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Time crystals are a novel phase of matter in physics. In this work we focus on one
particular realization, an axial density oscillation in a Bose-Einstein condensate of
Sodium atoms. Expanding on a previously developed quantum mechanical descrip-
tion of the time crystal, our goal is to explore the parameter space in which dynamics
between crystal modes can arise and characterise this behaviour. In order to study
the large parameter space of our system, fast approximate models are desirable. We
employ three models to study switching between time crystal modes. The first is a
one dimensional toy model, the second quantum trajectory calculations based on the
Langevin equations of motion, and third a two dimensional numerical evaluation of
the Fokker-Planck equation. The one dimensional model fails near the origin of the
phase space describing the time crystal, preventing mode interaction. The quantum
trajectory approach is shown to agree qualitatively with evaluation of the Fokker-
Planck equation, both predicting over and under-damped probability oscillations
between crystal modes.
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Chapter 1

Introduction

From ancient Greek philosophers to the steam engine powering the industrial rev-
olution, the investigation of the phases in which matter can occur goes back cen-
turies. Where once the ability of water to form solid, liquid and a gaseous phase was
a mystery, our present day understanding of matter does not only allow for a full
description of these phenomena, but also led to new kinds of exotic phases of mat-
ter. The extremely energetic quark-gluon plasma in the Large Hadron Collider for
example, or liquid crystals in our everyday displays. And at very low temperatures,
the Bose-Einstein condensate (BEC).

1.1 History of the Bose-Einstein Condensate

The start of the 20th century heralded one of the most important breakthroughs in
physics, Quantum Mechanics. Planck’s law describing black body radiation, pub-
lished in 1900 [1], predicted light to consist of discrete packets of energy. This con-
tradicted the physical framework of the time. The Indian physicist Satyendra Nath
Bose succeeded in developing a quantum theory around this phenomenon, but had
difficulty getting his controversial work published. He reached out to Albert Ein-
stein with an offer to collaborate, which was successful[2]. Einstein extended his
theory to include particles with mass, deriving the full thermodynamic relations in
1925 [3]. This theory made a remarkable prediction, the number of thermal (bosonic)
particles in a closed system has an upper bound which decreases with lower tem-
peratures. When there are more particles than thermal states available, the excess
particles start to occupy the same lowest energy state. This new state of matter is
called the Bose-Einstein condensate.

The first experimental realization of the BEC was in 1932 using Helium-4, which
required a temperature in the order of 2 K [4]. These were high density condensates
and are hard to describe theoretically, but do exhibit super-fluidity. Lower density
condensates require temperatures in the order of nano-Kelvins, which was impos-
sible with the technology of that time. It took 70 years of advancement until the
first experimental observation of a gaseous BEC. In 1995 the group by Cornell and
Wieman at NIST-JILA realized the first Bose-Einstein condensate using Rubidium
atoms [5]. In the same year, the group of Wolfgang Ketterle at MIT succeeded using
sodium atoms [6]. Both groups were awarded the Nobel prize in 2001. In Utrecht the
first BEC was created in 2004 using stable Sodium atoms [7]. The BEC is essentially
a matter wave, which can create interference patterns. These were investigated by
Alexander de Groot and later by J. Smits [8], [9]. Among other findings, an oscil-
lating density mode was discovered in an anisotropic cigar-shaped trap. Driven by
a periodic stretching in the width of the condensate, a so-called breathing mode, a
higher order axial oscillation is excited. This axial mode breaks the symmetry of its
driving mechanism. A time crystal.



2 Chapter 1. Introduction

1.2 Broken Symmetry

Symmetries play a fundamental role in physics. Emmy Noether showed in her fa-
mous theorem that for every continuous symmetry of a system there is a conserva-
tion law, and vice versa [10]. A second fundamental connection with symmetries
occurs in the study of phase transitions. Water at room temperature is fluid, at a
microscopic level one can translate or rotate it at will, and it will look the same. Wa-
ter therefor has continuous translation and rotational symmetry. Below the freezing
point, it undergoes a phase transition to a solid phase; ice. The atoms are arranged in
a periodic structure, which has a discrete translation and rotational symmetry. Phase
transitions break or reduce symmetries of the system. Another example, when a
magnetic material is cooled below the Curie temperature, spatial isotropy is broken
when the magnetic moments of the constituent particles collectively align.

In physics, a system is described though a Hamiltonian. This formulation too
possesses symmetry. In analogy with the breaking of a spatial symmetry, in 2012
Frank Wilczek [11] proposed a system that in the ground state it breaks continuous
time translation symmetry of the governing Hamiltonian. Met with criticism, this
idea started a discussion that is still ongoing today. In 2015 Watanabe showed that
a system in equilibrium cannot break continuous time symmetry, a no-go theorem
for time crystals[12]. This left some loopholes for continuous time crystals, such as
considering higher energy states, long range order or dissipate systems [13]–[15].
Breaking discrete time symmetry in a periodically driven, out of equilibrium system
is another workaround. This is where the current focus in the search of time crystals
lies.

1.3 Discrete Time Crystals

In the last few years a number of time crystals that break discrete time symmetry
have been discovered. Among others, in nitrogen–vacancy impurities in diamond
and trapped ion chains[16], [17]. These are examples of Floquet systems, where
the governing Hamiltonian has a period T. Upon measurement, this symmetry is
broken spontaneously. The resulting dynamics have a period n × T, an integer mul-
tiple. As a consequence, multiple modes that differ in a phase offset with respect to
the drive are possible. Upon excitation, the system picks one of the solutions. Recent
work suggested not only that it is possible to switch between crystal modes[18], but
also succeeded experimentally in a dissipative atom-cavity system[19]. The focus
of this thesis is to explore mode switching in time crystals. In contrast to previous
research, here the description of the time crystal itself is quantum mechanical, based
on the work by Stehouwer[20]. From this standpoint, switching between modes is
analogous to quantum tunneling. Or when in a coherent fashion, to Rabi oscillation.
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1.4 Thesis Outline

This work is setup as follows. In chapter 2 the dynamics of the condensate are dis-
cussed and derives a quantum mechanical description of the time crystal. Chapter
3 presents the numerical algorithms used to study the equations in chapter 2. The
results of these simulations are presented in Chapter 4. An overview of the exper-
imental setup is given in chapter 5. Chapter 6 discusses the achieved results and
provides conclusions and outlook.
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Chapter 2

Theory

2.1 The Bose Einstein Condensate

The following theoretical discussion is based on the book Bose–Einstein Condensation
in Dilute Gases by Pethick and Smith [21]. When a cloud of bosonic particles is suffi-
ciently cooled, a significant fraction will start to occupy the ground state. This low
energy state of matter is called a Bose-Einstein condensate. Bose-Einstein Conden-
sation occurs when the inter-particle distance becomes comparable with the thermal
wavelength,

λdb =

√
2πh̄2

mKbT
. (2.1)

At high temperature particles in the cloud are distributed over energy states accord-
ing to Bose statistics, with a weight 1

eϵ/KbT−1
. As the cloud cools down fewer energy

states become available. Because bosons can occupy the same state, at a critical tem-
perature T = Tc particles will start to occupy the lowest energy state, as illustrated
by 2.1. For low density condensates like the ones created in Utrecht, this happens
usually in the order of nano Kelvins. Particles in this low energy state are the Bose-
Einstein condensate. Any particles remaining in higher energy states are referred to
as the thermal cloud.
A common choice for the trapping potential is the anisotropic harmonic trap. For
particles with mass m,

V(ρ, z) =
1
2

mω2
ρ(ρ

2 + λ2z2). (2.2)

The trapping frequency in the axial z direction and radial ρ direction are related by
a scale factor ωz = λωρ, with λ < 1 resulting in a cigar-shaped trap. When in equi-
librium, the wavefunction of the condensate is described by the time-independent
Gross–Pitaevskii equation,

FIGURE 2.1: Illustration of particles at different temperatures. At
high temperature particles are classical. As the temperature
decreases from left to right, the thermal wavelength increases. When
this becomes comparable with the inter-particle distance, the BEC
forms. Image taken from Corgier [22].
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µψ(r) = − h̄2

2m
∇2ψ(r) + V(r)ψ(r) + U0|ψ(r)|2ψ(r). (2.3)

This is a nonlineair Schrödinger equation, with a two-body interaction term U0 =
4πh̄2as/m and chemical potential µ. It depends on the s-wave scattering length as.
This is justified because at low energies the effective interaction between two parti-
cles is constant. From here, the equilibrium distribution can be derived. For this we
will assume that the kinetic energy of the particles in BEC is negligible compared
to the trapping potential. This is called the Thomas-Fermi limit, which holds true
except at the surface of the condensate.

µψ(r) = V(r)ψ(r) + U0|ψ(r)|2ψ(r). (2.4)

We can solve this for the density distribution n(r), which follows the parabolic shape
of the trap,

n(r) = |ψ(r, t)|2 =
µ − V(r)

U0
. (2.5)

The boundary of the condensate is given by V(r) = µ. This yields a way to measure
the chemical potential by determining the boundary of the condensate during exper-
iment. The phenomena we are interested in happen outside of equilibrium however,
for which we use the time-dependent Gross–Pitaevskii equation,

ih̄
∂ψ(r, t)

∂t
= − h̄2

2m
∇2ψ(r, t) + V(r)ψ(r, t) + U0|ψ(r, t)|2ψ(r, t). (2.6)

One interesting aspect of BEC is that it exhibits superfluidity. We can reformulate
this equation in terms of density n and phase ϕ, ψ =

√
neiϕ. After substitution

in equation 2.6 and separating the real and imaginary parts, one finds a continuity
equation for the density as well as an important relation for the phase. Both relations
will be derived in the next section through Lagrangian formalism, which is equiva-
lent to the fluid description. Upon introducing excitations to the system, a number
of collective modes emerge, illustrated in figure 2.2. One may refer to Bose–Einstein
Condensation in Dilute Gases for a detailed derivation, here we will focus on the two
modes that play a role in the creation of spacetime crystals, the breathing mode and
axial modes.

FIGURE 2.2: Illustration of different modes of the BEC in an
anisotropic trap. a) The axial dipole mode, the centre of mass
oscillates in the axial direction. b) The breathing mode, the BEC
stretches and contracts with a different frequency in the radial and
axial direction. c) The Scissor mode, the condensate precesses
around the axial dimension. d) Higher order axial mode, where the
density oscillates only in the the axial direction. Image modified
from Crystallized time in ultra-cold Bose gases by S. Borman[23].
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The breathing mode stretches the condensate, equivalent to adding a scale factor to
the dimesions of the condensate. It oscillates at a frequency

ω2 = ω2
ρ(2 +

3
2

λ2 ± 1
2

√
16 − 16λ2 + 9λ4). (2.7)

The positive root corresponds with the radial breathing mode, the negative with
the axial breathing mode. The frequency of the breathing mode depends on that of
the trap. Crucially, the radial component of this mode couples to higher order axial
modes which we will discuss in the next section.

2.2 Higher order axial mode

In this section we will derive the higher order axial mode and how it relates to time-
crystals. It will follow the paper Dynamics of a Space-Time Crystal in an Atomic Bose-
Einstein Condensate by Liao et al.[24]. The condensate is fully described by the den-
sity n(r, t) and phase ϕ(r, t). The effective action of this system is given by

S =
∫

dt
∫

dr L, (2.8)

with the Lagranian density

L = −h̄n
∂ϕ

∂t
− nV(r)− U0

2
n2 − h̄2

2m
[ (∇n)2

4n
+ n(∇ϕ)2]. (2.9)

Minimizing the action δS/δϕ = 0 yields a continuity equation for the density,

∂n
∂t

= −∇ · (n(r, t)
h̄∇ϕ(r, t)

m
). (2.10)

When interpreted as a continuity equation of a friction-less (ideal) fluid, we can iden-
tify in the right lid a flow velocity v = h̄∇ϕ(r, t)/m. Because ϕ is a scalar quantity,
we know ∇× v = 0. This already lays a restriction the motion of the condensate.
Similarly, by minimizing the action with respect to the density, δS/δn = 0, we find

h̄
∂ϕ

∂t
+
(1

2
mv2 + V + U0n

h̄2

2m
√

n
∇2√n

)
= 0. (2.11)

It can be shown that the phase develops in time as ϕ̇ = − µ
h̄ = − δE

h̄δN . This is the
Josephson relation, which links the energy required to add a particle to the system
to the overall phase. Equation 2.11 is therefor referred to as the Josephson equation.
In the Thomas-Fermi limit we neglect the kinetic contribution in the GP equation, in
this Lagrangian formalism this is equivalent to ignoring the quantum pressure term
in equation 2.9, the term proportional to ∇n2. We assume density modulation to be
small, such that we may split density and phase a radial and axial part, n = nD + nA
and ϕ = ϕN + ϕA. Considering only the second-order and third-order terms of nA
and ϕA in equation 2.9, the Lagrangian density governing the axial mode reduces to

La = −h̄nA
∂ϕA

∂t
− U0

2
n2

a −
h̄

2m
[
nD(∇ϕA)

2 + 2nA∇ϕD · ∇ϕA + nA(∇ϕA)
2]. (2.12)

Radial mode excitations are more energetic compared to the axial mode, so we can
expect coupling to many higher order axial modes. We then write the total number
of excitations as a sum over all modes, indexed with the quantum mode number j,
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nA = ∑
j

nj ϕa = ∑
j

ϕj. (2.13)

Next we wish to expand this in a set of basis functions. In one dimension with
a harmonic trapping potential, Legendre polynomials Pj(z̃) on scaled coordinate
z̃ = z/Rz provide an exact solution. Here Rz is the size of the condensate. Ex-
perimental observations show little too no radial dependence[25], making Legendre
polynomials good candidates. These must satisfy the boundary conditions of the
condensate, i.e. the density should go to zero. Therefor we take the difference

Lj(z̃) = Pj+2(z̃)− Pj(z̃) (2.14)

as basis, to ensure decay at the edges. We then take the variational anzatz

nj(z, t) = −κ̇j(t)Lj(z̃), (2.15)

ϕj(z, t) =
U0

h̄
κj(t)Lj(z̃). (2.16)

These are chosen such that when the system is stationary, nj and ϕj obey the Joseph-
son equation 2.11. The time dependence of the modes is captured by the scale factor
κj(t). We express the scaled coordinates in the i = x, y, z direction as

x̃i(t) =
x

bi(t)Ri(0)
, (2.17)

where Ri(0) are the dimensions of the condensate as measured from the centre, and
bi(t) time dependent amplitudes. From rotational symmetry we can deduce Rx(0) =
Ry(0) = Rρ(0). Substitution of our anzats into equation yields

LA = πU0Rρ ∑
ij

(Qij

2
bxbybz[κ̇iκ̇j − Γij(t)κiκj] +

U0λ2

2mRρ(0)2

bxby

bz
∑

k
Mijkκ̇iκjκk

)
. (2.18)

The ρ dependence has been integrated out, leaving us with the integrals

Tij ≡
∫ 1

−1
dz̃(1 − z̃2)L

′
i(z̃)L

′
j(z̃), (2.19)

Qij ≡
∫ 1

−1
dz̃(1 − z̃2)Li(z̃)Lj(z̃), (2.20)

Mijk ≡
∫ 1

−1
dz̃(1 − z̃2)Li(z̃)L

′
j(z̃)L

′
k(z̃). (2.21)

And we define

Γij(t) =
ω2

z
4

Tij

Qij

1
bxbyb3

z
. (2.22)

For experimental parameters for which we have observed higher order axial modes,
the magnitude of the off-diagonal elements is small compared to the diagonal. If we
therefor ignore coupling between modes, we are left with
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LA = πU0Rρ ∑
j

(Qjj

2
bxbybz[κ̇j

2 − Γjj(t)κ2
j ] +

U0λ2

2mRρ(0)2

bxby

bz
Mjjjκ

2
j κ̇j

)
. (2.23)

When the rate of change of the axial oscillations is comparatively small, ḃi/bi/ll1.
Using the Euler-Lagrange equation and neglecting terms of ḃi/bi we find the equa-
tion of motion

κ̈j + Γjjκj = 0. (2.24)

This is a simple oscillator, in which we identify the axial mode frequency Ωj =
√

Γjj.
This frequency is roughly half that of the drive. Our goal is to find a frame in which
we can find a time independent Hamiltonian. We use the rotating wave approxima-
tion with respect to the frequency of the radial breathing mode from equation 2.7,
the driving frequency ωd.

κ = κ̃e−iωdt/2 + κ̃∗e+iωdt/2. (2.25)

When the breathing mode is weakly excited, we approximate bz = 1, bx,y = 1 +
Ad cos(ωdt) and ignore second order terms or higher of Ad and κ̇. This reduces the
Lagrangian to

LA = πU0RρQ
(
δωdκ̃κ̃∗ −

Adω2
d

8
[κ̃κ̃ + κ̃∗κ̃∗]− iωd

2
[κ̃ ˙̃κ∗ − κ̃∗ ˙̃κ + Ad(κ̃ ˙̃κ − κ̃∗ ˙̃κ∗)]

)
,

(2.26)
where we approximate the detuning with respect to the drive δ = ωd/2− Γjj, ωdδ ≃
(ωd/2)2 − Ω2. From here we can find the Hamiltonian via

H ≡ ˙̃κ
∂L
∂ ˙̃κ

+ ˙̃κ∗
∂L
∂ ˙̃κ∗

− L. (2.27)

In experiment only one mode is observed, so we drop the index to find for a single
mode

H = πU0RρQ
(
δωdκ̃κ̃∗ +

Adω2
d

8
[κ̃κ̃ + κ̃∗κ̃∗]

)
. (2.28)

We may quantize κ̃ → qâ, κ̃∗ → â†. Requiring [â, ∂L/∂ ˙̂a] = ih̄, we introduce the
normalization

q =

√
h̄

ηQωd
, (2.29)

which finally gives us

Ĥ = −h̄δâ† â +
h̄ωd Ad

8
(â† â† + ââ). (2.30)

This time independent Hamiltonian allows for a quantum mechanical description of
the axial mode.
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FIGURE 2.3: Image sequence of the BEC in a cigar-shaped trap after
a rapid variation in the trapping potential, using off-axis holography.
The oscillating width of the condensate shows the breathing mode,
and a strongly excited axial mode. Image taken from ref [25].

FIGURE 2.4: a) Axial density of the BEC over an extended period of
time. b) The Fourier spectrum of the axial mode, the clear peaks
indicating a crystalline structure. Image taken from ref [26].

2.3 Space Time Crystals

In experiments a standing wave pattern in the axial direction of the condensate was
observed [8]. Later these were classified as time crystals in work by J. Smits. Figure
2.3 shows images of a high order axial mode taken at multiple times using holo-
graphic imaging techniques. To see why this can be interpreted as a crystal, we can
look at how the density in axial direction evolves with time. The density profile is
integrated over the radial direction and stacked over time. Figure 2.4a shows the re-
sult of this procedure, we can see a grid-like structure emerging. A Fourier analysis
in figure 2.4b shows clear peaks, indicating a crystalline structure spanning the axial
and the temporal dimension.

This alone does not suffice to classify the axial mode as a crystal. Crystals emerge
after a phase transition, in which a symmetry of that system is broken. The Hamil-
tonian in equation 2.30 is invariant under â → −â, a discrete Z2-symmetry. This is
broken when the axial mode forms, so ⟨n⟩ ̸= 0. Upon excitation the system picks
a sign, evolving with a constant phase ϕ or ϕ + π with respect to the drive. The
detuning remains constant on the time scale of our experiments. To give a more in-
tuitive picture, consider an analogy to the quantized electromagnetic field. In QED
we describe the electromagnetic field as a collection of harmonic oscillators, which
we excite by applying ladder operators on a ground state. Here we are describing
a density oscillation on top of the Thomas-Fermi profile of the BEC as illustrated in
figure 2.5. Because the temporal frequency of these density oscillations is half that of
the drive, it allows for two possible modes that differ only by a phase shift π. Upon
measurement, the system has to pick one of these solutions, breaking symmetry.
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FIGURE 2.5: a) Density of the BEC in the axial direction. Black
denotes the profile in stationary conditions. Oscillations with a time
dependent amplitude associated with the space time crystal. b)
Sketch of the response of the axial mode (red) to the driving
breathing mode (black). The crystal has two solutions available,
which are identical up to a phase shift.

We may expand the Hamiltonian in equation 2.30 to include a higher order term,

Ĥ = −h̄δâ† â
h̄ωd Ad

8
(â† â† + ââ) +

h̄g
2

â† â† ââ. (2.31)

The parameter g = g′ + ig” is a phenomenological parameter. The real part reflects
the higher order terms we ignored in the last section. The imaginary component is
required to counter exponential growth due to the presence of the drive. [26]. For
time crystals with a sufficient number of quanta, |a| ≫ 1 we can interpret a as a field.
The equations of motion of a follows from the Ehrenfest theorem,

d⟨a⟩
dt

=
1
ih̄
⟨[a, H]⟩. (2.32)

Applying bosonic commutation relations, we find

i
d
dt

a = (−δ + g|a|2)a +
Adωd

4
a∗, (2.33)

−i
d
dt

a∗ = (−δ + g∗|a|2)a∗ +
Adωd

4
a. (2.34)

These are the equations of motion of the field. When a random force term is added,
these can be interpreted as a Langevin equation. In analogy with microscopic sys-
tems, the Langevin equations give a Newtonian description of a particle undergo-
ing Brownian motion. The Langevin equation includes a random force term due to
particle collisions, in the context of time crystals this translates as quantum fluctu-
ations. This is missing in equation 2.34. In more recent work by Stehouwer et al.
derived a field description supporting this model via a non-linear coupling with a
heat bath, which is suspected to be the thermal cloud. Both a semi-classical (fre-
quency independent) and a fully quantum mechanical (linearly dependent on fre-
quency) approach are studied [20]. We will discuss results for the semi-classical
case, corresponding with the prethermal state of the crystal. The main assumptions
are as follows. In the semi-classical case, the main assumption is that the dynamics
is dominated by a single frequency ω̄. The fluctuation-dissipation theorem is then
evaluated at 2ω̄, captured by the Keldysh function gK = 2ig” KbT

h̄ω̄ , at temperature T.
The Fokker-Planck distribution P[a, a∗, t], which describes the probability of finding
the system in a state characterized by (a, a∗) is found to be
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ih̄
∂

∂t
P[a, a∗, t] = − ∂

∂a
(
(−h̄δ + h̄g|a|2)aP[a, a∗, t]

)
+

∂

∂a∗
(
(−h̄δ + h̄g∗|a|2)a∗P[a, a∗, t]

)
− h̄gK

2
∂

∂a∗
(
|a|2 ∂

∂a
P[a, a∗, t]

)
− h̄gK

2
∂

∂a
(
|a|2 ∂

∂a∗
P[a, a∗, t]

)
. (2.35)

In the right hand side, first order derivative terms are equivalent to the equation of
motion in equation 2.34. The second order terms include quantum fluctuations into
our description. We believe that these may lead to a coupling between the crystal
modes, which is the focus of this thesis.

2.3.1 Phase diagram

The behaviour of the time crystal is essentially determined by three parameters, the
combined drive term Adωd, detuning δ and the components of the noise term g. In
this section we will consider the stability of the crystal with respect to these param-
eters. If we ignore quantum fluctuations, we can rewrite equation 2.34 as

d
dt

(
a
a∗

)
= i

(
−(−δ + g|a|2) − Adωd

4
Adωd

4 (−δ + g∗|a|2)

)(
a
a∗

)
(2.36)

Considering equilibrium, this system of equations has non-trivial solutions only
when the determinant of the matrix in the right lid is zero. This gives us

0 = (
Adωd

4
)2 − δ2 + 2g

′
δ|a|2 − |g|2|a|4. (2.37)

from which we find the equilibrium value

|aeq|2 =
g
′

|g|2 δ +
1
|g|

√(Adωd

4
)2 − g”2

|g|2 δ2. (2.38)

We can associate equation 2.37 with an effective potential V(|a|). We must have
∂V(|a|)

∂|a|

∣∣∣
|a|=|aeq|

= 0 at equilibrium. Since d2

dt2 |a| = − ∂
∂|a|V(|a|), we integrate equation

2.37 to find

V(|a|) = −1
2

[(Adωd

4
)2 − δ2

]
|a|2 − g

′
δ

2
|a|4 + |g|2

6
|a|6. (2.39)

The dimension of V can be converted to energy though a effective mass term me f f =
4h̄/Adωd, see ref [23]. This effective potential is equivalent to a Landau free energy.
This describes a system with a stable and two unstable regimes, and a tricritical
point at (Ad, δ) = (0, 0), shown in figure 2.6. Stability can be derived by considering
the extreme values of the potential. Only when there are multiple local minima and
V(|a|) > V(0) is the system in a stable crystalline phase. Only g” < 0 will result
in an equilibrium, in all other cases the crystal continues to grow exponentially. In
the case where g

′
= 0, the phase boundary between the unstable and stable regime

is described by the critical detuning δc = Adωd
4 . This is a smooth phase transition.

When g′ > 0, for δ < 0 this becomes a second-order phase transition. For δ > 0, the
phase transition is first order and shifts to
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δ =
(

1 − 3
4

g
′2

|g|2
)−1/2

δc. (2.40)

When the system is equilibrium and if the field approximation |a| >> 1 holds, we
can use classical statistical theory to describe the probability to occupy a state. The
only degree of freedom is the number of quanta, so the probability distribution is

P(|a|) = exp[−V(|a|)/2KbT]
Z

, (2.41)

with Z =
∫

exp[−2V(|a|)/2KbT]d|a|. One should note that even in an equilibrium
situation, this does not capture the full probability distribution, as it only takes the
number of quanta into account. Whereas previous work shows that arg(a) plays a
role as well, the field of a has two degrees of freedom.

FIGURE 2.6: Phase diagram as presented by Smits [26], describing
the equilibrium state of the system at g” = 10−4s−1 and
ωd/2π = 200 Hz. Left and right show g

′
= 0 and 10−4s−1

respectively. Striped lines indicate smooth tricritical (left) or
second-order (right) phase transitions between the stable and
unstable crystal regimes. Inset are schematic representations of the
effective potential, equation 2.39.

2.3.2 Line model

Calculations on the full two dimensional problem are time consuming, especially
given the large parameter space. As it turns out, most of the dynamics of the proba-
bility distribution happen roughly in one direction. This was discovered in previous
work by Stehouwer et al[20]. We can reduce the problem by one dimension using a
toy model, simplifying the the equations while still describing the the dynamics of
the overall system qualitatively. We will refer to this as the line model. We start by
expressing the Fokker-Planck equation in polar coordinates P(ρ, ϕ), with α = h̄ω̄

KbT ,

∂P
∂t

= −1
ρ

∂

∂ρ
(ρAρ,scP)− 1

ρ

∂

∂ϕ
(Aϕ,scP), (2.42)
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FIGURE 2.7: Simulation of P(ρ, ϕ) at various times using the full
Fokker-Planck equation, as presented by Stehouwer et al. [20].
Imaginary axis is shared. The inset orange line is defined by zero
angular flux, Aϕ,sc = 0. This line follows the general behavior of P,
supporting the base assumption of the line model.

with

Aρ,sc = g′′ρ3 − ωd Ad

4
ρ sin 2ϕ +

g′′

2α
ρ2 ∂

∂ρ
, (2.43)

Aϕ,sc = δρ − g′ρ3 − ωd Ad

4
ρ cos 2ϕ +

g′′

2α
ρ

∂

∂ρ
. (2.44)

We can identify Aρ,sc as a flux current in the ρ direction, and Aϕ,sc in the ϕ direction.
In figure 2.7 we can see a 2d simulation of the Fokker-Planck distribution evolve
through time. Imposed is a line at which there is no angular flux, Aϕ,sc = 0. This
seems to follow the general behaviour of the probability distribution reasonably.
The main idea of the line model is to restrict the Fokker-Planck equation to this line.
Mathematically it follows that

ϕ(ρ) = ±1
2

arccos(
4(δ − g′ρ2)

ωd Ad
), (2.45)

which reduces equation 2.42 to

∂P
∂t

= −1
ρ

∂

∂ρ
(ρAρ,scP). (2.46)

This equation is divergent at ρ = 0 due to the initial factor of 1
ρ , which is problematic

for numerical calculations. A more gentle form can be found by considering P′ = ρP.
Substitution in equation 2.42 yields

∂P′

∂t
= − ∂

∂ρ
(A(ρ)P′). (2.47)
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Substitution of ϕ(ρ) and using the identity sin(arccos(x)) =
√

1 − x2, the flux cur-
rent reduces to A(ρ) = B(ρ) + C(ρ) ∂

∂ρ with coefficients

B(ρ) = g′′ρ3 − ωd Ad

4
ρ

√
1 − 16(δ − g′ρ2)2

ω2
d A2

d
− g′′ρ

2α
, (2.48)

C(ρ) =
g′′ρ2

2α
. (2.49)

Note that the last term of B is orders of magnitude smaller than the other terms, and
can therefor be neglected.

2.3.3 Equilibrium

In general, when the current in equation 2.46 is zero the system is in equilibrium.
Setting ρAρ,scP = 0 and solving for P gives

ln P = −
( ∫

2αρ + α
ωd Ad

2g′′

√
1 − 16(δ−g′ρ2)2

ω2
d A2

d

ρ
∂ρ
)

. (2.50)

Evaluation of this integral yields complex terms, which is problematic for a real
valued probability function. As such, only when g

′
= 0 can we find acceptable solu-

tions. In specific regime the line model describes a constant angle ϕ = 1
2 arccos( 4δ

ωd Ad
).

The components of the current simplify to

B = g′′ρ3 +
√

δ2
c − δ2ρ (2.51)

C =
g′′ρ
2α

(2.52)

We can again split this in a flux term B and diffusion term C . The equilibrium value
of ρ can be found by setting ∂

∂ρ B = 0, resulting in

ρeq =

√
δ2

c − δ2

|g′′| . (2.53)

If we set ρeq = 0 then P must obey

− ∂

∂ρ
ln P =

g′′ρ3 +
√

δ2
c − δ2ρ

g′′ρ/2α
. (2.54)

The solution, up to a normalization constant, is given by

P ∝ exp
[
− 2αρ2

eq
( ρ2

2ρ2
eq
− ln ρ

)]
. (2.55)
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Chapter 3

Simulation Methods

To study the behaviour of the time-crystal, we work from both the Langevin and
Fokker-Plank description as discussed in chapter 2. To this end, custom code was
written in python. Two simulation methods where used, one for each model.

3.1 MacCormack Method

In order to study the behaviour of the scaled probability distribution P′ according
to the one dimensional Fokker-Planck equation 2.47, the MacCormack method was
selected. This is an explicit finite difference method suitable for nonlinear differ-
ential equations. The MacCormack method consists of two steps, a predictor and
a corrector step. The predictor step calculates an estimate using forward finite dif-
ferences on equation 2.47. Given a grid spacing of ∆x in the spatial and ∆t in the
time direction, distribution at position index n and time index τ is estimated as:
(P(ρ, t) = P(n∆x, τ∆t), etc)

P′τ+1
n = P′τ

n −
∆t
∆x

(Bn+1Pτ
n+1 − BnPτ

n ). (3.1)

Both Bn and Cn remain constant arrays during the simulation, thus need only be cal-
culated once. The Corrector step uses the backward finite difference of the predictor
for spacial gradients and halves the time step for the time derivative,

P
′τ
n+1 =

P
′τ
n + Pf lux + Pdi f f

2
, (3.2)

with

Pf lux =
1
2

(
P′τ+1

n − ∆t(Bn ∗ P′τ+1
n − (Bn ∗ P′τ+1

n−1)/∆x
)

, (3.3)

Pdi f f = − ∆t
∆x2

(Cn + Cn+1

2
(P′τ+1

n+1 − P′τ+1
n )− Cn + Cn−1

2
(P′τ+1

n − P′τ+1
n−1)

)
. (3.4)

In contrast to implicit methods, explicit methods are easier to implement but can be-
come numerically unstable. This is largely dependent on the size of the discretiza-
tion dx, dt. A common measure for instability is the Courant measure Mc, in this
system defined as

Mc =
Bn∆t
∆x

. (3.5)

In order for a simulation to be stable, we need Mc < 1 in the entire simulated regime.
In practise we require Mc < 0.1. As one can see, in a parameter regime with large
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flux one needs to decrease ∆t and thereby lengthening the simulation time, or de-
crease spatial resolution by increasing ∆x. This may be extended to the full two
dimensional problem in equation 2.42, which was done in previous work by P. Van
der Straten [20].

3.2 Runge-Kutta

The equation of motion of the field a requires a different approach. The fourth order
Runge-Kutta method was selected, which is a explicit method. With an error in the
order O(dt5) it is a fairly stable method. In general formulation, a function y changes
according to

∂y
∂t

= f (y, t). (3.6)

Over a timestep tn+1 = tn + ∆t, the function is predicted to change according to the
weighted sum of four increments,

yn+1 = yn +
h
6
(k1 + 2k2 + 2k3 + k4), (3.7)

with

k1 = f (tn, yn)

k2 = f (tn + ∆t/2, yn + ∆tk1/2)
k3 = f (tn + ∆t/2, yn + ∆tk2/2)
k3 = f (tn + ∆t, yn + ∆tk3).

The ki terms can be interpreted as different slopes of intermediate steps, as depicted
in figure 3.1. They may be derived by Taylor expanding ∂y

∂t and ignoring explicit
time-dependence of the Jacobian in higher order substitutions. Full derivations are
readily available, so we will not go into detail here [27].
Starting from a single point without quantum fluctuations, the Langevin equation
2.34 gives a single deterministic path. In order to include fluctuations, we include
Stratonovich multiplicative noise [26],

F = R̃

√
2g”(N f + 1/2)

∆t
, (3.8)

where R̃ is a random variable with Gaussian spread that is redrawn at the beginning
of each timestep. We evaluate an with equation 3.7, using

f = −i(−δ + g|an|2)an − i
Adωd

4
a∗n − ia∗nF. (3.9)

The resulting set {an} we refer to as a path or quantum trajectory. To achieve reliable
statistics, the typical number of paths simulated is around 104 to 105.

3.3 Data storage

Every simulation outputs a datafile (.dat) that contains two header with simulation
parameters. Programming parameters such as simulation time and grid size are
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FIGURE 3.1: Geometric representation of the Runge-Kutta 4 method.
A function Y(t) is approximated over a timestep h with a weigted
average of intermittent slopes. Image sourced from ref [28].

stored in the first. Physical parameters such as driving amplitude and detuning are
stored in the second. This data is stored locally and analyzed with separate scripts.
Because storage space is limited, data is stored intermittently.
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Chapter 4

Simulation Results

4.1 Line Model

The first model we consider is the line model. With a typical runtime of under half
an hour, it appeared the most efficient way to search though the parameter space.
A large number of simulations are run, the object of investigation being long term
behaviour. With a drive of Adωd = 104 Hz, g = 0.6 − 2i mHz and δ = δc/2, the
simulation starts out from an initial Gaussian distribution. These are the same pa-
rameters as in the simulations reported by Stehower et al.[20]. Figure 4.1 shows the
first 200 ms of a single simulation, spanning 200 s. The probability distribution P′

is shown at intermittent times, labelled by colour. From the initial distribution the
simulation settles into an equilibrium solution. From there on out no more dynamics
occur.

At half the critical detuning fraction we are far in the stable regime. Next we
consider detuning fractions close to the phase boundary, other parameters are the
same as before. Shown in figure 4.2a, these yield similar results. After reaching
one of the equilibrium states, no oscillation between the modes is observed. Only
the equilibrium state itself is influenced, moving closer to the origin and reducing
the number of quanta in the crystal, at higher detuning. Finally the noise term g is
investigated, figure 4.2b shows the crystal losing quanta at higher quantum noise
levels. No Rabi oscillations are observed.

FIGURE 4.1: Time evolution of the scaled Fokker-Planck probability
distribution P′, from the anti-symmetric initial state at excitation
until the simulation reaches an equilibrium. Colours label the
evolution over time.
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FIGURE 4.2: Final states of the scaled Fokker-Planck probability
distribution P′, when the simulation reaches equilibrium. We show
P′ at a) different detuning fractions and b) at different fluctuation
strengths characterized by |g|. Colours label parameter values.

At higher noise levels, the simulation fails. The zero flux line that this model
follows loops around back to the complex axis, setting a upper limit on the simula-
tion boundary. The equilibrium solution violates this, as it moves beyond the upper
limit for ρ. Next we set g′ = 0, this simplification describes a constant line instead
of the zero flux curve. One additional benefit is that the equilibrium can be calcu-
lated analytically in this case, as discussed in section 2.3.3. Simulations ran with an
initial Gaussian distribution Pi = ρe−α(ρ−∆ρ)2

. This is to insure that any probability
flow though the origin is easily observable. Figure 4.3 shows three runs at different
detuning fractions. A small dip at the origin is observable. In most numerical sim-
ulations, explicit methods struggle around the origin. But more suspect is the fact
that the total probability, integrated over positive values of ρ does not change, i.e.

∂

∂t

∫ ∞

0
P′ dρ = 0. (4.1)

We therefor consider this a small numerical error. Different fluctuation strengths do
not change the qualitative behaviour. Nor does lowering the driving amplitude. No
probability flow though the origin is observed.
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FIGURE 4.3: Final states of the normalized Fokker-Planck probability
distribution P′ with g′ = 0, different detuning fractions near the
phase boundary. Colours label parameter values.

4.2 Quantum Trajectories

As discussed in section 3.2, the equation of motion describing the field state of the
space time crystal can be evaluated numerically. To check the validity of the code,
we first make some comparisons with previous work. First we consider a simulation
without fluctuations at Adωd = 104 Hz, g = 0.6− 2i mHz, shown in figures 4.4a and
b at 15 ms and 2 s respectively. Without quantum fluctuations all trajectories con-
verge on two equilibrium points corresponding to the two stable crystal modes. This
matches the qualitative behaviour of the quantum trajectories presented by Smits et
al. [29]. When taking quantum fluctuations into account, a distribution emerges.
After an initial simulated time of 200 ms in order to equilibrate, all trajectories are
tallied in a histogram and presented in figure 4.5. Using data provided by Van de
Straten, the Fokker-Planck probability distribution as presented in recent work by
Stehouwer et al. is shown as well, allowing for direct comparison. A reasonable
agreement between the models can be observed, the slight offset is attributed to the
non-infinitesimal size of the histogram binning. We conclude that the code is reli-
able and this approximation to be suitable. Typical run-time ranges between one to
several hours.

The next area of interest is close to the phase boundary. The detuning is raised
to δ = 0.99δc, other parameters left the same. All trajectories start in a single mode,
again with an equilibrium time of 200 ms. Quantum trajectories start crossing be-
tween modes, figure 4.6a shows a histogram of the trajectories spanning 1.8 s. Figure
4.6b shows a single trajectory, representative of the system. Trajectories avoid the ori-
gin and instead move around it in a counterclockwise fashion, when the detuning is
chosen to be positive. Negative detuning induces clockwise motion. To investigate
this further, the rate at which the trajectories cross over at a longer timescale is anal-
ysed. Assuming a constant transfer rate R, then the rate of change can be modelled
as
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FIGURE 4.4: The evolution of several paths without quantum
fluctuations, over a) 15 ms b) 2 s, from a Gaussian initial distribution.
Initial and final positions are denoted with a black and red dot
respectively.

FIGURE 4.5: a) Histogram of 2000 paths, evolved over 500 ms. b) In
orange, the normalized histogram at Im(a) = −80. In blue, the
normalized simulation data as reported by Stehower et al. [20].

ṅR = R(nL − nR), (4.2)

nL(t) =
1 − e−Rt

2
, (4.3)

with nL/R the number of trajectories in the left and right quadrants respectively.
Figure 4.7 shows this fit on a simulated runtime of 10 s. At a driving of Ad = 0.1,
ωd/2π = 183Hz, g = 0.6 − 2i mHz and δ = 0.9δc, we find excellent agreement at
R = 160.2(5) ms−1.

Next we investigate the dependence of the transfer rate on driving parameters,
the results are shown in figure 4.8. The rate decreases linearly with the driving
amplitude, which correlates with the equilibrium modes being further apart in the
phase space of a. As the detuning approaches the phase transition to the unstable
crystal regime, the rate increases super-exponentially. This type of probability flow
is reminiscent of a thermal equilibrium, rather than tunneling or a coherent oscil-
lation. Because these might still be present but overshadowed by this thermal like
interaction, we reduce the effect of noise through the g” parameter.

At a drive of Ad = 0.03, ωd = 2π × 180 Hz and detuning δ = 0.9δc, g” is lowered
to various orders of magnitude to study the effect of weak fluctuations. To get a clear
picture of the behaviour in the whole phase space, trajectories are started equally
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FIGURE 4.6: a) Histogram of 2000 quantum trajectories, spanning
1.8s at a critical detuning fraction of δ = 0.99δc. b) Typical motion of
a single quantum trajectory, starting position is indicated by a dot.

FIGURE 4.7: Fraction of trajectories nL crossed over as a function of
time, at a driving of Ad = 0.03, ωd/2π = 180Hz and δ = 0.9δc. Fitted
with a rate of R = 0.16 s−1.

FIGURE 4.8: Transfer rate as a function of a) detuning (Ad = 0.1) and
b) drive strength (δ = 0.9δc). ωd/2π = 183Hz. Error bars are smaller
than the point size.

distributed over the imaginary axis, figure 4.9. As the fluctuation strength decreases,
the system changes from being predominantly diffusive to flux current dominated.
A trapping-like phenomenon starts to occur, where trajectories become confined to
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orbits. In the extreme limit g” → 0, these orbits become closed and deterministic.
Based on the starting point of the trajectories they are either confined to a single
mode, or switch between modes in a coherent-like fashion.

FIGURE 4.9: Trajectories starting equally distributed over the
imaginary axis, at various quantum noise levels. Colours distinguish
individual trajectories. System parameters are g′ = 0.01Hz,
δ = 0.9δc, Ad = 0.03, ωd/2π = 183 Hz.

The behaviour of these orbits is investigated further, at g′ = 0.01Hz, g” = 0. The
detuning acts as an order parameter, this gives rise to a number of regimes shown
in figure 4.10. For detuning corresponding to the stable regime |δ| < |δc|, the phase
space looks the same as before. Orbits are split between three regimes, two orbiting
modes and one enclosing both. When δ < −|δc| there is but a single regime, wherein
all orbits circle around the origin. Lastly, when δ > |δc| we see four regimes. Two
orbiting crystal modes, although one should keep in mind that these modes may no
longer represent the time crystal modes correctly in this unstable regime. The other
two regimes consist of orbits around the origin, but split apart in a regime close to
the origin and one enclosing the rest.

It is important to note that g” → 0 not only kills the fluctuations, but is also
changes the flux current. Figure 4.11 shows two simulations with nonzero g” but
with multiplicative noise disabled. The orbit like behaviour compared to the pre-
vious results changes significantly. Trajectories become attracted to the equilibrium
points in the system. Only those starting sufficiently away from the equilibria cross
over to the other mode.
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FIGURE 4.10: Orbits calculated at various critical detuning fractions
at a) −1.4δc, b) −0.6δc, c) 0.6δc and d) 1.4δc. Colours distinguish
individual trajectories. Noise parameter is set to g′ = 0.01Hz, g” = 0.
Below, orbit frequencies are plotted against initial position on the
real and imaginary axis. Orbit frequency approaches zero near
equilibrium points in the phase space.

4.3 Damped mode oscillations

The models presented so far are approximations of the full Fokker-Planck distribu-
tion. By extending the MacCormack method to two dimensions, we can numerically
evaluate the two dimensional Fokker-Planck equation 2.35. The following section
contains simulations that are written and executed by Peter van der Straten. In-
creasing the noise parameter g” reveals a different picture, while g′ is set to zero.
Short term dynamics of the probability distribution changes significantly, compared
to the previous regimes. Simulations of the 2D Fokker-Planck distribution start off in
a single crystal mode. The starting distribution is approximated as Gaussian, fitted
to an already equilibrated calculation. Figure 4.12 shows a non-symmetric probabil-
ity flow between the modes, the total probability in the unoccupied mode exceeds
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FIGURE 4.11: Trajectories without quantum fluctuations for nonzero
g”, colours distinguish individual trajectories. Orbit like behaviour
disappears, instead trajectories are attracted to the equilibrium
points in the phase space.

that of starting mode for a limited time. At long timescale we see the two modes
become symmetric again.

FIGURE 4.12: Fokker Planck distribution after a) 1, b) 10, c) 20 and d)
40 cycles, the time duration of one cycle is 2π

ωd
, approximately 5.5ms.

The probability distribution integrated over the left Re(a) < 0 and right Re(a) > 0
quadrants gives a more quantitative measure of the flow between the modes. This
data is fitted a damped harmonic oscillator, characterized by a damping γ and fre-
quency ω0. Depending on g” we observe two regimes, under-damped (ω0 > γ)
and over-damped (γ > ω0). Figure 4.13a shows an under-damped oscillation at
g′′/2π = −0.0025 Hz, Ad = 0.1, ωd = 2π × 183 Hz, δ/2π = 4.5 Hz. We find ex-
cellent agreement at ω0/2π = 12.48(3) s−1 and γ/2π = 5.48(2) s−1. We compare
this with the quantum trajectory method in the same regime and find both mod-
els to converge qualitatively. After an equilibrium time of 500 ms all trajectories
in the left quadrant are discarded, effectively starting the system in a single crystal
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mode. The resulting observed oscillation is depicted in figure 4.14, and fitted with
ω0/2π = 17.3(2) s−1 and γ/2π = 9.2(1) s−1.

FIGURE 4.13: Integrated normalized probability distribution over
the left Re(a) < 0 and right Re(a) > 0 quadrants as a function of
time, denoted with a triangle and square respectively. The data is
fitted to a) an over-damped harmonic oscillator at g′′/2π = −0.0025
Hz and b) over-damped oscillator at g′′/2π = −0.01 Hz. Driving
parameters differ slightly.
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In figure 4.14b we see an over-damped oscillation, at g/2π” = −0.01 Hz and δ/2π =
3.5 Hz. This is essentially the same behaviour we observed with the quantum tra-
jectories in the previous section. The total probability in the unoccupied mode at
the start never exceeds that of the occupied mode. We find a damping rate of
γ = 12.88(9) s−1.

FIGURE 4.14: Normalized number of quantum trajectories in the left
Re(a) < 0 and right Re(a) > 0 quadrants as a function of time,
denoted with a triangle and square respectively. Calculated using
identical parameters as in figure 4.13a and fitted with under-damped
oscillation, indicated with a line.

Investigation of the dependence of the oscillation parameters on the driving and
noise parameter yields the following results. Figure 4.15a shows a linear relation
between γ and detuning δ, and a quadratic relation for ω0, approximately. We see a
crossover between over to under-damped at around δ = 3.4 s−1. In figure 4.15b we
see a linear relation between γ and g”. Because ω0 increases at a comparable rate,
these simulations remain in the under-damped regime.



4.3. Damped mode oscillations 31

FIGURE 4.15: Oscillation parameters, as a function of a) detuning δ
and b) noise parameter g”. Frequency ω0 and damping γ are
denoted with a square and triangle respectively. Striped line
indicates the boundary of the stable regime, δ2 is plotted as dotted
line.
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Chapter 5

Experimental Setup

5.1 Cooling

In our experimental setup we use sodium-23 atoms to create Bose-Einstein Con-
densates. Sodium is particularly suitable due to its D-line transitions. These fall in
the visible spectrum, to which a many existing laser systems can couple. Sodium
also has a good ration between two and three body collisions, which lead to more
effiecient cooling. Figure 5.1 shows a schematic overview of the vacuum setup of
the experiment, which consists of several stages. An oven vaporizes sodium atoms
which shoot out into a Zeeman slower. After this they are collected in a magnetic-
optical trap(MOT) and finally cooled in a magnetic trap (MT).

FIGURE 5.1: Schematic overview of the vacuum setup. Valves are
denoted with a ’V’, vacuum pumps with a ’P’. The red shaded areas
indicate the coils of the Zeeman slower, width representing the
density of the winding. Sourced from ref [9].

5.1.1 Source

In order to create a stream of sodium atoms, we use a recirculation oven depicted
in figure 5.2. It consist of two chambers, divided by the first diaphragm. In the left
chamber solid sodium is heated to 320°C under controlled pressure. Sodium vapour
then exits though the diaphragm to the second chamber, then though a second di-
aphragm to produce a vapour beam. The second chamber serves as a cold chamber,
narrowing the beam and allowing for collected sodium to be recirculated back into
the primary chamber via a recirculation tube. A temperature gradient is maintained
over the entire assembly to prevent accumulation of sodium in unwanted areas.

5.1.2 Slower

Atoms leaving the oven have a mean velocity around 800 m/s, which needs to be re-
duced to 40 m/s in order to be captured by the MOT. To this end a Zeeman slower is
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FIGURE 5.2: Schematic representation of the sodium recirculation
oven. Sourced from ref [9].

used. The energy levels of sodium-23 are split up due to spin-orbit coupling, the en-
ergy levels of the hyperfine states are shown in figure 5.3. A circular polarized light
beam is tuned to the transition between the |F = 2, mF = 2⟩ and |F′ = 3, mF′ = 3⟩
states. Absorption and the spontaneous remission of photons by the sodium atoms
leads to a net reduction of the longitudinal velocity. The resulting change in Doppler
shift is offset by a Zeeman shift induced by magnetic coils around the slower. Decay
from the F′ = 3 to the F = 2 state is protected due to selection rules. Due to non-
linear Zeeman shifts, stray magnetic fields and imperfect polarization of the light
beam, atoms can sometimes be excited to the |F′ = 2, mF′ = 2⟩ state. From here
decay to the F = 2 state is possible, but also to the F = 1 ground state, dropping
atoms out of the cooling cycle. To counteract this and bring the atoms back into the
cooling cycle, a second beam is tuned to the transition between the ground and the
|F′ = 2, mF′ = 2⟩ state.

5.1.3 Confinement

After the Zeeman slower, the particles are trapped by the MOT and form a ther-
mal cloud. The magnetic field used to trap particles is created by two coils in
anti-Helmholtz configuration. Additional rectangular coils are used to compen-
sate the Earths magnetic field. Two retro-reflected laser beams are tuned to the
|F = 2, mF = 2⟩ → |F′ = 3, mF′ = 3⟩ cooling cycle. One is split in the x̂ + ŷ and
x̂ − ŷ direction, the second covers the ẑ direction. A 1 MHz frequency difference be-
tween the beams prevents the beams from creating an optical lattice in the middle of
the MOT. To prevent loss from light pressure in the centre, we use a single repump
beam with a dark spot in the centre of the beam profile.

Particles in the MOT are still to energetic to form a Bose Einstein Condensate.
In the last phase of cooling, atoms are confined by a magnetic field based on their
dipole moment m f . A cloverleaf arrangement of coils creates a magnetic field with
a local minimum in the centre. The atoms experience an energy shift proportional
to the field strength and dipole moment. The resulting trapping potential is approx-
imately harmonic, as described by equation 2.2. Only atoms with a positive energy
shift with increasing field strength can be trapped, the so-called low-field seekers
m f = −1. This reduces efficiency by a third, since atoms coming from the MOT
are equally distributed over the m f = −1, 0, 1 states. A laser pulse can be used to
transfer atoms from the m f = 0, 1 to the m f = −1, and the MOT beams can depump
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FIGURE 5.3: Hyperfine splitting of Sodium-23. Sourced from ref [8],
[30]

particles in the higher |F = 2, m f ⟩ states, improving the particle count to approxi-
mately two thirds. It is essential to prevent transitions from the trapped to the other
states. These transitions are called Majorana flops, and occur when the magnetic
field rotates faster then the precession of the magnetic moments of the trapped par-
ticles. To reach the transition temperature of the BEC, we use evaporative cooling.
Using radio frequency (RF) radiation, atoms can be selectively removed by inducing
a transition into a high-field seeking state (figure 5.4). The resonance frequency of
the atoms is proportional to the local strength of the magnetic field and in turn to
that of the potential energy of the atoms. The most energetic particles have the high-
est resonance frequency, to which the RF field is then tuned. The system is allowed
to rethermalize after the particles have escaped. The process is repeated until the
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FIGURE 5.4: Schematic representation of a cloverleaf trap.
Evaporation is done by selectively spin-flipping atoms into
untrapped states with RF radiation. Sourced fom ref[31].

average temperature of the cloud drops below the critical temperature and the BEC
forms.

5.2 Imaging

We employ two imaging techniques to get information on both the thermal cloud
and the BEC. A more detailed discussion on these methods can be found in refer-
ences [9], [23], [32].

5.2.1 Time-of-flight Imaging

The first method available to us is absorption imaging. The atoms are released from
the trap. After a predetermined time, a laser beam tuned to the D1-Line transition
illuminates the condensate and casting a shadow on a camera. The beam profile is
significantly larger then the size of the cloud, such that at the position of the cloud
the beam profile is approximately flat. The atom cloud absorbs and scatters light
proportional to the local density. The shadow cast on the camera then allows us to
calculate the density integrated over the path of the light, a column density. When
the density is too low the signal-to-noise ratio becomes problematic. On the other
hand, when the density is to high the cloud becomes opaque to the light beam, satu-
rating the camera. Releasing particles from the trap allows us to control the density
by varying the time of flight (TOF), such that we always image at a suitable density.
Adding energy though photon absorption knocks particles out of the condensate,
making this a destructive imaging technique. It gives us a measure of the particle
number in both the thermal cloud and BEC, which is useful in calibration.

5.2.2 Off-axis-holography imaging

In situ observation of a time crystal requires a nondestructive method. A probing
beam strongly detuned from any resonant sodium transitions can be used to image
the condensate. Because the refractive index of the BEC depends on the local den-
sity, the accumulated phase of a light beam crossing though the condensate gives
a quantitative measure of the column density. To prevent heating up the BEC the
intensity of the probe beam must be kept low. Alone, this would give a signal too
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FIGURE 5.5: Schematic representation of the OAH setup. A
off-resonant probe beam passed though the condensate and is
collected on a camera. A mode-matched reference beam is aimed at
the camera under an angle, creating an interference pattern. Image
taken from ref [32].

weak to be useful. Off-axis holography allows us to increase signal strength without
increasing the probe beam intensity. A second (and optionally, third) beam is mode-
matched to the probe beam and projected on the camera under an angle, creating an
interference pattern, schematically shown in figure 5.5
The intensity on the camera on the camera plane r is proportional to

I ∝ |Eprobeeikprober + Ere f eikre f r|2. (5.1)

The cross-terms of this equation carry the information of the probe beam, with an
intensity that is proportional to |Ere f | =

√
Ire f . By increasing the reference beam

power we can improve our signal strength at no cost to the condensate. Mathemat-
ically this cross-term corresponds to a translation in Fourier space. To retrieve the
phase and intensity of the probe beam, we go though the steps outlined in figure 5.6.
First the stored camera image is Fourier transformed. The resulting Fourier space is
then cut around k = kprobe − kre f and translated to the origin. An inverse Fourier
transformation returns the field of the probe beam, scaled by the intensity of the ref-
erence beam. Optionally we can use the Beam Propagation Method to numerically
refocus the image, to correct for misalignment in the setup[33].
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FIGURE 5.6: Schematic representation of the OAH scheme. Image
taken from ref [32].
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Chapter 6

Discussion

6.1 Line model

As we have seen in section 2.3.2, the one dimensional models consistently failed to
produce any sort of probability flow between modes. However, the behaviour of the
equilibrium distributions does match what we would expect from theory. In figure
6.1 we can see how the equilibrium distribution of the toy model for g′ = 0 behaves,
compared with our expectation based on the effective potential. The distribution
moves closer to the origin when g” becomes larger, increasing diffusion, and when
δ → δc. Away from equilibrium both models are in agreement, but the behaviour
around the origin is different. The Fokker-Planck equation pushes P to zero near
the origin, whereas the effective potential does not have the same divergence in the
exponent. If we consider the flux and diffusion currents in equation 2.52, the flux
current pushes P away from the origin, only diffusion can move P towards and over
the origin. Except if we look at the relative strength between these two, B

C ∝ 1
ρ near

zero, which diverges. It is impossible for diffusion to overcome the flux current. This
is likely where this model fails, near a = 0. This is also where the continuum ap-
proximation is violated. The goal of the line models is to create an efficient numerical
algorithm which with to search the parameter space of our system for mode interac-
tions. Based on the results so far, simplifying the system to one dimension seems to
be an unsuitable approach if the goal is to explore dynamics between crystal modes.
It does however allow for an approximate analytical solution for the equilibrium
mode, which can be useful from a theoretical standpoint.

6.2 Two dimensional models

The quantum trajectories provide a number of interesting results. First, we do ob-
serve probability flow between the modes. When crossing between the modes they
avoid the origin, instead moving around it in a (anti)clockwise motion. This is a fur-
ther indication that the line model fails to describe the dynamics around the origin
accurately. The base assumption of the line model is that the dynamics on the zero
angular flux line approximately describe that of the overall system. This line passes
through the origin. The fact that all quantum trajectories do not pass through the
origin show that this assumption is incorrect. The (counter)clockwise motion when
crossing can be understood by considering the Langevin equation (2.34). If we con-
sider terms linear in a, then the equation reduces to ȧ = −iδa for small a, a simple
rotation in the complex plane depending on the sign of δ.
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FIGURE 6.1: Equilibrium distribution in various parameters. In blue,
as predicted by the Fokker-Planck line model. In orange, the
effective potential as described by equation 2.41. Detuning fraction
and noise parameter values are shown in graph.

6.2.1 Closed orbits

In the limit g” = 0 we see closed orbits emerging, which are confined to different
regimes in the phase space of a, depending on the driving parameters. For some
initial values of a we observe orbits that rotate around equilibrium points of the time
crystal, such that the time average ⟨|a|⟩ ̸= 0. This is reminiscent of self trapping.
The question is, can we categorise it as such? In recent work by the Oberthaler
group, a BEC of Rubidium atoms is confined in a double-well potential [34]–[36].
The population of the two wells displays oscillations that fall in two regimes, Rabi
oscillations and self trapping, shown in figure 6.2a and figure 6.2b respectively. The
interaction strength between the wells determines in what regime the system exists.
The relative population difference z between the two wells is key. In the Rabi regime,
the time average ⟨z⟩ = 0. This changes in the self-trapping regime. The Bloch
sphere in figure 6.2 shows oscillations with ⟨z⟩ ̸= 0 are possible, depending on the
initial population imbalance. On the surface, this seems similar to the regimes we
observe in figure 4.10. The detuning determines the regime, i.e. whether there are
self-trapped orbits and for what range of initial values, and the initial value of a the
orbit itself.

There are a number of issues with this interpretation. The crystal modes we de-
scribe are not occupied by different populations at the same time, doing so violates
the symmetry breaking criterion of the time crystal. This makes the analogy be-
tween a and z problematic. The theoretical description is also considerably different.
The population of the BEC in the two wells is described by a two dimensional Fock
space. On the other hand, our description assumes only one dominant crystal mode
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FIGURE 6.2: Bloch sphere representation of population difference z
between two wells, showing in a) Rabi oscillation with ⟨z⟩ = 0 and
b) self-trapping with ⟨z⟩ ̸= 0. Image adapted from Zibold et al.[34].

frequency, resulting in effectively a one dimensional Fock space. These major dif-
ferences mean that we can not regard these orbits as self trapping. From a physical
standpoint, the limit g” = 0 is problematic as well. As we discussed in Chapter 2,
g” ≥ 0 leads to unlimited growth in the number of quanta of the crystal. Second, the
concept of an equilibrium distribution breaks down. The collective behaviour of the
quantum trajectories no longer matches the Fokker-Planck description. And third,
every experimental realization will have quantum fluctuations present to some de-
gree, which destroys this orbit like behaviour as we can see in figure 4.11. We con-
sider this regime therefor ill suited for experimental predictions.

6.2.2 Damped oscillations

From our simulation data we can verify the suitability of the quantum trajectory ap-
proach as an approximation of the Fokker-Planck equation. When the equilibrium
modes are sufficiently far apart to prevent mode interactions, the 2d Fokker-Planck
and the quantum trajectory approach reproduce the same equilibrium distributions.
In light of the observed damped oscillations using both the 2d Fokker-Planck and
the quantum trajectory approach, the observed probability flow at nonzero g” in sec-
tion 4.2 should be reinterpreted as an over-damped oscillation. At higher quantum
fluctuations both models predict an under-damped oscillation between the crystal
modes. The fitted oscillation parameters lie within a factor of two, so the mod-
els agree only quantitatively. What we do not know, is if the quantum trajectory
method gets the scaling of the fitted oscillation parameters with the system param-
eters correctly. We should note that in the under-damped regime studied using the
2d Fokker Planck method, the decay rate and oscillation frequency do not diverge
near the phase transition boundary. No calculations using the quantum trajectory
method have been done in this regime. And the other way around, we do observe
divergence in the over-damped regime using the trajectory method, which needs to
be verified with the 2d Fokker-Planck method. Even so, the results we have dis-
cussed so far support the quantum trajectory approach as a viable tool to study the
parameter space of our system, even if only quantitatively.

We do not yet have a theoretical model with which to compare the oscillation
parameters. Both the damping γ and oscillation frequency ω0 above g” = 0.01
s−1 have seemingly have a linear dependence on g”. Determining the scaling for
smaller values of g” will require more simulations. Clearly, quantum fluctuations
play a major role in mode switching. Only when ω0 ≥ γ will we observe under
damped oscillations. Given that ω0 scales approximately with δ2 whereas γ remains
fairly constant, the detuning determines the type of oscillation between the crystal
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modes. One promising lead is a Bogoliobov expansion on the Langevin equation of
motion, discussed in appedix B. It gives a dispersion relation for the oscillation fre-
quency at the correct order of magnitude, as well as the correct scaling with driving
parameters. At the moment of writing, this is still work in progress.

A possible interpretation of the observed damped mode oscillation is a damped
Rabi oscillation. These are not new in physics. For example, a two level system cou-
pled to a single-mode electromagnetic cavity will undergo vacuum Rabi oscillations
that display a similar damping due to relaxation; spontaneous emission and non-
radiative decay [37]. In the context of time crystals, little is yet known. Theoretical
work on Floquet time crystals predict Rabi oscillations in the absence of driving[38]
or at differently evolving phases [39]. Neither apply to our system, or have been
observed experimentally. In our system γ mostly determined by g”, suggesting that
the thermal cloud is responsible for damping on our system. The origin of the cou-
pling between the crystal modes is unclear. To the authors knowledge, this might
be the first indication of a damped Rabi oscillation in a driven time crystal in a non-
dissipative system. Before we can make this claim, we need a theoretical model that
fits the oscillation parameters, and sheds light on the coupling between the crystal
modes.

6.2.3 Experimental realization

The physical implication of mode switching is as follows. If after creating and imag-
ing the crystal to determine the phase the system is allowed to go unobserved for
some time, when we measure again there will be a nonzero change of finding a phase
shift π with respect to the initial measurement. Any interaction that carries the phase
information will project the crystal to one of its modes. If this happens frequently
enough, mode switching will be suppressed. This is the well-known quantum Zeno
effect. Experimental observation of both the over and under-damped oscillation
may be possible, provided we insure adequate protection from unwanted interac-
tion between the crystal and its surroundings. This would mean optically isolating
the vacuum chamber to prevent stray photons from interacting with the condensate.
The challenge here is to still ensure optical access for the probe and cooling beams.
Secondly, stray particles in the vacuum setup will have a similar effect. Interactions
with the BEC can be minimized by optimizing the vacuum.

Experimental realizations of the time crystals so far have driving parameters in
the range of Ad = 0.04 to 0.1 and ωd/2π ≃ 180 Hz, similar to the values used in
our calculations. They key difference are the detuning and noise parameter, δ and
g”. The detuning is observed in a wide range between 0 and 0.5δc, and the g-factor
typically lies in the order of |g| = 10−4 Hz. Observation of mode switching requires
an increase of about two orders of magnitude in the noise parameter. In order to
observe the under-damped oscillation we require a higher detuning fraction, prefer-
ably higher then 0.8δc. We have not yet achieved experimental control over both
these parameters.
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6.3 Conclusions

Throughout this research, we have attempted to find a suitable approach to study
switching between time crystal modes. Our goal is to determine the parameter space
in which dynamics between crystal modes arise, characterise this behaviour, and
provide a basis for experimental work. Numerical evaluation of the Fokker-Planck
equation requires a long evaluation time. Combined with the large parameter space
of our system, faster running approximations are desirable. We focus on two models.
The first method is the line model, an one-dimensional approximation to the Fokker-
Planck equation. The second is a quantum trajectory method, based on the Langevin
equations of motion. We compare these to the (two dimensional) Fokker-Planck
equation, evaluated using the MacCormack method.

The line model reproduces the correct equilibrium distribution at high number
of quanta in the crystal, but fails close to the origin in the phase space of the crystal.
We observe that flux current terms in the Fokker-Planck equation become dominant
in this region, preventing probability flow between modes. This is further verified
by the dynamics observed using the other methods, the origin is always avoided.
We conclude this model to be unsuitable.

The quantum trajectory method becomes nonphysical in the limit of no damp-
ing, otherwise it reproduces the same qualitative behaviour as the 2d Fokker-Planck
method. At higher noise levels we find both over and under-damped oscillations be-
tween crystal modes. Based on the 2d Fokker-Planck method, the type of oscillation
depends largely on the detuning of the crystal with respect to the breathing mode.
Both the frequency and damping parameters of the oscillations scale with the noise
parameter. Additional simulations are required to verify if the quantum trajectory
method produces the same scaling of the oscillation parameters. Even if this is not
the case, the quantum trajectory method does provide a useful way to rapidly search
the parameter space.

Experimental observation of a mode switch constitutes a π shift in the phase of
the time crystal, after the system is allowed to go unmeasured for some time. Apart
from sufficient isolation, observation of mode switching requires control to some
extend over the detuning and noise term. The first could be realized by changing
the breathing mode frequency temporarily. The noise term needs to be two orders of
magnitude stronger than experimental realisations so far. To this end, the influence
of the thermal cloud on the noise term needs to be investigated. The parameter space
of the driving parameters in which mode switching occurs, match that of current
experimental realisations.

6.4 Outlook

The field of time crystals is both new and rapidly developing. In regard to our re-
alization of time crystals, there are plenty advancements to be made. First, work
on the quantum trajectory method can be expanded in two ways. The Runge-Kutta
method can be expanded to include variable step-size techniques, reducing calcu-
lation time. Secondly, simulations in the under-damped oscillation regime can be
done to investigate scaling of the oscillation parameters. On the theoretical side, our
next goal should be to find a mathematical description that allows us to understand
and describe mode oscillations. A promising candidate is a Bogoliobov expansion
on the Langevin equations of motion.



44 Chapter 6. Discussion

On the experimental side, the question of isolating the time crystal appears most
pressing. We need to investigate if we have a sufficient vacuum and can prevent
enough stray photons from interacting to allow the system to go unobserved at the
timescale of the damped mode oscillation. Alterations to the experimental setup
may prove necessary. Gaining experimental control over detuning and the noise fac-
tor are essential. The first step to this end is to measure the frequency of the breathing
mode when changing the trap frequency, after the breathing mode is induced. Once
we can control the driving frequency, a number of interesting experiments open up.
Temporarily changing the driving frequency results in a change in the detuning of
the time crystal. Varying the driving frequency can be done in multiple ways, con-
tinuously or step-wise for example. We should study the effect of these on the shift
in the detuning, to establish the best method of control. Even when the noise factor
is to low to induce mode switching, with control over the detuning we can induce
forced transitions. Another important step will be to study the effect of the thermal
cloud on the noise parameter, which is suspected to be its origin. This can be mea-
sured by creating time crystals with different thermal cloud fractions. This can be
done by terminating the cooling process before total condensation occurs. Assuming
that we can raise the noise factor through the thermal cloud population, in addition
to sufficient isolation, we should be able to observe mode switching. A best case
scenario would even allow us to measure the quantum Zeno effect, by repeatedly
measuring the crystal in a parameter regime where a second experiment without
intermittent observation show mode oscillations. These last two experiments would
provide strong evidence as to the quantum nature of the time crystal.
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Appendix A

Line model equilibrium

The goal of this section is to study the equilibrium distribution of the toy model
discussed in section 2.3.2, for general g = g′ + ig”. Setting the flux current to zero
we have

(B(ρ) + C(ρ)
∂

∂ρ
)P = 0. (A.1)

with

B(ρ) = g′′ρ3 +
ωd Ad

4
ρ

√
1 − 16(δ − g′ρ2)2

ω2
d A2

d
, (A.2)

C(ρ) =
g′′

2α
ρ2. (A.3)

We can isolate P by using the derivative of the log function,

∂

∂ρ
log(P(ρ)) = −B(ρ)

C(ρ)
. (A.4)

The solution to P is then given by the anti-derivative of the right lid,

P = A exp
[
−
( ∫

2αρ + α
ωd Ad

2g′′

√
1 − 16(δ−g′ρ2)2

ω2
d A2

d

ρ
∂ρ
)]

, (A.5)

with normalization constant A. The second part of the integral in this expression can
be cast in the form

I(x) =
∫ 1

x

√
1 − (a − x2)2dx, (A.6)

with x =
√

4g′
ωd Ad

ρ,a = 4δ
ωd Ad

. Which has the analytical solution

I(x) =
1
2

(√
1 − a2 + 2a − x4 − arcsin(a − x2)−

√
1 − a2 arctanh(T(x))

)
, (A.7)

T(x) =
1 − a2 + ax2

√
1 − a2

√
1 − a2 + 2a − x4

. (A.8)

Note that a2 ≤ 1 in the stable crystal regime. Because the argument of the arc-
tangent for all values of ρ obeys T(ρ) ≥ 1, I and in turn P become complex valued.
One workaround is absorbing the complex component into the normalization factor.
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Appendix B

Bogoliobov Expansion

Starting from the Langevin equations,

∂

∂t

(
a
a∗

)
= i

(
δ − g|a|2 − Adωd

4
Adωd

4 −δ + g∗|a|2

)(
a
a∗

)
. (B.1)

We expand around an arbitrary point a0 by considering a small deviation ∆a,

a = a0 + ∆a, (B.2)
a∗ = a∗0 + ∆a∗. (B.3)

We assume g to be purely imaginary, substitution into the Langevin equations and
only keeping linear terms yields

∂

∂t

(
∆a
∆a∗

)
=

(
iδ − 2g”|a0|2 g”a2

0 − i Adωd
4

g”a∗2
0 + i Adωd

4 −iδ − 2g”|a0|2

)(
∆a
∆a∗

)
, (B.4)

The eigenvalues of this matrix equation we shall refer to as the Bogoliobov frequen-
cies, these are given by

Ω = 2g”|a0|2 ±
√
−δ2 + (

Adωd

4
)2 + ig”

Adωd

4
(a2 − a∗2) + g2|a0|4. (B.5)

We have absorbed a constant factor i in the matrix in equation B.4. Not doing so
switches the real and imaginary parts of ω. Solutions to the under-damped har-
monic oscillator with a frequency ω0 and damping constant γ are linear combina-
tions of (

ν
ν∗

)
=

(
e(γ+i

√
ω2

0−γ2)t

e(γ−i
√

ω2
0−γ2)t

)
. (B.6)

We can compare Re(Ω) to γ and Im(Ω) to
√

ω2
0 − γ2. An open question is where

to expand around, i.e. what is a0? We can plot Ω as a function of a0, shown in
figure B.1. We see a finite oscillation frequency at a phase of −π/4, and decay to
zero everywhere else. We should note that for the system parameters used here,
the average of the equilibrium distribution lies close to −π/12, at a = 23.5 − 5.8i,
based on the quantum trajectory calculation as presented in figure 4.14. Damping is
present everywhere in the phase space, and weaker near the origin.
The correct value of a0 will depend on the system parameters. As a rough approxi-
mation, we take it to be constant at a = 25eiπ/4 and plot this against the oscillation
parameters as presented in figure 4.15. Figure B.2 shows promising results, we can
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FIGURE B.1: The a) imaginary and b) real components of the
Bogoliobov frequency, as a function of a0

FIGURE B.2: The a) real and b) real components of the Bogoliobov
frequency (denoted as Ω in text, ω in figure), as a function of
detuning. at various fluctuation strengths

observe a transition between over to under-damped at approximately δ = 3.5 s−1,
as well as correct scaling.
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[15] B. Buča, J. Tindall, and D. Jaksch, “Non-stationary coherent quantum many-
body dynamics through dissipation,” Nature Communications, vol. 10, no. 1,
Apr. 2019. DOI: 10.1038/s41467-019-09757-y.

https://doi.org/10.1007/BF01327326
https://doi.org/https://doi.org/10.1002/3527608958.ch27
https://doi.org/https://doi.org/10.1002/3527608958.ch27
https://doi.org/10.1038//141074a0
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/physrevlett.109.160401
https://doi.org/10.1103/physrevlett.114.251603
https://doi.org/10.1103/physrevlett.114.251603
https://doi.org/10.1103/PhysRevLett.123.210602
https://doi.org/10.1103/PhysRevLett.119.250602
https://doi.org/10.1103/PhysRevLett.119.250602
https://doi.org/10.1038/s41467-019-09757-y


52 Bibliography

[16] S. Choi, J. Choi, R. Landig, et al., “Observation of discrete time-crystalline order
in a disordered dipolar many-body system,” Nature, vol. 543, Oct. 2016. DOI:
10.1038/nature21426.

[17] J. Zhang, P. Hess, A. Kyprianidis, et al., “Observation of a discrete time crys-
tal,” Nature, vol. 543, Sep. 2016. DOI: 10.1038/nature21413.

[18] X. Yang and Z. Cai, “Dynamical transitions and critical behavior between dis-
crete time crystal phases,” Physical review letters, vol. 126, p. 020 602, Jan. 2021.
DOI: 10.1103/PhysRevLett.126.020602.

[19] H. Keßler, P. Kongkhambut, C. Georges, L. Mathey, J. G. Cosme, and A. Hem-
merich, “Observation of a dissipative time crystal,” Physical Review Letters,
vol. 127, no. 4, Jul. 2021. DOI: 10.1103/physrevlett.127.043602.

[20] J. N. Stehouwer, H. T. C. Stoof, J. Smits, and P. van der Straten, “Dynamics of
spontaneous symmetry breaking in a space-time crystal,” Physical Review A,
vol. 104, no. 4, Oct. 2021. DOI: 10.1103/physreva.104.043324.

[21] C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, 2nd ed.
Cambridge University Press, 2008. DOI: 10.1017/CBO9780511802850.

[22] R. Corgier, “Engineered atomic states for precision interferometry,” Ph.D. dis-
sertation, Jul. 2019.

[23] S. Borman, Crystallized time in ultra-cold bose gases, Feb. 2022.

[24] L. Liao, J. Smits, P. van der Straten, and H. T. C. Stoof, “Dynamics of a space-
time crystal in an atomic bose-einstein condensate,” Physical Review A, vol. 99,
no. 1, Jan. 2019. DOI: 10.1103/physreva.99.013625.

[25] J. Smits, L. Liao, H. T. C. Stoof, and P. van der Straten, “Observation of a space-
time crystal in a superfluid quantum gas,” Phys. Rev. Lett., vol. 121, p. 185 301,
18 Oct. 2018. DOI: 10.1103/PhysRevLett.121.185301.

[26] J. Smits, H. Stoof, and P. van der Straten, “On the long-term stability of space-
time crystals,” New Journal of Physics, vol. 22, p. 105 001, Oct. 2020. DOI: 10.
1088/1367-2630/abbae9.

[27] G. Fasshauer. “Runge-kutta methods.” (), [Online]. Available: http://www.
math.iit.edu/~fass/478578_Chapter_3.pdf (visited on 09/22/2022).

[28] B. Schmiedel. “Operating principle rk4.” (2019), [Online]. Available: https://
lowebms.readthedocs.io/en/latest/code/rk4.html (visited on 09/22/2022).

[29] J. Smits, H. T. C. Stoof, and P. van der Straten, “Spontaneous breaking of a
discrete time-translation symmetry,” Physical Review A, vol. 104, no. 2, Aug.
2021. DOI: 10.1103/physreva.104.023318.

[30] D. Steck, Sodium d line data, Jan. 2009.

[31] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and
understanding bose-einstein condensates,” 1999. DOI: 10.48550/ARXIV.COND-
MAT/9904034.

[32] S. Loth, Holographic imaging of bose-einstein condensates, Jun. 2018.

[33] J. W. Goodman, Introduction to Fourier optics. 2005, vol. 1.

[34] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, “Classical bifurcation
at the transition from rabi to josephson dynamics,” Physical Review Letters,
vol. 105, no. 20, Nov. 2010. DOI: 10.1103/physrevlett.105.204101.

https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21413
https://doi.org/10.1103/PhysRevLett.126.020602
https://doi.org/10.1103/physrevlett.127.043602
https://doi.org/10.1103/physreva.104.043324
https://doi.org/10.1017/CBO9780511802850
https://doi.org/10.1103/physreva.99.013625
https://doi.org/10.1103/PhysRevLett.121.185301
https://doi.org/10.1088/1367-2630/abbae9
https://doi.org/10.1088/1367-2630/abbae9
http://www.math.iit.edu/~fass/478578_Chapter_3.pdf
http://www.math.iit.edu/~fass/478578_Chapter_3.pdf
https://lowebms.readthedocs.io/en/latest/code/rk4.html
https://lowebms.readthedocs.io/en/latest/code/rk4.html
https://doi.org/10.1103/physreva.104.023318
https://doi.org/10.48550/ARXIV.COND-MAT/9904034
https://doi.org/10.48550/ARXIV.COND-MAT/9904034
https://doi.org/10.1103/physrevlett.105.204101


Bibliography 53

[35] Z. R. Lin, Y. Nakamura, and M. I. Dykman, “Critical fluctuations and the rates
of interstate switching near the excitation threshold of a quantum parametric
oscillator,” Physical Review E, vol. 92, no. 2, Aug. 2015. DOI: 10.1103/physreve.
92.022105.

[36] R. Gati and M. K. Oberthaler, “A bosonic josephson junction,” Journal of Physics
B: Atomic, Molecular and Optical Physics, vol. 40, no. 10, R61–R89, May 2007.
DOI: 10.1088/0953-4075/40/10/r01.

[37] O. Chuikin, Y. Greenberg, and A. Shtygashev, “Damping of vacuum rabi os-
cillations in a two-qubit structure in a high-q cavity,” Physics of the Solid State,
vol. 62, pp. 1571–1579, Sep. 2020. DOI: 10.1134/S106378342009005X.

[38] R. Khasseh, A. Russomanno, and R. Fazio, “Fragility of classical hamiltonian
period doubling to quantum fluctuations,” Physical Review B, vol. 104, no. 13,
Oct. 2021. DOI: 10.1103/physrevb.104.134309.

[39] Y. Pan and B. Wang, “Time-crystalline phases and period-doubling oscillations
in one-dimensional floquet topological insulators,” Physical Review Research,
vol. 2, Nov. 2020. DOI: 10.1103/PhysRevResearch.2.043239.

https://doi.org/10.1103/physreve.92.022105
https://doi.org/10.1103/physreve.92.022105
https://doi.org/10.1088/0953-4075/40/10/r01
https://doi.org/10.1134/S106378342009005X
https://doi.org/10.1103/physrevb.104.134309
https://doi.org/10.1103/PhysRevResearch.2.043239

	Abstract
	Introduction
	History of the Bose-Einstein Condensate
	Broken Symmetry
	Discrete Time Crystals
	Thesis Outline

	Theory
	The Bose Einstein Condensate
	Higher order axial mode
	Space Time Crystals
	Phase diagram
	Line model
	Equilibrium


	Simulation Methods
	MacCormack Method
	Runge-Kutta
	Data storage

	Simulation Results
	Line Model
	Quantum Trajectories
	Damped mode oscillations

	Experimental Setup
	Cooling
	Source
	Slower
	Confinement

	Imaging
	Time-of-flight Imaging
	Off-axis-holography imaging


	Discussion
	Line model
	Two dimensional models
	Closed orbits
	Damped oscillations
	Experimental realization

	Conclusions
	Outlook

	Line model equilibrium
	Bogoliobov Expansion
	Acknowledgements
	Bibliography

