an external validation 
experiment, and similar challenges could be designed to evaluate the performance of models that predict other 
epigenetic features. 

Model interpretation 
On the topic of model interpretation, a current limitation is the lack of ground truth datasets to evaluate which 
is the best technique for the discovery of motifs and their syntax. This problem does not come as a surprise, as 
otherwise we would not need deep learning tools to discover these regulatory features, but it can be partially 
circumvented by using synthetic datasets. Prakash et al. (2021) have described a pipeline to simulate realistic 
datasets for benchmarking interpretation models for their ability to discover motifs 56. Their pipeline models the 
complexity of regulatory genomic DNA better than previous approaches26. They achieve that, for instance, by 
using dinucleotide shuffled sequences taken from a real dataset as background, instead of a randomly generated 
sequence, and by inserting known motifs in these background sequences at their original location (both in the 
negative and positive sets), therefore learning complex, co-operative TF binding patterns that characterise the 
positive set. With this dataset, they compared different interpretation tools and concluded that DeepLIFT and 
ISM perform best and second-best.  

Future perspective 
To conclude this review, we will discuss future perspectives in the field of deep learning for genomic regulation. 
We have seen a steep improvement in the capacities of DL models in genomics in the last years. The 
improvement of DL upon other shallow ML methods stems from the fact that they do not require feature 
extraction but instead use raw input directly and learn the important features during the training phase. This 
eliminates the necessity to make biological assumptions that can influence a model’s results. Perhaps some of 
the few assumptions that the reviewed models make are the expected length of the motifs driving the regulatory 
features under study (determined by the kernel size in the first convolutional layer) or the order of motif 
combinations that the model should be able to integrate (defined by the number of layers, or depth, of the 
model). However, even these choices can be optimized during the hyperparameter tuning phase.  

The capacity to extract important patterns from the input sequence has made them popular tools to unravel 
how DNA sequence controls regulatory features. Most models developed so far use only DNA sequence as input 
to predict a whole range of epigenetic features from it. The rationale behind this choice is the ambition to 
understand how DNA sequence alone determines epigenomic profiles and gene expression levels. However, 
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adding other types of epigenomic data as input could potentially improve the models by, for example, giving 
information about the cell type or cell state. It would also enable the inference of relationships between different 
epigenomic features (e.g., how does DNA methylation affect TF binding or histone modification profiles?). One 
can think, for instance, of transforming DNA methylation or chromatin accessibility data into a sequential feature 
and including it as input to a model. This strategy has been used by Chen et al (2021), who introduced chromatin 
accessibility and gene region annotation as input to their model to predict TF binding29. Karollus et al. (2022) 
also showed that adding extra information (tissue-specific exon-intron ratio of each gene) as input improved the 
performance of Enformer42. Such approaches have not been yet thoroughly explored, and it would be interesting 
to see which types of data are more valuable to improve model accuracy and what other regulation mechanisms 
can be derived from model interpretation. 

Finally, we discuss the possibility of using other types of epigenomics data as the predicted feature, and the 
benefits that it could provide to the field. Multi-task models benefit from shared features and dependencies 
between different modalities. Most models reviewed here use ChIP-seq, DNase-seq, RNA-seq and CAGE14,15,19,28, 
but we believe they could benefit further if more types of data were used simultaneously, e.g., DNA methylation 
or Hi-C sequencing (measures chromatin interactions). The possibilities will continue to increase as new omics 
assays are developed. In the future, we foresee that DL models will be able to account for a broad range of cell-
type specific measurements from DNA sequence, ranging from enhancer-promoter interaction to gene 
expression, protein isoform levels and protein degradation rates. This could lead to methods able to predict the 
abundance of each protein in different cell types and states. The value of such methods will increase as advances 
in DL interpretation tools further improve our understanding of the rules that underlie their predictions. 
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Plain language summary 
Our genome consists of 3 billion base pairs, of which only 2% contain protein-coding genes and the rest of the 
sequence (98%) consists of non-coding DNA with regulatory functions. The way in which this non-coding DNA 
affects the regulation of the genome is, for example, through small sequences (called motifs) to which some 
proteins (called transcription factors) bind to activate or repress the expression of genes. Other motifs determine 
if DNA is accessible for these transcription factors or the 3D conformation of the genome, which can also affect 
gene expression. Although many of these motifs are already known, it is still difficult to predict their integrated 
effect, and how mutations in these sequences would affect their functions. 

In the last years, the explosion of datasets derived from assays that study different aspects of genomic regulation 
(transcription factor binding state, DNA accessibility, 3D conformation of the genome, etc.) has enabled the use 
of deep learning to understand how DNA sequence determines these regulatory features: to find the relevant 
motifs and understand their effect. Deep learning is a form of machine learning that mimics the way in which 
humans learn how to perform a task: by using examples. By providing a deep learning model with big amounts 
of labelled data, it learns to detect patterns that are used to annotate unseen data. Deep learning has already 
proved to be very successful in the fields of image and audio recognition, object detection and natural language 
processing, and it is nowadays present in our daily lives, from unlocking our phones with facial recognition to 
translating a text instantly with an online application. In the field of genomics, it has also proved successful to 
predict different regulatory features from DNA sequence, and to find the motifs driving these features. 

To understand the success of deep learning to detect motifs and combinations of them in the DNA, let’s first 
imagine a model that determines if an image contains a cat. The first layers of the model detect small patterns 
like eyes, mouth, whiskers, tail or paws, and subsequent layers detect combinations of these small patterns to 
determine whether there’s a cat in the image. Similarly, we can imagine a model that instead of eyes or mouths 
in an image detects small motifs in a DNA sequence and combinations of those that determine whether a gene 
will be expressed or not. 

Since 2015, several deep learning models have been developed to predict different regulatory features from 
DNA. In addition to their success to find DNA motifs, they are also great tools to predict what would happen if 
there was a mutation in these motifs, which makes them very valuable for predicting how mutations can cause 
a disease. All these models use different types of data, different model structures, and are trained and tested in 
different ways. In this review, we have compared them by analysing each step of their design, and we have 
outlined their limitations to help other researchers focus on the aspects that should be improved in future 
models.  
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