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by Massimiliano Garzoni di Adorgnano

This master thesis proposes a multi-modal retrieval system for open-domain question
answering, building upon dense passage retrievers and incorporating multi-modal in-
formation to retrieve candidate regions of interest (ROIs) from document images given
a user query. Our main research goal was to investigate the efficacy of dense repre-
sentations of questions and multi-modal contexts in retrieving relevant content, and
evaluating the impact of multi-modal information compared to uni-modal baselines.
To this end, the study leverages the VisualMRC dataset which offers annotations for
visual components, particularly ROIs such as titles or graphs, to facilitate efficient con-
tent retrieval. The proposed methodology involves pre-processing the multi-modal
ROIs, employing a bi-encoder setup to encode the question and ROIs separately, and
use such encodings to calculate similarity in their shared multi-dimensional embed-
ding space. The training objective is achieved through contrastive learning by passing
to the model a question, along with one positive and k negative contexts, and mini-
mizing the loss function by reducing the negative log likelihood associated with the
positive ROI. We evaluate our trained models on three different modality scenarios,
text-only, vision-only, and multi-modal, and we evaluate their retrieval performance
on standard metrics such as Normalized Cumulative Discounted Gain @ k, Mean Re-
ciprocal Rank @ k, and Recall @ k. The results reveal the benefits of both vision-only
and multi-modal approaches over text-only, while also highlighting challenges related
to the number of negative ROIs. Our results support the first hypothesis but raise
questions about the second, suggesting that the inclusion of layout information may
not always improve retrieval performance. The strengths of our approach include
efficient ROI retrieval and dataset adaptability, while limitations involve dataset vari-
ability and encoding techniques. In light of this, we suggest several avenues for fu-
ture work such as exploring new datasets, incorporating hard negatives in contrastive
learning, and refining ROI dissimilarity. Additionally, we speculate that integrating
keyword matching and retrieval-augmented generation approaches could enhance
the retrieval pipeline. Overall, the present thesis hopes to advance research in multi-
modal retrieval models, emphasizing the importance of visual and textual context for
open-domain question answering.
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Chapter 1

Introduction and motivations

The ability to ask and answer questions is a fundamental aspect of human intelligence,
as it allows us to explore the world, to learn new things, and to make sense of our expe-
riences. This capacity to inquire is perhaps what separates us from other animals, and
it has been instrumental for our development as a species. Perhaps more important for
that, however, is the ability to efficiently retrieve relevant information from our mem-
ory or external sources in order to provide meaningful answers. In the real world, this
is done in a multi-modal fashion, and thus the incorporation of multi-modal informa-
tion into a question answering framework from documents entails utilizing various
sensory inputs, particularly images and their layouts, to enhance the performance of
information retrieval. When combined with textual data, these visual cues provide a
richer contextual background, enabling question answering models to better under-
stand the query. Integrating such information to represent the input document image
enables the model to grasp not only the meaning of the text but also insights from
visual elements. This integration enhances information retrieval but also allows for
more nuanced and accurate answers, as we expect it to surpass the constraints of text-
only retrieval methods.

If we are to recreate this general capacity in computational systems, we must first
appreciate its significance and complexity. Human language is inherently ambiguous
and context-dependent, and understanding it requires more than just matching key-
words. In fact, to answer a question, a system must be able to grasp the nuances of
meaning and draw on a wide range of knowledge sources. In addition, it must be able
to reason, infer, and generate new insights, much like a human would.

1.1 Aim of the project

In this work we propose a retrieval system which expands upon dense passage re-
trievers (specifically DPR [13]) and incorporates multi-modal information to select
candidate regions of interest (ROI(s)) present in document images (i.e., titles, para-
graphs, graphs, tables) from which the answer to an input question may be extracted
or generated by reasoning upon that region in the document.

1.1.1 Research questions

For the purpose of this project, we define the following key research questions which
will be tackled:

• RQ1: Can we devise a method that uses dense representations of questions and
multi-modal contexts (i.e., regions or interest from a document image such as ti-
tles and graphs) to efficiently retrieve the contexts that are more likely to contain
the answer to a given question, i.e. relevant to the question?
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• RQ2: Does multi-modal information improve retrieval performance when com-
pared to uni-modal (text-only and image-only) baselines?

1.1.2 Hypotheses

• H1: By expanding on the methodology devised in DPR [13], we expect to be able
to treat multi-modal contexts as passages and use them to inform the reasoning
for answering the question.

• H2: We expect multi-modal information (joint representation of text, image and
layout) to improve retrieval performance over uni-modal approaches.

1.2 Motivations

Information retrieval is a fundamental task in the digital age, but traditional text-based
approaches have limitations in providing comprehensive and contextually relevant
answers to user queries. This thesis aims to address the shortcomings of text-based
information retrieval by exploring the integration of multi-modal data sources to en-
hance the retrieval accuracy and richness of responses.

1.2.1 Scientific motivation

Research on the comparison of uni-modal and multi-modal encoding mechanisms for
information retrieval from document images is of great significance for academia and
the scientific community. Within academia, the outcomes of this study can offer valu-
able insights into the development of neural network models for document visual
information retrieval, leading to improved accuracy and robustness. Specifically, em-
phasizing the significance of visual layout and structure alongside textual context ex-
pands the current research efforts in this domain. For the scientific community, ad-
vancements in this field have the potential to transform information accessibility and
utilization, making it more widely available and easily accessible to various stakehold-
ers. Furthermore, the findings from this research may have practical applications in
other disciplines like medical imaging, law, or finance. This research aims to provide
further understanding of the effectiveness of unified multi-modal approaches and in-
spire further advancements in this direction.

1.2.2 Motivation for Deloitte’s Digital Risk Solutions and DocQMiner

The present research work is relevant to a range of industry applications, particu-
larly in the area of document information extraction and understanding. For example,
such systems can be devised for both legal and financial applications to extract and
comprehend information from legal documents and financial reports, respectively. By
leveraging uni-modal and multi-modal methods, these systems can accurately iden-
tify key terms, clauses, financial performance metrics, and industry trends from large
volumes of documents. This can increase the efficiency of legal research and docu-
ment reviews, as well as financial analysis and decision-making, freeing up time for
experts to focus on value-added tasks. Both of these are use cases for the DocQMiner
product offered by Deloitte’s Digital Risk Solutions, from which this research work is
sponsored.
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Chapter 2

Background and Related Work

2.1 Background

Before diving into the methodology and experimental aspects of this study, it is impor-
tant to establish the groundwork by introducing relevant theoretical foundations and
lines of research that have inspired the current work. This serves as a fundamental
framework for comprehending and contextualizing the subsequent chapters.

2.1.1 Information Retrieval

Information Retrieval (IR) is a field dedicated to the organization and retrieval of in-
formation from vast collections of documents. It involves developing methodologies
and algorithms to effectively and efficiently retrieve relevant documents in response
to user queries. In the context of retrieval from documents, IR focuses on understand-
ing user questions and retrieving specific pieces of information from the document
collection that directly address those questions. Various methodologies are employed
to solve this task, including keyword matching, vector space models [29], probabilis-
tic models [5], and more recently, deep learning-based approaches using transformer
models. The latter, specially those based on transformers, have gained prominence
due to their ability to handle intricate inter-modal relationships and capture semanti-
cally rich contextual information [20]. Sparse vector-based techniques, such as Latent
Dirichlet Allocation (LDA), offer a scalable means of capturing cross-modal associ-
ations by projecting data into shared vector spaces [29]. On the other hand, dense-
vector or deep learning-based methodologies, take advantage of large-scale datasets
to learn complex patterns and generate joint representations, enhancing the capacity
to handle diverse queries and data formats.

The scope of IR extends to encompass diverse media types, paving the way for
multi-modal IR, which leverages multiple types of data such as text, images, audio,
and videos to enhance the retrieval process. The main assumption behind multi-
modal IR is that different modalities can contain complementary information, thereby
potentially leading to more comprehensive and accurate search results. This approach
is particularly useful when queries may be ambiguous or difficult to express solely
through text, thus considering various modalities can offer a more holistic under-
standing of user intent.

2.1.2 Question Answering

Question answering (QA) is a multidisciplinary field which aims to develop computer
systems capable of providing relevant answers to natural language questions posed
by users. Due to the complexity of QA, it has been studied under various tasks and
circumstances, leading to sub-fields such as Machine Reading Comprehension (MRC)
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and Document Visual Question Answering (Document VQA), as well as the distinc-
tion between extractive and generative QA systems, among others.

Early research in QA focused on creating closed-domain systems that relied on
a core knowledge database (KB) predefined by developers. These systems utilized
the KB for question interpretation and answer retrieval. Examples of such systems
include BASEBALL [10], LUNAR [36], and MURAX [17]. In the early 2000s, the con-
cept of utilizing the World Wide Web as a source of information emerged. Systems
like MULDER [18] automatically responded to open-domain questions by leveraging
search engines. This shift from specific databases to web-based information allowed
systems to consider a greater amount of contextual information, resulting in improved
accuracy of answers.

MRC focuses on enabling machines to comprehend natural language from one or
more human-generated text sources. In the context of QA, MRC involves processing a
given text passage and answering questions related to it. Deep learning models, such
as neural networks, are trained to learn the relationship between the input text and the
answer to a question. Recent years have seen significant research in MRC, facilitated
by large-scale datasets like the Stanford Question Answering Dataset (SQuAD) [27]
and benchmark tasks such as the Microsoft Machine Reading Comprehension (MS
MARCO) challenge [2]. These resources have paved the way for sophisticated MRC
models applicable to diverse domains, including news articles, scientific papers, and
legal documents. The VisualMRC dataset, which will be discussed in Section 2.2.3,
represents a significant effort in this area.

Another important distinction in QA lies between extractive (EQA) and genera-
tive (GQA) question answering tasks. In EQA, the system extracts the answer from a
given text by identifying a relevant span that matches the question. In contrast, GQA
involves generating a new text that answers the question. Extractive approaches are
more common due to their ability to directly retrieve answers from the context. On
the other hand, generative QA is more challenging as it requires the system to compre-
hend the question and generate a coherent and relevant response in natural language.

2.1.3 Open-Domain QA

Although numerous techniques have been developed to enhance QA system perfor-
mance, notable achievements were primarily limited to closed-domain scenarios (as
discussed in Section 2.1.2) [31]. However, the field has progressed to address the de-
mand for QA systems capable of handling questions across various domains. This
gave rise to open-domain QA, where systems aim to answer natural language ques-
tions on a wide range of topics without relying on a predefined knowledge base. In-
stead, they utilize a large, unstructured corpus of text documents as context. This
entails understanding the user’s question and retrieving relevant information from
sources such as web pages, articles, and books.

To tackle open-domain QA, researchers have increasingly turned to statistical learn-
ing approaches for extracting potential answers from vast collections of unstructured
documents. As a result, the effectiveness of QA systems has significantly improved for
open-domain questions. These systems retrieve the most probable response by match-
ing and retrieving information from an extensive knowledge base, including websites
and research papers.

In the context of open-domain question answering, MRC algorithms are employed
to automatically read and understand large amounts of text, such as web pages or col-
lections of legal documents, and provide answers to user questions. This type of QA,
often referred to as reading comprehension across multiple documents [34], has the
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potential to revolutionize information access and processing by enabling faster and
more efficient handling of complex questions.

2.1.4 (Computational) Multi-Modality

Transformer models have revolutionized the field of natural language processing (NLP)
by demonstrating exceptional performance on various tasks. However, these mod-
els have traditionally focused on single modalities for perception and understanding
tasks, neglecting the potential benefits of multi-modality [24, 31]. In contrast, biologi-
cal systems excel at perceiving and interacting with the environment through various
sensory inputs, combining information from distinct modalities. To bridge this gap
and enable computer systems to leverage multi-modal information, researchers have
developed transformer-based models that incorporate multiple sensory inputs. Two
notable approaches are dual encoders and fusion encoders, which differ in how they
integrate modalities within the model architecture.

Dual encoders, as the name suggests, keep the modalities separate throughout the
model layers and only mix the modality information at the final layer. These mod-
els maintain separate encoder paths for different modalities and merge them at the
last layer to generate meaningful outputs. This approach allows each modality to un-
dergo separate processing, preserving their individual characteristics and capturing
their unique features. Examples of dual encoder, multi-modal approaches include the
Vision Transformer (ViT) [7], ViLT [14] and ViLBERT [21].

On the other hand, fusion encoders aim to fuse the modalities at an earlier stage
of the model architecture. These models directly combine the representations of dif-
ferent modalities from the input stage and jointly process them throughout the model
layers. By integrating the modalities from the beginning, fusion encoders can cap-
ture complex interactions and dependencies between modalities more effectively. This
approach enables better exploitation of the complementary information provided by
each modality. The work in [23] present notable examples of fusion-based approaches.

In terms of pre-training methods, both dual encoders and fusion encoders can ben-
efit from pre-training on large-scale multi-modal datasets. The pre-training process
involves exposing the models to a vast amount of multi-modal data, allowing them
to learn rich representations of both textual and visual information. This pre-training
helps the models develop a comprehensive understanding of complex phenomena by
jointly learning from multiple modalities. We expand more on this matter in Section
2.2.2. When comparing the two approaches, dual encoders have the advantage of
preserving the unique characteristics of individual modalities, enabling finer-grained
control over each modality’s representation [8]. On the other hand, fusion encoders
offer the benefit of capturing intricate inter-dependencies between modalities from the
beginning of the model, potentially leading to better performance in tasks that require
strong cross-modal interactions [8].

Consider for example the QA pair in Figure 2.1. These questions refer to physical
regions of the image, so they can be more precisely answered by including visual
information rather than just textual context. By incorporating the visual modality, the
system ought to better comprehend the query and provide a more comprehensive and
precise answer.

An interesting effort in this direction is the work proposed in the ManyModalQA
challenge [11], where they present a dataset collected by scraping Wikipedia and
crowd-sourcing question-answer pairs. The intriguing aspect of this dataset is that
the questions are intentionally ambiguous, making it difficult to determine the modal-
ity containing the answer based solely on the question. The authors define a selector
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FIGURE 2.1: An example document image and its corresponding Regions-Of-Interest. Image
retrieved from [33] and QA pairs provided by the author.

network is constructed to predict the relevant modality for the answer, revealing that
the dataset’s questions are more ambiguous than existing datasets. An important con-
cept at the heart of the present work is modality disambiguation, which refers to the
process of determining the most appropriate or relevant modality (such as text, im-
ages, tables, audio, etc.) for extracting information required to answer a question or
solve a problem, thus aiming to identify which specific modality or combination of
modalities holds the answer or relevant information for a given query [11]. This is
particularly important in scenarios where the modality containing the answer cannot
be easily inferred from the question alone.

2.2 Related Work

2.2.1 Sparse vs. Dense Representations

TF-IDF (Term Frequency-Inverse Document Frequency) [1] is a popular algorithm
used in sparse retrievers for calculating the similarity between two pieces of text. It
combines the concepts of term frequency (TF) and inverse document frequency (IDF)
to determine the relevance of a word in a query and a context. TF refers to how many
words in the query are found in the context, while IDF is the inverse of the fraction
of documents containing a certain term. The TF-IDF score is obtained by multiply-
ing the TF and IDF values. For example, if the word hippocampus appears in both the
query and the context, it will have a high TF score. Additionally, if it is not found
in many other documents (i.e., high IDF), its TF-IDF score will be high. Conversely,
common words like the will have a low TF-IDF score since they appear in many doc-
uments. TF-IDF scores are particularly useful for finding sequences that contain the
same uncommon words.

Another widely used method in sparse retrievers is BM25 (Best Match 25) [28],
which is a variation of TF-IDF. BM25 incorporates additional adjustments to the scor-
ing mechanism. It dampens the score after returning a large number of matches be-
tween the query and the contexts, preventing the dominance of long documents with
multiple word matches. Moreover, BM25 considers the length of the documents: it
normalizes the score, favoring shorter documents over longer ones when they have
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the same number of word matches. As a result, BM25 is typically favored over TF-
IDF due to its ability to handle large collections of documents more effectively while
considering the length of the documents in the scoring process [28].

Moving on to dense retrievers, the research work in [13] is quite important for mo-
tivating the present work, especially from the text-modality point of view and the
usage of contrastive learning, which we expand on in Section 4.2.2. Here the au-
thors address the need for a more efficient passage retrieval method for open-domain
QA. The paper proposes a Dense Passage Retriever (DPR) that uses dense representa-
tions alone, learned from a small number of questions and passages by a simple dual-
encoder framework, to retrieve relevant passages for a given question. The assump-
tion here is that semantically similar words will be closer in the embedding space.
This improves on sparse encoding methods such as BM25 or TF-IDF which do not en-
code the semantics needed to properly learn [13]. The proposed method outperforms
traditional sparse vector space models, such as TF-IDF or BM25, by a large margin in
terms of top-20 passage retrieval accuracy [13]. The paper also demonstrates that a
higher retrieval precision indeed translates to a higher end-to-end QA accuracy, and
achieves new state-of-the-art results on multiple open-domain QA benchmarks, while
relying solely on textual information.

However, as mentioned in [13], dense and sparse representations are complemen-
tary to each other, and such complementarity lies in their strengths and weaknesses.
While sparse representations are memory-efficient and interpretable, they might not
capture intricate patterns as well as dense representations. On the other hand, dense
representations are powerful and capable of capturing complex relationships, but they
come at the cost of higher memory requirements and reduced interpretability. In light
of this, in our current work we hope that by leveraging multi-modal (image-text-
layout) information, we hope that such complementarity is retained and enhanced.

2.2.2 Vision-Language Representation Learning

Regarding the addition of visual modality to these systems, the work proposed in [12]
was pivotal. It was the third of a series of approaches to the challenge of encoding and
aligning textual and visual information together [38, 37]. To advance progress in the
Document AI community and achieve improved results on document understanding
tasks, the authors present LayoutLMv3, a pre-trained multi-modal Transformer for
Document AI, which redesigns the model architecture and pre-training objectives of
LayoutLM [38]. With this work they introduce the use of unified text and image mask-
ing pre-training objectives: masked language modeling, masked image modeling, and
word-patch alignment, which the models uses to reconstruct the masked word tokens
and image patches simultaneously. The key aspect here is that LayoutLMv3 does
not rely on a pre-trained CNN or Faster R-CNN backbone to extract visual features,
significantly saving parameters and eliminating the need for region annotations [12]:
here each word is mapped with the image patch visually representing the word. The
LayouLMv3 model will be used in the present work both for training and evaluation
of the different modalities. For additional information and motivation behind this
choice, please refer to Chapter 4.

Another pivotal work in the progress of learning new visual concepts directly from
raw text only was CLIP [25]. The idea here is to use the semantic information encoded
in text in order to inform and support perception learning, leveraging natural lan-
guage as a training signal used for supervision. They showed that this approach has
three main advantages: (1) easier to scale because there is no need for gold-labels, (2)
connecting the textual and visual representations enables zero-shot learning and (3)
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free text usable for supervision is widely available on the web (i.e., image and cap-
tions). Published one year later, an extension of CLIP was the work reported in BLIP
[19]. Here the authors address the issue of using web datasets for vision-language
learning due to the prevalence of noise in web texts. The article proposes a new
method called CapFilt that utilizes web datasets in a more effective way. Also, the pro-
posed multi-modal mixture of encoder-decoder model offers more flexibility and bet-
ter performance on a wide range of downstream tasks, while keeping the pre-training
simple and efficient [19].

The research in [16] introduces a method for multi-modal retrieval of relevant texts
and tables based on questions, given that some questions require information from ta-
bles. To address this, the paper presents a method that encodes texts, tables, and ques-
tions into a single vector space. To assess the method, authors create a new dataset
by combining text and table datasets from prior work. Different encoding schemes,
including dense vector embeddings from transformer models and sparse embeddings
like TF-IDF and BM25, are compared. The results indicate that dense vector embed-
dings outperform sparse ones on most evaluation datasets [16]. Their approach em-
ploys dense vectors to capture semantic relationships and overcome the limitations of
sparse methods like TF-IDF and BM25, which is a motivation for using dense repre-
sentations in our present project.

Universal Vision-Language Pretraining

To our knowledge, the work in [20] is the only one that moves in our desired direction.
The paper introduces Universal Vision-Language Dense Retrieval (UniVL-DR), which
aims to establish a unified model for multi-modal retrieval. This approach encodes
queries and resources from various modalities into a shared embedding space, facili-
tating the search for candidates from different sources. To achieve this, UniVL-DR in-
troduces two techniques: a universal embedding optimization strategy that employs
modality-balanced hard negatives to enhance the embedding space, and an image
verbalization method that bridges the gap between image and text modalities [20].

The authors emphasize that while search engines have traditionally focused on
textual data, the growing demand for multimedia content necessitates the incorpora-
tion of multi-modal information, which is a common motivation with our work. To
address the challenge of merging results from diverse modalities, UniVL-DR seeks to
build an end-to-end model that directly maps queries and multi-modal resources into
a unified embedding space for retrieval [20].

The paper’s experiments compare UniVL-DR with various baseline models, and
the experiments demonstrate that UniVL-DR outperforms other models in multi-modal
retrieval tasks, achieving substantial improvements in ranking and recall of relevant
documents. The modality-balanced hard negative sampling strategy employed by
UniVL-DR is highlighted as a key factor in its effectiveness, as it mitigates modality
bias during training and enhances modality disambiguation [20]. The image verbal-
ization methods proposed by the authors further enhance the text representations of
image documents, in aid of the process of bridging the gap between textual and visual
modalities and achieving better retrieval results.

2.2.3 Document VQA

Visual Question Answering (VQA) requires models to understand the semantic con-
tent of both the image and the question posed in natural language, and to reason about
the relationship between them in order to generate (or extract) an accurate answer. The
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task of VQA applied to document images is particularly challenging due to the diver-
sity in types of document layouts and content. Tables and graphs, for example, require
different types of visual processing than running text (e.g., paragraphs) and titles may
need to be recognized as distinct components. VQA is assumed to leverage infor-
mation such as document structure and metadata (e.g., bounding-box coordinates of
words and ROIs within the document image) to improve retrieval performance.

One of the first research efforts with regards to Document VQA was DocVQA [22],
which presents a large-scale dataset of almost 13K of document images of varied types
and content, over which 50K questions and answers were defined. The dataset was
designed for the VQA task on document images. The authors highlight that answering
questions in the DocVQA dataset requires reading systems to not only extract and
interpret the textual content of the document images but also exploit numerous other
visual cues including layout, non-textual elements, and style [22].

However, efforts such as DocVQA did not account for scenarios where the input
documents may consist of many pages. Existing datasets and methods for DocVQA
focus on single-page documents, which is far from real-life scenario. Therefore, re-
searchers in [34] proposed MP-DocVQA, which is designed for Multi-Page Document
Visual Question Answering and aimed at extending single-page DocVQA to the more
realistic multi-page setup. The article also proposes a new hierarchical method called
Hi-VT5, based on the T5 architecture [26], that overcomes the limitations of current
methods to process long multi-page documents [34]. The proposed method is based
on a hierarchical transformer architecture where the encoder summarizes the most
relevant information of every page, and then the decoder takes this summarized in-
formation to generate the final answer [34]. This aligns with the present work on the
aim of retrieving possible ROIs out of a larger amount of possible multi-modal con-
texts.

VisualMRC

Another important research work that stands at the base of this thesis is the VisualMRC.
In this article the authors introduce the development of a new task called VisualMRC,
which involves reading and comprehending texts given as a document image [33].
The task is decomposed into two sub-tasks: Region-of-Interest (ROI) detection and
Optical Character Recognition (OCR). The ROI detection sub-task involves detect-
ing a set of ROIs in an image, where each ROI consists of a bounding box and a
semantic class label (e.g., a footer or the caption of a graph, along with their visual
coordinates relative to the source document image). The OCR sub-task involves ex-
tracting word-level information from the document image along with layout coordi-
nates (bounding-boxes) and confidence scores for each word. The article proposes a
model consisting of sub-modules for ROI detection and OCR, and a main module for
visual MRC. The main module uses a Transformer architecture and maps an input
sequence to a sequence of embeddings, which is passed to the encoder. The input
sequence is formed from the tokenization results of the concatenation of a question
and OCR words in ROIs. The article also provides a dataset (analyzed in Section 3.1)
that includes ground-truth ROIs annotated by humans, and OCR words for each ROI
as the outputs of the sub-tasks, as well as relevant ROIs that are required to answer
each question. This dataset is very useful to allow models’ learning ability based on
visually-relevant text-aligning information, such as ROIs and word-level bounding
boxes.
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The proposed model is an extension of pre-trained encoder-decoder models like
BART and T5, which integrates comprehension of visual layout and document con-
tent, retaining its pre-trained natural language generation (NLG) abilities. The core
main module manages input sequences formed by concatenating questions and OCR
words within regions of interest (ROIs), which are then translated into embeddings by
the encoder. In this work the authors specify diverse input embeddings,including to-
ken, position, segment, location, and appearance embeddings. Token embeddings
characterize individual tokens for language representation, while position embed-
dings encode precise positions. Segment embeddings indicate token classes, offer-
ing structural insight. Location embeddings show relative token positions based on
bounding box coordinates, and appearance embeddings enhance with visual attributes
from ROIs and OCR tokens via a Faster R-CNN model [33]. Another crucial and in-
teresting aspect of this work is saliency detection. A saliency loss mechanism guides
token determination, aligning OCR tokens and answers to create pseudo reference la-
bels. The main module’s training follows a multi-task approach, concurrently min-
imizing negative log-likelihood loss and saliency loss through a hyper-parameter.
These capabilities (comprehending visual layout, document content, and NLG) em-
power contextual, multi-modal understanding and human-like language generation.

2.2.4 Uni vs. Multi modality

As far as the comparison of uni-modal and multi-modal approaches to open-domain
VQA concern, various research was carried out. For example, in [32] the authors un-
derline the importance of multi-modal encoding mechanisms for answering complex
questions that require integrating information across free text, semi-structured tables,
and images. The authors demonstrate the necessity of a multi-modal, multi-hop ap-
proach to solve their task. Although their multi-hop model, ImplicitDecomp, substan-
tially outperforms a strong baseline over cross-modal questions, they show that it still
lags significantly behind human performance [32]. Therefore, the authors suggest
that multi-modal encoding mechanisms are crucial for improving the performance
of open-domain visual question answering models.

WebQA

Another very interesting and useful dataset was considered but eventually unused
for this work is WEBQA [4], which focuses on scaling VQA to an open-domain and
multi-hop context, mirroring the way humans perform web searches and information
retrieval. In this paper the authors highlight the limitations of existing QA systems
that often ignore the knowledge present in images and treat the web as a text-only
source, thus they emphasize the need for unified multi-modal reasoning models that
can answer questions regardless of the source modality. WEBQA dataset includes
both image-based and text-based questions, requiring models to perform retrieval,
aggregation, reasoning, and natural language generation [4]. The authors also intro-
duce a novel evaluation metric that considers both fluency and accuracy, aiming to
capture the challenges of real-world open-domain QA. With this paper they under-
line the limitations of existing benchmarks, which often focus on template-based or
uni-modal approaches, and introduce the need for models that can handle both im-
ages and text in an integrated manner. In light of this, they emphasize the need for
further research in building unified models that can effectively handle multi-modal
information retrieval and reasoning.
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While these and other research efforts have shown evidence for the importance of
aligning modalities in the context of visual question answering, they also show that
such systems do not properly leverage multi-modality yet. Specifically in the context
of document VQA, most research directed its focus to text-level understanding, albeit
neglecting the layout and structure (ROIs and other components) of the documents
[33]. In this work, we will aim to fill this gap by comparing the effectiveness of training
on different modalities and their impact on learning properly the alignment of textual
and visual information in documents.
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Chapter 3

Dataset

As noted by [12], document images are distinct from natural images because they
necessitate a precise, detailed alignment between text words and image regions, un-
like natural images which do not require it. This alignment relationship is crucial for
the successful interpretation and extraction of information from document images,
because it allows for the accurate identification and classification of the various com-
ponents of a document, including text, images, and diagrams. In light of this, only QA
datasets retaining certain features are considered for this work. These datasets must
be composed of document images which include both visual and textual information,
so that comparisons of encoding mechanisms can be fair and relevant. Moreover,
the datasets should contain question-answer pairs that are reasonable and pertain to
industry-related topics.

To tackle the problem of encoding both visual and textual information in a way
that is aligned when passed into a learning model, visually relevant information must
be present. For this, the datasets should provide annotations pertaining to the visual
components of the document image, such as bounding-box coordinates of ROIs and
individual words.

Regions-of-Interest

The task of document layout analysis is very similary to other Computer Vision tasks
such as image segmentation and object detection, and they all result in dividing an
input image into meaningful portions, called Regions-of-Interest (ROIs). In this line
of work, such ROIs refer to specific areas or regions within a document image that are
semantically meaningful and contain valuable information, i.e., tables, paragraphs or
captions. In the context of multi-modal retrieval of regions from a document image,
ROIs play a crucial role in identifying and categorizing various components within the
document. These components may include headings or titles, and subtitles, bodies of
text (i.e., paragraphs), pictures and captions, as well as tables, graphs and the data
found in them.

By leveraging ROIs annotations (expressed as bounding box coordinates over the
pixel values), systems can efficiently retrieve relevant content from the document im-
age. ROIs facilitate tasks like QA, IR, and content summarization by providing con-
textually significant segments of text and visual elements. Additionally, we expect it
to enhance the performance of our multi-media retrieval system, enabling users to ac-
cess specific and pertinent information within the document, which is the goal of the
present project.
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3.1 VisualMRC Dataset: Exploratory Data Analysis

For the purpose of training the multi-modal retriever, we decided to use the VisualMRC
dataset [33]. This is a very suitable dataset for the purpose of this project for quite a
few reasons, which we outline below. We present an exploratory data analysis and ex-
amination of the dataset’s characteristics, including its size, composition, distribution,
and other relevant statistical insights. Through this analysis, we aim to gain a deeper
understanding of the dataset’s properties and shed light on its potential implications
for the subsequent experiments.

• Presence of ground-truth ROI annotations: The dataset provides ground-truth
ROIs annotated by humans and OCR words present in each ROI. These are clas-
sified into nine classes: Heading/Title, Subtitle/Byline, Paragraph/Body, Image, Cap-
tion, List, Data, Sub-data, and Other (please refer to [33] for an in-depth expla-
nation of each ROI class). The presence of such rich types of labelled content
enhances the diversity of the dataset. Refer to Figure 3.1 for an example docu-
ment image with various ROIs and their bounding box coordinates drawn over.

FIGURE 3.1: Sample document image with ROIs bounding boxes and labels drawn over it.
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• Indication of relevant ROIs: The dataset includes relevant ROIs that are re-
quired to answer each question, providing context for the questions. This is
useful for the contrastive learning setup that is explained later in Section 4.2.2.

• Large and diverse collection of document images: The dataset contains 10,197
images collected from 35 domains [33] (including science, travel, health, news
and many others), licensed under creative commons, with content suitable as a
document image, containing machine-printed text, pictures, and at least three
natural language sentences in each ROI.

• Three QA pairs per instance: The dataset consists of three unique questions and
their generative answers for each source image, ensuring a comprehensive set of
QA pairs. In Table 3.1 three QA pairs are reported along with the ROI relevant
to the answer. Moreover, Figure 3.2 shows the distribution of the QA pairs per
each split of the data.

Question Answer Relevant ROI
What does the picture show? The picture shows a Moai on

Easter Island.
Image

Where are the statues located? The statues are located on
Rapa Nui, also known as
Easter Island.

Paragraph/Body

What is the date mentioned at
the top?

Saturday, January 12, 2019 Heading/Title

TABLE 3.1: Example of three QA pairs (relative to the document image in Figure 3.1) with the
ROI relevant to the answer.

• Longer and more unique questions and answers: In Figure 3.3 we report di-
rectly the statistics provided in [33], in comparison to the TextVQA [30] and the
DocVQA [22] datasets. As we can see, the average question length in VisualMRC
is 10.55 tokens, which is larger than in TextVQA (8.12) and DocVQA (9.49), indi-
cating a more diverse and comprehensive set of questions. The dataset also has
a higher percentage (96.3%) of unique questions compared to TextVQA (80.7%)
and DocVQA (72.3%). The average answer length in VisualMRC is 9.53 tokens,
significantly larger than in TextVQA (1.51) and DocVQA (2.43), suggesting more
detailed and informative answers. Additionally, it has a significantly higher
percentage (91.82%) of questions with unique answers compared to TextVQA
(51.74%) and DocVQA (64.29%).

• More images, tables and graphs: 44.8% of the document images in VisualMRC
contain picture regions and/or data regions such as tables and charts, providing
additional visual context. We assume that this abundance of visual information
can serve better the purpose of training a multi-modal retriever as it allows it to
leverage and learn from this information.

Figure 3.4 reports the distribution of total ROIs per data split, along with the
amount that are relevant to answer the questions. As for the QA pairs, the count
changes based on the total amount of samples in the data split (i.e., lower in val and
test splits, higher in train split).

Figure 3.5 reports the distribution of all the ROI classes per data split. As we can
see, there is quite some imbalance across the classes, with amount of ROIs widely
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FIGURE 3.2: Histogram distribution of QA pairs across data splits.
2

FIGURE 3.3: This table is taken directly from [33] and it compares key statistics of the Vi-
sualMRC dataset with the TextVQA [30] and DocVQA [22] datasets. VisualMRC has more
unique questions and answers, as well as longer average length of both questions and an-

swers.

varying between classes such as Paragraph/Body compared to Lists or Data. Although
this reflects a natural distribution (i.e., documents often contain more text than images,
or graphs, or sub-data within the latter), it is sub-optimal to have such imbalance in
the training material, when the objective is to properly leverage the not-necessarily
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FIGURE 3.4: Histogram distribution of (relevant) ROIs across data splits.

textual information. Nevertheless, the distribution still suggests that enough multi-
modal information is present and can be leveraged.

In Figure 3.6 we plot the average length of the text for each ROI class and by data
split. As expected, classes such as Paragraph/Body (mean=54.1 on aggregated data
splits) contain on average more words than classes such as Heading/Title (mean=5.2 on
aggregated data splits) or Subtitle/Byline (mean=5.12 on aggregated data splits). Inter-
estingly, we notice that classes such as Image or Sub-Data contain on average 2.42 and
3.03 words respectively (on aggregated data splits), which show slight inconsisten-
cies in the data collection process. The Data class instead correctly reports an average
words length of 0 in all data splits.

More interestingly, in Table 3.2 we report example questions for each ROI class.
We can see that questions are posed in a way that embed the layout-aware, visually-
grounded information to answer the question. This is true especially for ROI classes
such as Image or Caption.

Overall, the VisualMRC Dataset stands out due to its comprehensive annotation
of ground-truth ROIs, diverse document image collection, domain diversity, and a
wide range of questions and answers, making it more suitable to other datasets like
TextVQA [30] and DocVQA [22] in terms of uniqueness and comprehensiveness of
content.

3.1.1 VisualMRC pre-processing

In order to ease the process of data extraction for each instance, we decided to cre-
ate a re-formatted version of the original dataset provided by the researchers. The
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FIGURE 3.5: Bar plot distribution of all the ROI classes per data split.

FIGURE 3.6: Average length of texts in each ROI class and by data split.

reasons for doing this are multiple: renaming fields for better readability, deletion of
unnecessary fields (e.g., the confidence score of the OCR engine for a specific word),
extraction of the words and bounding boxes for each word into lists, removing the
need of inefficiently iterating over the nested original format. To do this, we extracted
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Heading/Title Subtitle/Byline Paragraph/Body
What is the main issue for
real-time programming?

Does the specification
have a declaration?

How is the mental ability
to travel into the past and
future useful to us?

Image Caption List
What building is in the
image?

What does the caption
say about the picture?

Are the shown authors of
the papers all the same?

Sub-Data Data Other
What are the stages of the
process of controlling at-
tention during mindful-
ness practice?

What’s the Uruguay Hu-
man Development Edu-
cation Index indicator?

What vitamin is consid-
ered key in child malnu-
trition cases?

TABLE 3.2: Examples of questions for each ROI class.

the data and organized in a tabular format, where each row corresponds to a QA pair
and it includes the relevant (positive) and irrelevant (negative) ROIs related to that
specific QA pair. It is important to note that we had to account for cases where the
OCR information was not present (e.g., for ROIs that do not contain text such as im-
ages in the document image), and cases where the amount of total available irrelevant
(negative) ROIs was not equal or larger than the amount requested for the specific
setting of the number of negative ROIs to use for contrastive learning for each exper-
iment. Specifically for the latter issue, a substantial percentage of samples from the
VisualMRC dataset did not contain at least as many negative ROIs as needed for con-
trastive learning. We initially tried to mitigate this problem by sampling other ROIs
from other source documents. However, this naturally resulted in mis-alignment of
the bounding box coordinates when applied to the source document. Therefore, in the
end, we decided to filter out those instances for which the amount of negative ROIs
was less than the required one for the given experiment. This is not an optimal solu-
tion, but it locally mitigates the shortcomings of the VisualMRC dataset. These newly
formatted .csv files (one for each split) retain the original information (ROIs and QAs)
but simplify the access and extraction processes.
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Chapter 4

Methodology

In this chapter we explain the dataset used for training, evaluation and testing, along
with an exploratory analysis of its statistics, in comparison with other datasets. More-
over, we present our multi-modal retrieval pipeline and explain the tokenization pro-
cess along with the encoding mechanisms. This allows us to set the ground for the
Experiments section which naturally follows this section.

4.1 Processing of Data Inputs

4.1.1 Image resizing

Since the LayoutLMv3 [12] model expects input images to be in a square format of
width-height pixel dimensions of 224*224, we first need to resize all the input ROI
images to such target dimensions. Figure 4.1 shows ROIs before and after resizing.

4.1.2 Transformation of bounding-boxes of words in ROIs

Now, given that the original bounding box coordinates locating each word on the im-
age are relative to the non-resized image, we also need to transform the bounding-box
coordinates to be relative to the resized ROI image. To do this, we use the source and
target dimensions and boxes from the input ROI image and transform the coordinates
of each word to be relative to the new resized images. Figure 4.2 shows an example of
bounding boxes drawn on top of the ROI image after resizing and transformation.

Below in Figure 4.3 the ROI processing diagram combining the steps mentioned
above is reported.

4.1.3 Question parsing and tokenization

To parse and tokenize the input questions, we considered using two pre-trained tok-
enizers implemented on the Huggingface transformers library [35]. On one hand, the
BertTokenizer applies end-to-end tokenization on the input sequence, namely punctu-
ation splitting and wordpiece segmentation. On the other hand, the LayoutLMv3Tokenizer
is based on the RoBERTatokenizer, which uses Byte Pair Encoding (BPE) and also ap-
plies punctuation splitting and wordpiece division. As we mention in the next para-
graph, it is also useful for turning the word-level bounding boxes into segment-level
bounding boxes, expected by the LMv3 encoder.

4.1.4 Processing of multi-modal ROIs

For processing the multi-modal elements which the ROI contexts (ROI image, ROI text
and segment-level coordinates) we use the LayoutLMv3Processor class also from the
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FIGURE 4.1: An example title (top) and paragraph (bottom), before (left) and after (right)
image resizing to the target width-height of 224*224 pixels.

FIGURE 4.2: An example title (left) and paragraph (right) after the bounding boxes are trans-
formed to be relative to the new resized ROI images.

Huggingface transformers library [35]. This processor combines a LayoutLMv3 image
processor and a LayoutLMv3 tokenizer into a single processor, which is useful because
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FIGURE 4.3: This diagram reports the ROI processing steps that are account for each ROI
image from extraction using the provided bounding boxes, to image resizing and the transfor-

mation of the word-level bounding boxes after resizing to new target size.

it offers all the functionalities needed to prepare the multi-modal data in a format
suitable for the encoder. It first leverages the LayoutLMv3ImageProcessor to extract
patch-level image features (resulting in arrays of pixel-values). Here we disable the
resizing function (since we already account for it), but we allow rescaling of the input
image by a factor of 1/255, which means dividing each pixel value in the image by
255. This process is commonly used to normalize pixel values from the original range
of 0 to 255 to a new range of 0 to 1. By performing this rescaling, the pixel values
are transformed to a normalized scale, which aids the stable and effective training of
neural networks. The specific technique of rescaling pixel values to the range [0, 1] is
covered as a fundamental step in preparing data for deep learning models [9].

Moreover, LayoutLMv3 employs linear patches for image embeddings, which serves
to mitigate the computational bottleneck of CNNs and eliminate the requirement for
region supervision during the training of object detectors [12]. The processor then
uses the LayoutLMv3Tokenizer to turn words and layout coordinates into input ids
and attention masks for each token and bounding boxes. Also here we disable the
OCR option, given that we already have this information available. Important to note:
for LayoutLMv3, in the process of tokenizing an OCR word into sub-word tokens, the
bounding box coordinates of a sub-word token remain consistent with those of the
entire word, following the approach established in the LayoutLM predecessor system
[38].
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4.2 Modeling Multi-Modal Retrieval

Multi-modal retrieval of regions of interest from document images is a complex task
that involves finding relevant information within a document image in response to
a given question. To accomplish this, we employ a bi-encoder setup, which means
using two separate encoders to convert input data into meaningful representations.
In this setup, the input consists of a question and ROIs within the document image,
which are described by pixel values, words, and layout coordinates. The latter are
collectively referred to as context. The goal is to retrieve k amount of contexts which
the model scores as relevant or not to answer the question. In Figure 4.4 we report the
diagram of the pipeline outlining the steps of the multi-modal retrieval system.

FIGURE 4.4: Diagram displaying the steps of the pipeline for the implementation of multi-
modal retrieval system. The document image with ROIs is processed (ROIs extraction, resiz-
ing and bounding boxes transformation) and processed using LMv3 Processor, which outputs
are then passed through the LMv3 Encoder and the embedding representations are obtained.
Similarly, the input question is tokenized using the LayoutLMv3 tokenizer and then passed
through the LMv3 Encoder to obtain the question embedding representation (we also exper-
imented with a BERT-based question tokenizer and encoder). The similarity score between
each context and query embeddings are then calculated in a shared, multi-dimensional dense
embedding space and are then passed through a categorical loss function where are compared
with the target labels. At inference time, given a question and a document image with ROIs,
the model should retrieve k amount of ROIs which are likely to contain, or may be used to

infer, the answer to the question.

4.2.1 Encoding Mechanisms

Encoding and representing textual queries provided by users as well as the contex-
tual information needed to answer the queries may be encoded in two ways. The
input question is to be parsed, tokenized and encoded via a uni-modal approach, i.e.,
language-only. As for the document image used as context, it may be processed and
encoded with a multi-modal approach, i.e. parsing both the text present in the doc-
ument and the document image itself, in the form of coordinates (bounding-boxes)
representing regions of interest within the document from which the answer can be
reasoned upon, and then extracted and/or generated. As outlined in Section 2.2.4, a
wide array of approaches exist for representing text and images in a way that is suit-
able to be processed by the learning models. For this project, we use the fine-tuned
encoders described below to represent the input multi-modal data.
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Question Encoder: TinyBERT & LMv3

To encode the input question and obtain a dense vector representation of it we experi-
mented with two pre-trained models: the TinyBERT which is streamed down version
of BERT [6], and the LayoutLMv3Model [12]. This approach leverages dense vectors
to encode tokens with semantic information, which allows to perform similarity cal-
culation between semantically (dis)similar words and thus to compare their vectors in
a shared embedding space. As mentioned in 2.2.1, the assumption here is that seman-
tically similar words will be closer in the embedding space. The BERT huggingface
implementation for the question encoder is a transformer outputting pooled outputs
as question representations, which refers to the last layer hidden-state of the first token
of the sequence ([CLS] token) further processed by a Linear layer and a Tanh activa-
tion function [6]. This vector representation as the output (d = 768) refers to the fact
that only the vector corresponding to the [CLS] token is used as the representation for
the entire input sequence. This allows for a fixed-size representation that summarizes
the semantic information of the entire input sequence, i.e., it serves as a compact rep-
resentation that can be used for similarity calculation between questions and passages
in the retrieval process. As for the LayoutLMv3Model, more information is provided
in the next paragraph.

Questionemb = QuestionEncoder(tokenized_question) (4.1)

Multi-Modal Encoder: LMv3

To encode the multi-modal context, we make use of the pre-trained LayoutLMv3Model
from Huggingface Transformers [35]. This is the bare LayoutLMv3 Model transformer
outputting raw hidden-states without any specific head on top. This method uses lin-
ear patches for image embedding, which is useful as it not only reduces computational
requirements but also eliminates the need for region supervision in training object de-
tectors (focusing on high-level features (e.g., structure of tables perhaps) rather than
noisy details). Instead of reconstructing raw pixels or region features, it has learnt
to reconstruct discrete image tokens of masked patches. This allows the model to
capture the essence of the image without getting distracted by irrelevant information.
This model learns to reconstruct masked word tokens from the text modality and sym-
metrically reconstruct masked patch tokens from the image modality [12]. To obtain
the target image tokens, a discrete Variational Auto-Encoder [15] is used to generate
latent codes.

ROIemb = ROIEncoder(processed_ROI) (4.2)

By directly using raw image patches from document images, LayoutLMv3 jointly
learns image, text, and multi-modal representations with unified Masked Language
Modeling, Masked Image Modeling, and Word Patch Alignment objectives. The Word
Patch Alignment objective is particularly noteworthy as it predicts whether the corre-
sponding image patch of a text word is masked. Important to note: the LMv3 encoder
adopts segment-level layout positions, which is an important difference from [38] and
[37]. This is because it is based on the assumption that if words appear in the same
segment then they are likely to carry very similar meaning and therefore they ought to
be represented with common 2D layout positions. Overall, LayoutLMv3 offers a com-
prehensive solution for multi-modal representation learning by combining innovative
techniques for image embedding, pre-training objectives, and cross-modal alignment.
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Shared Embedding Space and Similarity Calculation

The output of the encoders ougth to capture the underlying semantics and character-
istics of the question and contexts. Thus, we map them in a shared embedding where
similarity calculations can be applied. The similarities between the question and the
context vectors are then calculated, using two common measures: dot product and
cosine similarity. These measures provide a quantitative way to assess how similar
the question and context are in the shared cross-modal embedding space. If the vec-
tors are more similar (closer in the embedding space), it suggests that the context may
contain relevant information for answering the question.

Questionemb · ROIemb =
n

∑
i=1

Questionembi · ROIembi (4.3)

4.2.2 Training Procedure and Contrastive Learning

In this subsection we report the details regarding our approach for training process,
along with its objective and the choice of the loss function.

Training objective

The training objective is to optimize the shared cross-modal representation such that
the positive contexts are more similar to the question in the embedding space com-
pared to the negative contexts. In other words, the system is expected to learn to
differentiate between relevant and irrelevant ROIs for a given question, i.e., which re-
gions of a document image it’s relevant to the answer. By iteratively adjusting the
model’s parameters based on the contrastive learning process, we expect the system
to learn to generate meaningful embeddings that facilitate effective retrieval of ROIs.

Contrastive learning

To train the system, a technique known as contrastive learning is used. This involves
presenting pairs of positive (relevant) and negative (irrelevant) contexts. The posi-
tive context examples are ROIs containing information that is indeed relevant for an-
swering the question. On the other hand, negative context examples are ROIs that
do not contain the required information. This technique offers advantages for the
task at hand, given that the positive ROI holds essential information and the negative
ROIs lack pertinent data. First, we expect it to enable the system to discern subtle
distinctions which differentiate meaningful ROIs from their irrelevant counterparts,
accomplishing so by attending to visual and semantic cues. Consequently, we expect
this capability to empower the system to unravel the complexity of document images,
enabling precise localization of ROIs necessary for accurate answers. Second, by itera-
tively adjusting encoder parameters via the contrastive learning process, the system is
expected to generate embeddings that encapsulate rich semantic and visual represen-
tations. These embeddings act as concise and meaningful abstractions which should
optimize the retrieval of ROIs.

Categorical cross-entropy loss function

The optimization process involves minimizing the categorical cross-entropy loss func-
tion, which is defined as the negative log likelihood of the positive ROI. This entails
calculating the negative logarithm of the likelihood function, indicating how likely
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the model believes a given ROI to be positive based on the given question. This com-
parison involves evaluating the predicted probability distribution against the actual
probability distribution (i.e., the target labels). Ultimately, the optimization aims to
minimize the loss function by reducing the negative log likelihood associated with the
positive ROI. In Equation 4.4, y_i refers to the binary label for the positive ROI i, while
f_i represents the score (logit) associated with ROI i; the sigma represents the sigmoid
function which is used to map the logits to probabilities.

Loss = −∑
i
[yi · log(σ( fi)) + (1 − yi) · log(1 − σ( fi))] (4.4)

4.2.3 Baseline Models

We evaluate the results of our trained model against the following baselines. For the
text-only scenario, we consider the LayoutLMv3 model we train on only the ques-
tion inputs and the texts of the ROIs . For the vision only scenario, we consider the
LayoutLMv3 model we train on only the question inputs and the ROIs pixel values.
For the multi-modal scenario, we consider the LayoutLMv3 model we train on all the
information present in the ROIs (text + image + layout).

4.2.4 Evaluation Metrics

In order to evaluate the performance of our trained models, we use the following
evaluation metrics on the test set of the VisualMRC dataset: Normalized Cumulative
Discounted Gain (NCDG), Mean Reciprocal Rank @ k, and Recall @ k. These are stan-
dard metrics used to evaluate IR systems, and we report them as in [20]. Other metrics
we compute but do not report on are precision and hit-rate.
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Chapter 5

Experiments

In our setup, we train various models under different configurations, which we ex-
plain below. We ran experiments both on a local laptop leveraging the GPU and then
moved to a GPU cluster hosted on the cloud to able to increase the amount of data
used for training. We experimented with using a separate BERT-based tokenizer and
encoder for the input questions, but unfortunately the available resources did not al-
low us to properly train the models and collect useful results.

5.1 Hyperparameters

For the various experiments, we tweak a few important hyperparameters: the num-
ber of negative ROIs for contrastive learning, the effective batch size and, most im-
portantly, the modality on which they are trained. Important to note is that we use
accumulation of the gradients, which allows to accumulate the gradients over all the
mini-batches after the forward pass, and then normalize them by the amount of steps.
This technique allows to increase the effective batch size while keeping the same com-
putational overhead. The assumed relation between the number of negative ROIs
and performance is directly proportional: as we add more negative ROIs, the system
should have more information to learn the difference in relevance between ROIs. The
amount of total samples is used as an experimental value which allowed to run some
basic experiments locally. For the modality hyperparameter, we specify the values
below. For all the experiments we linearly warmup the learning rate with a warmup
ratio of 0.1. Given the memory constraints, we keep an effective batch size of 32 and
can only experiment by including up to 3 negative ROIs for each sample. For every
experiment, we train for a maximum of 10 epoch, using the early stopping callback
with a patience of 3 epochs (i.e., if the score does not improve after 3 epochs, training
stops).

5.2 Modalities

5.2.1 Text-only

For the text-only scenario, we tokenize the input question and the text present in the
positive and negative ROIs. This results in a batch containing the question input ids
and attention masks and ROIs input ids and attention masks, along with the ground
truth labels (a tensor of a single 1 and as many 0s as the number of negative ROIs). We
then pass this information accordingly to the question encoder and the ROIs encoder,
which output the embedding representations that we can use to perform similarity
calculation. The embeddings of the ROIs in this case only consider the tokens present
in the ROIs, and not the pixel values nor the bounding box coordinates of each token.
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5.2.2 Vision-only

For the vision-only scenario, we tokenize the input question and we only extract the
features directly from the ROI image. This results in a batch containing the question
input ids and attention masks and ROIs pixel values, along with the ground truth
labels. We then pass this information accordingly to the question encoder and the ROIs
encoder, which output the embedding representations that we can use to perform
similarity calculation. The embeddings of the ROIs in this case only consider the pixel
values of the ROI images, and not the text contained in them nor the bounding box
coordinates of each token.

5.2.3 Multi-Modal

For the multi-modal scenario, we tokenize the input question and we extract the fea-
tures directly from the ROI images, along with the text present in the ROIs and the
bounding box coordinates of each token in that text. This results in a batch contain-
ing the question input ids and attention mask, as well as the ROIs pixel values, input
ids and attention masks, and segment-level bounding boxes (as in [12]), along with
the ground truth labels. We then pass this information accordingly to the question
encoder and the ROIs encoder, which output the embedding representations that we
can use to perform similarity calculation. The embeddings of the ROIs in this case
consider all the vision and language information.
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Chapter 6

Results & Discussion

6.1 Results

Here we report the quantitative results of the trained models evaluated on the test
set of the VisualMRC dataset. The parameters for the various runs are reported in
Chapter 5 and we discuss the results below in Section 6.2.

Important aspects to mention are the fact that we were not able to run the experi-
ments using the bi-encoder setup and also we were not able to iteratively increase the
number of negative ROIs per each sample because of memory constraints.

6.1.1 Modalities results

In Table 6.1 below we report the results of the models trained on text-only data, us-
ing LayoutLMv3 to tokenize and encode both the question and the ROIs (uni-encoder
setup). Under the same configurations we report the results for vision-only and multi-
modal scenarios in Table 6.2 and Table 6.3 respectively. For each scenario, under con-
figuration, the abbreviations refer to the following: bs is the effective batch size, nnr is
the number of negative ROIs.

Configuration NCDG@2 MRR@2 Recall@2

bs=32-nnr=1 0.2614 0.3251 0.2711
bs=32-nnr=2 0.1571 0.1999 0.1675
bs=32-nnr=3 0.1678 0.2030 0.1743

TABLE 6.1: Metrics for the models trained on text-only data, in the uni-
encoder setup.

Configuration NCDG@2 MRR@2 Recall@2

bs=32-nnr=1 0.3957 0.5565 0.4338
bs=32-nnr=2 0.2253 0.3161 0.2497
bs=32-nnr=3 0.1769 0.2437 0.1954

TABLE 6.2: Metrics for the models trained on vision-only data, in the
uni-encoder setup.

6.2 Discussion

This thesis proposed to compare the impact of different modalities on retrieval perfor-
mance of regions of interest from document images, given a user query. As reported
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Configuration NCDG@2 MRR@2 Recall@2

bs=32-nnr=1 0.3767 0.5219 0.4262
bs=32-nnr=2 0.2404 0.3333 0.2654
bs=32-nnr=3 0.1615 0.2225 0.1751

TABLE 6.3: Metrics for the models trained on multi-modal data, in the
uni-encoder setup.

in Section 6.1 above, we find that both the vision-only and multi-modal scenarios im-
prove retrieval performance of ROIs, over the text-only scenario. Interestingly, the
vision-only scenario results in better performance than the multi-modal, which sug-
gests that including the layout information when training does not help the model
in differentiating the ROIs relevance given the query. Another consistent effect we
can extract from our results is that adding more negative regions of interest for each
sample decreases the retrieval performance, suggesting that contrastive learning neg-
atively impacts performance.

6.2.1 Interpretation of Results

In the context of our research questions, the results allow us to validate the first hy-
pothesis: we were able able to treat multi-modal contexts as passages and use them
to inform the reasoning for answering a user question. The results, however, do not
allow us to fully validate our second hypothesis: we expected multi-modal informa-
tion (joint representation of text, image and layout) to improve retrieval performance
over uni-modal approaches, but this is not fully the case. We can see that multi-
modality does increase performance over the text-only approach, but at the same time
the vision-only modality results in better performance than the multi-modal approach.
We speculate that this is a result of the resource-intensive and data-demanding Lay-
outLMv3 model that we use for encoding the joint ROI information, which resulted in
more computational expenses. Moreover, we believe that the result of the vision-only
scenario improving performance is related to our specific dataset and implementation.
There are various ways in which we could have devised the inputs to the model, but
the one we chose (explained in Chapter 4) seemed the most logical, although perhaps
not the most efficient and computationally viable. Finally, adding layout information
does not improve performance because of its high impact on the total sequence lengths
that are passed to the model during training. Below we discuss a few strengths and
limitations of our approach.

6.2.2 Strengths

One of the strengths of our approach is its ability to efficiently retrieve ROIs from a
diverse collection of documents in response to user queries. Even in situations where
the dataset’s OCR quality posed challenges, our filtering mechanism enabled us to
retrieve at least a (sub)-optimal number of ROIs for further processing. This efficiency
in ROI retrieval is critical for applications that require rapid and accurate access to
relevant visual information within a large document corpus, which is in line with the
motivations presented in Section 1.2.2.

The dataset adaptability of our approach is another strength worth noting. While
the current experiments were based on the VisualMRC dataset, the framework can
be extended to other datasets, such as the WebQA [4] (reviewed in 2.2.4), which of-
fer greater diversity and structure. Ideally, we would always prefer to spent as little
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time as needed on the pre-processing of training data. However, this is often not the
case with real-world data, as in the present project. However, the approach suggests
adaptability to a broader range of multi-modal retrieval scenarios beyond our initial
dataset.

6.2.3 Limitations

The utilization of contrastive learning in shaping the training process does not appear
to offer a promising solution. Despite its potential for superior representation learn-
ing and improved retrieval capabilities, as suggested by some prior research [20, 13],
our findings indicate that it is not a reliable technique for this multi-modal retrieval
task. Even when confronted with the limitations of our dataset, contrastive learning
fails to demonstrate its viability as a potent tool for enhancing the model’s ability to
discern relevant ROIs. This discouraging outcome suggests that further exploration
and refinement of contrastive learning techniques for multi-modal retrieval may not
yield fruitful results.

Contrastive learning heavily relies on the selection of suitable negative samples for
training. We did not explore the utilization of hard negatives, a technique employed
in prior research and shown to be useful for learning better representations [20, 13].
Incorporating hard negatives into our training strategy could potentially enhance the
model’s ability to differentiate between positive and negative ROIs. Further explo-
ration of this technique may be worthwhile for future research in contrastive learning.

One of the limitations of our study was the lack of control over the dataset collec-
tion process, particularly concerning the Optical Character Recognition (OCR) quality.
As discussed in Section 3.1, the quality of the VisualMRC data, which served as the
foundation for our contrastive learning model, varied significantly. This variability
posed challenges, as certain samples contained insufficient (negative) regions of inter-
est (ROIs) for effective contrastive learning. To address this issue, we implemented a
filtering mechanism to exclude samples that did not include at least a given number of
negative ROIs. However, this approach may have inadvertently introduced bias into
the dataset, which could impact the model’s performance.

Another limitation we encountered was the impact of using different tokenizers
and encoders on the model’s learning process. Given the available computational re-
sources, we were not able to successfully experiment with training bi-encoder setups,
where the embeddings of the question and the ROIs are the output of two different en-
coders. Moreover, local experiments with a lower amount of data revealed that these
variations prevented the model from effectively learning the data, resulting in loss
spikes and unexpected retrieval performance values. This suggests the need for more
systematic investigations into the compatibility and interoperability of tokenization
and encoding methods for such multi-modal learning tasks.

An important aspect to mention is that, upon analyzing qualitatively our dataset,
we observed that positive and negative ROIs for a given QA pair were not significantly
different. We believe this similarity posed a challenge to our system, as it struggled
to effectively differentiate between them during training, and indeed our results val-
idate this belief. Future work could explore strategies to increase the dissimilarity
between positive and negative ROIs, potentially through data augmentation or more
specialized sampling techniques, like in the original DPR paper [13].

Another aspect worth to mention is that, in our project, we chose to resize all ROI
images to a fixed size of 224x224 pixels. While this standardization simplifies pro-
cessing, it may result in the loss of valuable information, especially for ROIs with
varying scales. A potential improvement could involve resizing images to a scale
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factor tailored to each ROI image, ensuring that no information is lost during the pre-
processing stage. This may lead to better representation learning, particularly in sce-
narios with a wide range of ROI sizes.
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Chapter 7

Conclusion

7.1 Summary of Findings

This challenging thesis project aimed to compare the impact of different modalities
on the retrieval performance of regions of interest (ROIs) in document images given
user queries. In Section 6.1, we discovered that both the vision-only and multi-modal
scenarios outperformed the text-only scenario in terms of ROI retrieval. Interest-
ingly though, the vision-only approach showed superior performance compared to
the multi-modal approach, indicating that including layout information during train-
ing did not enhance the model’s ability to discern ROI relevance to the query. Another
important finding was that increasing the number of negative ROIs for each sample
had a detrimental effect on retrieval performance.

In terms of our research questions, we were able to validate the first hypothesis:
treating multi-modal ROIs as passages to inform user question reasoning was success-
ful. However, the results did not fully support our second hypothesis, which expected
multi-modal information (combining text, image, and layout) to consistently outper-
form uni-modal methods. We feel safe to suggest that leaving out layout information
for this specific task may in the end result in less computational requirements and
better retrieval performance.

In conclusion, our multi-modal retrieval approach exhibits some strengths, in-
cluding efficient ROI retrieval and scalability to diverse datasets. These strengths,
although promising, are counterbalanced by the limitations we have encountered in
our project, such as dataset variability and encoding techniques that have hindered
our progress. While the challenges were many, they also offer valuable insights into
areas for improvement and future research directions. As we navigate this balance
between strengths and limitations, it is crucial to consider these factors when inter-
preting our results, ultimately guiding the development of more effective multi-modal
retrieval models in the future.

7.2 Implications and Future Work

A viable and promising way forward for enhancing our multi-modal retrieval ap-
proach would be to include the WebQA dataset, as done in [20]. The WebQA dataset
offers a wealth of diverse and real-world data, providing a unique opportunity to eval-
uate our approach in a more challenging and ecologically valid setting. More broadly,
we suggest future work in this area to compose a custom-made dataset which pre-
serves the useful characteristis of question and answer diversity of the VisualMRC
dataset and the approachability and ease of use of the WebQA dataset. We expect
such effort to help gain insights into how model performs under different data condi-
tions and further refine its capabilities.
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Recently, at a conference, I found out about an interesting work by Berrios et.al
[3], which introduces the LENS framework. Here the idea is to have Large Language
Models (LLMs) to solve computer vision tasks, which could open up new possibili-
ties for advancing our multi-modal retrieval approach. LENS introduces innovative
techniques by freezing the components of the pre-trained models and using a mix of
image features, extracted with CLIP [25] and BLIP [19], which are then used to prompt
a Large Language Model (LLM) and generate the answer. This approach has the ad-
vantage that no training is required. Therefore, we think that incorporating elements
of LENS into our framework may enable us to address some of the limitations we have
encountered and enhance the overall effectiveness of our retrieval system.

To gain a more nuanced understanding of our results, a fruitful direction for fu-
ture research involves categorizing queries based on question types. By dissecting the
retrieval outcomes along selected dimensions, such as the types of images or whether
they pertain to spatial or temporal dimensions (as discussed in Section3.1), we can un-
cover patterns and performance variations that might be obscured in an aggregated
analysis. This approach can provide valuable insights into the strengths and weak-
nesses of our model across different query categories, aiding in the development of
more specialized retrieval strategies.

An intriguing proposition for enhancing our multi-modal retrieval pipeline is the
integration of a keyword matching system early in the pipeline. This system could
serve as a preliminary filter, narrowing down the search space based on keyword
matches before applying the full multi-modal retrieval pipeline. This approach may
also enhance the reliance on specific keywords and help us identify potential spuri-
ous correlations. We believe that by uncovering the question types the model relies
on when predicting the relevance of ROIs, we can refine our retrieval strategy and
improve the model’s overall performance.

For a more comprehensive and advanced retrieval methodology, future research
could explore the integration of a retrieval augmented generation approach, which is
a very recent and promising research field. By combining retrieval techniques with
LLMs and natural language generation, we can expand the pipeline’s capabilities.

The present research was significantly relevant for the field of multi-modal re-
trieval, and it hopes to provide valuable insights for enhancing neural network models
dedicated to document visual information retrieval. By emphasizing the importance
of both visual layout and textual context, it contributes to the expansion of current
research efforts, as it seeks to deepen our understanding of the actual usefulness of
unified multi-modal approaches, and inspire further progress in this or other direc-
tions.
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