
Predicting traveler demand using explainable models and feature engineering

by

Colino Sprockel

Submitted to the Artificial Intelligence Graduate Program

in partial fulfillment of the requirements for the degree of

Master of Science

Graduate Program in Artificial Intelligence

Utrecht University

2023

ii

Predicting traveler demand using explainable models and feature engineering

APPROVED BY:

dr. Heysem Kaya

(Thesis Supervisor)

dr. Thijs van Ommen

DATE OF APPROVAL: DD.MM.YYYY

iii

ACKNOWLEDGEMENTS

I want to thank Heysem Kaya, not only for the support and insight he pro-

vided me during writing this thesis. But also for his patience and generous in-

vestment of his time. I want to thank Tjebbe Hepkema for his critical but always

helpful feedback, his support in preparing my presentations, and his general help-

fulness if I was unsure about something either academically or personally. I want

to thank Marie Koorneef for her feedback and for providing a more practical view,

which was a nice contrast to the academically inclined Heysem and Tjebbe. Lastly,

I want to thank the whole of Team Sigma, the team I was a part of during the

writing of this thesis for their hospitality, encouragement, and friendship.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

LIST OF SYMBOLS . x

LIST OF ACRONYMS/ABBREVIATIONS xi

1. INTRODUCTION . 1

1.1. Problem Statement . 1

1.2. Objectives . 3

2. Background on Methods and Literature 5

2.1. Explainable and Interpretable Machine Learning 7

2.2. Introduction to Time Series . 10

2.3. Intrinsically Interpretable Models 12

2.3.1. Decision Trees . 12

2.3.2. Multivariate Linear Regression 13

2.3.3. Generalized Linear Models 17

2.3.4. Generalized Additive Models 18

2.3.5. Explainable Boosting Machine 20

2.4. Feature Selection Methods . 23

2.4.1. Mutual Information . 26

2.5. Black Box Models . 26

2.5.1. LGBM . 26

2.5.2. DeepAR . 28

2.6. Post-Hoc Explainability Methods 29

2.6.1. Shapley Additive Explanations 30

v

2.7. Hybrid approaches and representation learning 32

2.7.1. Singular Value Decomposition 33

2.7.2. β-VAE . 35

2.8. Related Work in Explainable Time Series Forecasting 39

3. Research Approach . 42

3.1. Proposed method . 42

3.1.1. Research Question 1 . 43

3.1.2. Research Question 2 . 44

3.1.3. Research Question 3 . 45

3.1.4. Research Question 4 . 45

3.2. Performance Measures . 45

3.3. Data for Experimental Validation 46

3.3.1. NS Data . 46

3.4. Feature Engineering . 47

3.4.1. Handcrafted Features . 48

3.4.2. Features for Dimensionality Reduction 52

4. Experimental Results . 54

4.1. Experimental Setup . 54

4.1.1. Base Model Design . 55

4.1.2. DeepAR . 56

4.2. Evaluation of Models using Exclusively Handcrafted Features 56

4.3. Evaluation of Models using a Combination of Handcrafted Features

and Dimensionality Reduction Features 59

4.4. Evaluation of Models using a Combination of Handcrafted Features

and the Additional Features in Uncompressed Form 63

4.5. Fidelity of SHAP explanations . 64

4.6. Intelligibility of selected models . 65

vi

5. Discussion and Future Work . 69

5.1. On Computational Demands and Environmental Effects 74

6. Conclusion . 76

REFERENCES . 77

APPENDIX A: Appendix 1: Full List of Considered Features 87

APPENDIX B: Appendix 2: Additional Figures 93

APPENDIX C: Additional Background . 100

C.1. Lagged Autocorrelation . 100

C.2. Feature Selection . 101

C.3. LGBM hyperparameters . 103

C.4. Selection of Latent Variables in Representation Learning 103

C.5. β-VAE model selection . 105

C.5.1. Results For All Models . 106

vii

LIST OF FIGURES

1.1 Example of a crowdedness forecast in the NS app 1

2.1 Illustration of GAM component functions learned via spline

fitting. 19

2.2 Examples of insights generated through an EBM. 22

2.3 Example of a 50 day DeepAR forecast of IBEX-35 29

2.4 Quality of reconstruction when representing one day of one

OD-pair using the top 2, 4, and 6 components. 33

2.5 Architecture of the β-VAE model used in the experimental phase. 41

3.1 Strategy to iteratively engineer an optimal set of features . . . 43

3.2 Model pipeline used for answering RQ 1 44

3.3 Model pipeline for answering RQ 2 44

3.4 Distribution of travelers over the complete set of OD-pairs . . 47

3.5 Visualization of lagged autocorrelation up to 30 days. 49

4.1 Heatmap of feature sets found through selection methods. . . . 58

4.2 Visualization of the top 6 SVD components. 61

4.3 Latent traversal plot of the best β-VAE model. 62

4.4 Infidelity plot of SHAP explanations 65

4.5 Model internals of an interpretable LR model that predicts the

16:00-16:30 timeslot. 66

4.6 Number of nonzero weights per model in the LASSO multi-

output model per timeslot . 67

4.7 SHAP explanation of a single prediction by the lgbm no comp

model that predicts the timeslot of 16:00-16:30. 68

B.1 Feature Importance computed through Mutual Information . . 94

viii

B.2 EBM global feature importance 95

B.3 Pearson correlation heatmap between features 96

B.4 hyperparameter tuning plot to decide α for LASSO model . . . 97

B.5 Count of the number of nonzero coefficients corresponding to

the features in the sub-models of the LASSO multi-output model 98

B.6 Global feature importance of lgbm no comp model, calculated

using TreeSHAP . 99

C.1 Visualization of lagged autocorrelation up to 30 days. 100

C.2 Linear Regression learning curve analysis 102

C.3 Mean absolute error of time series reconstruction using SVD’s

top k components. 104

C.4 Accuracy measurements on validation of an LGBM model, en-

hanced with top k components from SVD dimensionality re-

duction. 104

C.5 Accuracy measurements on validation of an LR model, en-

hanced with top k components from SVD dimensionality re-

duction. 104

C.6 visualization of the top 12 SVD components. 105

C.7 Reconstruction accuracy of β − V AE models with 6 latent

units, at different values of β. 106

C.8 Reconstruction accuracy of β−V AE models, at various latent

dimensions and β values . 107

C.9 Forecasting accuracy of LR models that received latent repre-

sentations generated through β-VAE models 108

C.10 Forecasting accuracy of LGBMmodels that received latent rep-

resentations generated through β-VAE models 109

C.11 Mean Absolute Error of all final models on the test set. 111

ix

LIST OF TABLES

4.1 Agreement between strict lasso features and lr sfs features . . . 57

4.2 Agreement between lgbm sfs features and lr sfs features 57

4.3 MAE of base models with handcrafted feature sets on the test

set, and paired t-test results from comparison with the baseline

DeepAR model. 59

4.4 Comparison of models with access to handcrafted features, and

additional historical data in a reduced form, compressed by β-

VAE or SVD. 63

4.5 Comparison of models with access to handcrafted features, and

additional historical data in an uncompressed form. 64

C.1 Table with LGBM hyperparameters 103

x

LIST OF SYMBOLS

n Number of distinct data points in the dataset

p Number of variables available for use in making predictions

D Dataset containing n distinct data points

X Matrix representing the independent variables

xi Independent variables of a single datapoint

y Vector representing the dependent variables or targets

yi Target or dependent variable for the i-th datapoint

ŷi Model’s approximation or estimation of yi

ŷ Model’s approximation or estimation of y

xi

LIST OF ACRONYMS/ABBREVIATIONS

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

AI Artificial Intelligence

β-VAE Beta Variational Autoencoder

CART Classification And Regression Tree

CNN Convolutional Neural Network

CoST Contrastive Learning of Disentangled Seasonal-Trend Repre-

sentations for Time Series Forecasting

DNN Deep Neural Network

EBM Explainable Boosting Machine

FS Forward Selection

GBDT Gradient Boosting Decision Tree

GLM Generalized Linear Model

Grad-CAM Gradient-weighted Class Activation Mapping

ID3 Iterative Dichotomiser 3

LGBM Light Gradient-Boosting Machine

LIME Local Interpretable Model-Agnostic Explanations

LRP Layer-wise Relevance Propagation

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ReLU Rectified Linear Unit

RFE Recursive Feature Elimination

RNN Recurrent Neural Network

xii

SCS System Causability Scale

SFS Sequential Floating Search

SGD Stochastic Gradient Descent

SHAP SHapley Additive exPlanation

SUS System Usability Scale

VAE Variational Autoencoder

XAI eXplainable Artificial Intelligence

1

1. INTRODUCTION

1.1. Problem Statement

The Nederlandse Spoorwegen (NS - Dutch Railway company) is a vital part

of Dutch infrastructure that provides public transport through trains, transporting

an average of 1 million travelers a day. The population density and small size of

the country offer unique challenges to the planning of a quality timetable [1]. The

NS aims to provide quality transportation and seating for every traveler. Unfor-

tunately, this is not possible at all times and sometimes trains are overcrowded,

leaving travelers unhappy. To help provide information to travelers, NS predicts

short-term train crowdedness. Now, when travelers plan their journey in the NS

app they are informed of the crowdedness of the route they intend to take. This

is done by showing a drawing of either 1 person (low occupancy, there should be

plenty of seats left), 2 people (medium occupancy, there should still be some seats

left), or 3 people (very crowded, there are likely no seats left).

Figure 1.1: Example of a crowded journey, as indicated by the red pictogram of three

people

This information allows travelers to adjust their expectations, leading to

higher satisfaction. Alternatively, the traveler can use this information to pick a

less crowded journey by either changing their departure time or taking a different

route. An added benefit of the latter is that it improves traveler distribution by

2

shifting travelers from crowded trains to less crowded trains. One of the challenges

NS faces is coping with rush hour demands in the morning and evening. Since

material and resource demands are determined mostly by peak travel demand,

increasing transportation capacity during rush hour through the deployment of

extra rolling stock and personnel is very costly. This shows the potential of meth-

ods that can motivate travelers to travel outside of rush hours as a cost-effective

method to improve travelers’ experiences.

Unfortunately, it is difficult to adjust the train schedule and the material used

based on the short-term crowdedness predictions, since changing the deployment

of rolling stock is a complex puzzle. Other, longer-term forecasts are used for

that purpose. There are some exceptions, such as the route to the train station

of the popular beach town Scheveningen, where the NS is able to use short-term

crowdedness predictions to adjust rolling stock rapidly. On this route in particular,

the NS struggled to correctly estimate transportation demand in advance, leading

to incredibly overcrowded trains sometimes and mostly empty trains at other times.

They have now implemented a dedicated model that incorporates weather forecasts

to produce high-quality forecasts.

The short-term crowdedness prediction currently in use by the NS consists

of two steps. The first one involves forecasting the number of passengers who will

travel from a given origin station (O) to a given destination station (D) every half

hour. To accomplish this, the NS utilizes a probabilistic time series forecasting

DeepAR model [2] for busy origin-destination (OD) pairs and a Savitsky-Golay

smoothing algorithm [3] using data from the previous week’s passenger counts for

OD pairs with lower volumes. The prediction takes place at night and predicts

the current day, the next day, and the day after. The input features are only the

3

number of passengers in the past, and a binary feature indicating the day is a

national holiday. The second step is to predict which trains these passengers will

choose. A RAPTOR algorithm [4] is used to determine the options going from

O to D at every minute of the day. Then the passengers are distributed over the

journey options according to a predetermined formula that takes into consideration

factors such as the type of train, travel time, and the number of transfers.

Predicting train crowdedness remains a challenging problem and wrong pre-

dictions can heavily impact customer satisfaction. We aim to improve these pre-

dictions using explainable AI methods to understand causal relations between the

inputs and outputs, accelerate feature engineering and diagnose problems in outlier

forecasting errors.

1.2. Objectives

The main goal is to engineer a method that can achieve performance measures

close to state-of-the-art models such as DeepAR at the OD-level, with the added

benefit that the resulting model is interpretable, meaning that data scientists can

understand the effect of individual features on the model’s predictions.

The first approach is to engineer a set of intelligible features such that a glass-

box model such as linear regression or explainable boosting machine [5] can achieve

adequate performance whilst maintaining an acceptable level of interpretability by

keeping the number of features limited and intelligible. Feature engineering will

first be done by handcrafting features through expert knowledge, iteratively adding

removing, and adjusting features based on the insights we receive when auditing

glassbox models trained on these features. Later, we will create additional features

4

using existing dimensionality reduction tools such as singular value decomposition

and variational autoencoders.

Finally, we examine the use of black-box models such as Light Gradient-

Boosting Machine (LGBM) paired with SHAP for explainability [6]. The inputs for

these black-box models will be the features we designed through feature engineering

and dimensionality reduction as mentioned above.

The main reason for requiring interpretability or explainability would be for

auditing outlier predictions and iteratively improving model performance through

feature engineering and/or model modifications. Finally, we want to analyze var-

ious eXplainable Artificial Intelligence (XAI) methods in the time series domain

and report our experiences, the benefits, and the drawbacks of these methods.

5

2. Background on Methods and Literature

Achieving interpretability can be done through a variety of different paths:

one can decide to restrict model selection to models that are interpretable by

default, such as shallow decision trees, explainable boosting machines (EBM), and

sparse multiple linear regression. Unfortunately, the same properties that make the

models interpretable also limit their expressivity and some performance is sacrificed

when the relationship between input variables and targets is more complicated. If

this limitation is severe enough, one may opt to use black box models such as

(deep) neural networks and LGBM, followed by a secondary method that is able

to provide explanations about the model’s decisions.

The methods that can provide explanations are divided into two groups,

model-agnostic and model-specific techniques. Model agnostic approaches treat

the model as a black box and provide explanations purely by observing and some-

times modifying the input and output of the model. Therefore, they can be applied

to any machine learning model. Examples of model-agnostic techniques are par-

tial dependence plots, SHAP and LIME [6–8]. Model-specific techniques do utilize

internal knowledge of the model in providing explanations, these methods are

therefore not applicable to all types of models but restricted to certain kinds. An

example that is only applicable to convolutional neural networks is Grad-CAM,

which highlights areas of importance in the classification of images [9].

In this thesis, n represents the number of distinct data points in the dataset,

and p denotes the number of variables that are available for use in making predic-

tions. Such that D = {(xi, yi)|xi ∈ Rp, yi ∈ R, 1 ≤ i ≤ n}.

6

The matrix X represents the independent variables, where each row of the

matrix corresponds to a single datapoint, and each column corresponds to a par-

ticular variable. The targets, or dependent variables, are represented by a vector

y ∈ Rn, where each element of the vector corresponds to the target for the corre-

sponding row of the matrix X. In other words, the ith element of y is the target

for the ith datapoint: yi, which is represented by the ith row of X. When we

speak of a single sample, we use the notation of xi which represents the indepen-

dent variables of that sample where xi = (xi,1, xi,2, · · · , xi,p), and yi to represent

the target or ground truth belonging to that sample. The symbols ŷi and ŷ, are

used to denote a model’s approximation or estimation of yi and y, respectively.

In this thesis, we shall sometimes use a matrix Y ∈ RD×T to denote a

univariate time series, where each row corresponds to a single day and each column

represents a specific time point within that day. Therefore, Y can be written as:

Y =

y1,1 y1,2 · · · y1,T

y2,1 y2,2 · · · y2,T
...

...
. . .

...

yD,1 yD,2 · · · yD,T

 . (2.1)

The value yd,t refers to the target value at the t-th time point of day d. Here,

D represents the total number of days and T denotes the total number of time

points within a day.

This notation is used throughout the thesis to explain and analyze our meth-

7

ods, deviations are explicitly mentioned.

2.1. Explainable and Interpretable Machine Learning

It is commonly thought that there exists a tradeof between model inter-

pretability and model performance, where one has to sacrifice one to gain more of

the other. Recently, more researchers are starting to fight against that notion, such

as Rudin et al, who state that “ it is important not to assume that one needs to

make a sacrifice in accuracy in order to gain interpretability. In fact, interpretabil-

ity often begets accuracy, and not the reverse. Interpretability versus accuracy is,

in general, a false dichotomy in machine learning.” [10]

In fact, Rudin et al argue that it is possible to achieve both high inter-

pretability and high performance in machine learning models. They argue that

interpretability can often improve model performance, because it allows practi-

tioners to better understand the model and how it is making decisions. This

can lead to better data preprocessing and transformation, better model selection,

hyperparameter tuning, and feature engineering, which can all contribute to im-

proved model performance. Additionally, the authors argue that interpretability is

important for the practical deployment of machine learning models. For example,

in many real-world applications, the underlying distribution of the data changes

over time, this so-called domain shift can have far-reaching consequences for the

real-world performance of the model [10]. In the case of black-box models, prob-

lems arise because of the difficulty troubleshooting the model, which can cause

long periods of an inaccurate model in use, or in some cases the necessity to take

the model offline until troubleshooting is completed and a fix is found.

8

It is difficult to give a full definition of interpretability that covers all possible

uses. Doshi-Velez and Kim define interpretability as “the ability to explain or to

present in understandable terms to a human” [11]. In general, humans are only

able to hold a limited amount of information in working memory [12], therefore

explanations that are understandable need to be short and of limited complexity

[13].

The level of interpretability of a system does not only depend on intrinsic fac-

tors, such as the number of variables involved and the complexity of the operations

performed to produce an output. It also depends on the specific human involved

and the circumstances in which an explanation is to be used: it is context depen-

dent. If the human is a machine learning expert with domain knowledge, more

complex explanations can be considered to be interpretable [14]. The circumstance

in which the human is provided the information also matters: for example in the

case of a time constraint, or cognitive overhead from having to pay attention to

multiple tasks simultaneously [15]. In those cases, the explanation should be made

simpler to achieve the desired level of interpretability.

Since what is considered understandable to a human depends on many factors

intrinsic to the system, and also on the kind of human that uses these explanations,

the definition above should not be seen as a yes or no question. Instead, it should

be seen as a spectrum on which AI systems can be placed, ranging from wholly

opaque neural networks with billions of parameters on one side, and, for example,

simple tree or rule-based models on the other side [16].

To assess model interpretability, Doshi-Velez and Kim [11] distinguish be-

tween three levels of evaluation. The highest level is the application-grounded

9

level where interpretablity is examined by its effects on actual outcomes. This

way a system is directly tested on the task it was built for. An example is a

homework-hint system that was evaluated on the post-test scores of its users [17].

Unfortunately, experiments at this level are often difficult, expensive and time-

consuming to perform. An easier alternative is human-grounded evaluation, where

humans perform simplified tasks to evaluate model interpretability. A common

approach at this level is model simulation: where humans are presented with in-

put and the model or an explanation and are tasked with simulating the model’s

prediction [18]. Common metrics are accuracy, response time, and subjective

difficulty [13, 18]. The simplest level, functionally-grounded, requires no human

experiments. Instead, a formal definition of interpretability is defined and used to

measure explanation quality. These quantitative measures are usually objective

and can be based on observations from application-grounded and human-grounded

evaluations, such as the depth of a decision tree or the maximum number of leaf

nodes. Thus we indirectly rely on research performed at the application-grounded

and human-grounded levels to decide if we can consider a model interpretable.

In the case of black-box models coupled with an explainability method like

SHAP or LIME, we are interested in the fidelity of the explanation, by which we

mean how closely the explanation mimics the original model [19]. If the fidelity

of an explanation is low, it means that the explanation is doing a poor job of

explaining what is happening inside the model. One must be aware that, even

with methods that perfectly explain why a model predicts a certain outcome there

is still the possibility of a Rashomon effect: where separate models can rely on

completely different covariate information and reach a similar prediction [10].

In our case, we aim to use explanations to audit and improve model perfor-

10

mance, therefore explanations need only be understandable by domain experts and

not necessarily by travelers. For the remainder of this thesis, we will treat a system

that is capable of providing explanations of its predictions that are understandable

to domain experts as explainable or interpretable systems.

2.2. Introduction to Time Series

A time series is a sequence of numerical values over time. Time series fore-

casting is the challenge of predicting future values in the series based on its past.

Forecasting is generally categorized into one-step forecasting and multi-step fore-

casting. One-step forecasting means only predicting one future value in the series,

this is a markedly simpler challenge than multi-step forecasting since the system

can heavily rely on the most recent known values. Multi-step forecasters use either

autoregression or multi-output forecasting.

Autoregressive forecasting is an approach where the underlying model is only

capable of one-step ahead forecasting and the previous predictions are fed back

into the model as new data points to predict further into the future. Given that

the model relies on its own predictions to make further predictions there is a big

risk of propagating errors of increasing size the further one tries to predict the

time series [20]. Furthermore, there is the property that the underlying model

treats the recursively generated inputs as true values since it was trained in one-

step ahead forecasting on a training set with known values. The most well-known

method is Autoregressive Moving Average (ARMA), where Autoregressive and

Moving Average models are combined. Autoregressive Integrated Moving Average

(ARIMA) is an expansion of this method, where differencing is applied to the time

series to make it more stationary [21]. These and other related models have been

11

the standard approach for some time.

An alternative is multi-output forecasting, where one model predicts multiple

time points at once [20]. The advantage is that one is guaranteed that the model

only uses historic information. The downside is that this generally leads to more

complicated models, for example in the case of linear regression, this would re-

quire the use of complicated features to capture the (often nonlinear) relationships

between historical data, the time of day, and the target variable.

A common method to mitigate this issue in multi-output forecasting is to

train one model for each time point, meaning that each model is fitted to target

variables of one time slot, which saves the model from modeling those challenging

nonlinear relationships. If you want to predict one full day ahead using multi-

output forecasting, you would need a number of models equal to the number of

time points in one day. In the case of NS data, this would result in 48 models if

we want to forecast one day into the future (1 model per half-hour time slot), if

we want to predict a full two days into the future this number would jump to 96

models.

Recently, we are seeing a shift toward deep learning, and hybrid systems,

which combine domain-specific models with deep learning components [20]. This

shift towards deep learning has resulted in an increase in the opaqueness of the

models, and an increase in the computational cost of training and running these

models.

12

2.3. Intrinsically Interpretable Models

2.3.1. Decision Trees

Decision trees are a supervised learning method that can be applied to both

regression and classification tasks. These models work by following a series of

decision rules based on feature values, starting from the root node and proceeding

down the tree until a leaf node is reached. In the case of a classification problem,

the leaf node contains a class. In the case of a regression problem, the leaf node

contains an estimated numerical value. The branching factor of a decision tree

represents the number of branches at each node. The simplest case is a binary

decision that branches into two paths at each node. Each branching point on a

binary decision tree can be represented mathematically in the following form:

if xj ≤ s then ŷ = c1, else ŷ = c2, (2.2)

where xj is the variable of interest and s denotes the threshold value. c1 and c2

are the subsequent paths the algorithm takes depending on the decision rule. If

ci is a leaf node, it returns a value. If it is not a leaf node, it will forward to

the next decision rule. The result of these decision rules is the partitioning of the

input space into a series of regions, where each region corresponds to a particular

predicted value.

Decision trees can be constructed though a variety of algorithms, such as ID3

and CART [22,23]. These algorithms typically select decision rules by maximizing

some criterion such as entropy or the increase in the Gini index, which can be seen

as measures of node purity.

13

Decision trees are popular because they are easy to understand and interpret.

The tree structure of a decision tree allows for a clear and visual representation of

the decisions and splits made by the model, which can be helpful for explaining the

model’s predictions to others. However, the interpretability and risk of overfitting

can be impacted by several factors such as tree depth and the number of features

considered by the model. As the depth of the tree increases, the model becomes

more complex and harder to fully grasp on a global level. The interpretability

of a decision tree can be improved by limiting the depth of the tree, limiting the

number of features used, and carefully selecting the thresholds for making decisions

at each node. It can also be helpful to use techniques such as pruning or feature

selection to simplify the tree.

Unfortunately, classical decision trees such as the ones discussed above, are

not very expressive and struggle to model complex relationships. Methods that

expand the expressivity of the model, such as bagging and boosting, also make it

less interpretable.

2.3.2. Multivariate Linear Regression

Multiple linear regression is a popular method, where the relationship be-

tween a dependent variable y and p independent variables or features in X is

modeled linearly:

ŷi = fΘ(xi) = θ0 + θ1xi,1 + θ2xi,2 · · · θpxi,p, (2.3)

where θ0 is the bias, and θj with j ∈ {1, 2, ..., p} are the learned weights. Multiple

linear regression has some mathematical properties of interest. The first assump-

14

tion is linearity: it assumes the relationships between feature variables and the

target variable is linear. This means that the change in the dependent variable

ŷi is proportional to the changes in the independent variables. For example, if

the independent variable xi,j increases by one unit, the dependent variable is ex-

pected to increase by a constant amount θj. Note that linearity implies that the

constant amount θj is independent of the starting value of the independent vari-

able xi,j. If the relationship between variables is nonlinear, the predictions made

by the model may not be accurate. The second assumption is homoscedasticity

which means that the model error should be relatively constant along the values of

the dependent variables. Furthermore, we have the assumption of the absence of

multicollinearity. Which requires that features are not strongly correlated. Hav-

ing multicollinearity does not negatively impact model performance. However, it

does heavily impact model interpretability as we have no way of knowing which

of a couple of highly correlated variables actually causes the change in the target

variable.

The bias θ0 and the weights θj are found by minimizing the residual sum of

squares (RSS)

RSS =
n∑

i=1

(yi − ŷi)
2 = ||y − ŷ||22, (2.4)

where yi is the ground truth of variable y in the ith sample, ŷi is the predicted

value for variable y in the ith sample, and || · ||2 the Euclidean norm. This means

the cost function can be written as

L(Θ) =
n∑

i=1

(
yi −

(
θ0 +

p∑
j=1

xijθj

))2

, (2.5)

15

where, Θ represents the collection of all the weights, including the bias θ0 and the

weights for the features θ1 through θp. This leads to the optimization of the model

with:

fΘ = argmin
Θ

L(Θ). (2.6)

To prevent overfitting and to reduce the number of variables impacting predic-

tions we can apply a regularization method. The two most popular ones are L1

(LASSO) and L2 (ridge) regularization. Tibshirani was the first to introduce L1

regularization [24], which adds a penalty term that penalizes the absolute values

θj by a certain factor λ:

fΘ = argmin
Θ

L(Θ) + λ

p∑
j=0

|θj|. (2.7)

Hoerl and Kennar were the first to introduce L2 regularization [25], which penalizes

the model by the square of the model weights:

fΘ = argmin
Θ

L(Θ) + λ

p∑
j=0

θ2j . (2.8)

When considering explainability, L1 regularization is generally preferred since

it pushes models to become sparse, with most weights set to zero. Whereas L2

regularization tends to lead to models with lots of small weights since the squared

penalty is tiny for small numbers.

16

Multiple linear regression is generally considered to be a glassbox model, as

the impact of a variable xj on the target variable y can be directly inferred from

the weight θj: changing feature values xj by one unit changes the prediction by

θj when we keep all other values the same. One caveat is that the human mind

has a working memory of limited capacity and when the number of features with

nonzero weights θj is very large it may be difficult for us to make sense of the

model. To improve interpretability one can opt to transform continuous variables

into (multiple) binary features. Binary features are easy to interpret since we only

have to look at the bias θ0 and the coefficients θj of the features that have a value

of 1 to have an understanding of the output.

In linear models, the feature importance is the absolute value of the t-

statistic, which is the estimated value of its weight scaled with its standard er-

ror [26]:

tθj =
θj

SE(θj)
, (2.9)

where SE() is the standard error of estimation. This incorporates the fact that we

consider a feature xj for which we are more certain about its related weight θj, it is

rated as more important. Note that multicollinearity increases the standard error

of estimation of the affected weights θj and therefore leads to lower t-statistics.

Since the weight θj is directly related to the scale of xj, it is important to perform

scaling on all features to get relevant t-statistics, with z-normalization being the

most popular method:

xi,j,norm =
xi,j − µxj

σxj

, (2.10)

17

where µxj
represents the mean of the feature xj and σxj

represents the standard

deviation of the feature xj. This transformation results in a feature with a mean

of 0 and a standard deviation of 1.

2.3.3. Generalized Linear Models

Linear regression assumes a linear relationship between the independent vari-

ables in X and the target variable y. Unfortunately, this assumption excludes

many cases, such as the Bernoulli distribution, where the target can only assume

two values: 0 or 1. Nelder and Wedderburn were the first to propose the General-

ized Linear Model (GLM) as a solution [27]. To handle nonlinear relations between

features and target variables the linear regression model is expanded with a link

function g, which performs an operation on the result of the linear regression:

g(fΘ(x)), (2.11)

where fΘ(x) is defined in equation 2.3.

A common example of a GLM is logistic regression, where the link function

g() is the logistic function, which squeezes the outcome between 0 and 1:

g(fΘ(xi)) =
1

1 + exp(−fΘ(xi))
. (2.12)

Adding a link function to a linear model makes interpretation more difficult.

Changes of one unit to a variable xj still change fΘ(xi) by θj. However, when

g is nonlinear in fΘ(xi), changes to fΘ(xi) have different effects on the outcome

depending starting value of fΘ(xi) [26]. The optimal parameters Θ of a GLM are

18

found in a manner similar to linear regression:

fΘ = argmin
Θ

n∑
i=1

(
yi − g

(
θ0 +

p∑
j=1

xijθj

))2

. (2.13)

Regularization can be applied in the same manner as to regular linear regression,

by adding an L1 or L2 penalty term to the cost function as shown in eq 2.7 and

eq 2.8.

2.3.4. Generalized Additive Models

Generalized Additive Models (GAM) are the superclass to which linear re-

gression, logistic regression, and many others belong. Any model of the following

form is considered a GAM:

ŷ = θ0 +

p∑
j=1

fj(xj) (2.14)

This is similar to the linear regression model, with the modification that each θjxj

is replaced by a more flexible shape function fj(xj), which can be a nonlinear

function. Compared to GLMs, instead of one general nonlinear link function that

maps the feature values x to the target y, we have p different nonlinear functions

fj that map the feature values xj ∈ x to the target y. This gives us more flexibility

in modeling the relationship between the features in X and our target variable y

compared to GLMs.

The component functions fj(xj) are commonly learned via fitting splines as

shown by Friedman to model the relationship between xj and the target [7]. A

spline function sk is a prototype function such as sk(x) = x , sk(x) = x2, or

19

sk(x) = cos(x). The component functions are represented by additively combining

the product of spline functions with the weights βk: fj(xj) = β0 +
∑u

k=1 βksk(x),

where u indicates the number of splines.

Figure 2.1: Illustration of example GAM component functions learned via spline fitting.

Output value of fj(xj) is shown on the y-axis, increasing values of xj are shown on the

x-axis. Adapted from Lou et al [28].

In GAMs, the overall learning takes place in a greedy manner by iteratively

fitting a new component function fj(xj) to the residual as shown by Friedman [7].

Although the shape functions fj(xj) are allowed to be nonlinear, the resulting

model is still an additive function, since the result is the sum of θ0 and fj(xj) it is

considered a part of the family of linear models. Linear regression is also part of

the GAM family since you can define fj(xj) = θjxj.

Interpreting GAMs is a bit more challenging than interpreting multiple linear

regression, the relationships between features in xi and ŷi can be nonlinear and

the slope (derivative) of the function can be different for different values of xj,

see Figure 2.1 for some examples. Plotting shape functions can help understand

20

how the model operates and a form of global feature importance can be calculated

using the outcomes of fj(xj) weighed by the probability density function of xj. In

this case, Z-score normalization of all features is necessary to get fair comparisons

between calculated feature importances.

Although more expressive than GLMs and multiple linear regression, GAMs

are still incapable of modeling complex interactions between features.

2.3.5. Explainable Boosting Machine

Explainable Boosting Machine (EBM) is a tree-based GAM variant devel-

oped by Lou et al [5] that incorporates gradient boosting and pairwise feature

interactions found through the GA2M algorithm [29]. An EBM model takes the

form of:

ŷ = θ0 +

p∑
j=1

fj(xj) +
∑

fjk(xj, xk). (2.15)

Even without modeling feature interactions, the combination of gradient boosting

and complex shape functions allows it to perform close to black-box models like

Random Forest [28].

Gradient boosting is a method where weak (simple) prediction models (some-

times called learners) are built sequentially and each model is trained by minimiz-

ing the residual left by the ensemble of the previous weak models [7]. A weak

learner is a simple model that performs better than chance but still relatively

poorly. In the case of EBMs, weak learners only have access to one or two features

to predict the outcome.

21

These weak learners are greedily fitted to the residual. With each iteration,

p new models are added that are each fitted on a single feature. The learning rate

is set very low so it takes thousands of iterations until the algorithm converges,

the advantage is that the order in which the models are fitted does not matter

anymore. After training, there are thousands of tree-based models sk for each

feature that can be combined additively:

fj(xj) =
u∑

k=1

γksk(xj), (2.16)

where γk is the weight given to that particular weak learner, and u indicates the

total number of weak learners for feature j.

As an illustration, we show a classifier model trained on the US adult income

data set [30], which predicts whether adults have an income above or below 50K [5].

To increase computational efficiency when making predictions, the compo-

nent functions fj(xj) are aggregated following equation 2.16 and memorized, after

which the thousands of weak learners sk can be forgotten. After completing the

base model of the form ŷ = θ0 +
∑p

j=1 fj(xj), EBM finds pairwise feature interac-

tion through GA2M . Where the model is used as a base and feature interactions

that most improve on the residual of the resulting model are greedily added iter-

atively. The number of feature interactions modeled is generally kept low (e.g.,

5-10 feature pairs).

Unlike other gradient boosting methods such as XGBoost, LGBM and Ran-

dom Forest, EBM models are interpretable glassbox models: the contribution of

a feature xj to the final prediction can be understood by plotting fj, and fjk in

22

Figure 2.2: Examples of insights generated through an EBM predicting if adults have

an income above or below 50K. Left: top panel: vertical axis shows the impact on

the classification score. The horizontal axis shows value of variable age. The blue line

shows the function fage, where the grey shade indicates uncertainty in the prediction.The

bottom panel shows the distribution of age values in the training set. Right: A single

prediction instance, the panel shows the most important features, ranked by absolute

impact on the prediction value, we see that the feature ”CapitalGain” had a large positive

impact. Adapted from Nori et al [5].

the case of feature interactions. The effect eij of a feature value xj on a single

prediction ŷi, as shown in the right panel of Figure 2.2, is calculated by through

ei,j = fj(xi,j)−
∑n

a=1 fj(xa,j)

n
. (2.17)

Because of its additive nature, each feature independently contributes to the

prediction in a modular manner, making it simple to understand the impact of

each feature on the prediction.

23

2.4. Feature Selection Methods

For the benefit of interpretability and explanations, we are interested in

having a feature set with low multicollinearity and redundancy. As shown earlier,

features can also be selected through linear regression with regularization such as

LASSO, this is called a penalty approach to feature selection [31]. In general, there

are two other main categories of feature selection methods, which are called filter

methods and wrapper methods.

Filter methods are generally ways of ranking variables based on their rele-

vancy and redundancy, and are often the first step of feature selection [32]. Exam-

ples of filter methods are Chi-Square test, ANOVA, and mutual information [33].

Filter methods are attractive since they do not require a specific machine learning

algorithm and are therefore computationally cheaper. One downside of the men-

tioned filter methods is that they only consider univariate relationships between

each feature and the target variable. More advanced filter methods exist, but they

are beyond the scope of this thesis.

Wrapper methods use a learner to examine the performance of models trained

on different feature subsets to optimize the feature set. There are several wrapper

algorithms that train models on different subsets of features and keep the subsets

that perform the best on the validation set. One of the most basic methods is called

forward selection (FS). It begins with an empty set and adds attributes one by one

in a greedy manner. At each step, FS adds the feature that most increases model

performance on the validation set. Backward stepwise selection (BS) begins with

the set containing all features and greedily removes one feature at a time. Both

algorithms cannot go back on their decision, once a feature is added or removed

24

the change is permanent [32]. This drawback can be overcome by (sequential)

Floating Search (SFS), which allows the removal (in case of FS) of the weakest

features in the formerly selected set to avoid traps in local minima [34]. in the

case of standard FS or BS, one has to train p(p+1)
2

, where p is the total number of

features. This cost is even further increased in the case of SFS. Instead of selecting

features by their direct improvement in model performance, other criteria can also

be used to select variables, such as the Akaike Information Criterion [35].

The choice of the learning algorithm is important since the computational

cost of wrapper methods is high. Models are trained on a large variety of subsets

of features to select a feature at each step. Since the computational cost increases

exponentially with the number of features considered, it is generally advised to

first use filter and penalty-based methods to restrict the feature set before using

wrapper methods [31]. Another downside is that not all subsets are considered

since a greedy approach is used, unfortunately testing all possible subsets soon

becomes intractable, when the number of features p grows too large. The main

benefit of wrapper methods is that it evaluates the actual behavior of a model

trained on a certain subset, instead of just examining statistical properties of

features as is the case with filter methods [31].

Various strategies can be employed to speed up the wrapper methods, mainly

by increasing the training speed of the model through hyperparameters. In some

cases, one can train models on a subset of the data if learning curve analysis shows

negligible performance increase with larger data sets.

In the case of models that require hyperparameter tuning, such as LGBM,

implementing wrapper methods presents an additional challenge. The optimal ap-

25

proach would require hyperparameter tuning at each subset of features considered

by the wrapper algorithm. However, this is often impractical due to computational

limitations and time restraints. To circumvent this difficulty, one could approx-

imate good hyperparameters by performing hyperparameter tuning just once on

a representative feature set, found through a faster method such as a wrapper

method utilizing a faster model such as linear regression.

Another potential method of speeding up wrapper methods at the cost of

some exploration is to constrict the search space by using explainability methods

to rank features by their prediction effects. Starting with the complete feature set,

we can iteratively remove the lowest-ranking features and measure performance

on the validation set as with the previously mentioned wrapper method, and rank

the features again. Ranking of features can be performed using t-statistics in the

case of linear Regression, the intrinsic global feature importance statistics in the

case of EBM, and global SHAP feature effects in the case of black box models.

Recall that in the case of FS, one has to train p(p+1)
2

models, where p is the total

number of features. When restricting the search space through calculating feature

importance we are left to train at most p models

One needs to be aware of the downside of making adjustments to speed up the

computation time, either by reducing the number of models one needs to train or

increasing the training speed. Any adjustments we make to speed up computation

time create a different environment from the one in which our found feature set

will operate. It is essentially a trade-off between computational efficiency and the

quality of the feature selection.

26

2.4.1. Mutual Information

Mutual Information (MI) is a measure of the amount of information that

knowledge about one variable gives about another variable:

MI(xj;y) = H(xj)−H(Xj|y) = H(y)−H(y|xj). (2.18)

Where:

• H(xj) and H(y) are the entropies of X and Y, where a higher value indicates

higher entropy (and less knowledge)

• H(xj|y) and H(y|xj) are the conditional entropies of xj given y and y given

xj.

When two variables x and y are independent, knowing information about one

doesn’t give you information about the other. In this case, the MI would be 0,

since H(xj) = H(Xj|y). If the two variables carry information about each other

H(xj) < H(Xj|y), which leads to a positive value for MI(xj;y). MI is discussed

in more detail in [36].

2.5. Black Box Models

2.5.1. LGBM

Light Gradient-Boosting Machine (LGBM) is a Gradient Boosting Decision

Tree (GBDT) package developed by Microsoft, with many options to increase

training speed over rivals such as XGBoost [37], [38]. In contrast to EBM, which

27

is also a GBDT, LGBM allows for more flexibility in the weak learners, as the

weak learners in EBM generally only have access to a single, or at most two

features. In the case of LGBM, more elaborate trees that can model higher order

feature interactions are allowed. In contrast to other GBDT algorithms such as

XGBoost, LGBM grows its trees through leaf-wise growth, instead of depth-wise

growth. This enables the construction of trees that more effectively minimize the

loss function. Similar to XGBoost, in addition to the loss function’s gradient

(first-order) derivative, LGBM also uses the Hessian (second-order) derivative.

The main speed advantage of the default LGBM algorithm is achieved by

splitting continuous variables into discrete bins, a technique called the Histogram-

based Gradient Boosting method [38]. Though not enabled by default, LGBM

offers two further improvements to increase training speed. The first is Gradient-

based One-Side Sampling. Gradient-based One-Side Sampling keeps all samples

with a large gradient and randomly samples from the remaining instances, this

focuses the training processes on instances that are hard to predict, over instances

that the model already predicts correctly. By leaving out many of the samples

with small gradients, significant speed-up is achieved. The second is Exclusive

Feature Bundling. Exclusive Feature Bundling finds exclusive features (meaning

that they do not take non-zero values simultaneously) and bundles them into one

feature. This leads to a reduction of features, which significantly speeds up the

training process. See the original LGBM paper for a more in-depth discussion of

these methods [38].

Many methods exist to perform hyperparameter tuning, an effective and

model-agnostic method is the Tree-Structured Parzen estimator (TPE). TPE uses

Bayesian optimization to estimate the relation between model performance and

28

hyperparameters, leading to a more efficient method of searching through the

hyperparameter space when compared to grid search and random search [39].

As the resulting model is an ensemble of many trees, LGBM is considered a

black-box model. Explaining LGBM outputs can be done using TreeSHAP [40],

which is a fast, model-specific implementation of SHAP that is only applicable to

trees.

2.5.2. DeepAR

DeepAR is an autoregressive and probabilistic forecasting method that uses

a Recurrent Neural Network with long short-term memory (LSTM) [2]. For an

introduction to Neural Networks (NN), we refer to the book Pattern Recognition

and Machine Learning [41]. The underlying model of DeepAR is trained to provide

forecasts in the form of a probability distribution. When a Gaussian distribution

is chosen, the model outputs a mean µ ∈ R and a standard deviation σ ∈ R+ at

each timestep. In the case of positive count data, a better choice of distribution

is the negative binomial distribution, which is characterized by its mean µ ∈ R+

and shape α ∈ R+ [42]. DeepAR produces forecasts by taking samples from the

probability distribution provided by the underlying model. These sample values

are used autoregressively by the model to provide probabilistic outputs at further

time points up to the end of the chosen forecasting horizon. The resulting n

forecasted time series will be aggregated to provide a final prediction by taking

the mean or median values at each time point. Although DeepAR is considered

a black box model, some valuable insight into the uncertainty of the forecasted

values can be gained thanks to its probabilistic approach. As seen in Figure 2.3,

we can show confidence bounds indicating what percentage of the trajectories

29

Figure 2.3: Example of a 50 day DeepAR forecast of IBEX-35, a Spanish stock market

index using covariates indicating emotional sentiment in news articles. The dark green

area indicates that at least 50% of the simulated trajectories pass through that area.

Adapted from Consoli et al [43].

passed through a certain area. A tight spread indicates DeepAR is quite sure of

its predictions whereas a wide spread indicates great uncertainty. DeepAR also

has the ability to handle multiple time series as input, which is useful for scenarios

where the time series are related and the forecasting of one can provide valuable

information for the forecasting of the others. For a more in-depth discussion of

the DeepAR methods, we refer the reader to the paper by Salinas et al [2].

2.6. Post-Hoc Explainability Methods

Glassbox models are intelligible by default and often do not need to rely on

post hoc methods for interpretability. Post-hoc explainabilty methods are espe-

cially helpful when dealing with opaque models such as multi-layer NN or model

ensembles.

30

2.6.1. Shapley Additive Explanations

SHapley Additive exPlanations (SHAP) is a model-agnostic, post-hoc method

to provide explanations for individual predictions developed by Lundberg [6].

SHAP is based on the coalitional game theory of Shapley values and has the

desirable properties of local accuracy, missingness, and consistency [6]. To gener-

ate an explanation for a prediction based on the feature vector xi, SHAP creates

coalitions of features, in a coalition, some feature values are known, and their true

value is used, features not part of the coalition are considered missing. There are

multiple approaches to assigning values to the missing features:

• Taking the average value of the feature in the data set.

• Randomly sampling from the feature’s values in the data set.

• Sampling from the marginal distribution.

By default, the python SHAP package samples from the marginal distribution

in the data set [6].

The feature effect ei,j of a feature j at instance i, is calculated by examining

the difference in prediction between coalitions with and without the feature j.

Coalitions with very few members get high weights since we can clearly see the

impact of the few features involved. On the other hand, coalitions that contain

close to all features also get a high weight, since if a feature can still impact the

prediction when so many other features are known, it must be an important one.

The weight of a coalition is given by:

|S|!(p− |S| − 1)!

p!
, (2.19)

31

where |S| is the number of features in the current coalition, and p is the total

number of features. The general formula to calculate the feature effect ei,j of

feature j of instance i using SHAP is:

ϕj(xi) =
1

p

∑
S⊆F\{j}

|S|!(p− |S| − 1)!

p!
[fS∪{j}(xS∪{j})− fS(xi,S)], (2.20)

where F is the complete feature set, and fS(xi,S) is the models prediction when it

has access to all features, and fS∪{j}(xS∪{j}) the model’s prediction when it only

has access to coalition of features S ∪ {j}.

By creating SHAP explanations for all instances in the test set, we can

calculate a measure of global feature importance. For each feature j we sum the

absolute value of the feature effect calculated at each instance:

global importance(j) =
n∑

i=1

|ei,j|. (2.21)

Dividing by the number of instances gives us the average feature importance of

the feature j. In the case of unbalanced data sets it could be wise to add a further

normalization step, by applying max-abs normalization on the feature effects of

each instance i:

max abs(ei) =
|ei|

maxi(|ei|)
. (2.22)

This ensures that feature effects of predictions of high traffic OD-pairs don’t have

an outsized impact.

To see how well SHAP explanations represent the decision-making of the

32

model, we run fidelity plots, where for each instance i in the test set, we take the

true values of the top k SHAP features and set all other features to the training

set average value. The (in)fidelity of this model fk() is the squared error [fk(xi)−

f(xi)]
2 between itself and the base model that has access to all true values. We

calculate this per instance and then average it on the validation or test set to get

an overall fidelity per number of top k features [44]. At k = 0, the error is greatest,

and at k = p it is zero, it is generally plotted by converting the errors to a ratio

between 0 and 1.

TreeSHAP is a model-specific variant that was also proposed by Lundberg

[40], that can be used on tree-based models such as simple decision trees, but

also on more complex gradient boosted trees such as LGBM. TreeSHAP does

not directly permute the feature values to see their impact on the prediction.

Instead, it traverses the trees and follows both sides of the split when a feature

is not in the coalition S. The main advantage of TreeSHAP is its speed: the

computational complexity of regular SHAP is O(tl2p), which scales exponentially

with the number of features. Whereas TreeSHAP has a complexity of O(tld2),

where, d is the maximum depth of the trees, l is the maximum number of leaves,

and t is the number of trees [26].

2.7. Hybrid approaches and representation learning

Representation learning is about the discovery of useful representations of

data, where a data representation is a method of transforming the raw samples

into some new, more manageable space [45]. An example application would be the

representation of one day of an OD time series as a 6-dimensional vector, down

from the raw time series which is a 48-dimensional vector. Reduced representations

33

Figure 2.4: Quality of reconstruction when representing one day of one OD-pair using

the top 2, 4, and 6 components.

of this kind could enable our models to consider more of a time series history,

without massively expanding the number of features. The reduced number of

features necessary to represent the history of a time series results in a smaller risk

of overfitting [46], and possibly a more understandable model for humans.

However, some information is generally lost during such a dimensionality

reduction. The severity of this information loss is closely related to the number

of latent variables we choose to use to represent the raw data, where the use of

fewer variables yields a simpler model, at the cost of greater information loss.

The task of deciding the optimal number of latent variables is contentious since

it is essentially a trade-off between the level of dimensionality reduction and the

information loss in the reduced representation.

2.7.1. Singular Value Decomposition

A common approach to representation learning is through dimensionality

reduction techniques such as Principal Component Analysis (PCA) and Singular

Value Decomposition (SVD). SVD is a matrix factorization technique that decom-

poses a matrix into the product of three matrices.

34

SVD is a linear technique, meaning that it only operates on linear relation-

ships between variables. It has the property that it can factorize any matrix,

regardless of its size or shape. When performing dimensionality reduction through

SVD, the singular values of the matrix are ranked, with the larger singular values

explaining more variance in the data. The first k components, where k is the

number of dimensions we want to reduce the data to, are then selected. This

guarantees that the most variance in the data is represented using only the first k

components, which are linear combinations of the original variables. By selecting

only the most important components, it is possible to reduce the dimensionality

of the data while still retaining as much information as possible. An example of

how accurately SVD can represent on day of a time series using only 2, 4, or 6

values can be seen in Figure 2.4.

Given SVD’s linear nature, nonlinear relations present in time series may

be impossible to properly encode. Multi-layer neural networks are widely known

for their ability to learn nonlinear features. If nonlinear traits are present in

our data, these might hamstring the ability of SVD to learn highly compressed

representations. Using the nonlinear nature of multi-layer neural networks we

might be able to achieve a more accurate representation at the same level of

dimensionality reduction. Furthermore, SVD treats all variables equally and does

not take temporal relationships into account. To leverage the temporal relations

present in time series, a neural network architecture with convolutions or RNN

may be used [47]. For a more in-depth discussion of SVD we refer you to the book

Data-Driven Science and Engineering [46].

35

2.7.2. β-VAE

Hybrid approaches generally consist of a black box step in which a (deep)

NN learns an effective feature representation at reduced dimensionality, which is

taken as input by a simple statistical model to make the prediction. A method

developed by Higgins et al, called β Variational Autoencoder (β-VAE), can perform

the dimensionality reduction step and produce disentangled features, meaning that

the features produced by the model make sense to humans [48].

A disentangled representation is one where each of the units in the latent

representation is sensitive to changes in only one data generating factor, while

being relatively insensitive to changes in other factors [48]. The benefits of such a

representation are twofold: higher robustness to noise, and higher interpretability

[49].

Using hybrid approaches to generate highly expressive disentangled features

through deep learning encoder-decoder structures looks promising. CoST, a novel

framework for learning disentangled representations of time series followed by sim-

ple regressor models outperforms pure black box models based on LSTM RNNs

and others [50].

β-VAE is able to create interpretable factorized latent representations on im-

age data [48]. It might be possible to adapt the method to be applicable to time se-

ries. The paper does note that high disentanglement leads to worse reconstructive

quality. This is a trade-of between reconstruction quality and disentanglement.

Total Correlation Variational Autoencoder (Beta-TCVAE) is an improved

36

version of β-VAE developed by Chen et al [51]. β-TCVAE works by adding an ad-

ditional term to the loss function, which penalizes the model if the latent variables

are correlated with each other, encouraging the latent variables to be statistically

independent.

The difference between methods like SVD and β-VAE is threefold: first, the

independent latent variables in SVD are not necessarily disentangled, second, β-

VAE can learn nonlinear relationships, and third, unlike SVD, β-VAE does not

require the latent variables to be completely orthogonal.

The Variational Autoencoder (VAE) [52] is a generative model that learns to

reconstruct high-dimensional data through a multi-layer NN. A low-dimensional

bottleneck layer separates the model into two separate parts: an encoder and a

decoder. The encoder is the part of the model that condenses the input data x

into a lower dimensional ‘latent’ representation z = encoder(x), and the decoder

network reconstructs (or generates) the input data from this latent representation

x̂ = decoder(z). To enable learning the model through stochastic gradient de-

scent, Kingma and Welling proposed the reparameterization trick, which entails

the modeling of the latent dimension z as a collection of Gaussian distribution

based on x:

qϕ(z|x), (2.23)

where ϕ are the parameters of the NN, and qϕ(z|x) represents a Gaussian distribu-

tion with its mean and standard deviation generated by the encoder. The decoder

part of the model, parameterized by θ, then generates an estimate x̂ of the orig-

inal sample from this latent representation z. Technically, the decoder generates

37

a Gaussian distribution pθ(x|z) for each individual variable in x from which we

sample to obtain the estimated data point x̂. In practice, we can often use the

means of the distributions to reconstruct the data.

The parameters are learned through the following loss function:

L(ϕ, θ;x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)), (2.24)

where the first term represents the reconstruction loss, which is the expected

log-likelihood of the original data given the latent representation, and the second

term is the Kullback-Leibler (KL) divergence, which enforces the distributions

qϕ(z|x) to be close to the standard normal distribution N (0, 1).

The β-VAE [48] is an expansion of the loss function with the hyperparameter

β, which controls the trade-of between the KL-divergence and the reconstruction

loss:

L(ϕ, θ;x) = Eqϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||p(z)). (2.25)

As shown above, the β value plays a controlling role in managing the trade-off

between reconstruction loss (reconstruction accuracy) and KL divergence (disen-

tanglement). Increasing the β will lead to an emphasis on the KL divergence term,

thus prioritizing disentanglement over reconstruction. Finding the optimal β value

is challenging given the subjective nature of the intelligibility of the latent space,

which is our main reason for pursuing disentanglement.

38

One approach to finding a suitable β value would be to first calculate the re-

construction error at β = 0, and increase β until the reconstruction error surpasses

a defined threshold:

reconstruction error atβ = 0×threshold ≤ reconstruction error at β ≥ 0.

(2.26)

This approach seeks to maximize disentanglement while keeping the drop in re-

construction accuracy within acceptable limits.

Recall that the final goal of the β-VAE model is to produce intelligible fea-

tures that summarize the history of a time series for improving forecasting. This

means that the level of disentanglement, and the reconstruction quality are at best

proxies to our goal. To examine the intelligibility of the latent dimension we will

need to perform manual inspection. The most common method of interpreting

latent dimension is through a process called single latent traversals [53]: we first

generate base values for the latent vector, this can be done either by encoding a

representative instance or by setting all latent values to 0, something that is ren-

dered practical through the KL divergence loss, which encourages a latent variable

distribution that is close to N (0, 1). By permuting one latent variable at a time

through a range of [−3, 3], and keeping all other latent variables at a value of 0

(or the latent values generated through a seed time series), we can inspect the

effects of each latent variable through plotting the time series that get produced

by inserting permutations of latent space z into the decoder.

39

2.8. Related Work in Explainable Time Series Forecasting

There is a large body of work concerning explainable time series classifi-

cation, unfortunately, most of these methods are unsuitable for application in

forecasting. For example methods that use counterfactuals as explanations [54],

or use representative subsequences called shapelets that maximally represent a

given class [55, 56]. The literature concerning explainable time series forecasting

is considerably less expansive.

The temporal fusion transformer (TFT) architecture proposed by Lim et al

in 2021 [57] has been rapidly gaining popularity since its publication. TFT not

only outperforms DeepAR on benchmarks, but it can also provide attention-based

explanations about its predictions. Many applications using this architecture are

popping up: Wu et al used historical tourism volume and big data from search

engines and travel forums to predict future tourism demand using an optimized

TFT architecture [58]. Gunnarson used TFTs to predict supermarket food demand

in an effort to reduce food waste [59]. Santos et al used the TFT architecture for

day-ahead solar power production where it outperformed XGBoost and a baseline

LSTM NN model [60]. Of special interest is the paper of Zhang et al who forecast

metro traveler flow using TFT [61], which is very similar to our OD forecasting.

Various methods exist that can provide accurate time series forecasting with

built-in interpretability, such as N-BEATS [62]. The authors of N-BEATS provide

some methods that can provide explanations such as on the seasonality trends

observed by the model. Although this architecture achieves high scores on fore-

casting benchmarks, there is no research on the usefulness of the explanations it

provides. Alternatively, we have the temporal fusion architecture proposed by Lim

40

et al [57]. Although Lim et al show some examples of how the explanations the

system provides can be useful, they have not tested if the explanations are actually

intelligible to humans in the real world.

There are hybrid approaches like CoST that learn disentangled representa-

tions of time series followed by simple linear models, where the disentangled nature

makes the representation potentially understandable [49,50]. Though interpretable

in theory, the intelligibility of for example CoST has never been examined in prac-

tice.

Todo et al use a convolutional variational autoencoder (CNN VAE) to per-

form dimensionality reduction on high-dimensional multivariate ECG data [47].

It outperforms alternate approaches such as wavelet decomposition. In contrast

to the OD time series, the time series used in this publication are highly irreg-

ular, with seasonalities that have irregular periodicity. Finally, we have Jabeur

et al who show how a combination of an XGBoost forecasting model with SHAP

explanations results in interpretable high-accuracy forecasting of gold prices [63].

Although the methods mentioned above all achieve impressive state-of-the-

art performance, how interpretable these explanations are to humans remains de-

batable.

41

Input

(48)

Conv1

(8, 48)

FC1

(96)

FC2

(96)

FC Mean

(6)

FC Std

(6)

Latent Space

(6)

FC1 Decoder

(96)

FC2 Decoder

(96)

FC3 Decoder

(48)

Figure 2.5: Architecture of the β-VAE model used in the experimental phase. The

convolutional layer has a kernel of size 3, padding of 1, and stride of 1.

42

3. Research Approach

3.1. Proposed method

Recall that the goal of this thesis is to answer the following main research

question:

MRQ Will an explainable or interpretable machine learning model with engineered

features outperform the baseline DeepAR model, in terms of performance

measures such as MAE, in predicting train traveler demand, where traveler

demand is modeled as a collection of time series?

To answer this question we divide it into four research questions (RQ):

RQ 1 Are the interpretable models with handcrafted features significantly better

compared to the baseline model in terms of performance measures such as

MAE?

RQ 2 Are hybrid approaches of representation learning followed by an interpretable

model significantly better compared to the baseline model in terms of perfor-

mance measures such as MAE?

RQ 3 Are black-box models, such as LGBM, significantly better compared to the

baseline model in terms of performance measures such as MAE, when using

techniques like SHAP for interpretability, and using the input features from

RQ 1 and RQ 2?

RQ4 How faithful are the SHAP explanations generated for the LGBM models, in

terms of performance measures such as MAE, when we are only allowed to

43

consider the 7 most important features of each prediction?

3.1.1. Research Question 1

We used multiple linear regression, and EBM as glassbox models to forecast

traveler demand. The input features are historical time series data and exogenous

data such as the presence of holidays. We iteratively engineer features, train

models and evaluate feature importance using explainability methods followed

by pruning unimportant or unintelligible features, see Figure 3.1. Features were

created by consulting with domain experts, and exploratory experiments. Feature

pruning was performed based on feature importance measures generated using the

filter and wrapper methods described in section 2.4.

Engineer

new features

Train

models

Evaluate

feature

importance

Prune

features

Figure 3.1: Strategy to iteratively engineer an optimal set of features

Forecasting performance was compared with the baseline DeepAR model

on a one day forecasting horizon, meaning the models predict one day in the

future. Multi-output models are used that make forecasts of 24H into the future

at midnight. The primary metric used to evaluate performance is MAE.

44

Figure 3.2: Model pipeline used for answering RQ 1

Figure 3.3: Model pipeline for answering RQ 2

3.1.2. Research Question 2

We used various dimensionality reduction and representation learning meth-

ods such as β-VAE, and SVD. The learned representations are added as additional

features to the glassbox models from RQ1. Forecasting performance was once again

be measured on a one-day horizon against DeepAR. Additionally, the models are

compared against models that receive the additional features without dimension-

ality reduction applied, to see if dimensionality reduction is beneficial over adding

a large number of features.

45

3.1.3. Research Question 3

LGBM models were trained using the inputs designed when answering RQ 1

and RQ 2. Parameter tuning was performed using a multivariate Tree-structured

Parzen Estimator optimization algorithm [64] on the validation set. TreeSHAP

was used to gain insight into the model [6, 40].

3.1.4. Research Question 4

We used TreeSHAP for the LGBM models to examine relative feature im-

portances at global and local levels. We produced fidelity plots for the SHAP

explanations to examine if explanations with only the top k features closely re-

semble the forecasts of the complete models.

3.2. Performance Measures

To measure the predictive performance of all models, we will primarily use

Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi|. (3.1)

MAE was chosen over Root Mean Squared Error (RMSE) because we believe that

bigger errors are not exponentially more impactful than smaller ones.

This is because one of the major use cases of OD-level forecasting is in

predicting train-level crowdedness. To calculate train level crowdedness, OD-level

forecasts of many OD-pairs are used, minimizing the impact an outlier prediction

46

in a single OD-pair has.

Another common error measure used in time series forecasting is Mean Ab-

solute Percentage Error (MAPE), which calculates the mean absolute error as a

percentage of the true value. MAPE is unsuitable in our case, since we have time

series with values that are zero, or close to zero. Dividing by these values to get

percentage errors leads to very large, but essentially meaningless numbers.

3.3. Data for Experimental Validation

3.3.1. NS Data

The NS currently provides transportation to approximately 250 stations in

a fully reachable network. This means there are around 2502 = 62500 Origin

Destination (OD) pairs that a traveler can pick as a start-end combination and

each OD pair has its own historical time series since the beginning of 2018. Most

of these OD time series are incredibly sparse and therefore have little impact on

actual train crowdedness. Sorted by number of travelers, there are about 7 500

relevant OD pairs that can give a relative complete picture of train occupancy.

These 7 500 most active ODs represent around 95% of daily travelers. We can

represent around 99% of the travelers with 18050 OD pairs, leaving the remaining

45 706 OD pairs representing just 1% of travelers.

We used data from only a subset of OD-pairs to answer the research questions

for practical reasons. Expanding our research to encompass all 67000 OD-pairs

would lead to excessively long and expensive compute times. However, a substan-

tial number of OD-pairs need to be used to receive reliable results. To balance

47

Figure 3.4: Fraction of travelers contained in the biggest n OD pairs. The horizontal

axis shows the number of OD-pairs included, sorted from largest to smallest, normal

scale on the left, and log scale on the right plot.

computational costs and practical relevance, we used the 2000 OD-pairs with the

highest volume. This subset of OD-pairs contains just under 80 % of all trips

between (2022-04-25) and (2023-04-25). Unfortunately, this means we are still

missing 20 % of all trips.

The sparse nature of most OD-pairs makes forecasting extra challenging.

We have captured some of that sparsity in the OD-pairs between 1000 and 2000,

but the extreme sparsity of the remaining 65000 OD-pairs remains an interesting

challenge: aggregated, these time series with low volume still contribute a number

of passengers that can be the difference between a busy and quiet train.

3.4. Feature Engineering

Through exploratory data analysis, expert knowledge, and experimentation,

a collection of potential features have been designed. These features can be roughly

categorized into two categories: exogenous and endogenous features. Exogenous

features are those that are constructed using information not available in the time

series data itself, such as national holidays, and school vacations. On the other

48

hand, endogenous variables are those that can be derived from the time series

itself. In order to maintain internal consistency, the information derived from the

time series should not include any data beyond the prediction point.

In the context of school vacations, we must be wary that different regions in

the Netherlands can have different school vacation dates, meaning that it could be

a school vacation in the region of the destination station or vice versa. To account

for this we resort to information from the Dutch government, which keeps track of

these dates [65], and link it to our station location data. This yields two distinct

school vacation features, one for the destination and one for the origin station.

National holidays are identical nationwide and are therefore easy to implement.

Turning our attention to the endogenous variables, these features are the

backbone of our models’ predictive ability, features have been designed that cap-

ture certain historic properties such as trends, outliers, and general patterns in

each of our 2000 time series. Exploratory analysis through lagged autocorrelation,

which can be seen in Figure 3.5 shows high correlations between travel behavior

of past days, especially with the previous day, and 7, 14, 21, and 28 days in the

past, which is the same day of the week, one to 4 weeks ago.

The full list of features can be examined in Appendix A.

3.4.1. Handcrafted Features

In this section, we will use the notation of a univariate time series denoted

as Y ∈ RD×T where D represents the total number of days and T represents the

number of time points within each day. The variable yd,t represents the target

49

Figure 3.5: Visualization of the accumulated impact of max-abs normalized lagged auto-

correlations for 48 half-hour intervals in a day over 2,000 distinct time series, as discussed

in Appendix C.1. The data showcases the correlation extent of traveler behavior with

its various lagged durations up to 30 days. The normalization ensures each time series

contributes equally to the visualization.

value for day d at time point t.

The strong repeating patterns in our time-series data indicate that the type of

features we need to engineer may differ from those used in other feature engineering

projects on time series data. In contrast to domains like EEG, ECG, and stock

forecasting, we do not require complex features that capture shifting seasonalities

and frequencies. Instead, we focus on daily and weekly patterns, with attention

to outliers and slow-moving upward or downward trends.

We developed a base set of features that give a coarse-grained representation

of historic data points of an individual time series. The features focus mostly

on aggregate data from 7 days ago, to capture travel behavior on the same day

of the week, one week ago. And data from 1 day ago, to notice very recent

trends in travel behavior. Also included are the days of the week one-hot-encoded.

Training preliminary models with this base feature set uncovered some challenges

in producing accurate forecasts.

50

• Sensitivity to noise: The model was too sensitive to variations in the

history of 7 days ago.

• Slow adjustment to sudden drops: If there was an unexpected drop in

travel, such as during a maintenance period, the model was slow to adjust

and overestimated travel.

• Slow recovery after sudden drops: Similarly, after a sudden drop in

travel, the model was slow to recover and continued to underestimate for a

longer period.

• Chronic underestimation of some extremely busy Origin-Destination

(OD) pairs: Certain OD pairs that experienced high-volume traffic were

consistently underestimated by the model.

• Increased errors during morning and evening rush hour: The model

struggled to accurately predict the surge in travel during peak hours.

To reduce the sensitivity to random changes 7 days, ago we introduced mov-

ing average versions of the features that represent general traits of the historical

travel behavior of 1 and 7 days ago. For example, we created moving average

features that track the average number of travelers on a specific day of the week,

over the last 4 and 6 weeks.

Two forms of predictable processes that can produce outliers have been iden-

tified and included as features: national Holidays and school vacation periods.

Some processes are harder to model in advance due to insufficient data quality,

such as the occurrence of large social events such as festivals and football matches.

Furthermore, we have (planned) maintenance and unplanned outages that not

only cause massive drops in the number of travelers on these routes. There is also

an impact on other routes that suddenly have to service an increased number of

51

travelers through reroutes. The two main flows of historical data the prediction

model uses are that of the traffic of 7 days ago, and that of yesterday. We devised

two log-ratio features to provide additional context to the data of these two days,

the benefit being that the additional features enable the model to learn complex

interaction between type of outlier and traveler data. These features compare the

moving average number of travelers on a given day of the week, compared to the

last time that day of the week occurred.

Outlier Feature 7 days ago = log2

(
6 Week Moving Average of Travelers + 1

Number of Travelers 7 days ago + 1

)
(3.2)

Outlier Feature 1 day ago = log2

(
6 week Moving Average of Travelers + 1

Number of Travelers 1 day ago + 1

)
(3.3)

Using this knowledge the model should be more knowledgeable about the state

of its recent historical data. It can use the outlier information from 1 day ago to

rapidly adjust to major changes in travel behavior, and use the outlier information

from 7 days ago to understand how reliable recent historical data is. Since large

reductions in the number of travelers over an OD-pair can occur during mainte-

nance or outages, it is possible to get very large negative values for the outlier

features. We decided to limit values below −4 to −4 to prevent those occurrences

to have an outsized effect on these feature values.

To mitigate the underestimations a days since start feature has been created,

since part of the underestimation may be caused by lower travel numbers in the

early dates in the train set due to slow post-covid ramp-up.

To reduce errors during morning and evening rush hour two approaches were

52

devised, both related to providing more detailed historical information about the

morning and evening rush hour time points. The first approach is to include the

peak rush hour number of travelers, for morning and evening rush hour. We find

the half hour where the number of travelers are highest and encode this number of

travelers as the features moring peak travelers and evening peak travelers. Using

the peak traveler information we created two more features, that describe how

’pointy’ the rush hour is, by taking the logarithm of the ratio between the peak

travel numbers and the total number of travelers in the morning and evening

respectively (features 23 and 24 in Appendix A).

In the feature representation part, we will use the dimensionality reduction

methods from section 2.7 to efficiently represent data to provide more info on the

overall shape of the rush hour business, specific to each OD pair and day of the

week.

3.4.2. Features for Dimensionality Reduction

The number of values in the time series’ past that are potentially relevant is

large. Completely representing just 1 full day at the most detailed granularity of

30 min time slots gives us 48 additional features. Our aim is to keep the number

of relevant features for our model relatively low, such that a human can better

grasp what happens when the model makes a prediction.

Through autocorrelation analysis, we found that the time series history of 7

days ago is the day in the past that is most highly correlated with the current day.

Furthermore, we saw that models tend to prefer features that incorporate some

kind of moving average, to increase the robustness of the feature. Combining these

53

two properties gives us 48 moving average features, one per time slot during the

day:

moving average(d, t) =
4∑

w=1

yd−7w,t

4
, (3.4)

where t ∈ {1, 2, . . . , 48} denotes the time slot during the day, and d denotes the

day in the time series that we wish to predict. To keep the number of features

relatively low we will attempt to represent these 48 moving average features using

dimensionality reduction techniques SVD, and β-VAE. This allows us to roughly

represent the 48 features as a smaller number of features.

54

4. Experimental Results

4.1. Experimental Setup

Covid has substantially impacted travel behavior in 2020, 2021, and parts

of 2022. Therefore, we have decided to use only data from 2022-02-05 and on-

ward. The data set has been partitioned into a training, validation, and test set

using time-based splitting to ensure that there is no contamination or information

leakage between sets:

• Training set starts from 2022-02-05 and ends on 2023-01-04 (334 days).

• Validation set starts from 2023-01-05 and ends on 2023-02-05 (31 days).

• Test set starts from 2023-02-06 and ends on 2023-04-30 (84 days).

The training and validation sets are used to develop optimal models, which

include hyperparameter tuning and feature selection. The performance of the best

models will be assessed on the test set to answer our research questions.

The t-statistics and p-values are calculated using paired t-tests comparing

the MAE value of the respective model against the MAE value of the DeepAR

model for each of the 2000 OD-pairs. To be more precise, per model, we compile

an MAE vector of 2000 elements, each representing the MAE at a different OD

pair. Then, this MAE vector is compared with the MAE vector of 2000 elements

from the DeepAR model.

55

4.1.1. Base Model Design

We use a multi-output model as our base model. This model makes pre-

dictions for exactly one day ahead, with a separate model used to predict each

half-hour timeslot. We made this choice because of the large impact that the time

of day has on forecasting. If we used a single model, the model would need to

take feature interactions between time of day and the other features into account

quite extensively. Alternatively, it would require extensive feature engineering to

design complex features that take these relations into account. This would result

in a single, but vastly more complex model, with features that would presumably

be less intelligible.

Throughout the process, we utilized three versions based on this design. The

first is using linear regression models from the sklearn package [66], as models

in the multi-output design. The second is with using LGBM models implemented

from the LGBM package [37], and the third is with Explainable Boosting Machines

implemented through [5].

The linear regression models are completely standard, without a regulariza-

tion penalty, and the EBM models used default parameters. All feature engineer-

ing, selection, and hyperparameter tuning was performed using just the training

and validation sets. All results of LGBM models on the test set include hyperpa-

rameter tuning using multivariate TPE, with parameters (n trials:50, n startup trials:

20).

56

4.1.2. DeepAR

We used the DeepAR implementation from the gluonts probabilistic forecast-

ing package [67]. The DeepAR comparison model was trained on the same data

set. The optimal hyperparameters were:

• epochs: 50

• num-layers: 4

• num-cells: 40

• rest: default settings in gluonts 0.1.0.2.

Training the model on the 2000 OD-pairs took approximately one hour and

forecasting on the test set took approximately 6 hours to complete.

4.2. Evaluation of Models using Exclusively Handcrafted Features

44 features have been handcrafted, based on the ideas discussed in Section

3.4. The full list of handcrafted features with detailed descriptions can be found

in Appendix A. A correlation heatmap can also be seen in Figure B.3. Using this

feature set we used the FSF wrapper method, which compensates for the greedy

nature of FS by allowing the removal of selected features. We will refer to the

feature set that resulted from the wrapper method with LR as lr sfs features. Fur-

thermore, we used an LR model with a LASSO regularization of α = 0.1 and

considered all features that had an absolute sum of coefficients below 2 across all

48 models to be removed. We will refer to this feature set as strict lasso features.

MI was also performed as an alternative method to perform feature selection, the

results of which were not further utilized, but they can be seen in Figure B.1 in the

57

Appendix. The feature set, lr sfs features, proved superior to strict lasso features,

achieving lower RMSE (6.40 vs 6.46) on the validation set1 . The LR wrapper

method was completed first, which led to the identification of the optimal LR

feature set. To find the optimal feature set for the LR model we used a random

sample of 5 % of the data since learning curve analysis showed no clear impact on

model performance, as can be seen in Figure C.2. The results of these feature se-

lection methods can be seen in Figure 4.1. Agreement of selected features between

LASSO, and SFS approaches using LR can be seen in table 4.1. The agreement

between the lgbm sfs features and lr sfs features feature sets can be seen in table

4.2.

Table 4.1: Agreement between strict lasso features and lr sfs features

lr sfs features Not lr sfs features

strict lasso features 21 7

Not strict lasso features 10 6

Table 4.2: Agreement between lgbm sfs features and lr sfs features

lr sfs features Not lr sfs features

lgbm sfs features 20 8

Not lgbm sfs features 7 9

Subsequently, the lr sfs features feature set was used to perform hyperpa-

rameter tuning for LGBM using TPE. Using those hyperparameters, FSF was

performed to find the optimal set of handcrafted LGBM features. We will refer to

this feature set using lgbm sfs features. Since EBM was computationally intensive

to train, we had to restrict the total number of models to train. We decided on 4

1We later switched to using MAE as the primary error measure, and the strict lasso features
feature set actually achieves a lower MAE than lr sfs features on the validation set (2.77 vs
2.84). For consistency, a better choice would have been to use the strict lasso features feature
set instead, however, we expect only small performance differences between the two.

58

Figure 4.1: Handcrafted feature sets found through methods described above. Here,

green signifies that the feature is included in the set, while red indicates exclu-

sion. lgbm sfs features is the feature set found through FS with SFS and LGBM as

model. lr sfs features is the feature set found through FS with SFS and LR as model.

strict lasso features is the feature set found through eliminating features with very small

or zero weighted corresponding coefficients. Note the color gradients for the Mutual

Information feature selection method, where a greener color means the feature carried

more information about the target variable and a red color indicates very low informa-

tion about the target variable. The value of the feature that carried the most mutual

information, days since start, was reduced to improve the visualization. Since all fea-

tures get a non-zero importance value, inclusion/exclusion of the features depends on

the cutoff point. See Figure B.1 for more insights into the MI feature importance

59

potential feature sets: the 2 optimal feature sets found through SFS, the intersec-

tion, and the union of those feature sets. The optimal feature set for EBM, which

led to the highest forecasting accuracy on the validation set, was determined to be

lgbm sfs features. A visualization of global feature importance of this EBM model

can be seen in Figure B.2 in the Appendix.

Model Feature Set MAE p-value t-statistic

lr base lr sffs features 3.1910 < 10−6 −12.275

lgbm base lgbm sfs features 2.7659 0.0761 1.774

ebm base lgbm sfs features 3.1324 < 10−6 −16.769

DeepAR TS history + national holidays 2.8145 - -

Table 4.3: MAE of base models with handcrafted feature sets on the test set, and paired

t-test results from comparison with the baseline DeepAR model.

Comparison of these models, called lr base, lgbm base, and ebm base with

DeepAR can be seen in table 4.3. t-statistics and p-values were calculated using

paired t-tests as discussed in section 4.1. Although the lgbm base model has the

best MAE, it is not significantly superior to DeepAR (p: 0.0761).

4.3. Evaluation of Models using a Combination of Handcrafted

Features and Dimensionality Reduction Features

To see if we can improve model performance using additional features in a

compressed form, we performed dimensionality reduction on the moving average

of the last weeks same-day data, as discussed in Section 3.4.2. To find the optimal

number of singular values, we iterated from 1 to 20 singular values and tested

model performance on the validation set,of which the results can be found in

Figures C.4, C.5. We decided to truncate at 6 components since the following

60

components were hard to interpret by humans. What follows is that each day of a

time series is represented by a unique set of six values, which, when multiplied by

their corresponding components and aggregated, closely approximate the original

time series. Components are ranked by importance in terms of the proportion of

variance they explain, the top component has the highest importance. The shape

of the top 12 components can be seen in Figure C.6, which shows increasingly

erratic patterns in components with smaller singular values. The shape of the top

6 components of the SVD learned on the training data can be seen in more detail

in Figure 4.2. For the β-VAE reduction method, we constructed a β-VAE model

as specified in Figure 2.5. All time series data was transformed to a [0,1] scale,

which enabled the use of a sigmoid function in the final layer of the decoder 2

. After an optimization process, which is discussed in Appendix C.5. As can be

seen in Figures C.9, C.10, predictive performance of both LR and LGBM models

was hardly impacted by the hyperparameters of the β-VAE model. Therefore,

the selection of the main β-VAE used from this point onward was made purely

from the point of understandability. Latent traversal plots were generated to

evaluate the intelligibility of the latent variables inside the models. The most

understandable model was the result of hyperparameters with a latent dimension

of 6 and β = 3e-5, which can be seen in Figure 4.3. For example, we can see that

latent variable #1 encodes the balance between morning and evening rush hours

in numbers of travelers. Latent variable #2 encodes the overall scale of the time

series the model represents.

2Unfortunately, other activation functions in the final layer led to the consistent occurrence
of exploding gradients in the training process.

61

Figure 4.2: The shape of the six most important components learned when training an

SVD on time series with a length of 1 day. the horizontal axis shows the time slots and

the vertical axis shows how a change to the latent variable of that component changes

the resulting time series.

62

Figure 4.3: Latent traversal of the β-VAE model we used to generate additional features at a reduced dimen-

sionality. Each subplot shows the generated time series if all latent variables are kept at 0, except for the latent

variable we are examining. The horizontal axis shows the time, which is 24 hours, and the vertical axis shows the

number of travelers at each time slot. The overall plot can be used to see what each variable encodes.

63

Model Feature Set MAE p-value t-statistic

lr vae lr sffs features + β-VAE 3.111 < 10−6 −9.67

lr svd lr sffs feature + SVD 2.974 < 10−6 −4.93

ebm vae lgbm sfs features + β-VAE 3.055 < 10−6 −12.14

ebm svd lgbm sfs features + SVD 2.952 < 10−6 −6.42

lgbm vae lgbm sfs features + β-VAE 2.628 < 10−6 6.11

lgbm svd lgbm sfs features + SVD 2.640 < 10−6 5.87

DeepAR TS history + national holidays 2.8145 - -

Table 4.4: Comparison of models with access to handcrafted features, and additional

historical data in a reduced form, compressed by β-VAE or SVD.

All three model types (LR, LGBM, EBM) show improvement over their

versions that only have access to handcrafted features. Dimensionality reduction

through SVD seems slightly superior to β-VAE for LR and EBM models. For the

LGBM models, β-VAE was slightly better.

4.4. Evaluation of Models using a Combination of Handcrafted

Features and the Additional Features in Uncompressed Form

Furthermore, models were trained where we do not compress the additional

features from section 3.4.2. All three model types perform better with uncom-

pressed data than with compressed data. However, the number of features that

are considered by these models has roughly doubled, making the models potentially

less intelligible.

As an additional model, we propose a LASSO model with α = 0.33, which

yields a high-accuracy, sparse model, that is interpretable by humans. As input

64

features, it received the lr sfs features, and the uncompressed features from section

3.4.2. The α value was decided using Figure B.4, which plots the MAE on the

validation set for different values of α, and also plots the average number of nonzero

weights for those α values. This allowed for a balanced decision which took both

models sparsity and accuracy into account. It achieves an MAE of 2.7967, which

is not significantly different from DeepAR (p: 0.5502), whilst having an average

of around 12 nonzero coefficients, including its bias.

Model Feature Set MAE p-value t-statistic

lr no comp lr sfs features + uncompressed 2.8021 0.7182 0.3610

lasso no comp lr sfs features + uncompressed 2.7956 0.5502 0.5975

lgbm no comp lgbm sfs features + uncompressed 2.5487 < 10−6 8.5193

ebm no comp lgbm sfs features + uncompressed 2.8639 0.0197 −2.3334

DeepAR TS history + national holidays 2.8145 - -

Table 4.5: Comparison of models with access to handcrafted features, and additional

historical data in an uncompressed form. Note the addition of the lasso model,

4.5. Fidelity of SHAP explanations

SHAP yields explanations of the LGBM models. However, only explanations

that consider all features in the feature set are a 100% match with the actual

prediction. Given the limited working memory capacity of humans, it is important

to visualize how faithful the explanations are compared to the actual model, when

we only consider the top k features. To assess the quality of truncated SHAP

explanations, we run fidelity plots as discussed in section 2.6.1. The fidelity of the

explanations was examined using the first 7 days of the test set: (2023-02-06 to

2023-02-12). We see that the lgbm base model that only uses the lgbm sfs features

feature set achieves better explanation fidelity compared to the other models.

65

Figure 4.4: Infidelity of SHAP explanations when limiting the explanation to the top #k

components, measured as the MAE between the predictions of the SHAP explanations

versus the predictions of the actual model. The horizontal axis shows the number of top

feature effects were taken into account to approximate the original prediction. The ver-

tical axis shows the MAE between the truncated SHAP approximation and the original

prediction.

LGBM with β-VAE features shows the worst explanation fidelity at k ≤ 9. At

k = 10 SHAP explanations for all four models achieve an MAE < 0.55

4.6. Intelligibility of selected models

Our results above show two models of interest: the lasso no comp, and the

lgbm no comp model. The LASSO model if of interest, because of its glassbox

nature and relative sparsity of its coefficients, while at the same time performing

equal to DeepAR. The lgbm no comp is of interest since it achieves the lowest

MAE of all models on the test set.

To showcase the interpretability of the lasso no comp, we show the full inter-

66

nals of the model that forecasts the timeslot (16:00-16:30) in Figure 4.5. How often

the features are selected by the 48 LASSO models that make up the lasso no comp

model can be seen in Figure B.5 in the Appendix.

Figure 4.5: All nonzero coefficients of model 33, the LASSO model that predicts the

timeslot of 16:00-16:30. All nonbinary features are z-normalized, allowing for a straight-

forward calculation of feature effects. moving lw # are the names of the uncompressed

features discussed in 3.4.2, the number indicates the time slot, with indexing starting at

1, identical to the model indexing.

The lgbm no comp model is our top performer in terms of accuracy. Using

SHAP, we can get an understanding of individual predictions by modeling the

relationship between the features and the prediction. in Figure 4.7, a randomly

selected forecast is shown with its SHAP explanation. To inspect which features

are globally important to the model, we calculated global feature importance as

discussed in section 2.6.1. The figure containing the SHAP global feature impor-

tances can be viewed in Figure B.6 the Appendix.

67

Figure 4.6: Number of nonzero weights per model in the LASSO multi-output model

discussed in section 4.6. The horizontal axis shows the timeslot to which the specific

model belongs, and the vertical axis shows the number of nonzero coefficients. Models

that predict early morning timeslots have a low number of relevant features

68

Figure 4.7: SHAP explanation of a single prediction by the lgbm no comp model that

predicts the timeslot of 16:00-16:30. The prediction, if all features were unknown can be

seen near the bottom: E[f(X)] = 13.275. Feature values are shown next to the feature

names on the left side. The SHAP weighted feature effect on the prediction value can be

seen in or next to the colored bars. Where a red colored bar and a plus sign indicate the

feature value increased the prediction value. The prediction ŷ of the model can be seen

in the top right corner as f(X) = 67.472, which is close to the true value y = 68.817

69

5. Discussion and Future Work

While this thesis presents models that are significantly more transparent

than the DeepAR baseline model, it did not answer some questions that may

be interesting for future work to adress. One key aspect is the evaluation of

interpretability. We have successfully developed a Lasso model with an average

of 12 nonzero weights that performs on par with DeepAR, and the lgbm no comp

model that surpasses DeepAR and can be combined with SHAP to gain insight.

We did not evaluate the perceived interpretability of these models by data scientists

and other professionals who would potentially use these models.

Using the terms coined by Doshi-Velez and Kim, we have not evaluated

the intelligibility of our models on the application-grounded, and human-grounded

levels. Therefore, a direction of future work is to include a user study that examines

the usefulness and intelligibility of the models in practice. For an investigation on

the application-grounded level, this study should involve data scientists and other

professionals, replicating as close to real-life usage scenarios as possible to test

their performance at the application-grounded level. Alternatively, a more feasible

study would be on the human-grounded level, where humans perform simplified

tasks to evaluate interpretability.

We have opted to not convert some continuous features into categorical fea-

tures that might improve interpretability at the potential loss of some accuracy.

Future research could explore which features lend themselves well to such conver-

sion. Furthermore, future work could try to quantify how much more intelligible

categorical features are, by performing experiments on the human-grounded level.

70

This would enable a more evidence-based approach in deciding which kind of fea-

tures to engineer.

In the case of the Lasso model, some further performance gains may be

relatively easy to achieve by changing the design of some features: features that

incorporate logarithmic transformations and ratios are hard to use by LR models,

because of their linear nature and inability to model feature interactions. If an

outlier is shown on a logarithmic scale, a LR model has no idea how much it should

change the prediction, since it can’t access other features to get an idea of the scale

of the time series. For example, a reduction of 50% of travelers leads to a log outlier

value of −1, but that −1 has a different meaning if there are 500 travelers of 50

travelers on that time series. In the first case, the feature value should create

a −250 effect on the predicted number of travelers, and in the second scenarie

a −25 effect. A LR model is incapable of modeling that in its current design.

For an optimal Lasso model, features should be engineered in a way that they

provide useful information without requiring the model to understand the scale of

the time series. This can be achieved by avoiding logarithmic transformations and

focusing on absolute differences, among other strategies. Especially in the case of

the log outlier 1day feature, further improvements may be possible. Its number

1 rank in the global feature importance of the lgbm no comp model (Figure B.6)

indicates that it contains a lot of potentially useful information that the Lasso

model fails to exploit currently. It may be of interest to design alternative outlier

features to see if they improve the performance of LR models.

Preliminary experiments were run to investigate the effect of the weather on

travel behavior. No clear link could be found between temperature or precipita-

tion and travel behavior, but the exploration had a limited scope. Only weather

71

data from one central location was used (De Bilt), as a consequence, for stations

far away from De Bilt, the weather data was less relevant. Furthermore, for both

temperature and precipitation features, we did not experiment with delta fea-

tures (features that indicate positive or negative change compared to a number of

days earlier). Within this limited scope, the addition of continuous or categorical

weather features seriously decreased model performance on the validation set. As

is shown by the Scheveningen model mentioned in the introduction, weather data

can be highly beneficial in some specific cases. It might be possible to identify a

subset of OD-pairs, like the ones to Scheveningen station that do show a strong

relationship between weather and travel behavior. Subsequently, a specific model

could be trained on this subset of OD-pairs that does incorporate weather data.

Preliminary experiments were run to investigate if the clustering of OD-

pairs could improve predictive performance. Experiments of clustering OD-pairs

using K-means clustering with a Manhattan distance measure showed insignificant

effects when cluster membership was added as a collection of binary features. Since

the time series show strong weekly seasonality, we chose to represent a week as

a single instance, meaning each OD-pair only had 52 instances for an entire year

of data. This limited the quality of the clustering that we could perform since

we needed to maintain a relatively low dimensionality compared to the number of

instances per OD-pair. Future work could include alternative clustering methods

and distance measures. Lower dimensional representations of each week through

methods such as SVD and β-VAE seem promising avenues to deal with the curse of

dimensionality. Training separate models per cluster is also a possibility, however,

this would further complicate the prediction pipeline for presumably modest gains.

The test set was relatively long (84 days) and the DeepAR model in pro-

72

duction is retrained every week. No retraining occurred during our experimental

phase, it would be interesting to see how much weekly retraining or online learn-

ing impacts model performance, and if there are different trends depending on the

model type. Additionally, we have not yet tried using a weighted training set, in

which recent data is assigned higher significance. This method could potentially

improve predictive performance by modeling relationships that change over time

more accurately, especially when combined with retraining the model every week.

We only assessed one-day ahead forecasting, but the team at NS currently

provides high-quality forecasting up to three days ahead. Future work could ex-

pand the models capabilities to forecast multiple days ahead, either by adding a

new multi-output model for each further day (with a slightly modified feature set)

or through autoregressive forecasting.

Surprisingly, the EBM models were worse than the LR models, even though

they are renowned for their ability to combine interpretability with performance

close to complex black box models. A lack of hyperparameter tuning due to

computational constraints may be the issue, and future work could examine the

effect of hyperparameter tuning on EBM performance.

Though the dimensionality reduction methods of SVD and β-VAE are rela-

tively effective, they fail to provide the intelligible models we wanted: the latent

variables are hard to interpret, and not compressing this data leads to better

models in terms of predictive performance and intelligibility.

In the case of β-VAE, the LGBM model relies on many different latent

variables for it to be able to use the information stored inside, as is shown by

73

its poor performance on the SHAP infidelity plot. This is contrasted with the

lgbm no comp model, which mostly focuses on just three variables: the moving

average values of its own timeslot, and the one before and after, which shows that

a larger feature set can actually lead to a more succinct explanation.

The β-VAE could benefit from alternative scaling approaches and activation

functions in the final layer. The final layer sigmoid activation function is subop-

timal since most values it processes are in the range of 0.01 to 0.001. Because

of [0,1] scaling when there are outlier days like kings day on busy OD-pairs re-

ally suppresses all other values, which doesn’t play into the strength of sigmoid

activation. Maybe a more smoothed sigmoid function would have been better.

In the experimental phase, we mostly used LR without regularization as one

of the base models, and only switched to a LR model with LASSO regulariza-

tion to propose a final model wich uses the lr sfs featureset and the uncompressed

additional features. Future work could include LR models with LASSO regulariza-

tion at all experimental parts, and also measure how the sparsity of the resulting

models changes based on the feature set.

The SHAP explanations create the illusion of perfect fidelity, but the expla-

nations are merely a linear approximation of the model’s behavior on a local scale.

This illusion is even further strengthened by the SHAP fidelity plot, which seems

to suggest perfect explanations if all features are included.

Most coefficients in the lasso no comp model are relatively small, future work

could investigate the model’s performance when it is truncated at the 7 largest co-

efficients, which is the average working memory capacity of humans. Additionally,

74

plots similar to the SHAP (in)fidelity plot can be generated to assess the quality

of the model when one can only examine the top k coefficients.

The popularity of the moving average 6w feature (the only feature that has

a moving average that is not 4 weeks) indicates that experimenting with moving

averages of varying lengths is an interesting avenue for future work to explore.

Feature selection will play an important role, since there will be many poten-

tial features if one considers moving averages of different lengths, with very high

collinearity between them.

The use of the multi-output architecture where each individual model only

predicts one timeslot must be noted as an important reason as to why the pre-

dictions are easy to understand. We assume that the results of this thesis are of

interest to other time series domains that also contain time series with high reg-

ularity and periodicity, where a multi-output model can be anchored in a similar

manner. Examples of such domains include time series for electricity demand, as

well as those related to various types of human traffic and crowdedness.

5.1. On Computational Demands and Environmental Effects

From both a business and ecological perspective, the computational costs

of training, running, and maintaining ML models are highly relevant. For all

tests, azure databricks compute clusters of type Standard F64s v2 were used [68].

Performance may vary between clusters of the same type, the results concerning

computational runtime below should therefore be interpreted cautiously.

As mentioned earlier, DeepAR took 1 hour to train and took 6 hours to

75

predict the full test set. This translates to roughly 4 minutes of inference time

per day to predict. In comparison the LR, and LGBM models took < 5 minutes

to train, and prediction of the full test set took < 10 seconds. EBM models

took between 4-6 hours to train, and could also predict the full test set within

10 seconds. However, our models require an engineered feature set to function.

Computing all features for the training, validation and test sets took around 1 hour

and 20 minutes. This translates to roughly 10 seconds of compute to generate the

features for 1 day of forecasting. Furthermore, runtime analysis showed that 51% of

that time was spent creating 4 features (morning peak trend, evening peak trend,

morning peak trend 7, evening peak trend 7) that are hardly used at all. The only

feature that is used is morning peak trend, which is a part of the lr sfs features set.

The final Lasso model never has a nonzero coefficient for any of these 4 features.

Therefore, we believe a further reduction by half in computing the features can be

achieved by removing these 4 features.

76

6. Conclusion

We have shown that the black box DeepAR model can be matched or even

surpassed by models that are far less opaque. Of special interest are two mod-

els: the lasso no comp, and the lgbm no comp model. The Lasso model matches

DeepAR in terms of predictive performance, whilst at the same time maintain-

ing total transparency and limited complexity. The LGBM model surpasses the

DeepARmodel in terms of predictive performance, whilst being explainable through

SHAP.

The proposed methods are not only improvements in terms of accuracy

and/or transparency. They are computationally less demanding as well, which

could lead to savings of energy and greenhouse gasses and enable more flexible

deployment.

We have also experimented with the dimensionality reduction methods SVD

and β-VAE in an attempt to create hybrid models with superior predictive per-

formance whilst at the same time remaining understandable by humans. This

approach yielded less impressive results, the meaning of the features generated by

SVD and β-VAE are challenging to interpret. Furthermore, using the additional

time series history without compressing those variables led to superior predictive

performance and intelligible features, where a sparse set of intelligible features had

the most predictive impact at each prediction.

77

REFERENCES

1. Goverde, R. and I. Hansen, “TNV-Prepare: Analysis of Dutch railway op-

erations based on train detection data”, Computers in Railways , Vol. 7, pp.

779–788, 2000.

2. Salinas, D., V. Flunkert, J. Gasthaus and T. Januschowski, “DeepAR: Prob-

abilistic forecasting with autoregressive recurrent networks”, International

Journal of Forecasting , Vol. 36, No. 3, pp. 1181–1191, 2020.

3. Savitzky, A. and M. J. Golay, “Smoothing and differentiation of data by sim-

plified least squares procedures.”, Analytical chemistry , Vol. 36, No. 8, pp.

1627–1639, 1964.

4. Delling, D., T. Pajor and R. F. Werneck, “Round-based public transit rout-

ing”, Transportation Science, Vol. 49, No. 3, pp. 591–604, 2015.

5. Nori, H., S. Jenkins, P. Koch and R. Caruana, “Interpretml: A unified frame-

work for machine learning interpretability”, arXiv preprint arXiv:1909.09223 ,

2019.

6. Lundberg, S. M. and S.-I. Lee, “A unified approach to interpreting model pre-

dictions”, Advances in neural information processing systems , Vol. 30, 2017.

7. Friedman, J. H., “Greedy function approximation: a gradient boosting ma-

chine”, Annals of statistics , pp. 1189–1232, 2001.

8. Ribeiro, M. T., S. Singh and C. Guestrin, “” Why should i trust you?” Explain-

78

ing the predictions of any classifier”, Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining , pp. 1135–

1144, 2016.

9. Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Ba-

tra, “Grad-cam: Visual explanations from deep networks via gradient-based

localization”, Proceedings of the IEEE international conference on computer

vision, pp. 618–626, 2017.

10. Rudin, C., C. Chen, Z. Chen, H. Huang, L. Semenova and C. Zhong, “Inter-

pretable machine learning: Fundamental principles and 10 grand challenges”,

Statistics Surveys , Vol. 16, pp. 1–85, 2022.

11. Doshi-Velez, F. and B. Kim, “Towards a rigorous science of interpretable ma-

chine learning”, arXiv preprint arXiv:1702.08608 , 2017.

12. Miller, G. A., “The magical number seven, plus or minus two: Some limits on

our capacity for processing information.”, Psychological review , Vol. 63, No. 2,

p. 81, 1956.

13. Lage, I., E. Chen, J. He, M. Narayanan, B. Kim, S. J. Gershman and F. Doshi-

Velez, “Human evaluation of models built for interpretability”, Proceedings of

the AAAI Conference on Human Computation and Crowdsourcing , Vol. 7, pp.

59–67, 2019.

14. Hong, S. R., J. Hullman and E. Bertini, “Human factors in model interpretabil-

ity: Industry practices, challenges, and needs”, Proceedings of the ACM on

Human-Computer Interaction, Vol. 4, No. CSCW1, pp. 1–26, 2020.

79

15. Plass, J. L., R. Moreno and R. Brünken, “Cognitive load theory”, , 2010.

16. Došilović, F. K., M. Brčić and N. Hlupić, “Explainable artificial intelligence:

A survey”, 2018 41st International convention on information and communi-

cation technology, electronics and microelectronics (MIPRO), pp. 0210–0215,

IEEE, 2018.

17. Williams, J. J., J. Kim, A. Rafferty, S. Maldonado, K. Z. Gajos, W. S. Lasecki

and N. Heffernan, “Axis: Generating explanations at scale with learnersourc-

ing and machine learning”, Proceedings of the Third (2016) ACM Conference

on Learning@ Scale, pp. 379–388, 2016.

18. Poursabzi-Sangdeh, F., D. G. Goldstein, J. M. Hofman, J. W. Wort-

man Vaughan and H. Wallach, “Manipulating and measuring model inter-

pretability”, Proceedings of the 2021 CHI conference on human factors in

computing systems , pp. 1–52, 2021.

19. Guidotti, R., A. Monreale, S. Ruggieri, F. Turini, F. Giannotti and D. Pe-

dreschi, “A survey of methods for explaining black box models”, ACM com-

puting surveys (CSUR), Vol. 51, No. 5, pp. 1–42, 2018.

20. Lim, B. and S. Zohren, “Time-series forecasting with deep learning: a sur-

vey”, Philosophical Transactions of the Royal Society A, Vol. 379, No. 2194,

p. 20200209, 2021.

21. Siami-Namini, S., N. Tavakoli and A. S. Namin, “A comparison of ARIMA and

LSTM in forecasting time series”, 2018 17th IEEE international conference on

machine learning and applications (ICMLA), pp. 1394–1401, IEEE, 2018.

80

22. Quinlan, J. R., “Induction of decision trees”, Machine learning , Vol. 1, No. 1,

pp. 81–106, 1986.

23. Steinberg, D., “CART: classification and regression trees”, The top ten algo-

rithms in data mining , pp. 193–216, Chapman and Hall/CRC, 2009.

24. Tibshirani, R., “Regression shrinkage and selection via the lasso”, Journal of

the Royal Statistical Society: Series B (Methodological), Vol. 58, No. 1, pp.

267–288, 1996.

25. Hoerl, A. E. and R. W. Kennard, “Ridge regression: Biased estimation for

nonorthogonal problems”, Technometrics , Vol. 12, No. 1, pp. 55–67, 1970.

26. Molnar, C., Interpretable Machine Learning , 2 edn., 2022, https://

christophm.github.io/interpretable-ml-book.

27. Nelder, J. A. and R. W. Wedderburn, “Generalized linear models”, Journal of

the Royal Statistical Society: Series A (General), Vol. 135, No. 3, pp. 370–384,

1972.

28. Lou, Y., R. Caruana and J. Gehrke, “Intelligible models for classification and

regression”, Proceedings of the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining , pp. 150–158, 2012.

29. Lou, Y., R. Caruana, J. Gehrke and G. Hooker, “Accurate intelligible models

with pairwise interactions”, Proceedings of the 19th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining , pp. 623–631, 2013.

30. Becker, B. and R. Kohavi, “Adult”, UCI Machine Learning Repository, 1996,

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

81

DOI: https://doi.org/10.24432/C5XW20.

31. Desboulets, L. D. D., “A review on variable selection in regression analysis”,

Econometrics , Vol. 6, No. 4, p. 45, 2018.

32. Karagiannopoulos, M., D. Anyfantis, S. Kotsiantis and P. Pintelas, “Feature

selection for regression problems”, Educational Software Development Labora-

tory, Department of Mathematics, University of Patras, Greece, 2004.

33. Duch, W., “Filter methods”, Feature extraction: foundations and applications ,

pp. 89–117, Springer, 2006.

34. Pudil, P., J. Novovičová and J. Kittler, “Floating search methods in feature

selection”, Pattern recognition letters , Vol. 15, No. 11, pp. 1119–1125, 1994.

35. Akaike, H., “Maximum likelihood identification of Gaussian autoregressive

moving average models”, Biometrika, Vol. 60, No. 2, pp. 255–265, 1973.

36. Kraskov, A., H. Stögbauer and P. Grassberger, “Estimating mutual informa-

tion”, Physical review E , Vol. 69, No. 6, p. 066138, 2004.

37. LightGBM Development Team, “LightGBM: A highly efficient gra-

dient boosting decision tree”, [Computer software]. Available from

https://lightgbm.readthedocs.io, 2023.

38. Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu,

“Lightgbm: A highly efficient gradient boosting decision tree”, Advances in

neural information processing systems , Vol. 30, 2017.

82

39. Bergstra, J., R. Bardenet, Y. Bengio and B. Kégl, “Algorithms for hyper-

parameter optimization”, Advances in neural information processing systems ,

Vol. 24, 2011.

40. Lundberg, S. M., G. G. Erion and S.-I. Lee, “Consistent individualized feature

attribution for tree ensembles”, arXiv preprint arXiv:1802.03888 , 2018.

41. Bishop, C. M. and N. M. Nasrabadi, Pattern recognition and machine learning ,

Vol. 4, Springer, 2006.

42. Chapados, N., “Effective Bayesian modeling of groups of related count time

series”, International conference on machine learning , pp. 1395–1403, PMLR,

2014.

43. Consoli, S., M. Negri, A. Tebbifakhr, E. Tosetti and M. Turchi, “Forecasting

the IBEX-35 stock index using deep learning and news emotions”, Interna-

tional Conference on Machine Learning, Optimization, and Data Science, pp.

308–323, Springer, 2021.

44. ter Burg, K. and H. Kaya, “Comparing Approaches for Explaining DNN-Based

Facial Expression Classifications”, Algorithms , Vol. 15, No. 10, p. 367, 2022.

45. Ridgeway, K., “A survey of inductive biases for factorial representation-

learning”, arXiv preprint arXiv:1612.05299 , 2016.

46. Brunton, S. L. and J. N. Kutz, Data-driven science and engineering: Machine

learning, dynamical systems, and control , Cambridge University Press, 2022.

47. Todo, W., B. Laurent, J.-M. Loubes and M. Selmani, “Dimension Re-

83

duction for time series with Variational AutoEncoders”, arXiv preprint

arXiv:2204.11060 , 2022.

48. Higgins, I., L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mo-

hamed and A. Lerchner, “beta-vae: Learning basic visual concepts with a

constrained variational framework”, , 2016.

49. Bengio, Y., A. Courville and P. Vincent, “Representation learning: A review

and new perspectives”, IEEE transactions on pattern analysis and machine

intelligence, Vol. 35, No. 8, pp. 1798–1828, 2013.

50. Woo, G., C. Liu, D. Sahoo, A. Kumar and S. Hoi, “CoST: Contrastive Learning

of Disentangled Seasonal-Trend Representations for Time Series Forecasting”,

arXiv preprint arXiv:2202.01575 , 2022.

51. Chen, R. T., X. Li, R. B. Grosse and D. K. Duvenaud, “Isolating sources of

disentanglement in variational autoencoders”, Advances in neural information

processing systems , Vol. 31, 2018.

52. Kingma, D. P. and M. Welling, “Auto-encoding variational bayes”, arXiv

preprint arXiv:1312.6114 , 2013.

53. Burgess, C. P., I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins

and A. Lerchner, “Understanding disentangling in β-VAE”, arXiv preprint

arXiv:1804.03599 , 2018.

54. Ates, E., B. Aksar, V. J. Leung and A. K. Coskun, “Counterfactual Explana-

tions for Multivariate Time Series”, 2021 International Conference on Applied

Artificial Intelligence (ICAPAI), pp. 1–8, IEEE, 2021.

84

55. Wang, Y., R. Emonet, E. Fromont, S. Malinowski, E. Menager, L. Mosser and

R. Tavenard, “Learning interpretable shapelets for time series classification

through adversarial regularization”, arXiv preprint arXiv:1906.00917 , 2019.

56. Li, G., B. Choi, J. Xu, S. S. Bhowmick, K.-P. Chun and G. L.-H. Wong,

“Efficient shapelet discovery for time series classification”, IEEE transactions

on knowledge and data engineering , Vol. 34, No. 3, pp. 1149–1163, 2020.

57. Lim, B., S. Ö. Arık, N. Loeff and T. Pfister, “Temporal fusion transformers

for interpretable multi-horizon time series forecasting”, International Journal

of Forecasting , Vol. 37, No. 4, pp. 1748–1764, 2021.

58. Wu, B., L. Wang and Y.-R. Zeng, “Interpretable tourism demand forecasting

with temporal fusion transformers amid COVID-19”, Applied Intelligence, pp.

1–22, 2022.

59. Gunnarsson, A. and C. Franc, “Food waste reduction through sales forecasting

using temporal fusion transformers”, , 2021.

60. Santos, M. L., X. Garćıa-Santiago, F. E. Camarero, G. B. Gil, P. C. Ortega

et al., “Application of Temporal Fusion Transformer for Day-Ahead PV Power

Forecasting”, Energies , Vol. 15, No. 14, pp. 1–22, 2022.

61. Zhang, W., C. Zhang and F. Tsung, “Transformer Based Spatial-Temporal

Fusion Network for Metro Passenger Flow Forecasting”, 2021 IEEE 17th In-

ternational Conference on Automation Science and Engineering (CASE), pp.

1515–1520, IEEE, 2021.

62. Oreshkin, B. N., D. Carpov, N. Chapados and Y. Bengio, “N-BEATS: Neu-

85

ral basis expansion analysis for interpretable time series forecasting”, arXiv

preprint arXiv:1905.10437 , 2019.

63. Jabeur, S. B., S. Mefteh-Wali and J.-L. Viviani, “Forecasting gold price with

the XGBoost algorithm and SHAP interaction values”, Annals of Operations

Research, pp. 1–21, 2021.

64. Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar, “Hyper-

band: A novel bandit-based approach to hyperparameter optimization”, The

Journal of Machine Learning Research, Vol. 18, No. 1, pp. 6765–6816, 2017.

65. Rijksvoorlichtingsdienst, “Schoolvakanties - Rijksoverheid.nl”, , 2021, https:

//data.overheid.nl/dataset/172c5d6a-6129-4e3c-9691-ab0a5ebefad6,

dataset bestaande uit data met betrekking tot schoolvakanties in Neder-

land. Beheerd door Rijksoverheid.nl, met gegevens van de aanbieder als

de Rijksvoorlichtingsdienst. Bron catalogus: https://data.overheid.nl. Toe-

gang: Publiek. Status van de dataset: Beschikbaar. Licentie: CC-0 (1.0).

Koninkrijksdeel Nederland.

66. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, “Scikit-learn: Ma-

chine Learning in Python”, Journal of Machine Learning Research, Vol. 12,

pp. 2825–2830, 2011, version 1.2.2.

67. Alexandrov, A., K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus,

T. Januschowski, D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz,

L. Stella, A. C. Türkmen and Y. Wang, “GluonTS: Probabilistic and Neu-

https://data.overheid.nl/dataset/172c5d6a-6129-4e3c-9691-ab0a5ebefad6
https://data.overheid.nl/dataset/172c5d6a-6129-4e3c-9691-ab0a5ebefad6

86

ral Time Series Modeling in Python”, Journal of Machine Learning Research,

Vol. 21, No. 116, pp. 1–6, 2020, http://jmlr.org/papers/v21/19-820.html.

68. Microsoft, “Fsv2-series”, https://learn.microsoft.com/en-us/azure/

virtual-machines/fsv2-series, n.d., accessed: [12-08-2023].

http://jmlr.org/papers/v21/19-820.html
https://learn.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/fsv2-series

87

APPENDIX A: Appendix 1: Full List of Considered

Features

Feature 1: day 0: Binary feature that is true on Monday, false otherwise.

Feature 2: day 1: Binary feature that is true on Tuesday, false otherwise.

Feature 3: day 2: Binary feature that is true on Wednesday, false otherwise.

Feature 4: day 3: Binary feature that is true on Thursday, false otherwise.

Feature 5: day 4: Binary feature that is true on Friday, false otherwise.

Feature 6: day 5: Binary feature that is true on Saturday, false otherwise.

Feature 7: day 6: Binary feature that is true on Sunday, false otherwise.

Feature 8: Weekday: Binary feature that is true during weekdays, false other-

wise.

Feature 9: national holiday: Binary feature indicating whether it is a national

holiday or not.

Feature 10: origin school vacation: Binary feature that is true is there if a Dutch

school vacation at the origin station.

Feature 11: destination school vacation: Binary feature that is true is there if a

Dutch school vacation at the destination station.

Feature 12: total travelers 7: total number of travelers at the same day of the

week, 7 days ago.

T∑
t=1

yd−7,t (A.1)

Feature 13: recent trend: Change in total number of travelers between the last

similar day, and 7 days earlier. Where the last similar day d∗ is the closest

88

day that has the same value for the weekday feature.

T∑
t=1

yd∗,t −
T∑
t=1

yd∗−7,t (A.2)

Feature 14: moving average 4w: Moving average of the total number of travelers

at that day of the week, calculated over the past 4 weeks.

4∑
w=1

T∑
t=1

yd−7w,t

4
(A.3)

Feature 15: moving average 6w: Moving average of the total number of travelers

at that day of the week, calculated over the past 6 weeks.

6∑
w=1

T∑
t=1

yd−7w,t

6
(A.4)

Feature 16: total travelers00 06): Total number of travelers between midnight

and 6 AM, 7 days ago.

12∑
t=1

yd−7,t (A.5)

Feature 17: total travelers 06 10: Total number of travelers between 6 AM and

10 AM, 7 days ago.

20∑
t=13

yd−7,t (A.6)

Feature 18: total travelers 10 16: Total number of travelers between 10 AM and

89

4 PM, 7 days ago.

32∑
t=21

yd−7,t (A.7)

Feature 19: total travelers 16 20: Total number of travelers between 4 PM and

8 PM, 7 days ago.

40∑
t=33

yd−7,t (A.8)

Feature 20: total travelers 20 24: Total number of travelers between 8 PM and

midnight, 7 days ago.

48∑
t=41

yd−7,t (A.9)

Feature 21: morning peak travelers: Maximum number of travelers at a single

timepoint during morning rush hours.

max
t∈[13,20]

yd−7,t (A.10)

Feature 22: evening peak travelers: Maximum number of travelers at a single

timepoint during evening rush hours.

max
t∈[33,40]

yd−7,t (A.11)

Feature 23: morning peakiness: Logarithm base 2 of the ratio of (total travelers

90

between 6 AM and 10 AM, 7 days ago + 1) to (morning peak travelers + 1).

log2

(
(feature 17) + 1

(Feature 21) + 1

)
(A.12)

Feature 24: evening peakiness: Logarithm base 2 of the ratio of (total travelers

between 4 PM and 8 PM, 7 days ago + 1) to (evening peak travelers + 1).

log2

(
(feature 19) + 1

(Feature 22) + 1

)
(A.13)

Feature 25: afternoon dip: Minimum number of travelers between 7:30 and and

16:30, 7 days ago.

min
t∈[16,34]

yd−7,t (A.14)

Feature 26: relative dip: Ratio of the afternoon dip (Afternoon Dip) to the sum

of morning peak travelers and evening peak travelers, plus 1.

(Feature 25) + 1

(Feature 21) + (Feature 22) + 1
(A.15)

Feature 27: log outlier 1day: Logarithm base 2 of the actual number of travelers

yesterday divided by the 6 week moving average of yesterday’s total travelers.

log2

(∑T
t=1 yd−1,t + 1

(
∑5

w=0

∑T
t=1

yd−1−7w,t

6
) + 1

)
(A.16)

Feature 28: log outlier 7day: Logarithm base 2 of the actual number of travelers

on the same day of the week last week divided by the moving average of total

91

travelers on the same day of the week in the previous 6 weeks.

log2

(
(Feature 12) + 1

(Feature 15) + 1

)
(A.17)

Feature 29: morning peak trend: slope of regression line fitted through last three

peak morning rush hours (7, 14, and 21 days ago)

Feature 30: evening peak trend: slope of regression line fitted through last three

peak evening rush hours (7, 14, and 21 days ago)

Feature 31: morning peak trend 7: the difference between peak morning rush

hour last week, and the week before.

Feature 21− max
t∈[13,20]

yd−14,t (A.18)

Feature 32: evening peak trend 7: the difference between peak evening rush hour

last week, and the week before.

Feature 22− max
t∈[33,40]

yd−14,t (A.19)

Feature 33: days since start: Number of days since the start of the time series.

d (A.20)

Feature 34-44: 4 Week Moving Average versions of features 16-26.

Additional Features: moving lw 1-48: The moving average features that we

compressed by the dimensionality reduction methods, and used without com-

92

pression by the no comp models.

moving lw t =
4∑

w=1

yd−7w,t

4
(A.21)

93

APPENDIX B: Appendix 2: Additional Figures

In this appendix we to provide some further illustrations and insights.

Figure B.1 shows the feature importance as calculated using Mutual Infor-

mation, Since MI calculates univariate relationships between features and target

variables, we find some very different results when compared to other methods.

94

Figure B.1: Feature Importance through Mutual Information: Analyzing the shared

information between the target and selected features, based on the average of all data

points in the training set.

95

Figure B.2: EBM Global Feature Importance. We see the feature importance of all fea-

tures in the EBM feature set, ranked from most important on the left to least important

on the right. The orange bars indicate univariate feature importance, the effect of the

feature through its univariate additive function. The global feature effects of the pairwise

functions, where the values of two features are used,are shown in blue. Note the large

pairwise feature effects that are attributed to the outlier 1 day and national holiday fea-

tures. These features are most relevant in interaction with other features.

96

Figure B.3: Pearson correlation between features. Where a red color indicates a positive

correlation, and blue a negative correlation. Brighter colors indicate a stronger correla-

tion. Note the high correlation between features and their moving average versions.

97

Figure B.4: Plot used to decide on an α value for the interpretable LASSO model

discussed in 4.6. The horizontal axis shows the α values on a log scale. The red line

shows the MAE of the LASSO model at the different α values, the MAE can be seen on

the right hand side. The blue line shows the average number of nonzero coefficients at

various α values

98

Figure B.5: Count of the number of nonzero coefficients corresponding to the features,

across the 48 LASSO models in the LASSO multi-output model. Some features such

as day 4 and national holiday are selected by none of the models, the LASSO cost

outweighing the potential accuracy increase. The moving averages of some time slots,

such as moving lw 1, and moving lw 40 impact the predictions of many models, whereas

the moving averages of other time slots have a less widespread influence.

99

Figure B.6: Global feature importance as the sum of absolute SHAP feature effects,

calculated as discussed in 2.6.1 over the first 7 days in the test set. It is important

to note that no instance-wise normalization was applied, meaning that larger effects,

such as those in instances on busy OD-pairs and busy time slots are represented in

proportion to their influence in the final calculated feature significances. The length of

the bar indicates the global feature importance according to TreeSHAP. The feature with

the biggest effect was the log outlier 1day feature, followed by the moving average 6w

feature.

100

APPENDIX C: Additional Background

C.1. Lagged Autocorrelation

We have a univariate time series Y ∈ RD×T where D represents the total

number of days and T represents the number of time points within each day. The

value yd,t represents the target value for day d at time point t.

The aim is to investigate the temporal dependencies in the data by construct-

ing a measure of autocorrelation between the value at a given time point and the

value at the same time point from previous days. This is done for each OD-pair

od, time point t, and day lag L from 1 to 30 days. This measure of autocorrelation,

ρ
(od)
t,L , is given by:

ρt,L = Corr (y.,t, y.−L,t) , (C.1)

using Pearson correlation. Here, y.,t is the vector of values at time t across all

days d ∈ D and d > L. Conversely, y.−L,t is the same but shifted by L days.

Figure C.1: Visualization of the normalized aggregated lagged autocorrelations over

2,000 distinct time series, following Equation C.3. The y-axis value of 1 indicates the

day with the highest lagged autocorrelation, after normalization.

101

Subsequently, the normalized autocorrelation ρ̃t,L is calculated for each time point

t:

ρ̃t,L =
ρt,L

max L∈[1,30] (|ρt,L|)
. (C.2)

This ensures that the correlations ρ̃t,L are within a [-1,1] range for each time

point t, such that all time points are equally considered. Lastly, the normalized

autocorrelation values ρ̃t,L for all time points t are summed together:

ρL =
T∑
t=1

ρ̃t,L (C.3)

and then normalized to a range of [-1,1], to get the final autocorrelation per day

lag, ˆ̄ρL :

ρ̃L =
ρL

max (|ρL|)
. (C.4)

Such that for each OD, we get the autocorrelation per day L: ρ̃L, where the day

with the highest autocorrelation has a value of 1, or -1. Finally, we aggregate

these autocorrelations for all OD pairs and normalize once again to get values in

the range of [−1, 1].

C.2. Feature Selection

To select a comprehensive set of features that are intelligible and lead to good

model performance we take a multifaceted approach: We use wrapper methods as

discussed in 2.4. A full list of features that were considered for feature selection

can be viewed in Appendix A.

102

Figure C.2: Shows the relationship between the subsample of the training set used to

train the linear regression model training and RMSE on the validation set. Differences

in RMSE are very minor, the larger shifts in performance at low subsample values may

be due to random effects.

For penalty based feature selection we used LASSO with a stronger penalty

term alpha = 0.1

Since wrapper methods are computationally expensive, we are restricted to

using linear regression and LGBM. To further reduce the computational demands,

we explored the relation between model performance on the validation set and the

size of the train set by randomly sampling a fraction of the train set to fit LR. All

features were used in this stage. As shown in fig C.2, using more data only led to

a very minor improvement in the case of linear regression. Therefore we decided

to use a fraction of 0.05 of the full training set to perform feature selection using

Forward Selection with Sequential Floating Search.

For Forward Selection (FS) with Sequential Floating Search (FSF) with

LGBM, we tuned the hyperparameters on the feature set that resulted from the

FS with SFS on the LR model.

103

C.3. LGBM hyperparameters

Hyperparameter tuning was performed for each LGBM model that received

a unique feature set:

F. Set M. Depth N. Leaves L. Rate N. Est. M.C. Samples M.C. Weight F. Fraction

Handcrafted 16 268 0.02159 411 41 6.68e-06 0.5

+ β-VAE 6 10 399 0.04380 438 108 1.56e-04 0.4

+ β-VAE 8 11 281 0.03366 448 122 7.84e-05 0.5

+ SVD 6 17 374 0.02218 342 106 4.90e-08 0.5

+ SVD 8 17 367 0.02267 488 95 1.26e-07 0.4

+ SVD 10 17 320 0.02299 470 145 5.69e-07 0.5

+ No compression 15 424 0.02107 462 175 3.18e-05 0.5

Table C.1: Hyperparameters of LGBM Models for Different Feature Sets. F. Set de-

notes the feature set used for the model, M. Depth is the maximum depth of the trees,

N. Leaves is the number of leaves in the trees, L. Rate is the learning rate, N. Est.

is the number of estimators, M.C. Samples is the minimum number of child samples,

M.C. Weight is the minimum child weight, and F. Fraction is the fraction of features

used. Handcrafted is the original optimal feature set found through FS with SFS on the

complete set of handcrafted features. The subsequent feature sets contain the addition

of the representations generated by the dimensionality reduction methods.

C.4. Selection of Latent Variables in Representation Learning

To select the optimal number of components for the SVD dimensionality

reduction features, we iterated from 1 to 20 top-k components and trained LR

and LGBM models on the train set. So these models receive 1-20 additional

features besides their optimal classical feature set. Performance was examined on

the validation set:

Visualization of the V h matrix truncated at 12 top components shows that

104

Figure C.3: Mean absolute error of time series reconstruction using SVD’s top k compo-

nents (the r is a typo). The horizontal axis shows the number of components at which

the SVD representation was truncated

Figure C.4: Accuracy measurements on validation of LGBM with lgbm sfs features fea-

ture set, enhanced with top k components from SVD dimensionality reduction. For our

results section, we used SVD representation truncated at the top 6 components since

subsequent components were increasingly harder to interpret.

Figure C.5: Accuracy measurements on validation of Linear Regression with

lr sfs features feature set, enhanced with top k components from SVD dimensionality

reduction. For our results section, we used SVD representation truncated at the top 6

components since subsequent components were increasingly harder to interpret.

105

Figure C.6: Alternative visualization of the V matrix truncated at 12 top components.

The start of the time slot is shown on the x-axis, the y-axis indicates the ranking of the

components’ importance, with 1 being the highest order component. Colors variations

represent the magnitude of the respective element in the V h matrix. Note that the

polarity of these values flips for the entire row if the corresponding u value has a negative

sign.

the lower order (higher index) components are more erratic and capture smaller

variations in the data

C.5. β-VAE model selection

To inspect the relationship between β and reconstruction quality, four base β-

VAE models with 6 latent variables were trained, with β values (0, 1e-5, 1e-4, 1e-3).

The reconstruction error on the validation set can be seen in Figure C.7. Manual

inspection of the latent variables through single latent traversals showed that only

the model with β = 1e− 4 created intelligible latent variables.

106

Six new β-VAE models were trained on the train set, with latent dimensions

|z| ∈ (6, 8, 10) and β values 3e-5 and 1e-4. Reconstruction quality was assessed on

the validation set, as shown in Figure C.8. These 6 models were used to represent

the moving average of the same-day last 4 weeks, identical to the SVD method.

To assess which of these models generate the most informative features, we

added the latent representations to the optimal handcrafted feature sets for LR

and LGBM.

These representations were used as additional features, LGBM and LR mod-

els were trained on the test set and forecasting accuracy was assessed on the vali-

dation set. All six representations resulted in comparable performance increases,

as can be seen in Figures C.9, C.10

Figure C.7: Reconstruction accuracy of β−V AE models with 6 latent units, at different

values of β. Values on the x-axis indicate the β value that was used. Larger β values

result in a worsening of the reconstruction quality.

C.5.1. Results For All Models

The results of all final models on the test set can be seen in Figure C.11, which

shows that compression of historical data through SVD is superior to compression

through β-VAE, but both methods are inferior to using no compression at all.

In the case of using LGBM, there is less of a distinction between SVD and β-

107

Figure C.8: Reconstruction accuracy of β−V AE models. The name of the bar indicates

the hyperparameters used to develop the β-VAE model. The two rightmost models, with

a latent dimension of 10, fail to continue the expected trend of a reducing reconstruction

error when increasing the information bottleneck

108

Figure C.9: Forecasting accuracy on the validation set of LR models that received la-

tent representations generated through β-VAE models. The name of the bar indicates

the hyperparameters used to develop the β-VAE model that generated the additional

features.

109

Figure C.10: Forecasting accuracy on the validation set of LGBM models that received

latent representations generated through β-VAE models. The name of the bar indicates

the hyperparameters used to develop the β-VAE model that generated the additional

features.

110

VAE compression, but again, no compression is superior. We find that all LGBM

models, except the base LGBM model, are better than DeepAR, The LR and

Lasso models without dimensionality reduction are not significantly different from

the DeepAR model.

111

Figure C.11: Mean Absolute Error of all models on the test set. LR models are shown in

dark blue, EBM models in regular blue, and LGBM models in light blue. The numbers

indicate the size of the latent dimension used. For example, lr 6 svd is the LR model

that has the base LR features plus the 6 most important SVD U values. When the model

name ends with no comp, that means the historical data was included in uncompressed

form.

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS
	LIST OF ACRONYMS/ABBREVIATIONS
	INTRODUCTION
	 Problem Statement
	 Objectives

	Background on Methods and Literature
	 Explainable and Interpretable Machine Learning
	 Introduction to Time Series
	 Intrinsically Interpretable Models
	 Decision Trees
	 Multivariate Linear Regression
	 Generalized Linear Models
	 Generalized Additive Models
	 Explainable Boosting Machine

	 Feature Selection Methods
	 Mutual Information

	 Black Box Models
	 LGBM
	 DeepAR

	 Post-Hoc Explainability Methods
	 Shapley Additive Explanations

	 Hybrid approaches and representation learning
	 Singular Value Decomposition
	 -VAE

	 Related Work in Explainable Time Series Forecasting

	Research Approach
	 Proposed method
	 Research Question 1
	 Research Question 2
	 Research Question 3
	 Research Question 4

	 Performance Measures
	 Data for Experimental Validation
	 NS Data

	 Feature Engineering
	 Handcrafted Features
	 Features for Dimensionality Reduction

	Experimental Results
	 Experimental Setup
	 Base Model Design
	 DeepAR

	 Evaluation of Models using Exclusively Handcrafted Features
	 Evaluation of Models using a Combination of Handcrafted Features and Dimensionality Reduction Features
	 Evaluation of Models using a Combination of Handcrafted Features and the Additional Features in Uncompressed Form
	 Fidelity of SHAP explanations
	 Intelligibility of selected models

	Discussion and Future Work
	 On Computational Demands and Environmental Effects

	Conclusion
	REFERENCES
	 Lagged Autocorrelation
	 Feature Selection
	 LGBM hyperparameters
	 Selection of Latent Variables in Representation Learning
	 -VAE model selection
	 Results For All Models

