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1 Introduction 1

Abstract

In this paper we set out to make a simple reverse-mode automatic differentiation (AD) algo-
rithm, that uses tracing for the forward pass, and preserves data parallelism in the reverse
pass. To do this, we first try to formalize the notion of tracing somewhat. We find that while
some flexibility in the definition of is needed for it to work well, we can also boil it down to
picking a subset of data types to keep in the trace. We also define a couple of logical assertions
that further help us in showing whether a trace does really contain the information that we
need. Having defined tracing, in theory, but also over a Haskell DSL, we continue to automatic
differentiation. Here we expand the tracing function into a forward-pass function by adding
reference counting and intermediate values. Using this forward-pass trace as a map, we then
show how we can do the reverse-pass. We also show that we can keep data-parallelism intact
for the map and fold (reduce) operations. Finally, we also highlight how task parallelism can
be used in the reverse-pass to possibly unlock even more efficiency.

1 Introduction

In Automatic Differentiation (AD) we try to find the derivative of some numeric function,
automatically. AD systems are nothing new, however they are still as relevant as ever.
Especially with the current AI spring, we find AD playing the important role as the
back propagator function in artificial neural networks.

And while AD is fairly quick, it also has its inefficiencies. Especially in array languages,
we find that modern AD libraries either do not really take advantage of data parallelism,
or do so in convoluted ways.

In this paper, we use the intuitive method of finding the computational graph of a
function through tracing. Then we do a reverse-pass over this computational graph
to calculate the derivative. By taking parallel array operations into careful considera-
tion, we can even maintain data parallelism by using other data-parallel operations to
calculate the partial derivatives.

We set out to think a little more sceptically about what tracing actually means, and
then use our new understanding for finding the derivative using reverse-mode AD.

2 Background

2.1 Automatic Differentiation

Automatic Differentiation (AD), like the name suggests, involves programmatically find-
ing the derivative of some programmed function [1]. The other main method for pro-
grammatically finding the derivative of a function is numerical differentiation, which
uses the finite difference method. By adjusting the input(s) to the function by a very
small number, we can see the effect on the output(s) of the function. Unfortunately, due
to the way real numbers are represented using floating-point computation, this method
is prone to round-off error (or truncation error). AD avoids this by actually performing
the differentiation on a program, to produce the differentiated program. This is very
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similar to how a human would differentiate a mathematical function (sometimes called
symbolic or manual differentiation), but performed on a computer program.

AD makes very explicit use of the chain rule of partial derivatives of compound func-
tions, which provides a method for finding the derivative of compound functions and
states that we can combine partial derivatives of parts of the function together into
the complete derivative. Say we have some single-variate function h(x), which is the
compound function of the functions f and g:

h(x) = (f ◦ g)(x)

In this case, the chain rule tells us that the derivative of h(x) is given by as d
dxh(x):

d

dx
h(x) =

d

dx
(f ◦ g)(x) = d(f(g(x)))

dg
· d(g(x))

dx

For clarity, in Lagrange’s notation, where h′(x) is the derivative of h(x), this same
statement can be expressed as:

h′(x) = (f ◦ g)′(x) = f ′(g(x)) · g′(x)

The chain rule also extends to compositions of more than two functions. For example,
say we have a function k(x) as below:

k(x) = (f ◦ g ◦ h)(x)

We can then find the derivative of k(x) using the chain rule as well:

d

dx
k(x) =

d

dx
(f ◦ g ◦ h)(x) = d(f(g(h(x))))

dg
· d(g(h(x)))

dh
· d(h(x))

dx

Again for clarity, in Lagrange’s notation this would be:

k′(x) = (f ◦ g ◦ h)′(x) = f ′((g ◦ h)(x)) · (g ◦ h)′(x)
= f ′((g ◦ h)(x)) · g′(h(x)) · h′(x)

The chain rule also provides us with a method of deriving multivariate functions. For
instance, we can imagine a function f(x, y). Now, the derivative of f changes depending
on which variable we wish to derive with respect to. Furthermore, this is not a compo-
sition of functions, so the chain rule does not come into play. However, if we image the
variables x and y as single-variable functions x(t) and y(t) we can find the derivative of
f with respect to t using the chain rule. We get:

f(x(t), y(t))

Now to calculate the derivate of f with respect to t, we first need to find the derivative
of x with respect to t and the derivative of y with respect to t. The chain rule tells us
that the derivative of f here is equal to the partial derivative of f with respect to x
summed with the partial derivative of f with respect to y. We can express this as:

d

dt
f(x(t), y(t)) =

∂(f(x(t), y(t)))

∂x
· d(x(t))

dt
+

∂f(x(t), y(t))

∂y
· d(y(t))

dt

An important thing to note about the chain rule is that we still need the intermediate
primal values in a compound function. Review the following compound function:

(f ◦ g ◦ h ◦ k)(x)
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In Lagrange’s notation, the derivative becomes:

(f ◦ g ◦ h ◦ k)′(x) = f ′((g ◦ h ◦ k)(x)) · g′((h ◦ k)(x)) · h′(k(x)) · k′(x)
= f ′(g(h(k(x)))) · g′(h(k(x))) · h′(k(x)) · k′(x)

See how on the second line we have highlighted the primal parts of the equation, the
intermediate values that we need for finding the derivative. Also note how values deeper
in the chain are used multiple times; h(k(x)) is used twice: first in the derivative f ′ and
second in the derivative g′. k(x) is even used three times. Looking at this example, it
becomes very clear that it would be more efficient to calculate k(x) once and save that
result somehow, rather than recalculating it every time it came up. The storing and
reusing of intermediate values is a fundamental property of AD, and is called “sharing”.

To actually implement automatic differentiation, we seek to break the target program
down to its most basic mathematical operations, for which we know the derivatives.
Then we can use the chain rule to combine them together into the derivative of the
whole program. There are two main ways to actually resolve these derivatives: us-
ing either forward accumulation or backward/reverse accumulation. When applied in
AD implementations these are commonly respectively referred to as forward-mode and
reverse-mode. Both methods are described in the 1986 paper “The arithmetic of differ-
entiation” by B. Rall [2].

In forward-mode AD we move through the program to differentiate in normal execution
order. By knowing which input variable we wish to differentiate, we can compute every
step of the derivative as our inputs are used by the program. Rall demonstrates this
using a method known as dual-numbers, where each real number is represented by a
pair of numbers, similar to complex numbers. In dual-numbers, the first number in the
pair represents the primal part of the number, whereas the second number represents
the derivative part (called the tangent in forward-mode). When we compute with these
numbers through arithmetic operations, we can operate on the primal parts as normal,
and use derivative rules to calculate the derivative of the result using the tangent parts.
An example of this is given in Equation 1, where ȧ is the tangent part of some real
number a.

(a, ȧ) · (b, ḃ) = (a · b, ȧ · b+ ḃ · a) (1)

Now we can find the derivative of some program with regard to the input xi by setting
ẋi to 1, setting the tangents of all other inputs to 0, and just running through the
program calculating tangents as we go. The tangent part of the output value(s) is also
the calculated derivative of the whole program.

While forward-mode AD is fairly straightforward, it comes with some drawbacks. The
main one being that for a function f : Rn → Rm with n inputs and m outputs, to get
the effect of each input variable on each output variable, we would need to perform n
passes over the function, one for each input variable (or we need to track n tangent
parts for each step). This can be cumbersome, especially if n is much larger than m.
For those cases, we might be better off with reverse accumulation, or reverse-mode.

In reverse-mode, we peg the derivative part of one of our outputs with some seed (often
1), and set the derivative parts of the other outputs to 0. These derivative parts are
generally referred to as adjoints instead of tangents in reverse-mode. When the outputs
are set, we can work our way back through the function, calculating the derivative parts
from the output to the input. Intuitively, this computes the gradient of the output
dimension we pegged to 1, or the direction of the steepest slope. Practically, the idea of
working back through a program requires some way of knowing where the outputs came
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from (a sort of dependency structure). This then requires a forward pass, to find this
structure, to calculate the intermediate values, and often to set up any dual-numbers or
other implementation details. And while reverse-mode is definitely harder to implement,
it also provides us with a way to calculate the sensitivity of all inputs to an output, which
is much more efficient for functions with many more inputs than outputs (which can be
quite common in certain applications like neural networks).

In mathematical terms, calculating the partial derivative of one output with regard to
one input, means calculating one cell in the Jacobian, the matrix of all partial derivatives.
For a function f : Rn → Rm with n inputs and m outputs, the Jacobian Jf would be

an n×m matrix. Here a column i represents the partial derivatives ∂f⃗
∂xi

, where f⃗ are all
outputs of f , and xi represents a single input. A row j then represents the derivatives
∇fj =

∂fj
∂x⃗ , where x⃗ are all inputs of f , and ∇fj is also known as the gradient of the

single output value fj . This is also shown in Equation 2, showing the Jacobian for some
function f with n inputs (x1, . . . , xn) and m inputs (f1, . . . , fm). An important take-
away here is that forward-mode computes the derivatives of all outputs with regard to a
single input, so a column in the Jacobian, and reverse-mode computes the derivatives of
all inputs with regard to a single output, so a row in the Jacobian. Again, if we want to
calculate the full Jacobian, forward-mode is more efficient when we have more outputs
than inputs or when the Jacobian has more columns than rows, and the reverse-mode is
more efficient for functions with more inputs than outputs or for Jacobians with more
rows than columns.

Jf =

[
∂f⃗

∂x1
, . . . ,

∂f⃗

∂xn

]
=

∇f1
...

∇fm

 =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 (2)

While it has long been known that reverse-mode automatic differentiation could be ex-
ecuted in time equal to some constant multiple of the execution time of the primal pro-
gram [3], it seemed that a constant multiple of the execution memory was also needed,
which could become very expensive for large programs. However, in 1992, Andreas
Griewank showed that by using taping and checkpointing we could trace time complex-
ity for space complexity to reduce either to a constant multiple of the log of the execution
time [4]. In general the practice of taping refers to a form of tracing on the program we
wish to differentiate, where we execute the program as normal and record all the steps
and intermediate values in a first-in-last-out data structure referred to as a “tape” or
Wengert list. In a second phase to the reverse-mode algorithm, the tape is then used to
calculate the derivatives in question, which due to the first-in-last-out nature of the tape,
is in the precise reverse of the execution order of the program. An important advantage
of taping is that by giving each variable and intermediate calculation a unique ID we
can avoid redundant execution, because we can just refer to the intermediate value or
tangent/adjoint stored in the tape. While taping is efficient time-wise, it clearly adds a
memory overhead that can be quite sizable for large programs. Checkpointing aims to
address this by storing multiple parts of the tape to memory attached to checkpoints in
the program’s execution. The trick here being, that on the reverse-pass only the inter-
mediate values from the most recently encountered checkpoint are loaded from memory,
intermediate values that were not stored as part of this checkpoint are recalculated.
By strategically placing these checkpoints, and deciding which intermediate values are
stored, this can cut the size complexity at a relatively small-time complexity increase.
It should be noted that automatic differentiation can also be performed on a program
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where we do not have any specific inputs. We can do this using source transformation
[5]. In its most basic form source transformation can be implemented as just interlacing
the derivative calculations into the regular program. An example of this is provided in
Listing 1, where we calculate the derivative of some variable y (as dy) with regard to
the variable x1. For reverse-mode AD this kind of interlacing is not possible, as we need
to reach the end of the program before we can start the reverse pass, which is exactly
why we record our steps on the tape: so we can reverse over the tape and know how to
produce our reverse AD program. An example of this is provided in Listing 2, where we
again calculate the derivative of y (as dy), with regard to x1 and x2. So, to summarize,
for a function f : A → B, source transformation finds the derivative function for any
input in the domain A, whereas dual-numbers (or similar approaches) find the deriva-
tive function for a specific input a ∈ A. Of course, in complex functions with a lot of
control flow, source transformation can become cumbersome as it needs to account for
all possible inputs, whereas dual-numbers only needs to account for one.

x1 = 15
dx1 = 1
x2 = 7

dx2 = 0
r1 = x1 + x2

dr1 = dx1 + dx2
y = r1 × x2

dy = r1 × dx2 + dr1 × x2

Listing 1: An example of forward mode AD by source transformation, with the AD
statements in red

x1 = 15
x2 = 7
r1 = x1 + x2
y = r1 × x2

dy = 1
dr1 = dy × x2
dx2 = dy × r1 + dr1 × 1
dx1 = dr1 × 1

Listing 2: An example of reverse mode AD by source transformation, with the AD state-
ments in red

For forward-mode AD, the evaluation of the derivative is done during execution. Like
in 1996’s FADBAD package, which provided both forward-mode and reverse-mode AD
for C++ [6]. The reverse-mode uses the taping method described by Griewank, im-
plemented through a method called operator overloading. In forward-mode, operator
overloading refers to providing the basic mathematical operators with methods that
work on the numbers represented by a pair (of a primal part and a tangent part); this is
the dual-numbers approach we mentioned before. For reverse-mode, operator overload-
ing is used to rewrite the basic mathematical operators, so they record their use and
intermediate values to a single tape data structure. A similar implementation was also
provided by Griewank et al. in the 1996 package ADOL-C [7], again in 2001 using more
efficient expression templates by Aubert et al. [8], and later in 2014 by Robin Hogan
[9].
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Source-code transformation is eventually also implemented, in the Tapenade AD pro-
gram [10]. Tapenade adds derivative calculations to the code, but also employs lazy/de-
layed evaluation in the forward pass. This allows Tapenade to do some activity analysis,
which in turn allows it to combine or discard some partial derivatives to be more effi-
cient. It also implements the previously discussed checkpointing, where part of the tape
is stored to be restored and differentiated later. This, in theory, allows for differentiating
programs of arbitrary size, because the differentiation process is not limited by the size
of the working memory [11].

More recently implementations, like Fei Wang et al. 2019 paper, have shown how to
simplify reverse automatic differentiation using continuation passing style and delimited
continuations [12]. This method uses dual numbers and cleverly overloads operators, so
they call the forward pass as a continuation and then perform the backwards pass on
the returned value.

In 2022, Krawiec et al. show how reverse-mode AD can be extended efficiently to higher-
order functional programs [13]. While the Wang paper also did this, Krawiec uses the
functional nature to provide a correctness proof of the reverse-mode AD, something
that had previously only been done on implementations that were either asymptotically
inefficient or only worked on first-order languages. They do however need taping again
to make it provable and efficient.
Vákár and Smeding provide a provably correct form of higher-order reverse AD without
taping in their 2022 paper [14], based on earlier work by Elliott in 2018 [15].

And in 2022 as well, Schenck et al. show how to do both forward-mode and reverse-mode
automatic differentiation on second-order array language with nested data parallelism
[16]. They do this by eliminating taping again, which forces sequential execution, by
allowing potential redundant execution. But by limiting their AD implementation to
second-order functional languages, they can largely avoid this redundancy with efficient
program transformations on parallel operators.

Finally, in 2023, Smeding en Vákár bring back explicit dual-numbers to reverse AD [17].
However, instead of pairing each number with its computed adjoint, they instead pair it
with a linear back-propagator function, which they can then later chain to get the full
derivative. While this initially seems to eliminate the need for taping, they find that
through optimizations they return to a concept that is very close to taping and show
that it is in fact equivalent.

2.2 Tracing

Tracing is a concept in computer science that is often left without proper definition.
While the main ideas behind tracing are well known, they are generally assumed known
by the reader and therefore left without explanation. This is also in part because, in
software engineering, the term tracing also refers to finding the origin of some call (“trac-
ing” the call stack), which is only tangentially related to the tracing we are interested
in, but can leave definitions of tracing a bit muddled. This is why, in Section 3, we
will discuss more about that proper definition. For now, it is important to know that,
when we refer to tracing in this paper, we speak about tracing the path of computation
through a program, given some (valid) input to said program. In other terms, given a
program and an input, we walk through the program and record each computational step
for some later purpose, like automatic differentiation. This recording can happen with
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some domain-specific pseudo-language, or in full-fledged code if we wish to reevaluate
the trace later (or a combination of the two).

Doing tracing gives us some interesting insights into a program we trace. First, it
effectively ignores control flow. This is fairly intuitive, when given a set of inputs to a
program, the control flow will control what path the program uses, and since we only
record computations we find what is often dubbed a “straight-line program” for some
inputs. This can be useful for instance in automatic differentiation, where we often only
want to differentiate a computation, not the entire program including unused branches.
In this paper, we will also be using tracing for this purpose, as laid out in Section 4.

As mentioned, in literature we see this type of tracing used for automatic differentia-
tion. One of these uses was by Bischof in 1991 [18]. In his paper, Bischof discusses
the use of the computational graph of a program in automatic differentiation (using
ADOL-C [7]). The computational graph of a program is a directed acyclic graph, where
each node contains a computational step in the program, and edges connect these steps
in the execution order of the program. Bischof creates this graph from the tape pro-
duced by ADOL-C, which makes sense: for automatic differentiation as discussed, the
tape acts as a sort of trace, recording the steps that are important in the automatic
differentiation. Bischof then uses a graph colouring algorithm on the computational
graph to highlight “component functions” that may be differentiated concurrently, as
to improve the running time of the algorithm. In 2008, Bischof et al. expand on this
by extending the tracing automatic differentiation to loops [19]. They do this by ex-
tending ADOL-C, paying specific attention the parallelization opportunities present in
automatic differentiation.

In a similar vein, Dougal Maclaurin presented in his PhD thesis in 2016 [20] a paper
introducing Autograd. A software package to automatically differentiate Python code
(including AD for the vector library Numpy). As Python is an expressive JIT-compiled
(Just In Time) dynamic language, they opt for tracing to construct the computing graph
on the fly when a function is called, and like Bischof’s work this allows them to do the
backwards pass off reverse-mode AD on the computational graph. They do this by
wrapping their variables as ”nodes” in the computational graph. When a variable is
used, it is first unwrapped for use, and then the result of whatever operation used the
variable, is stored as a new variable and wrapped as well. The original variable and
the produced variable are then linked such that the produced variable stores a reference
to the original variable. This creates the reverse computational graph, which is exactly
what is needed for the reverse AD pass.

TensorFlow, a machine learning library, also uses tracing to create computational graphs
[21]. This kind of tracing is not as low to the ground as actually following individual
computations. Since TensorFlow mainly focuses on building artificial neural networks,
the computational graph is made explicit by the programmer. While there are some
nuance differences between a computational graph of a neural network and the neural
network itself, these differences are somewhat unimportant. More interestingly, Tensor-
Flow allows for the partial execution of the computational graph. While Bischof’s use of
a graph colouring algorithm already suggested this, TensorFlow actively uses this tech-
nique to re-run partial computational graphs, which works well for the explicit nature of
neural networks, as the computational graph stays unchanged even if the inputs change
(as neural networks do not have internal control flow).

Finally, 2018’s JAX uses tracing to enhance performance of general machine learning
code [22]. The programmer annotates functions to be analysed by JAX, which then
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traces as optimizes them. Rather than finding the computational graph (or predefining
it), JAX waits for Python to execute the function and actually traces it. Then, JAX
optimizes it, mainly through a process called fusion, which is discussed in Section 2.3.
This is also where JAX gets its name: Just After eXecution, as it waits for Python to
execute the function first. It should be noted that JAX can only do this for functions
which are pure-and-statically-composed (PSC), meaning functions that have no side
effects and that do not change with different inputs. Again, machine learning code is
especially suited for this, as it often already satisfies this PSC assumption.

2.3 Functional Parallel Array Programming

Array programming languages are programming languages that treat the array as a
central data structure. This generally includes that functions, both user-defined and
built-in, could be applied to arrays through vectorization. Vectorization involves apply-
ing a function to every element of an array at the same time. For instance, vectorization
of addition would add two arrays together element-wise. This is shown in Equation 3,
where a⃗ and b⃗ both are arrays of the same size.

a⃗+ b⃗ = [a1 + b1, . . . , an + bn] iff |⃗a| = |⃗b| (3)

In general vectorization would only work for arrays of the same size were it not for
another central concept: broadcasting. Broadcasting involves the resizing of arguments
to functions, so they can be used. A very clear example would be if we wished to add a
scalar value to each element in an array of scalars. To do this with vectorization alone
would mean we would need another array which replicates the scalar we wish to add for
each element in the array we wish to add it to. Broadcasting basically does this for us,
as exemplified in Equation 4.

a⃗+ 2 = [a1 + 2, . . . , an + 2] (4)

Array programming languages also often support higher-order operators for use on ar-
rays. An important operator for arrays is fold (or reduce), which applies a binary
function to elements in an array, where one argument accumulates the previous results.
It is easy to imagine how such an operator could be used to, for instance, sum all the
items in a 1-dimensional array. An important realization is that, since fold only returns
the final result, fold can reduce the dimensions of an array by one. In our summa-
tion example, we fold a one-dimensional array into a zero-dimensional array, namely a
scalar value. Similar to fold is scan, which like fold applies a cumulative binary function
to each element in the array, but rather than returning only the result, it returns all
intermediate results in an array (with the last element being the final result).

Other important array functions include map, which applies a function to each element
in an array. Then, forward permutation (scatter) and backwards permutation (gather),
which permute one array into a new one by respectively mapping the indices of the
source array to those of the new array or the indices of the new array to those of the
source array. Generate, which generates a new array as well, but does by taking the
dimensions of the desired array and a function that takes in an index and outputs a
value.

We should also not gloss over the actual implementation of these arrays, especially in
functional languages where there exists two major ways of constructing arrays [23]. Pull-
arrays are the more used of the two, here arrays are represented with a function from an
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index to a value. In push-arrays, consumers are provided with a method to write into
memory. This means that the way that the efficiency of array operations can change
based on the array representation. For instance, indexing is faster on pull-arrays while
push-arrays are quicker to concatenate. This basically divides the array operations in
two camps: push-operations and pull-operations.

These two camps play an important role in a concept of fusion. When we have mul-
tiple back-to-back parallel array operations, executing them naively introduces a lot of
overhead for reading and writing intermediate values to memory. Instead, fusion allows
us to combine these operations together, so we can compute them in one go without
the overhead of storing intermediates. However, we cannot just go chaining parallel
operations, not all parallel operations fuse together nicely. In fact, pull-array operations
only fuse with other pull-array operations, and the same goes for push-array operations.
This means for instance that we can fuse multiple scatter operations, but not a scatter
and gather operation.

Now the reason for choosing a (functional) array language over a general language is
often because we need to process large amounts of numerical data, and arrays are well-
suited for parallelism. To be precise, we are talking about data parallelism here. Task
parallelism is when two or more computer processes run simultaneously on different
processor cores. Data parallelism is when an operation (or a string of operations) is done
element-wise on data structure like an array. The parallelism of data parallel processing
of these operations on each element, rather than the parallelism of different processes. An
important distinction between task and data parallelism, is that while parallel threads
in task parallelism can generally start, run, and end independently of each other, data
parallelism threads move in lockstep with each other. This is lockstep or synchronous
execution means that the execution does not continue until the current operation has
been applied to all elements in the array, which may be important if we want to do
multiple parallel operations back-to-back. Furthermore, modern GPU architectures are
especially well-suited for this type of synchronous parallelism, as graphics processing
overlaps in large part with parallel array processing.

A good starting point for the history of functional parallel array programming was
in 1992, with G. Belloch’s paper on the parallel array programming language NESL
[24]. The language was strongly-typed and had no support for side effects, making it
a functional language. The main way to add parallelism was through the inherently
data-parallel “vectors” the language introduces in lieu of lists. These vectors could also
be nested, and functions could run in nested parallel on these vectors. Another major
inclusion was to allow user-defined functions to be run (in parallel) on these vectors,
making it possible to write more complex nested data-parallel algorithms than before.

The functional language Haskell, saw the introduction of task-parallelism well before
its first official release, through libraries like pH [25]. Some data-parallelism followed
[26, 27, 28], but this was limited to applying a function over a flat array. However, in 2001
nested data-parallelism was introduced to Haskell by the NEPAL project by Chakravarty
et al. [29]. The paper largely focusses on reimplementing NESL as a Haskell library,
but creates a much more expressive data-parallel language doing so. This is because
NESL was rather limited in scope, whereas Haskell was already a full-fledged functional
programming language. Two important concepts come to the forefront in the NEPAL
paper, namely flattening and fusion. Both in NESL and in NEPAL, higher-dimensional
nested parallelism is “flattened” to a single distributed parallel operation. In NESL,
this meant that data-types had to be limited to tuples and the vectors it introduced,
to make sure this flattening operation worked correctly. Since then however, Keller
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and Chakravarty had shown this flattening transformation could also be applied more
generally to cover the full range of types of general programming languages [30, 31, 32].
This allowed them to apply the nested data parallelism of NESL to a more expressive
language Haskell with NEPAL. Furthermore, they also showed that in combination
with fusion it could produce efficient code for distributed machines [33]. Fusion is
where multiple separate parallel operations are combined into a single parallel operation,
which greatly improves performance of complicated parallel programs. This is important
because many operations on arrays introduce the need for intermediate arrays to be
computed. Doing this in parallel leads to more problems, as these implementations
rely on gang parallelism, where the parallel threads remain in lockstep with each other
[34]. Fusion helps us here, as we can reduce the number of intermediate arrays to be
generated, as we can calculate the results of multiple operations at once [35, 36].

All this work culminated in 2007’s Data Parallel Haskell (DPH) [37], by Peyton-Jones et
al. Its main feature was the parallel array, that like NESL’s vectors, was the main way of
adding parallelism to a program. However, these parallel arrays could now hold any type,
such as other arrays or functions, like Haskell’s native (non-parallel) lists. Furthermore,
DPH provides parallel variants of Haskell’s native list functions, and a parallel alternative
to Haskell’s list comprehensions. The main difference between Haskell’s native lists
and DPH’s parallel arrays (besides the parallelism) was that evaluating any value in
a parallel array would require evaluation on all the array’s elements, whereas Haskell
as a lazy language would not normally do that. This is to be expected, as parallelism
becomes meaningless if it is only applied to a single entry of an array.

Outside of Haskell, a functional array-programming dialect of C was developed: Single
Assignment C (SAC) [38, 39, 40]. It would go on to distinguish itself as a functional array
programming language in a style more familiar to programmers of imperative languages
(like C). The main mechanic in SAC is the with-loop, which takes a generator that
dictates a looping mechanism and an operation that dictates the return value. These
operations can be functions like “fold” to reduce the rank of an array, or “genarray” to
generate new (multidimensional) arrays. Besides the imperative style, the main draw
of SAC is that its performance is comparable to Fortran and C, while its programs are
generally more concise (for intensive numerical applications.)

In 2010, Keller, Chakravarty, et al. presented a new data-parallelism approach for
Haskell in “Regular, Shape-polymorphic, Parallel Arrays in Haskell” [41]. Previous
approaches had focussed on irregular arrays, where on array could contain arrays of
different lengths. The library Repa, introduced in this paper, was made for regular arrays
where arrays of each nested rank are the same size. However, this allows the library to be
purely functional and support shape polymorphism. While DPH was purely functional
as well, it was not especially performant on regular arrays and it also did not support
shape polymorphism. In shape polymorphism, the type of collection is fixed (unlike
in type polymorphism), but the shape of the collection is not [42]. For instance, under
shape polymorphism a function may be applied to either a flat array, or a 10-dimensional
one. While shape polymorphism for functional arrays had been implemented before in
SAC, Repa implemented it by embedding it into Haskell’s type system, whereas the SAC
implementation had required a purpose-built compiler. This also allowed programmers
to more easily see and control the shapes of their multidimensional parallel arrays, and
build their own shape polymorphic parallel functions.

In 2011, Repa was succeeded by the Accelerate project [43]. Accelerate is a library for
Haskell, aimed specifically at bringing parallel array programming to modern GPUs.
It mimicked many of Haskell’s native list functions with parallel alternatives (that run
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on the GPU), and used the typed shaped polymorphism from Repa. It also separated
“collective” (array) computations and scalar computation by wrapping these in Haskell
monads. Here, collective computations could include scalar computations, but not the
other way around. This meant excluding nested and irregular data parallelism, which
in turn allows Accelerate to efficiently run on GPUs (which are much more constrained
than CPUs). It also meant that these arrays could only contain scalars, no functions or
other types.

Another interesting example of a parallel array programming language is Remora by
Slepak et al. [44] The language, inspired by earlier array programming languages APL
[45] and J implements rank-polymorphism. Rank polymorphism is similar to shape
polymorphism, but it annotates functions and operators with an array rank they can
operate on, and was also present in Repa and Accelerate. Remember that scalars are
considered rank 0 arrays, a flat array is rank 1, a matrix is rank 2, et cetera. In rank
polymorphism, arguments are transformed (re-ranked) such that they are the rank re-
quired for a specific function or operator. Specifically, an operator defined for a certain
rank, is automatically defined for any higher rank, because it can be mapped over these
higher dimensions. This is subtly different from the more general shape-polymorphism,
as rank only refers to the number of dimensions, while shape also contains information
on the size of these dimensions. With Remora, Slepak et al. tried to shed some light
on the more “murkier corners” of the array-computational model. They do this by
generalizing the array-computational model, which then allows them to both address
some shortcomings of APL, but also allows them to extend the model to allow arrays of
functions and arrays of arguments, which in turn allows for the parallel MIMD (multi-
ple instruction, multiple data) architecture, rather than only SIMD (single instruction,
multiple data) parallelism.

In 2017, we got one of the major current functional data-parallel array languages in
Futhark [46]. Futhark’s design focusses on efficient nested data-parallelism. They do
this by using both “aggressive” fusion (fusing as much as possible), followed by flattening
(like we saw in NESL). Finally, through some more optimizations, Futhark produces
very performant programs. To facilitate this performance however, they do not support
higher-order programming, as Futhark only supports up to second-order.

Finally, a more recent parallel array programming language is Dex [47, 48]. Rather
than avoiding loops and explicit indexing, like NESL, NEPAL, DPH, and Repa had
all done, Dex suggests that these features might introduce more clarity, if only they
were implemented correctly. The main idea is to treat index sets as types and arrays
as functions. In reality this “index comprehension” can also be seen as functions that
return arrays, and allow declaring iteration over multiple dimensions in a single line.
Of course, this is the same idea as pull-arrays, a representation also used by Accelerate
under the hood. However, the main novelty of Dex is that they use this to make explicit
loops, which in turn makes some parallelism opportunities also explicit. Also, when these
index comprehensions are presented back-to-back, opportunities for fusion become fairly
clear as well. In their paper, they also show that on some benchmark problems, Dex
performs similarly to Futhark, as a functional array programming language that was
specifically designed to write performant parallel GPU code.
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3 Tracing

In the broadest terms, when we trace a program, we track the most basic steps the
program takes provided some input. This is relevant for many applications in computer
science. For example, certain automatic differentiation (AD) effectively implement the
forward-pass as tracing, and then perform the reverse pass on the trace. Tracing is also
used in artificial intelligence, where tracing applications can help determine how much
memory needs to be allocated, which can speed up training if the model is run multiple
times.

However, despite its ambivalence, tracing is rarely properly defined, or defined only for
a specific use case. So, in this section we set out to create a more general definition of
tracing.

To start, it will help us along to set clear expectations for what we want a tracing
function to do. In the simplest terms, we expect a tracing program to take an input
program with a set of inputs, and output a “trace”. This output trace is defined as a
sequence of operations the input program performed on the inputs to get the expected
output. A term often used for a trace is a “single-line program”: a program without
control flow. Clearing control flow like if-then-else statements is only natural: after all,
provided some input the program will only walk down one variation of this branching
path.

Furthermore, it is also generally accepted that the trace consists of a subset of the types
in the input program. Because we are generally more interested in what happens to the
data in our program, we can “trace away” functions and data structures. More precisely,
say our input program has the types as defined in Equation 5, where we have sum-types
as τ + σ, product types as τ × σ, functions as τ → σ, literal real numbers, and literal
Booleans.

τ, σ := τ + σ | τ × σ | τ → σ | R | B (5)

We can imagine our simplified language, in which we will express our trace – as a
language with fewer type formers. By choosing a subset of the type formers in our
program, we can indicate which data structures should be traced away. A common
option is to keep only “ground types”, where we defined a ground type as a type that is
not constructed of other types. Looking at our example in Equation 5, a trace keeping
only these ground types would keep only the real numbers and the Booleans as they
are not built of other types. Another common option is to keep only continuous types,
tracing away all unground and discrete types. Doing that on our type set in Equation
5 would leave us with only the real numbers. This is under the assumption that the
discrete types are not actually used as data we are interested in tracing of course,
but since tracing will remove all control flow from the program, keeping Booleans and
operations on Booleans intact may be meaningless.

The main take-away here is that there is some freedom of choice in what to trace away.
What parts we keep and what parts we trace away is very dependent on what information
we want to keep in our trace, which in turn is dependent on what our exact goal is for
the tracing in the first place.

We can also choose to keep some of our unground types, but then we run into a problem.
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Say we keep only functions (τ → σ) and real numbers, but our input program contains
a function with type τ → (σ1 + σ2). This typing is valid in our input program, but no
longer valid in our trace, so we find ourselves in a bind. It will be impossible to trace
away the sum-type in the output of the function without tracing away the function
itself. This is because tracing something away basically means either deconstructing or
ignoring it in the trace. For instance, tracing away a tuple, would mean tracing the
individual components of that tuple to trace it away. Whereas keeping things in the
trace means just keeping them untouched. Therefore, we cannot keep a type like a
function τ → (σ1 + σ2) in our trace, because we cannot access the sum type without
tracing away the function. Of course, we could define a subset τ ′, σ′ := R and then
redefine (or add a definition for) our function so that it becomes τ ′ → σ′ making it safe
to trace. This then underlines the rule at work here: we can only keep types that do
cannot be constructed of types that are traced away. This is why the ground types are
a natural set of types to keep, as they are never constructed from other types.

In a similar vein, we may also encounter operators in our trace that take in or produce
types that are not allowed in our trace. For operators that produce a type that is not
in our trace, tracing them away is no problem. Since we know we will not be interested
in whatever output they produce for our trace, we can simply omit them from the
trace altogether. For instance, if we keep only real numbers in our trace like before,
an operator returning a Boolean value is of no interest for the trace. However, this is
not a simple for operations that take in a type we wish to trace away, yet produce a
type we wish to keep in our trace. A simple example of this is the “switch” operator,
which takes in a Boolean value and two values of another type, of which it returns one
depending on the Boolean value (see Equation 6).

switch(⊤, a, b) = a

switch(⊥, a, b) = b
(6)

While the switch operator looks like it mimics if-then-else statements, it is generally
accepted that it does so in a non-lazy way, where both a and b are evaluated before
returning either. The main problem here is that we wish to keep operators that produce
types we keep in our trace, yet we do not wish (or are not even able to) express the
Boolean value in our trace. Now, due to switch statement’s likeness to if-then-else, the
solution here is pretty clear: only trace the value that gets returned. However, it is not
always that easy: as we introduce arrays and array operations in Section 3.4, we will
see how operations like mapping on an array need a special solution.

This all is to say that the while we can either ignore or homomorphically copy basic
operations for our trace, sometimes we need a special solution. Mainly because we do
not want to lose the information that is needed to execute the trace as a single-line
program, even if that means fudging our operations a little. This also means that, while
the operations in our trace language might be a subset of the operations in the original
expression language, they might contain modified operations

It seems that our tracing definition comes down to a function that takes in a program
and an input to that program, and outputs the steps taken by the program run on
the input. Where the input program uses some set of types, of which only a subset is
kept in the trace, where the types in this subset may not be constructed using types
from outside the subset. What now remains is a concrete definition of the output of the
tracing program. We have already stated that it should somehow contain the steps done
by the input program. The steps we wish to record are generally basic operations like
arithmetic operations. But other operations, such as operations on arrays, can also be
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added depending on the ultimate goal of the tracing. More importantly, as we expect
our trace to be akin to a single-line program, we may consider our trace as a series
of let-bindings, akin to A-normal form. This means storing each operation as a pair
of a unique name or ID and the operation performed (like the name and value of the
declarations in a let-binding).

3.1 Tracing Correctness

Before going into specifics on how to implement tracing, it would also be a good idea
to formalize when a trace is actually correct. Like we posed before, we start with some
program formed from some expression language S, and some input I that is valid for
that program. If we wish to resolve a program S on input I, then we would need
some evaluation function that produces the expected output O. Now, given some trace
language T we can write a tracing function that gives us the trace and output of a
specific program and input combination. We can write this out as the two functions
eval and trace in Equation 7.

eval : S × I → O

trace : S × I → T ×O
(7)

With this we can formalize two criteria for our trace. First, the trace, as a single line
program t ∈ T produced by the trace function needs to produce the correct output.
Now, as mentioned before, t might contain transformed operations, that are not present
in S. Therefore, we either need to look at traces t ∈ S ∩ T , or use a different evaluation
function. For now, we will use the former to assert the output criterium in Equation
8. Here we state that for any program s with any input i: if the trace t is also a valid
program in S, that the evaluation of t on i should be the same as the evaluation of s on
i or the output o we got out of the tracing function.

∀s ∈ S

∀i ∈ I

trace(s, i) = (t ∈ T, o ∈ O)

(t ∈ S ∩ T ) → (eval(s, i) = eval(t, i) = o)

(8)

Furthermore, tracing a trace t should also return that trace t. This is because we want
to find the minimal straight-line program using tracing, and if tracing the trace we found
reduces it somehow to a more minimal program, we know that the original trace was
incomplete. This is expressed in Equation 9, where we assert that for some program
s ∈ S and some input i ∈ I, the trace t (produced by tracing s on i), is the same as the
trace obtained from tracing t itself.

∀s ∈ S

∀i ∈ I

trace(s, i) = (t ∈ T, o ∈ O)

trace(t, i) = (t, o)

(9)

The above statements, assert that a trace should produce the correct output value as
expected from the input program, and that a trace should be its own trace. While these
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assertions do not say a lot about the nature of the actual trace, they do set some baseline
requirements for the trace, and proving the correctness of a trace. This vagueness on
the contents of the trace is partly because we cannot really say anything about a trace
without dissecting the source program as well, which would bring us to a point very close
to actual tracing itself. In another part however, this is because we do not want to make
any assumptions what can or cannot be in our trace. While it is likely that some there
is significant overlap between S and T , as mentioned, we might need some additions to
T to actually be able to trace everything in S correctly. Also, whilst in practice it might
be meaningless, a trace where T = ∅ is in itself not incorrect: any trace would simply
be empty. In a similar vein a trace where S ⊆ T would also be meaningless in practice,
it is also not wrong: any trace would simply be the same as the source program.

As an additional note, Equation 8 also implies something interesting. If we want our
trace to output the same value as the original program, we cannot trace away the type
of the original programs output. Say we trace away Boolean values when we are tracing
a program that returns a Boolean value, then we find ourselves stuck, because we trace
away all operations that produce Boolean values. And of course, if our trace is not
allowed to produce any Boolean values, we cannot produce the required output either.
Therefore, we must assure that the type of the output is valid in our trace as well.

3.2 Basic Tracing

We now define some basic tracing steps for some arbitrary language. For clarity’s sake,
we will do this is with Haskell code. To do this we first define a language and values
on which we will operate. We do this in Listing 3, where we define a basic lambda
calculus. Here the value types are represented as the algebraic data type (ADT) Value,
where we find constructors for Booleans (VBool), real numbers (VReal), and functions
(VFunc). Then we define the four terms of a basic lambda calculus in the Expression

ADT: application (EApply), abstraction (ELambda), loose values (ELift), and variable
reference (ERef). To make tracing a little more interesting we also add in if-then-else
statements (EIf) and binary operators (EOp2). For those binary operators, we define
four operations in the separate Op2 ADT: addition (Add), equality (Equ), multiplication
(Mul), and inequality (Neq). Finally, to make use of variable references, we define an
environment as a mapping of strings to values. We interact with this environment
in two ways: by inserting values into them, and getting values from them (indexing).
The function signatures for these interactions, respectively insert and (!), have been
included in Listing 3 as well. We can use this language and evaluate it, an example of
this has been provided in Appendix A.

With our language in Listing 3, we can almost start tracing. However, we must first
decide which parts of the language we keep, and which parts we wish to trace away. In
the previous section, we talked about how we can do this by selecting which type formers
we wish to keep. In Listing 3, we have practically defined the types of our values by the
data constructors present in the Value ADT as Booleans, real numbers, and functions.
Let us now choose to keep only real numbers in the trace.

We now define a new ADT for traced values in Listing 4. This is only so we can
incorporate a name into the values we wish to keep in our trace. These names will help
us read the trace, and can be incrementing numbers or something entirely random, as
long as they are unique. The basic idea is here to feed the trace function a number with
which to generate the steps’ names from, and increment the number every time we do.
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1 data Value = VBool Bool | VReal Float | VFunc (Value -> Value)

2

3 data Expression

4 = EApply Expression Expression

5 | EIf Expression Expression Expression

6 | ELambda String Expression

7 | ELift Value

8 | EOp2 Op2 Expression Expression

9 | ERef String

10

11 data Op2 = Add | Equ | Mul | Neq

12

13 type Environment = Map String Value

14

15 −− Operations on maps:

16 −− (where Map a b is a mapping from keys of type a to values of type b)

17 insert :: a -> b -> Map a b -> Map a b

18 (!) :: Map a b -> a -> b

Listing 3: Minimal lambda calculus with added if-then-else and binary operators

However, since this clutters the code while not being very interesting, we will assume
we have some function getName that provides us with a unique name. Furthermore, it
is important to see that we still have Boolean values and functions in our TValue ADT,
even though we only wish to keep real numbers in our trace. This is because we might
still need these values to resolve expressions, even if they never end up in the trace.
We might also achieve this by extending our original Value ADT (from Listing 3) with
traced variants of values, but this is merely a point of preference. Finally, we have also
changed the signature of the function value to return a trace as well, as we move on to
functions we will see how this works.

1 data TValue = TBool Bool

2 | TReal String Float

3 | TFunc (TValue -> (TValue, Trace))

4

5 data Traced = TLift TValue | TOp2 Op2 String String

6

7 type TEnvironment = Map String TValue

8

9 type Trace = [(String, Traced)]

10

11 getName :: String

Listing 4: Basic trace building blocks

First however, with our basic building blocks for tracing set up, lets trace away these
boolean values. We do this with the trace function in Listing 5. For now, we will
leave out abstraction and application, as it might be easier to talk about tracing away
Booleans first.

When we trace away Booleans, like in Listing 5, it is useful to think about where these
Boolean values actually come up. In our minimal language from Listing 3, there are
only three points: when they are included as literal values, as the input or output to
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1 trace :: TEnvironment -> Expression -> (TValue, Trace)

2 trace n (EIf e1 e2 e3) =

3 −− Since we e1 should resolve in a Boolean value, we do not need to trace it.

4 let v1 = eval n e1

5 in case v1 of

6 −− We can check for the type of v1 and its value in one go

7 −− We trace only the relevant branch

8 (VBool True) -> trace n e2

9 (VBool False) -> trace n e3

10 _ -> error ‘‘Type mismatch in trace/EIf’’

11

12 trace n (ELift v) =

13 −− Check if v is a value we would like to trace

14 case v of

15 −− If yes return the transformed value with its simple trace

16 (VReal v) ->

17 −− Generate a name for this step and make the TValue

18 let s = getName

19 v’ = TReal s v

20 −− Combine the TValue with a trace of its instantiation

21 in (v’, [(s, v’)])

22 −− If we do not wish to trace something, we can just return the value

23 −− with an empty trace.

24 (VBool v) -> (TBool v, [])

25 −− Instantiation is not allowed for functions, they need to be

26 −− abstracted using ELambda

27 _ -> error ‘‘Type mismatch in trace/ELift’’

28

29 trace n (EOp2 op e1 e2) =

30 −− We again first trace e1 and e2

31 let (v1, t1) = trace n e1

32 (v2, t2) = trace n e2

33 −− We get a ready name in case we need it

34 s = getName

35 −− This case syntax allows us to select for the right operator with the

36 −− right value types at the same time.

37 in case (op, v1, v2) of

38 −− Since add and mul take in reals and produce one too, we trace both

39 −− the operation and the origins of v1 and v2

40 (Add, TReal s1 a, TReal s2 b) -> (TFloat s (a + b),

41 (TOp2 op s1 s2) : t1 ++ t2)

42 (Mul, TReal s1 a, TReal s2 b) -> (TFloat s (a * b),

43 (TOp2 op s1 s2) : t1 ++ t2)

44 −− For operations producing Bools we only return the result, but they

45 −− are not traced, and therefor return an empty trace

46 (Equ, TBool _ a, TBool _ b) -> (TBool (a == b), [])

47 (Equ, TReal _ a, TReal _ b) -> (TBool (a == b), [])

48 (Neq, TBool _ a, TBool _ b) -> (TBool (a /= b), [])

49 (Neq, TReal _ a, TReal _ b) -> (TBool (a /= b), [])

50 _ -> error ‘‘Type mismatch in trace/EOp2’’

51

52 −− There is nothing to trace when fetching a variable, but we still need to

53 −− actually get the value

54 trace n (ERef s1) = (n ! s1, [])

Listing 5: Tracing away Boolean values
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basic operations, or as the conditional in if-then-else statements.

Let us start with the easiest first: literal Boolean values. When we encounter literal
values during tracing, and they are of a type we wish to keep for our trace, we simply
add their instantiation to the trace (as TLift in Listings 4 and 5). This is extremely
straightforward: those values might be used by the operations we wish to trace, so they
should be included in the trace themselves as well. For values of types we wish to trace
away, we simply do not include them in the trace. After all, our trace should be fine
without them, as we do not include any operations that require them in our trace, right?
For now this seems obvious: if we look at the language in Listing 3, we see that there are
no other uses for Booleans values than the use in the equality and inequality operators,
and as the conditional in the if-then-else statement. Since we plan to trace these away,
we do not appear to need these value instantiations in our trace either. However, at
the end of Section 3.1 we already discussed what would happen if our program were to
return a Boolean value. And in Section 3.4, we will see how this might not be entirely
true when we talk about arrays and operations on arrays like mapping a function.

Tracing (away) simple operations like addition and equality (EOp2) are done in a similar
vein. If the operation returns a value of a type we wish to keep in our trace, we include
the operation in our trace as well. Similarly, if the operation returns a value that we
do not wish to keep, we simply do not trace it. Again, if there was an operation that
took in a value of a type we do not wish to trace, and returned one that we do wish to
trace we run into a problem. Luckily, these operations are not included in our current
example.

When we trace an if-then-else statement, we know we have to deal with a Boolean
regardless. Luckily for us, we know we only need to trace one of the branches. This
means quite simply, that we can ignore the if-then-else statement, and act like the
program continued at the branch that is chosen. Since the input is provided, we can
resolve the conditional immediately, and then just trace the appropriate branch.

Finally, tracing variable references are simple as well. Currently, the only named vari-
ables that occur are those created in lambda abstractions or those that are provided as
inputs. But no matter how they are created, variable reference does not require trac-
ing. This is because the trace will reference the values regardless of whether they are
instantiated on the spot or somewhere previously. And if they were defined previously,
that definition is already in the trace somewhere.

3.3 Function Tracing

With our basic tracing established, we can now talk about tracing functions, which are
more complicated. It is the tracing of abstracted functions that is the first issue here.
The issue is that when we perform an abstraction (as with ELambda), there is nothing
to trace. In fact, we can see this as an instantiation of a function literal, and when
functions are not in our set of types to keep in the trace, this abstraction creates an
empty trace. However, leaving it at that would mean we never actually trace the body
of the function. Yet, at the time of the abstraction, we also do not yet know the input
to the function either, meaning we cannot trace the body at that time. We must instead
consider how we delay tracing until the function is actually applied. This is where our
notation for TFunc (as in Listing 4) comes up. We wish that functions while tracing
perform tracing themselves, thus return a Trace together with the return value. This is
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then what we do in the abstraction step: we set the trace on the body of the function as
the body of the function we return. Similarly, we also give this tracing function call the
environment at the time of abstraction, allowing the function body to access any free
variables that were defined at that time. This makes application also very simple: we
apply the function, and then just combine the trace of the function’s instantiation, with
that of the argument, and that of the function’s execution. We also trace the function’s
instantiation, since at the time of application we do not know if the expression that
leads to the function does anything else that we might need to trace as well. Finally,
this is results in what we see in Listing 6, where we left out any patterns of trace that
were already present in Listing 5.

1 trace :: TEnvironment -> Expression -> (Value, Trace)

2 trace n (EApply e1 e2) =

3 −− First trace e1 and e2

4 let (v1, t1) = trace n e1

5 (v2, t2) = trace n e2

6 −− Check if v1 actually returns a function

7 in case v1 of

8 −− Do the application, return the result and the combined trace

9 TFunc f -> let (vf, tf) = f v2

10 in (vf, tf ++ t2 ++ t1)

11 _ -> error ‘‘Type mismatch in trace/EApply’’

12

13 trace n (ELambda s e1) =

14 −− Define the function, insert value x as variable s into the environment that is currently

15 −− present, and trace the body

16 let f = TFunc (\x -> trace (insert s x) e1)

17 −− Return the function as abstracted function as a value, and no trace

18 in (f, [])

Listing 6: Tracing away functions
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1 data Expression

2 = . . .
3 −− The string here is the name of the bound variable

4 | ELet String Expression Expression

5

6 trace :: Environment -> Expression -> (TValue, Trace)

7 trace n (ELet s1 e1 e2) =

8 −− Evaluate e1 first, then e2 with e1 in its environment

9 let (v1, t1) = trace n e1

10 (v2, t2) = trace (insert s1 v1 n) e2

11 −− Return the value of e2 and the combined trace

12 in (v2, t1 ++ t2)

Listing 7: Tracing let bindings

3.3.1 Tracing let bindings

As an additional structure present in functional languages that we might wish to trace,
there are let-bindings. Recall that let-bindings are effectively the same a lambda ab-
stractions that are resolved immediately. This makes it extremely easy to resolve them,
because we can just trace the let-side of the binding and add it to the environment for
the tracing of the right-hand-side.
Adding let-bindings and tracing them is done in Listing 7.

3.4 Array Tracing

Tracing on data structures like arrays provides us with a new problem that revolves
around whether we wish to trace arrays away or not. We can see arrays as either
structures that contain the data we are really after, which would require us to trace
them away, or as data in their own right which we wish to keep in the trace. Both
scenarios provide us with interesting challenges.

Let us first talk about tracing arrays away. When we simply view arrays as another
computational structure, they are not too complicated to trace away. When initializing
an array, we just initialize all the individual values in the array. And when performing
operations on items in the array, we instead perform those operations on the individual
items again. That is, we do the operation like normal, but denote them as operations
on separate items in the trace.

In Listing 8 we first add a arrays and array operations. While we said earlier that
constructors in the TValue ADT only needed strings for names if they are traced, we
need to make an exception for arrays. This is because when working with arrays our
expression will never refer to individual values in arrays, only to the array itself (and
using its individual values from there). This means that to consistently refer to values
that were in arrays in the original expression, we need to give a little more structure
to the naming scheme. We do this by taking the name of the array, and adding the
index of the item to create a name that is unique yet identifiable. Furthermore, we add
in array operations: iota (or range) (Iota), generate (Gen), indexing (Idx), sum (Sum),
map (Map), and folding (reduction) (Fold). It should be noted that iota, generate, and
indexing take an integer argument as part of their operator. For iota and generate this
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is the size of the array to create, and for indexing this is the index to get the value from.
While we could allow our language with integers (or by casting floats) to allow using
in-language numbers, this really is not all that interesting. If those arguments were part
of our trace, it would just mean tracing them like any other item by just ignoring them.

1 data Value = . . . | VArray [Float]

2

3 data TValue = . . . | TArray String [Float]

4

5 data Expression

6 = . . .
7 | EOp0 Op0

8 | EOp1 Op1 Expression

9 | EOp2 Op2 Expression Expression

10 | EOp3 Op3 Expression Expression Expression

11

12 data Op0 = Iota Int

13

14 data Op1 = Gen Int | Idx Int | Sum

15

16 data Op2 = . . . | Map

17

18 data Op3 = Fold

Listing 8: Adding arrays

Now with arrays added to our language, we can actually trace them. This is done in
Listings 9 and 14, where we again extend the trace function, leaving out any patterns
that remain unchanged.

First off, when encountering a literal array, or creating one with the iota operator, we
need to initialize every individual value. This is fairly simple, it just requires us to walk
through the array and initialize every value like when we were initializing literal real
values.

Indexing, in this mode, is equal to variable reference due to our naming scheme. This
means then that we do not need to trace anything here.

The sum operator is a little more in-depth, as shown in Listing 11. However, this is a
lot of code for a very simple principle, and a couple edge cases. The principle is, add the
first two values in the array together, and then every following item to that result and
so on. And we have edge cases for singleton and empty arrays. It is worth explicitly
stating that every addition done whilst summing the array gets its own unique name
and step in the trace. This means that an operation that is single step the original
program, explodes to a bunch of steps (the length of the array minus one) in the trace.
This is because we decided to trace away arrays, and we will see later on how we save
ourselves from this by not tracing away arrays.

The map operator is funky in a way similar to sum. In essence, we take each item in the
array and apply it to the function as expected. However, we run into a little problem
with our naming scheme. For map, the items, once mapped on, are placed back into
a new array. This means that, according to the scheme we laid out, the items in this
array should be named in reference to the new array, however this is not something the
call to trace in the function body considers. Luckily we can resolve this by renaming the
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1 trace :: TEnvironment -> Expression -> (TValue, Trace)

2 trace n (ELift v) =

3 case v of

4 −− Tracing for reals and Booleans remain unchanged

5 (VReal v) -> . . .
6 (VBool v) -> . . .
7 (VArray v) -> let s = getName

8 −− For traceArrayLift see Listing 12

9 in (TArray s v, traceArrayLift s v 0)

10

11 −− With only iota, we could write this a little more curtly, but for clarity we leave it like this

12 trace n (EOp0 op) =

13 case op of

14 (Iota r) ->

15 let s = getName

16 −− Define an array of size r, then lift is using traceArrayLift again

17 v = [0.0 .. (r - 1)]

18 −− For traceArrayLift see Listing 12

19 in (TArray s v, traceArrayLift s v 0)

20

21 trace n (EOp1 op e1) =

22 −− Again we first trace e1, and we get a name ready as well

23 let (v1, t1) = trace n e1

24 s = getName

25 in case (op, v1) of

26 (Gen r, TFunc f) ->

27 let v = [0.0 .. (r - 1)]

28 tg = traceArrayLift s v 0

29 (vm, tm) = traceArrayMap f s v 0

30 in (vm, tm ++ tg)

31 −− Indexing is like variable reference, we do not need to add to the trace,

32 −− but we need to create the name to be consistent

33 (Idx i, TArray s1 v) ->

34 −− Get the actual item using indexing (!!)

35 let x = v !! i

36 s’ = s1 ++ ‘!’ : show i

37 in (TReal s’ x, t1)

38 −− For traceArraySum see Listing 11

39 (Sum, TArray s1 v) ->

40 let (vs, ts) = traceArraySum s1 v 0

41 −− We must not forget to add the trace of e1 to our trace here

42 in (vs, ts ++ t1)

43

44 −− See Listing 14 for trace on EOp2 and EOp3.

Listing 9: Tracing away arrays
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1 trace n (EOp2 op e1 e2) =

2 −− Again we first trace e1 and e2, and we get a name ready as well

3 let (v1, t1) = trace n e1

4 (v2, t2) = trace n e2

5 s = getName

6 in case (op, v1, v2) of

7 . . .
8 (Map, TFunc f, TArray sa va) ->

9 −− For traceArrayMap see Listing 12

10 let (vm, tm) = traceArrayMap f sa va 0

11 −− Combine the traces

12 in (vm, tm ++ t1 ++ t2)

13

14 trace n (EOp3 op e1 e2 e3) =

15 −− Again we first trace e1, e2, and e3, and we get a new name ready

16 let (v1, t1) = trace n e1

17 (v2, t2) = trace n e2

18 (v3, t3) = trace n e3

19 s = getName

20 in case (op, v1, v2, v3) of

21 (Fold, TFunc f, TReal {}, TArray {}) ->

22 −− For foldFunction and traceArrayFold see Listing 13

23 let (vf, tf) = traceArrayFold (foldFunction f) v2 v3 0

24 −− Combine the traces

25 in (vf, tf ++ t1 ++ t2 ++ t3)

Listing 10: Tracing away arrays in maps and folds

returned value from that function, and changing the name in the trace. The signature
of a function that does this is also included at the end of Listing 12, but its exact
implementation is not of importance here.

Finally, the generate operation can be expressed as an iota operation followed by a map
operation. The iota operation provides us with the indices of the array to generate, and
we can re-use the code for map for mapping the generator function over these indices.
This is also how we implemented it in Listing 9, using traceArrayLift from iota and
traceArrayMap from map.

While the concepts behind tracing away arrays are hopefully not too difficult to under-
stand, it should be obvious from Listings 12 and 11 that the implementation becomes
more complex. Now while that is not really a problem, we should really note that the
trace becomes messier as well. This is especially problematic if we actually want to read
the trace to see what is going on: not impossible, but also not pleasant, especially with
large arrays. So perhaps we are tempted to keep arrays in the trace instead, or perhaps
we are interested in the trace of arrays specifically.

Luckily for us, in large parts tracing while keeping arrays is fairly easy. This is because
we can treat most operations like how we treated operations for real numbers. This
has been done in Listing 14, except for generate, map, and fold, where we replace the
tracing patterns from Listing 9.

In our current language, the main point of difficulty and interest is the generate, map,
and fold operations. They take in a function, which is not a type we wish to keep in
our trace, however they produce an array which we wish to keep in our trace. While we
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1 −− traceArraySum starts the trace, and traceArraySum’ completes it

2 −− This is necessary because we do not know the number of items in the array

3 −− traceArraySum takes only the array to sum

4 traceArraySum (TArray _ []) =

5 let s = getName

6 v = TReal s 0

7 −− The sum of an empty array means just lifting the value 0

8 in (v, [(s, TLift v)])

9

10 traceArraySum (TArray _ [x]) =

11 let s = getName

12 v = TReal s x

13 −− The sum of a singleton array is just that one value

14 in (v, [(s, TLift v)])

15

16 traceArraySum (TArray sa (x:y:z)) =

17 −− When summing on a larger array, the first sum is of the first two items

18 let sx = sa ++ ‘‘!0’’

19 sy = sa ++ ‘‘!1’’

20 s = getName

21 v = TReal s (x + y)

22 −− Get the result, and the trace of the rest of the array with traceArraySum’

23 (rv, rt) = traceArraySum’ (TArray sa z) 2 v

24 −− Return the final result, but do not forget the trace of the first sum

25 in (rv, (s, TOp2 Add sx sy) : rt)

26

27 −− traceArraySum’ takes the array we sum over, the current index, and the last calculated value

28 traceArraySum’ :: TValue -> Int -> TValue -> (TValue, Trace)

29 −− When we are done, return the value

30 traceArraySum’ (TArray _ []) _ v = (v, [])

31

32 traceArraySum’ (TArray sa (x:xs)) i (TReal sr r) =

33 −− Get the name for this item

34 let sx = sa ++ ‘!’ : show i

35 −− Get the name for this addition step

36 s = getName

37 −− Get the result of the rest of the array

38 (v, t) = traceArraySum’ (TArray sa xs) i (TReal s (x + r))

39 −− Return the final result, and add this steps addition to the trace

40 in (v, (s, TOp2 Add sx sr) : t)

Listing 11: Tracing the sum operator



3 Tracing 25

1 −− traceArrayLift takes the name of the array, the contents, and the current index

2 traceArrayLift :: String -> [Float] -> Int -> Trace

3 −− Empty lists get no trace

4 traceArrayLift _ [] _ = []

5 traceArrayLift s (x:xs) i =

6 −− Create the name for this item from the array’s name and the current index

7 let s’ = s ++ ‘!’ : show i

8 −− Trace x as a single real number

9 tx = TLift (TReal s’ x)

10 −− Trace the rest of the array

11 txs = traceArrayLift s xs (i + 1)

12 −− Return the combined trace

13 in tx : txs

14

15 −− traceArrayMap takes the function to map, the name of the old array, the name of the new array,

16 −− the contents of the old array, and the current index

17 traceArrayMap :: (TValue -> (TValue, Trace)) -> String -> String -> [Float]

18 -> Int -> (TValue, Trace)

19 traceArrayMap _ _ sn [] _ = (TArray sn [], [])

20

21 traceArrayMap f so sn (x:xs) i =

22 −− Get the current value from the array with the right name

23 let current = TReal (so ++ ‘!’ : show i) x

24 −− Get the result from the function application

25 (fv, ft) = f current

26 −− Get the results from the rest of the array

27 (xsv, xst) = traceArrayMap f so sn xs (i + 1)

28 −− To add to the TArray and to rename fv we use this case−of statement

29 in case (fv, xsv) of

30 (TReal s’ v, TArray _ xsv’) ->

31 −− Add this item to the new array

32 let vn = TArray sn (v : xsv’)

33 −− Rename fv in the function trace to the correct name

34 ft’ = rename s’ (sn ++ ‘!’ : show i) ft

35 −− Finally return the new array and the combined trace

36 in (vn, ft’ ++ xst)

37

38 rename :: String -> String -> Trace -> Trace

Listing 12: Tracing array instantiation and array mapping
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1 −− foldFunction makes a binary function out of two nested lambda functions

2 foldFunction :: (TValue -> (TValue, Trace))

3 -> (TValue -> TValue -> (TValue, Trace))

4 foldFunction f x y = case f x of

5 (TFunc g, tf) -> let (vg, tg) = g y in (vg, tf ++ tg)

6 _ -> error ‘‘Type mismatch in foldFunction’’

7

8 −− Traces all steps in a simple left−to−right fold

9 traceArrayFold :: (TValue -> TValue -> (TValue, Trace)) -> TValue

10 -> TValue -> Int -> (TValue, Trace)

11 −− When the array is empty, return just the identity value and an empty trace

12 traceArrayFold f z (TArray _ []) _ = (z, [])

13

14 traceArrayFold f z (TArray sa (vx:vxs)) i =

15 −− Create a current value

16 let x = TReal (sa ++ ‘!’ : show i) vx

17 −− Do the folding step

18 (vf, tf) = f z x

19 −− Continue for the rest of the array

20 (vxs, txs) = traceArrayFold f vf (TArray sa vxs) (i + 1)

21 −− Combine the trace for the rest of the array with this step’s trace

22 in (vxs, tf ++ txs)

Listing 13: Tracing array folding

might be tempted to just discard the function component, we cannot do that because it
provides the trace from the original array to the new array. Without that information
our trace is no longer a functional (straight-line) program.

The intuitive way to solve this, the näıve method, would be to attach an array of traces
to the map operator, so they can be followed to derive the correct results. Similarly, we
can do this for the generate and fold operations. To easily do this we extend our Traced
ADT with a special map constructor (TMap), and a special fold constructor (TFold).
We show this in Listings 15 and 16. We will also express our generate operation as a
combination of the iota and map operations here, which saves us from writing a special
case for generate. The traces in the TMap constructor correspond with the application of
the function to be mapped to the individual item, for each item. The string references
the array the map is performed on. Meanwhile, the TFold operator references the folding
process as a single sub-trace, and also the name of the map it is executed on.

Now, while the näıve way for maps is fine in functionality, it does again create some
overhead (a trace for each item in the array) by splitting the trace into multiple smaller
traces. And if the function is the same for every item in the array, we may find ourselves
saving a lot of redundant data. Now, this may be necessary: at the time we map a
function over an array, we do not know if it will act the same for every input. Perhaps
there is some control flow in the function body that checks if a number is even, or a
factor of three, or something else entirely. In such a case, having a trace for each item
may be strictly necessary. However, it also highlights for which functions it may not be:
functions without control flow or branching. After all, these functions are little straight-
line programs, and should act the same no matter on what input they are applied (except
for producing a different result, of course). Writing a function that checks if the body
of a lambda abstraction contains branching is very simple for this language: currently
the only expression term that can introduce branching is the if-then-else statement.
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1 trace :: TEnvironment -> Expression -> (TValue, Trace)

2 trace n (ELift v) =

3 case v of

4 (VReal v) -> . . .
5 (VBool v) -> . . .
6 (VArray v) ->

7 let s = getName

8 −− Literal lifting of arrays becomes real simple

9 in (TArray s v, [(s, TLift (TArray s v))])

10

11 trace n (EOp0 op) =

12 case op of

13 (Iota r) ->

14 let s = getName

15 v = [0.0 .. (r - 1)]

16 −− Iota again becomes very similar to literal array lifting

17 in (TArray s v, [s, TLift (TArray s v)])

18

19 trace n (EOp1 op e1) =

20 −− We trace e1 first, and create a name just in case

21 let (v1, t1) = trace n e1

22 s = getName

23 in case (op, v1) of

24 (Idx i, TArray s1 v) =

25 let x = v !! i

26 s’ = s1 ++ ‘!’ : show i

27 −− Now we trace arrays, indexing becomes more relevant to add to our trace,

28 −− as the individual item has not been defined before

29 in (TReal s’ x, (s’, TOp1 op s1) : t1)

30 −− Sum becomes very simple, just apply it to the array

31 (Sum, TArray s1 v) = (TReal s (sum v), (s, TOp1 Sum s1) : t1)

Listing 14: Tracing whilst keeping arrays
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1 data Traced

2 = . . .
3 | TMap [Trace] String

4 | TFold Trace String String

5

6 trace :: TEnvironment -> Expression -> (TValue, Trace)

7 trace n (EOp1 op e1) =

8 −− We first trace e1, and generate a name

9 let (v1, t1) = trace n e1

10 s = getName

11 in case (op, v1) of

12 . . .
13 (Gen r, TFunc f) ->

14 let tg = (s, TLift (TArray s [0 .. (r - 1)]))

15 s’ = getName

16 (vs, ts) = traceMapNaive f s s’ [0 .. (r - 1)] 0

17 −− The trace becomes the iota followed by the map, explained below

18 in (vs, (s, TMap ts sa) : tg : t1)

19

20 trace n (EOp2 op e1 e2) =

21 let (v1, t1) = trace n e1

22 (v2, t2) = trace n e2

23 s = getName

24 in case (op, v1, v2) of

25 . . .
26 (Map, TFunc f, TArray sa va) ->

27 let (vs, ts) = traceMapNaive f sa s va 0

28 −− The trace becomes TMap, the collection of traces ts, on the old array v2 (with

29 −− name sa)

30 in (vs, [(s, TMap ts sa)])

31

32 −− traceMapNaive takes in the function to be mapped, the name of the old array, the name of the

33 −− new array, the contents of the old array, and the current index

34 traceMapNaive :: (TValue -> (TValue, Trace)) -> String -> String -> [Float]

35 -> Int -> (TValue, [Trace])

36 −− A map over an empty array returns the empty array and no traces

37 traceMapNaive _ _ sn [] _ = (TArray sn [], [])

38

39 traceMapNaive f so sn (x:xs) i =

40 −− Create specific names for the old and new value

41 let old = so ++ ‘!’ : show i

42 new = sn ++ ‘!’ : show i

43 −− Apply the function, getting the value for x and its trace

44 (xv, xt) = f (TReal old x)

45 −− Apply the function for the rest of the map

46 (xsv, xst) = traceMapNaive f so sn xs (i + 1)

47 −− We use a case−of statement to append xv to xsv and to rename xv in xt

48 in case (xv, xsv) of

49 (TReal s’ v, TArray _ vs) ->

50 let xt’ = rename s’ new xt

51 in (TArray sn (v : vs), xt’ : xst)

Listing 15: Tracing generate and map while keeping arrays, näıvely
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1 trace :: TEnvironment -> Expression -> (TValue, Trace)

2 . . .
3 trace n (EOp3 op e1 e2 e3) =

4 −− Trace the expression to operate on

5 let (v1, t1) = trace n e1

6 (v2, t2) = trace n e2

7 (v3, t3) = trace n e3

8 in case (v1, v2, v3) of

9 (TFunc f, TReal s2 _, TArray s3 _) ->

10 −− We use the earlier fold tracing function

11 let (vf, tf) = traceArrayFold (foldFunction f) v2 v3

12 in (vf, TFold tf s2 s3 : t1 ++ t2 ++ t3)

13 _ ->

14 error "Type mismatch in trace/EOp3"

Listing 16: Naive fold tracing

Unfortunately, we cannot check that at the moment when we trace a map operator.
This is because any function here would already have been abstracted to a TFunc value.
So, we would need to check for branching when we are abstracting the function, and we
also need a way to convey if a specific instance of TFunc contains branching or not. We
write branch-checking into functions in Listing 17. For most terms we can just commute
the branch checking to the arguments of that term, but there are a couple exceptions.
If-then-else statements are the definition of branching in our language, so they return
‘true’, and no branching can occur in literal instantiation (ELift) or nullary operators
(Op0) (literal instantiation can also be rewritten as a nullary operator), so they always
return ‘false’. Only for variable reference, which may return a value without actually
providing a code to check, we need to see if the value is a function, and whether it
has the branching flag set or not. This works because we set the branching flag when
functions are defined using abstraction, and because functions may not be entered as
literals.

With our branch checking defined we still need to talk about how we actually apply that
and make a trace for map that requires less information. The basic idea here is that
we can essentially perform vectorization of our function on the array in our trace: we
rewrite the trace such that the function is “applied” to the whole array, rather than its
individual items. Now without support for this in our language, this basically amounts
to syntactic sugar in our trace, however it will provide us with a much clearer trace. This
has been done in Listing 18, where we again add a map operator to our Traced ADT.
This is because we may need to use the näıve method if a function contains branching,
and we cannot vectorize it. In Listing 18 we still use traceMapNaive to actually map
over our array. This is because we need to get the value of the array regardless, and our
function value (TFunc) will return traces regardless if we need them or not. Then we can
just take the first trace returned by the näıve map tracing, and rename all references to
the first item of both the new and old arrays, to references of the whole old and new
arrays respectively. For this end we define a function deepRename at the end of Listing
18. Like with the renaming function in Listing 12, the implementation of this function
is not all that interesting: since all a Trace object is, is a list of tuples with a name
that may need renaming and a Traced constructor referencing zero to two strings that
may need renaming. All deepRename would do is go over these items and rename any
occurrences it finds.
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1 data TValue

2 = . . .
3 −− Add a branching flag to TFunc

4 | TFunc Bool (TValue -> (TValue, Trace))

5

6 branchCheck :: TEnvironment -> Expression -> Bool

7 −− Encountering an if−else−statement means a encountering a branch

8 branchCheck _ (EIf _ _ _) = True

9

10 branchCheck n (EApply e1 e2) = branchCheck n e1 || branchCheck n e2

11 branchCheck n (ELambda _ e1) = branchCheck n e1

12 branchCheck n (ELet _ e1 e2) = branchCheck n e1 || branchCheck n e2

13 −− ELift is always false, because lifting functions is not allowed

14 branchCheck _ (ELift) = False

15 branchCheck _ (EOp0 _) = False

16 branchCheck n (EOp1 _ e1) = branchCheck n e1

17 branchCheck n (EOp2 _ e1 e2) = branchCheck n e1 || branchCheck n e2

18 branchCheck n (EOp3 _ e1 e2 e3) =

19 branchCheck n e1 || branchCheck n e2 || branchCheck n e3

20

21 −− If our variable contains a function we need to check what it has the branching flag set to

22 branchCheck n (ERef s1) = case n ! s1 of

23 (TFunc b _) -> b

24 _ -> False

Listing 17: Checking for branches

We can also be more efficient with fold, rather than doing a sequential left-to-right fold.
Like vectorized maps, we can execute folds using data parallelism if the folding function
is vectorizable. A data parallel fold is a little more in-depth than a vectorized mapping
operation. Mainly because, at some point, fold requires some sequential steps. However,
it is not too complicated: we segment the original array over a number of threads, and let
those run sequentially. Then we gather those results in another array, and sequentially
fold over that array to finish the fold. Of course, for this to work properly every time,
the function used in the fold needs to be associative, so it does not matter we run the
fold out of order. We implement this two-step data-parallel fold in Listings 19 and 20,
where we also introduce a new constructor to the Traced data type, namely FoldV.
We see in Listing 20 how we distribute the work over the number of threads available
to us (represented by the threads variable). For each thread we still use the original
function (that traces away arrays), because it performs the (partial) fold, and produces
the correct trace. Then, when we have no threads left, we combine our results and trace
the fold over that as well. It should be clear that the code in Listings 19 and 20 do
not run the code using parallelism. Instead, they are just a sequential implementation
meant to show off how we could build a parallel variant.

What is important to take away from the shenanigans with the generate, map, and fold
operators is that, whilst our definitions and correctness assertions from Sections 3 and
3.1 gave us some guidance, there is ultimately no single way to trace everything. The
most important factor here is to keep reminding ourselves of the information we wish
to keep in the trace. Not only the value types, but we also need the information needed
to actually run the trace as a program. Keeping this in mind, it becomes much more
obvious how to trace these operations.
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1 data Traced

2 = . . .
3 −− We leave the naive TMap untouched

4 | TMap [Trace] String

5 −− And add a new one for vectorized traces

6 | TMapV Trace String

7

8 trace :: TEnvironment -> Expression -> (TValue, Trace)

9 trace n (ELambda s1 e1) =

10 −− We add branch checking when we handle abstraction

11 let b = branchCheck e1

12 f = TFunc b (\x -> trace (insert s x) e1)

13 in (f, [])

14

15 trace n (EOp1 op e1) =

16 let (v1, t1) = trace n e1

17 s = getName

18 in case (op, v1) of

19 . . .
20 (Gen r, TFunc b f) ->

21 let tg = (s, TOp0 (Iota r))

22 s’ = getName

23 (vs, ts) = traceMapNaive f s s’ [0 .. (r - 1)] 0

24 in if b

25 then (vs, (s’, TMap ts s) : tg : t1)

26 else let t’ = vectorizeTrace s’ s (head ts)

27 in (vs, (s, TMapV t’ s) : tg : t1)

28

29 trace n (EOp2 op e1 e2) =

30 let (v1, t1) = trace n e1

31 (v2, t2) = trace n e2

32 s = getName

33 in case (op, v1, v2) of

34 . . .
35 (Map, TFunc b f, TArray sa va) ->

36 −− We first get the result array (and all the traces) using the naive method

37 let (vs, ts) = traceMapNaive f sa s va 0

38 in if b

39 −− If the function contains branching, use the naive method

40 then (vs, (s, TMap ts sa) : t1 ++ t2)

41 −− Otherwise use the new method

42 else let t = vectorizeTrace sa s (head ts)

43 in (vs, (s, TMapV t sa) : t1 ++ t2)

44

45 vectorizeTrace :: String -> String -> Trace -> Trace

46 −− Rename the references to individual items to the whole array

47 vectorizeTrace so sn t = deepRename iso so (deepRename isn sn t)

48 −− The names for the individual items in this trace

49 where iso = so ++ ‘‘!0’’

50 isn = sn ++ ‘‘!0’’

51

52 deepRename :: String -> String -> Trace -> Trace

Listing 18: Array mapping with trace vectorization
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1 data Traced

2 = . . .
3 −− We leave the original TFold untouched

4 | TFold Trace String String

5 −− And add a new one for vectorized folds

6 | TFold Trace String Trace String String

7 −− And we add a new helper constructor used for foldv

8 | TJoin [String]

9

10 trace :: TEnvironment -> Expression -> (TValue, Trace)

11 . . .
12 trace n (EOp3 op e1 e2 e3) =

13 let (v1, t1) = trace n e1

14 (v2, t2) = trace n e2

15 (v3, t3) = trace n e3

16 in case (v1, v2, v3) of

17 (TFunc b f, TReal s2 v2’, TArray s3 _) ->

18 if b

19 −− If branching is present, use the old method

20 then let (vf, tf) = traceArrayFold f v2 v3

21 in (vf, TFold tf s2 s3 : t1 ++ t2 ++ t3)

22 −− If not, we will use the segmented fold,

23 −− which returns the final value, the traces for the first step,

24 −− the traces for the second step, and the name of the join variable

25 else let (vf, tf1, js, tf2) =

26 segmentedFold (foldFunction f) v3 s2 v2’

27 in (vf, TFoldV tf1 js tf2 s2 s3 : t1 ++ t2 ++ t3)

28

29 segmentedFold :: (TValue -> TValue -> (TValue, Trace))

30 -> TValue -> String -> [Float]

31 -> (TValue, [Trace], String, Trace)

32 −− See Listing 20

Listing 19: Data parallel fold tracing
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1 segmentedFold :: (TValue -> TValue -> (TValue, Trace))

2 -> TValue -> String -> [Float]

3 -> (TValue, [Trace], String, Trace)

4 segmentedFold f z sa xs =

5 controller threads [] xs [] []

6 where

7 controller :: Int -> [Trace] -> [Float] -> [Float]

8 -> [String] -> (TValue, [Trace], String, Trace)

9 −− When all threads are done, combine them in to one

10 controller 0 ts _ rs srs =

11 let s = getName

12 z’ = TReal (s ++ ‘‘!0’’) (head rs)

13 a’ = TArray s (tail rs)

14 (vc, tc) = traceArrayFold f z’ a’ 1

15 js = getName

16 tc’ = (js, TJoin srs) : tc

17 in (vc, ts, js, tc’)

18

19 controller t ts xs’ rs srs =

20 −− If we can evenly distribute the rest of the array over the next threads

21 | mod (length xs’ + 1) t == 0 =

22 if length xs’ == length xs

23 then let size = length xs’ ‘div‘ threads

24 sarr = take (size - 1) xs’

25 (vf, tf) = traceArrayFold f z (TArray sa sarr) 0

26 in case vf of

27 TReal sr r -> controller (t - 1) (tf : ts)

28 (drop (size - 1) xs’) (r : rs) (sr: srs)

29 else let size = length xs’ ‘div‘ threads

30 sarr = take size xs’

31 l = length xs - length xs’

32 z’ = TReal (sa ++ ‘!’ : show l) (head sarr)

33 (vf, tf) = traceArrayFold f z’ (TArray sa (tail sarr)) l

34 in case vf of

35 TReal sr r -> controller (t - 1) (tf : ts)

36 (drop size xs’) (r : rs) (sr: srs)

37 | otherwise =

38 if length xs’ == length xs

39 then let size = length xs’ ‘div‘ threads

40 sarr = take size xs’

41 (vf, tf) = traceArrayFold f z (TArray sa sarr) 0

42 in case vf of

43 TReal sr r -> controller (t - 1) (tf : ts)

44 (drop size xs’) (r : rs) (sr: srs)

45 else let size = length xs’ ‘div‘ threads + 1

46 sarr = take size xs’

47 l = length xs - length xs’

48 z’ = TReal (sa ++ ‘!’ : show l) (head sarr)

49 (vf, tf) = traceArrayFold f z’ (TArray sa (tail sarr)) l

50 in case vf of

51 TReal sr r -> controller (t - 1) (tf : ts)

52 (drop size xs’) (r : rs) (sr: srs)

Listing 20: Segmented fold
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4 Automatic Differentiation

Tracing is useful in many applications, one of which is Automatic Differentiation (AD).
Recall how in AD we wish to calculate the derivative of a computer program. To do
this (in reverse-mode) we wish to calculate the adjoints for the inputs. However, to
calculate these adjoints, we would first need to calculate the adjoints for the individual
computational steps in the program that contribute to an input’s sensitivity. Of course,
it is these steps that are represented in the trace of a program. In fact, there is a really
close relation between the tapes discussed in Section 2.1 and tracing.

The main difference between the tape used for AD and a regular trace as laid out in
Section 3, is the lack of intermediate values in the latter. However, provided a trace,
we could simply calculate these intermediate values. Even better is just storing the
intermediate values while we trace a program; this is not really any extra work because
these intermediate values are calculated by the tracing function already. Consider our
trace definition in Listing 4 as a list of tuples consisting of strings as identifiers and a
data constructor denoting the action taken. We could just add intermediate values to
this structure, but we will soon find this not to be quite enough.

Fig. 1: Computational graph of f(x1, x2) := x1 + (x1 × x2)

For instance, look at the computational graph in Figure 1 for f(x1, x2) := x1+(x1×x2).
Now, let us say x1 = 5, and x2 = 3, and trace it using the method from Section 3. This
gives us the trace as trace result in Listing 21. This trace is very straightforward:
x1 and x2 are assigned their values, and the multiplication is used in the addition, so
it shows up first. Now, let us look at the partial derivatives of f in Equation 10, as
we would calculate them using chain rule. In Equation 11 we see which calculations we
need to perform, we define the partial derivatives or “adjoints” of a variable ri as r̄i.
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1 f :: Value -> Value -> Expression

2 f x1 x2 = ELet "x1" (ELift x1) (

3 ELet "x2" (ELift x2) (

4 EOp2 Add (ERef "x1") (

5 EOp2 Mul (ERef "x1") (ERef "x2")

6 )

7 ))

8

9 trace_result :: (TValue, Trace)

10 trace_result = (TReal "r2" 20.0, [

11 ("x1", TLift (TReal "x1" 5.0)),

12 ("x2", TLift (TReal "x2" 3.0)),

13 ("r1", TOp2 Mul "x1" "x2"),

14 ("r2", TOp2 Add "x1" "r1")

15 ])

Listing 21: DSL definition of f and its trace

We also assume here that the “seed” value (the value of f̄) is one.

df

dx⃗
= ∇f =

[
∂r2(x1,r1)

∂x1
∂r2(x1,r1)

∂x2

]T

=

[
∂x1

∂x1
+ ∂r2(x1,r1)

∂r1
· ∂r1(x1,x2)

∂x1
∂x1

∂x2
+ ∂r2(x1,r1)

∂r1
· ∂r1(x1,x2)

∂x2

]T

=

[
1 + ∂r2(x1,r1)

∂r1
· ∂r1(x1,x2)

∂x1

0 + ∂r2(x1,r1)
∂r1

· ∂r1(x1,x2)
∂x2

]T

=

[
1 + 1 · ∂r1(x1,x2)

∂x1

0 + 1 · ∂r1(x1,x2)
∂x2

]T

=

[
1 + x2

x1

]T

(10)

f̄ = r̄2 = 1

r̄1 = r̄2 × 1

x̄2 = r̄1 × x1

x̄1 = r̄2 × 1

+ r̄1 × x2

(11)

With our trace and derivative operations defined, we can now look at how we would get
from one to the other. It is important to start at the output of the program, and since
the trace function we defined in Section 3 provides us with the named output, we know
where to start on our reverse pass. In this case, that would be r2. As the final value
in the primal calculation is the output of the program, its adjoint will be equal to the
adjoint of the program or the seed value. This is why Equation 11 posits f̄ = r̄2.

Since we are currently working in reverse execution order, we can just use r̄2 to calculate
x̄1 and r̄1 directly. It should be reiterated that the trace does not encode any explicit
information on the order of operations taken while tracing. It is of course a list that was
built up one operation at the time, but relying on this forces us to do our reverse pass
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linearly through the trace, which would prevent some task parallelism opportunities.
Furthermore, while we can also deduce some order from the naming of the intermediate
steps (e.g. r1 was done before r2), we should not do this programmatically, because
we wish to reserve parallelism opportunities, but also because some intermediate steps
might be hidden in the sub-trace of a map. Luckily, we can also discover the “ancestors”
of any step in the trace by looking at the traced operation. For r2 the traced operation
was TOp2 Add "x1" "r1", so we know that for our reverse pass, we next want to look at
x1 and r1, as their adjoints (or part of them) rely on the value of r̄2 (which we can also
see in Equation 11). For now, we will gloss over how we decide which ancestor adjoint
to compute first, and just look at the adjoint of r1.

We know that r̄1 is dependent on r̄2, but how exactly is defined by the operation that
produced r2, which in this case is addition. Now, addition is really simple, as the
derivative of addition of two values is the addition of the derivatives of those values. See
Equation 12, where we calculate the adjoint r̄1 and see how this addition just resolves
to 1.

r̄1 = r̄2 ·
∂r2(x1, r1)

∂r1

= r̄2 ·
∂(x1 + r1)

∂r1

= r̄2 ·
(
∂x1

∂r1
+

∂r1(x1, x2)

∂r1

)
= r̄2 · (0 + 1)

= r̄2

(12)

We can again find the ancestors of r1 by looking at the trace, where we find x1 and x2.
Let us look at x2 first. x̄2 is dependent on r̄1, which we just calculated, but rather than
an addition (like r2), r1 is a multiplication. We mentioned in Section 2.1, in Equation 1,
how the derivative of a multiplication uses both the primal part and the derivative part
of a number. To get x̄2 we realize (as is visible in Equation 11 as well), that we need
the primal value of x1. We mentioned before we needed the intermediate values, and
this is why. Multiplication is not the only operation that requires a primal component,
but it is a prime example. We see in Equation 13 how this adjoint resolves to use the
primal component x1.

x̄2 = r̄1 ·
∂r1(x1, x2)

∂x2

= r̄1 ·
∂(x1 · x2)

∂x2

= r̄1 · x1

(13)

Now would also be a good time to quickly reflect on the difference between the tangent
(from forward-mode AD) and the adjoint. In forward-mode AD, the operation taken to
produce some variable, would influence the tangent of that variable. This is somewhat
intuitive, r1 is a multiplication, and its tangent is ṙ1 = ẋ1 ×x2 + ẋ2 ×x1. However, this
is not the case for reverse-mode AD. In reverse-mode, we see that this information gets
passed on to the adjoints of the variable used by the operation, rather than the variable it
produced. It should be clear why: the tangents denote how the variable is influenced by
a change in the inputs, while an adjoint denotes how its corresponding variable influences
the outputs. It is important to closely observe this, mainly for implementation purposes:
we want to calculate (part of) the adjoint before we actually arrive at that step in the
trace. To calculate x̄2 we need to know what variable x2 was multiplied with (namely
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x1). This means that if we do not want to search through our trace looking for references
(to x2 for example) every time, it would be better to calculate (the relevant part of) x̄2

while we still see how it is being used.
This then also bring us neatly to our next conundrum: what if a variable is used multiple
times. In the example, this goes for x1, something that we have ignored until now.
The mathematical solution is simple: the partial derivative of a variable that is used
multiple times, is just a summation of the adjoints arising from those uses. We see this
in Equation 11, where x̄1 is calculated by adding the influence from r1 and the influence
from r2 together. However, implementation-wise this can be a bit of a hurdle.

As mentioned, the trace is not in any order. This is unlike a typical Wengert list or tape.
While assuring some order beforehand, or doing topological sort on the computational
graph described by the trace, will in large part solve this problem, it also enforces
linear execution of the reverse pass. And while it is not something we will linger on
for now, allowing for concurrency or task parallelism while calculating the derivative
might be a nice for a performance boost, and complement the inherent data-parallelism
opportunities of array operations. So, to solve this, we want to include some form
of reference counting. During the forward pass we could count how many times each
variable is used in the trace. Since we need to store intermediate values anyway, keeping
a counter for each of these variables seems like little extra work. Now, on the reverse
pass we can check these reference counters and every time we find part of the adjoint for
a variable, we decrement its associated counter. If a counter has not reached zero after
we have decremented it, we know its adjoint is not yet complete, and we can ignore it
for now. If it has, we can add up all the parts of the adjoint and continue from there.
This is actually very similar to Kahn’s algorithm for topological sorting[49], except that
rather than sorting the graph beforehand, we immediately process the nodes as they
become available (have all their incoming adjoints). This means we actually do execute
the reverse pass in topological order, but by discovering this order as we go it allows us
to not strictly do the reverse pass sequentially, something of which we will discuss the
merits of further on. Provided there is only one output to the program, we know that
all reference counters will eventually reach zero, and therefore we are assured we will
calculate all adjoints. However, this provision is not as clear-cut as it seems. Currently,
our DSL does not really have any room for multiple outputs, and as it is functional does
not support any side effects. Instead, to provide multiple outputs, currently the only
way is to output an array. If we keep arrays in the trace, an array as output would still
count as a single value. There is a slight discrepancy between the trace and the output
if we trace away arrays however: the program will still output an array, but only its
individual items are present in the trace. This is not really a big problem, since the
name of these individual outputs are derived from the name of the full array, but also
because it would make little sense to trace away arrays from a program that outputs an
array.

So, we find that our trace needs to be extended with two additional things in the forward
pass: intermediate values and reference counters. We do this in Listing 22, in the data
type Forward. Also, we introduce a clone of the Traced data type as Forwarded, as
we need to reference the new Forward type in the constructors for maps and vectorized
maps. We also replace the list structure of Trace with a key-value map. This is not
strictly necessary, but it allows us to more quickly access the values in the map, while also
clearly communicating there is no pre-set order to the trace. Each value in a Forward

map is a 3-tuple consisting of respectively: the intermediate value, the traced operation
performed, and the reference counter for this variable. Other than the added reference
counting, and saving of intermediate values, the tracing process remains the same as it
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was in Section 3.

1 data Forwarded

2 = FLift TValue

3 | FOp0 Op0

4 | FOp1 Op1 String

5 | FOp2 Op2 String String

6 | FMap [Forward] String

7 | FMapV Forward String

8 | FFold Forward String String

9 | FFoldV Forward String Forward String String

10

11 type Forward = Map String (TValue, Forwarded, Int)

Listing 22: Forward pass data structures

4.1 The Reverse Pass

As discussed, to facilitate our reverse pass we need both the reference counting and
intermediate values. Now let us define a function reverse that does the reverse pass.
This reverse pass should find all the adjoints in the program. So, it should take in an
object of the Forward type and output a map containing the adjoints. In Listing 23 we
define three constructors for adjoints: one for arrays, one for sparse arrays (represented
by a single index and the associated value), and one for real values. We also define the
Reverse type, which will contain these adjoints, and which is returned at the end of
the reverse pass. The Reverse type maps the names of each part of the calculation to
a 2-tuple containing a list of contributions of other adjoints, and its own final adjoint
which uses maybe to indicate whether it has been calculated yet.

1 data Adjoint

2 = AArray [Float]

3 | AReal Float

4 | ASparse Int Float

5

6 type Reverse = Map String ([Adjoint], Maybe Adjoint)

Listing 23: Definition of the Adjoint type

Now before going into precise implementation details we should look at the general
picture once more. The forward pass provides us with three important components: the
final output value of the forward evaluation, the trace on which to do our reverse pass,
and the intermediate values we will need to actually calculate everything in the reverse
pass. First off, the final output value is not actually important for the trace, were it not
that it also stores its name in the constructor (for TValue, see Listings 4 and 8). This
name points us where to start with the reverse pass, namely the step that produced this
output value.

With our starting point clear, we can now start the reverse pass. The programmer will
provide some sort of adjoint value (either a real number or an array of them, depending
on the output of the regular program), which we will immediately assign to our output
value in the reverse pass. This makes us ready to actually perform the rest of the reverse
pass.
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For any point in the reverse pass the process becomes simple. Given some “current”
point in the computational graph, we look up the adjoint (which should have been
established by now) and the forward trace item for this point. If the operation in the
trace for the current point uses no other values (i.e. has no “ancestors”), we are done
here and return the reverse mapping that contains all the adjoints we have found. If
the operation does have ancestors, we look at the operation itself to determine how
to transform the current point’s adjoint for its ancestors. Then, if this transformation
requires any intermediate values, we can look them up in the forward pass. Given the
transformed adjoints, we assign these to the adjoint accumulation list for each ancestor.
We also check if this list now has enough adjoints to match the reference counter in the
forward pass. If it does not, we are done and can return the reverse mapping. However,
if it does, we add up all the partial adjoints in the list together into the final adjoint
and place it in the reverse mapping. Then finally, we start the same process for each
ancestor of the current node that has its complete adjoint ready.

Now, let us talk implementation. We define two reverse pass functions, reverse and
resolve, of which the first will only be a wrapper for the final value and its adjoint to
be inserted, and the latter will actually perform the reverse pass. Both are shown in
Listing 24. Listing 24 also introduces two helper functions: combineAdjoints for adding
partial adjoints together into the final adjoint of a step in the computational graph, and
assignAdjoints for transforming and assigning the adjoints to the ancestors of the cur-
rent node. We will save the intricate details of combineAdjoints and assignAdjoints

for later. Finally, we use the explore helper function to try and resolve all the ancestors
of the current node as well.

We represent this process on the example program from Figure 1, in Figure 2. In Figure
2 we see the computational graph (forward pass) from Figure 1 first, as (A).

Then, with f = r2 as our output value from the forward pass, we can call reverse with
some adjoint a, the name of r2, and the forward pass we just found to get the reverse
graph at (B); this assigns a value to r2 in the reverse map, which we call r′2 in Figure 2.

As part of the reverse map, r′2 contains two items: a list of partial adjoints (currently
only containing a), and a final adjoint that has not been calculated yet (so is stored as
a Nothing).

Now we can get into the main loop by calling resolve for r2 with the reverse mapping
created by reverse. As we can see in graph (C), as we find the partial adjoints r′2
and find that the reference counter in the forward pass is 1 = |r′2|, we can also call
combineAdjoints, which transforms the list of partial adjoints in r′2 to the complete
adjoint a.

Then we call assignAdjoints to get graph (D). assignAdjoints uses the forward pass
to find the ancestors of the current node, in this case x1 and r1, and it also adds the
final adjoint of the current node (r′2’s final adjoint is a) to their lists of partial adjoints.

Then resolve on r2 calls explore leading to a resolve call to each of r2’s ancestors,
with first up x1 in graph (E). However, as we can see from the forward graph (A), we
still lack the adjoint from r1 to x1 (highlighted with the red arrow in graph (E)), so we
can not resolve x1 yet.

We leave x1 for later, and this leads us to the resolve call on r1 in graph (F). Here we
find that r1 does have all its partial adjoints, so we call combineAdjoints to find that
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1 reverse :: String -> Adjoint -> Forward -> Reverse

2 reverse s a f = resolve s f $ Map.singleton s ([a], Nothing)

3

4 resolve :: String -> Forward -> Reverse -> Reverse

5 resolve s f r = case Map.lookup s r of

6 −− Lookup the state of the provided name in the reverse mapping

7 −− If its present, but its final adjoint not calculated, we need to check

8 −− if we can calculate it

9 Just (as, Nothing) -> case Map.lookup s f of

10 −− Find the step taken and the reference counter in the forward pass

11 −− If it is present, check whether or not the adjoint array contains

12 −− items equal to the reference counter (so we know it is all there).

13 Just (fd, c, _) -> if length as >= c

14 −− If all partials are present, make the complete

15 −− adjoint and update the reverse map

16 then let (a, r1) = combineAdjoints s f r

17 −− Then transform and assign the adjoints to

18 −− the ancestors of this current node.

19 (r2, sa) = assignAdjoints fd s a f r1

20 −− Then try all the ancestors as well

21 in explore sa r2

22 −− If we are not ready, just return the current

23 −− reverse map

24 else r

25 −− If the named variable isn’t present in the forward trace, we’ve

26 −− got a problem, so we throw an error

27 Nothing -> error "Variable not in forward trace"

28 −− If the adjoint is present, and its final adjoint is already calculated

29 −− then we must already be done here, so just return the current reverse

30 −− mapping

31 Just _ -> r

32 −− If the adjoint is missing from the reverse mapping entirely, it is because

33 −− we haven’t run into it at all yet, so we can also return the reverse mapping

34 −− as it is.

35 Nothing -> r

36 where

37 −− Applies resolve over a list of ancestors

38 explore :: [String] -> Reverse -> Reverse

39 explore [] r’ = r’

40 explore (s’:ss) r’ = explore ss (resolve s’ f r’)

Listing 24: Definition of the reverse pass functions
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the completed adjoint for r1 is also a.

Again, with this adjoint found, we can now call assignAdjoints to bring the adjoint
of r1 to its ancestors x1 and x2. We will go into how later, but assignAdjoints looks
in the forward pass to find that r1 is a multiplication and appropriately transforms r1’s
adjoint of a into a · x2 for x′

1, and a · x1 for x′
2.

Now in our final steps represented in graph (H), we explore the ancestors of r1, starting
with x1. We find that we now do have the correct number of partial adjoints for x1, so
we can add these together with combineAdjoints to get the final adjoint of x1: a+a·x2.
Now, after combineAdjoints we call assignAdjoints on x1, however we will find that
x1 has no ancestors, which means that x1’s adjoint does not need to be assigned to
anything and also that there is no further nodes to explore from x1.

This means we move back to r1’s explore function, which leads us to x2. Here we find
again that we can use combineAdjoints to get x2’s final adjoint, and with
assignAdjoints that x2 has no further ancestors.

This then moves us back to the end of the explore function in r1, which now finished,
returns the updated reverse mapping to the end of the explore function of r2, which also
finishes, returning the updated reverse mapping to the original reverse function, and
return our reverse pass to the programmer.

This gives us a global overview of how the reverse pass can be implemented, using the
forward pass/trace we have discussed. Now there are a couple of questions that remain:

• Can we always add adjoints together?

• How do different operations differentiate?

• How do we maintain data-parallelism in array operations?

• How do we implement task-parallelism on the reverse pass?

In the following subsections we will get to all these questions.

4.2 Combining Adjoints

To go from a list of partial adjoints to a single combined adjoint is not quite as trivial as
just adding all together. As mentioned before, in Listing 23, we defined three types of
adjoints, an array, a sparse array, and a real number adjoint. The real number adjoint
is not complicated, it is the default adjoint, and they can be freely added together. The
difficulty comes in with the array adjoints. These adjoints are produced by operations
on arrays. It will help us to realize now that the adjoint of an array with length n, will
also have length n. In reality the adjoint array is no more than an array of adjoints for
each item in the original array.

Knowing this we can start to discover how to add these adjoints together. Let us start
by discussing adding the sparse and non-sparse array adjoints, as they are almost as
simple as adding two real adjoints. Since we only add these together as partial adjoint
of a single step in the computational graph, we know that the array adjoints whether
sparse or not will always have the same length when added together. This means we can
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just add these arrays of adjoints together element-wise, substituting 0 for all undefined
items in the sparse array.

Only if we add two sparse arrays together, we might need to look up the length of the
original array in the forward pass to know the length of these sparse arrays (or we could
extend the sparse array constructor to allow for multiple defined items).

Now the most interesting part comes when we want to add an array adjoint to a real
adjoint, or vice versa. Namely, there are two ways of doing this, which means that a
binary adjoint addition operator is not associative. For example, say we find ourselves
folding the values in some array a to some real value b. In the reverse pass, the adjoint
of b will be a real adjoint, yet the adjoint of a will have to be an array adjoint. Now
provided that a has some partial array adjoint (or is represented by an adjoint array
filled with zeroes) we must think of a way to add b to the appropriate items. Now what
these appropriate items in a are, and how b’s adjoint needs to be transformed, are of
course dependent on the function we fold over array a.

However, we will find that fold takes in an anonymous function, meaning that we need a
special case for fold anyway. Only for our unary sum operator we perform a fold that is
pre-programmed. We know that the sum’s result is influenced once by each array item,
and from the differentiation rules of addition we know that the adjoint of the sum’s
result is just moved to its ancestors without transformation or touching intermediate
values. This means that we can just add the sum’s adjoint to each array item.

The only other way to get from an array to a real value in our language is by using array
indexing. However, this is very simple as well, as indexing does not change anything
to the adjoint either. Since indexing refers to a specific item in the array, our partial
adjoint for the array becomes a sparse array with the incoming adjoint on the indexed
position.

We see the implementation of the helper function combineAdjoints in Figure 25, where
we also define a binary adjoint addition operator (<+) to do most of the heavy lifting.
It should be reiterated that the (<+) operation adding a real to an array only works
because it will only be called by the sum operator.
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1 (<+) :: Adjoint -> Adjoint -> Adjoint

2 (<+) (AArray as) (AArray bs) = AArray (zipWith (+) as bs)

3 −− Note: this works because it is only called by sum

4 (<+) (AArray as) (AReal bs) = AArray (map (+ b) as)

5 (<+) (AArray as) (ASparse i bs) =

6 let bs = drop i as

7 in AArray (take i as ++ (b + head bs) : tail bs)

8 (<+) (AReal a) (AArray bs) = AReal (a + sum bs)

9 (<+) (AReal a) (AReal b) = AReal (a + b)

10 (<+) (AReal a) (ASparse _ b) = AReal (a + b)

11 (<+) (ASparse i a) (AArray bs) =

12 let as = drop i bs

13 in AArray (take i bs ++ (a + head as) : tail as)

14 (<+) (ASparse _ _) (AReal _) = error "Cannot combine sparse and real

15 adjoints, because the length of the sparse adjoint is unknown."

16 (<+) (ASparse _ _) (ASparse _ _) = error "Cannot combine two sparse adjoints,

17 because the length of the sparse adjoints are unknown."

18

19 combineAdjoints :: String -> Forward -> Reverse -> (Adjoint, Reverse)

20 combineAdjoints s f r =

21 −− Get the partial adjoints and combine them together

22 let (as, _) = r Map.! s

23 a = foldr (<+) empty as

24 −− And add the completed adjoint to the reverse map

25 in (a, Map.insert s (as, Just a) r)

26 where

27 −− Provide an empty identity element

28 empty :: Adjoint

29 empty = case getValue s f of

30 −− Check the intermediate value of s to reveal the right identity element

31 (FArray _ xs) -> AArray (replicate (length xs) 0.0)

32 (FReal {}) -> AReal 0.0

33 _ -> error "Type mismatch in combineAdjoints/empty"

Listing 25: Adjoint combination operator and adjoint summation function
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4.3 Differentiating Operations

The actual differentiation rules are applied in the assignAdjoints function, where we
take the complete adjoint of a node in the computational graph, transform it according
to the operation performed in that node, and then add it as a partial adjoint to its
ancestors. It is especially the transformation that means we need to write different
differentiation rules for almost every operation.

Let us start with the easy part, the unary and binary mathematical operators. In
our DSL these are: addition, multiplication, subtraction, and sine. Recall that the
rules for addition and subtraction are similar, they just transform homomorphically,
which means that any adjoint is just “passed” to their ancestors without any additional
transformation. See the examples in Equation 14.

d(x+ y)

dz
=

dx

dz
+

dy

dz
d(x− y)

dz
=

dx

dz
− dy

dz

(14)

Multiplication and sine are slightly more complicated, both requiring some intermediate
value to compute the derivative. We have gone over multiplication before, we multiply
the incoming adjoint with intermediate value of the other side of the multiplication. See
the example in Equation 15.

d(x · y)
dz

= y · dx
dz

+ x · dy
dz

(15)

The derivative of a sine operation is the cosine on the intermediate value, see Equation
16.

d(sinx)

dy
= cosx · dx

dy
(16)

These are the mathematical operations that we may encounter in the trace. Recall
that we traced away Booleans, so we do not have to worry about comparison operators.
With these derivatives cleared up we can now program them into assignAdjoints.
It is also useful to remember that assignAdjoints should return both the updated
reverse mapping, and a list containing the ancestors of the provided node. We see the
implementation in Listing 26. This uses another helper function called addAdjoint,
which simply just adds the calculated partial adjoint to the list of partial adjoints of the
relevant ancestor in the reverse mapping.

Another adjoint we should quickly cover is that of array indexing. As mentioned before,
nothing happens to an intermediate value when it is indexed, so its adjoint will not
be transformed either. While obvious, the adjoint of the indexed value should only be
added to the that specific index in the array’s adjoint. This is where our sparse adjoint
comes in, where we represent a single item in the array without storing anything extra.
We can see how it is used by assignAdjoints for indexing in Listing 27.
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1 assignAdjoints :: Forwarded -> String -> Adjoint -> Forward -> Reverse

2 -> (Reverse, [String])

3 −− Adjoint function for all unary operators (now only showing sine)

4 assignAdjoints (FOp1 op s1) _ a f r = case (op, a) of

5 (Sin, AReal a’) -> case getValue s1 f of

6 −− Take the intermediate value and assign the adjoint to s1, also return

7 −− the list of ancestors: s1

8 (FReal _ x) -> (addAdjoint s1 (AReal $ a’ * cos x) r, [s1])

9 _ -> error "Type mismatch in assignAdjoints/FOp1/Sin"

10 _ -> error "Type mismatch in assignAdjoints/FOp1"

11

12 −− Adjoint function for all binary operators

13 assignAdjoints (FOp2 op s1 s2) _ a f r = case (op, a) of

14 −− Just add the adjoint to both ancestors

15 (Add, _) -> (addAdjoint s1 a (addAdjoint s2 a r), [s1, s2])

16 −− For multiplication, get the intermediate values first

17 −− we also deconstruct the adjoint, knowing it is a real number because

18 −− (sin x) would return a real number.

19 (Mul, AReal a’) -> case (getValue s1 f, getValue s2 f) of

20 (FReal _ v1, FReal _ v2) ->

21 (addAdjoint s1 (AReal (a’ * v2)) (addAdjoint s2 (AReal a’ * v1) r),

22 [s1, s2])

23 _ ->

24 error "Type mismatch in assignAdjoints/FOp2/Mul"

25 −− Similar to addition, only s2 gets a negative adjoint

26 (Sub, AReal a’) -> (addAdjoint s1 a (addAdjoint s2 (AReal -a’) r), [s1, s2])

27 _ -> error "Type mismatch in assignAdjoints/FOp2"

Listing 26: Defining assignAdjoints for sine, addition, subtraction, and multiplication.

1 assignAdjoints :: Forwarded -> String -> Adjoint -> Forward -> Reverse

2 -> (Reverse, [String])

3 assignAdjoints (FOp1 op s1) _ a f r = case (op, a) of

4 −− Add the sparse array and return the name of the array as ancestor

5 (Idx i, AReal a’) -> (addAdjoint s1 (ASparse i a’) r, [s1])

6 . . .
7 . . .

Listing 27: Defining assignAdjoints for the indexing operation
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4.3.1 The reverse pass on map operations and function closures

Unsurprisingly, the reverse pass is slightly more in-depth on array operations, like map.
For a regular non-vectorized map, this is still fairly easy to wrap our heads around.
Especially if we remember that our forward-pass provides us with the following con-
structor for such maps: FMap [Forward] String. Here we store every application of the
mapped function to our array as its own sub-trace. Now it becomes easy to realize that
the simplest way to reverse-pass over this mapping is just to call the reverse function
on each of these forward sub-traces. This then provides us immediately with the adjoint
of each original array item, which we can combine into an array adjoint for the original
array. We give this array adjoint as a partial adjoint to the original array (as it is the
ancestor of the mapping operation). It should be explicitly stated that mapping the
reverse function reveals the derivative of a map: another map, but in reverse.

However, there is a slight obstacle yet to overcome; to do with the mapped function.
What do we do if the function that is mapped over the array uses variables from any-
where outside the actual array? Recall that the functions that are mapped are lambda
expressions that have access to any variables in the environment at the function’s def-
inition. As an example, we can see this expressed in Figure 3, where some mapped
operation on an array [b] uses a variable a to produce the array [c]. While the partial
adjoints for this variable are computed during the reverse pass over every item, they are
only stored in the reverse mapping for the particular item. And if we extract only the
adjoint for the original array item from this reverse mapping, we would throw away these
partial adjoints, making it possibly impossible for us to calculate the full reverse-pass of
the program, as we will not be able to calculate the adjoint for these outside variables.
We find that these variables, like a in 3 are “unofficial ancestors” of the mapping op-
eration. They are used by the mapping operations, but can be a little hard to find, as
they are hidden in the sub-traces.

Fig. 3: Example of an unofficial ancestor to an array operation

Luckily for us the main difficulty with this problem is noticing it. Now we know that
we have to extract this data into the main reverse pass, we can simply merge the item’s
reverse pass with the main one. We only need to be wary of extracting the partial
adjoints for the original map, and combining them together, so we do not over count
the number of partial adjoints against the reference counter of the original array (that
in the forward pass only got increased by one for use in the map operation.) We see the
whole process of finding the adjoint of a map in Listing 28.

Now with the non-vectorized map taken care of, we can move on to the vectorized map.
While the idea of finding the adjoint to the map remains the same of course, we now find
ourselves with a new problem: a lack of intermediate values. Recall that when tracing a
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1 assignAdjoints :: Forwarded -> String -> Adjoint -> Forward -> Reverse

2 -> (Reverse, [String])

3 . . .
4 assignAdjoints (FMap fss s1) s a _ r =

5 let (as, r’, ss) = reverseMap fss 0

6 −− Fold sparse adjoints into single array adjoint

7 a’ = foldl (<+) (AArray $ replicate (length fss) 0.0) as

8 in (addAdjoint s1 a’ r’, Set.toList ss)

9 where

10 reverseMap :: [Forward] -> Int -> ([Adjoint], Reverse, Set String)

11 reverseMap [] _ = ([], r, Set.empty)

12 reverseMap (f:fs) i =

13 let s’ = s ++ ’!’ : show i

14 rx = reverse f s’ (indexAdjoint i a)

15 −− Extract the array item for

16 ax = toSparse i $ fst $ combineAdjoints s’ f rx

17 −− Remove items from the original and destination array from this reverse pass

18 −− and add the array items partial adjoint

19 rx’ = Map.delete s’ (Map.delete (s1 ++ ’!’ : show i) rx)

20 −− Find the results of the rest of the map

21 (axs, rxs, sxs) = reverseMap fs (i + 1)

22 in (

23 −− Add this sparse partial to the list

24 ax : axs,

25 −− Add rx’ to the main reverse pass

26 Map.unionWith unionReverse rxs rx’,

27 −− Add relevant keys to the set of ancestors

28 Set.union sxs $ Map.keysSet rx’

29 )

30 toSparse :: Int -> Adjoint -> Adjoint

31 toSparse i (AReal a’) = ASparse i a’

32 toSparse _ _ =

33 error "Type mismatch in assignAdjoints/FMap/toSparse"

Listing 28: Implementation of assignAdjoints for the map operation
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vectorized map, we only stored the trace of a single item in the array. This was possible
because, as we had found the mapped function would not branch, the trace would be
the same for each item. Now, provided that we did store all intermediate values for this
mapping operation, we can perform the same reverse map for the vectorized trace, as
with the nonvectorized trace.

On map parallelism
It should be clear that there is a major inherent parallelism opportunity for each of the
mapping operations. For the vectorized map this is very clear: data parallelism. This
is true in evaluation, and is still true in the reverse-pass. Namely, as the reverse pass is
the same for all items, we can use a data parallel mapping function to run the reverse
pass in a vectorized manner as well.

For the non-vectorized map we cannot be sure the operations are the same for each
item. This means that data parallelism is off the table, however we can still use task
parallelism. This would not be hard to implement as each item has its own reverse
call which can easily be run task parallel. Of course, one would need to exercise some
caution with the collection of the partial adjoints and reverse maps, but this is not
a new problem. The combination of the partial adjoints would still need to happen
sequentially.

We will talk more about parallelism when we talk about the reverse map on folds.

4.3.2 The reverse pass on fold operations

The regular fold operator in our language (for branching functions) is simply imple-
mented as a sequential left-to-right fold. This is mainly because we can not reliably
apply data parallelism on a function that may behave differently for different elements.
However, this makes the reverse-pass over such a fold extremely easy, since this opera-
tion can be captured in a single forward sub-trace. Like what we saw with maps, we can
just run our general reverse function over this sub-trace, and find the adjoint for the
original array, and the identity element. Also like with maps, we can then combine this
reverse mapping with the main reverse mapping to make sure we do not lose out of any
adjoints for informal ancestors that may arise from the closure on the folding function.
We see this put into code in Listing 29.

1 assignAdjoints :: Forwarded -> String -> Adjoint -> Forward -> Reverse

2 -> (Reverse, [String])

3 . . .
4 assignAdjoints (FFold f s1 s2) s a _ r =

5 −− Get the reverse mapping

6 let rf = reverse f s a

7 −− Extract the adjoint for the array and the identity elements

8 aa = fromJust $ snd $ rf Map.! s1

9 az = fromJust $ snd $ rf Map.! s2

10 −− Combine the reverse map with the main reverse map

11 r’ = Map.unionWith unionReverse r (Map.delete s1 (Map.delete s2 rf))

12 in (addAdjoint s1 aa (addAdjoint s2 az), [s1, s2])

Listing 29: Reverse pass over a sequential fold
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As discussed, our vectorized fold operation uses a segmented fold followed by a sequential
fold. Of course if we have more threads available than we have items in our array, we use
a sequential fold instead. Since in the reverse-pass we pass over the second step before
the first step, it is important to recall that to properly gather the results from the first
step sub-traces, we use an FJoin constructor, which we can use in the reverse pass to
pass the adjoints back to the correct sub-trace. We can see this all come together in the
implementation in Listing 30.

Of course, when we encounter the FJoin constructor in the reverse pass, we still need to
apply the reverse-pass on it. However, since the FJoin is not a real numerical operation,
it also has no derivative. So we just ignore FJoin, as it is the starting point for the
second step anyway, it has no values depending on its derivative. The derivative it does
get is an array containing derivatives for the joined values (from the first step), to be
used in the reverse-pass for the first step.

On the sum operation
The DSL implements a special kind of fold as a unary operator, namely the sum op-
eration. Recalling that the sum operator just adds up the values in an array, we can
implement this as a fold over the array, using the addition operator and 0 as the iden-
tity element. However, the reverse pass over a sum operation is very simple. Starting
with some real adjoint a at the result of the sum, this adjoint is then passed through
all the addition operators to all the members of the original array. This allows us to
quickly make the adjoint for the original array, namely an array adjoint where all values
are a. Taking such a shortcut also means leaving out the adjoints for all intermediate
calculations, however since we intuitively know what they are for sum, this should not
really pose a problem. In Listing 31 we see the implementation of the assignAdjoints
function for the sum operation.

The main takeaway here is not really about sum, however. It is that special cases exist
in the reverse pass, even if they seem somewhat generic in the regular program. Finding
these special cases can increase the speed of the reverse pass. While the sum operation
might not be too exciting an example, it highlights that we should be on the lookout for
these special cases, especially for the more complex ones (as they will profit more from
the potential speed-up.)

On fold parallelism
Fold parallelism is also a little more complicated than map parallelism. An easy way to
think about why, is by visualizing the flow of data in both operations. In map, we start
with an array of n items, and end with one. Every array element “flows” from some
index in our original array to the same index in the resulting array, never intersecting
with any of the other elements. With folding operations, it is especially this intersection
of the dataflows that makes it hard to parallelize in the reverse pass. If we imagine the
values in the original array as being funnelled into the final result, we quickly realize that
there is no operation that does the opposite: there is no “unfold” operation. However,
both the individual segments in the first step of the fold, and the combination in the
second step are relatively simple sequential folds. While the intermediate values in a
folding operation are ignored in regular use, we actually store them as part of our forward
traces. This means that our sequential folds are more like a scan, a left-to-right scan
to be precise. Realizing this, we can imagine our reverse-pass as a right-to-left scan,
applying the fold (or calculating its adjoints) in reverse if you will. Of course this works
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1 assignAdjoints :: Forwarded -> String -> Adjoint -> Forward -> Reverse

2 -> (Reverse, [String])

3 . . .
4 assignAdjoints (FFoldV f1 q f2 s1 s2) s a _ r =

5 if Map.null f2

6 −− If the forward pass for step 2 is empty, we used a sequential fold

7 then let rf = reverse f1 s a

8 −− Extract the adjoint for the array and the identity elements

9 aa = fromJust $ snd $ rf Map.! s1

10 az = fromJust $ snd $ rf Map.! s2

11 −− Combine the reverse map with the main reverse map

12 r’ = Map.unionWith unionReverse r

13 (Map.delete s1 (Map.delete s2 rf))

14 in (addAdjoint s1 aa (addAdjoint s2 az), [s1, s2])

15 −− If not we are dealing with a proper vectorized fold

16 −− Reverse pass over the second step first

17 else let r2 = reverse f2 s a

18 −− Extract the adjoint for the join from step 2

19 a2 = fromJust $ snd $ r2 Map.! q

20 −− Combine the reverse map for step 2 with the main one

21 r’ = Map.unionWith unionReverse r (Map.delete q r2)

22 −− Get the join’s contents

23 ss = getJoin

24 −− Get the update reverse mapping, the partial adjoints of the array,

25 −− and the adjoint of the identity element.

26 (r’’, a1s, z’) = getParts ss (fromJust a2) r’

27 −− Combine the partial adjoints for the array into one

28 a1 = foldl (<+) (AArray $ replicate (Map.size f1) 0.0) a1s

29 in (addAdjoint s1 a1 (addAdjoint s2 z’ r’’), [s1, s2])

30 where

31 getJoin :: [String]

32 getJoin = case f2 Map.! q of

33 (FJoin ss, _, _) -> ss

34 _ -> error "Type mismatch in assignAdjoints/FFoldV"

35

36 −− Get the updated reverse mapping, the adjoint for the array,

37 −− and the adjoint for the identity element

38 getParts :: [String] -> Adjoint -> Reverse

39 -> (Reverse, [Adjoint], Adjoint)

40 getParts [] _ rv = (rv, [], AReal 0.0)

41 getParts (s’:ss) (AArray (a’:as)) rv =

42 let rx = reverse f1 s’ (AReal a’)

43 ax = fromJust $ snd $ rx Map.! s’

44 (rxs, axs, zxs) = getParts

45 rx’ = Map.unionWith rxs (Map.delete s1 (Map.delete s2 rx))

46 in case Map.lookup s2 rx of

47 −− Update the adjoint for the identity element only if it was used

48 −− by this segment.

49 Just (zs, _) -> (rx’, ax : axs, foldl (<+) zxs zs)

50 Nothing -> (rx’, ax : axs, zxs)

Listing 30: Reverse pass over a vectorized fold
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1 assignAdjoints :: Forwarded -> String -> Adjoint -> Forward -> Reverse

2 -> (Reverse, [String])

3 . . .
4 assignAdjoints (FOp1 op s1) _ a f r = case (op, a) of

5 . . .
6 −− We need to get the arrays length for the adjoint

7 (Sum, AReal a’) -> case getValue s1 f of

8 (FArray _ xs) ->

9 (addAdjoint s1 (AArray $ replicate (length xs) a’) r, [s1])

10 _ -> error "Type mismatch in assignAdjoints/FOp1/Sum"

11 . . .

Listing 31: Implementation of the sum operator in assignAdjoints

on sequential fold, but it works on the data-parallel fold as well, and we can maintain
almost the same parallelism as before. First, we calculate the adjoints in the second
step using a sequential right-to-left scan, and then we do the same for the segments in
the first step, now in parallel. Of course, the resulting adjoint arrays of each segment
would still need to be combined sequentially, which is not necessary in the regular fold.
Still, this preserves the data-parallelism present in the fold, which was our goal.

4.4 Task parallelism in the reverse pass

We have paid some attention to data parallelism for data parallel operations, namely
map and fold. However, we can also more generally implement task parallelism on the
reverse pass as a whole. This is mainly why we have previously been adamant about
not sorting the array, and having unique but non-sequential names (they may in fact be
sequential, but should not be treated as such): it means we can execute the reverse pass
in any order as long as we make sure to keep an eye out for missing partial adjoints.
Again, we compare the number of collected partial adjoints of a computational step, to
the number of references made to that step (according to the forward pass), and we only
combine the adjoints if they match. This way we know we do not calculate the step’s
adjoint prematurely, but we also know that if we cannot calculate the adjoint, another
part of the reverse pass will, as it will provide the last piece of that adjoint.

Eventually this comes together in the fact that we may perform the reverse pass com-
pletely asynchronously. We start with one thread at the end of the computation, but
whenever part of the computation assigns adjoints to multiple ancestors, we can check
these ancestors using task parallelism. We can just spawn new threads to deal with
all but one ancestor, and continue the original thread on the remaining ancestor, and
combine results back into the final result later. For large or complex traces this might
actually allow us to significantly speed up our reverse pass.

It should be noted that our current implementation does not quite allow for this kind of
task parallelism, because right now it returns the reverse mapping back to the starting
point, meaning that the through-putting of the reverse mapping from one ancestor to
the next forces sequential execution. However, this can easily be fixed using a mutable
variation of the reverse mapping. While this would violate purity (which does not allow
for mutable variables), the speed-up might be worth it.
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4.5 Finding Complexity

With now the reverse pass figured out, we can start talking about estimating a time
complexity for this program. We will try to do so with regard to the execution time
of the regular program, which we will denote with n, where n is a stand-in for the
number of steps in our execution graph. This means that regardless of the functions
actual complexity, for this section the complexity of executing a function consisting of
n-substeps, would have a complexity of O(n).

For the forward pass we find that any recording of references to reference counters, or
storing intermediate values should only provide us with a small overhead on the regular
execution of the program. After all, we only count direct references, and we already have
to calculate the intermediate values for execution anyway, storing them is not much of
a problem. Of course, we do gain some time complexity overhead depending on the
storage method. For tracing we used a built-in Haskell list, which can store new items
in O(1) time. However, for ease of use, we switched to a map (associative array) when
we expanded to the forward pass. While of course lookup and getting in a map of size
m is quicker than in an list of size m (O(logm) as opposed to O(m)), insertion on a
map also takes O(logm) time. This means that we can assume our forward pass roughly
takes O(n log n) time: for n steps in the execution, we record intermediate values at the
cost of O(log n) time

Of course, this overhead in the forward pass, allows us to safe a little time in the reverse
pass. Let us assume that for each step in our reverse pass, we need to retrieve the
intermediate value at a cost of O(log n). Furthermore, we also need to write a partial
adjoint to each ancestor of the step. Since we store these (partial) adjoints in a map
as well, we know this will take O(log n) time to store for each ancestor. Luckily for us,
each operation has only at most three ancestors, so we can still keep this overhead at
O(log n).

Unfortunately, not all can currently be covered in a O(log n) overhead, because of the
array operations. After finishing a map or fold operation, we need to join the reverse
passes over the sub-traces back into the main trace. This union operation takes O(m)
time, where m is the size of the smaller map. There are two ways to remedy this
however. First, we could make the reverse mapping a mutable variable. This way we
can write new adjoints to the main reverse mapping directly, meaning we do not need
to do any union operations. In a similar vein we could write a special reverse function
for sub traces like this, that produce a new reverse mapping based on what happened
in the sub-traces, while keeping the main trace up until that point intact. This means
we can maintain purity, however it also means that we can not parallelize, as every sub-
trace would need the reverse mapping of the previous sub-trace. (Or we could union
these sub-trace reverse mappings again, but that would bring us back to the problem of
union’s time complexity.)

Regardless of how we wish to solve it, the current time complexity of the overhead
produced by these operations is O(n), meaning the time complexity of the reverse map
becomes O(n2). When allowing mutability on the reverse mapping we could bring this
down to an O(log n) overhead, or a time complexity of O(n log n).

This brings the total time complexity of the whole AD process as described to O(n2 +
n log n) ≈ O(n2), which is not great. However, we can also see that this overhead
occurs due to implementation details. For instance, in general we would describe the
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insertion and lookup complexity of an associative array (with size m) as O(1) rather
than O(logm), which eliminates these logarithmic overheads from the run altogether.
However, due to implementation details in the mapping (provided by the containers
package in Haskell), this turns out to be O(logm). Also, for the unions, we claim an
O(n) overhead, which is truly the worst case, assuming that all adjoints are already
present in the reverse mapping (but we somehow need to add some more). Generally
(and ideally), the reverse mappings for these sub-traces would be much smaller than
those of the main reverse mapping, meaning a smaller overhead as well. If we assume
the largest of these sub-trace reverse mappings has some size k ≪ n, and we use the
regular insert/lookup time complexity of O(1), we find an idealized time complexity of
O(nk+n), which is much closer to the optimal time complexity O(n) (as the complexity
of the reverse-pass is ideally upper-bounded by 6 · n).

Finally, the speed-up we expect from task and data parallelism is wholly dependent on
the shape of the computational graph, and the number of threads we can run simulta-
neously. For task parallelism, the ideal shape of the computational graph would be a
tree (with the final result as the root), because it will allow us to make use of as much
task parallelism as possible, without running into dead ends (due to missing partial ad-
joints). Similarly, data parallelism provides great advantage for vectorizable operations
on large arrays. Of course, this dependency on the shape of the program means we
cannot make a general statement about how these speed-ups would actually translate
to time complexity.

It should be noted though, that especially data-parallelism has been left by the wayside
by the large AD libraries, in favour of machine parallelism (where data and instructions
are separated over multiple machines). While theoretically more scalable than regular
data parallelism, machine parallelism is useful mostly for specific use cases like machine
learning, and is also financially more costly. This means that machine parallelism is
mostly reserved for large companies who can leverage multiple machines or even data
centres to do this, while leaving groups with less resources out in the cold somewhat.

5 Conclusion

In this thesis, we set out to find a way to preserve data-parallelism through a reverse-
mode automatic differentiation approach using tracing. We did so mainly by defining
a domain-specific language (DSL) for Haskell, and implementing tracing and automatic
differentiation on that DSL.

We found our first obstacle in the tracing, despite or maybe even because of its ubiquity,
it was hard to find a proper definition that fit our use case. In fact, a formal definition
of tracing seemed to be largely absent from literature, excluding some specialized defini-
tions. So we first had to start by defining tracing, at least enough for our use case. We
came to two insights here. First, we can decide on what and how to trace a program, by
deciding what data types and data structures we wish to keep in the trace, and which
we would rather remove or “trace away”. Second, a uniform way of tracing is unlikely to
exist, at least on a higher-level of programming. This would be due to many operations
that may require special case implementations, some even dependent on the types we
wish to keep in the trace. So while a completely formal universal definition of tracing
was off the table, we still managed to create two logic assertions that, although quite
broad still, would help us implement tracing on the DSL we wished to explore.
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With the tracing worked out, we could now continue to the automatic differentiation.
Reverse-mode AD exists of two phases, a forward pass and a reverse pass. The forward
pass would be largely covered by tracing, however it needed a couple adjustment for it
to be useful. First off, the trace was lacking intermediate values of the program, which
would be needed for the reverse pass. Recalculating these values during the reverse pass
would be very inefficient, so instead we modified the trace to also store intermediate
values. The second problem was a little more tricky: while the trace would provide
us with all the operations done, including a way to reverse pass through the trace by
reference names, it did not provide the full structure of the computational graph. To
be more precise: while calculating the adjoint for some node a on the computational
graph, we could not be sure whether this was the only edge leading to a, or if there were
others. This is problematic, because to continue the reverse pass from a to its ancestors,
we would need to be sure the adjoint for a was calculated correctly. Of course, this
could be easily solved by introducing some sorting algorithm to the trace before the
reverse pass, however this would force sequential execution of the reverse pass. We
wanted to avoid this as to leave room for task parallelism in the reverse pass: where
we could introduce multiple sub-tasks from a node in the computational graph that
has multiple ancestors. We managed to solve this problem by drawing inspiration from
Kuhn’s topological sort algorithm. First, we add reference counters to each node in the
computational graph, for which we do the counting during the forward pass. Then on
the reverse pass, when we have a calculated adjoint we wish to assign to an ancestor,
we just add it to a list of partial adjoints for that ancestor. Now we can check the
length of that list of partial adjoints to the reference counter associated with that node,
and if they are equal, we would know we had collected all the partial adjoint and could
calculate the complete adjoint for that node. Using this method, we can enforce an
implied topological sort without enforcing that sort beforehand, which allows us the use
of task parallelism.

Now using this carefully constructed forward pass, we would be able to do our reverse
pass quite easily. However, we still had one problem left to deal with: closures. Since
our DSL only allowed for lambda functions as closures, we already made sure to capture
any relevant information in the environment on the forward pass. However, this meant
that in the reverse pass our lambda functions could call on variables outside the function
scope, variables that needed to be updated with relevant adjoints as well. For regularly
applied functions this was no problem, after all the operations done by that applications
would just appear in the trace, leaving no opaque closures for us to deal with. However,
when we introduced arrays to our DSL, and array operations like map, generate, and
fold, we ran into the opaqueness of these functions. While the function themselves where
traced away into sub-traces for these array operations, these array operations themselves
would not clearly display any variables outside the function scope as ancestors. When
we would pass over them in the reverse pass, and use an independent reverse pass to
calculate through the sub-traces, the adjoint contributions for variables irrelevant to
the input array would be lost. Clearly this is unacceptable, because this would mean
missing contributions, and incalculable adjoints for these informal ancestors. Luckily
the main problem here was identifying it, as it could easily be remedied. We simply
combine these reverse passes over the sub-traces with the main reverse pass, such that
all contributions are saved. The main takeaways from the reverse pass implementation
were the insight we gained into closure, and the reverse pass over data-parallel array
operations. With our forward pass storing the nature of these array operations in sub-
traces, we could leverage these sub-traces to do the reverse pass. We found that for the
operations included in our DSL, we could leverage data-parallelism on the reverse pass
in the same places data-parallelism was used in regular execution. Similarly, for any
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point in the regular execution where we could implement task parallelism, we could also
do so in the reverse pass.

With all this done, we ended up with a reverse-mode AD algorithm that would work
on our entire DSL. While this DSL was not that impressive in scope, it did show us a
clear way to use tracing for automatic differentiation. Furthermore, it showed us how we
could maintain data parallelism in the reverse pass. We also found that the performance
of our implementation left some room for improvement. However, by either letting go
of purity for the reverse mapping and using more efficient data structures, we might be
able to reach a more desirable time complexity.

5.1 Future work

Quite some work still remains. Such as an expansion to our tracing definition. This
could either be an exploration into more complex type structures, or formalization of the
definition we started. Especially with a formalized definition, one might be able to reach
some more interesting correctness proofs than the two assertions we found. However,
the question remains whether tracing can be formalized; we noted that we need special
handling of a lot of cases, which might not be neatly formalizable.

Furthermore, we left the actual implementation of our AD algorithm at a high-level
DSL, which is quite different from actual implementation on a lower level or GPU pro-
gramming. While our findings should carry over regardless, it would be most interesting
to see what kind of performance improvements can be gained by using data and task
parallelism in the reverse pass for AD. Such an implementation should probably also
include real parallelism, rather than parallelism hinted to by operations that could be
parallelized.

In a similar vein, we probably would want to expand the operations of our DSL, to
create more definitions for tracing and AD on specific operations. Plenty of parallel
array operations remain, including scan, scatter, and gather to name just a few. There
are also still types structures yet to explore, and types in general that may need to be
traced (away).

Finally, but perhaps most importantly, there is the issue of higher-dimensional arrays.
Our implementation in this paper dealt only with 1-dimensional arrays, which allowed
us to sidestep complex situations, like multidimensional folds. While we can reasonably
assume the theory laid out in this work should hold in higher dimensions as well, as there
is nothing particularly special about higher-dimensional array operations, we could also
imagine it becoming a difficult task to implement.



5 Conclusion 57

References

[1] Charles C Margossian. A review of automatic differentiation and its efficient imple-
mentation. Wiley interdisciplinary reviews: data mining and knowledge discovery,
9(4):e1305, 2019.

[2] Louis B Rall. The arithmetic of differentiation. Mathematics Magazine, 59(5):275–
282, 1986.

[3] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, 16(2):146–160, 1976.

[4] Andreas Griewank. Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optimization Methods and software,
1(1):35–54, 1992.

[5] Christian H Bischof and H Martin Bücker. Computing derivatives of computer
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A ADT Evaluation

In Section 3.2, we introduced an extended lambda calculus. In this section we will
quickly go over how an evaluator function for this ADT would look like in Haskell. We
define our evaluator function in Listing 32, using the definitions of Expression, Value,
and Environment from Listing 3.
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1 eval :: Environment -> Expression -> Value

2

3 eval n (EApply e1 e2) =

4 −− Evaluate e1 and e2 first

5 let v1 = eval n e1

6 v2 = eval n e2

7 in case v1 of

8 −− Only apply v1 to v2 if v1 is a function as expected

9 VFunc f -> f v2

10 _ -> error "Type mismatch in eval/EApply"

11

12 eval n (EIf e1 e2 e3) =

13 −− Evaluate e1 as the condition of the if−then−else statement

14 case eval n e1 of

15 −− If e1 evaluates to true, evaluate e2

16 VBool True -> eval n e2

17 −− Otherwise, evaluate e3

18 VBool False -> eval n e3

19 _ -> error "Type mismatch in eval/EIf"

20

21 −− For abstractions, we return the function by moving the evaluation into the body.

22 −− Where we insert the anonymous value x into the environment as it was when the

23 −− function was defined.

24 eval n (ELambda s1 e1) = VFunc $ \x -> eval (insert s1 x n) e1

25

26 eval n (ELift v1) = v1

27

28 eval n (EOp2 op e1 e2) =

29 −− Evaluate e1 and e2 first

30 let v1 = eval n e1

31 v2 = eval n e2

32 −− This case syntax allows us to select for the right op with the right

33 −− value types at the same time.

34 in case (op, v1, v2) of

35 (Add, VFloat a, VFloat b) -> VFloat $ a + b

36 (Equ, VBool a, VBool b) -> VBool $ a == b

37 (Equ, VFloat a, VFloat b) -> VBool $ a == b

38 (Mul, VFloat a, VFloat b) -> VFloat $ a * b

39 (Neq, VBool a, VBool b) -> VBool $ a /= b

40 (Neq, VFloat a, VFloat b) -> VBool $ a /= b

41 _ -> error "Type mismatch in eval/EOp2"

42

43 −− Resolving references means getting the value from the environment by name.

44 eval n (ERef s1) = n ! s1

Listing 32: ADT Evaluator


	Introduction
	Background
	Automatic Differentiation
	Tracing
	Functional Parallel Array Programming

	Tracing
	Tracing Correctness
	Basic Tracing
	Function Tracing
	Tracing let bindings

	Array Tracing

	Automatic Differentiation
	The Reverse Pass
	Combining Adjoints
	Differentiating Operations
	The reverse pass on map operations and function closures
	The reverse pass on fold operations

	Task parallelism in the reverse pass
	Finding Complexity

	Conclusion
	Future work

	ADT Evaluation

