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Abstract

Medical image analysis has advanced rapidly with the integration of deep learning tech-
niques. However, the challenge of unbalanced datasets and the need for effective pre-
processing methods remain significant difficulties in achieving optimal classification
performance. This thesis aims to investigate the effectiveness of various image dataset
augmentation techniques and the potential of diffusion models for chest x-ray image
classification, focusing mainly on the data unbalance problem.

After obtaining a high quality dataset using various data and image preprocessing methods,
we used traditional data augmentation methods such as rotation, flipping, blurring, and
contrast modification to increase the number of positive class samples. In addition to
traditional augmentation methods, several diffusion models are introduced to synthesize
new chest x-ray images to further strengthen the minority class and address data imbalance.
The performance of these methods was evaluated using specific metrics and compared to
established baseline models.

The results showed that while replacing labels and masking images can introduce errors, the
selected combination of preprocessing methods showed promise in improving classification
performance. These results also indicated that traditional data augmentation methods, after
careful fine-tuning of the hyperparameters, achieved significant performance improvements
over the original baseline model. The application of diffusion models further improves
the final classification results. Moreover, the images generated by the diffusion models,
compared to traditional augmentation methods, do not merely modify the original images,
but introduce some new image information, leading to improvements in various metrics.

Our results demonstrate the importance of augmentation methods in addressing data imbal-
ance and improving the results of chest X-ray image classification. The research describes
the most important image generation techniques that yield superior classification results
while overcoming the hurdles of imbalanced datasets. These findings have profound impli-
cations for the medical field and machine learning specialists, signaling a promising path
for improving diagnostic accuracy and patient care in chest X-ray image analysis. While
current methods show potential, further research, particularly in the areas of stable diffu-
sion models and deep learning-based image classification, is needed to make significant
advances in the field.
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1. Introduction

Medical image classification holds significant potential in aiding the diagnostic and thera-
peutic procedures for various pathologies. The use of deep learning has clearly improved
the accuracy of these classification tasks. However, the introduction of deep learning does
not adequately address the challenges posed by data scarcity (Bansal et al., 2022) and
low-quality labels (Wang et al., 2021), but also the class imbalance problem in certain
datasets can detrimentally affect the outcomes of binary or multi-label classification tasks
(Bria et al., 2020).

To tackle this issue, multiple augmentation methods have been developed to expand
the minority class’s size and achieve balanced class distribution in the dataset (Johnson
and Khoshgoftaar, 2019). In medical image analysis, traditional image transformation
methods, such as randomly cropping, rotating, and flipping horizontally and vertically
have been utilized to produce numerous images from a single one to correspond to varying
patient conditions (Chlap et al., 2021). Nonetheless, such methods frequently only present
supplementary data to deep models’ training and introduce the variation without significant
modifications or new image information, and the pathological information of produced
images may not reflect the realistic situation. This has resulted in deep learning being
commonly employed in generative models. Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014), Variational Autoencoder (VAE) (Kingma and Welling, 2013),
Denoising Diffusion Probability Model (DDPM) (Ho et al., 2020) and other deep generative
models have been extensively applied to increase dataset size and mitigate class imbalance
issues, leading to superior performance as compared to traditional data augmentation
techniques. Recent studies (Dhariwal and Nichol, 2021) have demonstrated that the DDPM
is superior to GANs in generating images, and have suggested revised versions of this
model like Denoising Diffusion Implicit Model (DDIM) (Song et al., 2020).

This study aims to examine the impact of augmented data obtained from traditional aug-
mentation methods and two deep generative diffusion models on the binary classification
performance for medical image datasets with significant class imbalance issues. The perfor-
mance of these augmentation techniques was compared and assessed for their impact on the
accuracy of binary classification in medical imaging. The findings offer valuable insights
into the effectiveness of these augmentation techniques in addressing class imbalance and
enhancing the performance of binary classification in medical imaging.
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1.1 Research questions
This thesis will research the generation of an unbalanced medical image dataset. The thesis
will aim to answer the following research question:

How do augmented data obtained from traditional augmentation methods and deep

generative diffusion models affect the performance of binary classification for medical

image datasets with significant class imbalance?

In order to answer the research question above, we answer several sub-questions:

■ Question 1: What type of dataset should be selected and what preprocessing methods
should be used to ensure that the processed dataset is of high quality?

■ Question 2: Which types of data augmentation methods should be implemented
in the experiment and how will they influence the performance of the classification
task?

■ Question 3: What are the fine-tuning experiments for the augmentation and classifi-
cation models supposed to be and which parameter needs to be optimized?

■ Question 4: Which state-of-the-art classification model should be implemented and
which one is suitable for our tasks?

■ Question 5: What evaluation metrics should we choose to evaluate the results of
the different augmentation methods, and what would be the expected effect of the
diffusion model on those evaluation metrics.

For the question above, we have the following hypotheses:

■ Hypothesis 1: The widely used medical image datasets include X-ray, MRI and CT
image datasets. Since the images in the X-ray image dataset are more correlated
with the physical world and have stronger visibility, we think using the X-ray
image dataset is better for our task. We think the uncertain class labels in the file
and the information outside the human body in the image can make the classifier
less effective. our assumption is uncertain class labels should be interpreted as
positive samples because that will strengthen the classifier and getting rid of the bias
introduced by the information outside the body could also make the classifier more
robust.

■ Hypothesis 2: Data augmentation is generally divided into traditional data augmen-
tation and deep learning-based data augmentation. We expect all those traditional
augmentation methods still cannot avoid the impact of class imbalance on the final
downstream task results. However, unlike the traditional data augmentation methods,
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they only perform shape transformations or add noise. Diffusion models have the
ability to overcome limitations in the availability of data, as they can generate new
samples to fill in missing parts of the data distribution. We expect deep generative
models should be able to generate better images of a specific class than the traditional
method based on the generation evaluation metrics. For the diffusion models, some
state-of-the-art models usually do not have enough open-source codes. So, we expect
to use the original denoising probabilistic diffusion model and one improved version
in our experiment.

■ Hypothesis 3: For the classification model, we need to optimize some common
hyperparameters such as the learning rate, number of epochs and batch size. For
each method of the traditional augmentation methods, their hyperparameters are
almost unique. We should fine-tune the hyperparameters such as angle or intensity.
In addition, for some common hyperparameters, the filling method should have a
large impact on the final classification results.

■ Hypothesis 4: There are a number of neural networks that can be used for 2D
image classification, we intend to use the most popular networks such as DenseNet
and Inception-Resnet. we also intend to do the experiment with the classification
network that is specifically for chest x-rays. We expect that the Denset can perform
best on the binary classification.

■ Hypothesis 5: We expect that synthetic images obtained from the diffusion model
will show higher similarity to the real dataset in terms of luminance, contrast and
structure compared to the traditional augmentation methods. Furthermore, we also
expect that the synthetic image after the diffusion models can perform better on the
downstream classification task.

1.2 Contributions of the thesis
Our contributions of this thesis can be summarised as follows:

1. Data and Image Preprocessing:
■ We used various strategies for label substitution, especially when faced with

labels like ’Not Mentioned’ or ’Uncertain’. This exploration led us to consider
the potential implications and benefits of certain substitutions over others.

■ We used different mask methods to verify the influence of irrelevant features
on the final result and considered using an inverted joint mask before the final
classification.

2. Classification Networks Comparison:
■ We compared different classification networks and found that DenseNet was

particularly effective for our dataset, outperforming others like Inception-
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ResNet and CheXNet. This could help others working on similar projects
decide which network to use.

3. Study of Traditional Augmentation Methods:
■ We deeply analyzed different traditional augmentation methods to understand

how they can make models stronger. This study provided a detailed look into
how each method and hyper-parameter affects the final results.

4. Improved Augmentation Strategies:
■ Our work involved experimenting with a range of augmentation strategies,

highlighting the value of augmenting images that were previously classified
incorrectly. This approach showed promise in specific cases, offering ways to
improve the final classification results.

5. Exploration with Diffusion Models:
■ We dived into diffusion models to see how they compared to usual image

augmentation techniques. This included a look at both basic and stable diffusion
models, spotlighting the importance of matching the right model with the right
dataset and the potential of fine-tuning for better results.
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2. Related Work

2.1 Medical image analysis with deep learning methods
Medical image analysis tasks include several crucial classes such as image segmentation,
image registration and image classification. With the development of deep learning
techniques, those three tasks have emerged as the predominant domain in this area.(Shen
et al., 2017).

■ Image segmentation: Medical image segmentation is essential as it isolates and
delineates specific anatomical structures or regions of interest, enabling precise
diagnosis, treatment planning, and disease monitoring. Convolutional Neural Net-
work (CNN) is a class of deep learning models widely used for medical image
segmentation. The fundamental concept behind this is to train a CNN to generate
a corresponding output image with pixel-level labels, signifying the class or seg-
mentation of each pixel in the input image. Among the deep learning-based models
for medical image segmentation, the U-Net architecture proposed by Ronneberger
et al. (2015) is one of the most popular. The U-Net model is composed of an en-
coder path and a decoder path that are connected by skip connections. The encoder
path includes multiple convolutional and pooling layers that progressively reduce
the input image size and extract high-level features. The decoder path comprises
upsampling and convolutional layers that increase the resolution of the feature maps
and generate the segmentation mask. The skip connections enable the decoder to
incorporate low-level features from the encoder, thereby enhancing segmentation
accuracy. Since the original U-Net, several modifications and extensions have been
proposed to further improve its performance. For example, the attention U-Net
(Oktay et al., 2018) introduced attention gates to the skip connections, allowing
the network to focus on relevant image regions during segmentation. The U-Net++
(Zhou et al., 2018) further extended the skip connections and introduced a nested
U-Net architecture, which helps to capture multi-scale contextual information. Other
deep learning models that have been used for medical image segmentation include
DeepLab (Chen et al., 2017), Fully Convolutional Networks (FCN) (Long et al.,
2015), and Mask R-CNN (He et al., 2017).

■ Image classification: Medical image classification involves categorizing images
into different classes based on their content automatically for accurate disease diag-
nosis, monitoring treatment efficacy, and streamlining clinical workflows. It plays
a pivotal role in enhancing diagnostic precision, tailoring personalized treatments,
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and facilitating efficient case studies and comparisons in vast medical databases.
Deep learning models have been widely used for this task and have shown promising
results. These models can automatically learn features from medical images and
classify them into different categories. Some popular CNN architectures for medical
image classification include VGG, ResNet, and Inception (Kora et al., 2022). These
models have been used for a variety of tasks, such as identifying diseases in X-ray
images, detecting tumors in magnetic resonance imaging (MRI) scans, and classify-
ing skin lesions in dermatology. In addition to traditional CNNs, other deep learning
models such as recurrent neural networks (RNNs) and attention-based models have
also been applied to medical image classification tasks (Kim et al., 2021).

■ Image registration: Medical image registration is the process of aligning two or
more medical images of the same patient acquired from different modalities or at
different times. It is crucial in medical imaging as it aligns multiple images to a
common spatial domain, enabling the fusion of information from different modali-
ties or time points. This alignment facilitates accurate disease monitoring, aids in
interventional procedures, and enhances treatment planning, ensuring optimal patient
care and outcomes. Deep learning-based methods have been applied to medical
image registration tasks due to their ability to learn and model complex non-linear
relationships between images. One common approach is to use a convolutional
neural network to learn a similarity metric between images and then use an opti-
mization algorithm to find the optimal registration parameters that minimize the
metric. Another approach is to use a convolutional neural network to estimate the
transformation parameters directly from the images themselves. Balakrishnan et al.
(2019) proposed a network called VoxelMorph, which is a CNN-based registration
method that learns a spatial transformation between images using an unsupervised
approach. This method is capable of handling large deformations and has demon-
strated state-of-the-art performance in multiple medical image registration tasks.
Chen et al. (2018) proposed VoxResNet, which is a 3D CNN-based registration
method that uses a residual network to model the deformation field between two
images. It can handle large deformations and shows good performance. Çiçek et al.
(2016) proposed Deformable U-Net, which is a modification of the popular U-Net
architecture that includes a deformable convolutional layer to allow more flexible
modeling of the deformation field.

2.2 Traditional data augmentation
Image augmentation in medical image analysis addresses the challenges of limited or
unbalanced datasets. By transforming existing data, augmentation methods can improve
model performance by enhancing dataset variety. Basic image augmentation involves geo-
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metric transformations, intensity operations, noise injection, filtering, occlusion, random
cropping, and mixup methods. However, the utility of each technique must be carefully
assessed in the context of medical imaging.

■ Geometric Transformations: Geometric transformations modify the spatial ar-
rangement of pixels in an image, making them a type of image augmentation method.
New images with different positions, orientations, scales, and aspect ratios can
be created using geometric transformations (Kozlov, 2000). These methods offer
variations in image orientation, scale, and aspect ratio, and are valuable for medical
image analysis. Barber and Hose (2005) utilized geometric transformations for
automatic medical image segmentation, demonstrating their potential.

■ Intensity Operations: Intensity operations are techniques that manipulate the pixel
intensities of an image without altering its overall structure. They can enhance
image contrast, remove noise, or emphasize specific features. Medical image data
augmentation utilizes intensity operations to generate new images by modifying
the existing image’s intensity values. Augmenting the training data can increase
its variability and improve the performance of machine learning models. Huang
et al. (2021) used histogram equalization and intensity scaling to augment MRI brain
images for the task of tumor segmentation. Zeng et al. (2015) employed gamma
correction, contrast stretching, and histogram equalization to augment mouse brain
images for gene expression pattern annotation. Perez et al. (2018) utilized histogram
equalization, contrast stretching, and intensity scaling to augment skin lesion images
for melanoma classification.

■ Noise Injection: Noise injection is a data augmentation method that adds a specific
amount of noise to the image data in order to improve the model’s robustness against
noise in the input data. Zhao et al. (2019) proposed a novel data augmentation tech-
nique based on learned image transformations. One of the learned transformations
is called "NoiseInjection", which adds Gaussian noise with a random noise level
to the input image. Dalca et al. (2019) proposed a new unsupervised deep learning
framework for brain MRI segmentation. Gaussian noise injection is utilized as one
of the data augmentation techniques to enhance the model’s robustness against noise
in the input data.

■ Filtering: Filtering can be used as a data augmentation technique to introduce
variability in the appearance of images while preserving their underlying structure as
well. Gaussian blurring is a concept introduced by Fukunaga and Hostetler (1975),
and the Laplacian pyramid, a method for decomposing an image into a series of
Gaussian-blurred and downsampled versions, is a concept introduced by Burt (1983).
The first method involves reducing the high-frequency components of an image,
such as noise or small details, to create a smoother version of the original image.

10



Sharpening is the process of improving the high-frequency components of an image,
such as edges or details, to make the image look sharper. Filters that emphasize
high-frequency information, such as a Laplacian filter, can be used to achieve this
by highlighting the areas where the intensity of the image changes rapidly. Li et al.
(2018) applied Gaussian filtering as a data augmentation method to smooth the
training images and reduce the impact of noise and artifacts in the analysis of CT
images. Zhang et al. (2021) augmented the training data for a deep learning model
that segments the pancreas in abdominal CT scans by using blurring and sharpening
filters. Their findings show that this technique enhances the robustness and accuracy
of the model by reducing the impact of noise and artifacts in the input images.

■ Occlusion: Occlusion simulates scenarios where parts of an image are obscured,
training models to recognize obscured or concealed structures. This technique has
been noted to boost object recognition performance in various computer vision ap-
plications. The relevance to medical imaging is the improved recognition of partially
obscured anatomical structures. Bearman et al. (2016) proposed a straightforward
and efficient technique for producing occluded images. The study found that deep
learning models trained on the resulting dataset of occluded images showed consid-
erable enhancement in object recognition performance, particularly while evaluating
the models on test images with occlusions that were not present in the training
data. Kompanek et al. (2019) utilized perturbed normalization, translation, scaling,
rotation, salt, and pepper noise, along with occlusion, to augment the original image,
resulting in improved performance.

■ Cropping and Mixup: Random cropping is a data augmentation technique that
involves randomly selecting a portion of an image and using only that portion for
training. Random cropping is applied to medical images to increase the amount
of training data and improve the robustness of segmentation models (Long et al.,
2015). The random cropping method is also applied in the medical image analysis
task by Wodzinski et al. (2020) and Stefan et al. (2017). Furthermore, Zhang
et al. (2017) proposed a technique named ’mixup’ that creates novel training data
points by blending pairs of examples and their labels. The methodology relies on a
combination method that introduces a data augmentation technique that merges two
or more original images to create a new one. Nishio et al. (2020) utilized a technique
called Random Image Cropping and Patching (RICAP). Unlike the previous method,
RICAP performs random cropping of four original images, patches them together,
and generates a new image.

■ Deformable Augmentation Techniques: Deformable augmentation techniques may
be utilized when basic augmentation techniques fail to provide enough variability
to create a generalizable subsequent model. The deformation scale is typically
limited within user-specified parameters to maintain the clinical plausibility of the
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resulting augmentations (Chlap et al., 2021). Simard et al. (2003) proposed a new
approach to enhance the 2D image’s geometric shape by using a randomly generated
displacement field method. In this method, each pixel of the image is shifted
randomly in both the horizontal and vertical directions. The value of each shift is
chosen randomly from a uniform distribution which belongs to the range (−1, 1).
Then, the resulting displacement fields, △x and △y, are subject to convolution
using a Gaussian kernel. The degree of smoothness of the deformation can be
modified by adjusting the standard deviation, σ, of the convolution kernel. Using
intermediate values of σ will create a smoother, more elastic deformation. The
randomly generated displacement field method can be an effective technique for
data augmentation, thus enhancing the generalization capacity of CNNs in visual
analysis. This method has been applied to augment medical images for various
tasks in different areas such as MRI, CT, and X-ray by Javaid et al. (2019), Zhang
et al. (2020), and Novosad et al. (2020). They have reported improved performance
compared to using only original images.

■ Spline interpolation: Spline interpolation is a mathematical technique that uses
a piecewise polynomial function to estimate values between existing data points
(Schoenberg, 1964). This approach facilitates the creation of smooth and deformed
images for generating new image data in the context of deformable image augmenta-
tion. Various tasks, including MRI, CT, and X-ray, have seen favorable downstream
task outcomes with this method, as employed by Rigaud et al. (2021), Kim et al.
(2019), and Sandfort et al. (2019). Moreover, Statistical Shape Models (SSMs) are
extensively utilized in medical image analysis to capture and represent the anatomi-
cal structure variability of a given population (Cootes et al., 1995). Corral Acero
et al. (2019) and Bhalodia et al. (2018) show that this method can be applied to
medical image analysis and effectively enhance the diversity of medical datasets.

Traditional data augmentation techniques hold significance in medical image analysis,
improving model accuracy and robustness. The primary distinction between basic data
augmentation techniques and other methods is their lack of focus on producing lifelike
images. Certain geometric transformations, such as scaling, translation, or noise injection,
seem realistic due to their ability to simulate images of patients with different sizes or
positions or the creation of noisy images. While some methods directly benefit medical
imaging by simulating real-life clinical scenarios, others may not always be suitable and
must be judiciously applied.
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2.3 Deep generative data augmentation
Deep generative models have improved data augmentation, especially in the area of med-
ical image analysis, providing innovative solutions to data scarcity and ensuring better
results by generating high-fidelity, diverse samples. GANs, VAE, flow-based models and
diffusion models are the most commonly used deep learning networks for data augmenta-
tion (Figure 1). These models learn the underlying distribution of the training data and
produce new samples that resemble the actual data. The main advantage of this approach is
that it allows the creation of an almost infinite number of new samples without the need for
manual annotation. This can be particularly useful in medical imaging, where collecting
large amounts of labeled data can be difficult or costly.

Figure 1. Four classes of the deep learning-based augmentation methods. Sketch is based on
https://lilianweng.github.io/posts/2021-07-11-diffusion-models

■ GAN: GANs consist of two neural networks: a generator and a discriminator. The
generator network learns to generate new data by mapping samples from the noise
distribution to the target data distribution. On the other hand, the discriminator
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network learns to distinguish between real and synthetic data samples. During the
training process, the generator generates synthetic samples while the discriminator
network tries to distinguish between real and synthetic samples. The generator is
updated to produce better synthetic samples by tricking the discriminator network.
Similarly, the discriminator is updated to improve its ability to detect the differences
between real and synthetic samples. Through this iterative process, the generator
network learns to produce new synthetic samples that are similar to the authentic
data set. In medical image processing, GAN-based data augmentation has been
used to synthesize medical images for various applications, including segmentation,
classification, and detection. GAN has been used to generate synthetic CT images
(Zhu et al., 2018), MRI images (Waheed et al., 2020), and ultrasound images (Pang
et al., 2021) to augment the limited amount of real medical images and improve the
performance of medical image analysis tasks.

■ VAE: VAE is a type of generative model that learns to encode and decode a high-
dimensional input space. It consists of two parts: an encoder network that maps
input data to a latent space, and a decoder network that maps latent representations
back to the original data space (Kingma and Welling, 2013). The model is trained to
minimize the discrepancy between the input and reconstructed data. By generating
new samples in the latent space and decoding them to obtain synthetic images, the
VAE model can be used for data augmentation purposes.

■ Flow-based models: The work of Pesteie et al. (2019) introduced a generative
model based on VAE for augmentation in image classification and segmentation
tasks. Unlike other generative models such as GANs and VAEs, flow-based models
use invertible functions to transform a simple random noise distribution, such as
Gaussian, into a distribution that approximates the target data distribution. This pro-
cess simplifies sampling from the target data distribution, allowing new images to be
generated with similar statistical characteristics to the original data set. Kingma and
Dhariwal (2018) proposed an alternative distribution mapping technique compared to
the flow-based generative model for colorectal polyp synthesis in CT colonography.

■ Diffusion models:

Ho et al. (2020) proposed the denoising diffusion probability model (DDPM), which
consists of two parametric Markov chains. The main function of the model is to use
variational inference to generate samples that have the same distribution as the original
data after a specific time. The forward chain is responsible for perturbing the data by
adding Gaussian noise to it gradually according to the pre-designed noise progression until
the distribution of the data approaches a prior distribution. On the other hand, the reverse
chain starts from the given prior state, uses a parameterized Gaussian transformation
kernel, and gradually restores the distribution of the original data. Nichol and Dhariwal
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(2021) introduced the modifications to the basic DDPM model, including the learning of
variance, alterations to the loss function, and the incorporation of cosine noise, all of which
significantly improved its performance.

Song et al. (2020) proposed an alternative diffusion model called Denoising Diffusion
Implicit Models (DDIM). In contrast to the DDPM, DDIM does not constrain the diffusion
process to be a Markov chain, enabling it to use smaller sampling steps to accelerate the
generation process. Furthermore, the process of introducing random noise to generate
similar artifacts in this model is certain. Dhariwal and Nichol (2021) demonstrated
that reducing the diversity of images can produce high-quality images generated by the
GAN model. Furthermore, the GAN model requires accurate parameter selection and
a large amount of data. These limitations constrain the GAN model from performing
effectively in downstream applications. This paper also demonstrated that diffusion
models perform better than GANs in generating high-quality images and covering sample
distributions. The authors conducted multiple experiments to determine the optimal
architectures for the diffusion models. These experiments include decreasing the number
of channels, increasing model depth and attention heads, applying the attention module at
various resolutions, implementing the residual module of BigGAN for upsampling and
downsampling, increasing the number of channels per head, and applying adaptive group
normalization.

Classifier-guided diffusion models have some disadvantages. Firstly, it requires additional
calculations. Moreover, the guide function and the diffusion model are trained separately,
making it difficult to expand the model scale and achieve better results through joint
training. Ho and Salimans (2022) proposed a replacement structure to substitute the
external classifier, allowing the direct use of a diffusion model for conditional generation
tasks. The content of the model input was modified. There are two types of sampling inputs
available: conditional, which comprises random Gaussian noise and guidance information
embedding, and unconditional. Both inputs are inputted into the same diffusion model,
making it possible to generate it unconditionally and conditionally. The former method for
updating noise is 2.1 while the latter method is 2.2.

ϵθ(xt, t) ∼ ϵθ(xt)−
√
1− αt ▽xt logpϕ(y|xt) (2.1)

ϵ̂θ(xt|y) = ϵθ(xt) + s · (ϵθ(xt, y)− ϵθ(xt)) (2.2)

Additionally, Nichol et al. (2021) utilized a mask image and text token as the condition
and input to the diffusion model to obtain a superior result. According to Equation 2.3,
the noise should be modified. They utilized CLIP to replace the traditional classifier. This
approach can be trained using a noised image xt, and the corresponding loss function is
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presented in Equation 2.4.

ϵ̂θ(xt|Caption) = ϵθ(xt) + s · (ϵθ(xt, Caption)− ϵθ(xt)) (2.3)

µ̂θ(xt|c) = µθ(xt|c) + s · Σθ(xt|c)▽xt (f(xt) · g(c)) (2.4)

A new model named DALLE-1 was proposed by Ramesh et al. (2021), which incorporates
a vision transformer, Contrastive Language-Image Pre-Training (CLIP), and a discrete
variational autoencoder. The model’s architecture can be seen in Figure 2. During the
training process, images were used to obtain the image tokens with the help of a dVAE.
Afterwards, text tokens were obtained using a caption and a text encoder. Finally, the
image and text tokens were combined and fed into the Transformer model, with the image
tokens mapped into the text tokens vocabulary. For the generation process, obtain text
tokens from a caption using the encoder and image tokens using the transformer. The
trained image decoder generates images using the image tokens. Since image generation
involves sampling, the generated images are sorted using the CLIP model. The image with
the highest similarity to the text features is chosen as the final output of the generation
process.

Figure 2. The structure of the DALLE-1 model. Sketch is based on Ramesh et al. (2021)

Ramesh et al. (2022) proposed the DALLE-2 model, which follows this approach. The
model includes CLIP, a prior network, and the diffusion model, as seen in Figure 3. In
this model, the prior network converts text into text tokens, while the decoder converts
text tokens into images. The prior network is trained to align text tokens with image

16



tokens during the training process. Both autoregressive and diffusion models are used, but
the diffusion model performs better in this case. The model can also divide the hidden
representation of the image. The image feature can be separated based on the CLIP
image embedding (Z) and the feature at the time of sampling by DDIM (XT ). This
hidden encoding enables highly precise reconstruction and additional editing of images.
For instance, by fixing Z while adjusting XT , the model can generate an image with a
semantically similar image style as the original, but differing in certain details. Similarly,
by setting a fixed XT during the interpolation of Z, the model can achieve a desired output.

Figure 3. The structure of the DALLE-2 model. Graph is reprinted from Ramesh et al. (2022)

Saharia et al. (2022) proposed the Imagen model (Figure 4), which comprises a diffusion
model and two super-resolution networks. They found it crucial to use a dynamic threshold
during the inference stage to clip the results generated at different time steps. This
threshold is dynamically adjusted to ensure optimal results. Without the dynamic threshold,
the model tends to oversaturate the generated results due to the large guide gradient.
Dynamic predictions lead to more realistic results from the model. Additionally, this paper
discovered that large pre-trained models provide more efficient text encoding compared to
CLIP.

Following this, the Imagic model was proposed by Kawar et al. (2022) (Figure 5). Initially,
the target text is encoded and the initial text embedding etgt is obtained, after which it is
optimized to reconstruct the input images resulting in eopt. Subsequently, the generative
model is fine-tuned to improve fidelity to the input image with a fixed eopt. Lastly, the final
editing result is generated by interpolating eopt with etgt. The generation of different faces
on the VAE model is similar to replacing the diffusion model with a simple encoder and
decoder. Nevertheless, the feature space and generation ability of the diffusion model are
superior to those of the VAE.
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Figure 4. The structure of the Imagen model. Graph is reprinted from Saharia et al. (2022)

Figure 5. The structure of the Imagic model. Sketch is based on Kawar et al. (2022)

18



In the article by Rombach et al. (2022), the stable diffusion model is introduced. The
model employs an encoder to compress the image, performs the diffusion operation on the
latent space, and then utilizes the decoder to restore the image. The method proposed in the
article significantly lowers the computational complexity of the diffusion process on the
latent space. Additionally, a cross-attention approach is suggested to achieve multimodal
training. This method successfully completed several image-generation tasks, such as
class-condition image generation and text-to-image generation.
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3. Methodology

3.1 Dataset and tools
The most commonly used datasets for Chest X-ray analysis include CheXpert (Irvin
et al., 2019), MIMIC-CXR (Johnson et al., 2019) and ChestXray 14 (Summers, 2019)
datasets. We decided to use the CheXpert dataset in our experiment finally. First, to
obtain the MIMIC-CXR dataset, it is necessary to complete relevant courses and obtain
authorization from MIT beforehand. It is hard for us to get the authorization in such short
time. Second, compared to the CheXpert dataset, the ChestXray dataset includes many
errors and misclassified images 1.

The CheXpert dataset is a large collection of X-ray images and their labels which are
created by their paired radiology reports. All the X-ray image data in this dataset is obtained
from Stanford Hospital. This dataset consists of 224,316 X-ray images (both front and
lateral images) obtained from 65,240 patients, with each X-ray image labeled as ’Positive’,
’Negative’, ’Uncertain’, or ’Not Mentioned’ for each of the 14 observations (Table 1). An
automatic labeling system was developed to reduce the cost of asking experts to label.
The Labeling system’s principle is to extract features manually and label them using text
recognition and semantic analysis on radiology reports and paired images. The validation
dataset has 200 chest X-ray images of 200 patients. Three experts labeled these images
instead of the Labeling system used for training. The labels given should be either present,
uncertain likely, uncertain unlikely, or absent. In the given labels, present and uncertain
likely should be considered positive, whereas absent and uncertain unlikely should be
considered negative. The test dataset consists of 500 chest X-ray images labeled by five
experts, three of whom have already labeled the validation dataset. Observations with a
positive mention in the report get a positive (1) label. Those with an uncertain mention,
but no positive ones, are labeled uncertain (u). If there’s a negative mention, it’s labeled
negative (0). Absent mentions are labeled as not mentioned (NM). An observation of “No
Finding” is labeled positive (1) only if no pathologies are classified as positive or uncertain.
To determine the feasibility of observation extraction, the authors manually reviewed a set
of 1000 reports (Irvin et al., 2019), which were evaluated by a board-certified radiologist.

1https://laurenoakdenrayner.com/2017/12/18/the-chestxray14-dataset-problems/
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Pathology Positive (%) Uncertain(%) Negative(%) NM (%)

No Finding 22,381 (10.02) 0 (0.00) 0 (0.00) 201,033 (89.98)

Enlarged Cardiom 10,798 (4.83) 12,403 (5.55) 21,638 (9.69) 178,575 (79.93)

Cardiomegaly 27,000 (12.09) 8,087 (3.62) 11,116 (4.98) 177,211 (79.31)

Lung Opacity 105,581 (47.26) 5,598 (2.51) 6,599 (2.95) 105,636 (47.28)

Lung Lesion 9,186 (4.11) 1,488 (0.67) 1,270 (0.57) 211,470 (94.65)

Edema 52,246 (23.38) 12,984 (5.81) 20,726 (9.28) 137,458 (61.53)

Consolidation 28,097 (12.58) 27,742 (12,42) 14,783 (6.61) 152,792 (68.39)

Pneumonia 6,039 (2.70) 18,770 (8.40) 2,799 (1.25) 195,806 (87.65)

Atelectasis 33,376 (14.94) 33,739 (15.10) 1,328 (0.59) 154,971 (69.37)

Pneumothorax 19,448 (8.70) 3,145 (1.41) 56,341 (25.22) 144,480 (64.67)

Pleural Effusion 86,187 (38.58) 11,628 (5.20) 35,396 (15.84) 90,203 (40.38)

Pleural Other 3,523 (1.58) 2,653 (1.19) 316 (0.14) 216,922 (97.09)

Fracture 9,040 (4.05) 642 (0.29) 2,512 (1.12) 211,220 (94.54)

Support Devices 116,001 (51.92) 1,079 (0.48) 6,137 (2.75) 100,197 (44.85)

Table 1. Data distribution (number of images and their percentage of the whole dataset) of
CheXpert dataset

Regarding the label of uncertainty. The authors of this dataset proposed five different
methods for dealing with it:

■ U-Ignore model: A simple approach to handling uncertainty is to ignore the u labels
during training, which serves as a baseline to compare approaches that explicitly
incorporate the uncertainty labels.

■ U-Zeros and U-ones: These two methods map all the instances of u to 0 (U-Zeroes
model) or 1 (U-Ones model) respectively. If the uncertainty label does provide
semantically useful information to the classifier, this approach may perturb the
decision-making of classifiers and impair their performance.

■ U-SelfTrained: This method initially trains a model to convergence using the U-
Ignore approach, which ignores the u labels during training. Subsequently, the model
is employed to predict and relabel each of the uncertainty labels with the probability
prediction produced by the model. The method does not replace any instances of 1s
or 0s. Then, on the relabeled examples, a loss function is set up as the mean of the
binary cross-entropy losses over the observations.
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■ U-MultiClass: This method tries to consider the u label as its own class rather than
mapping it to a binary label for each of the 14 observations. This approach outputs
the probability of each of the 3 possible classes {p0, p1, pu} ∈ [0, 1], p0+p1+pu = 1.
This method also sets the loss as the mean of the multi-class cross-entropy losses
over the observations.

For the original dataset, there are only training dataset and validation dataset, we followed
the previous method Yuan et al. (2021) to split the training dataset into a training dataset
and a test dataset with a ratio of 0.8 (179453): 0.2 (44863) first. Then, we used the splited
training dataset and real test dataset on GitHub 2 for our experiment. The presence of NM
labels and -1 labels in the test and validation sets will introduce a large bias in the final
classification results. So, only positive and negative labels are in these datasets. Among
all the 14 label classes, we chose pneumothorax and pleural effusion for the experiment
since they are similar diseases and pneumothorax data is quite unbalanced while pleural
effusion’s labels are far more balanced. The sample distributions of positive and negative
types in the test set and validation set are shown in the Table 2 below:

Disease Pneumothorax Pleural Effusion

Dataset Test Validation Test Validation

Negative 658 226 548 167

Positive 10 8 120 67

Table 2. Number of images for final test and validation dataset

3.2 Data augmentation model

3.2.1 Traditional data augmentation
There are different types of conventional approaches to data augmentation:

■ Geometric Transformation:
– Rotation: The image can be rotated by a fixed angle, and the excess portions of

the image are cropped while the empty portions are filled.
– Shearing: Essentially, this is the distortion of an image so that the shape of the

image appears to be skewed in a certain direction. This distortion is achieved
by shifting each point in the image, either fixed or variable, based on a specified
shear factor, while leaving the coordinates of an axis unchanged.

2https://github.com/rajpurkarlab/cheXpert-test-set-labels/tree/main
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– Translation: This method refers to the process of moving an image either verti-
cally, horizontally, or both, within a defined frame or canvas. This movement
results in a displacement of the image content, while the empty space left by
the displacement can be filled in various ways, often with zeros (making it
black for grayscale images) or by wrapping the image.

– Flipping: Flipping involves flipping the image horizontally or vertically. This
technique can cause problems with medical image datasets. For example,
flipping a CT scan of the brain could result in loss of anatomical orientation,
which could adversely affect model performance.

– Cropping: Cropping is a method used to eliminate the peripheral parts of an
image, leaving only the central part or a random section.

– Scaling: Images can be enlarged (zoom in) or reduced (zoom out). If the image
is enlarged, the final size will be larger than the original size, which requires us
to crop the image. If the image is reduced, we need to add padding.

All the data augmentation methods above can be implemented by the function in
torchvision.transforms. 3

■ Noise Injection:
– Gaussian noise: Adding random variations to an image or signal with a Gaus-

sian distribution is a commonly employed method to incorporate randomness
to the data or to replicate real-world conditions, where noise is an intrinsic
feature. This method is commonly used to incorporate randomness into the
data or to simulate actual conditions where noise is inherent. In Python, the
numpy library allows adding Gaussian noise to an image or signal, using the
mean value and standard deviation value.

– Salt and pepper noise: Impulse noise is caused by errors in image acquisition,
transmission, or storage. Salt and pepper noise reduces the quality of the image
by setting some pixels to their maximum or minimum intensity values. The
modeling of this noise can be achieved by randomly changing some pixels to
the highest or lowest intensity values in the image. The numpy library can be
used for implementing this function in Python.

■ Filtering:
– Bilateral filtering: Bilateral filtering is a non-linear image smoothing technique

that reduces noise while preserving edges. The main goal of bilateral filtering
is to replace the intensity values of each pixel with a weighted average of
the intensity values of the surrounding pixels. These weights are calculated
based on two factors: the spatial distance between pixels and the difference in
intensity between pixels. The proximity between pixels is taken into account
to give higher weights to neighboring pixels, while the intensity difference

3https://pytorch.org/vision/stable/transforms.html

23

https://pytorch.org/vision/stable/transforms.html


ensures that pixels with similar intensities are given more preference in the
average calculation. To perform bilateral filtering on an image, the OpenCV
library offers a function called cv2.bilateralFilter that can be used. 4

3.2.2 Diffusion model
We utilized Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020)and
Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020) for the Diffusion models
parts. State-of-the-art models such as GLIDE (Nichol et al., 2021) and DALLE-2 (Ramesh
et al., 2022) are not implemented in our experiment due to their high computational
demands during training.

■ Denoising Diffusion Probabilistic Models: The model can be divided mainly into
two parts: the forward diffusion process and the reverse denoising process (see
Figure 6).
Forward diffusion process: Given a data point sampled from a real data distribution

Figure 6. The Markov chain of forward (reverse) diffusion process of generating a sample. Graph
is reprinted from Ho et al. (2020)

x0 ∼ q(x), add a small amount of Gaussian noise to the sample in T steps, producing
a sequence of noisy samples x1, . . . ,xT . The step sizes are controlled by a variance
schedule {βt ∈ (0, 1)}Tt=1. The Equations are shown as follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (3.1)

The data sample x0 gradually loses its distinguishable features as step t becomes
larger. Eventually when T → ∞, xT is equivalent to an isotropic Gaussian distribu-
tion.
Reverse denoising process: If we are able to gradually obtain the reversed distribution
q(xt−1|xt), we can restore the original distribution x0 from the complete standard
Gaussian distributionxT ∼ N (0, I). It has been demonstrated that if q(xt|xt−1)

satisfies a Gaussian distribution and βt is small enough, then q(xt−1|xt) remains
a Gaussian distribution. However, we cannot simply deduce q(xt−1|xt), thus we

4https://docs.opencv.org/4.x/index.html
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utilize a deep learning model with parameters θ to predict the inverse distribution pθ.

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

(3.2)
We are unable to obtain the reversed distribution q(xt−1|xt), but if x0 is known,
q(xt−1|xt,x0) can be derived through the Bayesian formula.

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI) (3.3)

So, for each time step, we use xt and t to predict the Gaussian noise zθ(xt, t),
and get the mean value based on the equation 3.4. Since the variance Σt(xt, t) in
DDPM is equal to β̃t and β̃t is equal to 1−ᾱt−1

1−ᾱt
βt which is similar to βt, we can use

the equation 3.1 to get q(xt−1|xt), and use the reparameterization trick to get the
xt−1.(Figure 7)

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

zθ(xt, t)
)

(3.4)

Figure 7. Calculation process of the reverse denoising process

The primary concept of the diffusion model is training a model to predict noise.
Because the noise and original data share the same dimension, an AutoEncoder
architecture may be chosen as the noise prediction model. DDPM adopts a U-Net
model utilizing residual blocks and attention blocks (Figure 8). The U-Net is a

Xt

t

Figure 8. Structure of the U-Net in the DDPM

type of encoder-decoder architecture. The encoder is divided into different stages,
each with a down-sampling module that reduces feature size. The decoder reverses
this process, gradually restoring compressed features from the encoder. The U-Net
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also includes skip connections in the decoder module, which concatenates features
of the same dimensionality obtained from the encoder. This design is beneficial
for network optimization. The U-Net has two residual blocks in each stage and
self-attention modules in some stages to improve the network’s global modeling
ability. Additionally, the diffusion model requires T noise prediction models. In
practice, we can use a time embedding (similar to the position embedding in the
transformer) to encode the timestep in each residual block. The training process is
shown in Figure 9.

Figure 9. Training and sampling process of the DDPM. Graph is reprinted from Ho et al. (2020)

■ Classifier-free Diffusion Models: Instead of sampling in the direction of the gra-
dient of an image classifier, classifier-free guidance mixes the score estimates of a
conditional diffusion model and a jointly trained unconditional diffusion model. For
the classifier-guidance model, the diffusion score ϵθ(zθ, c) ≈ −σλ ▽zλ log p(zλ|c)is
changed to ϵθ(zθ, c) ≈ −σλ▽zλ (log p(zλ|c)+wlog pθ(c|zλ)). For the DDPM model,
the mean value of the Gaussian distribution is computed primarily from the results
of the noise estimation model ϵθ(xt). We also include additional input conditions
in the noise estimation model as ϵθ(xt, y). When training the diffusion model, both
conditional and unconditional training methods are combined, with the condition
y set to zero for unconditional training. This results in a model that supports both
conditional and unconditional noise estimation. The advantage of this approach is
that it incorporates additional input y during the training process, and in theory, the
more input information, the easier it is to train. However, its disadvantage is also
the introduction of additional input y during the training process, which means that
any signal control requires retraining the entire diffusion model. The training and
sampling process is shown in Figures 10 and 11.

3.3 Classification model
As we have described in Section 2.1, commonly used supervised deep learning classifi-
cation models include DenseNet (Huang et al., 2017), ResNet (He et al., 2016), Incep-
tionNet (Szegedy et al., 2015), U-Net (Ronneberger et al., 2015). We implemented the
DenseNet, Inception-ResNet and CheXNet (Rajpurkar et al., 2017) in our experiment and
compared the outcome of the classification task.
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Figure 10. Training process of the Classifier-free model. Graph is reprinted from Ho and Salimans
(2022)

Figure 11. Sampling process of the Classifier-free model. Graph is reprinted from Ho and Salimans
(2022)

■ DenseNet: The basic idea of DenseNet (Figure 12) is consistent with that of ResNet
(Figure 13), and its two features are: 1. Establishing dense connections between
all the front layers and all the back layers. 2. Realizing feature reuse through
feature connections in the channel. The output of the traditional network at layer l is
xl = Hl(xl−1). For the ResNet, it adds the identity function of the previous layer
input xl = Hl(xl−1) + xl−1. For the DenseNet, all previous layers are connected as
input xl = Hl([x0, x1, . . . , xl−1]).

Channel-wise concatenation

Figure 12. Dense connections structure of the DenseNet

The DenseNet network architecture primarily consists of the DenseBlock and the
Transition. The feature map size of each layer in the DenseBlock is consistent
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Element-wise addition

Figure 13. Connections structure of the ResNet

and can be connected along the channel dimension. The non-linear combination
function H(·) in the DenseNet architecture is composed of Batch Normalization
(BN), Rectified Linear Unit (ReLU), and a 3x3 Convolutional block (Figure 14).
Contrary to ResNet, the number of output feature maps resulting from the convolu-
tional operation in the DenseBlock is the growth rate parameter k. If the channel
number of the feature map in the input layer is k0, then the input channel number
of the l-th layer equals k0 + k(l − 1). Despite setting k to a low value, the input of
the DenseBlock increases significantly as the number of layers grows. To reduce
computation, the DenseBlock can incorporate a bottleneck block, which involves
adding a 1x1 convolutional block to the original structure. Thus, the updated struc-
ture is composed of the following elements: BN, ReLU, 1x1 Convolutional block,
BN, ReLU, and 3x3 Convolutional block (Figure 15).

Figure 14. Structure of the DenseNet which includes the dense block

The Transition Layer connects two contiguous DenseBlocks and reduces the size of
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Figure 15. Structure of the DenseNet which includes the improved dense block

the feature maps. The layer consists of BN followed by ReLU, a 1x1 Convolutional
block, and a 2x2 Average Pooling Block. Moreover, the Transition Layer compresses
the model by reducing the number of feature maps when the compression rate θ is
set.

■ Inception-ResNet: The network combines residual connections and the Inception-
v4 architecture and introduces residual scaling to stabilize the training process. The
Inception-v4 architecture is formed by combining the Inception-v3 network with the
Stem module, as depicted in Figure 16.
The Inception-ResNet network differs from the original Inception network in the
following three ways: Firstly, the structure of the Inception block used in the
Inception-ResNet network is simpler. Secondly, in the Inception-ResNet network,
a filter-expansion layer (1x1 convolution layer) is used to increase the number of
channels that may be lost due to the Inception block. This is important as excessive
dimension reduction can lead to representational bottleneck and loss of information.
Thirdly, The Inception-ResNet architecture only implemented Batch Normalization
in the stem module to reduce its storage consumption. Moreover, with this enhanced
network, the residual network becomes unstable when the number of convolution
kernels surpasses 1000. This instability is manifested in the output of zeros in the last
layer before the average pooling layer, after several thousand iterations, ultimately
leading to the network’s failure. Neither reducing the learning rate nor increasing
the Batch Normalization can resolve this issue. As a result, the network includes
a residual scaling operation (Figure 17). This operation uses a reduction constant
between 0.1 and 0.3 to decrease the Inception network output variance, improve its
stability, and prevent model to be overfitting.

■ CheXNet: The main structure of the CheXNet is the DenseNet121. However, the
final fully connected layer of the network is replaced with a binary output and a
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Figure 16. Structure of the Inception-ResNet-v2. Graph is reprinted from Szegedy et al. (2017)

Figure 17. Structure of the residual scaling block. Sketch is based on Szegedy et al. (2017)
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Sigmoid unit is connected to output the probability values. The CheXNet also uses a
mini-batch of 16 and Adam gradient descent. Sometimes, the network extends the
single output to a 14-dimensional output to get the prediction of different diseases
simultaneously.

3.4 Evaluation

3.4.1 Image generation evaluation metric
There are three types of evaluation metrics that can be used in image generation:
distribution-based metrics, pixel-based quality metrics and human-subjective evalua-
tion metrics. We input the generated dataset and the real dataset into the evaluation metric
function. And all the generated images are matched one by one with the corresponding
real images to obtain the final value to calculate the average value.

■ Distribution-based metrics: This metric type is based on the distribution, assessing
the statistical properties of the produced images compared to a set of actual images. It
compares the statistical properties of the produced images with those of actual images.
Instead of emphasizing pixel-level details, these metrics analyze the higher-level
characteristics and properties of the images. They aim to capture the distribution of
overall features, such as color, object shapes, and textures. Distribution-based metrics
frequently entail extracting features using pre-trained neural networks, followed by
statistical analysis to compare distributions of real and generated images. Examples
of distribution-based metrics are Fréchet Inception Distance (FID) and Inception
Score (IS).

– IS (Inception Score)5: The score specifically focuses on the output class label
of the input data. The Inception score is made up of two components: the
marginal likelihood of generated images and the diversity of the generated data.
In order to optimize the first component, the probability distribution entropy
value should be minimized. A lower value indicates a higher likelihood that the
generated image belongs to a particular category and that the image quality is
high. This value is determined by calculating Equation 3.5. The optimal value
for the second component would be the largest possible average probability
distribution entropy value. Equation 3.6 can be used to calculate this value.

Ex∼pG(H(p(y|x))) =
∑
x∈G

P (x)
1000∑
i=1

P (yi|x) log
1

P (yi|x)
(3.5)

5https://github.com/openai/improved-gan/blob/master/inception_score/model.py
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H(Ex∼pG(p(y|x))) =
∑
x∈G

P (x)
1000∑
i=1

P (yi|x) log
1

P (yi)
(3.6)

When we combine both equations and obtain the equation for the Inception
score (Equation 3.7), we can determine the quality of the generated image from
the IS value. The higher the value of IS, the higher the quality of the generated
image.

IS = exp
∑
x∈G

P (x)
1000∑
i=1

P (yi|x) log
P (yi|x)
P (yi)

= expEx∼pGKL(p(y|x)||p(y))

(3.7)
– FID (Fréchet Inception Distance)6: The FID metric compares feature dis-

tributions of real and generated images using a pre-trained Inception neural
network in the scope of generative models. Feature vectors from images are
extracted using the Inception neural network, and these vectors are then com-
pared to assess the similarity between the distribution of real and generated
images.

FID(x, g) = ∥µx − µg∥+ Tr
(
Σx + Σg − 2

√
ΣxΣg

)
(3.8)

A low FID score indicates that the generated images are of high quality and
are similar to real images. Conversely, a high FID score indicates that the
generated images are of low quality or significantly differ from real images.

■ Pixel-based quality metrics: This type refers to the reconstruction metrics. This
metric evaluates the quality of image reconstruction. These metrics compare the
generated image to a reference or ground truth image, measuring the similarity
between them. Typically, they focus on pixel-level or structural comparisons by
evaluating factors such as luminance, contrast, edges, and textures. Popularly known
reconstruction metrics include Mean Squared Error (MSE), Peak Signal-to-Noise
Ratio (PSNR), and Structural Similarity Index (SSIM). These metrics provide a
quantitative assessment of the level of similarity between the generated image and
the reference image in terms of visual appearance.

– PSNR (Peak Signal to Noise Ratio)7: The score is calculated by comparing
the maximum possible power of a signal to the power of noise that corrupts the
signal’s quality. Peak Signal-to-Noise Ratio (PSNR) is defined as the ratio of
the maximum power of a signal to the power of corrupting noise, expressed in
decibels (dB).

PSNR = 10 · log10
(

MAX2

MSE

)
(3.9)

6https://github.com/bioinf-jku/TTUR/blob/master/FIDvsINC/fid.py
7https://scikit-image.org/docs/stable/api/skimage.metrics.html#skimage.metrics.peak_signal_noise_ratio
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MAX refers to the image’s maximum pixel value, while MSE represents the
mean squared error between the reconstructed and original images.
A high PSNR value indicates that the reconstructed image is of high quality
and similar to the original image. Conversely, a low PSNR value means that
the reconstructed image is of low quality and significantly different from the
original image.

– SSIM (Structure Similarity Index Measure)8: The perceived quality of an
image is related to the structural information present in the image, based on
empirical observations. The SSIM index determines the structural similarity
of two images by analyzing the luminance (Equation 3.10), contrast (Equa-
tion 3.11), and structure (Equation 3.12) information that they contain. One
calculates the SSIM index by taking the average of SSIM values across multiple
windows in the image.

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(3.10)

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(3.11)

s(x, y) =
σxy + c3
σxσy + c3

(3.12)

The range of SSIM index values is between -1 and 1. A value of 1 indicates
perfect similarity between the two images, while a value close to -1 shows
significant differences between them. The SSIM index offers a reliable measure
of how humans perceive image quality thanks to its consideration of the image’s
structural information, which is significant for human perception.

■ Human-subjective evaluation metrics: The third category is not part of the math-
ematical evaluation criteria for deep learning. However, as with the datasets we
employ, we have to ask experts to assess the final output results directly. For larger
datasets, requiring experts to evaluate the results obtained from the test set or train-
ing set would consume a significant amount of time and money. Therefore, in our
experiments, we did not consider using this evaluation method.

3.4.2 Image classification evaluation metric
The augmented dataset will be used for the classification task. The binary classification
mainly employs the pneumothorax and pleural effusion label. Accuracy, precision, recall,
F1 score, and ROC curve are typical evaluation metrics (Luque et al., 2019).

8https://scikit-image.org/docs/stable/api/skimage.metrics.html#skimage.metrics.structural_similarity
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■ Confusion matrix: The confusion matrix visually represents the performance of a
classifier by depicting the number of predicted samples for each class. For a binary
problem, it shows the true positive, true negative, false positive, and false negative
predictions (Table 3).

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

Table 3. Table of confusion matrix

■ Accuracy: Accuracy refers to the ratio of correct predictions made by the classifier.
For binary classification problems, accuracy can be calculated as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

=
TP + TN

TP + TN + FP + FN

(3.13)

The accuracy metric provides a comprehensive assessment of the classifier’s perfor-
mance; however, it may not always be a reliable metric, particularly if there is an
imbalanced class distribution.

■ Precision: Precision is a measure that evaluates the ratio of true positive predictions
to all positive predictions made by a classifier. It indicates the number of positive
predictions that the classifier makes that are actually correct. Precision is calculated
using the following formula:

Precision =
TP

TP + FP
(3.14)

■ Recall: Recall is a metric that quantifies the proportion of correctly predicted actual
positive cases by a classifier. To calculate Recall, use the following formula:

Recall =
TP

TP + FN
(3.15)

■ F1 score: The F1 score combines precision and recall into a unified metric that
balances both measures. Precisely, the F1 score is calculated as the harmonic mean
of precision and recall. Interpreted as the balance between a classifier’s precision and
recall, the F1 score is widely used as a single number metric to compare classifiers.
The F1 score is especially valuable for severe class imbalance since it gives equal
importance to both precision and recall.

F1 Score = 2 · Precision · Recall
Precision + Recall

(3.16)
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■ ROC curve: The ROC curve displays the performance of a binary classifier by
plotting the true positive rate against the false positive rate at various thresholds.
It’s particularly useful for assessing classifiers in imbalanced datasets. The AUC
provides a summarized numerical score of the ROC curve, often used for comparing
classifiers.

■ Cohen’s Kappa: Cohen’s Kappa score measures the degree of agreement between
two raters beyond what might happen by chance. Ranging from -1 to 1, a higher
score indicates better agreement. The formula is:

Kappa =
po − pe
1− pe

(3.17)

where po is the observed agreement and pe is the expected agreement by chance,
calculated using the distribution of each rater’s ratings.

3.4.3 Final evaluation pipeline
In our experiment, requesting the expert to clarify the outcome is costly. Initially, we
evaluate the generated images mainly by using the FID, PSNR, and SSIM scores, followed
by the evaluation of the classification task result using the F1, AUC, and Cohen’s Kappa
scores. We will run the McNemar significance test (McNemar, 1947)to determine the
statistical significance of the obtained classification results. The McNemar significance test
is a statistical method employed to determine whether there exists a significant association
between two categorical variables in a binary classification task. In this regard, the
McNemar test assists in evaluating whether the observed distribution of predicted class
labels significantly deviates from the expected distribution. In binary classification, there
are two categorical variables: the true class labels (also called the ground truth) and the
predicted class labels generated by the classification model. The McNemar significance test
enables us to assess the significance of the association between the predicted class labels
and the true class labels, or if their distribution varies from the anticipated distribution by
chance.
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4. Experiments

4.1 Label imputation
The dataset includes four types of picture annotations: uncertain (labeled as -1), negative
(labeled as 0), positive (labeled as 1), and not mentioned (labeled as NM), respectively. As
NM cannot be used as a label for training and the label occupies such a large proportion in
the dataset that it cannot be ignored. Two methods can be used to replace it with numbers.
The first imputation method involves filling NM with 0, while the second involves filling
NM with 1. It should be noted that the training method for binary classification tasks
differs from that used for multi-label classification tasks if the NM and uncertain labels
are involved. The original paper (Irvin et al., 2019)we followed did not mention how to
fill NM, but it did demonstrate the AUC score results for the five different methods we
mentioned in Section 3.1 used to address the uncertain label.

Their results indicate that different methods perform best for different diseases. In general,
U-Selftrained, U-MultiClass, and U-Ones exhibit satisfactory performance. Due to the
relatively complicated process of the first two methods in the baseline model, we chose to
use either U-Ones or U-Zeros to deal with uncertain labels. We subsequently conducted
experiments that led to the development of four data preprocessing methods, using two
approaches to replace NM values in combination with either U-Ones or U-Zeros. Further-
more, we analyzed the classification performance in terms of F1 score and AUC score
based on the validation dataset with both pneumothorax labels and pleural effusion labels
with the DenseNet.

4.2 Classification model
We used the DenseNet121, Inception-ResNet-v2, and CheXNet as described in Section 3.3
respectively to compare the classification results. The best-performing model in terms of
AUC and F1 scores was selected as the classifier in the following process. The specific
hyperparameter settings are as follows.

■ DenseNet161:

growth_rate = 32

num_init_features = 64

bn_size = 4

drop_rate = 0.2
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num_layers = (6, 12, 36, 24)

transition_num = 3

learning_rate = 0.001

batch_size = 16

■ Inception-ResNet-v2:

bn_size = 11

drop_rate = 0.2

learning_rate = 0.01

batch_size = 4

■ CheXNet:

learning_rate = 0.001

batch_size = 16

After deciding the classification network, we used the different types of images to perform
the classification task and evaluate their results on both F1 and AUC scores.

4.3 Image masking
We employed various masks to mask images and evaluate the classification performance
based on the F1 score and AUC score. Our aim is to confirm that the model focuses on
disease features rather than unique markers or edge features. If we only include the borders
and markers of an image and exclude the body and class features, we expect to get a
poor classification result. If the classification result is better after using the mask to cover
the edge or marker features, this indicates that those features can introduce bias. Those
masking methods consist of the separate mask method, square mask method, joint mask
method, and inverted joint mask method (Figure 18).

■ Square mask: The square mask approach is almost the same as the method
in Maguolo and Nanni (2021). We resized all images to (389,320) and set the
square mask’s size to (300,300). Moreover, the mask’s center coincides with the
center of the image. We found that when a square mask is used, the mask in the
processed image covers all parts of the image that are not used for lung disease
detection, so we decided to use a separate mask to cover only the lung area.

■ Separate mask: As for the separate mask approach, we used two symmetric masks
to cover each lung area in the image. In detail, we analyzed 1000 images in the
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Figure 18. Original images and different images after using different mask methods. (a): original
example image. (b): example image with the square mask. (c) example image with the separate
mask. (d) example image with the joint mask. (e) example image with the inverted joint mask.

training dataset and manually identified the coordinates of every point on the two
lung masks’ polygons to obtain the coordinates that can make up the largest mask as
shown in Figure 19.

Figure 19. Schematic diagram for generating an image with a separate mask. First row: Image 1
and Image 1 with the separate mask. Second row: Image 2 and Image 2 with the separate mask.

■ Joint mask: We assumed that some images may not have the patient positioned
exactly in the middle without any rotation and that the location of the patient’s spine
may be seen as a potential feature. Then, we created the joint mask. We merged two
masks by connecting them to form an axial-symmetric polygon.

■ Inverted joint mask: After using the previously mentioned masks on the pneu-
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mothorax dataset, we covered the feature area to determine the significance of edge
features. If these features are confirmed to influence the classification outcome, we
implemented the "inverted joint mask" approach. This approach entails revealing
the section masked in the joint mask while masking other regions.

4.4 Traditional augmentation
Initially, we performed the augmentation individually using eight traditional methods.
We then compared the results. Subsequently, we choose the techniques that positively
impact the classification performance and compose them into a final augmentation method.
The methods used include rotation, shearing, shifting, flipping, noise addition, coloring,
cropping, and blurring. We list below the hyper-parameters of different augmentation
methods:

■ Rotation: We used the nearest method for the filling method and the rotation angle
was chosen randomly between minus 90 and 90 degrees.

■ Flipping: Given that there is not much difference between up-down flipping and
left-right flipping in this dataset, we set a probability of 0.5 to perform a vertical flip
or to perform a horizontal flip in each data augmentation process.

■ Translation: Use the constant value which is 0.0 for the filling method, and the
maximum shifting distance is 0.2 × image height and 0.2 × image width.

■ Shearing: We used the nearest method for the filling method and chose a random
integer between 0 and 30 as the intensity number which means the shearing angle is
between 0 and 15 degrees.

■ Cropping: We decided to use the random cropping method instead of the center
cropping and random resized cropping method. And we set the image size after the
cropping as (256, 256).

■ Adding noise: We added Gaussian noise or Pepper noise with the same probability
of 0.5. For the Gaussian noise, the mean value is equal to 0 while the variance value
is 0.5 and the amplitude value is a random value within 30. For the pepper noise,
there are no hyperparameters we need to change.

■ Blurring: We set the size of the blurring Gaussian kernel to (11,11) and set the
standard deviation to 10.

■ Coloring: There is no saturation in the gray image. In the coloring method, we
finetuned two hyperparameters that control the brightness and contrast. The initial
value of the two hyperparameters is 1 which means keep the original image. We set
those hyperparameters to random values between 1 and 2 which means increasing
the brightness and contrast a little bit.
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4.5 Augmentation Strategies
Two augmentation strategies are used to test traditional augmentation methods related to
the Pneumothorax disease at first. The first method, Experiment Unbalanced (Table 4),
involves selecting all 18074 images belonging to the positive class from the original dataset
and augmenting them 11 times per image before proceeding further. For each augmentation
time, there is a 0.5 probability of executing each individual traditional augmentation method
or directly using the diffusion model for an enhancement. Subsequently, one-third of the
negative images are chosen, and their augmentation is performed only one time per image.
In the second method, Experiment Balanced (Table 5), all of the 18074 positive class
images from the original dataset are selected first, followed by the selection of the same
number of images (18074) from the negative class (200821). Thereafter, all selected
images are augmented four times each and subsequently, amalgamated with all the original
training images into the final training datasets.

Original
Training Dataset Augmentated Training Dataset

Unbalanced
Test Dataset

Real Images Real Images Fake Images Real Images

Negative 200821 160657
160657 * 1/3

= 53552 40164

Positive 22593 18074
18074 * 11
= 198814 4519

Table 4. Number of images for Experiment Unbalanced with pneumothorax

Original
Training Dataset Augmentated Training Dataset

Unbalanced
Test Dataset

Real Images Real Images Fake Images Real Images

Negative 200821 18074
18074 * 4
= 72296 40164

Positive 22593 18074
18074 * 4
= 72296 4519

Table 5. Number of images for Experiment Balanced with pneumothorax

After doing the classification experiment, we found that neither augmentation strategy
was particularly good, so we used the Principal Component Analysis (PCA) method to
extract the first two dimensions in the output vector (1x1024) of the last layer of DenseNet
and used the data of the first dimension as the x coordinate, and the data of the second
dimension as the y coordinate, so as to replace the original image in the coordinate system.
The 2000 randomly sampled images (1000 positive and 1000 negative) after the PCA
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method are shown in Figure 20. We calculated the distance of all the downscaled data
points from the downscaled decision boundary and computed the average value. After
that we selected all the images that were misclassified and their distance from the decision
boundary was less than the mean value and performed image augmentation operation on
them. This augmentation method is called the misclassified augmentation. All the final
augmented dataset should be the almost balanced dataset. We first augmented each of

Figure 20. Visualization of 2000 random training images with the disease of Pneumothorax after
the PCA method.

the traditional data augmentation methods using both unbalanced and balanced methods
and compared the final results. For the final comparison between the traditional data
augmentation methods and diffusion models, We used the unbalanced, balanced and
misclassified augmentation methods to augment and compare the results.

4.6 Evaluation of synthetic images from diffusion model
Apart from the traditional image data augmentation methods, we also use some diffusion
models to generate synthetic images. The methods we used include the DDPM model (Ho
et al., 2020), the DDIM model (Song et al., 2020), stable diffusion with the pre-trained
weight on the LAION-2B dataset, and stable diffusion with LoRa finetuning. The specific
parameters are as follows:

■ DDPM: For the diffusion model, we mainly use the same code as the tutorial file
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on the ’Hugging Face’ website. 1 The noise scheduler and the U-Net model we use
are the DDPMscheduler and Unet2Dmodel in the diffuser library, respectively. The
detailed parameters are as follows:

in_channels = 1,

out_channels = 1,

layers_per_block = 2,

block_out_channels = (128,128,256,256,512,512),

down_block_types=(

"DownBlock2D",

"DownBlock2D",

"DownBlock2D",

"DownBlock2D",

"AttnDownBlock2D",

"DownBlock2D",

),

up_block_types=(

"UpBlock2D",

"AttnUpBlock2D",

"UpBlock2D",

"UpBlock2D",

"UpBlock2D",

"UpBlock2D",

),

In addition, a linear noise schedule with a range of [0.0001, 0.02] is used, and the
total number of diffusion steps is 1000 by default. We use the different diffusion
steps and epochs to do the experiment and we find out the number of epochs does
not obviously affect the final result, but the number of timesteps has a significant
influence. We get the best result when the timestep is equal to 4000 and we set the
number of epochs equal to 40.

■ DDIM: We mainly use the code from the GitHub project. 2 The detailed hyperpa-
rameter settings are almost the same as the DDPM network:

in_channels = 1,

out_channels = 1,

layers_per_block = 2,

beta_start = 0.0001

1https://huggingface.co/docs/diffusers/tutorials/basic training
2https://github.com/ermongroup/ddim

42

https://huggingface.co/docs/diffusers/tutorials/basic_training
https://github.com/ermongroup/ddim


beta_end = 0.02

num_diffusion_timesteps = 4000

batch_size = 16

n_epochs = 8000

n_iters = 4000000

learning_rate = 0.0001

■ Stable Model 1: For the stable diffusion model with pretrained weight, the pretrained
weight is trained on the LAION-2B dataset, The prompt we used is "Chest X-ray
images of people with Pneumothorax" and "Chest X-ray images of healthy people"

■ Stable Model 2: For the stable diffusion model with finetuning method. First, we
use the fixed sentences’ structure and label of each patient to generate the sentence
of each image. The sentence can be "Chest X-ray images of people with disease
1, disease 2." or "Chest X-ray images of healthy people". Then we use the tools of
LoRA to finetune the model and get a new weight. The parameters of the LoRA
tools are shown as follows:

train_batch_size = 16,

epoch = 20,

mixed_percision = fp16,

save_percision = fp16,

Learning_rate = 0.0001,

LR_Scheduler = cosine,

LR_warmup = 10%,

Optimizer = AdamW,

Text_Encoder_learning_rate = 5e-5,

Unet_learning_rate = 0.001,

Network_Rank = 8,

Network_Alpha = 1,

Max_resolution = 256,256.

For the DDIM model, we analyzed the impact of using RGB and grayscale images and we
evaluated the SSIM, PSNR and FID metrics on the validation dataset. We also compared
the performance of different diffusion models on those metrics on the validation dataset.
Finally, we compared the classification results of the best diffusion model and traditional
data augmentation methods on the test dataset.
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5. Experimental Results

5.1 Label imputation
After using the four combined methods to process the -1 and NM labels in the dataset,
the data distribution of the positive and negative samples of pneumothorax and pleural
effusion are shown in Tables 6 and 7.

1 (Positive) 0 (Negative) -1 (Uncertain) NM

Original 19448 (8.7%) 56341 (25.2%) 3145 (1.4%) 144480 (64.7%)
FillNM(0)

U-ones 22593 (10.1%) 200821 (89.9%) —- —-

FillNM(0)
U-zeros 19448 (8.7%) 203966 (91.3%) —- —-

FillNM(1)
U-ones 167073 (74.8%) 56341 (25.2%) —- —-

FillNM(1)
U-zeros 163928 (73.4%) 59486 (26.6%) —- —-

Table 6. Pneumothorax label distribution of different preprocessing methods for the training dataset

1 (Positive) 0 (Negative) -1 (Uncertain) NM

Original 86187 (38.6%) 35396 (15.8%) 11628 (5.2%) 90203 (40.4%)
FillNM(0)

U-ones 97815 (43.8%) 125599 (56.2%) —- —-

FillNM(0)
U-zeros 86187 (38.6%) 137227 (61.4%) —- —-

FillNM(1)
U-ones 188018 (84.2%) 35396 (15.8%) —- —-

FillNM(1)
U-zeros 176390 (79.0%) 47024 (21.0%) —- —-

Table 7. Pleural effusion label distribution of different preprocessing methods for the training
dataset

The classification outcomes of applying different methods to do the filling NM and
uncertain are presented in the following Table 8. Based on the result, We chose to fill the
NM with 0 and use the U-ones method to replace all the uncertain labels in the dataset. For
the Pneumothorax dataset, the number of negative samples accounts for the vast majority
of the total number of samples while the positive and negative samples are almost balanced
for the pleural effusion.
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Method
Names

F1 score
Pneumothorax

AUC score
Pneumothorax

F1 score
Pleural Effusion

AUC score
Pleural Effusion

FillNM(0)
U-ones 0.2331 0.6486 0.7646 0.8570

FillNM(0)
U-zeros 0.2064 0.5429 0.7023 0.7229

FillNM(1)
U-ones 0.2217 0.6323 0.7575 0.8478

FillNM(1)
U-zeros 0.2085 0.6291 0.7421 0.8427

Table 8. Final classification result of using different dataset preprocessing methods on validation
dataset. Bold font: The best score under certain labels and certain metrics.

5.2 Classification model
Our final results using the three classification networks on both pneumothorax and pleu-
ral effusion labels on the two metrics of AUC and F1 are shown in Table 9. For the
pneumothorax label, DenseNet performs best on either F1 score and AUC score. For the
pleural effusion label, CheXNet performs best on either F1 score and AUC score. The
Inception-ResNet performs worst on every metric for every label. For the result of different
image types, dataset with only frontal images performs best on either metrics and diseases
(Table 10). But we finally chose to use the original dataset which contains both lateral
images and frontal images for our experiment.

Classification
Network

F1 score
Pneumothorax

AUC score
Pneumothorax

F1 score
Pleural Effusion

AUC score
Pleural Effusion

Inception-ResNet 0.1842 0.5545 0.6924 0.7981

DenseNet 0.2093 0.5877 0.7154 0.8209

CheXNet 0.1914 0.5799 0.7236 0.8315

Table 9. Classification model’s performance for different image types and diseases on validation
dataset. Bold font: The best score under certain labels and certain metrics.

.
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Figure 21. Final result of using different mask methods. (a): Different masking experiments for
verifying that edge features and markers have an effect on final results. (b): Experiment of using

inverted joint mask.

Image datasets
F1 score

Pneumothorax
AUC score

Pneumothorax
F1 score

Pleural Effusion
AUC score

Pleural Effusion

Lateral 0.1878 0.5613 0.6458 0.7474

Frontal 0.2142 0.5998 0.7207 0.8311

Combined 0.2093 0.5877 0.7154 0.8209

Table 10. Classification model’s performance for different classification networks and diseases on
validation dataset. Bold font: The best score under certain labels and certain metrics.

.

5.3 Image masking
The evaluation presented in Figure 21a showed the performance impact of various mask
modifications to the original model, specifically the introduction of square, separate, and
joint masks. Notably, the model enhanced with a joint mask exhibited superior performance,
achieving the highest scores in both F1 and AUC metrics. Conversely, the unmodified
original model was observed to be the least effective. The results of the baseline model
and those after adding an inverted joint task are shown in Figure 21b. The results show
that both the F1 and AUC scores decrease after adding the inverted joint mask.

5.4 Traditional augmentation
Different images after the eight traditional augmentation methods are shown in Figure 22.
It shows that shearing, cropping and coloring methods change the original image a lot.
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The final classification results with different data augmentation methods and augmentation
strategies on the pneumothorax dataset are shown in Table 11. For the augmentation
methods, all methods can improve the accuracy but only rotation, flipping, shearing,
adding noise and blurring improve the result on other evaluation metrics. Among them, the
rotation method performs best. For the augmentation strategy, almost all the unbalanced
experiments perform better than the balanced experiments except the cropping method. In
general, those five methods can increase the performance compared to the pneumothorax
baseline model. However, the performance of any augmented dataset is still worse than
the performance of the pleural effusion dataset which is naturally balanced. We chose the
rotation, shearing, flipping, adding noise, and blurring for the final combined traditional
augmentation methods, the result is shown in Table 12, we can observe that compared with
the results of the pneumothorax baseline model, traditional augmentation does improve
the performance of classification based on the accuracy, F1 score, AUC score and Cohen’s
Kappa score. We also use the McNemar test for the original pneumothorax classification
model and combined model. The final p-value is 0.0012 while the value of the test is equal
to 3963.15 which shows significant improvements.
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Figure 22. Example images after different traditional augmentation methods
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Dataset/Method Strategy Accuracy F1 score AUC Cohen’s Kappa

Pneumothorax —- 0.3579 0.2093 0.5877 0.0666

Pleural Effusion —- 0.7758 0.7154 0.8209 0.5263

Rotation
Unbalanced 0.8075 0.4097 0.6372 0.3139

Balanced 0.7687 0.2138 0.6159 0.2387

Flipping
Unbalanced —- —- —- —-

Balanced 0.7838 0.3710 0.6242 0.2662

Shifting
Unbalanced 0.6870 0.1812 0.5568 0.0381

Balanced 0.6585 0.1407 0.5412 0.0316

Shearing
Unbalanced 0.7316 0.2738 0.5998 0.1487

Balanced 0.6977 0.2551 0.5916 0.1427

Cropping
Unbalanced 0.6684 0.1829 0.5478 0.0365

Balanced 0.6829 0.1720 0.5316 0.0272

Coloring
Unbalanced 0.7545 0.1679 0.5682 0.0404

Balanced 0.7334 0.1762 0.5698 0.0432

Adding noise
Unbalanced 0.6949 0.2167 0.5923 0.0787

Balanced 0.6857 0.2122 0.5887 0.0721

Blurring
Unbalanced 0.7238 0.2681 0.5981 0.1409

Balanced 0.7078 0.2475 0.5831 0.1151

Table 11. Classification result of different traditional augmentation methods and strategies on the
pneumothorax test dataset. Bold: traditional image augmentation methods and augmentation

strategies with relatively improved results compared to the baseline model with pneumothorax
labels.

Dataset/Method Strategy Accuracy F1 score AUC Cohen’s Kappa

Pneumothorax —- 0.3579 0.2093 0.5877 0.0666

Pleural Effusion —- 0.7758 0.7154 0.8209 0.5263

Combined
Unbalanced 0.7714 0.4177 0.7589 0.3149

Balanced 0.7518 0.3834 0.6392 0.2733

Table 12. Classification result of combined traditional augmentation methods on the pneumothorax
test dataset. Bold: augmentation methods and strategies with best results.
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5.5 Augmentation strategies
Our results of using unbalanced and balanced augmentation strategies on the traditional
data augmentation methods are shown in Table 11 and 12 in the last section 5.4. For the
misclassified augmentation strategy, the result is shown in Table 15 in section 5.7.

5.6 Evaluation of synthetic images from diffusion model
The results of the DDIM model with RGB images input and grayscale images input are
shown in Table 13. Both approaches exhibit similar performance in terms of reconstruction
metrics and FID scores and the result with grayscale images is a little higher than the
result with RGB images. So, we chose the model for the one-channel image to stand for
the DDIM model. Images after using different diffusion models to augment are shown in
Figures 23. We use multiple criteria for generated images to evaluate images generated by
different diffusion models. As the result shows in Tables 14, the DDIM model has the best
performance.

SSIM PSNR (dB) FID

DDIM Model with RGB images 0.5833± 0.07 22.35± 0.68 71.55

DDIM Model with grayscale images 0.5914± 0.08 22.49± 0.65 71.17

Table 13. Generation metric results of different diffusion models. For SSIM and PSNR, the larger
the value, the better the performance. For the FID score, the lower the value, the better the

performance.

SSIM PSNR (dB) FID

Traditional Augmentation 0.3310± 0.08 12.57± 0.65 90.44

DDPM Model with grayscale images 0.4378± 0.07 20.08± 0.72 80.29

DDIM Model with grayscale images 0.5914 ± 0.08 22.49 ± 0.65 71.17

SD Model with pre-trained datasets 0.1056 ± 0.12 8.77 ± 0.46 325.74

SD Model with finetuning 0.3525± 0.05 12.00± 0.74 119.84

Table 14. Reconstruction generation metric results of different diffusion models. Bold font: The
best generation score for the original dataset .
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Figure 23. Negative images generated by different diffusion models
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5.7 Traditionional versus diffusion-based augmented clas-
sification

We used the DDIM model and traditional data augmentation methods to generate images
with three different augmentation strategies and evaluate their performance with various
classification metrics (Table 15). It shows that DDIM did perform better not just than
the original experiment, but also better than the traditional augmentation methods. We
compared the result of the baseline experiment for the pneumothorax and the traditional
augmentation method, the p-value of the significance test is 0.001 and the p-value of the
test between the baseline experiment and the DDIM augmentation method is 0.005. Both
augmentation methods help the classifier improve much compared to the baseline model,
especially on the Cohen’s Kappa metric which indicates the imbalance problem for the
classification task. Likewise, we did a significance test between the result of the traditional
augmentation method and the DDIM method, the p-value is 0.03, which means there are
still significant improvements for the DDIM model compared to the traditional method.

Dataset Experiment Accuracy F1 score AUC
Cohen’s
Kappa

Pneumothorax —- 0.3579 0.1855 0.5268 0.0666

Pleural Effusion —- 0.7758 0.7154 0.8209 0.5263

Traditional
Augmentation

Methods

Unbalanced 0.7714 0.4177 0.7589 0.3149

Balanced 0.7518 0.3834 0.6392 0.2733
Misclassified
augmentation 0.7923 0.4516 0.7942 0.3248

DDIM

Unbalanced 0.8221 0.4467 0.7924 0.3398

Balanced 0.8014 0.4257 0.7694 0.3216
Misclassified
augmentation 0.8427 0.4629 0.8142 0.3574

Table 15. Classification results of different augmentation methods and strategies on pneumothorax
test dataset. Bold font: The best score with certain methods and strategies.
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6. Discussion

Medical image classification suffers from a common challenge: the data imbalance between
positive and negative samples. The goal of our research was to address this problem by
evaluating the effectiveness of traditional image augmentation techniques and diffusion
models. The correct classification of medical images is crucial as it has the potential to
improve diagnosis and treatment outcomes for patients. Failure to address the issue of
sample imbalance could influence the accuracy of diagnostic tools, subsequently impacting
patient care. While traditional image augmentation methods can alleviate the issue of
unbalanced datasets to some extent, the introduction of diffusion models can further
improve the quality of generated images, leading to better results in the final downstream
tasks. This is because traditional image augmentation methods simply add some distortions
to the original images without generating any meaningful new image information.

Our primary discovery was the noteworthy effectiveness of diffusion models, particularly
DDPM and DDIM, in addressing sample imbalance. By generating lifelike images, these
models significantly enhanced task performance, outpacing traditional augmentation tech-
niques in our experiments. While Sundaram and Hulkund (2021) primarily explored GAN
networks alongside traditional methods, our study provides fresh insights by emphasizing
the potential of diffusion models.

For the label imputation methods, we expanded upon the foundational work of Irvin et al.
(2019). We experimented with different strategies for replacing multiple labels with a single
label. Our methodological choices were driven by the pursuit of optimal results, which
we incorporated into our pipeline. Additional findings spotlight the influence of external
markers and annotations in X-ray images. Our research underscored the significance of
meticulous masking techniques to eliminate potential distractions. Moreover, DenseNet
proves more effective for the binary classification task in our dataset than both Inception-
ResNet and CheXNet, thanks to its precise convolutional kernel and dense features.

While our research offered several insights, there were inherent limitations. The decision to
oversimplify uncertain data by categorizing it as positive or negative might have introduced
biases. In terms of the stable diffusion model, the lack of corresponding radiology reports
and various finetuning methods indicates the intricacy of multimodal image generation in
medical image classification area.

In our exploration of label imputation, the significant presence of "Not Mentioned" la-
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bels poses a challenge. Simply substituting either positive or negative labels can skew
the results. This highlights the need for a novel substitution strategy to strengthen the
classification ability of the final model. In addition, our choice of inverted joint mask was
relatively rudimentary. Future work could explore the potential of deep learning-based
image segmentation followed by masking to eliminate edge features and specific markers.
Moreover, future research could benefit from experiments with stable diffusion models
and text data derived from radiological reports.
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7. Conclusions

In conclusion, our research reveals the potential and challenges of using diffusion models
in medical image classification. While traditional image augmentation methods remain
valuable, diffusion models stand out as a promising alternative due to their minimal
requirements for fine-tuning and their ability to produce high-quality images. Despite our
advancements, not only in the application of more rigorous label imputation and image
masking methods but also in proposing better data augmentation strategies, as evidenced
by our experiments with the stable diffusion model, we should do more experiments
for diffusion models to propose better solutions in detailed areas like multimodal image
generation.
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