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Abstract

The accelerating expansion of our universe is currently theorized to be driven by dark energy, of which
the nature is yet a mystery. In this thesis, we investigate the possibility of fluctuations in dark energy
and resulting spatial correlations. These fluctuations carry through into the Hubble parameter, affecting
cosmological observables. We show that time delays of strong gravitational lenses are dressed by this
effect, and correlators of said time delays acquire an angular dependence. To investigate this angular
dependence, we construct the angular power spectrum of time delay correlators. Subsequently, we hone
in on a specific realization of a fluctuating dark energy density, considering quantum fluctuations of a
light scalar field in the early universe and their subsequent imprinted spatial correlations today. We then
perform a forecast using a mock dataset for the upcoming Legacy Survey of Space and Time (LSST),
comparing the effect to correlations of weak gravitational lenses in regular ΛCDM.
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1 Introduction

Cosmology entails the study of the structure and history of our universe. Currently, there are several well-
tested theories that individually describe the matter content and geometric features of said universe. Of
these theories, the ones considered the best are the Standard Model of particle physics which describes
matter, and general relativity which describes the geometry of space-time. Notwithstanding, observational
data going back as far as the 1930s [1–3] suggests that the Standard Model requires additional components
– such as dark matter and dark energy (although these components could be explained within the bounds of
the Standard Model by means of a cosmological constant and a weakly interacting massive particle (WIMP),
these descriptions have their own flaws) – in order to accurately describe features like galactic clustering
and the accelerating expansion of our universe. This leads to the currently most widely accepted model of
cosmology, ΛCDM.

ΛCDM derives its name from the aforementioned additional components, namely cold dark matter
(CDM), and the cosmological constant Λ, often referred to as dark energy. In this paper, the focus will
be on dark energy, which is the component that drives the accelerating expansion of the universe. This
accelerating expansion was initially observed in measurements of Type 1A supernovae [4], and later the
cosmic microwave background (CMB) [5]. Although the addition of dark energy to the previously flawed
models ameliorates some of the mismatches between theory and experiment, the nature of this component is
unknown. In fact, the peculiar properties of dark energy- namely a negative pressure and and a non-diluting
energy density- only further highlight this issue. As of now, most theories introduce dark energy in the form
of some scalar field, for example quintessence [6] or k-essence [7]. However, qualms with existing theories
and the generally mysterious nature of dark energy have led to a wide variety of models that are different in
nature, such as modified gravity [8, 9].

To add to the already existing woes of dark energy, it turns out that its mere inclusion is not enough to rid
the model of all of its statistical tensions. In fact, the cosmological parameters that are experimentally probed
at various scales, most notably the Hubble parameter H0 and the present matter fluctuation parameter σ8,
have tensions of up to 5σ [10] and 3σ [5], respectively. To many, this indicates the presence of physics beyond
what ΛCDM can account for. There exist works that attempt to resolve the Hubble tension by means of
early dark energy considerations [11, 12]. However, a slightly different approach will be taken in this paper,
where the focus will be on the spatial correlations of dark energy.

Our universe is rife with spatial correlations. We can observe them in the temperature fluctuations of
our CMB [13], the distribution of galaxies in the sky [14], and in light wave noise [15]. The origin of all
these correlations is quantum mechanical in nature, which suggests a strong connection between the observed
structure of our universe, and the quantum effects underlying it all.

Considering this precedent, it is not unreasonable to assume that dark energy itself is quantum mechanical
in nature. In practice, this means that dark energy is characterized by a fluctuating (scalar) field, composite
or fundamental. In fact, that will be perspective taken in this body of work, where dark energy fluctuations
are sourced by either a massless or very light scalar field that is spectator during inflation. Models with
fluctuations of this origin have been previously explored in [16–19]. In the aforementioned works, the
introduction of said fluctuations was able to diminish the Hubble tension down to 1σ.

Given the upcoming body of new data that will be provided by the Large Synoptic Survey Telescope
(LSST) [20], we will soon have the capability to rule out some of the large amount of models of inflation
that currently exist. Consequently, it is meritable to also consider the theoretical predictions of this specific
class of models. Naturally, one must then consider how dark energy fluctuations affect physical observables.

Therefore, one must derive the Friedmann equations in this context, i.e. in operator form. This leads to
the following expression:

3M2
p Ĥ

2(z, n̂) = ρC(z)Î + ρ̂Q(z, n̂), (1.1)

with Mp = 2.435 · 1018 GeV/c2 the reduced Planck mass, ρC the energy density of classical matter, ρ̂Q the

energy density operator of the dark energy field, and Î the identity operator. This operator equation can
be derived in ADM formalism [21], by taking the gradient expansion of the energy constraint. Note the
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introduction of the unit vector in the celestial sphere, n̂, which appears due to the consideration of spatial
correlations.

Naturally, the introduction of this fluctuating Hubble rate has consequences for physical observables. In
this paper, we will focus on how these fluctuations will dress the time delays of strong lenses. Although this
will be detailed further in section 4, it is notable that these fluctuations will enter by means of the angular
diameter distance. This, in ΛCDM, has the expression

Dij(zi, zj) = (1 + zj)

∫ zj

zi

dz′H−1(z′) (1.2)

in terms of the redshift z, but is now realized by the operator description with directional dependence

D̂ij(zi, zj , n̂) = (1 + zj)

∫ zj

zi

dz′Ĥ−1(z′, n̂) (1.3)

through the fluctuating Hubble operator Ĥ(z′, n̂). Consequently, this will also affect time delays due to
strong gravitational lenses, which are proportional to several angular diameter distances:

τ(θ⃗, β⃗) =
1 + zl
c

DlDs

Dls

[
(θ⃗ − β⃗)2

2
− ψ(θ⃗)

]
. (1.4)

Herein, c is the speed of light, zl is the redshift of the lens, θ⃗ is the observed angular position of the source, β⃗
is the unlensed angular position of the source, and Dl, Ds and Dls are the angular diameter distances from
us to the lens, from us to the source, and from the lens to the source, respectively. We will derive the full
expression for this dressed time delay, and consider some of the behaviour of common strong gravitational
lens models under the effects of these fluctuations.

Additionally, we will consider a source of noise, namely contaminants from weak gravitational lenses, and
note to what extent they may mask the dark energy fluctuations.

To this end, the thesis is be organized as follows. In section 2, we describe the current state of cosmology
and give some information about lensing formalism. One acquainted with cosmology could skip this section.
In section 3, we describe a phenomenological model which contains spatial correlations in the dark energy
density. Subsequently, we calculate how these effects carry through into the time delays of images of strong
gravitational lenses in section 4. In section 5, we connect these dressed expressions to the angular power
spectra that we observe in the sky when doing surveys. We then consider weak gravitational lensing as a
contaminant on top of these angular power spectra in section 6. Having derived the required expressions, we
can then calculate values by using mock datasets of upcoming surveys. These datasets and the adjustments
we make to them are detailed in section 7. We then show our results for the weak lensing contaminant in
section 8. In section 9, we slightly change paces by detailing a specific realization of the phenomenological
model that we previously discussed. In doing so, we acquire several model parameters, based on which we
detail the parameter ranges that we are interested in in section 10. Finally, we summarize, conclude and
have a short discussion on the future prospects of this model in section 11. Some of the more involved
calculations are then given in the appendices.
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2 General Cosmology

Cosmology is the study of the universe as a whole. Although this is a challenging matter, recent developments
in both formalism and survey technology have allowed us to make remarkable strides in our understanding
of the cosmos and its evolution.

One cornerstone of modern cosmology is the so-called ΛCDM model, which describes a universe with
dark energy, denoted Λ, and cold dark matter – CDM. This model has allowed us to describe the cosmic
microwave background and large scale structure that we observe to great success. However, ΛCDM is not
without its flaws, as several parameters of the model display statistical tensions when probed at different
scales.

In addition, modern cosmology generally assumes the theory of inflation – a period of rapid expansion in
the early universe. This is yet another cornerstone, however, we are woefully unaware of whether this theory
represents the reality, as the ultimate (observational) tests of inflation are still lacking.

Add to this the peculiar nature of both dark matter and dark energy, which are postulated to, respectively,
make up 27% and 68% of the total energy content of the universe despite having an unknown physical origin
and only having been observed through their gravitational effects, and it is easy to see why cosmology is an
active field of physics.

2.1 Standard definitions

We will first introduce some of the standard concepts and definitions used in all of cosmology. One that
is already familiar with the field could skip this section. Most of this theory is based on [22] and further
detailed there.

From observational evidence, we know that the universe is expanding. We quantify said expansion of
physical length scales by means of the so-called scale factor a. This may seem haphazard, but this scale
factor can also be motivated physically as the ratio of wavelengths λ between emitted and observed photons:
due to the expanding universe, the Doppler effect causes emitted photons from objects that are further away
from us to appear higher-wavelength than they are. Physically, this means a shift towards the red end of
the visible light spectrum, and is denoted by the redshift z:

λobs
λemit

≡ 1

aemit
= 1 + zemit. (2.1)

Note that this implies that for the current value of the scale factor, aobs = 1. Additionally note that the
redshift z is directly proportional to this ratio rather than inversely. Because physical distances are ever-
increasing, it would be useful to have a universal length scale that is expansion-invariant. To this end, we
first define the Hubble parameter, which encodes the (logarithmic) rate of change of the scale factor:

H(t) ≡ d(ln(a(t)))

dt
=
ȧ(t)

a(t)
. (2.2)

It is notable that both the scale factor and redshift encode a timescale, namely one that holds more relevance
in the context of an expanding universe. As such, we will see these come back quite often. In order to derive
the aforementioned expansion-invariant length scale, we will first need more information about the shape of
spacetime. To this end, one must define a metric gµν where µ, ν = 0, . . . , 3 denote spacetime indices. It turns
out that for a universe that is approximately homogenous and isotropic at large scales, not unlike ours, the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric suffices. It gives rise to the following invariant line
element,

ds2(x) =

3∑
µ,ν=0

gµνdx
µdxν = −dt2 + a2(t)δijdx

idxj ,

where t denotes cosmic time and xi denote the three spatial components. Note that the scale factor very
literally scales the spatial components as a pre-factor in this metric. It is also important to note that any
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partial derivatives will now have to account for the structure of spacetime imposed by the FLRW metric.
To this end, we define the covariant derivative

∇µT
α = ∂µT

α + Γα
µνT

ν , (2.3)

where Tα is some rank one tensor and Γα
µν is the Christoffel symbol

Γα
µν =

1

2
gασ(∂µgσν + ∂νgµσ − ∂σgµν), (2.4)

which acts as the torsion-free Levi-Civita connection of a metric in general relativity (GR). The derivations
and deeper meaning behind these definitions are beyond the scope of this thesis, but can be found in any
source on differential geometry. We can now vary and minimize the Einstein-Hilbert action coupled to the
matter action,

SEH + Sm =
1

16πGN

∫
d4x
√
−gR+ Sm, (2.5)

where g = det(gµν), GN is the gravitational constant, and R is the Ricci curvature scalar. This gives rise to
the well-known Einstein field equations,

Gµν(x) ≡ Rµν(x)−
1

2
gµν(x)R(x) = 8πGNTµν(x), (2.6)

where Gµν is the Einstein tensor, Rµν the Ricci tensor, and Tµν the energy-momentum tensor. Note that
these equations relate the energy content of the universe to its geometric features. In particular, Rµν and
gµνR describe the curvature of the universe, and Tµν encodes the energy content of the universe.

Plugging in the aforementioned FLRW metric allows us to compute the components of the Ricci tensor,
namely

R00 = −3 ä
a
, (2.7)

Rij = δij [2ȧ
2 + aä]. (2.8)

The Ricci scalar then naturally follows:

R ≡ Rµνg
µν = 6

[
ä

a
+

(
ȧ

a

)2
]
. (2.9)

We will now assume that the energy-momentum tensor is sourced by an ideal fluid, i.e. T 0
0 = −ρ and

T i
j = δijP. Here, ρ represents the energy density from all species: matter, radiation, and dark energy- and
P the corresponding momenta.

We now have all the necessary components to calculate the solutions of the Einstein field equations:

H2(t) =
8πGN

3
ρ(t), (2.10)

ä

a
(t) = −4πGN

3
(ρ(t) + 3P(t)). (2.11)

Enforcing energy-momentum conservation in the FLRW spacetime gives us one more equation, namely

ρ̇(t) + 3H(t)(ρ(t) + P(t)) = 0. (2.12)

We will now assume that the energy-momentum tensor is sourced by an ideal fluid with the equation of state
P = wρ. This ideal fluid will have several components, namely dust and dark matter (w = 0), relativistic
matter (w = 1/3) and a cosmological constant (w = −1). We can now rewrite the Friedmann equations as

H2(t)

H2
0

= Ωma
−3(t) + ΩRa

−4(t) + ΩΛ
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= Ωm(1 + z(t))3 +Ωr(1 + z(t))4 +ΩΛ, (2.13)

where H0 is the Hubble parameter today and Ωi =
8πGN

3H2
0
ρi are the dimensionless energy density fractions

of the various species today. These have been measured to be approximately Ωm = 0.315 and ΩΛ = 0.685,
with ΩR ∼ 10−4 being comparitively small [5]. It is notable that although ΩR is extremely small today, its
dependence on a−4(t) means that it was the dominant density fraction in the very early universe. Conversely,
Ωm was comparatively small. The period at which these two densities were equal is denoted the epoch of
matter-radiation equality, and is known to be at zeq ≈ 3400.

Now that we know what the evolution of H(t) looks like in theory, we can define the comoving distance,
which is the aforementioned expansion-invariant length scale:

χ(z) =

∫ a(z)

0

d ln a′(z)

a′(z)H(a′(z))
= c

∫ z

0

dz′

H(z′)
. (2.14)

We chose to express χ(z) in terms of the redshift for later convenience. It is notable that χ(z) depends
entirely on the evolution of the Hubble parameter. In fact, a shrinking factor 1

aH implies that ä > 0: an
accelerating expansion of the universe. The period of accelerating expansion in the early universe is the
epoch that we refer to as inflation. We also define the luminosity distance

dL(z) = (1 + z)χ(z), (2.15)

which we note only differs by a factor 1 + z. It is notable that the luminosity distance has an intuitive
derivation based off the measured flux of an object of known luminosity, which is detailed in Appendix A.

The formalism established up until now serves to describe inflation. However, all of this does not cover the
full picture. Namely, the presence of inflation is precisely what allows us to describe the imprints of quantum
fluctuations from the early universe in the cosmic microwave background that we can observe today. These
fluctuations originate from inflation, after which they are imprinted into the cosmic microwave background.

We describe these imprinted quantum fluctuations and our observations of them by means of the so-called
power spectra. In particular, matter perturbations are quantified using the density perturbation δ. These δ
can be understood to be matter overdensities described by the deviation from the average density ρ̄:

δ(k⃗, z) =
ρ(k⃗, z)− ρ̄(z)

ρ̄(z)
. (2.16)

The statistical properties of these δ are then described by its two-point function, but also higher order n-point
functions. The two-point functions in particular are denoted the matter power spectrum Pm:

⟨δ(k⃗, z)δ∗(k⃗′, z′)⟩ = (2π)3Pm(k, z, z′)δ(k⃗ − k⃗′). (2.17)

Note that δ as seen in ⟨. . . ⟩ are matter overdensities, but the δ on the right-hand side is a Kronecker delta.
We can understand that the matter power spectrum is, by construction, the Fourier transformed correlation
function of matter overdensities. We typically linearize the matter power spectrum in time, as we are only
interested in its region of linear growth – these are the long-wavelength parts, for which an initial Gaussian
power spectrum evolves into a Gaussian power spectrum. We do this by means of linear growth functions
D1(z) such that

Pm(k, z, z′) = D1(z)D1(z
′)Pm,0(k), (2.18)

where Pm,0 is the matter power spectrum today. We can further extend this formalism to other fields and
potentials. In particular, we will later see that we can consider correlators of the gravitational potential
Φ̃(k⃗, z), giving us a weak lensing power spectrum

⟨Φ̃(k⃗, z), Φ̃(k⃗′, z′)⟩ = (2π)3PΦ(k, z, z
′)δ(k⃗ − k⃗′). (2.19)

The origins of these potentials will be explained in subsection 2.3. It is notable that this power spectrum
relates to the matter power spectrum due to the following relation:

Φ̃(k⃗, a) =
4πGρm(a)δ̃(k⃗)

k2
, (2.20)
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which stems from the Poisson equation
∇2Φ = 4πGρ (2.21)

transformed into momentum space.

2.2 Strong lensing

As one may expect from a mere glance at the Einstein field equations, objects with large energy densities,
such as galaxy clusters, can give rise to considerable local curvature in spacetime. This is what causes
strong lensing- Incoming photons from a foreign object move through a distorted patch of spacetime, giving
rise to observed images that are shifted in position, distorted, or multiplied, i.e. several images of a single
object. Although the Einstein field equations detailing these effects are heavily non-linear, lensing is typically
described in a Newtonian manner. Namely, one uses a linear equation in the form of the lens equation,

β⃗ = θ⃗ − α⃗(θ⃗), (2.22)

as defined in [23]. Herein, β⃗ is the angular position of the source pre-lensing, θ⃗ the angular position post-
lensing, and α⃗ the deflection angle. This is further depicted in Figure 2.1.

Figure 2.1: Photons from a source get strongly lensed, giving rise to an image at an angle α from the source
relative to the lensing plane. Note that the angular diameter distances used in (2.27) are also depicted here.

There exists a lensing potential ψ of which the gradient gives rise to the deflection angle

∇⃗ψ(θ⃗) = α⃗(θ⃗). (2.23)

This potential, in turn, is defined by the so-called convergence κ, which is determined by the properties of
the strong lens and relates to the potential by means of a Poisson equation

κ(θ⃗) =
1

2
∇2ψ(θ⃗). (2.24)

This convergence is essentially a 2D-projected mass distribution. We can alternatively express this in terms
of the gravitational potential Φ and mass density ρ,

4πGρ(r⃗) = ∇2Φ(r⃗). (2.25)

When an object is strongly lensed, the photon path from said object is curved, naturally extending the travel
time of the photons. This is the so-called (dimensionless) time delay, which can be expressed in terms of the
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lensing potential as follows

τ(θ⃗, β⃗) ≡

[
(θ⃗ − β⃗)2

2
− ψ(θ⃗)

]
=

[
(∇⃗θψ)

2

2
− ψ(θ⃗)

]
. (2.26)

This dimensionless time delay, also denoted the Fermat potential, can now be used to calculate the relative
arrival time of two images. In order to do this, one must first scale this value by the time-delay distance

D∆t ≡ (1 + zl)
DlDs

Dls
, (2.27)

which is given in terms of angular diameter distances D(z)(1 + z)2 = dL(z). The relative time delay is then

∆tab =
D∆t

c
[τ(θ⃗a, β⃗)− τ(θ⃗b, β⃗)]. (2.28)

2.2.1 Spherical lens profiles

For a singular isothermal sphere (SIS) defined by the three-dimensional mass density

ρ(r⃗) =
σ2
v

2πGr⃗2
, (2.29)

with σv the velocity dispersion and distance r⃗, the Poisson equation gives us the gravitational potential Φ
as follows:

∇2Φ = 4πGρ⇒ Φ(r⃗) = 2σ2
v ln

r⃗

r0
. (2.30)

By normalizing in terms of the constants
σ2
v

2πG , we can plot ρ(r⃗) as follows:
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Figure 2.2: A depiction of ρ(r⃗) for the SIS where we set z = 0 for ease of visualization, – hence the dependence
on solely x and y. Note that we rescaled the coordinates to get rid of all constant pre-factors. Further note
that we see a ramp-up in ρ(x, y) as we approach the singularity at r⃗ = 0⃗, which was omitted for obvious
reasons.

We can split the coordinates up as r⃗2 = r⃗2⊥ + z2, where r⃗⊥ gives the components θ⃗χ in the plane
perpendicular to the line-of-sight, i.e. the lens plane, and s gives the line-of-sight component χ. In order to
reduce this expression down to a potential projected onto the two-dimensional plane, which is the part that
we will effectively observe, we will integrate over the line-of-sight component z as follows:

Θ(r⃗⊥) =

∫ ∞

−∞

dz

c

Φ(r⃗)

c2
. (2.31)

Herein, Θ is related to the lensing potential in the given way:

ψ = 2c
Dls

DlDs
Θ. (2.32)

We can express (2.28) in terms of Θ as follows:

∆tab =
[
(∇⃗θΘ

(a))2 − (∇⃗θΘ
(b))2 − 2[Θ(a) −Θ(b)]

]
. (2.33)

The integral in Θ can be divergent. However, as we can see in (2.33), we are not interested in the raw
potentials, but merely the differences between them. Namely, if we consider the expression for the relative
time delay, we find (see appendix B) that

Θ(a) −Θ(b) =
2πσ2

v

c3
(r⊥,a − r⊥,b). (2.34)

Similarly, we can calculate that

(∇⃗⊥Θ)2 =
4π2σ4

v

c6
. (2.35)
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We note that this is a constant, so
(∇⃗⊥Θ

(a))2 − (∇⃗⊥Θ
(b))2 = 0. (2.36)

We observe that the deflection angle terms vanish. This is a property unique to the SIS, and is what makes
it the simplest option to consider. We can also analytically solve the lens equation to find the positions of
the images. In order to do so, let us rewrite the lensing potential as

ψ(θ⃗) = θE∥θ⃗∥+ C, (2.37)

where we defined the Einstein radius θE = Dls

Ds

4πσ2
v

c2 . For simplicity, we will rescale our coordinates x⃗ := θ⃗
θE

and y⃗ := β⃗
θE

, which gives the following lens equation

xi − yi =
xi
∥x⃗∥

. (2.38)

We now want to solve this for x⃗, which gives us

x⃗

(
1− 1

∥x⃗∥

)
= y⃗. (2.39)

The reason why the Einstein radius is denoted a radius is now evident: when the source is directly behind
the strong lens (y⃗ = 0⃗), the position of the image is given by a circle of radius θE around the lens. When
y⃗ ̸= 0⃗, we can note that the source and the images must be collinear. We therefore have x⃗ = αy⃗, with α
some real constant. We can now discern two cases, namely

α =

{
1 + 1

||y⃗|| α > 0

1− 1
||y⃗|| α < 0 (||β⃗|| < θE).

(2.40)

We can immediately conclude that we are only interested in the case where ||β⃗|| < θE , as we only get a

deflection rather than two images when ||β⃗|| > θE . This is further depicted in Figure 2.3.

Figure 2.3: Having β > θE in the SIS model gives us a deflection rather than multiple images. On the other
hand, β < θE gives us two images as desired. We must thus enforce this constraint.

Restricting to the case β < θE , solving for x⃗ and subsequently rescaling back to our original coordinates
now gives us the image positions

θE θ⃗(β⃗) = β⃗ ± θE
β⃗

||β⃗||
. (2.41)

12



Inserting (2.41) into (2.34) additionally gives us an analytic expression for the time delay in terms of purely
the source position, namely

∆tab(β⃗) = −8π
(σv
c

)2 χl

c
(∥β⃗∥). (2.42)

2.2.2 Elliptical lens profiles

An elliptical model (SPEMD), defined as

κ(x, y) =

[
x2 + y2/ cos2 β + s2

E2

]η/2−1

(2.43)

by [24] will retain its deflection angle terms. Herein, the potential is acquired as ∇2ψ(θ⃗) = 2κ(θ⃗), as we
are immediately given the convergence, which is the projected mass density of the lens. In this expression,
cosβ is the axis ratio of the ellipse, s is the core radius, E is some normalization factor which depends on
the velocity dispersion, and η is the power-law factor which should be 1 in the isothermal case. By, again,
making a few assumptions about the values some of these factors take, we can visualize κ(x, y) :

Figure 2.4: A depiction of κ(x, y) for the SPEMD model for which we assumed η = 1, E = 1 and cos2 β = 0.5.
Note that the presence of the core radius s gets rid of the singularity that we saw in the SIS.

As opposed to the spherical case, which could be readily solved analytically, the elliptical model is
unsolvable without Taylor expansion, even if we reduce it to the singular isothermal ellipse (SIE) by setting
η = 1, s = 0. As such, we will henceforth stick to the simpler spherical model. It is notable that one can
perturb (2.43) around the SIS.

13



2.3 Weak lensing

In describing weak lensing, one must make amends with the fact that there is no longer a clearly defined
position for any one powerful lens, but rather a stack of many weaker lenses that lead to a net distortion of
the final image.

Figure 2.5: In weak gravitational lensing, observed effects are the result of many weaker gravitational lenses
affecting the photon paths as opposed to a single strong lens. This leads to a net distortion of the observed
image.

Due to this feature, one loses the analytic nature of the original theory, but instead gains knowledge on
features such as average densities in entire regions of the celestial sphere, and their corresponding correlators.
Indeed, we have succeeded in obtaining mass estimates for a number of clusters by merely adding up, more
specifically statistically averaging over many small distortions. Thankfully, the theory behind this effect is
well-understood, and most of this section is based on [22], wherein it is described.

Figure 2.6: A depiction of the weak lensing scenario explained in (2.44). Light from a source at transverse

coordinates χθ⃗S is deflected to create an apparent image at transverse coordinates χθ⃗.
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Consider a photon at a position x⃗ from a distant source that passes through some overdense region in
the sky. Its radial, or line-of-sight distance will be given by x3 = χ, whereas its transverse components will
be given by θ⃗χ. Its path is affected by the density fluctuations, and it is subsequently observed by us as at
position θ⃗ as some intensity Iobs(θ⃗). However, its true position is θ⃗s, and

Iobs(θ⃗) = Itrue(θ⃗s). (2.44)

In order to parse the deflections of said photon, we will want to consider the geodesic equation. However,
before doing so, we must account for the effects of overdensities on the metric. Indeed, our FLRW metric
does not suffice in describing the perturbed spacetime that we find in the context of weak lensing. To this
end, we define the perturbed diagonal metric

g00(x⃗, t) = −1− 2Ψ(x⃗, t),

gij(x⃗, t) = a2(t)δij(1 + 2Φ(x⃗, t)), (2.45)

where Φ,Ψ are Bardeen potentials. We can now consider the spatial components of the geodesic equation

d2xi

dλ2
= −Γi

αβ

dxα

dλ

dxβ

dλ
, (2.46)

where λ is some affine parameter. We want to express the affine parameter in terms of physical variables,
to which end we use

dχ

dλ
=
dχ

dt

dt

dλ
= − 1

a(t)
p(1−Ψ), (2.47)

where p2 ≡ gµνP
µP ν , and Pµ, P ν are photon four-momenta. By inserting this in (2.46), considering only

the transverse components, assuming no anisotropic stress such that Φ = Ψ, and assuming θ to be small, we
find that

d2

dχ2

(
χθi
)
= 2Φ,i, (2.48)

where the comma in Φ,i indicates a spatial derivative. We can twice-integrate this expression to acquire a
very general lens equation for the weak lensing case, namely

βi =
2

χs

∫ χs

0

dχ′′
∫ χ′′

0

dχ′Φ,i(x⃗(χ
′)) + C. (2.49)

We can note that the constant of integration C is, in fact, the observed image angle θi. We can additionally
change the order of integration with the dχ′′ integral ranging from χ′ to χs, as the two integral bounds
combined restrict us to the region χ′ < χ′′ < χs. Doing so makes one of the two integrals trivial, and we
acquire the desired weak lensing equation

βi − θi = 2

∫ χs

0

dχ′Φ,i(x⃗(χ
′))

(
1− χ′

χs

)
. (2.50)

We observe that we are integrating along our line-of-sight to the source, taking into consideration any
overdensities along the way by means of the potential Φ(x⃗), which is exactly the summation of many small
distortions that we mentioned at the beginning of this section. It is typical to now define the transformation
matrix

Aij ≡
∂θis
∂θj
≡
(
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
, (2.51)

which has several components that quantify the various effects of the weak lensing potential. The convergence
κ encodes magnification effects, whereas the two components γ1 and γ2 encode shear effects. However, we
will not need these components for our purposes, instead using (2.50) as our starting point for the weak
lensing contaminant that we consider in section 6.
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3 Phenomenological Model

The dark energy model that we consider will exhibit spatial correlations, unlike typical ΛCDM. In this
chapter, we will describe how these correlations will appear in the energy density fields and their corre-
sponding two-point functions. We can subsequently start considering how this carries through into physical
observables.

In this description, we denote the dark energy density by the quantum mechanical operator ρ̂Q(t, x⃗),
making it a function of spacetime as a whole. As a more natural choice of variables, we opt to use the
redshift and unit angle on the celestial sphere instead, which is to say that we have ρ̂Q(z, ê). We take an
ensemble average over the angular component, giving us an equal-time spacelike hypersurface, to define
⟨ρ̂Q⟩(z). The potential origins of these fluctuations are detailed in [19].

As observed when taking the ensemble average, the one-point function of this density simply gets rid of
any angular dependence. However, the angular dependence of the two-point function ⟨ρ̂Q(z, êA)ρ̂Q(z, êB)⟩
can be parametrized by a function si(∥êA − êB∥), giving the following relation:

⟨ρ̂Q(z, êA)ρ̂Q(z, êB)⟩ = ⟨ρ̂Q⟩2(z)s(∥êA − êB∥). (3.1)

Note that we assume both ρ̂Q to be at equal time. In practice, this will not always be the case, as we will be
considering deep surveys and thus objects at considerably further distances. The corresponding expression
for the unequal time correlator will be further detailed in section 4, specifically (4.17). One can assume
several realizations of ρ̂Q, such as ρ̂Q ∝ φ̂2 or ρ̂Q ∝ φ̂, leading to rather different s-functions. Herein, φ̂ is a
Gaussian quantum field as described in the aforementioned papers. Another notable feature is that, due to
homogeneity and isotropy, only the norm of the difference between the angles matters for the s-function.

In this paper, we will assume that ρ̂Q ∝ φ̂2, where ⟨φ̂⟩ = 0. That is to say that there is a zero vacuum
expectation value, and our two-point function becomes

⟨ρ̂Q(z, êA)ρ̂Q(z, êB)⟩ = ⟨φ̂2(z, êA)φ̂
2(z, êB)⟩

= ⟨φ̂2⟩2(z) + 2⟨φ̂(z, êA)φ̂(z, êB)⟩2. (3.2)

When two fields are infinitely far apart so that ∥êA− êB∥ → ∞, they should become completely uncorrelated
and we should only retain ⟨φ̂2⟩2(z). However, when two fields coincide so that ∥êA − êB∥ → 0, they should
become fully correlated and we will have 2⟨φ̂(z, êA)φ̂(z, êB)⟩2 → 2⟨φ̂2⟩2(z). We thus need the s-function to
take up the value 1 at large distances, and climb up to 3 as the fields get closer together. We define said
function as follows:

s(r) =

{
3− 2( r

r0
)nDE , r ≤ r0,

1, r > r0.
(3.3)

We thus have a power law with a slope nDE , which is the spectral index. This function also utilizes a
characteristic length scale r0, which turns out to be related to the comoving Hubble radius at inflation in
the specific realization considered in this thesis. Both the spectral index and the characteristic length scale
and their corresponding values will be physically motivated further in section 9.
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Figure 3.1: The function s(r) plotted as a function of r/r0 for various spectral indices nDE . Note that the
only difference between the three cases is the slope.

We note that our newly-introduced dark energy density operator will change the form of the Friedmann
equation (2.10). Namely, we now have an operator equation that looks like

3M2
p Ĥ

2(z, n̂) = ρC(z)Î + ρ̂Q(z, n̂), (3.4)

withMp = 2.435×1018 GeV/c2 the reduced Planck mass, ρC the classical matter densities and Î the identity
operator. In the next chapter, we will derive how this affects observables- in particular time delays in strong
lenses.

As mentioned before, there are several realizations of this kind of model with various proportionalities
for ρ̂Q. E.g. ρ̂Q ∝ φ̂4 is not out of the question. However, changing the proportionality of ρ̂Q to φ̂ also
changes the form of the s-function. In particular, we can derive that when ρ̂Q ∝ φ̂2, the s-function appears
as

s(r) =

{
σ̃2
Q

[
1−

(
r
r0

)nDE
]
+ 1, r ≤ r0,

1, r > r0,
(3.5)

where σ̃2
Q =

σ2
Q

⟨ρ̂Q⟩2 , with σ2
Q the local variance of the energy density field ρ̂Q. Note that we recover (3.3)

when we take σ̃2
Q = 2.
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4 Dressed physical observables

In this chapter, we will derive how the dark energy fluctuations within this phenomenological model will
affect time delays from strong lenses. In order to do this, let us consider the semi-classical approximation
for (3.4), noting that ρtot = ρc + ⟨ρQ⟩. The angular brackets ⟨. . . ⟩ now denote an ensemble average. The
quantum mechanical fluctuations enter in the semi-classical approximation by means of a term δρQ(z, n̂) –
which is no longer an operator – giving us

δρQ(z, n̂)

ρtot(z)
=
ρQ(z, n̂)− ⟨ρQ⟩(z)

ρtot(z)
. (4.1)

Combining this with (3.4), we can acquire an expression for H−1(z, n̂) which is dressed by fluctuations up
to first order in δρQ(z, n̂) by Taylor expanding it:

H−1(z, n̂) ≈ H̄−1(z)

[
1 +

δρQ(z, n̂)

ρtot(z)

]−1/2

. (4.2)

We can then define the bare comoving distance χ̄ := c
∫ z

0
dz′

H̄(z′)
, and expand the integral in terms of the

fluctuation term ωQ(z, n̂) :=
δρQ(z,n̂)
ρtot(z)

to acquire corrections:

δχ
(1)
l = − c

2

∫ zl

0

dz

H̄(z)
ωQ, (4.3)

δχ
(2)
l =

3c

8

∫ zl

0

dz

H̄(z)
ω2
Q. (4.4)

Performing this expansion with the comoving distance gives us an expression dressed by the dark energy
fluctuations

⟨χ̂⟩(z) =
∫ z

0

dz′

H̄(z′)

(
1− 1

2
ωQ +

3

8
ω2
Q

)
. (4.5)

By definition, ⟨ωQ⟩(z) = 0, so we will only retain

⟨χ̂⟩(z) =
∫ z

0

dz′

H̄(z)

(
1 +

3

8

⟨ρ̂Q(z′, n̂)2⟩ − ⟨ρ̂Q(z′)⟩2

ρ2tot(z
′)

)
. (4.6)

We can now rewrite this in terms of the phenomenological s-function (3.3). This gives us the desired
expression

⟨χ̂⟩(z) =
∫ z

0

dz′

H̄(z)

(
1 +

3

8
ΩQ(z

′)(s(0)− 1)

)
. (4.7)

Note that we defined ΩQ(z) ≡ ⟨ρQ⟩(z)
ρtot(z)

. For the time delay (2.42), things are rather more involved due to

the presence of several comoving distances (the additional terms that appear out of β are further detailed
in section 5)

∆t(β⃗) = −8π
(σv
c

)2 χl

c
β → −32π2

(σv
c

)4 χl

c

(
1− χl

χs

)
. (4.8)

4.1 Two-point function

In this section, we will consider the two-point function of (4.8) by using the same methodology as for χ(z).
We start from the general expression

⟨∆ta(β⃗a)∆tb(β⃗b)⟩ = 64π2
(σv,a

c

)2 (σv,b
c

)2 〈χl,a

c
βa
χl,b

c
βb

〉
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→ 4(4π)4
(σv,a

c

)4 (σv,b
c

)4〈χl,a

c

(
1− χl,a

χs,a

)
χl,b

c

(
1− χl,b

χs,b

)〉
. (4.9)

We will now Taylor expand the full ensemble average, going up to second order in χ. To make the expression
somewhat compact, let us first define

α(1)(z) = − c
2

∫ z

0
dz′H̄−1(z′)ωQ(z

′, ê)∫ z

0
dz′

H̄(z′)

, (4.10)

α(2)(z) =
3c

8

∫ z

0
dz′H̄−1(z′)ω2

Q(z
′, ê)∫ z

0
dz′

H̄(z′)

. (4.11)

We can now write the expansion of (9.37) in terms of these functions, giving us the following equation up
to second order in δχ:

⟨. . . ⟩ ≈
χ̄l(a)

c

(
1−

χ̄l(a)

χ̄s(a)

)
χ̄l(b)

c

(
1−

χ̄l(b)

χ̄s(b)

)
+
χ̄l(a)

c

χ̄l(b)

c

{(
1−

χ̄l(a)

χ̄s(a)

)[
⟨α(2)

l(b)⟩ −
χ̄l(b)

χ̄s(b)
⟨2α(2)

l(b) − α
(2)
s(b) + (α

(1)
l(b) − α

(1)
s(b))

2⟩
]
+ (a←→ b)[a←→ b]

}
+
χ̄l(a)

c

χ̄l(b)

c

[(
1− 2

χ̄l(a)

χ̄s(a)

)(
1− 2

χ̄l(b)

χ̄s(b)

)
⟨α(1)

l(a)α
(1)
l(b)⟩+

χ̄l(a)

χ̄s(a)

χ̄l(b)

χ̄s(b)
⟨α(1)

s(a)α
(1)
s(b)⟩

]
+
χ̄l(a)

c

χ̄l(b)

c

[(
1− 2

χ̄l(a)

χ̄s(a)

)
χ̄l(b)

χ̄s(b)
⟨α(1)

l(a)α
(1)
s(b)⟩+

(
1− 2

χ̄l(a)

χ̄s(a)

)
χ̄l(a)

χ̄s(a)
⟨α(1)

l(b)α
(1)
s(a)⟩

]
. (4.12)

In this full correlator, we acquire several different individual correlators, some of which are more trivial to
calculate than others. We will write all of them in terms of the s-function (3.3) and ωQ as follows:

⟨α(2)⟩ = 3

8
(s(0)− 1)

∫ z

0
dz′

H̄(z′)
Ω2

Q(z
′)∫ z

0
dz′

H̄(z′)

, (4.13)

⟨(α(1))2⟩ = 1

4

∫ z

0
dz′

H̄(z′)

∫ z

0
dz′′

H̄(z′′)
⟨ωQ(z

′, êa)ωQ(z
′′, êa)⟩∫ z

0
dz′

H̄(z′)

∫ z

0
dz′′

H̄(z′′)

, (4.14)

⟨αl(i)αs(i)⟩ =
1

4

∫ zl(a)

0
dz′

H̄(z′)

∫ zs(a)

0
dz′′

H̄(z′′)
⟨ωQ(z

′, êi)ωQ(z
′′, êi)⟩∫ zl(a)

0
dz′

H̄(z′)

∫ zs(a)

0
dz′′

H̄(z′′)

, (4.15)

⟨αl(a)αs(b)⟩ =
1

4

∫ zl(a)

0
dz′

H̄(z′)

∫ zs(b)
0

dz′′

H̄(z′′)
⟨ωQ(z

′, êa)ωQ(z
′′, êb)⟩∫ zl(a)

0
dz′

H̄(z′)

∫ zs(b)
0

dz′′

H̄(z′′)

. (4.16)

The difference between the final two correlators, in particular, might seem redundant. However, it is crucial
to note that a difference in angular position between the two observables will carry through into the s-
function, giving us vastly different expressions in the end. We note that we can readily express and calculate
⟨α(2)⟩ due to it being at a single redshift z. However, the other expressions require an unequal time correlator

⟨ω(z1, êa)ω(z2, êb)⟩ =
H4

0

H̄2(z1)H̄2(z2)
Ω2

Q(0)s(∥χ̄(z1)êa − χ̄(z2)êb∥),

×
[
1− 3(ΩM + 1/α)

(α+ 1)(ΩΛ − 1/α)

(∫ z1

0

dz′

1 + z′
H0

H̄(z′)
+

∫ z2

0

dz′′

1 + z′′
H0

H̄(z′′)

)]
− ΩQ(z1)ΩQ(z2), (4.17)

of which the derivation is further detailed in Appendix C. This expression has already been adjusted to
accommodate the model that we will further detail in section 9, hence it including the model constant α.
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5 Angular power spectrum

In order to create a link to the observations we make of the sky, it is fruitful to express predicted theoretical
effects in terms of spherical harmonics. This allows one to capture wide-angle effects, and is quite a natural
choice given our observed celestial sphere. To this end, we will use the angular power spectrum Cℓ, where ℓ
gives the mode index [25] and Yℓm are the corresponding spherical harmonics.

Figure 5.1: We can decompose correlators into spherical harmonics to better represent observed data [26].

Decomposing the time delay in terms of these spherical harmonics gives us

∆t(ê, {Pi}) =
∞∑
ℓ=0

l∑
m=−ℓ

aℓm({Pi})Yℓm(ê), (5.1)

where we introduced ê, the position of the lens in the sky, and {Pi} = {n̂ ⊥ ê, β, χl, χs, σv}, which encodes all
other variables. Note that we parametrize the separation of the source from the center of the lens by means
of vector n̂, which is perpendicular to the lens position ê and indicates the direction- β then denotes the
corresponding magnitude. However, we can parametrize the direction n̂, which lies on the plane orthogonal
to ê, with a single angle ψ. aℓm are the coefficients of the modes, and have the additional property that they
are stochastic variables. This allows us to take an ensemble average over them. Inverting (5.1), we find

aℓm({Pi}) =
∫
d2êY ∗

ℓm(ê)∆t(ê, {Pi}), (5.2)

at which point we can take the aforementioned ensemble average between two strong gravitational lens
systems

⟨aℓm({Pi})a∗ℓ′m′({P ′
i})⟩ = Cℓ({Pi}, {P ′

i})δℓℓ′δmm′ , (5.3)

where δ denotes the Kronecker delta. It is notable that this average concerns an ensemble of universes.
However, we only have a single observable universe that we can sample over, yielding a so-called cosmic
variance. Assumed statistical isotropy further allows us to average over the individual m-modes, as there is
no useful information in them. Note that these run from −ℓ to ℓ, giving 2ℓ+ 1 of them. Therefore,

Cℓ({Pi}, {P ′
i}) =

1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨aℓm({Pi})a∗ℓm({P ′
i})⟩ (5.4)

=
1

2ℓ+ 1

ℓ∑
m=−ℓ

∫
d2ê

∫
d2ê′Y ∗

ℓm(ê)Yℓm(ê′)⟨∆t(ê, {Pi})∆t(ê′, {P ′
i})⟩. (5.5)

We can now use the orthogonality relation

Pℓ(â · b̂) ≡
4π

2ℓ+ 1

ℓ∑
m=−ℓ

Y ∗
ℓm(â)Yℓm(b̂) (5.6)
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to rewrite (5.5) as

Cℓ({Pi}, {P ′
i}) =

1

4π

∫
d2ê

∫
d2ê′Pℓ(ê · ê′)⟨∆t(ê, {Pi})∆t(ê′, {P ′

i})⟩. (5.7)

It is beneficial to now consider the distributions of Pi. Although some of these distributions can be determined
logically, others must be considered numerically. For ψ, we can assume a uniform distribution on [0, 2π] due

to statistical isotropy. For β = ||β⃗||, we note that we are restricted by the condition β < θE . As detailed
in section 2, having a β larger than this would imply a deflection of the light rather than the appearance of
multiple images, so we take this as an upper limit for a uniform distribution. Notably, this is what introduces
the additional comoving distances mentioned in (4.8). Finally, we will acquire distributions for χl, χs and
σv by means of a mock dataset which will be detailed in section 7. We thus have the following distributions:

ψ [0, 2π]
β [0, 4π(1− χl

χs
)(σv

c )2]

χl, χs, σv Mock data

We can further simplify (5.7) by noting that the angular dependence of the correlator ∆t(ê, {Pi})∆t(ê′, {P ′
i})

only appears in the relative angle: as the background is isotropic, the exact positions are irrelevant. However,
there is a catch: this is only true when we do not consider the perturbed ΛCDM setup that we have for
the weak lensing correlator. Details of this setup will follow in section 6. However, one must first integrate
over ψ before one can make this statement in this section. Having noted this key difference, we will replace
ê · ê′ = cos(θ) = µ, giving us

Cℓ({Pi}, {P ′
i}) = 2π

∫ 1

−1

dµ⟨∆t({Pi})∆t({P ′
i})⟩(µ)Pl(µ). (5.8)

Integrating over ψ and β using the given distributions, integrating over χl, χs and σv with probability
densities Pi derived from the mock data and combining (9.37) and (5.8) nets us the desired expression for
the Cℓ:

Cℓ =
16

9
(4π)4

∫∫∫
dχl,adχs,adσv,aPl(χl,a)Ps(χs,a)Pσ(σv,a)

∫∫∫
dχl,bdχs,bdσv,bPl(χl,b)Ps(χs,b)Pσ(σv,b)

×
(σv,a

c

)4 (σv,b
c

)4 1

4π

∫
d2êa

∫
d2êbPℓ(êa · êb)

〈
χl,a(êa)

c

[
1− χl,a(êa)

χs,a(êa)

]
χl,b(êb)

c

[
1− χl,b(êb)

χs,b(êb)

]〉
. (5.9)

We note that we get a power spectrum in units of time squared, which is expected as we are computing
correlators of time delays. Herein, we recall that ⟨. . . ⟩ can be expanded as (4.12). We additionally recall
that said expansion leads to the presence of terms ⟨ω(z1, êa)ω(z2, êb)⟩ which give rise to the s-function
s(∥χ̄(z1)êa − χ̄(z2)êb∥). In order to calculate these, one needs to solve integrals of the form

1

4π

∫
d2êa

∫
d2êbPℓ(êa · êb)s(∥χ̄(z1)êa − χ̄(z2)êb∥). (5.10)

As the s-function is defined piecewise, the integral will be too. Namely, we acquire the following:
For r0 > χ̄1 + χ2 (Case I), we get

12πδℓ0 − 4π

(
χ̄2
1 + χ̄2

2

r20

)nDE
2

√
π

(2µ0(z1, z2))ℓ
Γ(ℓ− nDE

2 )

Γ(ℓ+ 3
2 )Γ(−

nDE

2 )

× 2F1

(
ℓ

2
− nDE

4
,
1

2
+
ℓ

2
− nDE

4
;
3

2
+ ℓ;

1

µ2
0(z1, z2)

)
, (5.11)
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for r0 < |χ1 − χ2| (Case II), we get 4πδℓ0,
and for |χ1 − χ2| < r0 < χ̄1 + χ̄2 (Case III), we get

4πδℓ0 + 4π
Pℓ−1(ν0)− Pℓ+1(ν0)

2ℓ+ 1
− 4π

(
χ̄2
1 + χ̄2

2

r20

)nDE/2 ∫ 1

ν0

dµPℓ(µ)

(
1− µ

µ0

)nDE/2

. (5.12)

Herein, we defined

µ0(z1, z2) =
χ̄2(z1) + χ̄2(z2)

2χ(z1)χ(z2)
, ν0(z1, z2) =

χ̄2(z1) + χ̄2(z2)− r20
2χ(z1)χ(z2)

(5.13)

for ease of notation. These functions are bounded by definition as µ0 ≥ 0 and −1 < ν0 < 1. Note that we
already integrated over the relative angle µ = êa · êb = cos(θ) in cases I and II. However, Case III contains a
slightly more involved expression which we will write down explicitly:∫ 1

ν0

dµPℓ(µ)

(
1− µ

µ0

)nDE/2

= −
(
1− ν0

µ0

)nDE
2

ℓ∑
k=0

(ℓ+ k)!

(ℓ− k)!(k!)2
(ν0 − 1)k+1

(k + 1)2k

× 2F1

(
−nDE

2
, 1; k + 2;

1− ν0
µ0 − ν0

)
. (5.14)

Figure 5.2: When solving the integrals in (5.10), we have to deal with three cases depending on how the
values of χ̄1 and χ̄2 relate to r0. Namely, case I: r0 > χ̄1 + χ2, case II: r0 < |χ1 − χ2| and case III:
|χ1 − χ2| < r0 < χ̄1 + χ̄2.
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6 Weak lensing as a contaminant

One important feature of a measurable signal is a range of values that peaks above sources of noise. In
practice, these sources of noise will act as a contaminant on top of the spatial correlations in dark energy,
leading to fluctuations that are unrelated to the model that we are interested in. One such contaminant
is the weak lensing effect. As we will be considering correlators of time delays corresponding to different
regions of the sky, it is natural to assume that the influence of weak lensing will be felt differently as well.
Notably, this weak lensing contribution should also be calculated within the context of our dark energy
model. However, this goes beyond the scope of this thesis. As such, the weak lensing contaminant will be
considered in a ΛCDM context.

To obtain the equation describing the weak lensing contaminant, we will start from the lens equation,
now considering a linear combination of strong and weak lensing potentials:

ψ = ψSL + ψWL.

In doing so, we can separate the strong lensing and weak lensing contributions to the deflection angle and
treat the problem perturbatively, truncating up to first order in ψWL. Solving this gives the following
expression for the (two) deflected image positions:

θ⃗± ≈ θ⃗(SL)
± + θ⃗

(WL)
± ≈ β⃗

θE
(1± θE

||β⃗||
)

+(1± θE

||β⃗||
)∇⃗n̂ψWL|β⃗ ∓

θE

||β⃗||
∂n̂ψWL|β⃗n̂+ θE(

θE

||β⃗||
± 1)∇⃗∂n̂ψWL|β⃗ −

θ2E

||β⃗||
∂2n̂ψWL|β⃗n̂, (6.1)

where we defined n̂ := β⃗

||β⃗||
and ni∂i := ∂n̂. Using this, we can also derive an expression that includes a weak

lensing contaminant for the time delay, which miraculously (See D) acquires the following elegant form:

∆t(β⃗) = −8π(σv
c
)2
χl

c
(||β⃗||+ ∂n̂ψWL|β⃗) +O(ψ

2
WL). (6.2)

Herein, χl ≡ (1+ zl)Dl is the comoving distance in a flat FLRW universe. In order to link this to observable
data, one must construct correlators for these time delays. Our correlator generally has the form

⟨∆ta∆tb⟩ = 64π2(
σv,a
c

)2(
σv,b
c

)2
〈χl,a

c
(||β⃗a||+ ∂

(a)
n̂ ψWL|β⃗a

)
χl,b

c
(||β⃗b||+ ∂

(b)
n̂ ψWL|β⃗b

)
〉

(6.3)

when we consider two strong lenses labelled a and b. However, because we are considering the weak lensing
component to be a contaminant on top of the dark energy fluctuations that enter χl, we will not take into
account the effect of dark energy fluctuations on ψWL, and we can then separate the different correlators.
In addition, we can immediately note that certain quantities, such as ||β⃗||∂n̂ψWL|β⃗ , will be uncorrelated.
We can thus neglect these entirely. Our naive initial expression can thus be written in the following, more
physically motivated manner:

⟨∆ta∆tb⟩ = 64π2(
σv,a
c

)2(
σv,b
c

)2
⟨χl,aχl,b⟩

c2
(||β⃗a||β⃗b||+ ⟨∂(a)n̂ ψWL|β⃗a

∂
(b)
n̂ ψWL|β⃗b

⟩). (6.4)

One can now clearly see how the weak lensing potentials act as a contaminant on top of the effect of the
dark energy fluctuations, which will dress the expression for ⟨χl,aχl,b⟩.

Although the form of this correlator is rather elegant, in part due to the expression for the time delay,
the weak lensing correlator is quite non-trivial. We start from the typical expression that we derived at the
end of section 2. We thus have the following general expression:

⟨∂(a)n̂ ψWL|β⃗a
∂
(b)
n̂ ψWL|β⃗b

⟩ = 4nA,inB,j

∫ χ(A)
s

0

dχ′

(
1− χ′

χ
(A)
s

)∫ χ(B)
s

0

dχ′′

(
1− χ′′

χ
(B)
s

)
⟨Φ(A)

,i Φ
(B)
,j ⟩. (6.5)
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We subsequently Fourier transform these potentials, i.e.

Φ(η, x⃗) =

∫
d3k

(2π)3
eik⃗·x⃗Φ̃(η, k⃗). (6.6)

This is also where the time-dependence of the potentials becomes relevant, as the two sources will be at two
different redshifts, which can be rather high given modern surveys. This is to say that, generally,

⟨Φ̃(η0 − χ′, k⃗′)Φ̃∗(η0 − χ′′, k⃗′′)⟩ = (2π)3δ(3)(k⃗′ − k⃗′′)PΦ(k
′, η0 − χ′, η0 − χ′′), (6.7)

where η0 denotes the conformal time today. We thus have a power spectrum with a time-dependence. In
this work, we opted to expand the power spectrum in terms of potential growth functions DΦ(η0 − χ). We
will therefore use

PΦ(k
′, η0 − χ′, η0 − χ′′) = DΦ(η0 − χ′)DΦ(η0 − χ′′)PΦ(k

′, η0, η0). (6.8)

A more detailed derivation of this power spectrum and the form that it takes can be found in appendix D.
Using the aforementioned Fourier transform and the generalized power spectrum, we can express the full
weak lensing correlator as follows:

⟨∂(A)
n̂ ψWL|β⃗A

∂
(B)
n̂ ψWL|β⃗B

⟩ = 4

(
n̂A ·

∂

∂êA

)
exp

(
βan̂a ·

∂

∂êA

)(
n̂B ·

∂

∂êB

)
exp

(
βBn̂B ·

∂

∂êB

)

×
∫ χ(A)

s

0

dχ′

(
1

χ′ −
1

χ
(A)
s

)∫ χ(B)
s

0

dχ′′

(
1

χ′′ −
1

χ
(B)
s

)∫
d3k

(2π)3
PΦ(k, η0 − χ′, η0 − χ′′)eik⃗·(êAχ′−êBχ′′). (6.9)

Note that we have an expression which contains all orders of β, making it fully general. We will find out
that we require this, as integrating over a uniformly distributed β will cause lower-order contributions to
vanish entirely.

The integral over k in (6.9) must now depend on the relative angle between the two systems, which is to
say that we will acquire a result of the form F (êA · êB). We now use a plane wave expansion in spherical
coordinates

eik⃗·r⃗ =

∞∑
0

(2l + 1)iljl(kr)Pl(k̂ · r̂), (6.10)

where jl are spherical Bessel functions and Pl Legendre polynomials. This allows us to write the integral
over k as follows∫

d3k

(2π)3
PΦ(k, η0 − χ′, η0 − χ′′)eik⃗·(êAχ′−êBχ′′) =

∫
dk

(2π)3
k2PΦ(k, η0 − χ′, η0 − χ′′)

×
∫
d2k̂

∞∑
lA=0

∞∑
lB=0

(2lA + 1)ilA(2lB + 1)(−i)lBjlA(kχ′)jlB (kχ
′′)PlA(êA · k̂)PlB (êB · k̂). (6.11)

We can further rewrite this by using the following orthogonality relation

Pl(â · b̂) ≡
4π

2l + 1

l∑
n=−l

Y ∗
lm(â)Ylm(b̂), (6.12)

where Ylm are spherical harmonics. Combining this with (6.11), we find that we can solve the angular
integrals, only retaining the magnitude:∫

d2k̂PlA(êA · k̂)PlB (êB · k̂)
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=
4π

2lA + 1

4π

2lB + 1

lA∑
mA=−lA

lB∑
mB=−lB

∫
d2k̂Y ∗

lAmA
(êA)YlAmA

(k̂)Y ∗
lBmB

(êB)YlBmB
(k̂)

= (
4π

2l + 1
)2

l∑
m=−l

Y ∗
lm(êA)Ylm(êB) =

4π

2l + 1
Pl(êA · êB). (6.13)

Subsequently, we can insert this into (6.11), which we then insert into the integral over k in (6.9) to acquire∫
d3k

(2π)3
PΦ(k, η0 − χ′, η0 − χ′′)eik⃗·(êAχ′−êBχ′′)

=

∫ ∞

0

dk

2π2
k2PΦ(k, η0 − χ′, η0 − χ′′)

∞∑
L=1

(2L+ 1)jL(kχ
′)jL(kχ

′′)PL(êA · êB). (6.14)

Note that this is, indeed, of the form F (êA · êB) that we expected. We start at L = 1 as term L = 0 does not
contribute to the derivatives that we will inevitably get when considering terms that are of a higher order
in β, and we identify

F (êA · êB) = 4

∞∑
L=1

PL(êA · êB)
∫ χ(A)

s

0

dχ′

(
1

χ′ −
1

χ
(A)
s

)∫ χ(B)
s

0

dχ′′

(
1

χ′′ −
1

χ
(B)
s

)

×
∫ ∞

0

dk

2π2
k2PΦ(k, η0 − χ′, η0 − χ′′)(2L+ 1)jL(kχ

′)jL(kχ
′′). (6.15)

We will now rewrite the correlator in terms of F (êA · êB). In doing so, we find that we acquire derivatives

F (n)(êA · êB) =
∂nF (êA · êB)
∂(êA · êB)n

. (6.16)

The correlator then becomes

⟨∂(A)
n̂ ψWL|β⃗A

∂
(B)
n̂ ψWL|β⃗B

⟩ = (n̂A · n̂B)F (1)(êA · êB) + (n̂A · êB)(n̂B · êA)F (2)(êA · êB)

+(βAn̂A · êB + βBn̂B · êA) ·
[
2(n̂A · n̂B)F (2)(êA · êB) + (n̂A · êB)(n̂B · êA)F (3)(êA · êB)

]
+βAβB ·

[
2(n̂A · n̂B)2F (2)(êA · êB) + (n̂A · êB)(n̂B · êA)F (3)(êA · êB) + (n̂A · êB)2(n̂B · êA)2F (4)(êA · êB)

]
+ . . . (6.17)

Herein, we only retain the term on the third line, as integrating over n̂A and n̂B causes the other lower-order
terms to vanish. We can therefore also omit the term L = 1. The resulting expression is rather non-trivial as
it involves several integrals of products of differentiated Legendre polynomials. In particular, the following
integral which we denote I(ℓ, L) appears:

I(ℓ, L) =

∫ 1

−1

dµPℓ(µ)[2(µ
2 + 1)P ′′

L(µ) + 4(µ3 − µ)P ′′′
L (µ) + (1− µ2)2P ′′′′

L (µ)]

=


4(L2 + L− 3ℓ2 − 3ℓ− 2), if L = ℓ+ 2, ℓ+ 4, ℓ+ 6, ℓ+ 8, . . .
2ℓ2(ℓ−1)2

2ℓ+1 , if L = l,

0, otherwise.

(6.18)

25



Note that we wrote everything in terms of the intermediate angle µ, analogously to the process detailed in
section 5. Taking this, using (2.20) to write it in terms of overdensities and subsequently combining it with
(6.8) nets us the angular power spectrum

Cℓ(σv(a,b), χl(a,b), χs(a,b)) =
8

9
(4π)5

(σv(a)
c

)4 (σv(b)
c

)4 χl(a)

c

(
1−

χl(a)

χs(a)

)
χl(b)

c

(
1−

χl(b)

χs(b)

)

×

[
2δℓ0 +

∫ ∞

0

dk
9Ω2

m,0

8π2k2

(
H0

c

)4

Pm,0(k)

∞∑
L=2

(2L+ 1)I(ℓ, L)hL(k;χs(a))hL(k;χs(b))

]
, (6.19)

where we defined

hL(k;χs) =

∫ χs

0

dχ′
(

1

χ′ −
1

χs

)
jL(kχ

′)
D1(z(χ

′))

a(z(χ′))
. (6.20)

We now want to integrate over any remaining variables. We will do this analogously to section 5, where
we introduced probability distribution functions for the variables by means of a mock dataset, which will
be detailed further in the following section. Introducing these integrals gives us the desired angular power
spectrum

Cℓ =
8

9
(4π)5

∫∫∫
dχl,adχs,adσv,aPl(χl,a)Ps(χs,a)Pσ(σv,a)

∫∫∫
dχl,bdχs,bdσv,bPl(χl,b)Ps(χs,b)Pσ(σv,b)

×
(σv(a)

c

)4 (σv(b)
c

)4 χl(a)

c

(
1−

χl(a)

χs(a)

)
χl(b)

c

(
1−

χl(b)

χs(b)

)

×

[
2δℓ0 +

∫ ∞

0

dk
9Ω2

m,0

8π2k2

(
H0

c

)4

Pm,0(k)

∞∑
L=2

(2L+ 1)I(ℓ, L)hL(k;χs(a))hL(k;χs(b))

]
. (6.21)

We note that we get an angular power spectrum in units of time squared, which is expected as we are
computing correlators of time delays.
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7 Forecasting and LSST survey

In order to obtain a realistic prediction that we can subsequently compare to measured values, we will need a
reliable mock dataset of strong lenses. To this end, we consider the dataset produced by Oguri and Marshall
in [27] – which seeks to mimic the upcoming LSST survey [20] by means of a semi-analytic technique based
on Monte Carlo realizations of lens and source populations. In this chapter, we will describe the relevant
properties of the strong lenses within the mock dataset, which are simulated in a ΛCDM universe, and the
adjustments that we will have to make to apply our formalism.

Figure 7.1: The bare probability distributions of the strong lenses and sources as a function of the redshift.
Note that in both cases, N = 15658, as for each lens there is also a single source.

The bare data includes strong gravitational lenses that produce over 2 images. However, lenses with
more than 2 images are strictly elliptical, and our formalism is limited to the case of the singular isothermal
sphere. Therefore, we must filter our data to only account for 2-image lenses. In doing so, we are left with
the following distributions.

Figure 7.2: The bare probability distributions of the strong lenses and sources as a function of the redshift,
now restricted to two images per lens. Note that we have discarded just over 2000 of the strong lenses.

Another factor that we must consider is the ellipticity of the lenses. As our formalism is restricted to
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the spherical case, a severely top-heavy distribution here would increase inaccuracies in the final results.
However, we do not want to needlessly restrict the dataset, as it should be sufficiently large.

Figure 7.3: The bare probability distributions of the strong lenses as a function of the ellipticity, restricted
to two images per lens. We note that the distribution is not very top-heavy, as it peaks between ellipticities
of 0.2 and 0.4. To this end, we do not apply any further ellipticity filters to the dataset.

One final distribution that we will need is that of the velocity dispersion, as it enters in most of the
expressions that we are interested in. We will apply all of the aforementioned filters in this plot.

Figure 7.4: The bare probability distributions of the strong lenses as a function of the velocity dispersion.
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8 Prospects for the weak lensing contaminant

In this section, we will present the results for the weak lensing contaminant derived in section 6. As
mentioned, this model is considered in regular ΛCDM, and acts as a contaminant on top of the fluctuations
from the dark energy model.

Figure 8.1: The angular power spectrum of the weak lensing contaminant in units of days squared. This
has been computed in regular ΛCDM. Do note that the monopole C0 ≈ 1.85 · 105 days2 – which has been
marked here explicitly as (•) · 10−8 – is roughly eight orders of magnitude larger than Cℓ when ℓ > 0.

Observing the angular power spectrum of the weak lensing contaminant, we can assume that, despite
the depth of modern surveys, correlations in the weak lensing potential due to large differences in redshift
may not yet play a major part in our observations. The reason we state this is because of the large disparity
between the monopole C0 and the subsequent modes, which are roughly six orders of magnitude smaller.
In order to fully understand the influence of this contaminant on the dark energy model, one would need
to calculate the signal-to-noise ratio of both angular power spectra, and subsequently compare the two. We
did not get to this within the timeframe of this project. However, this would be a good next step.
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9 Dark energy model

In this section, we will detail the model that we intend to use in order to numerically solve the dark energy
model. We previously had a purely phenomenological model. However, as we will see in this section, we can
very naturally acquire a realization of this model by means of a non-minimally coupled light scalar field Φ.
Note that this is not the gravitational potential Φ from before. We describe this model [17] with the action

S[Φ] =

∫
d4x
√
−g
(
−1

2
gµν∂µΦ∂νΦ−

1

2
m2Φ2 − 1

2
ξRΦ2

)
, (9.1)

where the non-minimal coupling − 1
2ξRΦ

2 gives the field an effective mass M2 = m2 + ξR, and R is the
Ricci scalar. In the context of an FLRW universe, this action becomes

S[Φ] =

∫
dxLΦ =

∫
dx

[
1

2
Φ̇− 1

2a2
(∇⃗Φ)2 − 1

2
(m2 + 6ξ(2− ϵ)H2)Φ2

]
a3, (9.2)

where we introduced the slow roll parameter ϵ ≡ − Ḣ
H2 . The canonical momentum is then

Π(x) =
∂LΦ

∂Φ̇(x)
= a3Φ̇(x). (9.3)

The corresponding Hamiltonian

H[Φ; t) =

∫
d3x

{
1

2a3
Π2 +

a

2
(∇⃗Φ)2 + a3

2

[
m2 + 6ξ(2− ϵ)H2

]
Φ2

}
, (9.4)

can be canonically quantized by promoting the field and its conjugate momenta to operators and their
Poisson brackets to equal-time commutation relations:[

Φ̂(t, x⃗), Π̂(t, x⃗′)
]
= iδ3(x⃗− x⃗′),

[
Φ̂(t; x⃗), Φ̂(t, x⃗′)

]
= 0,

[
Π̂(t; x⃗), Π̂(t, x⃗′)

]
= 0. (9.5)

The equations of motion for the field operators then are

d

dt
Φ̂(t, x⃗)− a−3Π̂(t, x⃗) = 0, (9.6)

a−3 d

dt
Π̂(t, x⃗)− ∇

2

a2
Φ(t, x⃗) +M2(t)Φ̂(t, x⃗) = 0. (9.7)

We can expand the field operators in terms of Fourier modes by means of the creation and annihilation
operators b̂ and b̂†,

Φ̂(t, x⃗) =

∫
d3k

(2π)3/2

[
eik⃗·x⃗φ(t, k)b̂(k⃗) + h.c.

]
, (9.8)

Π̂(t, x⃗) =

∫
d3k

(2π)3/2

[
eik⃗·x⃗φ̇(t, k)b̂(k⃗) + h.c.

]
. (9.9)

Due to spatial isotropy (which manifests as the appearance of the Laplacian operator in (9.7)), there is only

a dependence on the norm of the wavevector ||⃗k|| = k in the mode function φ. The creation and annihilation
operators must satisfy the typical commutation relations

[b̂(k⃗), b̂†(k⃗′)] = δ3(k⃗ − k⃗′), [b̂(k⃗), b̂(k⃗′)] = [b̂†(k⃗), b̂†(k⃗′)] = 0. (9.10)

Due to this, we acquire a constraint for the mode function; the Wronskian normalization condition

φ(t, k)φ̇∗(t, k)− φ̇(t, k)φ∗(t, k) = i/a3. (9.11)
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The equation of motion for φ inferred from (9.6) and (9.7) is then

φ̈(t, k) + 3Hφ̇(t, k) +

[
k2

a2
+M2(t)

]
φ(t, k) = 0. (9.12)

The Hilbert space of states is now constructed in the typical manner. We define a vacuum state |Ω⟩ that
is annihilated by the annihilation operators b̂(k⃗)|Ω⟩ = 0,∀k⃗. The rest of the states is constructed by the

creation operators b̂† acting on |Ω⟩. We can now calculate the energy-momentum tensor, as per definition,
Tµν = −2√

−g
δS

δgµν . In operator form, we find

T̂µν = ∂µΦ̂∂νΦ̂−
1

2
gµνg

αβ∂αΦ̂∂βΦ̂−
m2

2
gµνΦ̂

2 + ξ[Gµν −∇µ∇ν + gµν□]Φ̂2, (9.13)

where □ is the d’Alembertian operator. We assume that the energy-momentum tensor is sourced by an ideal
fluid, implying that the energy density is given solely by the time component. We can further assume that
we may neglect spatial gradients. This is the so-called stochastic formalism as detailed in [28]. We then
acquire

ρ̂Q = −⟨T̂ 0
0⟩ ≈

H2

2

{
∆ππ + 6ξ∆ϕπ +

[
6ξ +

(m
H

)2]
∆ϕϕ

}
, (9.14)

where we defined

∆ππ(t, x⃗) ≡
1

a6(t)H2(t)
⟨π̂2(t, x⃗)⟩, ∆ϕπ(t, x⃗) =

1

a3(t)H(t)
⟨{ϕ̂(t, x⃗)π̂(t, x⃗)}⟩, ∆ϕϕ(t, x⃗) = ⟨φ̂2(t, x⃗)⟩.

(9.15)
Similarly, we find

p̂Qδ
i
j = T̂ i

j ≈
H2

2

{
(1− 4ξ)∆ππ + 2ξ∆ϕπ +

[
−2ξ(3− ε) + 24ξ2(2− ε)−

(m
H

)2
(1− 4ξ)

]
∆ϕϕ

}
. (9.16)

To consider the spatial correlations exhibited by this particular dark energy model, we will need to consider
the density-density correlator. We can observe that this will give rise to several four-point functions of
operators Φ̂ and Π̂. In order to do this, we will first describe the stochastic formalism introduced in [28].

9.1 Stochastic Formalism

When considering a light scalar field, the dominant contribution to the correlators in inflation will come
from the superhorizon modes (k < aH). For very light or massless scalar fields, this is also true for the
subsequent epochs of the universe, namely the matter and radiation periods. In order to formalize this, let
us split the fields into long and short wavelength modes:

Φ̂(t, x⃗) = φ̂(t, x⃗) + φ̂s(t, x⃗), Π̂(t, x⃗) = π̂(t, x⃗) + π̂s(t, x⃗). (9.17)

Given some UV-cutoff 0 < µ ≪ 1, these modes will be separated at the physical scale µH. In practice,
we will implement this by means of a Heaviside θ-function. Additionally, we will consider these modes in
Fourier space for convenience. This nets us the following long wavelength modes:

φ̂(t, x⃗) =

∫
d3k

(2π)
3
2

θ(µaH − ∥k⃗∥)
[
eik⃗·x⃗φ(t, k)b̂(k⃗) + e−ik⃗·x⃗φ∗(t, k)b̂†(k⃗)

]
, (9.18)

π̂(t, x⃗) =

∫
d3k

(2π)
3
2

θ(µaH − ∥k⃗∥)
[
eik⃗·x⃗π(t, k)b̂(k⃗) + e−ik⃗·x⃗π∗(t, k)b̂†(k⃗)

]
, (9.19)

and the following short wavelength modes:

φ̂s(t, x⃗) =

∫
d3k

(2π)
3
2

θ(∥k⃗∥ − µaH)
[
eik⃗·x⃗φ(t, k)b̂(k⃗) + e−ik⃗·x⃗φ∗(t, k)b̂†(k⃗)

]
, (9.20)
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π̂s(t, x⃗) =

∫
d3k

(2π)
3
2

θ(∥k⃗∥ − µaH)
[
eik⃗·x⃗π(t, k)b̂(k⃗) + e−ik⃗·x⃗π∗(t, k)b̂†(k⃗)

]
. (9.21)

We can now split (9.6) and (9.7) into long and short wavelength parts, giving us

d

dt
φ̂(t, x⃗)− a−3π̂(t, x⃗) = f̂φ(t, x⃗), (9.22)

a−3 d

dt
π̂(t, x⃗) +M2(t)φ̂(t, x⃗) = a−3f̂π(t, x⃗). (9.23)

In these rewritten equations of motion, the sources f̂φ and f̂π originate from the coupling between the short
and long wavelength fields, and can be expressed as

f̂φ(t, x⃗) = µaH2(1− ε)
∫

d3k

(2π)3/2
δ(∥k⃗∥ − µaH)

[
eik⃗·x⃗φ(t, k)b̂(k⃗) + e−ik⃗·x⃗φ∗(t, k)b̂†(k⃗)

]
, (9.24)

f̂π(t, x⃗) = µa4H2(1− ε)
∫

d3k

(2π)3/2
δ(∥k⃗∥ − µaH)

[
eik⃗·x⃗φ̇(t, k)b̂(k⃗) + e−ik⃗·x⃗φ̇∗(t, k)b̂†(k⃗)

]
. (9.25)

We can interpret these sources to be stochastic, so we have acquired stochastic differential equations. This
is the so-called stochastic formalism. We can now consider the two-point and four-point correlators of the
modes.

9.2 Two-point correlators

For the following section, it is useful to express the time variable in terms of the number of e-folds N . To do
this, we use that d

dt = H(t) d
dN . The period between t and t0 is then defined as N(t) = ln(a(t)). Rewriting

(9.6) and (9.7) in terms of e-folds and the functions (9.15) nets us

nφφ =
d

dN
∆φφ −∆φπ, (9.26)

nφπ =
d

dN
∆φπ + (3− ϵ)∆φπ − 2∆ππ + 2

(
M

H

)2

∆φφ, (9.27)

nππ =
d

dN
∆ππ + 2(3− ϵ)∆ππ +

(
M

H

)2

∆φπ. (9.28)

We can now re-express these in terms of the stochastic noise functions f̂ :

nφφ =
1

H(t)

〈{
f̂φ(t, x⃗), φ̂(t, x⃗)

}〉
, (9.29)

nφπ =
1

a3(t)H2(t)

[〈{
f̂φ(t, x⃗), π̂(t, x⃗)

}〉
+
〈{
f̂π(t, x⃗), φ̂(t, x⃗)

}〉]
, (9.30)

nππ =
1

a6(t)H3(t)

〈{
f̂π(t, x⃗), π̂(t, x⃗)

}〉
. (9.31)

We want to obtain predictions for these correlators at late times. However, the formalism only nets us the
original correlators. As such, we will need to evolve them through the various epochs of our universe. First
inflation, then radiation domination, and then matter domination.
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9.2.1 Inflation

Let us first consider the de Sitter inflationary period. To this end, we will use the Chernikov–Tagirov–Bunch
–Davies (CTBD) mode function of the scalar [29], which is given by

φ(t, k) =

√
π

4a3HI
H(1)

νI

(
k

aHI

)
, νI =

√
9

4
− 12ξ −

(
m

HI

)2

. (9.32)

We can calculate the correlators n using this mode function, and plug them in to evolve the ∆ through
time with the corresponding equations of motion. In particular, it was shown in [17] that, given ξ < 0 and
(m/HI)

2 ≪ |ξ| ≪ 1, we can derive

∆2(NI) ≡ (∆φφ,∆φπ,∆ππ) ≈
H2

I

32π2|ξ|
e8|ξ|NI

(
1, 8|ξ|, 16ξ2

)
. (9.33)

Herein, NI is the number of inflationary e-folds. We can now write ρQ and pQ in terms of these correlators:

ρQ = − 3H4
I

32π2
e8|ξ|NI , ρQ = −pQ. (9.34)

We thus make the curious observation that, by the end of the inflationary period, our field behaves like a
cosmological constant (ρQ = −pQ). We can now continue into the radiation period by using ∆2(NI) as
initial conditions.

9.2.2 Radiation and matter

We can approach the radiation era in a similar way, namely by using the mode functions to calculate the
corresponding correlators. One key observation that allows for the somewhat straightforward time evolution
of these correlators is that stochastic sources in the equations of motion can safely be neglected in post-
inflationary eras, as the other terms become sufficiently enhanced in comparison. Including the radiation
era, we find

ρQ =
3H4

I

32π2
e8|ξ|NI

[
−
(
H

HI

)2

+
1

6|ξ|

(
m

HI

)2
]
, (9.35)

pQ =
3H4

I

32π2
e8|ξ|NI

[
−1

3

(
H

HI

)2

− 1

6|ξ|

(
m

HI

)2
]
. (9.36)

Applying a similar reasoning as for the radiation era, we can simplify the equations for the matter era. One
notable feature of the matter era is that there is an exponential contribution to the correlators, one which
was discovered in the recent publication [19]. Taking this contribution into consideration, we retrieve the
following correlator in the matter era:

∆φφ(NM ) =
H2

I

32π2|ξ|
e8|ξ|NI+4|ξ|NM , (9.37)

where NM is the number of e-folds after matter-radiation equality. Using ϵ = 3/2, we can derive another
pair of expressions for the pressure and density, now at the end of the matter era:

ρQ(NM ) ≈ H2

2

[(m
H

)2
− 6|ξ|

]
∆φφ(NM ), (9.38)

pQ(NM ) ≈ −m
2

2
∆φφ(NM ). (9.39)

This pair of expressions is, due to the approximations that were made, valid at leading order in |ξ| and
m2

H2(NM ) . Another notable feature is that a part of ρQ is found back as −pQ, again displaying the cosmological
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constant-like behaviour that was seen before. In addition to this, we now have an extra dark matter-like
contribution in ρQ. If this cosmological constant term is to explain the amount of dark energy we observe
today, it must abide by the following relation:

m2

2
∆φφ(t0) = 3M2

pH
2
0ΩΛ. (9.40)

Using this relation, it is also possible to derive a constraint for the length of the inflationary period. Namely,
it needs to be long enough to produce the amount of dark energy we observe today. We can thus find that

NI =
1

8|ξ|
ln

[
24π|ξ|

(
mp

HI

)2(
HDE

m

)2
]
− 1

2
ln

(
ΩM

ΩR

)
, (9.41)

where, per definition, ln
(

ΩM

ΩR

)
= NM (t0). Furthermore, mp is the Planck mass, H2

DE = ΩΛH
2
0 , and HI is the

inflationary Hubble parameter. Due to observational constraints [30], we can reasonably choose HI ≈ 1013

GeV, which is around the GUT scale. We must also satisfy a few constraints:

|ξ| < 1

6

(
m

HDE

)2

, ξ < 0, m/HDE < 1. (9.42)

The first constraint implies that the part of ⟨ρ̂Q⟩ that acts as a cosmological constant is greater than the
dark matter-like contribution. The other two constraints imply a light field and a negative non-minimal
coupling, which we require due to the usage of the stochastic formalism- they serve to better enhance the
quantum fluctuations.

9.3 Four-point correlators

We will now take a look at the results for four-point correlators, which become relevant when the describing
spatial correlations. This makes sense, as taking the two-point correlator of the density ρ̂Q is what gives rise
to spatial correlations. Naturally, the presence of additional terms increases the complexity of the problem,
giving rise to systems of six coupled differential equations. Rather than re-deriving these values, we will
simply state the results as derived in [19]. For the field correlators, we get:

∆4(NM , r) ≡
(
∆φ2,φ2 ,∆φ2,φπ,∆φπ,φπ,∆φ2,π2 ,∆φπ,π2 ,∆π2,π2

)
≈ ∆2

φφ(NM )s(r)
(
1, 8|ξ|, 16ξ2, 8ξ2, 32|ξ|3, 16ξ4

)
. (9.43)

Herein, r = |χ1−χ2| is the comoving distance between the coordinates associated with the two components
of the correlators. We also note that we get the same ∆φφ that we had in (9.37). For the spatial dependence,
we acquire an s-function defined as follows:

s(r) ≈


3, 0 ≤ µainHIr < e−NI ,

3− 2(µainHIr)
16|ξ|, e−NI < µainHIr < 1,

1, µainHIr ≥ 1.

(9.44)

Herein, r0 = (µainHI)
−1, which is the comoving Hubble radius at the beginning of inflation. Finally, we can

write the density-density correlator – now expressed with x⃗ = (χ, χθ⃗) – in terms of these field correlators:

⟨ρ̂Q(t, x⃗)ρ̂Q(t, x⃗′)⟩ ≈
H4

4

{[(m
H

)2
+ 6ξ

]
∆φ2,φ2 + 6ξ

[(m
H

)2
+ 6ξ

]
∆φ2,φπ + 36ξ2∆φπ,φπ

}

+
H4

4

{[(m
H

)2
+ 6ξ

]
∆φ2,π2 + 6ξ∆φπ,π2 +∆π2,π2

}
. (9.45)
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Combining (9.38), (9.43), and (9.45) and considering the leading order in |ξ| and m2

H2(NM ) now gives us exactly

the phenomenological result that we saw in section 3 when ρ̂ ∝ φ̂2:

⟨ρ̂Q(NM , x⃗)ρ̂Q(NM , y⃗)⟩ ≈ ⟨ρ̂Q(NM )⟩2s(r). (9.46)

This implies that we can use all of the pre-established formalism to study this particular realization of the
phenomenological model as well.

9.4 Effects of a reduced speed of sound

One adjustment that we can make to this specific realization is the speed of sound cs, which denotes the
speed of the field propagations. In particular, the case we considered before assumed cs = 1 so that our
fields propagate at the speed of light. However, it is possible to reduce the speed of sound in this model, as
was studied in [17, 19]. If we consider the speed of sound to be some constant that is not equal to the speed
of light, it will enter the equation of motion for the mode function as a mere rescaling, i.e.

φ̈(t, k) + 3Hφ̇(t, k) +

[
c2s
k2

a2
+M2(t)

]
φ(t, k) = 0. (9.47)

This rescaling carries through into all other equations that involve the wavevector k, so the mode functions
become

φ(t, k) =

√
π

4a3HI
H(1)

νI

(
csk

aHI

)
, νI =

√
9

4
− 12ξ −

(
m

HI

)2

. (9.48)

Analogous treatment of these mode functions then leads to a rescaled field correlator, and subsequently a
rescaled energy density:

∆φφ(NM ) = c−3
s

H2
I

32π2|ξ|
e8|ξ|NI+4|ξ|NM , (9.49)

ρQ(NM ) ≈ H2

2

[(m
H

)2
− 6|ξ|

]
c−3
s

H2
I

32π2|ξ|
e8|ξ|NI+4|ξ|NM . (9.50)

Finally, the amount of e-folds required to produce enough dark energy in the inflationary period decreases
due to this rescaling:

NI =
1

8|ξ|
ln

[
24π|ξ|

(
mp

HI

)2(
HDE

m

)2

c3s

]
− 1

2
ln

(
ΩM

ΩR

)
. (9.51)

This final observation can be understood by noting that a reduced speed of sound leads to a longer wavelength.
As quantum correlators are mostly built from long wavelength (small k) modes (part of the reason why we
can employ the stochastic formalism), this acts as an enhancement for these correlators.
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10 Prospects for the dark energy model

In order to compare this realization of the dark energy model to observables, we must first consider and
derive values for the relevant model parameters.

10.1 Model parameters

We will consider the classical and quantum contributions to the energy density by means of the energy
fractions:

ΩQ(z) =
⟨ρ̂Q⟩(z)

3M2
p H̄

2(z)
, Ωc(z) =

ρc(z)

3M2
p H̄

2(z)
, (10.1)

where ΩQ(z) + Ωc(z) = 1. We will neglect the exponential contribution from the matter era mentioned in
section 9, which nets us the following redshift dependence:

⟨ρ̂Q⟩(z)
⟨ρ̂Q⟩(0)

=
ΩΛ − 1

α
H̄2(z)
H2

0

ΩΛ − 1
α

. (10.2)

Herein, we have ΩΛ = 1 − ΩM , which is the energy fraction contributed by dark energy today. We also
defined the rescaled mass parameter α, implying that the constraints (9.42) have to be rewritten:

α =
1

6|ξ|

(
m

HDE

)2

, |ξ| < 1

6α
, α > 1, ξ < 0. (10.3)

Writing the classical and quantum energy fractions in terms of the dressed fractions yields the following
combination in our adjusted model:

1 = Ωc(z) + ΩQ(z) = Ω0,c(1 + z)3
H2

0

H̄2(z)
+

[
ΩΛ

H2
0

H̄2(z)
− 1

α

]
. (10.4)

Note that we assumed that all classical matter scales as non-relativistic matter, hence the dependence on
(1 + z)3. We can now rewrite the Hubble rate in terms of these energy fractions by using Ω0,c = ΩM + 1

α ,
yielding

H̄2(z)

H2
0

=
(ΩM + 1

α )(1 + z)3 +ΩΛ

1 + 1
α

. (10.5)

Note that this reduces to the regular Friedmann equation when α→∞, as we will then retrieve a minimal
coupling. We can conclude that

ΩQ(z) =
ΩΛ − 1

α (ΩM + 1
α )(1 + z)3

ΩΛ + (ΩM + 1
α )(1 + z)3

. (10.6)

We can now consider some of the model constants. In particular, we can match this realization to our
phenomenological model as described in section 3 by adopting the following values:

nDE = 16|ξ|, r0 =
1

µainHI
s(r) =

{
3− 2(µainHIr)

16|ξ|, µainHIr < 1,

1, µainHIr > 1.
(10.7)

We thus relate our spectral slope nDE to the non-minimal coupling ξ, and our reference scale r0 to the
energy scale at the beginning of inflation, of which aI and HI denote the scale factor and Hubble parameter,
respectively. At the end of inflation, we will have the following Friedmann equation assuming instant
reheating:

H2
I

H2
0

= ΩRa
−4
e +ΩMa

−3
e +ΩΛ, (10.8)
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where ae = aine
NI is the scale factor at the end of inflation, and ΩR = 9.1 · 10−5 is the energy fraction in

radiation today. We can use that ae ≪ 1 to find

ain = ΩR

(
HI

H0

)− 1
2

e−NI , (10.9)

and subsequently the characteristic length scale

H0r0 = µ−1eNI

(
HI

H0

)− 1
2

Ω
− 1

4

R . (10.10)

Finally, we can combine this with (9.51) to find that

r0H0 ≈ µ−1

(
H0

√
ΩR

HIΩM

) 1
2

[
4π

α

(
mP

HI

)2

c3s

] 1
8|ξ|

. (10.11)

As mentioned before, HI ≈ 1013 GeV and ΩR = 9.1 · 10−5. Additionally, ΩM = 0.31, ΩΛ ≈ 0.69 and
H0 ≈ 10−33 eV. Due to the constraints (10.3), we are rather limited in which values we can select for α and
ξ. A reasonable selection for these would be:

α |ξ|
1 [0.03, 0.065]
2 [0.03, 0.06]
3 [0.03, 0.055]
4 [0.028, 0.041]
5 [0.029, 0.033]

We would then take nDE = 16|ξ| for the spectral slope. It would additionally be useful to investigate the
effects of a reduced speed of sound, i.e. cs = 0.1 in addition to cs = 1.
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11 Conclusion and discussion

11.1 Conclusion

We explored the consequences of considering a model with spatial correlations in dark energy due to fluctua-
tions. First, we did this by means of a phenomenological model where the fluctuations stem from a quantum
field. Honing in on the case where ⟨ρQ⟩ ∝ φ̂2, where φ̂ is a Gaussian field, we were able to use existing
results that calculate how the Hubble parameter becomes dressed by these fluctuations [17] to derive new
results.

In particular, we were able to derive an expression for the dressed time delays of strong gravitational
lenses, which we found differed from regular ΛCDM due to the dependence of time delays on several comoving
distances. As comoving distances explicitly depend on the Hubble parameter, the fluctuations naturally
carried through into the time delays.

Additionally, we explored the effects of weak gravitational lensing as a contaminant, in particular in the
context of modern, deep surveys such as LSST [20]. In doing so, we found that terms of the angular power
spectrum beyond the monopole contribute negligibly, implying that the WL correlator is well below the
expected noise even in deeper surveys – this means it would be difficult to observe. In order to say anything
about the effects of this contaminant on the fluctuating dark energy model, we would need to compare the
two.

We then focused our attention on a specific realization of the aforementioned phenomenological model,
exploring its parameter space, choosing potential values for the associated model constants, and exploring
the idea of a reduced speed of sound.

11.2 Discussion

The logical next step for this research would be to calculate the signal-to-noise ratios (SNRs) for the various
angular power spectra. In doing so, one would acquire an idea on whether this effect is observable or not,
and be able to better compare the WL correlator to the DE model.

A natural follow-up to this research would be to check whether this model can alleviate tensions in
cosmological parameters other than H0. An earlier work [19] confirmed that this model can alleviate the
Hubble tension, so a logical next question would be whether it can do this with the σ8 tension too.

Another consideration could be the effect of employing this kind of model for dark matter, giving rise to
dark matter with quantum fluctuations. One could then probe the effects of these fluctuations on cosmological
observables such as luminosity distances and time delays, analogously to what we did here. One could extend
this idea further by coupling dark matter and dark energy.

Additionally, with our eyes on upcoming gravitational wave experiments, it would be interesting to study
the effects of this kind of model on gravitational wave formalism.

Finally, one could extend the formalism introduced here to other probes such as the cosmic microwave
background.
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A Derivation of the luminosity distance

The observed flux F at a distance d from a source of luminosity L is given by

F =
L

4πd2
, (A.1)

which is simply the luminosity dispersed over the area of a sphere of radius d. We can generalize this
expression to an expanding universe by adapting our definition of the luminosity to a comoving spherical
shell, and further replacing the regular distance by a comoving distance to get

F =
L(a)

4πχ2(a)
. (A.2)

We can note that L(χ) will be twice-affected by the expanding universe. Once by the comoving grid, which
will impose smaller physical distances for the photons at early times as opposed to late times, making the
amount of photons crossing a shell in a fixed time interval smaller by a factor a- and once by redshifting the
energy of the photons by a factor a, giving us

F =
La2

4πχ2(a)
. (A.3)

We therefore define the luminosity distance

dL(a) ≡
χ

a
(A.4)

so that we can express (A.1) in the comoving sphere by simply replacing d with dL.
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B Vanishing components of the singular isothermal sphere

When considering the time delays for the singular isothermal sphere, we stumble upon components that are
linear in Θ that are divergent. However, said divergences cancel each other out as follows:

Θ(a) −Θ(b) =
1

c2

∫ ∞

−∞
ds(Φa − Φb)

=
2σ2

v

c3

∫ ∞

−∞
ln

(√
r2⊥,a + s2

r2⊥,b + s2

)

=
2σ2

v

c3

[
s

2
ln

(
r2⊥,a + s2

r2⊥,b + s2

)
+ r⊥,a arctan

(
s

r⊥,a

)
+ r⊥,b arctan

(
s

r⊥,b

)]∞
−∞

=
2πσ2

v

c3
(r⊥,a − r⊥,b).

As for the components quadratic in Θ, they turn out to be a constant, and thus cancel each other out entirely
as follows:

(∇⃗⊥Θ)2 =

[
2σ2

v

c3

∫ ∞

−∞
ds(êx∂x + êy∂y) ln

(√
x2 + y2 + s2

r0

)]2

=

[
2σ2

v

c3

∫ ∞

−∞
ds

xêx + yêy
x2 + y2 + s2

]2

=

[
2πσ2

v

c3
xêx + yêy√
x2 + y2

]2

= (
2πσ2

v

c3
)2
x2 + y2

x2 + y2

=
4π2σ4

v

c6
.

Therefore,
(∇⃗⊥Θa)

2 − (∇⃗⊥Θb)
2 = 0.
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C Unequal time correlator

When calculating the angular power spectrum of our dark energy model, we acquire correlators of time delays
at various redshifts. Given the depth of modern surveys, these redshifts can reach high values. Therefore,
it is important to consider the effects of these unequal times on the correlator. To derive this correlator, we
consider an expansion around today

⟨ρ̂Q(t1, n̂1)ρ̂Q(t2, n̂2)⟩ ≈ ⟨ρ̂Q(t0, n̂1)ρ̂Q(t0, n̂2)⟩+∆t1⟨ ˙̂ρQ(t0, n̂1)ρ̂Q(t0, n̂2)⟩+∆t2⟨ρ̂Q(t0, n̂1) ˙̂ρQ(t0, n̂2)⟩.
(C.1)

Here, we defined ∆t = t − t0, where t is the cosmological time and t0 denotes the cosmological time today.
Equivalently, t0 denotes the age of the universe. We can now define an ansatz

⟨ρ̂Q(t, n̂1) ˙̂ρQ(t, n̂2)⟩ = ⟨ ˙̂ρQ(t, n̂1)ρ̂Q(t, n̂2)⟩ = B(t)⟨ρ̂Q(t)⟩⟨ρ̂Q(t)⟩s(∥x⃗− y⃗∥) (C.2)

for the unequal time correlator. We can use the Leibniz rule to now derive the following:

∂t⟨ρ̂Q(t, n̂1)ρ̂Q(t, n̂2)⟩ = 2B(t)⟨ρ̂Q(t)⟩⟨ρ̂Q(t)⟩s(∥x⃗− y⃗∥). (C.3)

We can additionally acquire another expression for this derivative by simply inserting the equal time corre-
lator as defined in (3.1) into the left-hand side of (C.3):

∂t⟨ρ̂Q(t, n̂1)ρ̂Q(t, n̂2)⟩ =

(
2
⟨ ˙̂ρQ⟩(t)
⟨ρ̂Q⟩(t)

)
⟨ρ̂Q⟩(t)2s(∥x⃗− y⃗∥). (C.4)

We can now obtain B(t) by comparing (C.3) to (C.4). This gives us

B(t) =
⟨ ˙̂ρQ⟩(t)
⟨ρ̂Q⟩(t)

. (C.5)

Inserting this into our original expansion, we find that

⟨ρ̂Q(t1, n̂1)ρ̂Q(t2, n̂2)⟩ ≈ ⟨ρ̂Q(t0, n̂1)ρ̂Q(t0, n̂2)⟩

(
1 + (∆t1 +∆t2)

⟨ ˙̂ρQ⟩(t0)
⟨ρ̂Q⟩(t0)

)
. (C.6)

It will be beneficial to write this in terms of the redshift. We can do this by noting that, at linear order,
t0 − t ≈ −H0z. Therefore,

⟨ρ̂Q(t1, n̂1)ρ̂Q(t2, n̂2)⟩ ≈ ⟨ρ̂Q(t0, n̂1)ρ̂Q(t0, n̂2)⟩
(
1 + (z1 + z2)

⟨ρ̂′Q⟩(z = 0)

⟨ρ̂Q⟩(z = 0)

)
. (C.7)
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D Unequal time power spectrum of the weak lensing contaminant

In the calculation of the weak lensing contaminant, one acquires a time-dependent power spectrum of which
the form is non-trivial. Ideally, one would expand it in a way where the resulting expressions become
analytically solvable. There are several approaches that one can take when expanding this power spectrum,
all of which involve the linearization of the underlying potentials with linear growth functions. In doing so,
one acquires

Φ(z; x⃗) = DΦ(z)Φ(z = 0; x⃗),

at which point it is trivial to expand the growth function up to linear order in redshift. Doing this with the
correlator gives

⟨Φ̃(z; k⃗′)Φ̃∗(z′; k⃗′′)⟩ = DΦ(z)DΦ(z
′)⟨Φ̃(z = 0; k⃗′)Φ̃∗(z = 0; k⃗′′)⟩

= DΦ(z)DΦ(z
′)(2π)3δ(3)(k⃗′ − k⃗′′)PΦ(k

′).

This is to say that
PΦ(z, z

′, k) ≈ D(z)D(z′)PΦ(k) := P1(z, z
′, k)

We can now expand this around today (z = 0) as follows:

DΦ(z)DΦ(z
′)(2π)3δ(3)(k⃗′ − k⃗′′)PΦ(k

′) = [1 + zD′
Φ(z = 0)][1 + z′D′

Φ(z = 0)](2π)3δ(3)(k⃗′ − k⃗′′)PΦ(k
′)

= [1 + (z + z′)D′
Φ(z = 0) + zz′(D′

Φ(z = 0))2](2π)3δ(3)(k⃗′ − k⃗′′)PΦ(k
′).

We can thus draw the conclusion that, when linearized with growth functions and expanded around today,

PΦ(z, z
′, k) ≈ [1 + (z + z′)D′

Φ(z = 0) + zz′(D′
Φ(z = 0))2]PΦ(k) := P2(z, z

′, k).

It is also possible to expand the growth functions around some intermediate redshift z̄ = z+z′

2 by defining
∆z = |z − z′|, which gives

PΦ(z̄ +∆z/2, z̄ −∆z/2, k) ≈
[
1− ∆z2

4

(
D′(z̄)

D(z̄)

)]
PΦ(z̄, k) := P3(z, z

′, k).

Of these three approximations, P2 is by far more preferable at first glance due to it leading to an expression
that one can integrate analytically in χ. However, in comparing these approximations to a significantly more
accurate Zeldovich approximation PZel as described in [31], we find the following ratio plots:
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We can clearly see that P2 – expanding around today – introduces significant errors in the final result.
On the other hand, P1 and P3 – not expanding the potential growth functions and expanding around an
intermediate redshift, respectively – are comparable in their accuracy. We are therefore led to the conclusion
that we cannot approximate the power spectra to make the χ-integrals analytic in a way that does not
introduce a significant source of error, which is why we opt for a numerical approach with P1 instead.
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E Derivation of the weak lensing contaminant

We start by considering a linear combination of the SL and WL potentials, i.e. the deflection angle becomes

α⃗ = θ⃗ − β⃗ = ∇⃗θ(ψSL + ψWL).

Writing this out in components and expanding the weak lensing contribution, we find that

θi − βi ≈ ∂iψSL(θ⃗) + ∂iψWL|β⃗ + ∂i∂jψWL|β⃗(θj − βj)

=⇒(δij − ∂i∂jψWL|β⃗)(θj − βj) ≈ ∂iψSL(θ⃗) + ∂iψWL|β⃗ . (E.1)

Notably, in the singular isothermal sphere,

∇⃗θψSL(θ⃗) = θE
θ⃗

||θ⃗||
=⇒ψSL(θ⃗) = θE ||θ⃗||+ C

where θE ≡ Dls

Ds

4πσ2
v

c2 . Then, we introduce the coordinate change x⃗ := θ⃗
θE
, y⃗ := β⃗

θE
, turning (1) into

(δij − ∂i∂jψWL|β⃗)(xj − yj) ≈
xi
||x⃗||

+
∂iψWL|β⃗

θE
. (E.2)

We now want to solve for x⃗. In order to do this, let us approach the problem perturbatively, i.e. xi ≈
x
(SL)
i + x

(WL)
i . Then,

||x⃗||2 = (x
(SL)
i + x

(WL)
i )2 = ||x⃗(SL)||2 + 2x⃗(WL) · x⃗(SL) +O((x⃗(WL))2)

≈ ||x⃗(SL)||2
(
1 + 2

x⃗(WL) · x⃗(SL)

||x⃗(SL)||2

)
,

and
1

||x⃗||
≈ 1

||x⃗(SL)||

(
1− x⃗(WL) · x⃗(SL)

||x⃗(SL)||2

)
.

Therefore, we can express the RHS as

xi
||x⃗||

≈ 1

||x⃗(SL)||

(
x
(SL)
i + x

(WL)
i − x⃗(WL) · x⃗(SL)

||x⃗(SL)||2
x
(SL)
i

)
.

Now for the LHS. Writing out the brackets, we find that our starting expression will be

(δij − ∂i∂jψWL|β⃗)(x
(SL)
j + x

(WL)
j − yj)

≈ x(SL)
i + x

(WL)
i − ∂i∂jψWL|β⃗(x

(SL)
j − yj)− yi.

Writing everything out, we need to solve the following equation for xi:

x
(SL)
i + x

(WL)
i − ∂i∂jψWL|β⃗(x

(SL)
j − yj)− yi

=
1

||x⃗(SL)||

(
x
(SL)
i + x

(WL)
i − x⃗(WL) · x⃗(SL)

||x⃗(SL)||2
x
(SL)
i

)
+
∂iψWL|β⃗

θE
. (E.3)

We will split this up in two parts. One where we take all terms that have no weak lensing, and one where
we take all terms that do have weak lensing. Then, we find that

O(ψ0
WL) : x

(SL)
i − yi ≈

x
(SL)
i

||x⃗(SL)||
=⇒x⃗(SL)

(
1− 1

||x⃗(SL)||

)
= y⃗.
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This is the strong lensing solution that we already knew of. For y⃗ = 0⃗ (Source directly behind the center of

the lens, i.e. intercepting the line of sight) we find an Einstein ring at ||θ⃗|| = θE . When y⃗ ̸= 0⃗, we note that
x⃗SL = αy⃗, i.e. the source and the images are in the same direction with respect to the center of the lens.
We can now discern two cases:

α =

{
1 + 1

||y⃗|| α > 0

1− 1
||y⃗|| α < 0 (||β⃗|| < θE).

We thus conclude that we are interested in the cases where the source is within the Einstein radius (||β⃗|| <
θE), as this gives us the two images that we are interested in at

x⃗
(SL)
± ≈ y⃗

(
1± 1

||y⃗||

)
=⇒θE θ⃗(SL) ≈ β⃗ ± θE

β⃗

||β⃗||
. (E.4)

We can now consider the weak lensing terms in (3). This gives us the following:

O(ψWL) : x
(WL)
i − ∂i∂jψWL|β⃗(x

(SL)
j − yj) ≈

1

||x⃗(SL)||

(
x
(WL)
i − x⃗(WL) · x⃗(SL)

||x⃗(SL)||2
x
(SL)
i

)
+
∂iψWL|β⃗

θE
.

Using our previously derived expression for x⃗
(SL)
± , we can find that ||x⃗(SL)

± || = 1 ± ||y⃗||, and our expression
becomes

x
(WL)
i ∓ ∂i∂jψWL|β⃗

yj
||y⃗||

≈ x
(WL)
i

1± ||y⃗||
− yix⃗(WL) · y⃗

1± 1
||y⃗||

(1± ||y⃗||)3
+
∂iψWL|β⃗

θE

=⇒x(WL)
i ∓ ∂i∂jψWL|β⃗

yj
||y⃗||

≈ x
(WL)
i

1± ||y⃗||
− yi
||y⃗||2

x
(WL)
i · y⃗
1± ||y⃗||

+
∂iψWL|β⃗

θE
.

Isolating the terms x⃗(WL) and ψWL|β⃗ on opposite sides, and additionally writing the dot products out
component-wise brings us to the equation that we must solve:

x
(WL)
i

(
1− 1

1± ||y⃗||

)
+

yiyjx
(WL)
j

(1± ||y⃗||)||y⃗||2
≈
∂iψWL|β⃗

θE
± ∂i∂jψWL|β⃗

yj
||y⃗||

.

We can now group all terms x
(WL)
j to find that(
δij ± yiyj

||y⃗||2

1± 1
||y⃗||

)
x
(WL)
j ≈

∂iψWL|β⃗
θE

± ∂i∂jψWL|β⃗
yj
||y⃗||

.

Note that this is essentially just a matrix problem, i.e.

M±
ijx

(WL)
j ≈ V ±

i ,

where (
1± 1

||y⃗||

)
M± =

(
1± y2

1

||y⃗||3 ± y1y2

||y⃗||3

± y1y2

||y⃗||3 1± y2
2

||y⃗||3

)
=⇒detM± =

(
1± 1

||y⃗||

)−1

,

such that

(M±)−1
ij =

(
1± 1

||y⃗||

)
δij ∓

yiyj
||y⃗||3

.

We can now solve for x⃗(WL), as x
(WL)
i ≈ (M±)−1

ij V
±
j , which gives us

x
(WL)
i =

[(
1± 1

||y⃗||

)
δij ∓

yiyj
||y⃗||3

](
∂jψWL|β⃗

θE
± ∂j∂kψWL|β⃗

yk
||y⃗||

)
.
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=

(
1± 1

||y⃗||

)
∂iψWL|β⃗

θE
±
(
1± 1

||y⃗||

)
∂i∂kψWL|β⃗

yk
||y⃗||
∓ yiyj
||y⃗||3

∂jψWL|β⃗
θE

− yiyjyk
||y⃗||4

∂j∂kψWL|β⃗ .

In order to simplify these expressions, we will define the normal vector n̂ = β⃗

||β⃗||
, at which point we can

rewrite terms ni∂i as ∂n̂. In doing so, our expression becomes

θ⃗(WL) ≈

(
1± θE

||β⃗||

)
∇⃗n̂ψWL|β⃗ ∓

θE

||β⃗||
∂n̂ψWL|β⃗n̂+ θE

(
θE

||β⃗||
± 1

)
∇⃗∂n̂ψWL|β⃗ −

θ2E

||β⃗||
∂2n̂ψWL|β⃗n̂. (E.5)

Now that we have all of the needed expressions, i.e. θ⃗± ≈ (4) + (5), let us go to our time delay (and neglect
all terms O(ψ2

WL)):

t(θ⃗, β⃗) =
1 + zl
c

DlDs

Dls

[
1

2
(∇⃗θψ)

2 − ψ(θ⃗)
]

≈ 1 + zl
c

DlDs

Dls

[
1

2
||∇⃗ψSL||2 + ∇⃗ψSL · ∇⃗ψWL − ψ(θ⃗)

]
.

Calculating the difference between two images, we find

∆t(θ⃗±, β⃗) ≈ 1 + zl
c

DlDs

Dls

{
1

2
||∇⃗ψ+

SL||
2 − 1

2
||∇⃗ψ−

SL||
2 + ∂iψ

+
SL

[
∂iψWL|β⃗ + ∂i∂jψWL|β⃗(θ+,j − βj)

]
×∂iψ−

SL

[
∂iψWL|β⃗ + ∂i∂jψWL|β⃗(θ−,j − βj)

]
− ψ+

SL + ψ−
SL − ψ

+
WL + ψ−

WL

}
.

However, we can simplify this by noting that

ψ(θ⃗±) = ψSL(θ⃗
±) + ψWL(θ⃗

±) ≈ ψSL(θ⃗
±) + ψWL|β⃗ + ∂iψWL|β⃗(θ

±
i − βi)

=⇒−ψ+
SL + ψ−

SL − ψ
+
WL + ψ−

WL ≈ −ψ
+
SL + ψ−

SL − ∂iψWL|β⃗(θ+,i − θ−,i).

Additionally, we know that ψSL(θ⃗
±) = θE ||θ⃗±|| + C, which we can insert. Finally, we have previously

calculated that (for SIS)
1

2
(||∇⃗ψ+

SL||
2 − ||∇⃗ψ−

SL||
2) = 0.

Using all of this, we find that

∆t(θ⃗±, β⃗) =
1 + zl
c

DlDs

Dls

{
θE∂iψWL|β⃗

(
θ+i

||θ⃗+||
− θ−i

||θ⃗−||

)
+ θE∂i∂jψWL|β⃗

(
θ+i θ

+
j

||θ⃗+||
−
θ−i θ

−
j

||θ⃗−||

)

−θE∂i∂jψWL|β⃗βj

(
θ+i

||θ⃗+||
− θ−i

||θ⃗−||

)
− θE(||θ⃗+|| − ||θ⃗−||)− ∂iψWL|β⃗(θ

+
i − θ

−
i )

}
.

We will now need to explicitly find an expression for the norm. Let us start from the norm squared (again,
neglecting all terms O(ψ2

WL)):

||θ⃗±||2 ≈

(
||β⃗|| ± θE ∓

θE

||β⃗||
∂n̂ψWL|β⃗ −

θ2E

||β⃗||
∂2n̂ψWL|β⃗

)2

+2∂n̂ψWL|β⃗

(
1± θE

||β⃗||

)
(||β⃗|| ± θE) + 2∂2n̂ψWL|β⃗θE

(
θE

||β⃗||
± 1

)
(||β⃗|| ± θE).
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When we work out the brackets, we find that a lot of these terms cancel against each other. In fact, the
remaining terms are

||θ⃗±||2 ≈ (||β⃗|| ± θE)2 + 2(||β⃗|| ± θE)∂n̂ψWL|β⃗ ± 2θE(||β⃗|| ± θE)∂2n̂ψWL|β⃗

= (||β⃗|| ± θE)2(1 + 2(||β⃗|| ± θE)−1∂n̂ψWL|β⃗ ± 2θE(||β⃗|| ± θE)−1∂2n̂ψWL|β⃗).

Note that we can then use the approximation
√
1 + x ≈ 1 + x

2 considering x is small. Therefore,

||θ⃗±|| ≈ (||β⃗|| ± θE)(1 + (||β⃗|| ± θE)−1∂n̂ψWL|β⃗ ± θE(||β⃗|| ± θE)
−1∂2n̂ψWL|β⃗)

= θE ± ||β⃗|| ± ∂n̂ψWL|β⃗ + 2θE∂
2
n̂ψWL|β⃗ ,

and
||θ⃗+|| − ||θ⃗−|| = 2(||β⃗||+ ∂n̂ψWL|β⃗).

We can now make a few observations to simplify our lives- Namely, whether we are considering θ⃗+SL or θ⃗−SL

has an effect on the sign of our vector, which is to say that we have

θ⃗±SL =

{
(||β⃗||+ θE)n̂ θ+

−(θE − ||β⃗||)n̂ θ−,

and subsequently that we can argue that

θ+i

||θ⃗+||
≈ ni,

θ−i

||θ⃗−||
≈ −ni,

θ+i

||θ⃗+||
− θ−i

||θ⃗−||
≈ 2ni.

Using the same reasoning, we can also argue that

θ+i θ
+
j

||θ⃗+||
−
θ−i θ

−
j

||θ⃗−||
≈ 2||β⃗||ninj .

Inserting all of these significantly simplifies our expression for the time delay to the following:

∆t(β⃗) ≈ 1 + zl
c

DlDs

Dls

{
2θE

[
∂iψWL|β⃗ − βj∂i∂jψWL|β⃗

]
ni + 2θE ||β⃗||∂2n̂ψWL|β⃗

−2θE(||β⃗||+ ∂n̂ψWL|β⃗)− 2θE∂n̂ψWL|β⃗

}
= −2θE

1 + zl
c

DlDs

Dls
(||β⃗||+ ∂n̂ψWL|β⃗).

Insert θE ≡ 4πσ2
v

c2
Dls

Ds
to find

∆t(β⃗) = −8π(σv
c
)2
χl

c
(||β⃗||+ ∂n̂ψWL|β⃗).

where χl ≡ (1 + zl)Dl is the comoving distance in a flat FLRW universe.

48



References

[1] J. H. Oort. The force exerted by the stellar system in the direction perpendicular to the galactic plane
and some related problems. , 6:249, August 1932.

[2] Vera C. Rubin. Dark matter in spiral galaxies. Scientific American, 248(6):96–109, 1983. ISSN 00368733,
19467087. URL http://www.jstor.org/stable/24968923.

[3] F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. , 86:217, October 1937. doi:
10.1086/143864.

[4] P. J. E. Peebles and Bharat Ratra. The cosmological constant and dark energy. Reviews of Modern
Physics, 75(2):559–606, apr 2003. doi: 10.1103/revmodphys.75.559. URL https://doi.org/10.1103%

2Frevmodphys.75.559.

[5] N. Aghanim et al. iplanck/i2018 results. Astronomy &amp Astrophysics, 641:A6, sep 2020. doi:
10.1051/0004-6361/201833910. URL https://doi.org/10.1051%2F0004-6361%2F201833910.

[6] Bharat Ratra and P. J. E. Peebles. Cosmological consequences of a rolling homogeneous scalar field.
Phys. Rev. D, 37:3406–3427, Jun 1988. doi: 10.1103/PhysRevD.37.3406. URL https://link.aps.

org/doi/10.1103/PhysRevD.37.3406.

[7] C. Armendariz-Picon, V. Mukhanov, and Paul J. Steinhardt. Essentials ofik/i-essence. Physical Review
D, 63(10), apr 2001. doi: 10.1103/physrevd.63.103510. URL https://doi.org/10.1103%2Fphysrevd.

63.103510.

[8] S. Shankaranarayanan and Joseph P. Johnson. Modified theories of gravity: Why, how and what?
General Relativity and Gravitation, 54(5), may 2022. doi: 10.1007/s10714-022-02927-2. URL https:

//doi.org/10.1007%2Fs10714-022-02927-2.

[9] S. Nojiri, S.D. Odintsov, and V.K. Oikonomou. Modified gravity theories on a nutshell: Inflation, bounce
and late-time evolution. Physics Reports, 692:1–104, jun 2017. doi: 10.1016/j.physrep.2017.06.001. URL
https://doi.org/10.1016%2Fj.physrep.2017.06.001.

[10] K.C. Wong et al. H0licow – XIII. a 2.4 per cent measurement of h0 from lensed quasars: 5.3 tension be-
tween early- and late-universe probes. Monthly Notices of the Royal Astronomical Society, 498(1):1420–
1439, sep 2019. doi: 10.1093/mnras/stz3094. URL https://doi.org/10.1093%2Fmnras%2Fstz3094.

[11] Florian Niedermann and Martin S. Sloth. Resolving the hubble tension with new early dark energy.
Physical Review D, 102(6), sep 2020. doi: 10.1103/physrevd.102.063527. URL https://doi.org/10.

1103%2Fphysrevd.102.063527.

[12] Laura Herold and Elisa G. M. Ferreira. Resolving the hubble tension with early dark energy, 2022. URL
https://arxiv.org/abs/2210.16296.

[13] Planck Collaboration et al. Planck 2013 results. XV. CMB power spectra and likelihood. , 571:A15,
November 2014. doi: 10.1051/0004-6361/201321573.

[14] E. Keihänen, H. Kurki-Suonio, V. Lindholm, A. Viitanen, A.-S. Suur-Uski, V. Allevato, E. Branchini,
F. Marulli, P. Norberg, D. Tavagnacco, S. de la Torre, J. Valiviita, M. Viel, J. Bel, M. Frailis, and
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